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Abstract. Distributed Oblivious RAM (DORAM) protocols—in which
parties obliviously access a shared location in a shared array—are a
fundamental component of secure-computation protocols in the RAM
model. We show here an efficient, 3-party DORAM protocol with semi-
honest security for a single corrupted party. To the best of our knowl-
edge, ours is the first protocol for this setting that runs in constant
rounds, requires sublinear communication and linear work, and makes
only black-box use of cryptographic primitives. We believe our protocol
is also concretely more efficient than existing solutions.

As a building block of independent interest, we construct a 3-server dis-
tributed point function with security against two colluding servers that
is simpler and has better concrete efficiency than prior work.

1 Introduction

A fundamental problem in the context of privacy-preserving protocols for large
data is ensuring efficient oblivious read/write access to memory. Research in this
area originated with the classical work on oblivious RAM (ORAM) [10], which
can be viewed as allowing a stateful client to store an (encrypted) array on a
server, and then obliviously read/write data from/to specific addresses of that
array with sublinear client-server communication. Roughly, obliviousness here
means that for each memory access the server learns nothing about which address
is being accessed, the specific data being read or written, and even whether a
read or a write is being performed. A long line of work [11, 25, 30, 18, 26, 8, 21,
29, 24, 31, 1] has shown both asymptotic and concrete improvements to ORAM
protocols. More recently [20, 1, 5, 15, 17], the idea of ORAM was extended to a
multi-server setting in which a client stores data on two or more servers and
obliviousness must hold with respect to each of them.

In all the aforementioned work, there is a fundamental distinction between
the client and the server(s): the client knows the address being accessed and (in
the case of writes) the data being written; following a read, the client learns
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the data that was read. That is, there are no privacy/obliviousness requirements
with respect to the client.

One of the primary applications of ORAM protocols is in the realm of se-
cure computation in the random-access machine (RAM) model of computa-
tion [23, 12, 8, 19, 29, 2, 22, 6, 28, 7, 13, 31, 5, 16]. Here, parties store an array in
a distributed fashion (such that none of them know its contents), and need to
read from and write to the array during the course of executing some algorithm.
In this context, memory accesses must be oblivious to all the parties; there is, in
general, no one party who can act as a “client” and who is allowed to learn infor-
mation about, e.g., the positions in memory being accessed. There is thus a need
for a new primitive, which we refer to as distributed ORAM (DORAM), that
allows the parties to collectively maintain an array and to perform reads/writes
on that array. (We refer to Section 5 for a more formal definition.)

An n-party DORAM protocol can be constructed from any n′-server ORAM
scheme (n′ ≤ n) using generic secure computation. The main idea is for n′ of the
parties to act as the servers in the underlying ORAM scheme; a memory access
for an address that is secret-shared among the n parties is carried out by having
those parties run a secure-computation protocol to evaluate the client algorithm
of the ORAM scheme. This approach (with various optimizations) was followed
in some prior work on RAM-model secure computation, and motivated efforts
to design (single-server) ORAM schemes in which the client algorithm can be
implemented by a low-complexity circuit [29, 27]. In addition to the constructions
of DORAM that are implied by prior work on ORAM, or that are implicit in
previous work on RAM-based secure computation, dedicated DORAM schemes
have been given in the 2-party [5] and 3-party [6, 14] settings.

1.1 Our Contribution

We show here a new 3-party DORAM protocol, secure against semi-honest cor-
ruption of one of the parties. To the best of our knowledge, it is the first such
protocol that simultaneously runs in constant rounds, requires sublinear com-
munication and linear work, and makes only black-box use of cryptographic
primitives. (The last property, in particular, rules out constructions that apply
generic secure computation to known ORAM schemes.) We believe our protocol
is also concretely more efficient than existing solutions.

As a building block of independent interest, we show a new construction of
a 3-server distributed point function (see Section 2) that is secure against any
two colluding servers. Our construction has communication complexity O(

√
N),

where N is the size of the domain. This matches the asymptotic communication
complexity of the only previous construction [3], but our scheme is both simpler
and has better concrete efficiency.

1.2 Outline of the Paper

We describe a construction of a 3-server distributed point function (DPF), with
privacy against two semi-honest corruptions, in Section 2. In Section 3 we re-



view known constructions of multi-server schemes for oblivious reading (PIR)
or oblivious writing (PIW) based on DPFs. We then show in Section 4 how to
combine our 3-server DPF with any 2-server PIR scheme to obtain a 3-server
ORAM scheme secure against semi-honest corruption of one server. Finally, in
Section 5 we describe how to extend our ORAM scheme to obtain a 3-party dis-
tributed ORAM protocol, secure against one semi-honest corruption. Relevant
definitions are given in each of the corresponding sections.

2 A 2-Private, 3-Server Distributed Point Function

Distributed point functions were introduced by Gilboa and Ishai [9], and further
generalized and improved by Boyle et al. [3, 4].

2.1 Definitions

Fix some parameters N and B. For y ∈ [N ] = {1, . . . , N} and v ∈ {0, 1}B , define
the point function Fy,v : {1, . . . , N} → {0, 1}B as follows:

Fy,v(x) =

{
v if x = y
0B otherwise.

A distributed point function provides a way for a client to “secret share” a point
function among a set of servers. We define it for the special case of three servers,
with privacy against any set of two colluding servers. The definitions can be
extended in the natural way for other cases.

Definition 1. A 3-server distributed point function consists of a pair of algo-
rithms (Gen,Eval) with the following functionality:

– Gen takes as input the security parameter 1κ, an index y ∈ {1, . . . , N}, and
a value v ∈ {0, 1}B. It outputs keys K1,K2,K3.

– Eval is a deterministic algorithm that takes as input a key K and an index
x ∈ {1, . . . , N}, and outputs a string ṽ ∈ {0, 1}B.

Correctness requires that for any κ, any (y, v) ∈ {1, . . . , N} × {0, 1}B, any
K1,K2,K3 output by Gen(1κ, y, v), and any x ∈ {1, . . . , N}, we have

Eval(K1, x)⊕ Eval(K2, x)⊕ Eval(K3, x) = Fy,v(x).

Definition 2. A 3-server DPF is 2-private if for any i1, i2 ∈ {1, 2, 3} and any
ppt adversary A, the following is negligible in κ:∣∣∣∣Pr

[
(y0, v0, y1, v1)← A(1κ); b← {0, 1};

(K1,K2,K3)← Gen(1κ, yb, vb)
: A(Ki1 ,Ki2) = b

]
− 1

2

∣∣∣∣ .
2.2 Our Construction

Let G : {0, 1}κ →
(
{0, 1}B

)√N
be a pseudorandom generator. We now describe

a construction of a 2-private, 3-server DPF:



Gen(1κ, y, v): View y ∈ {1, . . . , N} as a pair (i, j) with i, j ∈
√
N . Then:

1. Choose uniform I1, I2, I3 ∈ {0, 1}
√
N with

I1 ⊕ I2 ⊕ I3 = (

i︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

√
N

).

2. For k = 1, . . . ,
√
N do:

(a) If k 6= i, then choose seeds ak, bk, ck ← {0, 1}κ and define

S1
k = {ak, bk},
S2
k = {bk, ck},
S3
k = {ck, ak}.

Note that each seed is in exactly two of the above sets.

If k = i, then choose seeds ak, bk, ck, dk ← {0, 1}κ and define

S1
k = {ak, dk},
S2
k = {bk, dk},
S3
k = {ck, dk}.

Note that in this case, there is one seed is in all three of the above sets,
and the other three seeds are each in exactly one set.
We stress that the Sji are all unordered pairs, e.g., each set is specified
by writing its elements in lexicographic order.

3. Let ej,v ∈ ({0, 1}B)
√
N denote a “characteristic vector” that is zero every-

where except position j, where it has value v. That is,

ej,v = (

j︷ ︸︸ ︷
0B , . . . , 0B , v, 0B , . . . , 0B︸ ︷︷ ︸

√
N

).

Compute the correction word

C = G(ai)⊕G(bi)⊕G(ci)⊕G(di)⊕ ej,v.

(The four seeds input to G are from the iteration of Step 2 when k = i.)
4. The keys that are output are:

K1 = (S1
1 , . . . , S

1√
N
, I1, C),

K2 = (S2
1 , . . . , S

2√
N
, I2, C),

K3 = (S3
1 , . . . , S

3√
N
, I3, C).



The length of each key is O((κ+B) ·
√
N).

Eval(K,x). View x ∈ {1, . . . , N} as a pair (i′, j′) with i′, j′ ∈
√
N . Let

K = (S1, . . . , S√N , I, C),

where Sk = {αk, βk} for k = 1, . . . ,
√
N . Compute the vector

Ṽ = G(αi′)⊕G(βi′)⊕ (Ii′ · C) ∈
(
{0, 1}B

)√N
,

where Ii′ denotes the i′-th bit of I. Output the B-bit string in position j′ of Ṽ .

Correctness. Let y = (i, j) and say K1,K2,K3 are output by Gen(1κ, y, v). Let
x = (i′, j′) and consider the outputs ṽ1 = Eval(K1, x), ṽ2 = Eval(K2, x), and
ṽ3 = Eval(K3, x). Let Ṽ 1, Ṽ 2, Ṽ 3 denote the intermediate vectors computed by
these three executions of Eval. We consider two cases:

1. Say i′ 6= i. Then

Ṽ 1 ⊕ Ṽ 2 ⊕ Ṽ 3

=
(
G(ai′)⊕G(bi′)⊕ (I1i′ · C)

)
⊕
(
G(bi′)⊕G(ci′)⊕ (I2i′ · C)

)
⊕(

G(ci′)⊕G(ai′)⊕ (I3i′ · C)
)

= (I1i′ ⊕ I2i′ ⊕ I3i′) · C = 0B·
√
N ,

where the final equality is because I1i′ ⊕ I2i′ ⊕ I3i′ = 0 when i′ 6= i. Hence
ṽ1 ⊕ ṽ2 ⊕ ṽ3 = 0B for any j′.

2. Say i′ = i. Then

Ṽ 1 ⊕ Ṽ 2 ⊕ Ṽ 3

=
(
G(ai′)⊕G(di′)⊕ (I1i′ · C)

)
⊕
(
G(bi′)⊕G(di′)⊕ (I2i′ · C)

)
⊕(

G(ci)⊕G(di)⊕ (I3i · C)
)

= G(ai)⊕G(bi)⊕G(ci)⊕G(di)⊕
(
(I1i ⊕ I2i ⊕ I3i ) · C

)
= G(ai)⊕G(bi)⊕G(ci)⊕G(di)⊕ C = ej,v.

Hence ṽ1 ⊕ ṽ2 ⊕ ṽ3 is equal to 0B if j′ 6= j, and is equal to v if j′ = j.

Theorem 1. The above scheme is 2-private.

Proof. By symmetry we may assume without loss of generality that servers 1
and 2 are corrupted. Fix a ppt algorithm A and let Expt0 denote the experiment
as in Definition 2. Let ε0 denote the probability with which A correctly outputs b
in that experiment, i.e.,

ε0 = Pr

[
(y0, v0, y1, v1)← A(1κ); b← {0, 1};

(K1,K2,K3)← Gen(1κ, yb, vb)
: A(K1,K2) = b

]
.

Now consider an experiment Expt1 in which Gen is modified as follows, where
we let yb = (i, j).



1. For k = 1, . . . ,
√
N , compute S1

k and S2
k as before. (Note that S3

k need not be
defined, since we only care about the keys K1,K2 that are provided to A.
In particular, we never need to define the value of seed ci.)

2. Set C to a uniform value in ({0, 1}B)
√
N .

3. Set I1, I2 to uniform values in {0, 1}
√
N .

4. Keys K1,K2 are then defined as before.

It follows from pseudorandomness of G that the view of A in Expt1 is compu-
tationally indistinguishable from its view in Expt0; hence if we let ε1 denote the
probability that A correctly outputs b in Expt1 we must have |ε1− ε0| ≤ negl(κ).

It may be observed that the view of A in Expt1 is independent of i and j. In
particular, the joint distributions of S1

i , S
2
i and S1

k, S
2
k (for k 6= i) are identical

(namely, the distribution defined by choosing three uniform seeds a, b, c ∈ {0, 1}κ
and letting the first set be {a, b} and the second set be {b, c}). Thus, ε1 = 1/2,
concluding the proof. ut

3 Oblivious Reading and Writing

We describe here known n-server protocols [9] for private information retrieval
(PIR) for oblivious reading, and private information writing (PIW) for oblivious
writing, based on any n-server DPF. In the context, as in the case of ORAM,
we have a client interacting with these servers, and there is no obliviousness
requirement with respect to the client. If the DPF is t-private, these protocols
are t-private as well. (Formal definitions are given by Gilboa and Ishai [9].)

PIR. Let D ∈ ({0, 1}B)N be an encrypted data array. Let (Gen,Eval) be an
n-server DPF with domain [N ] and range {0, 1}. Each of the n servers is given
a copy of D. To retrieve the data D[y] stored at address y, the client computes
Gen(1κ, y, 1) to obtain keys K1, . . . ,Kn, and sends Ki to the ith server. The ith
server computes cix = Eval(Ki, x) for x ∈ {1, . . . , N}, and sends

ri =
⊕

x∈{1,...,N}

cix ·D[x]

to the client. Finally, the client computes the result
⊕n

i=1 r
i. Correctness holds

since

n⊕
i=1

ri =
⊕

x∈{1,...,N}

n⊕
i=1

cix ·D[x]

=
⊕

x∈{1,...,N}

Fy,1(x) ·D[x] = D[y].

Privacy follows immediately from privacy of the DPF.

PIW. Let D ∈ ({0, 1}B)N be a data array. Let (Gen,Eval) be an n-server DPF
for point functions with domain [N ] and range {0, 1}B . Now, each of the servers



is given an additive share Di of D, where
⊕
Di = D. When the client wants to

write the value v to address y, we require the client to know the current value
vold stored at that address. (Here, we simply assume the client knows this value;
in applications of PIW we will need to provide a way for the client to learn it.)
The client computes Gen(1κ, y, v ⊕ vold) to obtain keys K1, . . . ,Kn, and sends
Ki to the ith server. The ith server computes Eval(Ki, x) for x = 1, . . . , N to
obtain a sequence of B-bit values Ṽ i = (ṽi1, . . . , ṽ

i
N ), and then updates its share

Di to D̃i = Di ⊕ Ṽ i. Note that if we define D̃ =
⊕
D̃i, then D̃ is equal to

D everywhere except at address y, where the value at that address has been
“shifted” by v ⊕ vold so that the new value stored there is v.

4 3-Server ORAM

In this section we describe a 3-server ORAM scheme secure against a single
semi-honest server. The scheme can be built from any 2-private, 3-server DPF
in conjunction with any 2-server PIR protocol. (As discussed in the previous
section, a 2-server PIR protocol can be constructed from any 1-private, 2-server
DPF; efficient constructions of the latter are known [9, 4].)

A 4-server ORAM scheme. As a warm-up, we sketch a 4-server ORAM
protocol (secure against a single semi-honest server), inspired by ideas of [23],
based on 2-server PIR and PIW schemes constructed as in the previous section.
Let D ∈ ({0, 1}B)N be the client’s (encrypted) data, and let D1, D2 be shares
so that D1 ⊕D2 = D. Servers 1 and 2 store D1, and servers 3 and 4 store D2.
The client can then obliviously read from and write to D as follows: to read
the value at address y, the client runs a 2-server PIR protocol with servers 1
and 2 to obtain D1[y] and with servers 3 and 4 to obtain D2[y]. It then computes
D[y] = D1[y]⊕D2[y].

To write the value v to address y, the client first performs an oblivious read
(as above) to learn the value vold currently stored at that address. It then runs
a 2-server PIW protocol with servers 1 and 3 to store v at address y in the
array shared by those servers. Next, it sends the same PIW messages to servers
2 and 4, respectively. (The client does not run a fresh invocation of the PIW
scheme; rather, it sends server 2 the same message it sent to server 1 and sends
server 4 the same message it sent to server 3.) This ensures that (1) servers 1
and 2 hold the same updated data D̃1; (2) servers 3 and 4 hold the same updated
data D̃2; and (3) the updated array D̃ = D̃1 ⊕ D̃2 is identical to the previously
stored array except at position y (where the value stored is now v).

A 3-server ORAM scheme. We now show how to adapt the above ideas to
the 3-server case, using a 2-server PIR scheme and a 2-private, 3-server DPF.
The data D of the client is again viewed as an N -element array of B-bit entries.
The invariant of the ORAM scheme is that at all times there will exist three
shares D1, D2, D3 with D1 ⊕D2 ⊕D3 = D; server 1 will hold D1, D2, server 2
will hold D2, D3, and server 3 will hold D3, D1.

Before describing how reads and writes are performed, we define two subrou-
tines GetValue and ShiftValue.



GetValue. To learn the entry at address y, the client uses three independent
executions of a 2-server PIR scheme. Specifically, it uses an execution of the PIR
protocol with servers 1 and 2 to learn D2[y]; an execution of the PIR protocol
with servers 2 and 3 to learn D3[y]; and an execution of the PIR protocol with
servers 1 and 3 to learn D1[y]. Finally, it XORs the three values just obtained
to obtain D[y] = D1[y]⊕D2[y]⊕D3[y].

ShiftValue. This subroutine allows the client to shift the value at position y
by ∆ ∈ {0, 1}B , i.e., to change D to D̃ where D̃[x] = D[x] for x 6= y and
D̃[y] = D[y] ⊕ ∆. Let (Gen,Eval) be a 2-private, 3-server DPF scheme with
domain [N ] and range {0, 1}B . The client computes K1,K2,K3 ← Gen(y,∆)
and sends K1 to server 1, K2 to server 2, and K3 to server 3. Each server s
respectively computes Eval(Ks, x) for x = 1, . . . , N to obtain a sequence of B-
bit values Ṽ s = (ṽs1, . . . , ṽ

s
N ), and then updates its share Ds to D̃s = Ds ⊕ Ṽ s.

Note that if D̃ denotes the updated version of the array, then D̃1⊕D̃2⊕D̃3 = D̃.
After the above, server 1 holds D̃1, D2, server 2 holds D̃2, D3, and server 3

holds D̃3, D1, and so the desired invariant does not hold. To fix this, the client
also sends K1 to server 3, K2 to server 1, and K3 to server 2. (We stress that
the same keys used before are being used here, i.e., the client does not run a
fresh execution of the DPF.) This allows each server to update its “other” share
to the same value held by the corresponding other server, and hence restore the
invariant.

With these in place, we may now define our read and write protocols.

Read. To read the entry at index y, the client runs GetValue(y) followed by
ShiftValue(y, 0B).

Write. To write a value v to index y, the client first runs GetValue(y) to learn
the current value vold stored at index y. It then runs ShiftValue(y, v ⊕ vold).

Correctness of the construction is immediate. Security against a single semi-
honest server follows from security of the GetValue and ShiftValue subroutines,
which in turn follow from security of the primitives used: GetValue is secure
because the PIR scheme hides y from any single corrupted server; ShiftValue
is secure against any single corrupted server—even though that server sees two
keys from the DPF—by virtue of the fact that the DPF is 2-private.

5 3-party Distributed ORAM

5.1 Definition

In the previous section we considered the client/server setting where a single
client outsources its data to three servers, and can perform reads and writes on
that data. In that setting, the client knows the index y when reading and knows
the index y and value v when writing. Here, in contrast, we consider a setting
where three parties P1, P2, P3 distributively implement the client (as well as the
servers), and none of them should learn the input(s) or output of read/write



requests—in fact, they should not even learn whether a read or a write was
performed. Instead, all inputs/outputs are additively shared among the three
parties, and should remain hidden from any single (semi-honest) party.

More formally, we define in Figure 1 an ideal, reactive functionality Fmem cor-
responding to distributed storage of an array with support for memory accesses.
(For simplicity we leave initialization implicit, and so assume the functionality
always stores an array D ∈ ({0, 1}B)N .) We then define a 1-private, 3-party dis-
tributed ORAM (DORAM) protocol to be a 3-party protocol that realizes this
ideal functionality in the presence of a single (semi-honest) corrupted party.

Functionality Fmem

The functionality is assumed to be initialized with an array D ∈ ({0, 1}B)N .

1. On input additive shares of (op, y, v) from the three parties, do:
(a) If op = read then set o = D[y].
(b) If op = write then seta o = D[y] and D[y] = v.

2. Let o1, o2, o3 be random, additive shares of o. Return os to party s.

a For the purposes of the functionality, o can be an arbitrary value when
op = write. For concreteness, we set o = D[y] in this case so as to slightly
optimized our protocol.

Fig. 1. Functionality Fmem for distributed memory access.

5.2 Our Construction

We give a construction of a 3-party DORAM protocol inspired by the 3-server
ORAM scheme described in the previous section. Here, however, we rely on the
specific 3-server DPF constructed in Section 2.

We maintain the same invariant as in the previous section, namely, at all
times there are three shares D1, D2, D3 with D1 ⊕D2 ⊕D3 = D; party 1 will
hold D1, D2, party 2 will hold D2, D3, and party 3 will hold D1, D3. As in the
previous section, we begin by constructing subroutines GetValue and ShiftValue.

GetValue. Here the parties hold y1, y2, y3, respectively, with y = y1 ⊕ y2 ⊕ y3;
after running this protocol the parties should hold additive shares v1, v2, v3 of
the value D[y]. This is accomplished as follows:

1. P2 chooses uniform r2 and sends r2 to P1 and y2 ⊕ r2 to P3. Party P3

chooses uniform r3 and sends r3 to P1 and y3 ⊕ r3 to P2. Then P2 and P3

each compute ω = y2 ⊕ r2 ⊕ y3 ⊕ r3, and P1 computes

y1 ⊕ r2 ⊕ r3 = y ⊕ ω.

2. P1 runs the client algorithm in the 2-server PIR protocol using the “shifted
index” y ⊕ ω. Parties P2 and P3 will play the roles of the servers using



the “shifted database” that results by shifting the position of every entry
in D3 by ω. Rather than sending their responses to P1, however, P2 and
P3 simply record those values locally. Note that this results in P2 and P3

holding additive shares of D3[y].

Repeating the above with P2 as client (reading from D1) and again with P3

as client (reading from D2)—and then having the parties locally XOR their
shares together—results in the three parties holding additive shares ô1, ô2, ô3

of D[y]. Finally, the parties re-randomize their shares. Namely, each party Ps
chooses uniform ∆s and sends it to Ps+1; it then sets its output share equal to
os = ôs ⊕∆s ⊕∆s−1.

ShiftValue. Here we assume the parties have shares i1, i2, i3 and j1, j2, j3 such
that, if i = i1 ⊕ i2 ⊕ i3 and j = j1 ⊕ j2 ⊕ j3, the shared index is y = (i, j).
The parties also have shares v1, v2, v3 with v1 ⊕ v2 ⊕ v3 = v. At the end of this
protocol, the parties should hold shares of the updated data D̃ where all entries
are the same as in the original data D except that D̃[y] = D[y]⊕ v.

We show how to implement a distributed version of the Gen algorithm in our
3-server DPF. Namely, the parties will run a protocol that results in party 1
holding K1, party 2 holding K2, and party 3 holding K3, where K1,K2,K3

are distributed as in an execution of Gen(1κ, y, v). Given this primitive, a dis-
tributed version of ShiftValue can then be implemented following the ideas from
the previous section.

We now describe the distributed version of the DPF. For clarity, we describe
sub-protocols corresponding to each of the steps of the Gen algorithm from Sec-
tion 2; these sub-protocols can be parallelized in the obvious way.

1. The sub-protocol for step 1 proceeds as follows:
(a) P2 chooses uniform r2 and sends r2 to P1 and i2 ⊕ r2 to P3. Party P3

chooses uniform r3 and sends r3 to P1 and i3 ⊕ r3 to P2. Then P2 and
P3 each compute ω = i2 ⊕ r2 ⊕ i3 ⊕ r3, and P1 computes

i1 ⊕ r2 ⊕ r3 = i⊕ ω.

(b) P1 runs Gen(1κ, i⊕ω, 1), where Gen denotes the key-generation algorithm
for a 2-server DPF with domain [

√
N ] and range {0, 1}. This results in

keys K2,K3 that are sent to P2 and P3, respectively.
(c) For k = 1, . . . ,

√
N , party P2 sets Î2[k] = Eval(K2, k ⊕ ω) to obtain a

string Î2 ∈ {0, 1}
√
N . Similarly, P3 computes Î3 ∈ {0, 1}

√
N . Finally, P1

sets Î1 = 0
√
N . Note that

Î2[k]⊕ Î3[k] =

{
1 if k = i
0 otherwise

and so

Î1 ⊕ Î2 ⊕ Î3 = (

i︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

√
N

).



(d) The parties re-randomize their shares. Namely, each party Ps chooses
uniform ∆s and sends it to Ps+1; it then sets its output share equal to
Is = Îs ⊕∆s ⊕∆s−1.

2. Here we describe the sub-protocol corresponding to step 2. Let I1, I2, I3 be
the respective outputs of the parties after step 1, above, and let Is[k] denote
the kth bit of Is. For k = 1, . . . ,

√
N do:

(a) Party Ps chooses αsk, β
s
k, γ

s
k, δ

s
k ← {0, 1}κ. Next, P1 sends I1[k], α1

k, β
1
k,

δ1k to P3. Analogously, P2 sends I2[k], β2
k, γ

2
k, δ2k to P1, and P3 sends

I3[k], α3
k, γ

3
k, δ

3
k to P2.

(b) The parties run the following steps:

i. P2 chooses α′k, β
′
k, δ

′
k ← {0, 1}κ and z ← {0, 1}, and sends those

values to P3. Parties P2 and P3 then compute:

P2 P3

x0 := α2
k ⊕ α′k

x1 := β2
k ⊕ β′k

x2 := δ2k ⊕ δ′k

y0 := α1
k ⊕ α3

k ⊕ α′k
y1 := β1

k ⊕ β3
k ⊕ β′k

y2 := δ1k ⊕ δ3k ⊕ δ′k

ii. P2 computes two ordered pairs S0, S1 as follows:

SI2[k]⊕I3[k] =

{
(x0, x1) if z = 0
(x1, x0) if z = 1

S1⊕I2[k]⊕I3[k] =

{
(x0, x2) if z = 0
(x2, x0) if z = 1.

P3 computes two ordered pairs T0, T1 as follows:

TI3[k] =

{
(y0, y1) if z = 0
(y1, y0) if z = 1

T1⊕I3[k] =

{
(y0, y2) if z = 0
(y2, y0) if z = 1.

iii. P1 runs a 1-out-of-2 oblivious-transfer protocol1 with P2, where P1

uses selection bit I1[k] and P2 uses inputs S0, S1; let (x, x′) be the
output of P1. Similarly, P1 runs a 1-out-of-2 oblivious-transfer pro-
tocol with P3, where P1 uses selection bit I1[k] ⊕ I2[k] and P3 uses
inputs T0, T1; let (y, y′) be the output of P1. Finally, P1 defines
S1
k = {x⊕ y, x′ ⊕ y′}.

Note that if k 6= i then I1[k] ⊕ I2[k] ⊕ I3[k] = 0; in that case, we
have {x, x′} = {x0, x1} and {y, y′} = {y0, y1}, and so

S1
k = {α1

k ⊕ α2
k ⊕ α3

k, β
1
k ⊕ β2

k ⊕ β3
k}.

1 In our setting, with three parties and one semi-honest corruption, a simple oblivious-
transfer protocol with information-theoretic security can be constructed using stan-
dard techniques.



On the other hand, if k = i then I1[k] ⊕ I2[k] ⊕ I3[k] = 1; in that
case, {x, x′} = {x0, x2} and {y, y′} = {y0, y2}, and so

S1
k = {α1

k ⊕ α2
k ⊕ α3

k, δ
1
k ⊕ δ2k ⊕ δ3k}.

(c) The parties run (b) two more times, changing the roles of the parties
(and modifying the values used) in the analogous way so that each party
Ps ends up learning the appropriate Ssk.

3. The sub-protocol corresponding to step 3 proceeds as follows:
(a) The parties run a protocol analogous to that of step 1 to generate uniform

Ĉ1, Ĉ2, Ĉ3 ∈ ({0, 1}B)
√
N , held by the respective parties, such that

Ĉ1 ⊕ Ĉ2 ⊕ Ĉ3 = ej,v = (

j︷ ︸︸ ︷
0B , . . . , 0B , v, 0B , . . . , 0B︸ ︷︷ ︸

√
N

). (1)

In detail:
i. P2 chooses uniform r2 and sends r2 to P1 and j2 ⊕ r2 to P3. Party
P3 chooses uniform r3 and sends r3 to P1 and j3 ⊕ r3 to P2. Then
P2 and P3 each compute ω = j2 ⊕ r2 ⊕ j3 ⊕ r3, and P1 computes

j1 ⊕ r2 ⊕ r3 = j ⊕ ω.

ii. P1 runs the Gen(1κ, j ⊕ ω, v1), where Gen is the key-generation al-
gorithm for a 2-server DPF with domain [

√
N ] and range {0, 1}B .

(Note the differences from the corresponding part of step 1.) This
results in keys K2,K3 that are sent to P2 and P3, respectively.

iii. For k = 1, . . . ,
√
N , party P2 sets Ĉ2

1 [k] = Eval(K2, k⊕ω). Similarly,

P3 computes Ĉ3
1 ∈ {0, 1}

√
N . Note that

Ĉ2
1 [k]⊕ Ĉ3

1 [k] =

{
v1 if k = j
0 otherwise.

(2)

The above steps are carried out twice more in a symmetric fashion, with
each of P2 and P3 acting as client in a 2-server DPF. This results in P1

and P3 holding Ĉ1
2 and Ĉ3

2 , respectively, satisfying a relation as in (2) but
with v2 in place of v1, and P1 and P2 holding Ĉ1

3 and Ĉ2
3 , respectively,

also satisfying a relation as in (2) but with v3 in place of v1. Next, P1

sets Ĉ1 = Ĉ1
2 ⊕ Ĉ1

3 , with P2, P3 acting analogously. Finally, the parties
re-randomize their shares (in the same way as in earlier steps). The end
result is that the parties hold uniform Ĉ1, Ĉ2, Ĉ3 satisfying (1).

(b) Recall that from step 2, each party Ps holds sets Ss1 , . . . , S
s√
N

. Each

party Ps now computes

Cs = Ĉs ⊕

(⊕
k

G(Ssk)

)
, (3)



where G({s1, s2}) = G(s1)⊕G(s2).
It can be verified that

C1 ⊕ C2 ⊕ C3 = Ĉ1 ⊕ Ĉ2 ⊕ Ĉ3 ⊕G(ai)⊕G(bi)⊕G(ci)⊕G(di),

where we define

ai = α1
i ⊕ α2

i ⊕ α3
i

bi = β1
i ⊕ β2

i ⊕ β3
i

ci = γ1i ⊕ γ2i ⊕ γ3i
di = δ1i ⊕ δ2i ⊕ δ3i .

(c) Each party Ps sends Cs to the other two parties, so they can all compute
C = C1 ⊕ C2 ⊕ C3.

Note that after the above, each party Ps has a key Ks corresponding to the
output of the Gen algorithm for our 3-server DPF from Section 2.

Memory access. We can now handle a memory access by suitably modifying
the approach from the previous section. The parties begin holding additive shares
of a memory-access instruction (op, y, v) and data D, and proceed as follows:

1. The parties run the GetValue protocol using their shares of y. This results
in the parties holding shares o1, o2, o3 with o = o1 ⊕ o2 ⊕ o3 = D[y].

2. The parties run a secure multi-party computation implementing the follow-
ing functionality:

If op = read then set w = 0B ; otherwise, set w = v ⊕ o. Output
random additive shares w1, w2, w3 of w.

This functionality can be realized using a simple protocol with information-
theoretic security in our setting. Specifically, let op ∈ {0, 1} with 0 indicating
read. The parties hold additive shares of op, v, and o, and need only to
compute a (random) additive sharing of

w = op · (v ⊕ o).

This can be computed via a standard protocol for distributed multiplication.
3. The parties run the ShiftValue protocol using their shares of y and their

shares of w. The parties locally output their shares of o.

Theorem 2. The above is a 1-private, 3-party DORAM protocol in which each
memory access requires constant rounds and O(

√
N) communication.

Proof. We prove security by showing that our GetValue protocol securely realizes
an appropriately defined functionality for reading a value from the parties’ shared
data, and that our ShiftValue protocol securely computes the Gen algorithm of
our 3-server DPF. (Our notion of securely realizing a functionality is the standard
one from the secure-computation literature, for one semi-honest corruption. In
particular, we consider indistinguishability of the joint distribution consisting of



the corrupted party’s view and the outputs of the other parties.) Security of the
overall DORAM protocol then follows in a straightforward manner.

Security of GetValue. In proving security of the GetValue protocol, we consider
the functionality Fread in Figure 2. This functionality is non-reactive, and takes
the current array (shared as in our protocol) as input from the parties

Functionality Fread

On input D1, D2, y1 from P1, along with D2, D3, y2 from P2 and D1, D3, y3

from P3, do:

1. Let D = D1 ⊕D2 ⊕D3 and y = y1 ⊕ y2 ⊕ y3.
2. Set o = D[y].
3. Let o1, o2, o3 be random, additive shares of o. Return os to party s.

Fig. 2. Functionality Fread for a distributed read access.

Claim. Our GetValue protocol securely realizes Fread for a single, semi-honest
corruption.

Proof. Since the protocol is symmetric, we may without loss of generality assume
P1 is corrupted. We show a simulator that takes as input values D1, D2, and y1

used as input by P1 along with an output value o1, and simulates a view of P1

in an execution of the protocol. The simulator works as follows:

First iteration: Choose uniform r21 and r31, and send these to P1 on behalf of
P2 and P3, respectively.

Second iteration, step 1: Choose uniform r12 on behalf of P1 (i.e., as part of
P1’s random tape). Choose uniform r32 and send it to P1 on behalf of P3.

Second iteration, step 2: Run the 2-server PIR scheme using address 1 to
obtain keys K1

2 ,K
3
2 . Send K1

2 to P1 on behalf of P2. Let o12 be the local value
that P1 would compute in this step.

Third iteration: The third iteration is simulated analogously to the second
iteration. Let o13 be the local value that P1 would compute in this step.

Re-randomization step: Choose uniform ∆1 on behalf of P1, and let ∆3 be
such that

o12 ⊕ o13 ⊕∆1 ⊕∆3 = o1.

Send ∆3 to P1 on behalf of P3.

Security of the PIR scheme readily implies that the distribution of the simulated
view of P1 in the ideal world is computationally indistinguishable from the distri-
bution of its view in a real execution of the protocol. Moreover, even conditioned
on P1’s view, the outputs of P2 and P3 are uniform (subject to XORing to the
correct output) in both the ideal- and real-world executions. ut



Next, we show that the ShiftValue protocol securely computes the Gen algo-
rithm of our 3-server DPF, i.e., that it securely realizes the functionality that
takes additive shares of y and v from the three parties, computes K1,K2,K3 ←
Gen(1κ, y, v), and returns Ks to Ps. For ease of exposition, we show that each
step of the ShiftValue protocol securely computes the corresponding step of Gen.

Security of ShiftValue (step 1). The desired functionality here is simple: the
parties’s inputs are additive shares i1, i2, i3 of a value i = i1 ⊕ i2 ⊕ i3, and
the parties’ outputs are I1, I2, I3, respectively, that are uniformly distributed
subject to:

I1 ⊕ I2 ⊕ I3 = (

i︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

√
N

).

Claim. The first step of the GetValue protocol securely realizes the functionality
just described for a single, semi-honest corruption.

Proof. We consider separately the case where P1 is corrupted, and the case where
either P2 or P3 is corrupted. For corrupted P1, we define a simulator that takes
as input a value i1 used as input by P1 along with an output value I1, and
simulates a view of P1 in an execution of the protocol. The simulator works as
follows:

1. Choose uniform r2 and r3, and send these to P1 on behalf of P2 and P3,
respectively.

2. Choose uniform ∆1 on behalf of P1. Set ∆3 = I1 ⊕∆1 and send that value
to P1 on behalf of P3.

It is immediate that the distribution of the simulated view of P1 in the ideal
world is identical to the distribution of its view in a real execution of the protocol.
Moreover, even conditioned on P1’s view, the outputs of P2 and P3 are uniform
(subject to XORing to the correct output) in both the ideal- and real-world
executions.

For the other case, assume P2 is corrupted without loss of generality, and
let i2, I2 be the corresponding input and output values given to the simulator.
Here, the simulator works as follows:

1. Choose uniform r2 on behalf of P2. Choose uniform r̂3 and send it to P2 on
behalf of P3.

2. Run K2,K3 ← Gen(1κ, 1, 1), where Gen denotes the key-generation algo-
rithm for a 2-server DPF with the appropriate domain and range. Send K2

to P2 on behalf of P1. Let Î2 be the local value that P1 would compute in
this step.

3. Choose uniform ∆2 on behalf of P2. Set ∆1 = I2 ⊕ Î2 ⊕∆2 and send that
value to P2 on behalf of P2.

Security of the DPF readily implies that the distribution of the simulated view of
P2 in the ideal world is computationally indistinguishable from the distribution



of its view in a real execution of the protocol. Moreover, even conditioned on P2’s
view, the outputs of P1 and P3 are uniform (subject to XORing to the correct
output) in both the ideal- and real-world executions. ut

Security of ShiftValue (step 2). The desired ideal functionality in this case
takes additive shares I1, I2, I3 of I = I1⊕I2⊕I3 (which is a unary representation
of i) as input from the parties, and then does the following for k = 1, . . . ,

√
N :

choose ak, bk, ck, dk ← {0, 1}κ. Then if k 6= i, output to the parties

S1
k = {ak, bk}, S2

k = {bk, ck}, S3
k = {ck, ak},

respectively, while if k = i, output to the parties

S1
k = {ak, dk}, S2

k = {bk, dk}, S3
k = {ck, dk},

respectively. (In all cases, the elements in the set are randomly permuted so their
order does not reveal information.)

In analyzing step 2 of ShiftValue, we assume the parties re-randomize their
shares of I before running the protocol. This is justified by the fact that the
parties re-randomize their shares at the end of step 1.

Claim. The second step of the GetValue protocol (with re-randomization of
shares done first) securely realizes the functionality just described for a single,
semi-honest corruption.

Proof. We analyze the protocol in a hybrid model where the parties have access
to an oblivious-transfer (OT) functionality. By symmetry, we may assume with-
out loss of generality that P1 is corrupted. We describe a simulator that takes
as input a value I1 used as input by P1 along with output values S1

1 , . . . , S
1√
N

,

where S1
k = {ak, bk}, and simulates a view of P1 in an execution of the protocol.

The simulator works as follows:

1. Choose uniform ∆1 on behalf of P1. Choose uniform ∆3 and send it to P1

on behalf of P3. (This simulates the re-randomization step.)
2. For k = 1, . . . ,

√
N , do:

(a) Choose uniform α1
k, β

1
k, γ

1
k, δ

1
k on behalf of P1. Choose uniform I2[k], β2

k,
γ2k, δ2k and send them to P1 on behalf of P2.

(b) Choose uniform x, y such that x ⊕ y = ak, and uniform x′, y′ such that
x′ ⊕ y′ = bk. Simulate the OTs (with P1 as receiver and P2 as sender
in one execution and P3 as sender in the other execution) by giving P1

outputs (x, x′) and (y, y′) from the two executions with probability 1/2,
and outputs (x′, x) and (y′, y) with probability 1/2.

(c) Choose uniform β′′k , γ
′′
k , δ
′′
k , and z′′ on behalf of P1.

(d) Choose uniform α′′′k , γ
′′′
k , δ

′′′
k , and z′′′ and send them to P1 on behalf of P2.

It is immediate that the distribution of the simulated view of P1 in the ideal
world is identical to the distribution of its view in a real execution of the protocol.
Moreover, the distribution of the outputs of P2 and P3, conditioned on the inputs
of all the parties and the output of P1, is identically distributed in the ideal- and
real-world executions. ut



Security of ShiftValue (step 3). The proof of security for this step follows
closely along the lines of the proof for step 1, and is therefore omitted. ut
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