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Abstract. We put forward the notion of subvector commitments (SVC): An SVC allows one to open a committed
vector at a set of positions, where the opening size is independent of length of the committed vector and the number
of positions to be opened. We propose two constructions under variants of the root assumption and the CubeDH
assumption, respectively. We further generalize SVC to a notion called linear map commitments (LMC), which
allows one to open a committed vector to its images under linear maps with a single short message, and propose a
construction over pairing groups.
Equipped with these newly developed tools, we revisit the “CS proofs” paradigm [Micali, FOCS 1994] which turns
any arguments with public-coin verifiers into non-interactive arguments using the Fiat-Shamir transform in the
random oracle model. We propose a compiler that turns any (linear, resp.) PCP into a non-interactive argument,
using exclusively SVCs (LMCs, resp.). For an approximate 80 bits of soundness, we highlight the following new
implications:

1. There exists a succinct non-interactive argument of knowledge (SNARK) with public-coin setup with proofs
of size 5360 bits, under the adaptive root assumption over class groups of imaginary quadratic orders against
adversaries with runtime 2128. At the time of writing, this is the shortest SNARK with public-coin setup.

2. There exists a non-interactive argument with private-coin setup, where proofs consist of 2 group elements and 3
field elements, in the generic bilinear group model.

1 Introduction

Commitment schemes are one of the fundamental building blocks and one of the most well-studied primitives in cryp-
tography. Due to their pivotal importance in the design of cryptographic protocols, even small efficiency improvements
have magnified repercussions in the field. In a recent work, Catalano and Fiore [26] put forth the notion of Vector
Commitments (VC): A VC allows a prover to commit to a vector x of ` messages, such that it can later open the
commitment at any position i ∈ [`] of the vector, i.e., reveal a message and show that it equals to the i-th committed
message. The distinguishing feature of VCs is that the size of the commitments and openings is independent of `. A VC
scheme is required to be position binding, meaning that no efficient algorithm can open a commitment at some position
i to two distinct messages xi 6= x′i. Catalano and Fiore [26] constructed two VC schemes based on the CDH assumption
over pairing groups and the RSA assumption, respectively. In both schemes, a commitment and an opening both consist
of a single group element (in the respective groups). Furthermore, the scheme based on the RSA assumption has public
parameters whose size is independent of the length of the vectors to be committed.

This concept was later generalized by Libert et al. [47], who formalized the notion of functional commitment (FC).
Intuitively, an FC allows the prover to commit to a vector x, and to open the commitment to function-value tuples
(f, y) such that y = f(x). Libert et al. [47] proposed a construction for linear forms3 based on the Diffie-Hellman
exponent assumption over pairing groups, where a commitment and an opening both consist of a single group element.
VCs and FCs for linear forms are very versatile tools and turned out to be useful for a variety of applications, such a
zero-knowledge sets [53], polynomial commitments [44], accumulators, and credentials, to mention a few.

? Part of the work done while at Friedrich-Alexander-Universität Erlangen-Nürnberg.
3 A linear form is a linear map from a vector space to its field of scalars. Libert et al. [47] used the more general term linear functions

to refer to linear forms.



While a short commitment is certainly an appealing feature, there are contexts where there is still a lot to be desired.
For example, in case the prover wants to reveal multiple locations of the committed vector (resp. multiple function
outputs) the best known solution is to repeat the above protocol in parallel. This means that the size of the openings
grows linearly with the amount of revealed locations (resp. function outputs).

1.1 Commitments with Even Shorter Openings

We introduce the notion of subvector commitments (SVCs). An SVC allows one to commit to a vector x of length ` and
later open to a subvector of an arbitrary length ≤ `. Given an ordered index set I ⊆ [`], we define the I-subvector of x
as the vector formed by collecting the i-th component of x for all i ∈ I . While a VC is required to be succinct, namely
the commitment size and the size of the proof of the opening are independent of the length of the committed vector, an
SVC has a stronger compactness4 property which additionally requires that these sizes do not depend on the length
of the subvector to be opened. This difference is going to be critical for our applications (explained later). Improving
upon the VC constructions of Catalano and Fiore [26], we propose two constructions of SVCs based on the CubeDH
assumption over pairing groups and the RSA assumption, respectively. We further generalize the RSA-based scheme to
work over modules over Euclidean rings [50], where variants of the root assumption are conjectured to hold. Loosely
speaking, the root assumption states that it is hard to find the e-th root of a random ring element, for any non-trivial e.
In these settings we obtain public-coin-setup instantiations of SVCs using class groups of imaginary quadratic orders.

We then generalize the notion of SVCs to allow the prover to reveal arbitrary linear maps f : F` → Fq computed
over the committed vector. We call such class of schemes linear map commitments (LMC). As in SVC, it is important
to require an LMC to be compact, meaning that both the commitment and the proofs are of size independent of ` and
q, whereas succinctness only requires their size to be independent of `. Note that an SVC can be viewed as an LMC
restricted to the class of linear maps whose matrix representation has exactly one 1 in each row and 0 everywhere else.

Naively, one may attempt to generalize position binding for LMC by requiring that the prover cannot open a
commitment to (f,y) and (f,y′) with y 6= y′, where f is a linear map and y,y′ ∈ Fk are now vectors. This turns
out to be insufficient for our applications: This is because the prover may be able to open to (f,y) and (f ′,y′) where
f 6= f ′ and y 6= y′ such that they form an inconsistent system of linear equations, yet the attack is not captured by
the definition. We tackle this issue by defining a more general function binding notion which requires that no efficient
algorithm can produce openings for Q function-value tuples {(fk,yk)}k∈[Q] for any Q ∈ poly(λ), such that there does
not exist x with fk(x) = yk for all k ∈ [Q].

We then modify the construction of Libert et al. [47] to support batch openings to linear forms or, equivalently
opening to a linear map. Since the verification equation of their construction is linear, a natural way to support
batch openings is to define the new verification equation as a random linear combination of previous ones. With this
observation, we embed a secret linear combination in the public parameters, and show that the resulting construction is
function binding in the generic bilinear group model. In Table 1 we compare our SVC and LMC constructions with
existing schemes.

1.2 The Quest of Constructing Ever Shorter Arguments

In addition to enabling batching in the original applications of VCs and FCs for linear forms mentioned above, the
compactness of SVCs and LMCs opens the new possibilities of application in constructing succinct argument systems.

Background. An argument system for an NP language L allows a prover, with a witness w, to convince a verifier that
a certain statement x is in L. In contrast with proof systems, argument systems are only required to be computationally
sound. Due to this relaxation, it is possible that the interaction between the prover and the verifier is succinct, i.e., the
communication complexity is bounded by some polynomial poly(λ) in the security parameter and is independent of
the size of w. Other desirable properties of an argument system are:

4 The term “compactness” is borrowed from the literature of randomized encodings (RE) and functional encryption, and not to be
confused with the compactness notion of homomorphic encryption. For example, a compact RE of a computation with n outputs
should have size independent of n [48].

2



Scheme |pp| |C| |Λ| time(Com) time(Open) time(Verify) Setup Assumption
Merkle Tree [51] 1 λ λq log ` λ` λq log ` λq log ` Pub CRH
VC (RSA) [26] λ3` λ3 λ3q λ3` λ3q`2 λ3q Pri RSA
VC (CDH) [26] λ`2 λ λq λ` λq` λq Pri CDH
SVC (Class Group) λ2` λ2 λ2 λ2` λ2(`− q2) λ2q Pub Root
SVC (CubeDH) λ`2 λ λ λ` λq` λq Pri CubeDH

FC (linear form) [47] λ3` λ3 λ3q λ3` λ3q` λ3q` Pri SD
LMC λq` λ λ λ` λq`2 λq` Pri GGM

Table 1: Comparison of subvector and linear map commitments for messages of length `, with binding against adversaries
of runtime 2λ. All constants are omitted. pp: public parameters, C: commitment, Λ: proof, Pub: public-coin, Pri: private-
coin, CRH: collision-resistant hash, Root: strong or adaptive root, SD: subgroup decision, GGM: generic bilinear group
model.

– “of knowledge”: a successful prover implies an extractor that can recover the witness;
– non-interactive: the protocol consists of a single message from the prover;
– (verifier) public-coin: messages from the verifier are sampled from public domains.

Recently, much progress has been made both in theory and practice to construct succinct non-interactive arguments of
knowledge (SNARK) for general NP languages. We distinguish between SNARKs in the public-coin-setup model and
the pre-processing model. In the public-coin-setup model, the prover and the verifier do not share any input other than
the statement x to be proven. In the pre-processing model, they share a common reference string, generated by a trusted
third party, which may depend on the language L and the statement x. In general, existing SNARKs in the pre-processing
model are more efficient, in terms of both communication and computation, than those in the public-coin-setup model.
This reflects the intuition that pushing the majority of the verifier’s workload to the offline pre-processing phase reduces
its workload in the online phase. On the other hand, in some applications, such as cryptocurrencies, it is crucial to have
a public-coin setup, which can be publicly initialized via, e.g., a random oracle [7].

Public-Coin-Setup SNARKs. While it is known that public-coin-setup non-interactive arguments for NP do not exists in
the standard model [14], one can circumvent this impossibility by working in the random oracle model [7]. A common
way to obtain public-coin-setup SNARKs is through the “CS proofs” paradigm [45, 52] based on probabilistically
checkable proofs (PCP) [3]. To recall, a q-query 2−σ-soundness PCP scheme allows the prover to efficiently compute a
PCP string which encodes the witness of the statement to be proven. The verifier can then decide whether the statement
is true with probability close to 1− 2−σ by inspecting q entries of the PCP string. Given a PCP, a SNARK under the
CS proofs paradigm are constructed in two steps. First, the PCP is turned into an interactive argument system: The
prover first commits to the PCP string, typically using a Merkle-tree commitment. The verifier then sends the indices of
the entries to be inspected. Next, the prover opens the commitment at these entries. Finally, by inspecting the revealed
entries, the verifier can decide whether the statement is valid. Typically, an argument system constructed this way has a
public-coin verifier and can be made non-interactive using the Fiat-Shamir transform [34].

Under the CS proofs paradigm, a proof (e.g., in the scheme by Micali [52]) consists of a λ-bit Merkle-tree
commitment of a `-bit PCP string, q bits of the PCP string, and q openings of the commitment, each of size λ log `
bits. For concreteness, assuming a 3-query PCP and ` = 230, for 2−80-soundness against a 2128-time adversary, the
proof size is around 113 KB. Despite having linear verification time (hence not being a SNARK) Bulletproof [20, 25]
is arguably the most practically efficient non-interactive argument to date. A proof in [25] consists of 2 logn + 13
(group and field) elements, where n is the number of multiplication gates in the arithmetic circuit representation of the
verification algorithm of L. In their instantiation over the curve secp256k1, each of the group elements and integers can
be represented by ∼256 bits, thus a proof consists of roughly 512 logn+ 3328 bits.

Pre-Processing SNARKs. In the pre-processing model, there exist plenty of SNARK constructions originated by [36]
based on pairings and linear interactive proofs (LIP), where the latter can be constructed from linear PCPs. To recall,
linear PCPs [42] generalizes traditional PCPs in the sense that the PCP string now encodes a linear form. In a q-
query linear PCP, the verifier, who is given oracle access to the linear form, can decide the veracity of the statement
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with overwhelming probability by making only q queries. SNARK constructions in this category typically have a
computationally expensive stetement-dependent pre-processing phase, meaning that one set of public parameters has to
be generated per statement to be proven.

In this setting, the scheme with the shortest proofs (4 group elements) in the standard model is due to Danezis
et al. [31]. In the generic bilinear group model, Groth [39] proposed a scheme [59] with only 3 group elements, and
showed that proofs constructed from LIP must consist of at least 2 group elements. These schemes can be instantiated
over pairing-friendly elliptic curves. A popular choice is the 256-bit Barreto-Naehrig curve [6], in which a group
element can be represented using 256 bits.

Our Approach. Equipped with our newly developed tools, we revisit the CS proofs paradigm. In previous schemes
following this paradigm, the proof size is dominated by the factor q log ` due to the q Merkle-tree commitment openings.
Moreover, due to the lack of structure of a Merkle-tree commitment, prior schemes do not work with linear PCPs. The
main idea is thus to replace the Merkle-tree commitment with an SVC / LMC, so that the q openings can be compressed
into a single one which has size independent of ` and q. By doing so, we obtain a compiler which compiles any (resp.
linear) PCP into an interactive argument using an SVC (resp. LMC).

We highlight two interesting instantiations of our construction. The first instantiation is with classical PCPs and our
public-coin-setup SVC based on Cl(∆), the class group of imaginary quadratic order with discriminant ∆.

Instantiation 1 If the adaptive root assumption holds in Cl(∆), then there exist public-coin-setup SNARKs for NP
with soundness error 2−σ in which a proof consists of 2 Cl(∆) elements and q bits in the random oracle model, using
any q-query 2−σ-soundness PCP.

If one aims for an extremely short proof and is willing to accept expensive prover computation, then a 3-query 2−1-
soundness PCP can be amplified into a 3σ-query 2−σ-soundness PCP and gives the shortest SNARK. Based on the best
known attacks on the root problem in class groups [40], for a soundness error of 2−80 against a 2128-time adversary, we
obtain a proof size of 5360 bits, which is shorter than that of Bulletproof [25] for n > 16, i.e., the verification circuit
has more than 16 multiplication gates. We view this instantiation as a feasibility for extremely succinct proofs and a
step forward towards optimal (O(λ)-sized) public-coin-setup SNARKs. Next we turn our attention to the instantiation
with linear PCPs and our pairing-based LMCs.

Instantiation 2 In the generic blinear group and random oracle model, there exist pre-processing non-interactive
arguments for NP in which a proof consists of 2 G elements and q field elements, using any q-query linear PCP.

Using a 3-query linear PCP (e.g. [16]) and instantiating the pairing group over the 256-bit Barreto-Naehrig curve
yields a proof consisting of 5 elements or 1280 bits. Compared to other pairing-based compilers from linear PCPs to
preprocessing SNARKs (e.g., [39]), our compiler has the advantages that it supports any linear PCPs, but not only those
where the verifier is restricted to only evaluate quadratic polynomials. Moreover the setup phase is independent of the
statements to be proven, and thus the same public parameters can be reused for proving many statements.

A comparison with the shortest succicnt arguments from the literature is given in Table 2. To summarize, our
approach yields extremely short proofs in exchange for a higher prover complexity and the usage of public-key
cryptography. We also stress that our compiler is compatible with a broader class of PCPs, when compared with schemes
under the CS proofs paradigm and pairing-based schemes. Being a very active area of research, we expect significant
advancements in the design of more efficient PCPs, which are going to benefit from the generality of our approach.

Other Applications. Catalano and Fiore [26] suggested a number of applications of VC, including verifiable databases
with efficient updates, updatable zero-knowledge elementary databases, and universal dynamic accumulators. In all of
these applications, one can gain efficiency by replacing the VC scheme with an SVC scheme which allows for batch
opening and updating. When instantiated with our first construction of SVC, one can further avoid the private-coin
setup, which is especially beneficial to database applications as trusted third parties are no longer required.

The notion of SVC has already attracted the attention of the community. A follow up work by Boneh et al. [17]
shows how SVCs can be used as a drop-in replacement for Merkle-trees in SNARKs based on interactive oracle proofs
(IOPs) which generalizes PCPs. They leverage the structure of class group-based SVCs to reduce the proof size to
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Scheme |pp| |π| Setup Assumption
CS Proof (Merkle Tree Compiler) [45, 52] 1 λ2 logn Pub ROM
Bulletproof [20, 25] λn λ logn Pub DLog, ROM
Aurora [11] 1 λ log2 n Pub ROM
SVC Compiler (Class Group) λ2`PCP λ2 Pub Root, ROM

Groth [39] λn λ Pre-Proc GGM
SVC Compiler (CubeDH) λ`2

LPCP λ Pri CubeDH, ROM
LMC Compiler λ`LPCP λ Pri GGM, ROM

Table 2: Comparison of SNARKs with 2−λ-soundness against adversaries of runtime 2128. All constants are omitted.
pp: public parameters, π: proof, n: size of circuit, `PCP: length of PCP proof, `LPCP: length of linear PCP proof, Pub:
public-coin, Pri: private-coin, Pre-Proc: pre-processing, Root: strong or adaptive root assumption, GGM: generic group
model.

(r + 1) group elements and r integers, where r is the number of iterations of the underlying IOP. They also propose a
technique to improve the efficiency of the verification algorithm and they estimate a decrease in verification time of
∼ 80%. Finally, they discuss how to use SVCs to improve the current design of blockchain-based transaction ledger in
such a way that no user has to store the entire state of the ledger in memory.

1.3 Related Work

Succinct arguments were introduced by Kilian [45, 46] and later improved, in terms of round complexity, by Lipmaa
and Di Crescenzo [33]. Succinct non-interactive arguments, or computationally sound proofs, were first proposed by
Micali [52]. These early approaches rely on PCP and have been recently extended [8] to handle interactive oracle
proofs [12] (also known as probabilistic checkable interactive proofs [56]), largely improving the efficiency of the
prover. A recent manuscript by Ben-Sasson et al. [9] improves the concrete efficiency of interactive oracle proofs. The
first usage of knowledge assumptions to construct SNARKs appeared in the work of Mie [54]. Later, Groth [38] and
Lipmaa [49] upgraded this approach to non-interactive proofs.

Ishai, Kushilevitz, and Ostrovsky [42] observed that linear PCPs can be combined with a linearly homomorphic
encryption to construct more efficient arguments, with pre-processing. The also introduced a new (interactive) commit-
ment scheme with private-coin verifier for linear functions. However, in contrast with LMC, their binding definition does
not esure that the committed function is actually linear. Gennaro et al. [36] presented a very elegant linear PCP that gave
rise to a large body of work to improve the practical efficiency of non-interactive arguments [5, 10, 13, 27, 28, 32]. All of
these constructions assume a highly structured and honestly generated common reference string (of size proportional
to the circuit to be evaluated) and rely on some variant of the knowledge of exponent assumption. Recently, Ames
et al. [2] proposed an argument based on the MPC-in-the-head [43] paradigm to prove satisfiability of a circuit C
with proofs of size O(λ

√
|C|). Zhang et al. [63] show how to combine interactive proofs and verifiable polynomial

delegation schemes to construct succinct interactive arguments. The scheme requires a private-coin pre-processing
and the communication complexity is O(λ log |w|). A recent result by Whaby et al. [61] introduces a prover-efficient
construction with proofs of size O(λ

√
|w|). Recent works [1, 35] investigate on the resilience of SNARKs against a

subverted setup. Libert, Ramanna, and Yung [47] constructed an accumulator for subset queries. Although similar in
spirit to SVC, the critical difference is that accumulators are not position binding, which is crucial for the soundness of
our argument system.

2 Preliminaries

Throughout this work we denote by λ ∈ N the security parameter, and by poly(λ) and negl(λ) the sets of polynomials
and negligible functions in λ, respectively. We say that a Turing machine is probabilistic polynomial time (PPT) if its
running time is bounded by some polynomial function poly(λ). An interactive protocol Π between two machines A
and B is referred to as (A,B)Π . Given a set S, we denote sampling a random element from S as s←$S and the output
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of an algorithm A on input x is written as z ← A(x). Let ` ∈ N, the set [`] is defined as [`] := {1, . . . , `}. Vectors are
written vertically.

2.1 Subvectors

We define the notion of subvectors. Roughly speaking, a subvector (xi1 , . . . , xi|I|)T is an ordered subset (indexed by I)
of the entries of a given vector (x1, . . . , x`)T .

Definition 1 (Subvectors). Let ` ∈ N, X be a set, and (x1, . . . , x`)T ∈ X ` be a vector. Let I = (i1, . . . , i|I|) ⊆ [q] be
an ordered index set. The I-subvector of x is defined as xI := (xi1 , . . . , xi|I|)T .

2.2 Arguments of Knowledge

LetR : {0, 1}∗ × {0, 1}∗ → {0, 1} be an NP-relation with corresponding NP-language L := {x : ∃w s.t.R(x,w) =
1}. We define arguments of knowledge [21] for interactive Turing machines [37]. To be as general as possible, we define
an additional setup algorithm S , which is executed once and for all by a possibly trusted party. If the argument is secure
without a setup, then such an algorithm can be omitted.

Definition 2 (Arguments of knowledge). A tuple (S, (P,V)Π) is a 2−σ-sound (succinct) argument of knowledge for
R if the following conditions hold.

(Completeness) IfR(x,w) = 1 then Pr
y←S(1λ)

[(P(x,w, y),V(x, y))Π = 1] = 1.

(Soundness) For any PPT adversary A, all x /∈ L, and all z ∈ {0, 1}∗, Pr
y←S(1λ)

[(A(x, z, y),V(x, y))Π = 1] < 2−σ.

(Argument of Knowledge) For any PPT adversary A, there exists a PPT extractor E , such that for all x, z ∈ {0, 1}∗,
Pr

y←S(1λ)
[(A(x, z, y),V(x, y))Π = 1] > negl(λ), then Pr[R(x,w) = 1|w ← EA(x)] > negl(λ) .

(Succinctness) The communication between P and V is at most poly(λ, log |x|).

2.3 Probabilistically Checkable Proofs

One of the principal tools in the construction of argument systems is probabilistic checkable proofs (PCP) [3]. It is
known that any witness w for an NP-statement can be encoded into a PCP of length poly(|w|) bits such that it is
sufficient to probabilistically test O(1) bits of the encoded witness.

Definition 3 (Probabilistically Checkable Proofs). A pair of machines (PPCP,VPCP) is a `-long q-query 2−σ-sound
PCP for an NP-relationR if the following hold.

(Completeness) IfR(x,w) = 1, then Pr [VπPCP(x) = 1|π ← PPCP(x,w)] = 1.
(Soundness) For all x /∈ L, Pr [VπPCP(x) = 1|π ← PPCP(x,w)] < 2−σ.
(Proof Length) IfR(x,w) = 1, then for all π ∈ PPCP(x,w), |π| ≤ `.
(Query Complexity) For all x,π ∈ {0, 1}∗, VπPCP(x) queries at most q locations of π.

The notation VπPCP(x) means that VPCP does not read the entire string π directly, but is given oracle access to the string.
On input a position i ∈ [|π|], the oracle returns the value πi. It is well known that one can diminish the soundness error
to a negligible function by repetition. We additionally require that the witness can be efficiently recovered from the
encoding of the witness π [60].

Definition 4 (Proof of Knowledge). A PCP is of knowledge if there exists a PPT algorithm EPCP such that, given any
strings x and π with Pr [VπPCP(x) = 1] > negl(λ), EπPCP(x) extracts an NP witness w for x.
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Linear PCPs. Ishai et al. [42] considered the notion of linear PCP, where the string π is instead a vector in F` for
some finite field F (or in general a ring) and positive integer `. The oracle given to the verifier is modified, such that
on input f ∈ F`, it returns the inner product 〈f ,π〉. Note that this generalizes the classical notion of PCP as one can
recover the original definition by restricting the queries f to be unit vectors. In this paper we are interested in the notion
of linear PCP where soundness is only guaranteed to hold against linear functions (same as considered in [16]).

3 Mathematical Background and Assumptions

To capture the minimal mathematical structure required for one of our constructions, we follow the module-based
cryptography framework of Lipmaa [50].

Background. A (left) R-module RD over the ring R (with identity) consists of an Abelian group (D,+) and an
operation ◦ : R×D → D, denoted r ◦A for r ∈ R and A ∈ D, such that for all r, s ∈ R and A,B ∈ D, we have

– r ◦ (A+B) = r ◦A+ r ◦B,
– (r + s) ◦A = r ◦A+ s ◦A,
– (r · s) ◦A = r ◦ (s ◦A), and
– 1R ◦ r = r, where 1R is the multiplicative identity of R.

Let S = (s1, . . . , s`) ⊆ N be an ordered set, and r = (rs1 , . . . , rs`)T ∈ R` and A = (As1 , . . . , As`)T ∈ D` be
vectors of ring and group elements respectively. For notational convenience, we denote

∑
i∈S ri ◦Ai by 〈r,A〉.

A commutative ring R with identity is called an integral domain if for all r, s ∈ R, rs = 0R implies r = 0R or
s = 0R, where 0R is the additive identity of R. A ring R is Euclidean if it is an integral domain and there exists a
function deg : R → Z+, called the Euclidean degree, such that i) if r, s ∈ R, then there exist q, k ∈ R such that
r = qs + k with either k = 0R, k 6= 0R and deg(k) < deg(q), and ii) if r, s ∈ R with rs 6= 0R and r 6= 0R, then
deg(r) < deg(rs). The set of units U(R) := {u ∈ R : ∃v s.t. uv = vu = 1R} contains all invertible elements in R.
An element r ∈ R \ ({0R} ∪ U(R)) is said to be irreducible if there are no elements s, t ∈ R \ {1R} such that r = st.
The set of all irreducible elements of R is denoted by IRR(R). An element r ∈ R \ ({0R} ∪ U(R)) is said to be prime
if for all s, t ∈ R, whenever r divides st, then r divides s or r divides t. If R is Euclidean, then an element is irreducible
if and only if it is prime.

Adaptive Root. The adaptive root assumption (over unknown order groups, and in particular over class groups of
imaginary quadratic orders) was introduced by Wesolowski [62] and re-formulated by Boneh et al. [19] to establish the
security of the verifiable delay function scheme of Wesolowski [62]. Here we state the same assumption over modules
in two variants – with private and public coins. Note that Wesolowski [62] and Boneh et al. [19] implicitly considered
the public-coin-setup variant.

Definition 5 ((Public-Coin) Adaptive Root). Let I be some ordered set. Let RD = ((Ri)Di)i∈I be a family of
modules. Let MGen(1λ;ω) be a deterministic algorithm which picks some i ∈ I (hence some RD = (Ri)Di ∈ RD)
and some element A ∈ D. For a ring R, let IRRλ(R) ⊆ IRR(R) be some set of prime elements in R of size 2λ. The
adaptive root assumption is said to hold over the family of modulesRD with respect to IRRλ, if for any PPT adversary
A = (A1,A2) there exists ε(λ) ∈ negl(λ) such that

Pr
[
e ◦ Y = X

∣∣∣∣ ω←$ {0, 1}λ; (RD, A) := MGen(1λ;ω)
X ← A1(RD, A , ω ); e←$ IRRλ(R);Y ← A2(e)

]
≤ ε(λ),

where A is not given ω (highlighted by the dashed box). If the inequality holds even ifA is given ω, then we say that the
assumption is public-coin.
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Strong Distinct-Prime-Product (Divisible) Root. We define the following variant of the “strong root assumption” [29]
over modules over Euclidean rings, which is a generalizations of the strong RSA assumption. Let RD be a module
over some Euclidean ring R, and A be an element of D. The strong distinct-prime-product divisible root problem with
respect to A asks to a set of distinct prime elements {ei}i∈S in R, an element e in R, and an element Y in D such that
e
(∏

i∈S ei
)
◦ Y = e ◦A. The strong distinct-prime-product root problem (without divisible) with respect to A is the

same except that it requires e = 1R. We define the assumption in two variants depending on whether RD and A are
sampled with public coins.

Definition 6 ((Public-Coin) Strong Distinct-Prime-Product (Divisible) Root). Let I be an ordered set, RD =
((Ri)Di)i∈I be a family of modules, and MGen(1λ;ω) be a deterministic algorithm which picks some i ∈ I (hence
some RD = (Ri)Di ∈ RD) and some element A ∈ D. The strong distinct-prime-product divisible root assumption is
said to hold over the familyRD, if for any PPT adversary A there exists ε(λ) ∈ negl(λ) such that

Pr

e (∏i∈S ei
)
◦ Y = e ◦A

∀i ∈ S, ei ∈ IRR(R)
∀i 6= j ∈ S, ei 6= ej

∣∣∣∣∣∣
ω←$ {0, 1}λ

(RD, A) := MGen(1λ;ω)
(e, {ei}i∈S , Y )← A(RD, A , ω )

 ≤ ε(λ),

where A is not given ω (highlighted by the dashed box). If the inequality holds even ifA is given ω, then we say that the
assumption is public-coin. We say that the strong distinct-prime-product root assumption (not divisible) holds over the
familyRD, if A is restricted to set e = 1R.

Lipmaa [50] defined several variants of the (strong) root assumption with respect to a random element in D sampled
with private coin, given the description of the module RD sampled with public coin. Note that the (resp. public-coin)
strong distinct-prime-product root assumption is weaker than the (resp. public-coin) strong root assumption, where
the latter requires the adversary to simply output (e, Y ) such that e 6= 1R and e ◦ Y = A. It is apparent that the strong
distinct-prime-product root assumption over RSA groups is implied by the strong RSA assumption.

4 Subvector Commitments

In the following we define the main object of interest for our work. Subvector commitments are a generalization of
vector commitments [26], where the opening is performed with respect to subvectors.

Definition 7 (Subvector Commitments (SVC)). A subvector commitment scheme SVC over X consists of the follow-
ing PPT algorithms (Setup,Com,Open,Verify):
Setup(1λ, 1`;ω): The deterministic setup algorithm inputs the security parameter 1λ, the vector size 1`, and a random
tape ω. It outputs a public parameter pp. We assume that all other algorithms input pp which we omit.
Com(x): The committing algorithm inputs a vector x ∈ X `. It outputs a commitment string C and some auxiliary
information aux.
Open(I,x′I , aux): The opening algorithm inputs an index set I , an I-subvector x′I , and some auxiliary information
aux. It outputs a proof ΛI that x′I is the I-subvector of the committed vector.
Verify(C, I,x′I , ΛI): The verification algorithm inputs a commitment string C, an index set I , an I-subvector x′I , and
a proof ΛI . It accepts (i.e., it outputs 1) if and only if C is a commitment to x and x′I is the I-subvector of x.

The definition of correctness is given as follows.

Definition 8 (Correctness). A subvector commotment SVC over X is said to be correct if, for any security parameter
λ, ` ∈ N, random tape ω ∈ {0, 1}λ, public parameters pp ∈ Setup(1λ, 1`;ω), x ∈ X `, index set I ∈ [`], (C, aux) ∈
Com(x), ΛI ∈ Open(I,xI , aux), there exists ε(λ) ∈ negl(λ) such that

Pr [Verify(C, I,xI , ΛI) = 1] ≥ 1− ε(λ).

The distinguishing property for SVCs is compactness. Loosely speaking it says that the size of the commitment strings
C and the proofs ΛI are not only independent of the length of the committed vector x, but also that of xI .

8



Definition 9 (Compactness). A subvector commitment SVC over X is compact if there exists a universal polynomial
p ∈ poly(λ) such that for any ` ∈ poly(λ), random tape ω ∈ {0, 1}λ, public parameters pp ∈ Setup(1λ, 1`;ω), vector
x ∈ X `, index set I ∈ [`], (C, aux) ∈ Com(x), ΛI ∈ Open(I,xI , aux), it holds that |C| ≤ p(λ) and |ΛI | ≤ p(λ).

We consider the notion of position binding for subvector commitments with public-coin setup. Recall that position
binding for vector commitments requires that it is infeasible to open a commitment with respect to some position i to
two distinct messages xi and x′i. We extend this notion to subvector commitments, by requiring that it is infeasible
to open a commitment with respect to some index sets I and J to subvectors xI and x′J , respectively, such that there
exists an index i ∈ I ∩ J where xi 6= x′i. Furthermore, we require this property to hold even if the setup algorithm is
public coin.

Definition 10 ((Public-Coin) Position Binding). A subvector commitment SVC over X is position binding if for any
PPT adversary A, there exists a negligible function ε(λ) ∈ negl(λ) such that

Pr

Verify(C, I,xI , ΛI) = 1
Verify(C, J,x′J , Λ′J) = 1
∃i ∈ I ∩ J s.t. xi 6= x′i

∣∣∣∣∣∣
ω←$ {0, 1}λ

pp← Setup(1λ, 1`;ω)
(C, I, J,xI ,x′J , ΛI , Λ′J)← A(pp , ω )

 ≤ ε(λ)

where A is not given ω (highlighted by the dashed box). If the inequality holds even if A is given ω, then we say that
SVC is function binding with public coins.

We do not define hiding as it is not needed for our purpose. However, as discussed in [26], one can construct a hiding
VC generically by committing to (normal) commitments using VC. This naturally extends to SVC as well.

4.1 Linear Map Commitments

Functional commitments for linear functions, specifically for linear forms f : F` → F for some field F, were introduced
by Libert, Ramanna and Yung [47] and is a generalization of vector commitments (VC) introduced by Catalano and
Fiore [26]. Here we refine the notion to capture a more general class of function families, which allows the prover to
open a commitment to the output of multiple linear forms or, equivalently, to the output of a linear map f : F` → Fq.
Note that any linear map from F` to Fq can be represented by a matrix F ∈ Fq×`.

Definition 11 (Linear Map Commitments (LMC)). A linear map commitment scheme LMC over F consists of the
following PPT algorithms (Setup,Com,Open,Verify):

Setup(1λ,F ;ω): Let `, q ∈ poly(λ) be positive integers, and F ⊆ {f : F` → Fq} be a family of linear maps. The
deterministic setup algorithm inputs the security parameter 1λ, the description of the family F , and a random tape ω. It
outputs a public parameter pp. We assume that all other algorithms input pp which we omit.

Com(x): The committing algorithm inputs a vector x ∈ F`. It outputs a commitment string C and some auxiliary
information aux.

Open(f,y, aux): The opening algorithm inputs an f ∈ F , an image y ∈ Fq, and some auxiliary information aux. It
outputs a proof Λ that y = f(x).

Verify(C, f,y, Λ): The verification algorithm inputs a commitment string C, an f ∈ F , an image y, and a proof Λ. It
accepts (i.e., it outputs 1) if and only if C is a commitment to x and y = f(x).

In the following we define correctness and compactness for LMCs.

Definition 12 (Correctness). A linear map commitment scheme LMC over F is said to be correct if, for any security
parameter and length λ, `, q ∈ N, random tape ω ∈ {0, 1}λ, linear map family F ⊆

{
f : F` → Fq

}
, public parameters

pp ∈ Setup(1λ,F ;ω), x ∈ F`, linear map f ∈ F , (C, aux) ∈ Com(x), Λ ∈ Open(f, f(x), aux), there exists
ε(λ) ∈ negl(λ) such that

Pr [Verify(C, f, f(x), Λ) = 1] ≥ 1− ε(λ).
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Setup(1λ, 1`;ω)

(RD, X)←$ MGen(1λ, ω)
(e1, . . . , e`)← H(RD, X)

∀i ∈ [`], Si :=
(∏

j∈[`]\{i} ej

)
◦X

S := (S1, . . . , S`)T , e := (e1, . . . , e`)T

return pp := (RD, X,S, e)

Com(x)

return (C, aux) := (〈x,S〉,x)

Open(I,x′I , aux)

parse aux as x

ΛI :=
(∏

i∈I ei
)−1 ◦ 〈x[`]\I ,S[`]\I〉

return ΛI

Verify(C, I,x′I , ΛI)

b0 := (x′I ∈M|I|)

b1 := (C = 〈x′I ,SI〉+
(∏

i∈I ei
)
◦ ΛI)

return b0 ∩ b1

Fig. 1: SVC from the Root Assumption.

Definition 13 (Compactness). A linear map commitment LMC over F is compact if there exists a universal polynomial
p ∈ poly(λ), such that for any `, q ∈ poly(λ), family of linear maps F ⊆ {f : F` → Fq}, random tape ω ∈
{0, 1}λ, public parameters pp ∈ Setup(1λ,F ;ω), vector x ∈ F`, linear map f ∈ F , (C, aux) ∈ Com(x), Λ ∈
Open(f, f(x), aux), it holds that |C| ≤ p(λ) and |Λ| ≤ p(λ).

We next generalize the notion of function binding for linear maps. The original definition, as considered by Libert,
Ramanna and Yung [47], requires that it is hard to open a commitment to (f, y) and (f, y′) where y 6= y′. When
considering broader classes of functions, such as linear maps where the target space is multidimensional, each opening
defines a system of equations. Note that in this case one might be able to generate an inconsistent system with just
a single opening, or generate openings to (f, y) and (f ′, y′) with f 6= f ′ but the systems defined by the tuples are
inconsistent. Therefore, our definition explicitly forbids the adversary to generate inconsistent equations.

Definition 14 ((Public-Coin) Function Binding). A linear map commitment LMC over F is function binding if for
any PPT adversary A, positive integers Q, `, q ∈ poly(λ), and family of linear maps F ⊆ {f : F` → Fq}, there exists
a negligible function ε(λ) ∈ negl(λ) such that

Pr

∀k ∈ [Q], fk ∈ F ∧ yk ∈ Fq∧
Verify(C, fk,yk, Λk) = 1

@x ∈ X ` s.t. ∀k ∈ [Q], fk(x) = yk

∣∣∣∣∣∣
ω←$ {0, 1}λ

pp← Setup(1λ,F ;ω)
(C, {(fk,yk, Λk)}k∈[Q])← A(pp , ω )


≤ ε(λ)

where A is not given ω (highlighted by the dashed box). If the inequality holds even if A is given ω, then we say that
LMC is function binding with public coins.

As for SVC, we omit the hiding definition as it is not needed for our purpose.

5 Constructions for SVCs

We propose two direct constructions of SVC, one from modules over Euclidean rings where certain variants of the root
assumption hold, and one from pairing groups where the CubeDH assumption holds. Both schemes allow one to commit
to binary strings (i.e., we consider the field X = F2). Our constructions are inspired by the work of Catalano and
Fiore [26] and extend the opening algorithms of their vector commitment schemes to simultaneously handle multiple
positions. These modifications introduce several complications in the security proofs that require a careful manipulation
of the exponents.
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5.1 SVC from Modules over Euclidean Rings

Our first SVC scheme relies on modules over Euclidean rings where some variants of the root problem (the natural
generalization of the RSA problem) is hard. Let ` ∈ poly(λ) be a positive integer. Let MGen be an efficient module
sampling algorithm as defined in Section 3 and let R be an Euclidean ring sampled by MGen. Let IRRλ(R) be a set of
prime elements in R of size 2λ. Let H : {0, 1}∗ → IRRλ(R)` be a prime-valued function which maps finite bit strings
to tuples of ` distinct elements in IRRλ(R). That is, for all string s ∈ {0, 1}∗, if (e1, . . . , e`) = H(s), then ei 6= ej for
all i, j ∈ [q] where i 6= j. Let X := {0R, 1R}5 where 0R and 1R are the additive and multiplicative identity elements
of R respectively. We construct our first subvector commitment scheme in Figure 1. Note that in the opening algorithm,
it is required to compute

ΛI :=
(∏
i∈I

ei

)−1

◦ 〈x[`]\I ,S[`]\I〉.

Although multiplicative inverses of ring elements do not exist in general, and if so, they may be hard to compute, the
above are efficiently computable because, for all i ∈ [`] \ I and hence for all i ∈ J \ I , we have

Si :=

 ∏
j∈[`]\{i}

ej

 ◦X =

∏
j∈I

ej
∏

j∈[`]\(I∪{i})

ej

 ◦X.
The correctness of the construction follows straightforwardly by inspection. Depending on the instantiation of H , we
can prove our scheme secure against different assumptions:

– H is a (non-cryptographic) hash: Our construction is secure if the strong distinct-prime-product root assumption
(introduced in Section 3) holds over the module familyRD. This is shown in Theorem 1.

– H is a random oracle: Our construction is secure if the adaptive root problem (introduced in [19]) is hard over the
module family. This is shown in Theorem 2.

Theorem 1. If the (resp. public-coin) strong distinct-prime-product divisible root assumption holds over the module
family RD, or if the (resp. public-coin) adaptive root assumption and the (resp. public-coin) strong distinct-prime-
product root assumption holds over the module familyRD, then the scheme in Figure 1 is (resp. public-coin) position
binding.

Proof. Suppose not, let A be a PPT adversary such that

Pr

Verify(C, I,xI , ΛI) = 1
Verify(C, J,x′J , Λ′J) = 1
∃i ∈ I ∩ J s.t. xi 6= x′i

∣∣∣∣∣∣
ω←$ {0, 1}λ

pp← Setup(1λ, 1`;ω)
(C, I, J,xI ,x′J , ΛI , Λ′J)← A(1λ, pp , ω )

 > 1
f(λ)

for some polynomial f(λ) ∈ poly(λ), where A gets ω as input (highlighted by the dashed box) only in the public-coin
variant. We construct an algorithm C as follows, whose existence contracts the fact thatRD is a (public-coin) strong
distinct-prime-product (divisible) root modules family.

In the pivate-coin setting, C receives as input (RD, A) generated by MGen(1λ;ω) for some ω←$ {0, 1}λ. It
sets X := A, and computes (e1, . . . , e`) ← H(RD, X). It then sets Si :=

(∏
j∈[`]\{i} ej

)
◦ X for all i ∈ [`],

S := (S1, . . . , Sq)T , and e := (e1, . . . , e`). It sets pp := (RD, X,S, e) and runs A on input (1λ, pp). In the public-
coin setting, C receives additionally ω and runs A on (1λ, pp, ω) instead. In any case, it is clear that pp and ω obtained
above distribute identically as

{(pp, ω) : ω←$ {0, 1}λ; pp← Setup(1λ, 1`;ω)}λ.

Hence, with probability at least 1/f(λ), C obtains (C, I, J,xI ,x′J , ΛI , Λ′J) such that

〈xI ,SI〉+
(∏
i∈I

ei

)
◦ ΛI = 〈x′J ,SJ〉+

(∏
i∈J

ei

)
◦ Λ′J

5 In general, X can be set such that for all x, x′ ∈ X , gcd(x− x′, ei) = 1 for all i ∈ [q].

11



which implies

〈xI\J ,SI\J〉 − 〈x′J\I ,SJ\I〉+ 〈xI∩J − x′I∩J ,SI∩J〉

=
( ∏
i∈I∩J

ei

) ∏
i∈J\I

ei

 ◦ Λ′J −
 ∏
i∈I\J

ei

 ◦ ΛI
 .

Recall that Si =
(∏

j∈[`]\{i} ej

)
◦A. Define δi :=


xi i ∈ I \ J
−x′i i ∈ J \ I
xi − x′i i ∈ I ∩ J

and

Λ :=
((∏

i∈J\I ei

)
◦ Λ′J −

(∏
i∈I\J ei

)
◦ ΛI

)
. C obtains

 ∑
i∈I∪J

δi
∏

j∈[`]\{i}

ej

 ◦A =
( ∏
i∈I∩J

ei

)
◦ Λ.

Let K0 := {i ∈ I ∩ J : δi = 0R} and K1 := {i ∈ I ∪ J : δi 6= 0R}. Next, we show that d :=
gcd

(∑
i∈I∪J δi

∏
j∈[`]\{i} ej ,

∏
i∈I∩J ei

)
=
∏
j∈K0

ej . Furthermore, suppose that this is the case, we have
(I ∩ J) \K0 6= ∅ since there exists i ∈ I ∩ J such that δi = xi − x′i 6= 0R. To prove the above, we first note that

∑
i∈I∪J

δi
∏

j∈[`]\{i}

ej =
∑
i∈K1

δi
∏

j∈[`]\{i}

ej =
∏

j∈[`]\(I∪J)

ej

∑
i∈K1

δi
∏

j∈(I∪J)\{i}

ej

 .

Hence

d = gcd

∑
i∈K1

δi
∏

j∈(I∪J)\{i}

ej ,
∏
i∈I∩J

ei


=
∏
j∈K0

ej · gcd

∑
i∈K1

δi
∏

j∈(I∪J)\(K0∪{i})

ej ,
∏

i∈(I∩J)\K0

ei

 .

It remains to show that d′ := gcd
(∑

i∈K1
δi
∏
j∈(I∪J)\(K0∪{i}) ej ,

∏
i∈(I∩J)\K0

ei

)
= 1R. Suppose not, let d′ =∏

i∈L ei for some L ⊆ (I ∩ J) \K0. Suppose ` ∈ L 6= ∅. This means δ` 6= 0R and hence ` ∈ K1. Then there exists
r ∈ R such that

e` · r =
∑
i∈K1

δi
∏

j∈(I∪J)\(K0∪{i})

ej

=δ`
∏

j∈(I∪J)\(K0∪{`})

ej + e`
∑

i∈K1\{`}

δi
∏

j∈(I∪J)\(K0∪{i})

ej .

Let r′ := r −
∑
i∈K1\{`} δi

∏
j∈(I∪J)\(K0∪{i}) ej . We have

e` · r′ = δ`
∏

j∈(I∪J)\(K0∪{`})

ej .

Since δ` 6= 0R, i.e., δ` ∈ {−1R, 1R}, the above contradicts the fact that e` is a prime element. Thus we must have
L = ∅ and hence d′ = 1R.
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Now that we have concluded d = gcd
(∑

i∈I∪J δi
∏
j∈[`]\{i} ej ,

∏
i∈I∩J ei

)
=
∏
j∈K0

ej , C can use the extended
Euclidean algorithm to find a, b ∈ R such that

a
∑
i∈I∪J

δi
∏

j∈[`]\{i}

ej + b
∏
i∈I∩J

ei =
∏
j∈K0

ej .

Multiplying this to A, it gets ∏
j∈K0

ej

 ◦A =

a ∑
i∈I∪J

δi
∏

j∈[`]\{i}

ej + b
∏
i∈I∩J

ei =
∏
j∈K0

ej

 ◦A
=
(
a
∏
i∈I∩J

ei

)
◦ Λ+

(
b
∏
i∈I∩J

ei

)
◦A

=
( ∏
i∈I∩J

ei

)
◦ (a ◦ Λ+ b ◦A) .

Since (I ∩ J) \K0 6= ∅, C can set S := (I ∩ J) \K0 and Y := (a ◦ Λ+ b ◦A), and obtain the relation ∏
j∈K0

ej

 ◦A =

 ∏
j∈K0

ej

∏
j∈S

ej

 ◦ Y.
Here, an option for C is to directly output

((∏
j∈K0

ej

)
, {ei}i∈S , Y

)
as a solution to the strong distinct-prime-

product divisible root problem.
Alternatively, if the adaptive root assumption holds, we show that

A =

∏
j∈S

ej

 ◦ Y (1)

except with negligible probability. The argument is essentially identical to the one in [19] for showing that the adaptive
root assumption implies the low order assumption. Suppose Equation (1) does not hold. We construct an adversary
against the adaptive root problem as follows. By running C, we have ∏

j∈K0

ej

 ◦X = 0D

where X := A −
(∏

j∈S ej

)
◦ Y 6= 0D. Our adversary outputs X and receives e←$ IRRλ(R). With probability

1− |K0|/2λ = 1− negl(λ), we have gcd
(
e,
(∏

j∈K0
ej

))
= 1. We can therefore write ae+ b

(∏
j∈K0

ej

)
= 1R

for some a, b ∈ R. Observe that

X =1R ◦X

=

ae+ b

 ∏
j∈K0

ej

 ◦X
=e ◦ (a ◦X) + b ◦

 ∏
j∈K0

ej

 ◦X


=e ◦ (a ◦X)
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Setup(1λ, 1`;ω)

(p,G,GT , G, e)← GGen(1λ;ω)
∀i ∈ [`], zi ←$ Zp
∀i, i′ ∈ [`], Gi := Gzi , Hi,i′ := Gzizi′

pp :=
(
p,G,GT , G, {Gi}i∈[`],
{Hi,i′}i,i′∈[`],i 6=i′ , e

)
return pp

Com(x)

return (C, aux) :=

∏
i∈[`]

Gxii ,x



Open(I,x′I , aux)

parse aux as x

return ΛI :=
∏
i∈I

∏
i′ /∈I

H
xi′
i,i′

Verify(C, I,x′I , ΛI)

b0 := (x′I ∈ X |I|)

b1 :=

(
e

(
C∏

i∈I G
xi
i

,
∏
i∈I

Gi

)
= e(ΛI , G)

)
return b0 ∩ b1

Fig. 2: SVC from CubeDH.

Our adversary therefore outputs a ◦X as a solution to the adaptive root problem.
To conclude, Equation (1) holds except with negligible probability. C can therefore output ({ei}i∈S , Y ) as a solution

to the strong distinct-prime-product root problem. ut

Theorem 2. If the (resp. public-coin) adaptive root assumption holds over the module familyRD with respect to IRRλ,
then the scheme in Figure 1 is (resp. public-coin) position binding in the random oracle model.

We refer to Appendix C.1 for a full proof.

Efficiency and Optimizations. Our construction admits two complementary instantiations, discussed in the following.

– Efficient Verifier (assuming random access to public parameters): The vectors S and e are explicitly included in the
public parameters (as it is currently described). In this case, and suppose the verifier has random access to each ei
and Si, the computational effort of the verifier is only proportional to |I|, the size of the subvector. The shortcoming
of this scheme is that the size of the public parameters is linear in `, which can be very large depending on the
application.

– Short Public Parameters: One can reduce the size of the public parameters to a constant by including only the
module description (RD, X) and letting each algorithm recompute the terms of S needed for the computations.
This however increases the computational complexity of the verifier, since the computation needed for each element
of S is linear in the vector length `. This can be partiallly amortized by observing that the values (S1, . . . , S`) do
not depend on the committed vector and can be precomputed by both parties.

Another possible tradeoff is given by the assumption that one is willing to rely on: Note that the main workload
for the verifier (in the verifier-optimized variant) is to compute the term

(∏
i∈I ei

)
◦ ΛI . Assuming R = Z and the

term is computed by repeated squaring, the complexity of the computation depends on the bit-length of the primes
ei. In the adaptive root assumption, the primes (e1, . . . , e`) are sampled randomly from a set of primes of size 2λ,
therefore representing each prime requires at least λ bits. On the other hand, under the strong distinct-prime-product
root assumption we can set (e1, . . . , e`) to be the smallest ` primes. Since ` ∈ poly(λ), each prime can be represented
by O(log λ) bits. This greatly reduces the computational effort of the verifier.

5.2 SVC from the Cube Diffie-Hellman Assumption

Next we present our SVC construction from pairing groups. In favor of a simpler presentation and a more general
result we describe our scheme assuming symmetric pairings. However, we stress that the scheme can be easily adapted
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to work over the more efficient asymmetric (type III) bilinear groups without affecting computational efficiency nor
opening size by, e.g., replicating all public parameters in both source groups.

The public parameters consist of a set of random elements {Gi = Gzi}i∈[q] and their pairwise “Diffie-Hellman
products” Hi,i′ = Gzizi′ with i 6= i′. To commit to a vector x one computes C :=

∏
iG

xi
i . The opening of a subvector

xI is then
∏
i∈I
∏
i′ /∈I H

xi′
i,i′ . Note that since i ∈ I and i′ /∈ I , it is always true that i 6= i′. Therefore the product is

efficiently computable for an honest prover. Assuming that the verifier has random access to each Gi in the public
parameters, it can check the relation by accessing |I| entries in the public parameters, and computing 2 · |I| group
operations and 2 pairings (which are independent of `). Since the public parameters are highly structured, this scheme
does not admit an instantiation with short public parameters, which grow quadratically with the vector size `.

Let GGen be an efficient bilinear group sampling algorithm. Let (p,G,GT , G, e) be a group description output by
GGen. Let X := Zp. Our second subvector commitment scheme is shown in Figure 2. In the following we show that
our SVC scheme is position binding with a private-coin setup.

Theorem 3. If the Cube Diffie-Hellman (CubeDH) assumption holds with respect to GGen, then the scheme in Figure 2
is position binding.

Proof. Suppose not, let A be a PPT adversary such that

Pr

Verify(C, I,xI , ΛI) = 1
Verify(C, J,x′J , Λ′J) = 1
∃i ∈ I ∩ J s.t. xi 6= x′i

∣∣∣∣∣∣
ω←$ {0, 1}λ

pp← Setup(1λ, 1`;ω)
(C, I, J,xI ,x′J , ΛI , Λ′J)← A(1λ, pp)

 > 1
f(λ)

for some f(λ) ∈ poly(λ). We construct a CubeDH solver as follows.
C receives as input (p,G,GT , G,H, e), where (p,G,GT , G, e) ← GGen(1λ) and H = Gz for some random

z←$ Zp, and must output Gz
2
. It picks an index i∗←$ [`] and set Gi∗ := H . Symbolically, let zi∗ := z, which is not

known by C. For the other indices i, i′ ∈ [`] \ {i∗}, it samples zi←$ Zp and sets Gi := Gzi and Hi,i′ := Gzizi′ . It
also sets Hi∗,i = Hi,i∗ = Gzzi for each i ∈ [`] \ {i∗}. It then sets pp = (p,G,GT , G, {Gi}i∈[`], {Hi,i′}i,i′∈[`],i6=i′ , e),
which is identically distributed as pp output by Setup. C runs A on input (1λ, pp). With probability at least 1/f(λ), it
obtains (C, I, J,xI ,x′J , ΛI , Λ′J) such that Verify(C, I,xI , ΛI) = 1, Verify(C, J,x′J , Λ′J) = 1, and ∃i ∈ I∩J s.t. xi 6=
x′i. Conditioning on the above, with probability 1/`, it holds that i∗ ∈ I∩J and xi∗ 6= x′i∗ . By examining the verification
equations, we have

e

(
C∏

i∈I G
xi
i

,
∏
i∈I

Gi

)∑
i∈J

zi

· e

(
ΛI ,

∏
i∈J

Gi

)
= e

(
C∏

i∈J G
x′
i
i

,
∏
i∈J

Gi

)∑
i∈I

zi

· e

(
ΛJ ,

∏
i∈I

Gi

)

e

(∏
i∈I

Gxii ,
∏
i∈I

Gi

)∑
i∈J

zi

· e

(
ΛI ,

∏
i∈J

Gi

)
= e

(∏
i∈J

G
x′i
i ,
∏
i∈J

Gi

)∑
i∈I

zi

· e

(
ΛJ ,

∏
i∈I

Gi

)

using the fact that

e

(
C,
∏
i∈I

Gi

)∑
i∈J

zi

= e

(
C,
∏
i∈J

Gi

)∑
i∈I

zi

.

Substituting we obtain

e

(∏
i∈I

Gxii ,
∏
i∈I

Gi

)∑
i∈J

zi

· e

(
ΛI ,

∏
i∈J

Gi

)
= e

(∏
i∈J

G
x′i
i ,
∏
i∈J

Gi

)∑
i∈I

zi

· e

(
ΛJ ,

∏
i∈I

Gi

)

e(g, g)
(∑

i∈I
zixi
)(∑

i∈I
zi
)(∑

i∈J
zi
)
· e

(
ΛI ,

∏
i∈J

Gi

)
= e(g, g)

(∑
i∈J

zix
′
i

)(∑
i∈J

zi
)(∑

i∈I
zi
)
· e

(
ΛJ ,

∏
i∈I

Gi

)
.
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Let us denote(∑
i∈I

zixi

)(∑
i∈I

zi

)(∑
i∈J

zi

)

= xi∗z
3
i∗ + xi∗z

2
i∗

 ∑
i∈J\{i∗}

zi

+ xi∗zi∗

 ∑
i∈I\{i∗}

zi

(∑
i∈J

zi

)
+

 ∑
i∈I\{i∗}

zixi

(∑
i∈I

zi

)(∑
i∈J

zi

)
= xi∗z

3
i∗ + α

and(∑
i∈J

zix
′
i

)(∑
i∈J

zi

)(∑
i∈I

zi

)

= x′i∗z
3
i∗ + x′i∗z

2
i∗

 ∑
i∈I\{i∗}

zi

+ xi∗zi∗

 ∑
i∈J\{i∗}

zi

(∑
i∈I

zi

)
+

 ∑
i∈J\{i∗}

zix
′
i

(∑
i∈J

zi

)(∑
i∈I

zi

)
= x′i∗z

3
i∗ + β

and observe that α and β are at most quadratic in the variable zi∗ . Now we can rewrite

e(g, g)
(∑

i∈I
zixi
)(∑

i∈I
zi
)(∑

i∈J
zi
)
· e

(
ΛI ,

∏
i∈J

Gi

)
= e(g, g)

(∑
i∈J

zix
′
i

)(∑
i∈J

zi
)(∑

i∈I
zi
)
· e

(
ΛJ ,

∏
i∈I

Gi

)

e(g, g)xi∗z
3
i∗+α · e

(
ΛI ,

∏
i∈J

Gi

)
= e(g, g)x

′
i∗z

3
i∗+β · e

(
ΛJ ,

∏
i∈I

Gi

)

e(g, g)(xi∗−x′i∗ )z3
i∗ = e

(
ΛJ ,

∏
i∈I

Gi

)
· e

(
ΛI ,

∏
i∈J

Gi

)−1

·Hβ−α.

Note that we have that xi∗ 6= x′i∗ which implies that the LHS of the equation is non-zero. Furthermore, the RHS of the
equation is efficiently computable by the reduction. It follows that C can extract a solution to the CubeDH instance with
non-negligible probability. This concludes our proof.

6 Construction for LMC

Our LMC construction is inspired by the scheme presented in [47] and it is based upon the following observations.
First, when the vectors x,f ∈ F` for some field F are encoded as the polynomials pf (α) :=

∑
j∈[`] fjα

`+1−j and
px(α) :=

∑
j∈[`] xjα

j with variable α respectively, their inner product is the coefficient of the monomial α`+1 in
the polynomial product pf (α)px(α). Second, due to linearity of polynomial multiplication, if a matrix F ∈ Fq×` is
encoded in the polynomial pF (α) :=

∑
i∈[q],j∈[`] fi,jziα

`+1−j with variables (α, z1, . . . , zq), then the matrix-vector
product Fx is given in the coefficients of the monomials ziα`+1 for i ∈ [q] in the polynomial pF (α)px(α).

With the above observations, we give an overview of our construction. We let the commitment C to x be Gpx(α),
which is computable by combining elements of the form Gα

j

given in the public parameters. Given (F,y), to verify that
Fx = y, the verifier computes via pairing e(GpF (α,z1,...,zq), Gpx(α)), where the left-input is computable by combining
elements of the form Gziα

j

given in the public parameters. If the relation Fx = y indeed holds, then the coefficients of
y must be encoded as the coefficients of the (lifted) monomials Gziα

`+1
. To convince the verifier that this is the case, it

suffices for the prover to provide the remaining terms of the product polynomial.
Let GGen be an efficient bilinear group sampling algorithm. Let (p,G,GT , G, e) be a group description output by

GGen. Let F = Zp, `, q ∈ N, and F be the set of all linear maps from Z`p to Zqp. Our LMC for Zp is given in Figure 3.
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Setup(1λ,F ;ω)

(p,G,GT , G, e)← GGen(1λ;ω)
α, z1, . . . , zq ←$ Zp

∀j ∈ [`], Gj := Gα
j

∀i ∈ [q], j ∈ [2`], Hi,j := Gziα
j

pp :=
(
p,G,GT , G, {Gj}j∈[`],
{Hi,j}i∈[q],j∈[2`]\{`+1}, e

)
return pp

Com(x)

return (C, aux) :=

∏
j∈[`]

G
xj
j ,x



Open(F,y, aux)

parse aux as x

Λ :=
∏
i∈[q]

∏
j∈[`]

∏
j′∈[`]\{j}

H
fi,jxj′

i,`+1+j−j′

return Λ

Verify(C,F,y, Λ)

b0 := (y ∈ Zqp)

b1 :=

(
e
(
C,
∏
i∈[q]

∏
j∈[`] H

fi,j
i,`+1−j

)
=

e(G1,
∏
i∈[q] H

yi
i,`) · e(Λ,G)

)
return b0 ∩ b1

Fig. 3: LMC from Bilinear Pairings.

For full generality we present the construction over symmetric pairings, however one can easily convert it to the more
efficient asymmetric pairing groups via standard techniques, without affecting the size of the openings. Although we do
not aim to achieve the hiding property, our construction can be easily modified to be hiding, by introducing randomness
similar to that in Pedersen commitment [55]. Indeed this is how the FC of [47] achieves hiding. We show that our
construction is function binding (in the generic bilinear group model) in the following.

Theorem 4. Let `, q ∈ poly(λ) and 1/p ∈ negl(λ). The scheme in Figure 3 is function binding in the generic bilinear
group model.

Proof. The proof uses the generic group model abstraction of Shoup [58] and we refer the reader to [18] for a
comprehensive introduction to the bilinear group model. Here we state the central lemma useful for proving facts about
generic attackers.

Lemma 1 (Schwartz-Zippel). Let F (X1, . . . , Xm) be a non-zero polynomial of degree d ≥ 0 over a field F. Then the
probability that F (x1, . . . , xm) = 0 for randomly chosen values (x1, . . . , xm) in Fn is bounded from above by d

|F| .

Fix Q ∈ N. Suppose there exists an adversary A, who only performs generic bilinear group operations, such that there
exists a polynomial f ∈ poly(λ) with

Pr

 ∀k ∈ [Q], Fk ∈ Zq×`p ∧ yk ∈ Zqp∧
Verify(C, fk,yk, Λk) = 1

6 ∃x ∈ Z`p s.t. ∀k ∈ [Q], Fk(x) = yk

∣∣∣∣∣∣ pp← Setup(1λ,F)
(C, {(Fk,yk, Λk)}k∈[Q])← A(1λ, pp)


> 1

f(λ) .

SinceA is generic, and C and each of Λk are G elements, we can write logG C and each logG Λk in the following form:

logG C = γ0 +
∑
j∈[`]

γjα
j +

∑
i∈[q]

j∈[2`]\{`+1}

γi,jziα
j

logG Λk = λk,0 +
∑
j∈[`]

λk,jα
j +

∑
i∈[q]

j∈[2`]\{`+1}

λk,i,jziα
j
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S(1λ;ω)

ω←$ {0, 1}λ

pp← Setup(1λ,F ;ω)
return y := (pp , ω )

P(x,w, y) V(x, y)
π ← PPCP(x,w)
(C, aux)← Com(π)

C−−−−−−−−→
α←$ {0, 1}λ

α←−−−−−−−−
ρ← PRG(α) ρ← PRG(α)
F := Record(x,π, ρ)
y := Fπ

Λ← Open(F,y, aux)
Λ,y

−−−−−−−−→
F := Reconstruct(x,y, ρ)
b0 := Verify(C,F,y, Λ)
b1 := Decide(x,y, ρ)
return b0 ∩ b1

Fig. 4: Succinct Argument of Knowledge for NP from SVC / LMC

for some integer coefficients γj , γi,j , λk,j , and λk,i,j for i, j, and k in the appropriate ranges. Since for each k ∈ [Q],
Verify(C,Fk,yk, Λk) = 1, the following relations hold:

(logG C)

∑
i∈[q]

∑
j∈[`]

fk,i,jziα
`+1−j

 =
∑
i∈[q]

yk,iziα
`+1 + logG Λk.

Note that the above defines a (n+ 1)-variate polynomial of degree 3`+ 2 which evaluates to zero at a random point
(α, z1, . . . , zq). Suppose that the polynomial is non-zero. By the Schwartz-Zippel lemma, the probability that the above
happens is bounded by 3`+2

p which is negligible as ` ∈ poly(λ) and 1/p ∈ negl(λ). We can therefore assume that the
polynomial is always zero. In particular, the coefficients of the monomials ziα`+1 are zero for all i ∈ [q]. Thus, we
have the following relations for all k ∈ [Q] and i ∈ [q]:∑

j∈[`]

fk,i,jγj = yk,i.

In other words, there exists x := (γ1, . . . , γq)T mod p ∈ Zqp such that Fk(x) = yk, for all k ∈ [Q], which contradicts
the assumption about A. We thus conclude that such adversaries exist only with negligible probability. Since the above
holds for any Q ∈ N, we conclude that the construction is function binding. ut

7 Succinct Arguments of Knowledge from SVC / LMC

We present our compiler for constructing interactive arguments of knowledge either from traditional PCPs and subvector
commitments (Section 5), or from linear PCPs [42] and linear map commitments (Section 6). The constructions for

18



both cases are in fact identical and we present only the latter since it is strictly more general (an traditional PCP can be
seen as a linear PCP where queries are restricted to unit vectors).

Let (PPCP,VPCP) be an `-long q-query (linear) PCP over some field F for NP with r being the length of the
random coins of the possibly adaptive verifier. Let PRG : {0, 1}λ → {0, 1}r be a pseudo-random generator and let
LMC := (Setup,Com,Open,Verify) be a linear map commitment for the set of all linear maps F from F` to Fq,
possibly with public-coin setup. We present a 4-move interactive argument of knowledge in Figure 4.

7.1 Protocol Description

We first describe some subroutines to be used in the protocol. We construct polynomial time algorithms Record,
Reconstruct, and Decide which perform the following:

– Record: On input a statement x, a proof π, a randomness ρ, it runs VπPCP(x; ρ) and records the queries f1, . . . ,fq ∈
Fq made by VPCP. It outputs a query matrix F := [f1| . . . |fq]T ∈ Fq×`.

– Reconstruct: On input a statement x, a response vector y ∈ Fq , and a randomness ρ, it runs VπPCP(x; ρ) by simulating
the oracle π using the response vector y. That is, when VPCP makes the i-th query fi for i ∈ [q], it responds by
returning the value yi. It outputs a query matrix F := [f1| . . . |fq]T ∈ Fq×`.

– Decide: On input a statement x, a response vector y ∈ Fq, it runs VπPCP(x; ρ) by simulating the oracle π as in
Reconstruct, and outputs whatever VπPCP(x; ρ) outputs.

It is clear that for any strings x and π and randomness ρ, if y is formed in such a way that yi is the response to the i-th
query made by VπPCP(x; ρ), then Record(x,π, ρ) = Reconstruct(x,y, ρ), and Decide(x,y, ρ) = VπPCP(x; ρ).

We now describe the protocol. The setup algorithm S samples a random string ω and computes the public parameters
pp of LMC using ω. It outputs pp if an LMC with private-coin setup is used, which results in an argument system with
private-coin setup. Alternatively, if an LMC with public-coin setup is used, it outputs additionally ω (as highlighted in
the dashed box). This results in a public-coin setup.

In the rest of the protocol, the verifier is entirely public-coin. On input the public parameter pp, the statement x
and the witness w, the prover P produces π as the PCP encoding of the witness w, then it commits to π and sends
its commitment C to the verifier V . Upon receiving the commitment C, V responds with a random string α. The
prover P stretches α with a PRG into ρ and executes VPCP on ρ. Here the PRG is used to compress the (possibly large)
randomness of the verifier, which is strictly needed only for linear PCPs (standard PCPs typically have low randomness
complexity and therefore the random coins can be sent in plain).

The prover P then records the sets of queries F = Record(x,π, ρ) of VPCP using randomness ρ to π, and computes
the responses y = Fπ. Next, it computes the opening Λ of the commitment C to the tuple (F,y). The opening Λ along
with the response y are sent to the verifier V . The verifier V runs Reconstruct(x,y, ρ) to reconstruct the query matrix
F . It then checks if Λ is a valid opening of C to (F,y). Finally, it checks if Decide(x,y, ρ) returns 1. If all checks are
passed, it outputs 1. Otherwise, it outputs 0.

7.2 Analysis

Clearly, if (PPCP,VPCP) is a complete linear PCP, and LMC is a correct LMC, then the argument system is complete.
Alternatively, if (PPCP,VPCP) is a complete (traditional) PCP, and LMC is a correct SVC, then the system is also
complete. The succinctness of the system follows directly from the compactness of LMC. Next, we show that the
argument system is of knowledge by the following theorem. We refer to Appendix C.2 for a full proof.

Theorem 5. Let (PPCP,VPCP) be a 2−σ-sound linear PCP of knowledge for NP, PRG be a pseudo-random generator,
and LMC := (Setup,Com,Open,Verify) be (resp. public-coin) function binding. Then the protocol in Figure 4 is a
2−σ-sound (resp. public-coin) argument of knowledge.
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7.3 Instantiations and Efficiency.

Since our argument system has a public-coin verifier, we can apply the Fiat-Shamir transformation to turn it into a
non-interactive argument and sometimes a SNARK.6 We highlight some interesting instantiations of our compiler:
Regardless of the specific root assumption used, we can instantiate our first SVC construction over Cl(∆), the class
group of an imaginary quadratic order with discriminant ∆. Considering the current best attacks, we can assume that
root problems for a O(λ2)-bit ∆ are hard for a 2λ-time adversary. Concretely, with a 2560-bit ∆, which roughly offers
security against a 2128-time adversary, each element in Cl(∆) can be represented by at most 2560 bits (see Section 8
for more details). Using a 240-query 2−80-sound PCP, the resulting proof size is 2 · 2560 + 240 = 5360 bits. When
using the verifier-optimized SVC (see Section 5.1) the workload of the verifier is dominated by 240 exponentiations,
regardless of the witness size. However the public parameters grow linearly with the length of the PCP encoding. One
can reduce the size of the public parameters to constant at the cost of having an inefficient verifier. We stress that class
groups of imaginary quadratic orders have a public-coin setup and so does the resulting SNARK.

Alternatively, we can use our second SVC construction over the pairing-friendly 256-bit Barreto-Naehrig curve [6],
which roughly offers security against 2128-time adversaries. In such a curve, each group element can be represented by
256 bits. Therefore the resulting proof size is 2 ·256+240 = 752 bits. This marginally improves over the shortest proofs
known [39]. A shortcoming of this approach is that the public parameters of the resulting SNARK grow quadratically in
the length of the PCP proof.

An unsatisfactory aspect of the instantiations above is that PCPs with such short queries have typically a very
high prover complexity and are therefore very expensive to compute, which means that our arguments described
above have a high prover complexity. One approach to address this issue is to leverage the large body of work on
linear PCPs [16, 42], which significantly improve the complexity of the prover. Any of these schemes can be used in
combination with an LMC (such as the construction of Section 6) to obtain a non-interactive argument with slightly
larger proofs (by a constant factor) but with a more efficient prover. We stress that our compiler supports any linear PCP,
whereas existing compilers only support those with a verifier who only evaluates quadratic polynomials. Moreover,
although our pairing-based instantiations inherit the private-coin setup from underlying SVC / LMC, the setup is
statement-independent. In contrast, the setup in existing pairing-based schemes such as [39] depends on the statement to
be proven. We shall mention however that our LMC has a linear verifier complexity and therefore it yields an argument
with verifier computation linear in the lenght of the PCP.

For the efficiency of the verifier, there are several techniques to reduce its computational overhead: As an example,
one could compose our scheme with a verifier-optimized SNARK to prove the validity of the verification equation,
instead of having the verifier computing it. Very recently, Boneh et al. [17] presented a special-purpose proof of
knowledge of co-prime roots (PoKCR) that drastically reduces the running time of the verifier in class group-based
SVCs (see Section 5) by trading group operations for modular multiplications and additions, which are orders of
magnitude more efficient. We refer the reader to [17] for a detailed analysis of the concrete costs.

8 Candidate Module Families

In the following we suggest some candidate instantiations for modules (specifically groups) where the strong distinct-
prime-root assumption and/or the adaptive root assumption are believed to hold.

8.1 Class Groups of Imaginary Quadratic Orders

The use of class groups in cryptography was first proposed by Buchmann and Williams [24]. We refer to, e.g., [22, 23],
for more detailed discussions. We recall the basic properties of class groups necessary for our purpose. Let ∆ be a
negative integer such that ∆ ≡ 0 or 1 (mod 4). The ring O∆ := Z + ∆+

√
∆

2 Z is called an imaginary quadratic order
of discriminant ∆. Its field of fractions is Q(

√
∆). The discriminant is fundamental if ∆/4 (resp. ∆) is square-free in

the case of ∆ ≡ 0 (mod 4) (resp. ∆ ≡ 1 (mod 4)). If ∆ is fundamental, then O∆ is a maximal order. The fractional

6 In the original definition of Bitansky et al. [15], a SNARK verifier is a Turing machine with runtime logarithmic in that of the
corresponding NP verifier. We consider a relaxed definition where the SNARK verifier is a random access machine.
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ideals of O∆ are of the form q
(
aZ + b+

√
∆

2 Z
)

with q ∈ Q, a ∈ Z+, and b ∈ Z, subject to the constraint that there

exists c ∈ Z+ such that ∆ = b2 − 4ac and gcd(a, b, c) = 1. A fractional ideal can therefore be represented by a
tuple (q, a, b). If q = 1, then the ideal is called integral and can be represented by a tuple (a, b). An integral ideal
(a, b) is reduced if it satisfies −a < b ≤ a ≤ c and b > 0 if a = c. It is known that if an ideal (a, b) is reduced, then
a ≤

√
|∆|/3. Two ideals a, b ⊆ O∆ are equivalent if there exists 0 6= α ∈ Q(

√
∆) such that b = αa. It is known that,

for each equivalence class of ideals, there exists exactly one reduced ideal which serves as the representative of the
equivalence class. The set of equivalence classes of ideals equipped with ideal multiplication forms an Abelian group
Cl(∆) known as a class group.

Properties Useful in Cryptography. Since for all reduced ideals, |b| ≤ a ≤
√
|∆|/3, Cl(∆) is finite. For sufficiently

large |∆|, no efficient algorithm is known for finding the cardinality of Cl(∆), also known as the class number. Group
operations can be performed efficiently, as there exist efficient algorithms for ideal multiplication and computing reduced
ideals [22]. Assuming the extended Riemann hypothesis, Cl(∆) is generated by the classes of all invertible prime ideals
of norm smaller than 12(log |∆|)2 [4], where the norm of a fractional ideal (q, a, b) is defined as q2a (= a for integral
ideals). Since these ideals have norms logarithmic in |∆|, they can be found in polynomial time through exhaustive
search. A random element can then be sampled by computing a power product of the elements in the generating set,
with exponents randomly chosen from [|∆|].

(Strong) Root Problem and its Variants in Cl(∆). To recall, the strong root problem in Cl(∆) is to find a prime
e ∈ Z and a group element Y ∈ Cl(∆) such that Y e = X , for some given element X ∈ Cl(∆). It is widely believed
that root problems in Cl(∆) for a large enough ∆ are hard if the problem instances are sampled randomly with private
coin [24]. Although the strong root problem in Cl(∆) is not as well studied, it is shown to be hard for generic group
algorithms [30]. The best attacks currently known are the ones for the root problem which runs in time proportional
to L|∆|( 1

2 , 1) [40], where Lx(d, c) := exp(c(log x)d(log log x)1−d). As discussed in [40], using a 2560-bit ∆ offers
approximately 128 bits of computational security.

The (resp. public-coin setup) position binding property of our first construction of SVC can be proven under either
the (resp. public-coin setup) strong distinct-prime-product root assumption or the (resp. public-coin setup) adaptive root
assumption. Note that these two assumptions are somewhat “dual” to each other, in the sense that the former allows
the adversary to choose which root it is going to compute, while the latter allows the adversary to choose the element
whose root is to be found.

In the private-coin setup setting, it is clear that the strong distinct-prime-product root assumption is implied by
the standard strong root assumption. In the public-coin setup setting, it is conjectured [19, 62] that the adaptive root
assumption holds inCl(∆). In the following, we first propose a simple candidate sampling algorithm MGen for sampling
Cl(∆) and random elements in Cl(∆) with public coin, and then elaborate more about the strong distinct-prime-product
root assumption with respect to MGen.

The sampling algorithm MGen first samples random integers of the appropriate length until it finds a fundamental
discriminant ∆. Let {G1, . . . , Gk} be a generating set of Cl(∆). Our sampling algorithm samples random primes
c1, . . . , ck ∈ [|∆|] subject to the constraint that the ci’s are pairwise coprime7. That is gcd(ci, cj) = 1 for all i, j ∈ [k]
with i 6= j. The algorithm then outputs ∆ along with A =

∏
i∈[k] G

ci
i .

With the above restriction in place, it seems that the best strategy of finding an e-th root of A is to find an e-th root
of Gi for all i ∈ [k] simultaneously. On the other hand, the additional constraint seems necessary for the strong distinct-
prime-product root problem with respect to A to be hard. Suppose that 1) there exists a subset I = {ci1 , . . . , ci`} ⊆ [k]
such that gcd(ci1 , . . . , ci`) = d 6= 1; 2) d can be efficiently factorized into {ei}i∈S such that d =

∏
i∈S ei for distinct

primes ei 6= 1; and 3) for all j ∈ [k] \ I , Gj can be efficiently represented as a product Gj =
∏
i∈I G

ai,j
i for some

ai,j . Then one can efficiently find a d-th root of A, say Y , and output ({ei}i∈S , Y ) as a solution to the strong distinct-
prime-product root problem. Since it seems unreasonable to assume that d cannot be efficiently factorized into a product
of distinct primes (see also the discussion of RSA-UFO below), nor is it sound to assume that none of the Gj can be
represented with a power product of the Gi’s where i 6= j, we impose the more reasonable restriction that the ci’s are
pairwise coprime.

7 This is assuming k > 1, else just set c1 = 1.
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8.2 RSA Groups

RSA-based cryptosystems operate over Z∗N , the group of positive integers smaller and coprime with N , equipped with
modular multiplication, where N is an integer with at least two distinct large prime factors. The security of these
systems relies on the hardness of the (strong) root problem over Z∗N , known as the (strong) RSA assumption. Typically,
N is chosen as a product of two secret distinct large primes p, q. However, the (strong) root problem over Z∗N is easy if
p and q are known. In other words, for N generated this way, the (strong) root assumption with public-coin setup does
not hold over Z∗N .

RSA-UFOs. The problem of constructing RSA-based accumulators without trapdoors was considered by Sander [57],
who proposed a way to generate (k, ε)-“generalized RSA moduli of unknown complete factionization (RSA-UFOs)”
N which has at least two distinct k-bit prime factors with probability 1− ε, summarized as follows. Let N1, . . . , Nr
be random 3k-bit integers with r = O(log 1/ε). It is known that with constant probability Ni has at least two distinct
k-bit prime factors [57]. It then follows that N :=

∏
i∈[r] Ni has at least two distinct k-bit prime factors. An important

observation is that N can be generated with public coin, e.g., using a random oracle. However, since N is a 3kr-bit
integer, any cryptosystem based on Z∗N seems impractical. Nevertheless, one can show that strong RSA over RSA-UFO
groups is implied by the standard strong RSA assumption in the presence of a random oracle. This result is implicitly
shown by Sander [57] and a proof sketch is given in Appendix C.3.
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21. Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge. Journal of Computer and
System Sciences, 37(2):156–189, 1988.

22. Johannes Buchmann and Safuat Hamdy. A survey on iq-cryptography. In Tech. Report TI-4/01, Technische Universitäat
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A More Preliminaries

A.1 Hoeffding’s Inequality

We recall a useful inequality by Hoeffding. Let X1, . . . , Xn be independent random variables bounded by the interval
[0, 1], let X := X1+...+Xn

n , and let d > 0, then it holds that

Pr
[
X − E

[
X
]
≥ d
]
≤ e−2nd2

and

Pr
[
E
[
X
]
−X ≥ d

]
≤ e−2nd2

.

A.2 Pseudo-Random Generators

A pseudorandom generator [41] stretches random strings into new random looking ones.

Definition 15 (Pseudo-Random Generator). A function PRG : {0, 1}n → {0, 1}m is a pseudo-random generator if
m > n and for all PPT adversaries A the following ensembles are computationally indistinguishable

{PRG(s)}s←$ {0,1}n ≈ {r}r ←$ {0,1}m .

B Pairing Groups

Let GGen be a probabilistic algorithm which inputs the security parameter 1λ and outputs a tuple (p,G,GT , G, e),
where p is a positive prime, G and GT are (descriptions of) cyclic groups of order p (written multiplicatively) with
identities 1G and 1GT respectively, G ∈ G is a generator of G, and e : G × G → GT is a pairing satisfying the
following:

– The map e is efficiently computable.
– The map e is non degenerate, i.e., e(G,G) 6= 1GT .
– The map e is bilinear, i.e., ∀(U, V ) ∈ G2,∀(a, b) ∈ Z2, e(Ua, V b) = e(U, V )ab.

When the context is clear, we drop the subscripts and denote identity elements by 1.

Cube Diffie-Hellman. The cube Diffie-Hellman (CubeDH) is the following computational problem.

Definition 16 (Cube Diffie-Hellman (CubeDH)). The cube Diffie-Hellman assumption is said to hold with respect to
GGen if for all PPT adversary A there exists ε(λ) ∈ negl(λ) such that

Pr
[
Z = e(G,G)x3

∣∣∣∣ (p,G,GT , G, e)← GGen(1λ);
x←$ Zp;Z ← A(p,G,GT , G,Gx, e)

]
≤ ε(λ),

C Analysis

We supplement the proofs which are omitted in the main text.
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C.1 Proof of Theorem 2

Proof. The proof is similar to that of Theorem 1 except with a few changes which we highlight below. Let H :
{0, 1}∗ → IRRλ(R)` be modeled as a random oracle to which A has oracle access. Similar to the proof of Theorem 1,
we will construct an algorithm C whose existence contracts the fact that the (public-coin) adaptive root assumption
holds overRD in the random oracle model.
C simulates the public parameters pp slightly differently. In the private-coin setting, C receives as input (RD, A) gen-

erated by MGen(1λ;ω) for some ω←$ {0, 1}λ. It setsX := A, and receives a random prime element e←$ IRRλ(R). C
chooses a random index i∗←$ [`], and sets ei∗ := e. For the other indices i ∈ [`] with i 6= i∗, it samples ei←$ IRRλ(R)
with the constraint that ei 6= ej for all i, j ∈ [`] where i 6= j. It then sets Si :=

(∏
j∈[`]\{i} ej

)
◦X for all i ∈ [`],

S := (S1, . . . , Sq)T , and e := (e1, . . . , eq)T . It sets pp := (RD, X,S, e) and runs AH on input (1λ, pp). C simulates
the random oracle H for A by programming H(RD, X) := (e1, . . . , eq), and answering all other queries by sampling
random distinct primes from IRR(R)`. In the public-coin setting, C receives additionally ω and runs AH on (1λ, pp, ω)
instead.

Using the same argument as in the proof of Theorem 1, with probability at least 1/f(λ) for some f ∈ poly(λ),
C obtains a tuple ({ei}i∈S , Y ) such that

(∏
i∈S ei

)
◦ Y = X (since X = A). Conditioned on this event, with

probability at least 1/`, it holds that i∗ ∈ S. If that is the case, then C sets Y ′ :=
(∏

i∈S\{i∗} ei

)
◦ Y which satisfies

e ◦ Y ′ = ei∗ ◦ Y ′ = X . It thus output Y ′ as a solution to the adaptive root problem. ut

C.2 Proof of Theorem 5

Proof. Without loss of generality, let A = (A1,A2) be a two-stage adversary. Consider the following extractor
EA(x): On input a statement x, the extractor initializes a vector space V = F`, samples ω←$ {0, 1}λ, computes
pp← Setup(1λ,F ;ω) and sends y = pp (or y = (pp, ω) if using LMC with public-coin setup) to A1. The adversary
A1 replies with a certain commitment C, and a state state which is passed to the second stage A2. In the following, we
omit the input state to A2. The extractor enters into a loop. In the k-th iteration of the loop, it performs the following:

1. Take an arbitrary vector π from the space V . Run w ← EπPCP(x), ifR(x,w) = 1 then return w and terminate the
execution.

2. Sample a random αk←$ {0, 1}λ and send it to A2. Set ρk := PRG(αk).
3. A2 responds with (Λk,yk). Let Fk = Reconstruct(x,yk, ρk).
4. If Verify(C,Fk,yk, Λk) = 0 or Decide(x, Fk,yk, ρk) = 0, then go to step 1 of the (k + 1)-th iteration with fresh

randomness. Otherwise, proceed to the next step.
5. Let W = {x ∈ F` : Fkx = yk} be a subspace of F` which satisfies the system of equations defined by (Fk,yk).

If V ∩W = ∅, then abort. Otherwise, set V = V ∩W .
6. Go to step 1 of the (k + 1)-th iteration with fresh randomness.

Note that all steps above are efficient. In particular, step 1 and 5 are efficiently computable, e.g., by Gaussian elimination.
It is clear that whenever the exftractor terminates without aborting, then the extraction is successful. We first argue that
the extractor does not abort (in step 5) within polynomially-many iterations except with negligible probability.

Lemma 2. Let LMC be function binding. Then for all statements x, all auxiliary information z, all PPT adversary A,
and all positive integer k∗ ∈ poly(λ) it holds that

Pr
[
⊥ ← EA(x,z,y)(x) within k∗ iterations

]
≤ negl(λ) .

Proof (Lemma 2). Let L′ ⊆ [k∗] be the set of iterations where the extractor reaches step 5. We observe that the extractor
aborts (in iteration k∗, step 5) if and only if theA2 successfully opens the commitment C (output byA1) to some tuples
{(Fk,yk)}k∈L′ , such that there does not exist x ∈ F` so that Fkx = yk for all k ∈ [L′]. This directly contradicts the
assumption that LMC is function binding. ut
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Next we argue that for any given strings x and π ∈ F`, running VπPCP(x; ρ) over truly random coins ρ induces a
distribution of outputs which is computationally indistinguishable from the distribution induced by VπPCP(x; ρ), where
ρ← PRG(α) is pseudorandom. This is proven in the following lemma.

Lemma 3. Let PRG be a pseudorandom generator. For all statements x, and all proof encodings π ∈ F`, the ensembles

{VπPCP(x; ρ) : ρ := PRG(α)}α←$ {0,1}λ

and
{VπPCP(x; ρ)}ρ←$ {0,1}r

are computationally indistinguishable.

Proof (Lemma 3). Assume the contrary, then we can construct the following distinguisher against PRG: On input a
string ρ, it executes b← VπPCP(x; ρ) using ρ as the random tape. Then it outputs b. By initial assumption we have that
the distributions of the output of the verifier are non-negligibly far depending on the random tape, consequently so are
the distributions of the output of the distinguisher for the two cases. This contradicts the pseudo-randomness of PRG
and shows the veracity of our proposition. ut

Next we show that if the adversary convinces the verifier with non-negligible probability, then the extractor outputs
w in polynomially many steps. In particular, we show that if the adversary convinces the verifier with non-negligible
probability, then the extractor produces a string π which is accepted by VPCP with non-negligible probability. Then, by
the proof of knowledge property of PCP, the PCP extractor must succeed in extracting a witness w.

Concretely, for any statement x and for any auxiliary input z consider an adversary A such that

εA := Pr [(A(x, z, y),V(x, y))Π = 1] > negl(λ) .

In the following we are going to show that

εV := Prα←$ {0,1}λ [VπPCP(x; PRG(α)) = 1] > negl(λ) . (2)

By Lemma 2, with overwhelming probability E does not abort within n iterations for any polynomially large n.
Now, consider some fixed polynomial n to be determined later. Conditioned on the event that E does not abort within n
steps, we can consider any vector π picked from V after n iterations. Let Xk be a random variable which is equal to 1
if the extractor reaches step 5 in the k-th iteration, and 0 otherwise. Note that if Xk = 1, then Verify(C,Fk,yk, Λk) =
Decide(x, Fk,yk, ρk) = 1. Let X∗k be another random variable defined like Xk except that, instead of running
Decide(x, Fk,yk, ρk), the extractor runs VπPCP(x; ρk) and check if it equals 1. Clearly, for any k, ifXk = 1, thenX∗k = 1.
Therefore we always have X∗k ≥ Xk. We next study the empirical means X

∗ = X∗1 +...+X∗n
n and X = X1+...+Xn

n , and
the analytical means E[X∗] = εV and E[X∗] = εA. Since X∗k ≥ Xk for all k, we have X

∗ ≥ X . Moreover, using
Hoeffding’s inequality, for any polynomial p(λ), we have

Pr
[
X
∗ − εV ≥

1
p(λ)

]
≤ e

−2n
p(λ)2

and

Pr
[
εA −X ≥

1
p(λ)

]
≤ e

−2n
p(λ)2 .

Thus, for n = λ · p(λ)2, we have

Pr
[
X
∗ − εV ≥

1
p(λ)

]
≤ negl(λ)

and

Pr
[
εA −X ≥

1
p(λ)

]
≤ negl(λ) .
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Thus, with overwhelming probability we have X
∗ − εV < negl(λ) and εA −X < negl(λ). Therefore

εV > X
∗ − negl(λ)

≥ X − negl(λ)
> εA − negl(λ)− negl(λ)
> negl(λ)

To recap, we have shown that our extractor is able to produce a vector π such that

εV := Prα←$ {0,1}λ [VπPCP(x; PRG(α)) = 1] > negl(λ) .

By Lemma 3, we have

Prρ←$ {0,1}r [VπPCP(x; ρ) = 1]
≥Prα←$ {0,1}λ [VπPCP(x; PRG(α)) = 1]− negl(λ)
>negl(λ)

Therefore, by the proof of knowledge property of (PPCP,VPCP), we have

Pr [R(x,w) = 1|w ← EπPCP(x)] > negl(λ)

This implies that the extractor terminates after n = poly(λ) steps except with negligible probability, and when it does
terminates, it outputs a valid witness of x with overwhelming probability. This concludes the proof. ut

C.3 Proof that strong RSA implies strong root in RSA-UFO groups

Proof (Sketch). Let A be an adversary against the strong RSA assumption in RSA-UFO groups. Then, on input
some (standard) RSA modulus N and a group element A, we can sample a set of primes (p1, . . . , pm) and set
N ′ = N ·

∏
i∈[m] pi and A′ = A + qN for some random q ∈

[∏
i∈[m] pi

]
. Now we give (N ′, A′) to A. Note that

the distribution of prime factors of a random number is easy to simulate, and therefore N ′ is a correctly distributed
RSA-UFO. Also note that A′ is an element of Z∗N ′ with high probability. When A returns some (e, Y ) such that e > 1,
Y ∈ Z∗N ′ and Y e = A′ mod N ′, we have

Y e = A′ mod N ′ =⇒ Y e = A′ mod N

since N ′ is multiple of N . Furthermore,

A′ mod N = A+ qN mod N = A mod N

and, for some integers Z ∈ Z∗N and h ∈ Z, we have

Y e mod N = (Z + hN)e mod N = Ze mod N

To conclude, we obtain (Z, e) with e > 1 and Ze = A mod N , which is a solution the strong RSA problem. ut

D LMC with Linear Public Parameters

In this section we show an LMC scheme with shorter public parameters. This scheme is going to satisfy only a weaker
notion of function binding, which however is sufficient for our applications.
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D.1 Weak Function Binding

We extend the definition of function binding to account for unpredictable distributions of functions. In the following we
formally define the notion of unpredictability for a function sampler FSamp.

Definition 17 (Unpredictability). Let FSamp be a sampler for a function family F . FSamp is said to be unpredictable,
if for all PPT adversary A there exists a negligible function ε(λ) ∈ negl(λ) such that

Pr

f = f ′ :
(seed, f)← A(1λ)

r←$ {0, 1}λ
f ′ ← FSamp(seed; r)

 ≤ ε(λ).

We define a weaker variant of function binding below. In this variant, the adversary is split into two stages A1 and
A2. In the first stage, A1 outputs a commitment string C. A set of functions is then sampled using some sampling
algorithm FSamp and is given to A2. The latter must then produce openings of the commitment C with respect to these
functions and their respective function values, such that all openings pass the verification, yet the function-value tuples
are inconsistent. Apparently function binding implies weak function binding with respect to any function sampler.

Definition 18 ((Public-Coin) Weak Function Binding). A linear map commitment LMC over F is weakly function
binding with respect to the function sampler FSamp, if for any PPT adversary A = (A1,A2), positive integers
Q, `, q ∈ poly(λ), and family of linear maps F ⊆ {f : F` → Fq}, there exists a negligible function ε(λ) ∈ negl(λ)
such that

Pr


∀k ∈ [Q], fk ∈ F ∧ yk ∈ Fq∧

Verify(C, fk,yk, Λk) = 1
@x ∈ X ` s.t. ∀k ∈ [Q], fk(x) = yk

∣∣∣∣∣∣∣∣∣∣∣∣

ω←$ {0, 1}λ
pp← Setup(1λ,F ;ω)

(C, seed, state)← A1(pp , ω )
∀k ∈ [Q], rk←$ {0, 1}λ

∀k ∈ [Q], fk ← FSamp(seed; rk)
{(yk, Λk)}k∈[Q] ← A2(state, {fk}k∈[Q])


≤ ε(λ)

where A does not receive ω (highlighted by the dashed box) as an input. If the inequality holds even if A receives ω as
an input, then we say that LMC is weakly function binding with respect to FSamp with public coins.

Such definition is sufficient to instantiate our compiler as long as the underlying linear PCP has unpredictable queries.
To the best of our knowledge, this property is satisfied by all known schemes (e.g., [16, 42]).

D.2 Description and Analysis

Our scheme relies on the `-Diffie-Hellman Exponent (`-DHE) assumption over bilinear groups. Loosely speaking, the
problem is to compute Gx

`

given all the powers
(
Gx, . . . , Gx

2`
)

except Gx
`

.

Definition 19 (`-Diffie-Hellman Exponent (`-DHE)). The `-Diffie-Hellman Exponent assumption is said to hold with
respect to GGen if for all PPT adversary A there exists ε(λ) ∈ negl(λ) such that

Pr
[
Z = Gx

`

∣∣∣∣∣ (p,G,GT , G, e)← GGen(1λ);x←$ Zp;
Z ← A

(
p,G,GT , G,Gx, . . . , Gx

`−1
, Gx

`+1
, . . . , Gx

2`
, e
)] ≤ ε(λ),

The scheme is given in Figure 5 and its security is analyzed below.

Theorem 6. Let FSamp be an unpredictable sampler for F . If the `-DHE assumption holds with respect to GGen, then
the scheme in Figure 5 is weakly function binding with respect to FSamp in the random oracle model.
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Setup(1λ,F ;ω)

(p,G,GT , G, e)← GGen(1λ;ω)
α←$ Zp

∀j ∈ [2`], Gj := Gα
j

pp :=
(
p,G,GT , G, {Gj}j∈[2`]\{`+1}, e

)
return pp

Com(x)

C :=
∏
j∈[`]

G
xj
j

aux := (C,x)
return (C, aux)

Open(F,y, aux)

parse aux as (C,x)
(z1, . . . , zq) := H(pp, C, F,y)

return Λ :=
∏
i∈[q]

∏
j,j′∈[`]
j 6=j′

G
zifi,jxj′

`+1+j−j′

Verify(C,F,y, Λ)

(z1, . . . , zq) := H(pp, C, F,y)
b0 := (y ∈ Zqp)

b1 :=

(
e
(
C,
∏
i∈[q]

∏
j∈[`] G

zifi,j
`+1−j

)
=

e(G1,
∏
i∈[q] G

ziyi
` ) · e(Λ,G)

)
return b0 ∩ b1

Fig. 5: Weakly Function Binding LMC from q-DHE in Random Oracle Model.

Proof. Fix a positive integer Q ∈ poly(λ). Suppose there exists an efficient adversary A, who is given oracle access to
H , and a polynomial f ∈ poly(λ) with

Pr

∀k ∈ [Q], Verify(C,Fk,yk, Λk) = 1
6 ∃x ∈ Z`p s.t. ∀k ∈ [Q], Fk(x) = yk

∣∣∣∣∣∣∣∣∣∣
pp← Setup(1λ,F)

(C, seed, state)← AH1 (1λ, pp)
∀k ∈ [Q], rk←$ {0, 1}λ

∀k ∈ [Q], Fk ← FSamp(seed; rk)
{(yk, Λk)}k∈[Q] ← AH2 (state, {Fk}k∈[Q])

 > 1
f(λ) .

We construct an `-DHE solver C which runs A1 and A2 polynomially many times.

C receives as input an `-DHE instance (p,G,GT , G, {Gα
j}j∈[2`]\{`+1}). It sets pp to be equal to the `-DHE

instance and runs A1 on pp. C simulates the random oracle H for A1 honestly. Let (C, seed, state) be the output of A1.
C samples rk←$ {0, 1}λ, and Fk ← FSamp(seed; rk), for k ∈ [Q]. It then runs A2 on (state, {Fk}k∈[Q]) who outputs
{(yk, Λk)}k∈[Q]. With probability at least 1

f(λ) , it holds that Verify(C,Fk,yk, Λk) = 1 for all k ∈ [Q]. This means
that, conditioned on the above,A1 orA2 must have queried H on (pp, C, Fk,yk) for all k ∈ [Q] except with negligible
probability. By the unpredictability of FSamp, all such queries must be made by A2 except with negligible probability,
for otherwise C can extract a query (pp, C, F ∗,y∗) made by A1 and output (seed, F ∗) with F ∗ = FSamp(seed; rk)
for some k ∈ [Q]. We can therefore assume that the view of A1, and in particular state, is independent of the values
H(pp, C, Fk,yk) for all k ∈ [Q].

With the above analysis, C further runs A2 on (state, {Fk}k∈[Q]) for additionally q − 1 times, in such a way that
at each instance C answer queries to H with independent randomness. Since the input (state, {Fk}k∈[Q]) of A2 is
independent of the values H(pp, C, Fk,yk) set during the first execution of A2, the view of A2 during all q executions
is identical to that in the definition of weakly function binding. Let H(pp, C, Fk,y(t)

k ) = (z(t)
k,1, . . . , z

(t)
k,q) at the t-th

execution of A2, and {(y(t)
k , Λ

(t)
k )}k∈[Q] be its output. We argue that y(t)

k = y
(t′)
k for all t, t′ ∈ [q] and k ∈ [Q] except

with negligible probability.
Suppose not, we tweak C slightly in the following way. It guesses a tuple (t, t′, k) such that the above event happens.

C programs H(pp, C, Fk,y(t)
k ) and H(pp, C, Fk,y(t′)

k ) such that H(pp, C, Fk,y(t)
k ) = µ · H(pp, C, Fk,y(t′)

k ) for
some µ←$ Zp. Since the t-th and t′-th execution of A2 are independent of each other, the distributions these answers
are proper. Conditioning on the probability that the above event indeed happens, the probability that C guesses correctly
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is at least 1
q2Q which is non-negligible as q,Q ∈ poly(λ). Suppose that is the case, then it holds that

e

(
C,
∏
i∈[q]

∏
j∈[`] G

z
(t)
k,i
fk,i,j

`+1−j

)
= e(G1,

∏
i∈[q] G

z
(t)
k,i
y

(t)
k,i

` ) · e(Λ(t)
k , G)

e

(
C,
∏
i∈[q]

∏
j∈[`] G

µz
(t′)
k,i

fk,i,j

`+1−j

)
= e(G1,

∏
i∈[q] G

µz
(t′)
k,i

y
(t′)
k,i

` ) · e(Λ(t′)
k , G)

which implies

e(G1,
∏
i∈[q]

G
µz

(t′)
k,i

y
(t)
k,i

` ) · e(Λ(t)
k , G) = e(G1,

∏
i∈[q]

G
µz

(t′)
k,i

y
(t′)
k,i

` ) · e(Λ(t′)
k , G)

Λ
(t′)
k

Λ
(t)
k

= G

∑
i∈[q]

µz
(t′)
k,i

(y(t)
k,i
−y(t′)

k,i
)

`+1 .

Since y(t)
k 6= y

(t′)
k , and µ and z(t′)

k,i are random in Zp for i ∈ [q], we have
∑
i∈[q] µz

(t′)
k,i (y(t)

k,i − y
(t′)
k,i ) 6= 0 except with

negligible probability. C can thus output Gα
`+1 = G`+1 =

(
Λ

(t′)
k

Λ
(t)
k

) 1∑
i∈[q]

µz
(t′)
k,i

(y(t)
k,i
−y(t′)
k,i

)
which is a solution to the

`-DHE instance. We can thus assume that y(t)
k = y

(t′)
k for all t, t′ ∈ [q] and k ∈ [Q], and denote yk = y

(t)
k for all

t ∈ [q] and k ∈ [Q].
We resume the analysis of C after runningA2 q times (without the above change). Upon completion, C has collected

the following relations

e

C, ∏
i∈[q]

∏
j∈[`]

G
z

(t)
k,i
fk,i,j

`+1−j

 = e(G1,
∏
i∈[q]

G
z

(t)
k,i
yk,i

` ) · e(Λ(t)
k , G)

for all t ∈ [q] and k ∈ [Q]. Let α be a vector such that αj = α`+1−j for j ∈ [`], Λk be a vector such that Λk,i = Λ
(i)
k

for all i ∈ [q] and k ∈ [Q], and Zk be an q-by-q matrix such that Zk,i,j = z
(i)
k,j for all i, j ∈ [q] and k ∈ [Q]. For clarity

we rewrite the relations collected by C as

(logG C)ZkFkα = α`+1Zkyk + logGΛk.

Since Zk is uniformly random, it is invertible except with negligible probability. C can therefore compute

logG Λ̄k := Z−1
k logGΛk

such that logG Λ̄k satisfies

(logG C)Fkα = α`+1yk + logG Λ̄k

for all k ∈ [Q]. Next, we make use of the fact that the linear system of equations given by the tuples {(Fk,yk)}k∈[Q]
is inconsistent. Let F and y be the vertical concatenations of F1, . . . , FQ and y1, . . . ,yQ respectively. Consider the
augmented matrix A := [F |y]. Using Gaussian elimination, C can efficiently compute matrices U and A′ = [F ′|y′]
such that A = UA and A′ is in reduced row echelon form. By multiplying the relations obtained above by U , C obtains

(logG C)F ′α = α`+1y′ + logGΛ′

Since the system is inconsistent, there must be a row i∗, such that the i∗-th row of F ′, denoted F ′i∗ , are all zero, and y′i∗
is non-zero. C can therefore obtain the relation

α`+1y′i∗ + logG Λ′i∗ = (logG C)F ′i∗α = 0.

Finally C outputs Gα
`+1 = (Λ′i∗)

1
y′
i∗ as a solution to the `-DHE instance. Since the above analysis holds for all

Q ∈ poly(λ), we conclude that the construction is weakly function binding. ut
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