
New Protocols for Secure Linear Algebra:

Pivoting-Free Elimination and Fast Block-Recursive

Matrix Decomposition

Niek J. Bouman∗ Niels de Vreede†

Technische Universiteit Eindhoven
the Netherlands

{n.j.bouman,n.d.vreede}@tue.nl

August 22, 2018

Abstract

Cramer and Damg̊ard were the first to propose a constant-rounds
protocol for securely solving a linear system of unknown rank over a
finite field in multiparty computation (MPC). For m linear equations
and n unknowns, and for the case m ≤ n, the computational complexity
of their protocol is O(n5). Follow-up work (by Cramer, Kiltz, and
Padró) proposes another constant-rounds protocol for solving this problem,
which has complexity O(m4 + n2m). For certain applications, such
asymptotic complexities might be prohibitive. In this work, we improve
the asymptotic computational complexity of solving a linear system over a
finite field, thereby sacrificing the constant-rounds property. We propose
two protocols: (1) a protocol based on pivoting-free Gaussian elimination
with computational complexity O(n3) and linear round complexity, and
(2) a protocol based on block-recursive matrix decomposition, having
O(n2) computational complexity (assuming “cheap” secure inner products
as in Shamir’s secret-sharing scheme) and O(n1.585) (super-linear) round
complexity.

∗supported by H2020-EU SODA
†supported by H2020-EU PRIViLEDGE

1

1 Introduction

In secure multiparty computation (MPC), n players want to jointly evaluate a
function f(a1, . . . , an) where ai denotes the input of player i, in such a way
that no player learns anything beyond the output of the function (and beyond
what can be deduced from the output together with that player’s input about
the other inputs). The latter privacy property should be achieved even in
the presence of an adversary that corrupts a subset (of bounded size) of the
players. We distinguish between a passive adversary, who merely has access to
the views of the corrupted players, and an active adversary, who lets corrupted
players deviate in arbitrary ways from the protocol.

MPC protocols come in several flavors and target various scenarios: proto-
cols based on arithmetic secret-sharing [BGW88] versus garbled Boolean cir-
cuits [Yao82] versus threshold decryption [CDN01]; two-party versus multi-party
(three or more players) protocols; protocols that are information-theoretically vs.
cryptographically secure (by the latter, we mean based on some computational-
hardness assumption); protocols that are secure only against passive adversaries,
or also against active adversaries (where we can further distinguish between
non-adaptive vs. adaptive active adversaries); protocols secure only against an
honest majority of players versus a dishonest majority (in the extreme case,
the adversary corrupts all but one player).

In this paper, we revisit the topic of secure linear algebra over finite fields
in MPC. We are primarily interested in solving a linear system securely with m
linear equations and n unknowns, of unknown rank. We target a multi-party
scenario, and we propose protocols that are to be used “on top of” some
arithmetic secret-sharing scheme. (For more information about arithmetic-
secret-sharing-based MPC, we refer the reader to [CDN15].) By solving a
linear system Ax = b securely for x, we mean that given secret-sharings of
the elements of the A matrix and the b vector, the players securely compute
whether the system has a solution as well as a representation of the space of
solutions (a particular solution and A’s kernel) in secret-shared form, without
revealing any information beyond this (such as the rank). The underlying
MPC scheme should be chosen to match the requirements of the targeted
scenario, our protocols make black-box use of the underlying scheme via an
“arithmetic black box” [DN03], and will inherit the security properties (e.g.
security against active vs. passive adversaries) from the underlying scheme.

1.1 Related Work

Cramer and Damg̊ard [CD01] were the first to propose a solution for securely
solving a linear system of unknown rank (m linear equations and n unknowns)
for the case m ≤ n, in the form of a constant-rounds protocol, with asymptotic
complexity of O(n5) secure multiplications. Cramer, Kiltz and Padró [CKP07]
propose an alternative constant-rounds protocol for this problem based on

2

the Moore–Penrose pseudoinverse. Their protocol has a better asymptotic
complexity of O(m4 + n2m) secure multiplications.

1.2 This Paper

We propose two new protocols for securely solving the linear system Ax = b.
Our protocols are not constant-rounds but compare favorably in terms of
computational complexity.

Our first protocol is based on Gaussian elimination and requires O(n3)
secure multiplications in case A has size n× n. Our second protocol is based
on a block-recursive matrix decomposition and has O(nβ) complexity, where
β is the exponent of the asymptotic complexity of matrix multiplication,
where 2 < β < 3 holds for non-oblivious computation. With Shamir’s linear
secret sharing scheme, we can actually get β = 2; this is because in Shamir’s
scheme an inner product between two length-` vectors (for arbitrary `) has
the same round complexity and communication complexity as a single secure
multiplication.

Gaussian Elimination. Gaussian elimination is arguably the best-known
method for solving linear equations. It is well known that Gaussian elimination,
without pivoting, requires the input matrix A to have a generic-rank profile in
order to succeed, meaning that the first r := rankA leading principal minors
are nonzero.

Usually pivoting is performed during the course of the algorithm, however,
in the context of MPC pivoting is undesirable as it involves row and column
swaps, whose positions depend on actual values of the matrix that is being
reduced. Performing such operations obliviously is typically very expensive in
terms of computational complexity.

In Section 3 we combine a division-free elimination algorithm, as described
by Bareiss [Bar68] with a preconditioning method of Kaltofen and Saunders
[KS91] to obtain a O(n3) algorithm with probabilistic correctness.

Fast Block-Recursive Matrix Decomposition. Strassen [Str69] gave the
first algorithm for matrix inversion with an asymptotic complexity equal to ma-
trix multiplication. Since Strassen’s work, several fast1 matrix decompositions
for obtaining the inverse (or some generalized inverse, in case of a singular
matrix) have been proposed in the linear algebra literature. For example, see
[JPS13, DPS15] for a recent overview.

An important discriminating characteristic of such algorithms is whether
the algorithm’s time complexity is rank sensitive, i.e., whether the running
time depends on the rank of the matrix that is to be decomposed. In many

1Fast in this context means that the asymptotic computational complexity is the same
as that of matrix multiplication.

3

applications, a rank-sensitive time-complexity is a desired feature because it
can significantly reduce the computational work. In secure linear algebra we
have the opposite situation: because the rank is to remain private, we can only
use rank-insensitive algorithms. Another important characteristic of a matrix
decomposition algorithm is whether it works for any input matrix, or requires
the input to have certain structure, for example, a generic rank-profile.

One example of a decomposition algorithm that works for any input matrix
and that has a rank-insensitive complexity is Malaschonok’s LEU decomposi-
tion [Mal10]. We can then obtain an explicit solution to Ax = b in terms of L,
E, U and b.

2 Preliminaries

Throughout the paper, K denotes a finite field. For concreteness, you may
think of K as the integers modulo a prime. We use B := {0, 1} ⊂ K for the set
of bits. We want to emphasize that we define bits as elements of K, such that
arithmetic that involves bits and other elements of K is well-defined.

We write capital letters for matrices, like A, and bold small letters for
column vectors, like b. We also write 1 for the vector (1, . . . , 1), where the
length should be clear from its context. If A and B (respectively, b) have the
same number of rows, then the notation A|B (or A|b) means the concatenation
of A and B (or A and b).

Let n ∈ N be nonzero. For any n × n matrix A with entries in K, we
write detA for the determinant of A. The leading principal minor of order k
of a matrix B (not necessarily square) is defined as the determinant of the
submatrix of B obtained by taking the first k rows and the first k columns
of B. Hence, for an n × n matrix A, the leading principal minor of order n
coincides with detA.

Let A be a matrix of rank r. We say that a matrix A has generic rank
profile [KL96] if for all k ∈ [r], it holds that A’s leading principal minor of
order k is nonzero.

Lemma 1 ([KS91, Thm. 2]). Let A ∈ Km×n be arbitrary and let r := rankA.
Consider the matrix A′ := UAL with

U :=


1 u2 u3 . . . um

1 u2 . . . um−1

1
. . .

...
. . . u2

1

 , and L :=


1
`2 1
`3 `2 1
...

...
. . .

. . .

`n `n−1 . . . `2 1

 ,

where the elements of the unit upper triangular Toeplitz matrix U and the
elements of the unit lower triangular Toeplitz matrix L are selected indepen-
dently and uniformly at random from K. Then, the probability that A′ has the

4

property that the leading principal minor of order k is nonzero for all k ∈ [r]
is bounded below by

Pr(A′ has generic rank profile) ≥ 1− r(r + 1)

|K|
.

We say that preconditioning fails in the event that A′ does not have generic
rank profile.

For a vector (v1, . . . , vn), we write diag(v1, . . . , vn) for the n× n diagonal
matrix with v1, . . . , vn as its diagonal elements. We denote the m× n matrix
that has ones on the diagonal and is zero elsewhere as Im×n. Multiplying a
matrix by Im×n corresponds to adding or removing rows or columns. The
n× n identity matrix is denoted In.

For any a ∈ K, we write JaK for the secret-shared version of a. As mentioned
in the introduction, we assume the availability of an arithmetic black-box, by
which we mean that there is some underlying MPC scheme that provides, for
any a, b, c ∈ K, JaK + JbK (addition), JaK · JbK (multiplication), JaK + c (addition
by a public constant), JaK · c (multiplication by a public constant), and JaK−1

(multiplicative inverse), as well as an operation that allows a player to create
a secret-sharing from a privately held value, and an operation to reveal a
secret-shared value to a designated subset of the players. By the notation

JaK ?
= 0, we mean that an MPC protocol is invoked to perform a secure equality

test (see, e.g., [NO07]), which returns J1K if the logical assertion is true and J0K
otherwise. For a matrix A ∈ Km×n, JAK denotes the matrix that is element-
wise secret-shared. Operations like matrix transpose and matrix multiplication
are naturally defined on such secret-shared matrices.

3 Division-Free and Pivoting-Free Gaussian
Elimination

In this section we present our protocol for secure pivoting-free Gaussian
elimination. The ObliviousGE protocol, as displayed in Protocol 1, is based
on Bareiss’ division-free algorithm for integer-preserving Gaussian elimination
[Bar68] and uses the preconditioning method, Lemma 1, by Kaltofen and
Saunders [KS91] to avoid the need for pivoting. The protocol is suitable for
solving overdetermined, as well as underdetermined systems of unknown rank,
and can be used to simultaneously solve Ax = b for multiple b vectors, by
arranging these vectors in a matrix B.

The system Ax = b is solvable if and only if rankA = rank (A | b). If the
system is underdetermined yet solvable, then the space of solutions is given by
{x + q | q ∈ KerA} where x is a particular solution. To represent all possible
solutions, our protocol also obliviously computes a basis for KerA.

The ObliviousGE protocol takes as input a secret-shared pair of matrices
A ∈ Km×n and B ∈ Km×`, where each column b of B represents a vector for

5

which we wish to solve Ax = b. Let µ := min(m,n) and r := rankA, then
r ≤ µ. The output of our protocol consists of secret shares of:

s ∈ B`, a Boolean vector indicating for which columns of B a solution
exists;

X ∈ Kn×`, whose columns contain the solution to the corresponding system,
if it exists;

Q ∈ Kn×n, whose r rightmost columns form a basis for KerA;

r ∈ Bµ, the unary representation of rankA; and

d ∈ K, the determinant of A, if A is square.

Because our protocol is oblivious, the dimensions of X and Q must not depend
on the rank of A; they are determined solely by the dimensions of A and B.
The columns of X corresponding to inconsistent systems and the superfluous
columns of Q are therefore set to zero.

Protocol 1 invokes SampleToeplitzPrecond as a subprotocol to sample ran-
dom upper- and lower-unitriangular Toeplitz preconditioner matrices as de-
scribed in Lemma 1.

Protocol 1 also invokes RandomVector as a subprotocol (with parameter
n), which returns a vector of n public elements, each sampled independently
and uniformly at random from the multiplicative group K∗.

In a näıve adaptation of Bareiss’ division-free algorithm to the unknown-
rank case, one would additionally perform division by ck−1,k−1 on line 13
of Protocol 1 in each iteration except the first. Instead, we postpone those
division operations to the end of the protocol, where they can be amortized as
an element-wise multiplication by the inverse of a row-dependent divisor.

Let U and L denote, respectively, the upper and lower triangular Toeplitz
preconditioner matrix. To compute X and Q simultaneously, our algorithm
performs elimination on the matrix

C :=

(
A′ B′

In 0

)
=

(
UAL UB
In 0

)
,

where A′ and B′ denote the preconditioned versions of A and B respectively.
The lower-right zero block matrix in C is actually irrelevant, hence our al-
gorithm always skips those entries. During elimination, (scaled) particular
solutions to A′Xi = B′i for all i ∈ [m] for which si = 1, as well as a basis
for KerA′, appear at the B′-part and In-part of C, respectively, in the r-th
iteration, where r is the rank of A. At this point, the remaining rows (i.e.,
those below the r-th row) in the A-part and in the columns of the B-part
that correspond to consistent subsystems are all zero. For the sake of data
independence, the algorithm must continue performing elimination steps after
the r-th iteration. Therefore, the remaining rows are obliviously replaced by
the corresponding rows from the identity matrix, ensuring that the remaining
elimination operations do not further modify the results.

6

Protocol 1 (JsK, JXK, JQK, JrK, JdK)← ObliviousGE(JAK, JBK)
Input: A ∈ Km×n, B ∈ Km×`

Output: s ∈ B`, X ∈ Kn×`, Q ∈ Kn×n, r ∈ Bµ, d ∈ K, where µ = min(m,n)
1: (U,L)← SampleToeplitzPrecond(m,n)
2: z ← RandomVector(m)

3: JCK←
(
Iµ×mUJAKL Iµ×mUJBK

JInK 0n×`

)
, JhK← J1K, JtK← J1K

4: for k ← 1 to µ do

5: JrkK← Jck,kK
?
6= 0

6: Jcµ+k,kK← JhK
7: JfkK← JhK
8: JtK← JtK · JhK
9: JhK← JhK · (Jck,kK + 1− JrkK)

10: for i← 1 to µ+ k do
11: for j ← k + 1 to n+ ` do
12: if i 6= k ∧ (i ≤ µ ∨ j ≤ n) then

13: Jci,jK←
(
(Jck,kK + 1− JrkK) Jck,jK

)
·
(

Jci,jK
−Jci,kK

)
14: for k ← µ+ 1 to n do
15: Jcµ+k,µ+kK← JhK

16:

(
JXK

JQK

)
← C . Q ∈ Kn×n and X ∈ Kµ×`

17: JQK← LJQK diag(1− JrK)
18: JgK← (JtK · JhK)−1
19: JXK← JgK · JtKLIn×µ diag(JfK)JXK
20: JsK← zJAKJXK− zJBK
21: for j ← 1 to ` do

22: JsjK← JsjK
?
= 0

23: JXK← JXK diag(JsK)
24: if m = n then JdK← JrµK · JgK · JhK · JhK
25: else JdK← J0K
26: return JsK, JXK, JQK, JrK, JdK

3.1 Analysis

It will be helpful to view Protocol 1 as the composition of two parts: a
sampling part (lines 1 and 2) where uniformly random field elements are
sampled independently of the algorithm’s input, and a circuit part (from line 3
onwards).

7

3.1.1 Complexity Analysis

Computational Complexity. Let Minv, Mrand and Mzt be the complexity
of securely performing a inversion of a field element, uniformly random sampling
of a public field element and a zero test, respectively, expressed terms of the
complexity of a secure multiplication. The complexity of these operations is
independent of the dimensions of the system. The computational complexity
of the k-th iteration of the main loop is then equal to (µ+ k − 1)(n+ `− k)−
n`+ 2 +Mzt. Summing this over µ iterations and including the n(n+ `) + (µ+
1)(`+ 1) + 4 + (2m+ n− 2)Mrand + `Mzt operations outside the main loop,
gives a computational complexity of 1

6µ
2(9n− 5µ) + 1

2`n
2 +O(n2 + n`+m).

If m ≥ n, but m = o(n3) and ` = o(n), the computational complexity
simplifies to 2

3n
3 + o(n3).

Round Complexity. Let Rmul, Rinv, Rrand and Rzt be the number of rounds
needed to securely perform a multiplication, inversion of a field element,
uniformly random sampling of a public field element and a zero test, respectively.
Protocol 1 then runs in (µ+ 4)Rmul +Rinv +Rrand + (µ+ 1)Rzt rounds.

Because constant rounds protocols are known for these four operations, the
round complexity of Protocol 1 is O(µ) = O(min(m,n)).

3.1.2 Privacy

As for the privacy of our algorithm, we have the following claim.

Proposition 2. Let εzt denote the error-probability of the secure zero test used
in Algorithm 1. When applied to inputs A ∈ Km×n and B ∈ Km×`, Algorithm 1
reveals no private information except with probability at most

ε ≤ µ(µ+ 1) + `

|K| − 1
+ (µ+ `)εzt.

Proof. From Lemma 1, we know that preconditioning fails to turn A into a
matrix with generic rank profile with probability less than r(r + 1)/p, where
r := rankA and p := |K| is the modulus of the MPC scheme. Because r is
unknown, we substitute µ as tight upper bound for r.

On lines 20 to 22 we test, for all j ∈ [`], whether the vector consisting of the
j-th column of AX −B equals the zero-vector by taking an inner product with
the (public) vector z of field elements uniformly and independently sampled
from the multiplicative group K∗, and applying a secure zero test to this inner
product. The probability of the event that the inner product vanishes while the
column is not identical to the zero vector, the failure probability, is 1/(p− 1).
Because we perform this zero-vector-test ` times, we apply the union bound
and conclude that the failure probability over ` applications is `/(p− 1).

Note that in total we perform µ+` secure zero tests on lines 5 and 22, which
gives us (again by a union-bound argument) an additive term of (µ+ `)εzt.

8

Apart from the zero tests, the only non-elementary operation performed
in the circuit part of Protocol 1 is the field inversion on line 18. Because h
and t are initialized to 1 and are only ever modified through multiplication by
values from the multiplicative group K∗, unless one of the zero tests on line 5
fails, their product on line 18 is also an element of K∗ and the inverse can be
computed using, e.g., the field inversion protocol of [BIB89] without revealing
any information.

Privacy of the circuit part of Protocols 1 then follows immediately from
the privacy properties of the underlying MPC scheme.

3.1.3 Correctness

To prove correctness, we take Algorithm 1 as starting point, which we assume
to be correct with probability 1−η, where η represents the failure probability of
the Toeplitz preconditioner, and transform this algorithm in several steps into
Protocol 1. It then suffices to prove that each transformational step preserves
correctness.

Base algorithm. Algorithm 1 is a Gaussian elimination algorithm for solving
a linear system of arbitrary rank. The algorithm takes as input pair of matrices
A ∈ Km×n and B ∈ Km×` and an integer r = rank(A). The algorithm
computes a pair s ∈ B` and X ∈ Kn×` such that AX diag(s) = B diag(s) and
s is maximal. Furthermore, the algorithm produces Q ∈ Kn×n, a basis for the
nullspace of A and d ∈ K, which equals det(A) if A is square and should be
ignored otherwise.

Algorithm 1 uses Toeplitz preconditioning [KS91] and ` probabilistic zero-
vector tests. The preconditioning ensures that, except with probability η,
elimination can be performed without pivoting. The algorithm fails if precon-
ditioning fails, or any of the probabilistic zero tests give false positives.

Since Algorithm 1 forms the basis for our protocol for oblivious Gaussian
elimination, the size of the output of the algorithm may only depend on the
size of the input. This is why the algorithm must return even those columns
of X that correspond to inconsistent columns of B. Similarly, the dimension
of the nullspace is n− r, but in the final protocol, r remains unknown, so we
represent the basis of the nullspace in A by r zero columns, followed by n− r
columns which span the nullspace.

After sampling the randomness needed for the probabilistic zero-vector
test and the preconditioning, Algorithm 1 augments the input matrix A to
the horizontally with B and vertically with In, filling the remaining positions
with zeros and immediately applies the preconditioners forming the matrix
C ∈ K(m+n)×(n+`). The algorithm then performs Gaussian elimination by
applying elementary row operations until the A part of C is in row echelon
form. It then extracts the basis for the nullspace Q and partial solution X ′ to
the preconditioned problem. X ′ is then resized to the correct dimensions and

9

the candidate solution to the non-preconditioned problem is extracted. Each
of the columns of the candidate solution is tested and finally, the value of d is
computed.

Algorithm 1 Base algorithm for Gaussian elimination

Input: A ∈ Km×n, B ∈ Km×`, r ∈ N
Output: s ∈ B`, X ∈ Kn×`, Q ∈ Kn×n, d ∈ K
1: z ← RandomVector(m)
2: (U,L)← SampleToeplitzPrecond(m,n)

3: C(0) ←
(
UAL UB
I 0n×`

)
4: for k ← 1 to r do
5: for j ← 1 to n+ ` do

6: c
(k)
k,j ← c

(k−1)
k,j · (c(k−1)k,k)−1

7: for i← 1 to m+ n except k do
8: for j ← 1 to n+ ` do

9: c
(k)
i,j ← c

(k−1)
i,j − c(k−1)i,k · c(k)k,j

10:

(
X ′

Q′

)
← C(k) . Q ∈ Kn×n and X ∈ Km×`

11: Q← LQ′

12: X ← LIn×mX
′

13: v ← zAX − zB
14: for j ← 1 to ` do

15: sj ← vj
?
= 0

16: d←
∏r
k=1 c

(k−1)
k,k

17: return s, X,Q, d

Rank independence. We will now transform the base algorithm into a
rank-independent form. This means that the algorithm will not take the rank
as input and does not branch depending on the rank. The rank-independence
transformation of the base algorithm is displayed in Algorithm 2. We will use
the fact that the rank cannot exceed µ = min(m,n).

Since the upper bound of the main loop in the base algorithm (which runs
over k) depends on the rank, we modify this loop such that it runs over the
first µ rows of C (line 4). This this modification may increase the number of
iterations, hence we must ensure that any additional iterations do not affect
the result compared to the base algorithm and we must do so without rank-
dependent branching. We achieve this by testing whether the pivot element
is zero on line 5 and make incorporate the test result into the computation
described on line 7.

To show that the operations on lines 7 and 10 leave the state of the matrix
unchanged in iterations k > r, first observe that, unless preconditioning failed,

10

c
(k−1)
k,k = 0 in iteration k if and only if k > r. Furthermore, in this case

c
(k−1)
k,j = 0 for all j except those corresponding to inconsistent columns in

the B part. Therefore, if k ≤ r, we have that rk = 1 and line 7 performs
the same operations as in the base algorithm. If k > r, we have that rk = 0

and c
(k−1)
k,j = 0 for all j, except for inconsistent columns. Substituting these

values shows that line 7 reduces to c
(k)
k,j ← c

(k−1)
k,j and, with the exception of

inconsistent columns, line 10 reduces to c
(k)
i,j ← c

(k−1)
i,j , i.e., these steps do not

perform any computation. We therefore conclude that, with the exception of
inconsistent columns, C(µ) = C(r) in the rank-independent algorithm and that
these are equal to C(r) in the base algorithm.

The fact that the inconsistent columns of C(µ) in the rank-independent
algorithm do not necessarily agree with the inconsistent columns of C(r) in
the base algorithm does not pose any problems, as each of these columns
is subjected to the correctness test. Since no solution to Ax = b exists for
inconsistent b, any such deviation from the base algorithm cannot affect the
error probability of the correctness test.

Finally, the output of the rank-independent algorithm includes the unary
encoding of rank(A).

Delayed Division. Algorithm 2 performs a field inversion in every iteration.
If we were to transform Algorithm 2 into a secure protocol as is, this would
require invoking a secure field-inversion protocol in every iteration and, since
the result is immediately used in the same iteration, it would not be possible
to schedule the execution of the field-inversion operation in parallel with the
remaining elimination operations from that iteration. Hence, we reduce both
the number of secure operations and the round complexity of the oblivious
Gaussian elimination protocol by accumulating the divisors and performing
the division after the main loop.

Let C̃(k) denote the state of the matrix after the k-th iteration in the
algorithm modified to delay the division, with C̃(0) = C(0). In the modified
algorithm C̃(k) is computed by omitting line 7 from Algorithm 2. Then

c̃
(k)
k,j = c̃

(k−1)
k,j for all j. If we were to use these values in the computation on

line 10, then the second term would be scaled up by some factor, while the
first would remain the same. To keep the result consistent, we must also scale
the first term up by the same factor. This can be achieved by replacing line 10
with

c̃
(k)
i,j ← (c̃

(k−1)
k,k + 1− rk) · c̃

(k−1)
i,j − c̃(k−1)i,k · c̃(k−1)k,j . (1)

In Protocol 1 this operation is actually expressed as a dot product on line 13
to emphasize that we can exploit the efficient dot-product protocol to reduce
the number of multiplications needed by a factor of two.

The above modifications keep the matrix consistent, but to compute the
actual result, we also need to determine the factors by which we have to

11

Algorithm 2 Rank-independent Gaussian elimination

Input: A ∈ Km×n, B ∈ Km×`

Output: s ∈ B`, X ∈ Kn×`, Q ∈ Kn×n, r ∈ Bµ, d ∈ K, where µ = min(m,n)
1: z ← RandomVector(m)
2: (U,L)← SampleToeplitzPrecond(m,n)

3: C(0) ←
(
UAL UB
I 0n×`

)
4: for k ← 1 to µ do

5: rk ← c
(k−1)
k,k

?
6= 0

6: for j ← 1 to n+ ` do

7: c
(k)
k,j ← c

(k−1)
k,j · (c(k−1)k,k + 1− rk)−1

8: for i← 1 to m+ n except k do
9: for j ← 1 to n+ ` do

10: c
(k)
i,j ← c

(k−1)
i,j − c(k−1)i,k · c(k)k,j

11:

(
X ′

Q′

)
← C(k) . Q ∈ Kn×n and X ∈ Km×`

12: Q← LQ′

13: X ← LIn×mX
′

14: v ← zAX − zB
15: for j ← 1 to ` do

16: sj ← vj
?
= 0

17: d←
∏µ
k=1 c

(k−1)
k,k

18: return s, X,Q, r, d

compensate the outcome of the main loop. For every k, let F̂ (k) be the
diagonal matrix containing the ratios of the rows of C̃(k) and the rows of C(k),
i.e., C̃(k) = F̂ (k)C(k), with F̂ (0) = I. First, we have that

f̂
(k)
k = c̃

(k)
k,k + 1− rk

satisfies C̃(k) = F̂ (k)C(k), since c
(k)
k,k = rk. Next, for all i 6= k, careful inspection

of (1) shows that

f̂
(k)
i = f̂

(k−1)
i f̂

(k)
k = f̂

(k−1)
i (c̃

(k)
k,k + 1− rk).

From this we conclude for all i that

f̂
(k)
i =

{∏k
j=i(c̃

(j)
j,j + 1− rj) = f̂

(k)
1 (f̂

(i−1)
1)−1 if i ≤ k∏k

j=1(c̃
(j)
j,j + 1− rj) = f̂

(k)
1 otherwise.

This form allows us to reconstruct C(µ) = (F̂ (µ))−1C̃(µ) using a single field
inversion as

(F̂ (µ))−1 = (f̂
(µ)
1)−1 diag

(
1 f̂

(1)
1 f̂

(2)
1 . . . f̂

(µ−1)
1 1 . . . 1

)
.

12

In addition to reconstructing C(µ), we must also reconstruct d, the determi-

nant (if it exists). On line 17 of Algorithm 2, the d is computed as
∏µ
k=1 c

(k−1)
k,k .

The determinant exists if and only if m = n = µ and is non-zero if and only if
r is the all-ones vector, which is equivalent to rµ = 1 under the assumption
that no preconditioning error occurred. We can then compute the determinant
as

d = rµ

µ∏
k=1

c
(k−1)
k,k = rµ

µ∏
k=1

(f̂
(k−1)
k)−1c̃

(k−1)
k,k

= rµ

(
µ∏
k=1

f̂
(k−1)
k

)−1 µ∏
k=1

(c̃
(k)
k,k + 1− rk) = rµf̂

(µ)
1

(
µ−1∏
k=1

f̂
(k)
1

)−1
. (2)

Finally, we compute the two field inversions that we need in Equations (3.1.3)

and (2) from
(∏µ

k=1 f̂
(k)
1

)−1
as

(f̂
(µ)
1)−1 =

µ−1∏
k=1

f̂
(k)
1

(
µ∏
k=1

f̂
(k)
1

)−1
; and

(
µ−1∏
k=1

f̂
(k)
1

)−1
= f̂

(µ)
1

(
µ∏
k=1

f̂
(k)
1

)−1
.

It is straightforward to see that at the end of the k-th iteration of the

main loop in Protocol 1, h = f̂
(k)
1 , fk = f̂

(k−1)
1 , and t =

∏k−1
j=1 f̂

(j)
1 . Hence, the

following equation holds for g (defined on line 18): g =
(∏µ

k=1 f̂
(k)
1

)−1
, and

the use of g to normalize the candidate solution (line 19) and to compute the
determinant (line 24) is consistent with the derivation given above.

Omitting Unnecessary Multiplications. On line 11 of Algorithm 2 only
the top-right and bottom-left block of the matrix are extracted; the other
blocks are no longer used in the computation. This suggests that we can omit
computing some of these values in the main loop. Indeed, no value from the
bottom right block is ever used to determine the output. In Protocol 1, we do
not perform any computation on this block. Similarly, the values in the k-th
column of the top left block are no longer used after the k-th iteration and
computations on these columns are also omitted.

We know that the values in rows µ + 1 through m of C, if any, never
affect the values of any of the other rows and that these rows are zero after
the main loop, except for inconsistent columns in the B-part. We explicitly
ignore these rows by multiplying the input matrices by Iµ×m from the left after
preconditioning.

It is also possible to reduce the number of multiplications needed to perform
one iteration on the bottom left block. It holds that after the k-th iteration,

13

where k ≤ r, the first k columns of the bottom left block of C are zero.
Furthermore, only the first k rows of this block are filled with arbitrary
values. The remaining rows only have a non-zero element on the diagonal.
In particular, the value of these diagonal elements after the k-th iteration is

equal
∏k−1
j=1(c̃

(j)
j,j + 1 − rk), which is equal to h before the k-th iteration. To

see that this holds, first consider that these properties hold true before the
first iteration, as the bottom left block of C is initialized to the n× n identity
matrix. If these properties hold after the k-th iteration, with k < r, then after
the k + 1-st iteration, the first k + 1 rows are updated to contain zeros in the
k + 1-st column by the ordinary Gaussian elimination process. This update
does not introduce any non-zero values in the preceding columns. For the
remaining rows, ci,k = 0 and ci,j = 0 for j 6= i, i.e., on the off-diagonal elements,
meaning that the result of the Gaussian elimination step would keep these
elements equal to zero. The diagonal elements, meanwhile, would be multiplied

by c̃
(k)
k,k + 1− rk, which results in the stated property. We can therefore omit

computing the first k columns of the entire matrix in the k-th iteration and
similarly, omit computation beyond the first k rows of the bottom left block as
long as we keep track of the value that the diagonal elements should assume
as soon as they are used.

The omission of these unnecessary Gaussian elimination steps is reflected
on lines 6, 10–12, 14 and 15 of Protocol 1, with lines 10–12 selecting only those
elements on which Gaussian elimination should be performed and lines 6, 14
and 15 placing the correct values on the diagonal of the bottom left block of
C when needed.

As in Algorithm 2, the modified Gaussian elimination step that is performed
when k > r actually leaves C unchanged, except for inconsistent columns. Since
h also remains unchanged in this case, the operations on lines 6, 14 and 15
insert the correct value on the diagonal of the bottom left block.

Because the protocol does not actually complete the Gaussian elimination
process on the first r columns of the bottom left block, we must set those
columns to zero after the main loop. This is performed obliviously on line 17

Explicit Zeros. For the final modification, we explicitly set the columns
of X corresponding to inconsistent systems to zero on line 23. Additionally,
we set d to zero on line 25, in case the matrix is not square and therefore
does not have a determinant. This modification is not strictly necessary for
correctness, but omitting it would leave part of the output undefined, which
may be considered bad practice for a secure protocol.

14

4 Solving Ax = b via Block-Recursive Matrix
Decomposition

In [Mal10], Malaschonok proposes and proves the correctness of a recursive
algorithm for the LEU decomposition, with a rank-insensitive time complexity.

Let K be a finite field. Let Ln,Un ⊂ Kn×n for all n ∈ N denote respectively
the subalgebra of lower and upper n-by-n triangular matrices over K. Let
Pn for any n ∈ N denote the set of matrices in Bn×n whose rank equals the
number of non-zero elements.

For any matrix A ∈ K2d×2d for any d ∈ N of arbitrary rank r ∈ {0, . . . , d},
the LEU decomposition is defined as

LAU = E,

where L ∈ L2d is invertible, E ∈ P2d of rank r, and U ∈ U2d is unitriangular
(hence invertible).

The structure of the LEU decomposition implies the following.

Proposition 3. Let n = 2d for d ∈ N. For any square matrix A ∈ Kn×n, let
(L,E,U) form the LEU decomposition of A. Let s := n− rankA. Then,

(i) the s columns in U , for which the corresponding s columns in E are
equal to the zero vector, form a basis for Ker(A);

(ii) the s rows in L, for which the corresponding s rows in E are equal to
the zero vector, form a basis for Ker(AT).

Proof. We prove (i). Let v be any column of U for which E has a zero column.
Then, LAv = 0 =⇒ L−1LAv = L−10 =⇒ Av = 0, hence v ∈ KerA, where
we used that L is invertible. The invertibility of U guarantees that selecting
s distinct columns from U spans an s-dimensional space. If we pick those s
distinct columns such that the corresponding columns in E are zero, then this
space must be KerA. The proof for (ii) follows similarly.

If Ax = b is consistent, a solution is given by

x = UETL b.

To check whether Ax = b is consistent, we can use the inconsistency
certificate from Giesbrecht et al. [GLS98]. This certificate requires a basis
for the left nullspace of A. As mentioned before, the LEU decomposition
computes such a basis anyway. In Section 4.3 we present a protocol that
implements this inconsistency certificate.

15

4.1 Malaschonok’s LEU Decomposition Algorithm

Protocol 2a and 2b show Malaschonok’s algorithm in our notation.

Remark. Given a matrix A ∈ Km×n with arbitrary dimensions m and n, we
can always pad this matrix with zeros (say, on the right and bottom side) to
obtain a 2d × 2d matrix, where d := dlog2 max(m,n)e.

Protocol 2a (JLK, JEK, U)← LEUDecompose(JAK) (Base Case)

Input: A ∈ K1×1

Output: L,U ∈ K, E ∈ B
1: JbK← JAK ?

= 0
2: JxK← (JAK + JbK)−1

3: return (JxK, 1− JbK, 1)

Protocol 2b (JLK, JEK, JUK)← LEUDecompose(JAK) (Recursive Step)

Input: A ∈ K2d×2d with d ∈ N, d > 0
Output: L ∈ L2d , E ∈ P2d , U ∈ U2d

1:

(
JA11K JA12K
JA21K JA22K

)
← JAK . Aij ∈ K2d−1×2d−1 ∀i, j ∈ {1, 2}

2: (JL11K, JE11K, JU11K)← LEUDecompose(JA11K)
3: JQK← JL11KJA12K, JBK← JA21KJU11K
4: (JL12K, JE12K, JU12K)← LEUDecompose((I − JE11KJE11KT)JQK),

(JL21K, JE21K, JU21K)← LEUDecompose(JBK(I − JE11KTJE11K))
5: JGK← JL21K(JA22K− JBKJE11KTJQK)JU12K
6: JHK← (I − JE21KJE21KT)JGK(I − JE12KTJE12K)
7: (JL22K, JE22K, JU22K)← LEUDecompose(JHK),

JV K← JU21KJE21KTJGK(I − JE12KTJE12K) + JE11KTJQKJU12K,
JW K← JGKJE12KTJL12K + JL21KJBKJE11KT

8: JLK←
(

JL12KJL11K 0
−JL22KJW KJL11K JL22KJL21K

)
, JEK←

(
JE11K JE12K
JE21K JE22K

)
,

JUK←
(

JU11KJU21K −JU11KJV KJU22K
0 JU12KJU22K

)

4.2 Complexity Analysis

Computational Complexity. We derive an expression for the computa-
tional complexity under the assumption that secure matrix multiplication
costs O(n2) secure inner products. For example, this is the case when we use
Shamir’s linear secret sharing scheme as the underlying MPC scheme.

16

Theorem 4. Let n = 2d for d ∈ N. For any n× n matrix over K, Protocol 2
requires

C(n) = 25
(n

2

)2
log2 n+ 5

(
n

2

)
+ n2α

secure inner-products, where α ∈ N represents the number of secure inner-
products required for executing the base case of Protocol 2 (i.e., the number of
secure inner-product invocations required to perform a secure equality test and
inverting a secret-shared field element).

Proof. Let m := n/2. We start by counting the number of secure inner
products per line in Protocol 2b:

line no # secure inner-products

3 2m2

4 2(m+m2)
5 4m2

6 2(m+m2)
7 m+ 9m2

8 2m2 + n2 = 6m2

In total, the algorithm uses 25m2 + 5m secure inner products per recursion
step, and at each recursion level the algorithm invokes itself four times. This
gives rise to the following recurrence equation

C̃(d) = 25 · 22(d−1) + 5 · 2d−1 + 4 C̃(d− 1)

with initial condition C̃(0) = α. We now claim that the bound in the theorem
statement, C(n), is the solution to this equation with C̃(d) = C(2d). First,
we check the initial condition, and indeed C̃(0) = C(1) = α. Assume the
statement holds for d. Then, by induction, we have

C̃(d+ 1) = C(2n) = 25

(
2n

2

)2

log2 2n+ 5

(
2n

2

)
+ (2n)2α

= 4 · 25
(n

2

)2
(1 + log2 n) + 5

(
(2n)2

2
− 2n

2

)
+ 4n2α

= 25n2 + 4 · 25
(n

2

)2
log2 n+ 5 · 4

(
n2

2
− n

2
+
n

4

)
+ 4n2α

= 25n2 + 5n+ 4 ·
(

25
(n

2

)2
log2 n+ 5

(
n

2

)
+ n2α

)
= 25n2 + 5n+ 4C(n),

which proves the claim.

17

Round Complexity. As for the round complexity, we merely aim for an
asymptotic expression, because it is rather cumbersome to find the optimal
schedule of operations that would lead to the exact minimum number of rounds.

Theorem 5. Let m = 2b for b ∈ N, and suppose that Protocol 2 requires
B ∈ N rounds of communication when decomposing an arbitrary m×m matrix
over K. Then, for any n×n matrix over K, n = 2d with d ∈ N such that d > b,
Protocol 2 requires

R(n) = nlog2(3)
1

3b

(
B +

γ

2

)
− γ

2
= O(n1.585), n > 2b

rounds of communication, where γ ∈ N represents the number of rounds of
communication required to execute one call to Protocol 2b when excluding the
recursive calls.

Proof. Protocol 2b makes four recursive calls to itself, where we note that
the second and third call can be executed in parallel. This gives rise to the
following recurrence equation:

R(d) = 3R(d− 1) + γ,

with initial condition R(b) = B. Solving this equation yields the claim.

4.3 Inconsistency Certificate

Protocol 3 shows a simple protocol for computing the inconsistency certificate
of Giesbrecht et al. [GLS98]. The basic idea behind this certificate is as
follows: if Ax = b is inconsistent, then dim Ker([A|b]T) = dim Ker(AT) − 1.
Hence, if we sample a random vector v from the left null space of A, with
high probability (1− ε ≥ 1− |K|−1) this vector does not lie in Ker([A|b]T) and
in this case v · b will be nonzero. In the consistent case, b lies in the column
space of A, hence v · b will always vanish. The error probability ε follows from
the Schwartz–Zippel Lemma; for details we refer to Theorem 2.1 and 2.2 in
[GLS98].

Complexity. InconsistencyCertificate samples n public random field elements,
and performs n secure multiplications, 1 secure inner-product and 1 secure
zero test, where n is the size of A.

Bibliography

[Bar68] Erwin H. Bareiss. Sylvester’s identity and multistep integer-
preserving Gaussian elimination. Mathematics of Computation,
22(103):565–578, 1968.

18

Protocol 3 JcK← InconsistencyCertificate(JAK, JbK)

Input: A ∈ K2d×2d , b ∈ K2d

Output: c ∈ {0, 1} ⊂ K, with the following interpretation: if c = 1, then
the system Ax = b is inconsistent (with certainty). If c = 0, the system is
consistent except with probability ε ≤ |K|−1.

1: (L,E,U)← LEUDecompose(A)
2: Sample (α1, . . . , αn)← Kn uniformly and independently at random
3: for i← 1 to n do
4: JµiK← 1−

∑n
j=1JEi,jK

5: for j ← 1 to n do
6: JvjK← JvjK + αiJµiKJLi,jK
7: JsK← JvK · JbK . v = (v1, . . . , vn)

8: return 1− (JsK ?
= 0)

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Complete-
ness theorems for non-cryptographic fault-tolerant distributed com-
putation (extended abstract). In Janos Simon, editor, Proceedings
of the 20th Annual ACM Symposium on Theory of Computing, May
2-4, 1988, Chicago, Illinois, USA, pages 1–10. ACM, 1988.

[BIB89] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant com-
puting in constant number of rounds of interaction. In Proc. 8th
Symp. on Princip. of Distr. Comp., pages 201–209, NY, 1989. ACM.

[CD01] Ronald Cramer and Ivan Damg̊ard. Secure distributed linear algebra
in a constant number of rounds. In Proc. CRYPTO 2001, Santa
Barbara, USA, pages 119–136. Springer, 2001.

[CDN01] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty
computation from threshold homomorphic encryption. In Birgit
Pfitzmann, editor, Eurocrypt 2001, Innsbruck, Austria, volume 2045
of LNCS, pages 280–299. Springer, 2001.

[CDN15] Ronald Cramer, Ivan Damgard, and Jesper Buus Nielsen. Secure
multiparty computation and secret sharing-an information theoretic
approach. Cambridge, 2015.

[CKP07] Ronald Cramer, Eike Kiltz, and Carles Padró. A note on secure
computation of the Moore–Penrose pseudoinverse and its application
to secure linear algebra. In Proc. CRYPTO 2007, Santa Barbara,
USA, pages 613–630. Springer, 2007.

[DN03] Ivan Damg̊ard and Jesper Nielsen. Universally composable efficient
multiparty computation from threshold homomorphic encryption.
Advances in Cryptology-CRYPTO 2003, pages 247–264, 2003.

19

[DPS15] Jean-Guillaume Dumas, Clément Pernet, and Ziad Sultan. Com-
puting the rank profile matrix. In Proceedings of the 2015 ACM on
International Symposium on Symbolic and Algebraic Computation,
pages 149–156. ACM, 2015.

[GLS98] Mark Giesbrecht, Austin Lobo, and B David Saunders. Certifying
inconsistency of sparse linear systems. In Proceedings of the 1998
international symposium on Symbolic and algebraic computation,
pages 113–119. ACM, 1998.

[JPS13] Claude-Pierre Jeannerod, Clément Pernet, and Arne Storjohann.
Rank-profile revealing Gaussian elimination and the CUP matrix
decomposition. Journal of Symbolic Computation, 56:46–68, 2013.

[KL96] E. Kaltofen and A. Lobo. On rank properties of toeplitz matrices
over finite fields. In Proceedings of the 1996 International Symposium
on Symbolic and Algebraic Computation, ISSAC ’96, pages 241–249,
New York, NY, USA, 1996. ACM.

[KS91] Erich Kaltofen and B David Saunders. On Wiedemann’s method
of solving sparse linear systems. In International Symposium on
Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes,
pages 29–38. Springer, 1991.

[Mal10] Gennadi Malaschonok. Fast generalized Bruhat decomposition. In
International Workshop on Computer Algebra in Scientific Comput-
ing, pages 194–202. Springer, 2010.

[NO07] Takashi Nishide and Kazuo Ohta. Multiparty computation for inter-
val, equality, and comparison without bit-decomposition protocol. In
Tatsuaki Okamoto and Xiaoyun Wang, editors, PKC 2007, Beijing,
China, volume 4450 of LNCS, pages 343–360. Springer, 2007.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische
mathematik, 13(4):354–356, 1969.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended
abstract). In 23rd Annual Symposium on Foundations of Computer
Science, Chicago, Illinois, USA, 3-5 November 1982, pages 160–164.
IEEE Computer Society, 1982.

20

	Introduction
	Preliminaries
	Division-Free and Pivoting-Free Gaussian Elimination
	Solving Ax=b via Block-Recursive Matrix Decomposition
	Bibliography

