
Tight Proofs of Space and Replication

Ben Fisch

Abstract

We construct a concretely practical proof-of-space (PoS) with arbitrarily tight security
based on stacked depth robust graphs and constant-degree expander graphs. A proof-of-space
(PoS) is an interactive proof system where a prover demonstrates that it is persistently using
space to store information. A PoS is arbitrarily tight if the honest prover uses exactly N
space and for any ε > 0 the construction can be tuned such that no adversary can pass
verification using less than (1 − ε)N space. Most notably, the degree of the graphs in our
construction are independent of ε, and the number of layers is only O(log(1/ε)). The proof
size is O(d/ε). The degree d depends on the depth robust graphs, which are only required
to maintain Ω(N) depth in subgraphs on 80% of the nodes. Our tight PoS is also secure
against parallel attacks.

Tight proofs of space are necessary for proof-of-replication (PoRep), which is a publicly
verifiable proof that the prover is dedicating unique resources to storing one or more retriev-
able replicas of a file. Our main PoS construction can be used as a PoRep, but data extraction
is as inefficient as replica generation. We present a second variant of our construction called
ZigZag PoRep that has fast/parallelizable data extraction compared to replica generation and
maintains the same space tightness while only increasing the number of levels by roughly a
factor two.

1 Introduction

Proof-of-space (PoS) has been proposed as an alternative to proof-of-work (PoW) for applications
such as SPAM prevention, DOS attacks, and Sybil resistance in blockchain-based consensus
mechanisms [18, 21, 31]. Several industry projects1 are underway to deploy cryptocurrencies
similar to Bitcoin that use proof-of-space instead of proof-of-work. Proof-of-space is promoted
as more egalitarian and eco-friendly that proof-of-work because it is ASIC-resistant and does
not consume its resource (space instead of energy), but rather reuses it.

A PoS is an interactive protocol between a prover and verifier in which the prover use
a minimum specified amount of space in order to pass verification. The protocol must have
compact communication relative to the prover’s space requirements and efficient verification. A
PoS is persistent if repeated audits force the prover to utilize this space over a period of time.
More precisely, there is an “offline” phase in which the prover obtains challenges from a verifier
(or simulates them non-interactively via Fiat-Shamir), generates an advice string S that it stores,
and outputs a compact tag τ to the verifier. This is followed by an “online” challenge-response
protocol in which the prover uses its advice S to efficiently compute responses to the verifier’s
challenges. The soundness of the PoS relies on timing bounds on the online prover’s runtime
enforced by frequent verifier audits. Timing bounds are necessary as otherwise the prover could

1https://chia.net/,https://spacemesh.io/, https://filecoin.io/

1

https://chia.net/
https://spacemesh.io/
https://filecoin.io/

store its compact transcript and simulate the setup to re-derive the advice whenever it needs
to pass an online proof. If the PoS resists parallelization attacks then it is unconditionally
secure in this audit model because the prover must use the minimum amount of space to pass
challenges within the wall-clock time allotted. Alternatively, soundness is reasoned through a
cost benefit analysis; it is assumed that a rational prover will not trade significant computation
for a relatively small reduction in its space utilization.

In an (S, T)-sound PoS protocol where the prover commits to persistently utilize N blocks of
space, the honest prover uses S = O(N) persistent space and any adversary who passes audits
in less than time T provably uses S = Ω(N) space. There is generally a gap between the honest
space utilization and the lower bound on the adversary’s space. If the honest prover uses N
space and some adversary might be able to use εN space then this PoS has an ε space gap. A
tight PoS makes ε arbitrarily small depending on a construction parameter that will typically
impact concrete efficiency. All else equal, a tighter PoS is obviously more desirable as it has
tighter provable security. Nearly all existing PoS constructions have enormous space gaps [2,18],
including those that are currently being used in practice. The one exception is a recent PoS
protocol by Pietrzak [33] based on depth robust graphs, although it does not achieve a tight
space gap for concretely practical parameters.

Proof-of-replication (PoRep) [1, 19, 20, 33] is a recently proposed hybrid of PoS with proof-
of-retrievability (PoR) [23]. A PoR demonstrates that the prover can retrieve a particular data
file of interest, either known to the verifier, committed in a public commitment, or privately
preprocessed by a client who produces a verification tag for the file. A PoRep demonstrates
that the prover is dedicating unique resources to storing a retrievable copy of the file, and is
therefore a useful proof of space. It has therefore been proposed as an alternative Sybil resistance
mechanism that is not only ASIC resistant and eco-friendly, but also has a useful side-effect: it
provides file storage on real data. Furthermore, since the prover may run several independent
PoReps for the same file that each require unique resources, PoReps may be used as a publicly
verifiable proof of data replication/duplication.

A PoRep is required to be a PoS, and its security as a proof of data replication is closely
related to the space gap of the PoS. Formally, the security notion for PoReps is ε-rational
replication [19], which says that an adversary can save at most an ε fraction of its space by
deviating from storing the data in a replicated format. Storing data in a replicated format
is therefore an ε-Nash-equilibrium. This is the best possible security notion because a prover
can always sabotage its replicated format by scrambling its storage in an efficiently decodable
(yet no longer replicated) way. A PoRep that satisfies ε-rational replication is also a PoS with
an ε space gap. Intuitively, if a PoRep is not a tight proof of space then there may be some
adversary that would be rationally incentivized to deviate from honest behavior and therefore
likely destroy the replication format. This gives a whole new relevance to tight proofs of space,
because the security of PoReps is only meaningful when ε is reasonably small.

The goal of this work is to construct a practical and provably tight PoS that can also be
used as PoRep that satisfies ε-rational replication for arbitrarily small ε.

1.1 Related work

The original PoS of Dziembowski et. al. [18] was based on hard to pebble directed acyclic graphs
(DAGs), using a blend of techniques from superconcentrators, random bipartite expander graphs
and depth robust graphs [32]. During the offline initialization the prover computes a certain

2

labeling of the graph using a collision-resistant hash function where the label ev on each node
v ∈ G of the graph is the output of the hash function on the labels of all parent nodes of v. It
outputs a commitment to this labeling along with a proof (either interactive or non-interactive)
that the committed labeling was “mostly” correct. This offline proof consists of randomly
sampled labels and their parent labels, which the verifier checks for consistency. During the
online challenge-response phase the verifier simply asks for random labels that the prover must
produce along with a standard proof that these labels are consistent with the commitment.
Their construction leaves a space gap of at least 1− 1

512 .
The construction of Ren and Devadas from stacked bipartite expander graphs dramatically

improved on the space gap, although it is not secure against parallel attacks. Their construction
involves λ levels V1, ..., Vλ consisting of n nodes each, with edges between the layers defined by
the edges of a constant-degree bipartite expander. The prover computes a labeling of the graph
just as in the Dziembowski et. al. PoS, however it only stores the labels on the final level.
Otherwise, the protocol is roughly the same. Their construction still leaves a space gap of at
least 1/2 (and much larger with practical parameters, e.g. their construction requires at least
degree 40 graphs to achieve a space gap of less than 2/3).

Recently, Abusalah et. al. [2] revived the simple PoS approach based on storing tables of
random functions. The basic idea is for the prover to compute and store the function table
of a random function f : [N] → [N] where f is chosen by the verifier or a random public
challenge. During the online challenge-response the verifier simply asks the prover to invert f
on a randomly sampled point x ∈ [n]. The intuition for why this should be secure is that a
prover who has not stored most of the function table will likely have to brute force f−1(x),
performing Ω(N) work. Unfortunately, this simple approach fails to be a PoS due to Hellman’s
time/space tradeoffs which enable a prover to succeed with S space and T computation for any
ST = O(N). However, Abusalah et. al. build on this approach to achieve a provable time/space
tradeoff of SkT = Ω(εkT k). This PoS is not secure against parallel attacks, and also has a very
large (even asymptotic) space gap of 1− 1

64 logN .
Pietrzak [33] and Fisch et. al [20] independently proposed a simpler variant of the graph

labeling PoS by Dziembowski et. al. based solely on pebbling a depth robust graph (DRG).
A degree d DAG on n nodes is (α, β)-depth robust if any subgraph on αn nodes contains a
path of at least length βn. It is trivial to construct DRGs of large degree (a complete DAG is
depth robust), but much harder to construct DRGs with small (constant or poly-logarithmic)
degree. Achieving constant α, β is only possible asymptotically with degree Ω(logN). Simply
instantiating the graph labeling PoS on a DRG results in a PoS with a 1 − α space gap that
is also secure against parallel attacks. Fisch et. al. also suggested combining this labeling PoS
with a verifiable delay function (VDF) [11] to increase the expense of labeling the graph without
increasing the proof verification complexity. The delay on the VDF can be tuned depending on
the value of n. Both of these constructions were proposed in the context of designing PoReps.
In this variant of the PoS protocol, the prover uses the labeling of the graph to encode a data
file on n blocks D = d1, ..., dn. The ith label ei is computed by first deriving a key ki by hashing
the labels on the parents of the ith node, and then setting ei = ki ⊕ di. If all the labels are
stored then any data block can be quickly extracted from ei by recomputing ki. We’ll call this
a DAG encoding of the data input. The VDF approach uses an additional encoding scheme
(enc, dec) inside the DAG encoding, where enc is sequentially slow and dec is fast, to derive
ei = enc(ki ⊕ di). The data is decoded by computing di = dec(ei ⊕ ki).

The labeling PoS on a DRG is not technically a tight PoS because decreasing α also decreases

3

the time bound βn on the prover’s required computation to defeat the PoS. Moreover, while
there exist constructions of (α, β) DRGs for arbitrarily small α, these constructions are purely
theoretical and are not viable in practice. Pietrzak [33] improved on the basic construction by
relying on a stronger property of special DRGs [6, 32] that are (α, β,O(log n/ε))-depth robust
for all (α, β) such that 1−α+ β ≥ 1− ε. In Pietrzak’s modified construction, the prover builds
a DRG on 4n nodes and only stores the labels on the topologically last n nodes. This can
similarly be used as a PoRep where the data is encoded only on the last level and the labels on
previous levels are just used as keys. This sacrifices on data extraction time because extracting
the data requires recomputing most of the keys from scratch, which is as expensive as the PoS
initialization.

Pietrzak shows that a prover who deletes an ε′ fraction of the labels on the last n nodes
will not be able to re-derive them in fewer than n sequential steps. The value ε′ can be made
arbitrarily small, but at the expense of increasing the degree of the graph proportionally to
1/ε′. Moreover, although these special DRGs achieve asymptotic efficiency and are incredibly
intriguing from a theoretical perspective, they still do not have concretely practical degree.
According to the analysis in [6], achieving just a 1/2 space gap with a PoS on N 32 byte
data blocks in Pietrzak’s construction would require instantiating these graphs with degree
2, 760 logN . The proof size is at least O(λd), so even for λ = 10 (i.e. 10 bit security) and
N = 230 the proof size would be at least 26MB. Furthermore, as ε decreases λ = O(1/ε) to
maintain the same security level. To achieve a space gap of 1/10 with 10-bit security would
require d = 19, 310 logN and λ = 60 for a proof size of at least 1GB.

Boneh et. al. [11] describe a simple PoRep (also a PoS) just based on storing the output
of a decodable VDF on N randomly sampled points, which generalizes an earlier proposal by
Sergio Demian Lerner [25]. This is in fact an arbitrarily tight PoS with very practical proof sizes
(essentially optimal). However, the time complexity of initializing the prover’s O(N) storage
is O(N2), and therefore is not practically feasible for large N . This construction is similar to
the PoS based on storing function tables [2], but uses the VDF as a moderately hard (non-
parallelizable) function on a much larger domain (exponential in the security parameter) and
stores a random subset of its function table. The reason for the large initialization complexity
is that the prover cannot amortize its cost of evaluating the VDF on the entire subset of points.

In an independent concurrent work, Cecchetti et. al [14] developed a similar idea to our
stacked DRGs, using butterfly networks instead of expander graphs, to construct a primitive
they called publicly incompressible encodings (PIEs). We elaborate on a comparison in the
Appendix.

1.2 Summary of Contributions

We construct a new tight PoS based on graph labeling with asymptotic proof size O(logN/ε)
where ε is the achieved space gap. We can instantiate this construction with relatively weak
depth robust graphs that do not require any special properties other than retaining Ω(N) depth
in subgraphs on some constant fraction of the nodes bounded away from 1 (e.g. our concrete
analysis is for 80% subgraphs).

PoS from Stacked DRGs Our basic approach is a combination of the stacked bipartite
expanders of Ren and Devadas [35] with depth robust graphs. Instead of stacking λ line graphs
we stack O(log(1/ε)) levels of fixed-degree DRGs where ε is a construction parameter. We refer

4

to this graph construction as Stacked DRGs. We are able to show that this results in a PoS that
has only an ε space gap. Intuitively, the expander edges between layers amplify the dependence
of nodes on the last layer and nodes on earlier layers so that deletion of a small ε fraction of node
labels on the last level will require re-derivation of nearly all the node labels on the first several
layers. Thus, since every layer is a DRG, recomputing the missing ε fraction of labels requires
Ω(N) sequential computation. It is easy to see that this would be the case if the prover were
only storing (1− ε)n labels on the last level and none of the labels on earlier levels, however the
analysis becomes much more difficult when the prover is allowed to store any arbitrary (1− ε)n
labels. This analysis is the main technical contribution of this work. Concretely, we analyze the
construction with an (n, 0.80n,Ω(n)) DRG, i.e. deletion of 20% of nodes leaves a high depth
graph on the 80% remaining nodes, regardless of the value of ε.

Our construction is efficient compared to prior constructions of tight PoS primarily because
we can keep the degree of the graphs fixed for arbitrary ε while only increasing the number of
levels logarithmically in 1/ε. In a graph labeling PoS, the offline PoS proofs sample O(1/ε) labels
along with their parent labels, which the verifier checks for consistency. Thus, any construction
based on this approach that requires scaling the degree of graphs by 1/ε also scales the proof size
by 1/ε, resulting in a proof complexity of at least O(1/ε2). In our stacked DRG PoS construction
the offline proof must include queries from each level to prove that each level of computed labels
are “mostly” correct. If done naively, O(1/ε) challenge labels are sampled from each level,
resulting in a proof complexity O(d/ε · log(1/ε)) where d is the degree of the level graphs. This
is already an improvement, however with a more delicate analysis we are able to go even further
and show that the total number of queries over all layers can be kept at O(1/ε), achieving an
overall proof complexity O(d/ε).2

The PoS on Stacked DRGs can also be used as the basis for a PoRep that satisfies ε-rational
replication for arbitrarily small ε.

The PoRep variant on this PoS simply uses the labels on the `− 1st level as keys to encode
the n-block data input D = d1, ..., dn on the `th (last) level, using the same method described
earlier for encoding data into the labels of a PoS (see Related Work, [19, 20, 33]). However,
extracting data from this PoRep is as expensive as initializing the PoRep space because it
requires recomputing the keys on the `− 1st level.

PoRep from ZigZag Expander DRGs Our second contribution is a variant of the PoS on
Stacked DRGs that compromises slightly on efficiency (requires double the number of levels for
the same security guarantee) but improves the efficiency of extracting data when this is used as
a PoRep. Instead of adding edge dependencies between the layers, every layer is the union of a
DRG and a constant degree non-bipartite expander graph. The only edges between layers are
between nodes at the same indices. Since the graph is a DAG this means that the union of a
subset with its dependencies and targets is a constant fraction larger than the subset itself. By
alternating the direction of the edges between layers, forming a “zig-zag”, the dependencies of a
subset in one layer become targets of the same subset in the adjacent layer, and the dependencies
between layers expands. We refer to this graph construction as ZigZag DRGs. The PoRep on
ZigZag DRGs encodes in the labels of each layer the labels of the previous levels. The edges
within a layer enforce dependencies between labels by deriving a key for each encoding using a

2Asymptotically, this is close to the optimal proof complexity achievable for any PoS based on graph labeling
that has an ε space gap. If the prover claims to be storing n labels and the proof queries less than 1/ε then a
random deletion of an ε fraction of these labels evades detection with probability at least (1− ε)1/ε ≈ 1/e.

5

cryptographic hash function. A special key is derived for the encoding on each ith node from the
labels on the parents of the ith node within the same layer. Essentially, this construction iterates
the basic DAG encoding of the data inputs ` times (treating each layer as an independent DAG)
rather than performing a long key derivation. The labels in any layer can be used to recover the
labels in the preceding layer. Furthermore, the decoding step can be done in parallel.

c1 c2 c3 c4 c5

d1 d2 d3 d4 d5

c6 c7 c8 c9 c10

c11 c12 c13 c14 c15

Stacked DRGs

c1 c2 c3 c4 c5

d1 d2 d3 d4 d5

c6 c7 c8 c9 c10

c11 c12 c13 c14 c15

ZigZag DRGs

Figure 1.1: The topologies of the stacked DRGs and ZigZag DRGs are depicted with 3 layers
and 5 nodes per layer. Red edges are the DRG edges and blue edges are expander edges. The
blue edges in ZigZag DRGs are the same as in Stacked DRGs but projected into the layers. Blue
edges in ZigZag DRGs are reversed every other layer while red edges are redefined by reversing
the order of the nodes. Dashed edges correspond to encoding instead of hashing dependencies.
In the PoS on Stacked DRGs the prover computes a labeling of the graph and stores the labels on
the nodes in green. In the PoRep on ZigZag DRGs each labeling on a layer encodes the previous
layer and the prover stores only the encoding labels of the green nodes.

Contents

1 Introduction 1
1.1 Related work . 2
1.2 Summary of Contributions . 4

2 Preliminaries 7
2.1 Proof of Retrievable Commitment . 7
2.2 Proofs of Space . 8
2.3 Proofs of Replication . 9
2.4 Graph pebbling games . 11
2.5 Verifiable Delay Encodings . 14
2.6 Depth Robust Graphs . 15

6

2.7 Expander graphs . 16

3 Stacked DRG Proof of Space 21
3.1 Review of the Stacked-Expander PoS . 21
3.2 A tight PoS from stacked DRGs . 23

4 “ZigZag” DRG Proof of Replication 30
4.1 ZigZag PoRep Construction . 31
4.2 Invertible pebbling games . 33
4.3 PoS analysis of ZigZag PoRep . 34

A Concurrent work: PIEs 41

B Stacked DRGs with Superconcentrators 44

C Mixing Data Labels in Stacked DRGs with Expanders 48

2 Preliminaries

2.1 Proof of Retrievable Commitment

A proof-of-retrievability (PoR) is an interactive proof system in which a verifier sends a file F
to a prover, retains a compact verification key, and later obtains a compact proof that prover
can retrieve F intact. The compactness requirement excludes trivial solutions, such as sending
the full file F back to the verifier or requiring the verifier to retain F . They were introduced
in [8,23] and further developed in [12,17,37]. An important security property of PoR is that the
verifier can extract and recover the file F through sufficiently many successful challenge-response
queries to the prover.

A proof-of-retrievability (PoR) [12,17,23,37], or the related proof-of-data-possession (PDP)
[8], is an interactive protocol that enables a prover to convince a verifier that it can retrieve the
correct contents of a prespecified file without incurring costly communication. The file is first
preprocessed by a client who publishes a data tag. The verifier does not need to store the file and
only retains the short data tag for verification. In a private-key PoR the verifier needs to also
know the private-key used to generate the data tag whereas in a public-key PoR the verification
can be performed by anyone without access the private-key. Crucially, the prover cannot learn
the private-key as otherwise this compromises the PoR/PDP security. PoR security is distinct
from PDPs because it requires that there is a public extraction algorithm that can actually
extract the contents of the file through sufficiently many repeated interactions with the prover.

A simple public PoR can be constructed from a Merkle commitment (i.e. a Merkle tree
over the blocks of the file). The verifier need only retain the Merkle commitment root. To
verify that the prover is still storing a (1 − ε) fraction of the committed file blocks it queries
for a randomly selected constant number of blocks. The prover then responds with the blocks
and Merkle inclusion proofs for each. This public PoR is distinct from both public-key and
private-key PoRs in that it is keyless and thus there is no secret key for the prover to potentially
compromise. This is a stronger form of public verifiability.

Another way to describe this protocol is as a proof-of-retrievable-commitment (PoRC) [19],
i.e. a publicly verifiable proof that the prover can retrieve the contents of a committed file. The

7

security of a PoRC does not rely on any client preprocessing. In fact, this technique is used
ubiquitously in interactive proofs, including proofs of space, CS proofs [29], and more generally
interactive oracle proofs (IOPs) [10]. Note that without erasure codes this is only a proof that
a (1− ε) fraction of the file blocks can be retrieved. This is a special case of a (1− ε, C)-PoRC,
where C is a set cover of the committed data, and the protocol guarantees that a (1− ε) fraction
of the sets (in this case blocks) can be retrieved.

The PoRC based on a Merkle commitment can be more generally constructed from any vector
commitment (VC) [13,27], which is a compact commitment to a vector of m values (x1, ..., xm)
that can be opened at any index with a succinct opening proof. A VC is position binding in the
sense that each ith position can only be opened to a unique value xi. This makes VCs distinct
from set commitments (e.g cryptographic accumulators), which only guarantee that membership
in the set can be verified. Merkle trees have O(logm) size opening proofs and there exist VCs
that trade larger public parameters for constant size opening proofs [13,26].

Similar to a PoR, the soundness of a PoRC is defined in terms of a public extraction algo-
rithm. An important distinction is that the public extraction algorithm does not require a key
to extract the data. Without going into the details of the security definition, a PoRC scheme
is a µ-sound (1 − ε)-PoRC if for any adversary passing the PoRC protocol with probability µ
there is a public extraction algorithm that can rewind the online adversary on challenges and
ultimately extract a (1− ε) fraction of the blocks of the file.

2.2 Proofs of Space

A (persistent) proof of space (PoS) [18] is an interactive proof between and prover and verifier
in which the prover can only succeed if it persistently stores some advice of a minimum size.
There is an “offline” phase in which the prover generates this advice and outputs a compact tag
to the verifier. This is followed by an “online” phase where the verifier challenges the prover
and the prover uses its advice to generate a response.

Formally, the PoS interactive protocol involves three protocols:

1. Setup The setup runs on security parameters λ and outputs public parameters pp for the
scheme. The public parameters are implicit inputs to the next two protocols.

2. Initialization is an interactive protocol between a prover P and verifier V that run on
shared input (id,N). P outputs Φ and S, where S is its storage advice and Φ is a compact
O(polylog(N)) string given to the verifier.

3. Execution is an interactive protocol between P and V where P runs on input S and V runs
on input Φ. V sends challenges to P , obtains back a proof π, and outputs accept or reject.

The correctness and security requirements are as follows.

Efficiency. The commitment Φ isO(polylog(N)) size and the verifier runs in timeO(polylog(N)).

Completeness. The prover succeeds with probability 1 (causes verifier to accept) if it follows
the protocol honestly.

8

Soundness. The PoS is (s, t, µ)-sound if any for all adversaries P ∗ running in time t and storing
advice of size s during Execution passes verification with probability at most µ = negl(λ). The
PoS is parallel (s, t, µ)-sound if P ∗ may run in parallel time t.

2.3 Proofs of Replication

We review the syntax of a PoRep scheme from [19]. PoRep operates on arbitrary dataD ∈ {0, 1}∗
of up to O(poly(λ)) size for a given security parameter λ.

1. PoRep.Setup(λ, T) → pp is a one-time setup that takes in a security parameter λ, time
parameter T , and outputs public parameters pp. T determines the challenge-response
period.

2. PoRep.Preproc(sk,D)→ D̃, τD is a preprocessing algorithm that may take a secret key sk
along with the data input D and outputs preprocessed data D̃ along with its data tag τD,
which at least includes the size N = |D| of the data. The preprocessor operates in keyless
mode when sk = ⊥ .

3. PoRep.Replicate(id, τD, D̃)→ R, aux takes a replica identifier id and the preprocessed data
D̃ along with its tag τD. It outputs a replica R and (compact) auxilliary information
aux which will be an input for the Prove and Verify procedures. (For example, aux could
contain a proof about the replication output or a commitment).

4. PoRep.Extract(pp, id,R)→ D̃ on input replica R and identifier id outputs the data D̃.

5. PoRep.Prove(R, aux, id, r)→ π on input replica R, auxilliary information aux, replica iden-
tifier id, and challenge r, outputs a proof πid.

6. PoRep.Poll(aux)→ r: This takes as input the auxiliary replica information aux and outputs
a public challenge r.

7. PoRep.Verify(id, τD, r, aux, π) → {0, 1} on input replica identifier id, data tag τD, public
challenge r, auxilliary replication information aux, and proof π it outputs a decision to
accept (1) or reject (0) the proof.

PoRep interactive protocol The PoRep interactive protocol is illustrated in Figure 1. The
setup (whether a deterministic, trusted, or transparent public setup) is run externally and pp is
given as an input to all parties. For each file D, a preprocessor (a special party or the prover
when operating in keyless mode, but not the verifier) runs (D̃, τD) ← PoRep.Preproc(sk,D).
The outputs D̃, τD are inputs to the prover and τD to the verifier.

ε-Rational Replication An ideal security goal for PoRep protocols would be to guarantee
that any prover who simultaneously passes verification in k distinct PoRep protocols (under k
distinct identities) where the input to PoRep.Replicate is a file Di in the ith protocol must be
storing k independent replicas, one for each Di, even if several of the files are identical.

Formally, “storing k independent replicas” means that the file can be partitioned into k
independent blocks (or more generally substrings) such that each block encodes the file and
there is a universal decode algorithm that can decode the file independently from each block.

9

Prover Verifier

Replication Phase

1 : R, aux←R PoRep.Replicate(id, τD, D̃)

id, aux

Challenge-Response Phase

2 : r ←R PoRep.Poll(aux)

r

3 : π ←R PoRep.Prove(R, aux, id, r)

id, π

4 : b←R PoRep.Verify(id, τD, r, aux, π)

Figure 2.1: The PoRep interactive protocol is depicted above. The setup and data preprocessing is run
externally generating pp and D̃, τD. The challenge-response protocol is timed, and the verifier rejects any
response that is received more than T time steps after sending the challenge. This is formally captured
by requiring PoRep.Prove to run in parallel time at most T . A PoRep protocol is a special case of a PoS
protocol where Initialization is the Replication Phase and Execution is the challenge-response phase.

We call this a k-replication of a file. Unfortunately, this security property is impossible to
achieve. An adversary can easily “sabotage” its replication storage, e.g. by encrypting it with a
key and storing the key separately. This still allows the adversary to decode the original string
quickly and otherwise interact with the verifier in exactly the same way.

Instead, a rational model of security is defined in [19]. This security model, called ε-rational
replication roughly says that a PoRep is a µ-sound ε-rational replication if for any adversary
passing the protocol with probability µ there is an “equivalent” adversary who passes with at
least the same probability and store a k-replication of the file without incurring more than a
1/(1−ε) storage overhead (i.e. the adversary saves at most an ε fraction of its storage by deviating
from a k-replication strategy). The security model also accounts for auxiliary information that
the adversary might be storing and ensures that the “equivalent” adversary can still extract all
the same information from its storage including data unrelated to the PoRep protocol.

Proof of space and PoRC A PoRep is implicitly a publicly verifiable proof of space (Sec-
tion 2.2). A prover that passes verification in the interactive challenge-reponse protocol for a
file D̃ of claimed size |D̃| = N must be using Ω(N) persistent storage. Moreover, a prover that
passes verification in k instances of this protocol with distinct ids id1, ..., idk and claimed file
sizes N1, ..., Nk must be using Ω(M) space where M =

∑k
i=1Ni. In fact, it is a tight PoS with

10

only an ε space gap provided that it satisfies ε-rational replication, and therefore tight proofs of
space are necessary for PoReps. A PoRep is also a proof of retrievability of the file D. In fact,
sufficient conditions for a (correct) PoRep scheme to satisfy ε-rational replication are that it is
a tight PoS and a PoRC of the data and replica with respect to commitments τD and aux. This
was proven (c.f. Lemma 2, [19]) using a knowledge of compression assumption, which roughly
says that any prover who knows an algorithm to compress auxiliary data together with the
incompressible replica must know an algorithm to compress the auxiliary data independently by
the same amount and store the incompressible part separately.

2.4 Graph pebbling games

Pebbling games are the main analytical tool used in graph-based proofs of space and memory
hard functions.

Black pebbling game The black pebbling game is a single-player game on a DAG G = (V,E).
At the start of the game the player chooses a starting configuration of P0 ⊆ V of vertices that
contain black pebbles. The game then proceeds in rounds where in each round the player may
place a black pebble on a vertex only if all of its parent vertices currently contain pebbles placed
in some prior round. In this case we say that the vertex is available. Placing a pebble constitutes
a move, whereas placing pebbles on all simultaneously available vertices consumes a round. The
adversary may also remove any black pebble at any point. The game stops once the adversary
has placed pebbles on all vertices in some target/challenge set VC ⊆ V .

Pebbling complexity The pebbling game on graph G with vertex set V and target set
VC ⊆ V is (s, t)-hard if no player can pebble the set VC in t moves (or fewer) starting from s
initial pebbles, and is (s, t)-parallel-hard if no player can complete the pebbling in t rounds (or
fewer) starting from an initial configuration of at most s pebbles. If the hardness holds for any
subset containing an α fraction of VC then the pebbling game on (G,VC) is (s, t, α)-(parallel)-
hard.

In a random pebbling game a challenge node is sampled randomly from VC after the player
commits to the initial configuration P0 of s vertices, and the hardness measure includes the
adversary’s probability of success. The random pebbling game is (s, t, ε)-(parallel)-hard if from
any s fixed initial pebbles the probability that a uniformly sampled challenge node can be
pebbled in t or fewer moves (resp. t or fewer rounds) is less than ε.

Fact 1. The random pebbling game on a DAG G on n nodes with target set VC is (s, t, α)-
parallel-hard if and only if the deterministic pebbling game on G with target set VC is (s, t, α)-
parallel-hard.

Proof. Fix any P0 of size s. If the random pebbling game on G with target set VC is (s, t, α)-
parallel-hard then less than an α fraction of the nodes in VC can be pebbled individually in t
rounds starting from P0. Therefore, every subset U in VC of size α|VC | contains at least one
node that cannot be pebbled individually in t rounds, hence the (deterministic) pebbling game
is (s, t, α)-parallel-hard. Conversely, if G is (s, t, α)-parallel-hard then less than an α fraction of
nodes in VC can be pebbled individually in r rounds. Otherwise, these nodes form a subset U
of size α|VC | and they can all be simultaneously pebbled in parallel in t rounds. This implies

11

that the probability a randomly sampled node from VC can be pebbled in t rounds is less than
α.

Fact 2. A random pebbling game with a single challenge is (s, t, α)-parallel-hard if and only if
the the random pebbling with κ challenges is (s, t, αk)-parallel-hard.

Proof. If the random pebbling game is (s, t, α) hard then by Fact 1 the deterministic pebbling
game is (s, r, α) hard, hence there are at most an α fraction of the nodes in VC that can be pebbled
in r rounds from s initial pebbles. The probability that κ independent random challenges are
all nodes from this α fraction is at most ακ. Conversely, if the random pebbling game is not
(s, t, α) hard then the adversary can pebble all the κ challenges simultaneously in parallel time
t succeeding on each challenge individually with probability greater than α, hence succeeding
on all the challenges with probability greater that ακ.

DAG labeling game A labeling game on a degree d DAG G is analogous to the pebbling
game, but involves a cryptographic hash function H : {0, 1}dm → {0, 1}m, often modeled as
a random oracle. The vertices of the graph are indexed in [n] and each ith vertex associated
with the label ci where ci = H(i) if i is a source vertex, or otherwise ci = H(i||cparents(i)) where
cparents(i) = {cv1 , ..., cvd} if v1, ..., vd are the parents of the ith vertex, i.e. the vertices with a
directed edge to vertex i. The game ends when the player has computed all the labels on a
target/challenge set of vertices VC . A “fresh” labeling of G could be derived by choosing a salt
id for the hash function so that Hid(x) = H(id||x), and the labeling may be associated with the
identifier id.

The complexity of the labeling game (on a fresh identifier id) is measured in queries to
the hash function instead of pebbles. This includes the number of labels initially stored, the
total number of queries, and the total rounds of sequential queries, etc. The labeling game is
(s, r, q, ε, δ)-labeling-hard if no algorithm that stores initial advice of size s and after receiving
a uniform random challenge node v ∈ [n] makes a total of q queries to H in r sequential rounds
can output the correct label on v with probability greater than ε over the challenge v and δ over
the random oracle H.

Random oracle query complexity A general correspondence between the complexity of
the black pebbling game on the underlying graph G and the random oracle labeling game is not
yet known. However, Pietrzak [33] recently proved an equivalence between the parallel hardness
of the randomized pebbling game and the parallel hardness of the random oracle labeling game
for arbitrary initial configurations S0 adapting the “ex post facto” technique from [16].

Theorem 1 (Pietrzak [33]). If the random pebbling game on a DAG G with n nodes and in-
degree d is (s, r, ε)-parallel-hard then the labeling game on G with a random oracle H : {0, 1}md →
{0, 1}m is (s′, r, ε, δ, q)-labeling-hard with s′ = s(m− 2(log n+ log q))− log(1/δ).

Generic PoS from graph labeling game Many PoS constructions are based on the graph
labeling game [18, 33, 35]. Let G(·) be a family of d-in-regular DAGs such that Gn ← G(n)
is a d-in-regular DAG on N > n nodes and VC(n) is a subset of n nodes from Gn. Let
H : {0, 1}dm → {0, 1}m be a collision-resistant hash function (or random oracle). Let Chal(n,Λ)
denote a distribution over challenge vectors in [N]λ. For each n ∈ N, the generic PoS based on

12

the labeling game with Gn and target set VC(n) is as follows:

Initialization: The prover plays the labeling game on Gn using a hash function Hid = H(id||·).
The prover does the following:

1. Computes the labels c1, ..., cN on all nodes of G and commits to them in com using any
vector commitment scheme.

2. Obtains vector of λ challenges ~r ←R Chal(n) from the verifier (or non-interactively derives
them using as a seed Hid(com)).

3. For challenges r1, ..., rλ , the prover opens the label on the rith node of Gn, which was
committed in com, as well as the labels cparents(ri) of all its parent nodes. The labels are
added to a list L with corresponding opening proofs in a list Λ and the prover outputs the
proof Φ = (com,L,Λ).

The verifier checks the openings Λ with respect to com. It also checks for each challenge
specifying an index v ∈ [N], the label cv in L label and its parent labels cparents(cv), that
cv = Hid(v||cparents(cv)). Finally, the prover stores as S only the n labels in VC .

Execution: The verifier selects κ challenge nodes v1, ..., vκ uniformly at random from VC . The
online prover uses its input S to respond with the label on v and an opening of com at the
appropriate index. The verifier can repeat this sequentially, or ask for a randomly sampled
vector of challenge vertices to amplify soundness.

Given the correspondence between the hardness of the random oracle labeling game and
black pebbling game in the parallel pebbling/computation models, we will focus on parallel
pebbling complexity as this is easier to analyze directly.

Red-black pebbling game The soundness of the generic labeling PoS is captured through
the red-black pebbling game. An adversary places both black and red pebbles on the graph
initially. The red pebbles correspond to incorrect labels that the adversary computes during
Initialization and the black pebbles correspond to labels the adversary stores in its advice S.
Without loss of generality, an adversary that cheats generates some label that does not require
any space to store, which is why red pebbles will be “free” pebbles and counted separately from
black pebbles. The adversary’s choice of red pebble placements (specifically how many to place
in different regions of the graph) is constrained by the λ non-interactive challenges, which may
catch these red pebbles and reveal them to the verifier. The formal description of the red-black
pebbling security game for a graph labeling PoS construction with G(n), VC(n), and Chal(n) is
as follows.

Red-Black-PebblesA(G, VC ,Chal, t):

1. A outputs a set R ⊆ [N] (of red pebble indices) and S ⊆ [N] (of black pebble indices).

2. The challenger samples c1, ..., cλ ←R Chal(n). If ci ∈ R for some i then A immediately loses.
The challenger additionally samples v1,, vκ uniformly at random from indices in VC(n)
and sends these to A.

13

3. A plays the random (black) pebbling game on G(n) with the challenges v1, ..., vκ and initial
pebble configuration P0 = R∪S. It runs for t parallel rounds and outputs its final pebble
configuration Pt. A wins if Pt contains pebbles on all of v1, ..., vκ.

We formally define PoS soundness for the special case of any graph labeling PoS in terms of
complexity of Red-Black-PebblesA(G, VC , t). Let c : N → N denote a cost function c : N → N
representing the parallel time cost (e.g. in sequential steps on a PRAM machine) of computing
a label on a node of G(n) for each n ∈ N.

Definition 1. A graph labeling PoS with G(n), VC(n),Chal(n) and cost function c(n) is parallel
(s, c(n)·t, µ)-sound if and only if the probability that any A wins Red-Black-PebblesA(G, VC ,Chal, t)
is bounded by µ where |S| = s.

2.5 Verifiable Delay Encodings

A verifiable delay encoding (VDE) is a non-parallelizable encoding that has high parallel time
complexity to compute, but with a fast decoding operation. A VDE may be a special kind of
verifiable delay function [11]. It is more restrictive than a VDF because it must be decodable,
but it is less restrictive because the encoding does not need to be unique. Existing pactical
(heuristic) examples of VDEs include the Pohlig-Hellmann cipher, Sloth [24], MiMC [3], and a
special class of permutation polynomials [11].

Formally, a VDE is a tuple of three algorithms VDE = VDE.Setup,VDE.Enc,VDE.Dec defined
as follows (c.f. [19]).

1. VDE.Setup(t, λ)→ pp is given security parameter λ and delay parameter t produce public
parameters pp. By convention, the public parameters also specify an input space X and
a code space Y. We assume that X is efficiently samplable. VDE.Setup might need secret
randomness, leading to a scheme requiring a trusted setup.

2. VDE.Enc(pp, x)→ y takes an input x ∈ X and produces an output y ∈ Y.

3. VDE.Dec(pp, y)→ x takes an input y ∈ Y and produces an output x ∈ X .

Correctness For all pp generated by VDE.Setup(λ, t) and all x ∈ X , algorithm VDE.Enc(pp, x)
must run in parallel time t with poly(log(t), λ) processors, and VDE.Dec(pp,VDE.Enc(pp, x)) = x
with probability 1.

Definition 2 (sequentiality, c.f. [11]). For a function σ(t) a VDE is σ-sequential if for any
pair of randomized algorithms A0, which runs in total time O(poly(t, λ)), and A1, which runs
in parallel time t − σ(t) on at most O(poly(t)) processors, the following probability distribution
over pp← VDE.Setup(t, λ) is negligible:

Pr

[
y ← A1(α,pp, x)

∧ y = VDE.Enc(x)

∣∣∣∣∣ x←R X
α← A0(λ,pp, t)

]
< negl(λ)

A stronger security property is for the VDE to behave like an ideal cipher [19]. This is more
than what is needed for most applications of VDFs/VDEs, but is relevant to their application

14

to proofs of space in order to facilitate incompressibility arguments. We can argue that an
algorithm that can use an advice string to succeed with high probability in computing the
Encode(pp, ·) function in time less than t would be able to compress the function table of a
random permutation, similar to how advice string lower bounds are proven in the random oracle
model.

Definition 3 (c.f. [19]). An ideal delay permutation (IDP) is a family of oracles {O(t)
IDP} that

implement a random permutation Π and respond to two types of queries. On a query (q, 0) the

oracle O(t)
IDP internally simulates t sequential queries to Π−1 and then outputs Π(q). On a query

(q, 1) it outputs Π−1(q).

2.6 Depth Robust Graphs

A directed acyclic graph (DAG) on n nodes with d-indegree is (n, α, β, d) depth robust graph
(DRG) if every subgraph of αn nodes contains a path of length at least βn.

Depth robust graph constructions DRGs were first noted by Erdős, Graham, and Sze-
meredi [32], who constructed a family of (n, α, β, c log n)-depth robust graphs using extreme
constant-degree bipartite expander graphs, for some constants α, β, c that satisfy specific con-
straints. Mahmoody, Moran, and Vadhan [28] constructed a more flexible family of DRGs that
are (n, α, α− ε, c log2 n) depth robust for all α < 1. Alwen et. al. [6] recently improved the EGS
construction to obtain DRGs for arbitrary α, β as well and O(log n) degree (i.e. with asymptot-
ically better degree than MMV). All these constructions still rely on extreme constant-degree
expanders (also called local expanders). Explicit constructions of local expanders exist [30],
however they are complicated to implement and their concrete practicality is hindered by very
large hidden constants. The most efficient way to instantiate these extreme expander graphs
is probabilistically. We discuss probabilistic constructions of bipartite expander graphs in Sec-
tion 2.7.

A probabilistic DRG construction outputs a graph that is a DRG with overwhelming proba-
bility. Instantiating any of the above DRG constructions with probabilistic bipartite expanders
results in a probabilistic DRG. However, even probabilistic versions of the above constructions
are still not concretely efficient due to their use of local expanders. Alwen et. al. [5] proposed
and analyzed the most efficient probabilistic DRG construction to date. The analysis still leaves
large gaps between security and efficiency although was shown to resist depth-reducing attacks
empirically. Their construction is also locally navigatable, meaning that it comes with an efficient
parent function to derive the parents of any node in the graph using polylogarithmic time and
space.

Definition 4. An (n, α, β, d)-DRG sampling algorithm runs in time Õ(n log n) and a function
DRG.Sample(n, σ) → G that takes an s-bit seed and outputs a graph on n nodes indexed in [n]
such that G is (n, α, β, d) depth robust graph with probability 1− negl(n) over σ ←R {0, 1}s. The
sampling algorithm is locally navigatable if there is an algorithm DRG.Parents(n, σ, i) that runs
in time O(polylogn) and outputs a list P ⊆ [n] of the parents of the node at index i ∈ [n] in the
graph Gσ ← DRG.Sample(n, σ).

15

2.7 Expander graphs

The vertex expansion of a graph G on vertex set V characterizes the size of the boundary of
vertex subsets S ⊆ V (i.e. the number of vertices in V \ S that are neighbors with vertices in
S).

Definition 5. Let G be an undirected graph on a vertex set V of size n ∈ N and for any subset
S ⊆ V define Γ(S) to be the set of vertices in V \S that have an edge to some vertex in S. For any
constants 0 < α < β < 1, G is an (n, α, β) expander graph if and only if |Γ(S) ∪ S| ≥ βn for all
S of size |S| ≥ αn. For any δ > 0, the set S is called (1+δ)-expanding if |Γ(S)∪S| ≥ (1+δ)|S|.

In the case of directed bipartite graphs, vertex expansion is defined by the minimum number
of sources connected to any given number of sinks.

Definition 6. For any constants α, β where 0 < α < β < 1 and integer n ∈ N, an (n, α, β)
bipartite expander is a directed bipartite graph with n sources and n sinks such that any subset
of αn sinks are connected to at least βn sources. For any δ > 0, a subset S of sinks is called
(1 + δ)-expanding if it is connected to at least (1 + δ)|S| sources.

It is easy to construct an undirected expander graph given a bipartite expander as defined
above.

Claim 1. Let H be a (n, α, β) bipartite expander graph with bounded degree d, sources and sinks
labeled by indices in [n] and edge set E ⊆ [n]× [n]. Define the undirected graph G with vertices
labeled in [n] and edge set E′ such that (i, j) ∈ E′ (for i 6= j) if and only if (i, j) ∈ E or
(j, i) ∈ E. Then G has bounded degree 2d and is an (n, α, β) expander.

Proof. Every vertex in G has at most degree 2d because H has bounded degree d, and the
number of edges added to any node indexed with label i in G is at most the sum of number of
edges incident to the ith source and ith sink in H respectively. Now consider any subset S ⊆ [n]
of αn vertices in G. S also corresponds to a subset of the sources in H with the same index
labels and is connected to at least βn sinks T ⊆ [n]. For each s ∈ S and t ∈ T where s 6= t there
is an edges (s, t) in G. Therefore, Γ(S) = T \ S and |Γ(S)| ∪ S = |T | ≥ βn.

Given this equivalence, for the remainder of this section we focus on constructions of constant
degree bipartite expanders.

Constructing bipartite expanders There is a rich literature on constructions of bipartite
expanders, and includes both explicit and randomized constructions of constant degree bipartite
graphs with very good expansion properties. The randomized construction of Chung [15] simply
defines the edges of a d-regular bipartite expander on 2n vertices by connecting the dn outgoing
edges of the sources to the dn incoming edges of the sinks via a random permutation Π :
[d]× [n]→ [d]× [n]. More precisely, the ith source is connected to the jth sink if there is some
k1, k2 ∈ [d] such that Π(k1, i) = (k2, j). A general relationship between the degree and expansion
is known, which holds with overwhelming probability over the choice of the permutation. The
following lemma was first proven by Bassalygo [9] and Schöning [36], and a much simpler proof
was given by Ren and Devadas.

16

Lemma 1 (RD [35]). The Chung random bipartite graph construction is a d-regular (n, α, β)
expander with probability 1− negl(nHb(α)) for all d, α, β satisfying:

Hb(α) +Hb(β) + d(βHb(α/β)−Hb(α)) < 0 (2.1)

where Hb(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy function.

For example, the above formula shows that for α = 1/2 and β = 0.80 Chung’s construction
gives an (n, 0.5, 0.80) expander for d ≥ 8, meaning any subset of 50% of the sinks are connected
to at least 80% of the sources when the degree is at least 8.

Expansion vs subset size In general, the expansion factor (the ratio β/α) improves in
smaller subsets: if a given expansion factor holds with overwhelming probability in large subsets
then it also holds with overwhelming probability in smaller subsets. On the other hand, the
absolute expansion β is monotonically non-decreasing as a function of α because the expansion
of any set is at least the expansion of its subsets.

Lemma 2. For any k > 1 and d > 2, if the output of Chung’s construction is a d-regular
(n, α, kα) bipartite expander for some α < d−k−1

k(d−2) with probability 1−negl(nHb(α)) then βG(α′) ≥
kα′ for every subset of size α′ < α with probability 1− negl(nHb(α

′)).

Proof. For fixed d and k define φ(α) = Hb(α) +Hb(kα) + dkαHb(1/k)− dHb(α). By Lemma 1,
Chung’s construction outputs a graph that is a d-regular (n, α, kα) bipartite expander with
probability 1 − negl(nHb(α)) as long as φ(α) < 0. We will show that if φ(α) < 0 for some
α within the domain X = (0, d−k−1k(d−2)), then φ(α′) < 0 for all α′ < α. We will first prove two
subclaims:

1. φ is smooth on α ∈ (0, 1/k) (i.e. twice differentiable), and limα→0 φ = 0.

2. φ is decreasing at α = 0 (i.e. increasing in the limit α→ 0) and convex on X.

Together these imply that if φ(α) < 0 for α ∈ X then φ(α′) < 0 for all α′ < α. Suppose
not, then there exists some point α′ < α such that φ(α′) ≥ 0 > φ(α). Since φ is continuous
on X and initially negative and decreasing it must increase on some subinterval of (0, α′) and
then decrease again on some subinterval of (α′, α). However, this contradicts the fact that φ is
convex on X, and hence once it starts increasing at any point in X it will not decrease again in
any higher interval.

Proof of subclaim 1 : φ is a linear combination of Hb(α), Hb(kα), and α, which are all real
and twice differentiable on (0, 1/k). In particular, H ′(α) = log2(1− α)− log2(α) and H ′′(α) =

−1
log2(e)α(1−α)

. Finally, limα→0Hb(α) = limα→0Hb(kα) = 0, hence the limit α → 0 of any linear

combination of Hb(α), Hb(kα), and α is 0.

Proof of subclaim 2 : We first show that limα→0 φ
′ = −∞. Note that φ′(α) = H ′b(α)+kH ′b(αk)+

dkHb(1/k)−dH ′b(α). As α→ 0 the limit is determined by the terms involving H ′b(α) and H ′(αk),
which go to −∞ while dkHb(1/k) is constant. Since kH ′b(αk)− (d−1)H ′b(α) = k(log2(1−αk)−
log2(αk)) < −k log2(αk)− (d− 1)H ′b(α) we get:

lim
α→0

φ′ < lim
α→0
−k log2(αk) + (d− 1) log2(α) = lim

α→0
(d− k − 1) log2(α) = −∞

17

Now looking at the second derivative, φ′′(α) = k2H ′′b (αk)− (d− 1)H ′′(α):

φ′′(α) =
−1

log2(e)α

(k

1− αk
+
d− 1

1− α
)

Hence φ′′ > 0 if and only if (d − 1)(1 − αk) > k(1 − α). Rearranging the equation, we get
α < d−k−1

k(d−2) .

Corollary 1. For d = 8 Chung’s construction is an 8-regular bipartite graph such that every
subset of at most 1/3 of the nodes is 2-expanding, i.e. it is an (n, α, 2α)-bipartite expander for
every α ≤ 1/3 with overwhelming probability.

Proof. Plugging α = 1/3 and β = 2/3 into the formula for degree (Equation 2.1) gives d = 7.21 <
8. With d = 8 and k = 2 the condition in Lemma 2 is satisfied: α = 1/3 < (d−k−1)/k(d−2) =
5/12.

For fixed d the expansion improves further as α decreases. One can easily verify (by re-
peated application of L’Hopital’s rule) that the limit as α → 0 of the expression (Hb(α) +
Hb(kα))/(Hb(α)− kαHb(1/k)) goes to k + 1. Of course, when α becomes too small the expan-
sion no longer holds with overwhelming probability. Figure 2.2 provides a table of expansion
factors over a range of α with fixed degree d = 8. Figure 2.3 plots the expansion as a function
of subset size.

Expansion boundary In the analysis of our constructions we will also look at the boundary
of subsets in an expander graph. In an undirected expander, this is simply Γ(S) as we defined
already. In the case of bipartite expanders, the analogous “boundary” of a set of sources is the
set of sinks connected to these sources that have distinct index labels from the sources. We can
lower bound the size of the boundary by β −α. Lemma 1 gives a smooth lower bound on β −α
for Chung’s bipartite expander graphs that we can show has a unique local maximum in (0, 1).
Conveniently, this allows us to lower bound the value of α− β in any given range by examining
just the end points. In particular, when d = 8 this achieves a local max at approximately
α = 1/3 (where the expansion factor reaches 2), which can be seen in Figure 2.3. We prove the
claim analytically for arbitrary d.

To simplify the analysis, we look at the function defined by the zeros of φ(α, β) = d(βHb(α/β)−
Hb(α)) + 2 = 0. Any α, β satisfying this relation also satisfies the relation in Lemma 1 because
Hb(α) + Hb(β) < 2 when β > α. (More generally we can substitute c if it is known that
Hb(α) + Hb(β) < c). This implicitly defines β as a function of α, as well as the function
β̂ = β − α. More precisely, The implicit function β̂(α) defined by pairs of points (α, β̂(α)) such
that φ(α, α + β̂(α)) = 0 is a lower bound to the boundary of subsets of size α, which holds at
any point α with probability at least 1− negl(nHb(α)).

Lemma 3. Define φ(x, y) = d(yHb(x/y)−Hb(x)) + c where c is any constant and let β̂ be the
function on (0, 1) defined by pairs of points (α, β−α) such that φ(α, β) = 0 and 0 < α < β < 1.
The function β̂ is continuously differentiable on (0, 1) and has a unique local maximum.

Proof. Define a change of variables z = x−y to get φ(x, z) = d(x+z)Hb(x/(x+z))−Hb(x))+ c
so that β̂ is the function defined implicitly by pairs of points satisfying φ(α, β̂) = 0. The function

18

φ(x, z) is continuously differentiable in both variables on the set (0, 1) × (0, 1), i.e. its partial
derivates φz = ∂φ

∂z and φx = ∂φ
∂x are each continuous on (0, 1)× (0, 1). By the Implicit Function

Theorem, β̂ : (0, 1) → R is continuously differentiable with derivative −φx/φz defined in an
open interval around every point α where φz 6= 0. Expanding the binary entropy function
Hb(x) = −x log2(x)− (1− x) log2(1− x) simplifies the inner expression:

1

d
(φ(x, z)− c) = (z + x)Hb(x/(x+ z))−Hb(x)

= −x log2(x/(z + x))− z log2(z/(x+ z)) + x log2(x)− (1− x) log2(1− x)

= (x+ z) log2(x+ z)− z log2(z)− (1− x) log2(1− x)

The partial derivatives are:

φx =
d

ln(2)
((x+ z)/(x+ z) + ln(x+ z)− (1− α)/(1− α)− ln(1− α) = d log2

(x+ z

1− α
)

φz =
d

ln(2)
((x+ z)(x+ z) + ln(x+ z)− z/z − ln(z) = d log2

(x+ z

z

)
φz(α, β̂(α)) is always positive because (x + z)/z > 1 for x, z ∈ (0, 1). On the other hand,
φx(α, β̂(α) < 0 if and only if α + β̂(α) > 1 − α. Setting β̂(α) = β − α this is the case when
β + α > 1. β̂(α) is increasing when α + β < 1 and decreasing when α + β > 1. It has a local
maximum where α + β = 1. Since β = β̂(α)− α is a monotonically non-decreasing function of
α it follows that if α + β < 1 then α′ + β′ < 1 at every point α′ < α. Likewise, if α + β > 1
then α′ + β′ > 1 at every point α′ > α. We therefore conclude that β̂(α) is initially increasing
and achieves a unique local maximum on (0, 1).

Corollary 2. With overwhelming probability in n, Chung’s construction (with d = 8) is an
8-regular bipartite graph on n sinks and n sources each indexed in [n] such that for all α ∈
(0.10, 0.80) every αn sinks are connected to at least 0.12n sources with distinct indices.

Proof. The function β̂(α) from Lemma 3 the implicit function β̂c defined by pairs of points
(α, β − α) satisfying φc(α, β) = d(βHb(α/β) − Hb(α)) + c = 0 is a smooth and has a unique
maximum in any interval L ⊆ (0, 1). Furthermore, if the points α and β satisfy Hb(α)+Hb(β) <
c ≤ 2 then β̂(α) is a lower bound on the “boundary” of sinks of size αn in Chung’s construction
with overwhelming probability (Lemma 1). We will split the interval (0.10, 0.80) into subintervals
(0.10, 0.33] and [0.33, 0.80) and analyze them seperately.

For all α ∈ [0.33, 0.80) the formula in Lemma 1 shows that the expansion for each α is non-
decreasing and is at least 0.80 (see Figure 2.3). Thus we can set c = 1.64 > Hb(0.33) +Hb(0.80)
and examine the lower bound β̂c. It has a unique local maximum in (0.33, 0.80) therefore
β̂c ≥ min(β̂c(0.33), β̂c(0.80)) ≥ 0.12. (Observe that φc(0.33, 0.45) < 0 and φc(0.80, 0.92) < 0
with d = 8.)

For α ∈ (0.10, 0.33] we lazily set c = 2. The implicit function β̂2 has a unique local max in
(0.10, 0.33], so β̂2 ≥ min(β̂2(0.33), β̂2(0.10)) > 0.12.

19

Size (α) 0.01 0.10 0.20 0.30 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

Expansion (β) 0.04 0.33 0.53 0.65 0.75 0.78 0.81 0.84 0.88 0.89 0.91 0.93 0.94

Factor (β/α) 4 3.3 2.65 2.1 1.8 1.73 1.62 1.53 1.47 1.37 1.3 1.24 1.17

Figure 2.2: A table of the maximum expansion (β) satisfying the condition from Lemma 1 for Chung’s con-
struction with fixed degree d = 8 over a range of subset sizes (α).

Figure 2.3: The graph on the left plots the lower bound from Lemma 1 on the expansion β as a function of the
subset size α (in fractions of the sources/sinks) for Chung’s construction with fixed d = 8. The graph on the right
plots the corresponding lower bound on β − α, which is the analog of the subgraph boundary in non-bipartite
expanders. Specifically, this is a lower bound on the fraction of sinks connected to an α fraction of sources that
have distinct index labels from the sources.

Expansion vs degree We can also characterize the expansion of subsets of the sinks more
generally as a function of the graph’s degree. We can show that for any d ≥ 4 Chung’s construc-
tion yields a d-regular graph such that every subset of sinks of size αn is at least (d/3)-expanding
for every α < 3

2d .

Lemma 4. For any d ≥ 4, Chung’s construction yields a d-regular bipartite graph that is an
(n, α, (d/3)α) bipartite expander for every α ≤ 3

2d with probability 1− negl(nHb(α)).

Proof. First set α = 3/(2d) and β = 1/2. By Lemma 1, we obtain a graph G that is an
(n, α, β) expander with probability 1 − negl(nHb(α)) as long as d − d

2Hb(
3
d) −Hb(

3
2d) − 1 > 0.

Define g(x) = 1/x− 1
2xHb(3x)−Hb(3x/2)− 1 so that the condition is equivalent to g(1/d) > 0.

Hb(x) is real and continuous on (0, 1). Its derivative is H ′b(x) = log2(1 − x) − log2(x) which is
positive on (0, 1/2). Differentiating g(x) with respect to x on (0, 1/3) gives g′(x) = −1/x2 −
3
2xH

′
b(3x)+ 1

2x2
Hb(3x)− 3

2H
′
b(

3x
2). Observe that on (0, 1/3) both H ′b(3x) > 0 and 1

2Hb(3x)−1 < 0,
therefore g′(x) < 0. This means that g(1/d) is increasing as d increases for d > 3. Furthermore
limd→3 g(1/d) = 3−Hb(1/2)− 1 = 1 > 0.

Finally, it follows as a special case of Lemma 2 that if G is a d-regular (n, 3
2d ,

1
2) bipartite

expander for some fixed d then it is an (n, α, (d/3)α) bipartite expander for every α ≤ 3
2d . Setting

ε = 1/3, we see that 3
2d <

2−1/d
d−2 = 1/ε−1/d−1

d−2 . The inequality holds because 4d− 2 > 3d− 6 for
all d > 0.

20

Ramanujan graphs The explicit bipartite expander construction of Lubotzky, Phillips, and
Sarnak [4] achieves similar expansion to Chung’s construction for similarly good parameters.
It is more complicated to implement as it involves generating a certain Cayley graph of the
group PGL(2,Fq), the 2-dimensional projective general linear group on Fq. This construction
yields a bipartite exapnder of degree (p+ 1) on q(q2 − 1) vertices for any primes p, q such that
p, q ≡ 1 mod 4 and p is a quadratic non-residue modulo q. The resulting graph is called a
Ramanujan graph because it is an optimal spectral expander, meaning the absolute value of all
the non-trivial eigenvalues of its adjacency matrix (i.e. except the eigenvalue -d) are bounded
by 2
√
d− 1. Other explicit Ramanujan graphs are known, for instance the isogeny graph of

supersingular elliptic curves is also Ramanujan [34]. Due to a theorem of Tanner [38] relating
spectral and vertex expansion, any d-regular bipartite Ramanujan graph on n vertices is an
(n, α, d

4(1−α)+αd) bipartite expander for all α < 1. In particular, for d ≥ 4 every fraction of

α < 1/d sinks is at least d/4-expanding.

Lemma 5 (Tanner [38]). For any d ≥ 4 and n ∈ N a d-regular bipartite Ramanujan graph on
n vertices is an (n, α, (d/4)α) bipartite expander for every α < 1/d.

3 Stacked DRG Proof of Space

In this section we show that stacking DRGs with bipartite expander edges between layers yields
an arbitrarily tight proof of space with the number of layers increasing as O(log2(1/ε)) where ε
is the desired space gap. Moreover, the proof size is also O(log2(1/ε)), which is asymptotically
optimal. Our proofs attempt a tight analysis as well, e.g. showing that just 10 layers achieve a
PoS with a 1% space gap, degree 8 + d graphs where d is the degree of the DRG, and relies only
on a DRG that retains depth in 80% subgraphs.

3.1 Review of the Stacked-Expander PoS

In this section we review the PoS construction by Ren and Devadas [35] based on stacked
bipartite expander graphs as it is a building block towards our Layered-DRG construction. Their
construction uses a layered graph where each layer is a directed line on n nodes and the directed
edges of a bipartite expander graph are placed between layers. This was shown to be an (εγn, (1−
2ε)γn)-sound PoS for parameters ε < 1/2 and γ < 1.3 (Achieving practical proof sizes actually
requires γ to be rather small as otherwise the required degree of the expander graphs blows
up, e.g. γ > 0.6 requires at least degree 40 graphs hence practically ε < 1/3). The PoS
is not parallel sound (for meaningful s, t) as a prover running in O(λ) parallel time can pass
verification using very little space. We will show that by replacing each line graph with a depth
robust graph this results in a much tighter proof of space, as well as security against parallelism.
Interestingly, the security against parallel attacks seems intimately connected to why the Ren-
Devadas construction fails to be tight whereas ours succeeds. Furthermore, the Ren-Devadas
security is only proven against an adversary who implements a pebbling attack and is not yet
known to be secure more generally against graph labeling in the random oracle model. As our

3Under a slightly different definition of a PoS that assumes the prover uses less than (1− ε)γn additional space
during execution, Ren and Devadas showed that the stacked-expander construction is an (εγn, 2λ)-sound PoS
where λ is a security parameter determining the number of layers in their construction.

21

construction is secure against parallel pebbling attacks it is also secure in the random oracle
model.

The graph GSE The stacked-expander PoS uses the same underlying graph as the Balloon
Hash memory hard function [22]. The graph GSE consists of ` = O(λ) layers V1, ..., V` consisting
each of n vertices indexed in each level by the integers [n], and where λ is a security parameter.
First directed edges are placed from each kth vertex to the k + 1st vertex in each level, i.e.
forming a directed line. Next directed edges are placed from Vi−1 to Vi according to the edges
of an (n, α, β) bipartite expander on (Vi−1, Vi). Finally a “localization” operation is applied so
that each kth vertex uk in Vi−1 is connected to the kth vertex vk in Vi and any directed edge
from the kth vertex of Vi−1 to some jth vertex of Vi where j > k is replaced with a directed
edge from the kth vertex of Vi to the jth vertex of Vi. GSE can be pebbled in n` steps using a
total of n pebbles.

Stacked-expander PoS The PoS follows the generic PoS based on graph labeling. We remark
only on several nuances. Due to the topology of GSE after localization, the prover only needs
to use a buffer of size n and deletes the labels of Vi−1 as it derives the labels of Vi. After
completing the labels Ci in the ith level it computes a vector commitment (e.g. Merkle) to the
labels in Ci denoted comi. Once it has derived the labels C` of the final level V` it computes
com = Hid(com1|| · · · ||com`) and uses Hid(com||j) to derive λ non-interactive challenges for
each jth level.4

Let γ = β−2α for constants β, α ∈ (0, 1) where β > 2α. For the remainder of the analysis we
assume the bipartite expander graph used in the stack-expander PoS construction is an (n, α, β)
expander.

Theorem 2 (RD [35]). Let ` be the number of layers in GSE and α, β the expansion parameters.
Let γ = β− 2α. Every αn subset of initially unpebbled sinks in the layer V` cannot be pebbled in
less than 2`αn moves from any initial configuration of γn and using at most γn pebbles overall.

Corollary 3 (RD [35]). For every ε < 1/2 and 0 < δ < εγ arbitrarily small, the stacked-expander
PoS construction is an ((εγ − δ)nm, (1− 2ε)γn)-sound PoS (against a pebbling adversary) with
probability 1− negl(δλ).

Space-hardness gap 1/2 The stacked-expander PoS leaves at least a 1
2γ gap between the

honest prover’s storage and the adversary’s storage. In fact, the space gap itself is actually what
the analysis exploits in order to argue security: due to the fact that the adversary will need
to refill a large fraction of its deleted space in order to pass the verifier’s challenges it will end
up performing a significant amount of computation as well to refill that space. Furthermore,

4This is a slight deviation from the protocol as described by Ren and Devadas, which sampled every label
challenge randomly over all vertices in GSE rather than separately within each layer. The end result is the same
because for security they set their parameters to ensure that if at least εn labels in any level are incorrect (which
comprise an ε/` fraction of all the vertices) then the challenges will sample one of these incorrect labels with
overwhelming probability. This requires sampling a factor ` more labels overall than the number of labels one
would sample from a given level to achieve the same probability of detection within that specific layer, as for any
λ it holds that (1 − ε

`
)`λ ≈ e−λ/ε ≈ (1 − ε)λ. Since their protocol also require ` = O(λ) the number of queries

is actually O(λ2). Sampling λ challenges within each layer, as we do, involves the same number of queries with
even a slightly tighter guarantee of the desired property within each level.

22

Corollary 3 proves that nodes on the last level are hard to pebble individually by leveraging
the fact that the adversary is storing less than half the pebbles required to pebble a subset of
nodes (as required by Theorem 2) and derives a contradiction by considering a lazy adversarial
strategy that keeps these pebbles fixed on the initial set and still uses less space than needed.
This analysis would be void if the adversary were storing more than half the required online
pebbles.

It seems implicitly that the reason this bound on additional online space used is so fun-
damental to the analysis is that the protocol is not secure against parallel attacks. If instead
pebbling any αn sinks was secure against parallel attacks (with no bound on the number of
online pebbles used in parallel) then we immediately get that less than αn sinks can be pebbled
efficiently individually as otherwise these could all be pebbled in parallel starting from the same
initial configuration.

O(λ2) proof size The proof size in the stacked-expander PoS is quite large as it requires λ
challenges in each of the λ levels for total complexity O(λ2). The number of levels needs to be
λ as we are only able to prove that the complexity of pebbling a single node out of αn sinks is
at least 1/(αn) the complexity of pebbling all αn, hence the complexity of pebbling αn nodes
needs to be on the order of 2λαn, i.e. much greater than O(n). If the complexity were only
O(n) the adversary might be able to pebble each challenge in less that 1/α moves. Again, this
is connected to the lack of security against parallel attacks. If the protocol were secure against
parallel attacks then individual nodes inherit the pebbling complexity of αn nodes without a
factor αn loss.

3.2 A tight PoS from stacked DRGs

The new result that we will next show is that simply replacing each of the line graphs Vi in
the stacked-expander PoS construction with a depth robust graph results in an arbitrarily tight
PoS. Specifically, only O(log 1/ε) layers are needed to achieve a ((1 − ε)n,Ω(n))-parallel-sound
PoS. We demand only very basic properties from the DRG, e.g. that any subgraph on 80% of
the nodes contains a long path of Ω(n) length.

Construction of GSDR[`] The graph GSDR[`] will be exactly like GSE only each of the ` layers
V1, ..., V` contains a copy of an (n, 0.80n, βn)-depth-robust graph for some constant β. For
concreteness, we define the directed edges between the layers using the degree 8 Chung random
bipartite graph construction.

For simplicity we will first analyze the construction without applying localization to the
expander edges between layers. Even without localization this is already a valid PoS, only the
initialization requires a buffer of size 2n rather than n. The PoS is still “tight” with respect to
the persistent space storage.

Vector commitment storage If the vector commitment storage overhead required for the
PoS is significant then this somewhat defeats the point of a tight PoS. Luckily this is not the
case. Most vector commitment protocols, including the standard Merkle tree, offer smooth
time/space tradeoffs. With a Merkle tree the honest prover can delete the hashes on nodes on
the first k levels of the tree to save a factor 2k space and re-derive all hashes along a Merkle
path by reading at most 2k nodes and computing at most 2k hashes. If k = 7 this is less than a

23

1% overhead in space, and requires at most 128 additional hashes and reads. Furthermore, as
remarked in [33] these 2k reads are sequential memory reads, which in practice are inexpensive
compared to the random reads for challenge labels.

Proof size We show that ` = O(log(1
3(ε−2δ))) suffices to achieve negl(λ) soundness against any

prover running in parallel time less than βn rounds of queries where Chal samples λ/δ nodes
in each layer. This would result in a proof size of O((1/ε) log(1/ε)), which is already a major
improvement on any PoS involving a graph of degree O(1/ε) (recall that the only previously
known tight PoS construction relied on very special DRGs whose degree must scale with 1/ε,
which results in a total proof size of O(1/ε2)). However, we are able to improve the result
even further and show that only O(1/δ) challenge queries are required overall, achieving proof
complexity O(1/ε). This is the optimal proof complexity for the generic pebbling-based PoS
with at most an ε space gap. If the prover claims to be storing n pebbles and the proof queries
less than 1/ε then a random deletion of an ε fraction of these pebbles evades detection with
probability at least (1− ε)1/ε ≈ 1/e. The same applies if a random ε fraction of the pebbles the
prover claims to be storing are red (i.e. errors).

Analysis outline We prove the hardness of the game Red-Black-PebblesA(GSDR[`], V`,Chal)
where Chal samples λi uniform challenges over Vi. We first show that it suffices to consider the
parallel complexity of pebbling the set U` ⊆ V` of all unpebbled nodes on V` from an initial
configuration of γn black pebbles overall and δin red pebbles in each layer where δ` < ε/2. As a
shorthand notation, we will say that GSDR[`] is (γ, ~δ, t, µ)-hard if t rounds are required to pebble
a µ fraction of V`. When µ = 1 this is equivalent to pebbling all of U`, the set of nodes with
missing pebbles in the initial configuration (since there is no constraint on number of pebbles
used). This very similar to standard parallel pebbling complexity in black pebbling games as
we defined earlier, however, it takes into account the restriction to δi red pebbles on each layer
that it counts separately5 from black pebbles.

In Claim 4 we show that if GSDR[` − 1] is (1 − ε + 2δ`−1, ~δ, t, 1)-hard then GSDR[`] is (1 −
ε, ~δ∗, t, 1 − ε/2)-hard where ~δ∗ is equal to ~δ on all common indices and δ` = δ`−1. This in
turn implies that with probability at least 1− ε/2 a randomly sampled challenge node from V`
requires more than t rounds to pebble. Together with the random challenges bounding δi we show
(Claim 2) that the labeling PoS on GSDR is (γn, t,max{p∗, µκ})-sound where p∗ = maxi(1−δi)λi .

Next we look at the complexity of pebbling all of V`. We show in Claim 6 that when the
adversary uses at most γ < 1− ε black pebbles and δ red pebbles in each layer then pebbling all
the unpebbled nodes in layer V` (for ` dependent on ε and δ) requires pebbling 0.80n unpebbled
nodes (including both red and black pebbles) in some layer Vi. Since the layer Vi contains a
(n, 0.80, βn)-depth-robust graph, this takes at least βn rounds. We then generalize this analysis
(Claim 7) to apply when δi is allowed to increase from level ` to 1 by a multiplicative factor
such that

∑
i δi = O(δ`).

Theorem 3 ties everything together, taking into account the constraints of each claim to
derive the PoS soundness of the labeling PoS on GSDR[`].

5In prior uses of the red-black pebbling game (e.g. to analyze the Ren and Devadas or Dziembowski et. al.
proofs of space) it sufficed to consider parallel black pebbling complexity as red pebbles were treated just like
extra free black pebbles. However, that is not allowed here because the construction places different constraints
on red vs black pebbles that are allowed on each level by issuing separate challenge queries for each level.

24

Theorem 3. The labeling PoS on GSDR[`] with Chal sampling λi challenges in each level Vi
and κ online challenges in V` is ((1− ε− δ)n, βn− 1, e−λ)-sound with κ = 2λ/ε if either of the
following conditions are met for ε ≤ 0.24:

(a) ` = max(8, log2(
1

3(ε−2δ)) + 4) and each λi = λ/δ and δ < min(0.01, ε/3)

(b) ` = max(14, log2(
1

3(ε−3δ)) + 5) and each λi = λ/δi where δ` = δ < min(0.01, ε/2) and

δi = min(0.05, 23δi−1)

Proof. For any GSDR[`], if the set of unpebbled nodes in V` are connected via unpebbled paths to
at least 0.80n unpebbled nodes (including red and black) in some prior level Vi, then pebbling all
of V` requires pebbling all these 0.80n unpebbled nodes, which requires βn−1 rounds due to the
fact that Vi is (n, 0.80n, βn) depth robust. Claim 7 thus implies that GSDR[`] is (1−ε, ~δ, βn−1, 1)-
hard for ~δ such that δ` = δ < ε/3 and δi = min(0.05, 23δi−1) for ` = max(13, log2(

1
3(ε−3δ)) + 4).

Claim 7 gives a different tradeoff between ` and ~δ, and shows that this hardness holds for ~δ and
` such that δi = δ < ε/2 for all i and ` = max(7, log2(

1
3(ε−2δ) + 3)).

Assuming ε ≤ 0.24, Claim 4 implies that GSDR[` + 1] is (1 − ε − δ, ~δ, βn − 1, 1 − ε/2)-hard
extending ~δ so that δ`+1 = δ` = δ. Finally, by Claim 2, the labeling PoS on GSDR[` + 1] with
challenge set V` and Chal sampling λi in each level Vi is ((1−ε−δ)n, βn−1,max{p∗, (1−ε/2)κ})-
sound where p∗ = maxi(1− δi)λi . Setting λi = λ/δi and κ = 2λ/ε, the PoS is ((1− ε− δ)n, βn−
1, e−λ)-sound.

Notation 1 (Common analysis notations). Let Ui denote the entire index set of nodes that
are unpebbled in Vi and Pi the set that are pebbled. The total number of pebbles placed in the
initial configuration is γn. Each level initially has ρin black pebbles and δin red pebbles. Finally,
γin =

∑
j<i ρi is the number of black pebbles placed before level i.

Claim 2. If GSDR[`] is (γ, ~δ, t, µ)-hard then the labeling PoS on GSDR[`] is (γn, t,max{p∗, µκ})-
sound where p∗ = maxi(1− δi)λi.

Proof. Fix γ = 1−ε and δi for each i. The λi challenges during Initialization in each level ensure
that A wins with at most probability (1− δi)λi if it places more than δi red pebbles on Vi. If A
has exceeded the δi bound in more than one level this only increases its probability of failure.
Thus, in case 1 (A places more than δi red pebbles on some level i), A’s success probability is
bounded by maximum value of (1− δi)λi over all i. In case 2 (A places fewer than δi on each ith
level), the fact that GSDR[`] is (γ, ~δ, t, µ)-hard implies at most a µ fraction of the nodes on V`
can individually be pebbled from the starting configuration in t rounds (recall Fact 1), hence A’s
success probability of answering κ independent challenges is µκ. Therefore, the overall success
probability is the maximum of these two cases.

The next claim is a very simple observation that the hardness of pebbling all the unpebbled
nodes in V` with s initial pebbles overall can be equivalently stated as the hardness of peb-
bling any set of u unpebbled nodes on V` with s − u initial pebbles placed on lower levels (i.e.
V1, .., V`−1).

25

Claim 3 (trivial). GSDR[`] is (γ, ~δ, t, 1)-hard if and only if given any initial configuration P0

of γ`n black pebbles placed on layers V1, ..., V`−1 (i.e. excluding V`), at most δin red pebbles in
each layer, and any set U ⊆ V` of αn unpebbled nodes in V` such that α − γ` ≥ 1 − γ − δ, no
adversary can pebble U in t or fewer rounds.

Proof. Any placement of δin red pebbles on each level and γn black pebbles overall with γ`
pebbles on V1, ..., V`−1 has ρ`n = (γ − γ`)n black pebbles on V` and exactly (1 − ρ` − δ`)n
unpebbled nodes in V` (assuming without loss of generality that red and black pebbles never
share the same node). If for any γ` pebbles placed on V1, ..., V`−1 and any set U of (1−ρ`− δ`)n
of unpebbled nodes in V` no adversary can pebble U in t or fewer rounds, then no adversary can
pebble the set of unpebbled nodes in V` (i.e. because U is precisely this set).

Conversely, suppose that GSDR[`] is (γ, ~δ, t, 1)-hard, i.e. pebbling the entire set of unpebbled
nodes in V` requires t rounds if at most γn black pebbles are placed overall with at most δin red
pebbles in each level. Then for any placement of γ` pebbles on V1, ..., V`−1 with at most δin red
in each level, and for any U ⊆ V` of size u ≥ (1−ρ`− δ`)n, the remaining nodes in V` \U can be
pebbled with just (γ− γ` + δ`)n pebbles. This means there exists a pebbling of the entire graph
with γn pebbles overall and the same configuration on the first `− 1 levels that leaves only the
set U unpebbled in V`. Thus, by hypothesis, this unpebbled set U requires more than t rounds
to pebble. Any other initial pebbling configuration that has fewer pebbles on V` \U would only
make it harder to pebble U .

Claim 4. For any ε ≤ 0.24, if GSDR[` − 1] is (1 − ε + δ`−1, ~δ, t − 1, 1)-hard then GSDR[`] is
(1 − ε, ~δ∗,min(βn − 1, t), 1 − ε/2)-hard where ~δ∗ is identical to ~v on all common indices and
δ` = δ`−1 ≤ ε/2.

Proof. Refer to Notations 1. Consider the graph GSDR[`] with γ = 1 − ε black initially placed
pebbled. Let δ = δ` = δ`−1 ≤ ε/2. Let α`n denote the size of U`, i.e. the number of unpebbled
nodes in V`. Every subset of V` of size (1 − ε/2)n contains at least α∗n = (α` − ε/2)n unpeb-
bled nodes (otherwise there would be fewer than α`n unpebbled nodes as there are only an ε/2
fraction remaining outside the selected set). If α∗ ≥ 0.80n we are done because V` is a copy
of a (n, 0.80n, βn)-depth robust graph and so pebbling all of α∗ requires at least βn rounds to
pebble a path of length βn.

Case α∗ < 1/3: The α∗ unpebbled nodes have dependencies on at least a 2α∗ ≥ 2α`− ε frac-
tion of nodes in V`−1 (Corollary 1). Of these at least α′n = (2α`− ρ`−1− ε− δ)n are unpebbled,
and there are γ`−1 = γ−ρ`−1−ρ` pebbles placed on all prior levels. Substituting ρ` = 1−α`−δ
and γ = 1− ε shows that α′− γ`−1 = 2α`− γ + ρ`− ε− δ = α` + 1− γ − ε− 2δ = α`− 2δ. Since
α` ≥ 1−γ−δ, setting γ′ = δ+γ satisfies the relation α′−γ`−1 ≥ α`−2δ ≥ 1−γ−3δ = 1−γ′−δ.
Noting that γ′ = 1− ε+ δ, by the hypothesis that GSDR[`− 1] is (1− ε+ δ`−1, ~δ, t− 1, 1)-hard
along with the bijection in Claim B this shows that the α′ pebbles in V`−1 cannot be pebbled
in t− 1 rounds. Thus, the α∗ unpebbled nodes in V` cannot be pebbled in t rounds.

Case α∗ ≥ 1/3: In this case α∗ ∈ (0.33, 0.80). It is connected to β∗ nodes in V`−1. Among
these at least α′ ≥ β∗ − ρ`−1 − δ of these are unpebbled. Since γ`−1 = γ − ρ` − ρ`−1 we get
α′ − γ`−1 ≥ β∗ − γ + ρ` − δ. Furthermore, ρ` = 1 − α` − δ ≥ 1 − α∗ − ε/2 − δ so α′ − γ`−1 ≥
β∗−γ+ 1−α∗− ε/2−2δ = β∗−α∗+ ε/2−2δ ≥ 0.12 + ε/2−2δ (from Corollary 2 we know that

26

β∗−α∗ ≥ 0.12). As in the previous case, the hypothesis that GSDR[`−1] is (1−ε+δ`−1, ~δ, t−1, 1)-
hard and Claim B imply that the α′ pebbles cannot be pebbled in t − 1 rounds as long as
0.12 + ε/2− 2δ ≥ ε− 2δ, which is true for ε ≤ 0.24.

Claim 5. If GSDR initially has at most γn black pebbles for γ ≤ 1− ε and at most δ < ε/2 red
pebbles in each layer then for ` = log2(

1
3(ε−2δ)) the unpebbled nodes in V` have unpebbled paths

from at least n/3 unpebbled nodes in some layer Vi.

Proof. Refer to Notations 1. Let αin denote the number of unpebbled dependencies of U` in Vi,
i.e. the number of nodes in Ui that have unpebbled paths to U`. Suppose that αi is bounded by
1/3 for all levels up to `− k, i.e. α` < 1/3, ..., α`−k < 1/3. We will prove the following bound:

α`−k ≥ 2k(α` − γ`/2− δ) ≥ 2k−1(α` + ε− 3δ) ≥ 2k(ε− 2δ) (3.1)

For k = log2(
1

3(ε−2δ)) this implies α`−k ≥ 1/3, which contradicts α`−k < 1/3. Therefore, it

follows that αi ≥ 1/3 at some index i > `− log2(
1

3(ε−2δ)). We conclude that if ` ≥ log2(
1

3(ε−2δ))

then there is some level Vi with at least n/3 unpebbled nodes that have unpebbled dependency
paths to the set X` of unpebbled nodes in V`.

Let j = `− i. From Corollary 1, as long as αj ≤ 1/3 the set Xj is connected to at least 2αj
nodes in Vj−1, and at most (ρj−1 + δ)n of these are pebbled. Therefore, αj−1 ≥ 2αj − ρj−1 − δ.
Now we show by induction that α`−k ≥ 2kα` − 2k−1ρ`−1 − (2k − 1)δ. The base case k = 0 is
trivial. Assuming this holds for k:

α`−k−1 ≥ 2α`−k − ρ`−k−1 − δ ≥ 2(2kα` − 2k−1ρ`−1 − (2k − 1)δ)− ρ`−k−1 − δ
≥ 2k+1α` − 2kρ`−1 − (2k+1 − 1)δ

The last inequality used the fact that
∑k

i=1 ρ`−i ≤ γ` and therefore
∑k

i=1 2k−iρ`−i is maximized
by setting ρ`−1 = γ` and ρ`−i = 0 for all i > 1.

From the identities γ` = γ−ρ` and α` = 1−ρ`− δ we derive γ` = γ+α`−1 + δ ≤ α`+ δ− ε.
Finally, inserting this into the bound above and using the fact that α` ≥ ε− δ gives:

α`−k ≥ 2k−1(2α` − γ` − 2δ) ≥ 2k−1(α` + ε− 3δ) ≥ 2k(ε− 2δ)

We could stop here as we have already shown unpebbled dependency paths from the un-
pebbled sinks in V` to a 1/3 fraction of nodes in some level for ` = O(log(1/(ε − 2δ)) and
the remainder of our PoS analysis could rely on a graph that is (n, 0.33n,Ω(n))-depth-robust.
However, we can tighten the analysis further so that we only need to assume the graph is
(n, 0.80,Ω(n))-depth robust.

Claim 6. If GSDR initially has at most γn black pebbles for γ ≤ 1 − ε and at most δ < ε/2
red pebbles in each layer then for ` = max(0.68−ε+δ0.12−δ , log2(

1
3(ε−2δ)) + 3) the unpebbled nodes in

V` have unpebbled paths to at least 0.80n unpebbled nodes in some layer Vi. In particular,
` = max(7, log2(

1
3(ε−2δ)) + 3) when δ ≤ 0.01.

27

Proof. In Claim 5 we showed that for ` ≥ log2(
2

3(α`+ε−3δ)) there exists an index i where αi ≥ 1/3

and α` + ε− 3δ ≥ 2ε− 4δ (Equation 3.1). Picking up from here, we consider what happens once
αi ≥ 1/3. We break the analysis into two cases: in the first case α` < 1/3 and in the second
case α` ≥ 1/3.

In both cases we will use a different bound on αi−k because once αi > 1/3 the unpebbled
sets may not be 2-expanding. Define the function β(α) to be the minimum bipartite expansion
of a set of fractional size α, i.e. every set of αn nodes is connected to at least β(α)n nodes in
the previous level. Let β̂(α) = β(α) − α. Using the relation αi−1 ≥ β(αi) − ρi−1 − δ we derive
that αi−2 ≥ β̂(αi−1) + β(αi)− ρi−1 − ρi−2 − 2δ and more generally, since

∑k
j=1 ρi−j ≤ γi:

αi−k ≥
k−1∑
j=1

β̂(αi−j) + β(αi)− kδ −
k∑
j=1

ρi−j ≥ (k − 1)(minj<kβ̂(αi−j)− δ) + β(αi)− γi − δ

The final ingredient is the bound γi ≤ αi − ε + δ for all i. To see this, first observe that
α` − γ` = 1 − ρ` − δ − (γ − ρ`) = ε − δ. If αi − γi ≥ ε − δ and ε > 2δ, then 0.80 > αi > δ,
and so the αin dependencies are connected to β(αi)n > (αi + δ)n nodes in level Vi−1. Therefore
αi−1 ≥ αi − ρi−1 = αi − (γi − γi−1). In words, decreasing the number of dependencies requires
using black pebbles 1-to-1, so αi−1 − γi−1 ≥ αi − γi.

αi−k ≥ (k − 1)(minj<kβ̂(αi−j)− δ) + β̂(αi) + ε− 2δ (3.2)

By Corollary 2 to Lemma 3, β̂(α) ≥ 0.12 for α ∈ (0.10, 0.80).
Case α` ≥ 1/3: First we claim that α`−i ≥ 0.12 for all i. If αi ≥ 0.12 then as shown above
αi−1 ≥ β̂(αi) + ε− 2δ ≥ 0.12 because β̂(α) ≥ 0.12 for all α ∈ (0.10, 0.80) and ε > 2δ. Our claim
thus follows by induction. Therefore, for all j ≤ k we derive that minj≤k(β̂(α`−j)) ≥ 0.12.
Equation 3.2 then shows that α`−k−1 ≥ k(0.12 − δ) + 0.12 + ε − δ, or α`−k−1 ≥ 0.80 at
k ≥ (0.68− ε+ δ)/(0.12− δ) (e.g. k = 7 when δ ≤ 0.01).

Case α` < 1/3: From Equation 3.1, αi ≥ 1/3 at some index i ≥ `− k for k = log2(
2

3(α`+ε−3δ)).

At this point αi ≥ 1/3 and γi < γ` ≤ α`−ε+δ. Combining this with Equation 3.2, we can apply
the same analysis as in the previous case to first show by induction that αi−k′ ≥ 0.12 for all k′

and then more generally: αi−k′ ≥ (k′− 1)(0.12− δ) + β(αi)−α` + ε− 2δ ≥ k′(0.12− δ) + 0.68−
α` + ε − 2δ. We used the fact that β(αi) ≥ β(0.33) ≥ 0.68. Therefore, αi−k′−1 ≥ 0.80 when
k′ ≥ (0.80− 0.68 + α`)/(0.12− δ). This shows that the total number of levels where αi < 0.80
is at most:

` = k + k′ + 1 ≤ 1 + log2
(2

3(α` + ε− 3δ)

)
+

0.12 + α`
0.12− δ

The derivative of this expression with respect to α` is 1
0.12−δ −

1
ln(2)(α`+ε−3δ) , which is initially

decreasing when ln(2)(α` + ε− 3δ) < 0.12− δ and then increasing for larger α`. Therefore, the
maxima are on the endpoints of the interval α` ∈ (ε− δ, 0.33). We already considered the case
α` = 0.33. When α` = ε− δ then the number of levels is at most 1− log2(3(ε− 2δ)) + 0.12

0.12−δ .
In conclusion, the total number of levels before αi ≥ 0.80 is at most:

` ≤ max
(
(0.68− ε+ δ)/(0.12− δ), 1− log2

(
3(ε− 2δ)

)
+ 1/(1− δ/12)

)
In particular, when δ ≤ 0.01 this becomes max(7,− log2(3(ε− 2δ)) + 3).

28

Relaxing δ Claim 6 improved on Claim 5 to show unpebbled dependency paths to 80% of the
subgraph in some layer. The final improvement is to redistribute the δi such that

∑
i δi = O(δ)

but security is still maintained. Intuitively, ensuring δ < ε is necessary on level V` as otherwise
γ + δ ≥ 1 and there are no unpebbled nodes on level V` (all the missing black pebbles can be
covered with red pebbles). However, as the dependencies expand between levels a larger δ can
be tolerated as well. Although the number of black pebbles the prover will place on each level
isn’t fixed a priori, we show that if δ < ε/2 in level V` then we can tolerate a factor 3/2 increase
between levels as long as δ ≤ 0.05 in any layer.6

That is, if δi denotes the bound on the number of red pebbles in the ith layer then our new
analysis requires δ` < ε/2 and δi = min(0.05, (3/2)δi+1). This means that the total number of
queries in the PoS over all levels is O(1/ε) because

∑`
i=1 1/δi ≤ max(0.10`, 3

2δ`
).

Claim 7. If GSDR initially has at most γn black pebbles for γ ≤ 1 − ε, at most δ` = δ < ε/3
red pebbles in layer V`, and at most δi = min(0.05, (2/3)δi−1) red pebbles in layer Vi, then for
` = max(13, log2(

1
3(ε−3δ)) + 4) the unpebbled nodes in V` have unpebbled paths to at least 0.80n

unpebbled nodes in some layer Vi.

Proof. Modifying Equation 3.1 to account for the different values of δi gives:

α`−k ≥ 2kα` − 2k−1γ` − (2k−1δ`−1 + 2k−2δ`−2 + · · ·+ δ`−k) ≥ 2kα` − 2k−1γ` −
k∑
i=1

2k−i(3/2)i−1δ`

Let σk =
∑k

i=1 2k−i(3/2)i−1. Then (4/3)σk = σk + 2k+1/3 − (3/2)k−1. Therefore σk = 2k+1 −
3k/2k−1 < 2k+1. Using γ` ≤ α` + δ` − ε and α` ≥ ε− δ` we derive the new bound:

α`−k ≥ 2kα` − 2k−1γ` − 2k+1δ` ≥ 2k−1(α` + ε− 5δ`) ≥ 2k(ε− 3δ) (3.3)

This shows that if ` ≥ log2(
1

3(ε−3δ)) then there is some level Vi where αi ≥ 1/3.

We must also modify Equation 3.2 using
∑k

j=1 ρi−j ≤ γi ≤ αi − ε+ δi:

αi−k ≥ (k − 1)minj<kβ̂(αi−j)−
k∑
j=0

δi−j + β̂(αi) + ε (3.4)

When i = ` and k is small δ`−k = (3/2)kδ` and δ` ≤ ε/3 implies:

α`−k ≥ (k − 1)minj<kβ̂(αi−j) + β̂(α`) + (
2

3
− 3k

2k+1
)ε

Otherwise, we can use δi ≤ 0.05.

αi−k ≥ (k − 1)(minj<kβ̂(αi−j)− 0.05) + β̂(αi) + ε− 0.10

Now we turn back to the two cases for αi ≥ 1/3.

6The 2/3 factor is somewhat arbitrary. In general we can choose any growth factor for δ that is smaller than
the dependency expansion factor we use in our analysis, which for d = 8 is at least 2 in subsets smaller than n/3.
The analysis could also be tightened to allow for a bound larger than 0.05. The maximum allowable δ can also
be increased if we decrease the target fraction of unpebbled dependencies, e.g. from 80% to 70%. Our analysis
here does not yet optimize this tradeoff.

29

Case α` ≥ 1/3: We claim that α`−k ≥ 0.11 for all k. This is true for α` by hypothesis.
From the equation above and the bound β̂(α) ≥ 0.12 for all α ∈ (0.10, 0.80) (Corollary 2),
α`−1 ≥ β̂(α`) − ε/12 > 0.11. Therefore, α`−2 ≥ (0.12 − 0.05) + 0.12 − (11/24)ε ≥ 0.18. Now
assume that α`−2−j ≥ 0.12 for all j < k, then α`−2−j ≥ (k − 1)0.07 + 0.12 − (11/24)ε > 0.11.
The claim follows by induction. This also shows that α`−k ≥ (k − 3)0.07 + 0.11 > 0.80 when
k = 13.

Case α` < 1/3: From Equation 3.3, αi ≥ 1/3 at some index i ≥ `− k for k = log2(
2

3(α`+ε−5δ`)).

At this point αi ≥ 1/3 and γi < γ` ≤ α` − ε+ δ`. Combining this with Equation 3.4 gives:

αi−k′ ≥ (k′ − 1)(minj<k′ β̂(αi−j)− 0.05) + β(αi)− α` + ε− 0.05− δ`

We claim that αi−k′ ≥ 0.30 for all k′. Observe that αi− 1 ≥ β(αi) − α` + ε − 0.05 − δ` ≥
0.68− 0.38 + ε− δell ≥ 0.30 for any value α` < 0.33 because β(αi) ≥ β(0.33) ≥ 0.68. Assuming
this is true for all αi−j where 1 < j ≤ k′ implies αi−k′ ≥ (k′ − 1)0.07 + 0.30 ≥ 30. Therefore,
we can state more generally that αi−k′ ≥ (k′ − 1)0.07 + 0.68 − α` and αi−k′−1 ≥ 0.80 when
k′ = (0.12 + α`)/0.07. The total number of levels where αi < 0.80 is thus at most:

k + k′ + 1 ≤ 1− log2((3/2)(α` + ε− 5δ`)) + 2 + α`/0.07

Differentiating this expression with respect to α` shows that the maxima over α` ∈ (ε −
δ`, 0.33) are on the endpoints. The endpoint α` = 0.33 coincides with the case above. At the
endpoint ε− δ` the number of levels is bounded by 3− log2(3(α` + ε− 5δ)) + ε/0.07.

In conclusion, considering both cases, the total number of levels before αi ≥ 0.80 is at most:

` ≥ max(13, 3− log2(3(ε− 3δ`)) + ε/0.07)

In particular, when ε ≤ 0.07 and δ` = δ then ` ≤ max(12, 4− log2(3(ε− 3δ)).

4 “ZigZag” DRG Proof of Replication

The Stacked-DRG PoS can be adapted into a PoRep. The replication algorithm on a data
input D with commitment τD first derives the labels on level V`−1 and then uses these as “keys”
to encode D on the last level V`. Each ith label on the final layer encodes di and uses a key
ki = H(τD||cparents(i)) where cparents(i) are the labels on all the nodes with directed edges to
the ith node in V`, including within layer V` and layer V`−1. The label ei then encodes di as
Enc(ki ⊕ di) (where e.g. Enc is a verifiable delay encoding). The replica R consists of e1, ..., en.

However, with this construction, decoding D from R (i.e. data extraction) is nearly as ex-
pensive as data replication because it requires re-deriving the keys on level V`−1 in the same way.
Once the labels on level V`−1 have been derived, then the data can be decoded as di = Dec(ei⊕ki).
Once all the labels required for each key derivation are stored in memory (requiring double the
memory if done naively) then the last step of the decoding can be completely parallelized.

The ZigZag PoRep construction fixes this with a simple tweak.

30

4.1 ZigZag PoRep Construction

The basic idea of ZigZag is to layer DRGs so that each layer “encodes” the previous layer. The
critical desired property to achieve is: if all the labels on a given level are available in memory
then the labels can decoded in parallel. To achieve this, instead of adding edge dependencies
between the layers, we add the edges of a constant degree expander graph in each layer so that
every layer is both depth-robust and has high “expansion”. Technically, the graph we construct
in each layer is an expander as an undirected graph. As a DAG this means that the union of
the dependencies and targets of any subset is large. By alternating the direction of the edges
between layers, forming a “zig-zag”, we are able to show that the dependencies between layers
expand. Now the only edges between layers are between nodes at the same index, and the
label on each node encodes the label on the node at the same index in the previous level. The
dependencies used for keys are all contained in the same layer. Thus, the labels in any layer are
sufficient to recover the labels in the preceding layer. Moreover, the decoding step can be done
in parallel.

Without alternating the direction of the edges between layers this construction would fail to
be a tight proof of space because the topologically last εn nodes in a layer would only depend
on the topologically last εn nodes in the previous layer. Moreover, if the prover stores the labels
on the topologically first (1 − ε)n nodes it can quickly recover the labels on the topologically
first (1− ε)n nodes in the preceding level, allowing it to recover the missing εn labels as well in
parallel-time O(εn).

DAG encodings As a building block the ZigZag PoRep uses the follow DAG encodings
scheme, which was used to construct PoReps based on depth robust graphs in [19, 20, 33].
The DAG encoding scheme takes in a data file X on n blocks x1, ..., xn and a d-inregular DAG
on n nodes together with its parent function Parents(i) which outputs the parent nodes of the
ith node. It also uses a randomized encoding scheme Enc,Dec. This may be as simple as the
identity function, or could use VDE encoding for added delay. The benefit of adding a delay is
to increase the time required to regenerate replicas even when n is relatively small. The delay
can be tuned appropriately for larger n. Finally, it takes in a seed σ which it uses as a salt for
a collision-resistant hash function H : {0, 1}md → {0, 1}m.

DAGEnc(~x,m, n, σ){
for i = 1 to n :

(v1, ..., vd)← Parents(i)

ki ← H(σ||cv1
|| · · · ||cvd)

ci ← Enc(ki ⊕ xi)
e← (c1, ..., cn)

return e}

Construction of GZZ [`] Similar to GSDE , the graph GZZ [`] contains a copy of an (n, 0.80n, βn)-
depth-robust graph for some constant β in each of the ` layers V1, ..., V`. The nodes in each layer
are indexed in [n]. Every odd layer overlays the edges of the DRG in the forward direction
(edges go from lower to higher indices) while every even layer the edges of the DRG in the re-
verse direction (edges go from higher indices to lower indices). Note that the even layer graphs

31

are not necessarily the reverse7 of the odd layer graphs. They are constructed by reversing the
numbering of the nodes.

Edges are added between same index nodes in adjacent layers (i.e. the ith node in layer Vk
is connected to the ith node in layer Vk+1 for all i, k). Next, the edges that were between layers
in GSDE [`] are projected into each layer of GZZ [`] with the direction of each edge determined
by the parity of the layer. We call these expander edges to distinguish8 them from other edges.
More precisely, if GSDE [`] has an edge from the ith node of a layer Vk to the jth node of layer
Vk+1 then GZZ [`] has an edge between the ith node of Vk+1 and the jth node of Vk+1. The
direction of the edges added to Vk+1 is from lower indices to higher indices when k + 1 is odd,
and from higher indices to lower indices when k + 1 is even. (For concreteness in the analysis,
the edges between layers in the reference graph GSDE are assumed to be constructed using the
degree 8 Chung random bipartite graph construction).

PoRep Replicate The ZigZag PoRep construction uses GZZ [`] to uniquely encode an input
data file D. The PoRep.Replicate algorithm derives the replica encoding of D with data tag τD
and unique identifier id as a labeling of the final layer V`. PoRep construction iterates over all
the layers from i = 1 to i = `. The labels on the ith layer re-encode the labels on the i − 1st
layer using the basic DAGEncode scheme on the subgraph (Vi, Ei) (where Ei are the edges of

GZZ [`] within the layer Vi). Each ith label e
(j)
i in layer Vj encodes the label e

(j−1)
i using key

ki,j = H(τD||cparents(i, j)) where cparents(i, j) are the labels on all the nodes with directed edges

to the ith node in Vj . The encoding e
(j)
i is then Enc(ki,j ⊕ e(j−1)i) (where e.g. Enc is a verifiable

delay encoding). Note that the encoding of the next layer can be computed just using a buffer
of size n blocks because the new encodings of the blocks are derived in reverse topological order
(i.e. the topological order of the next layer) and once a label is replaced with its fresh encoding

it is no longer needed. The final replica R consists of the encodings e
(`)
1 , ..., e

(`)
n on the final layer.

PoRep “offline” proof The compact output aux of PoRep.Replicate is nearly the same as
the PoS offline proof in the Initialization of the stacked DRG PoS. First a vector commitment
Φ to all the labels in all layers is derived. Chal samples λi uniform random challenge labels in
each layer Vi and provides their parent labels and inclusion proofs of all these labels in a vector
commitment Φ. However, the one difference is that aux also includes for each challenged label
in Vi the inclusion proof of the label it encodes in Vi−1. The verification of this proof obtains
the decoded label in Vi−1 by first deriving the keys from the parent labels provided and then
using Dec to decode each challenge label. For the challenges on layer V1 the inclusion proofs of
the encoded data inputs are with respect to τD.

PoReP Prove and Verify Likewise, the basis for the online proofs output by PoRep.Proof in
the challenge-response protocol is also the Execution challenge-response protocol of the stacked
DRG PoS. There are two variants. The first is exactly the same, containing the labels of κ

7The reverse of a graph is a graph on the same nodes with the direction of all edges reversed. While this would
still work conceptually for our construction it might not be locally navigatable. If the edges are sampled pseudo-
randomly using a random oracle then evaluating the inverse DRG.Parents function would be a linear operation.
For efficiency, it would be necessary to separately store a table defining all the edges of the graph.

8The distinction between expander edges and all other edges is important in the analysis. In particular, the
expander edges are between the same index nodes in every layer and differ only in their directionality.

32

randomly sampled nodes on the final layer V` and their inclusion proofs in the vector commitment
Φ in aux. The second variant includes in response to a challenge on the ith index of V` the ith
keys in each layer for a total of κ` keys. This enables the PoRep.Verify to check that each
challenged label correctly encodes a committed data input. It also requires the prover to run
PoRep.Extract to generate each proof. The second variant is more expensive (larger proves and
longer proving time), but achieves tighter security for the same parameters.

PoRep Extraction PoRep.Extract does the reverse operation of PoRep.Replicate on the replica
R, consisting of the n block labels in V`. Once the labels on layer Vj have been computed and
stored in memory, then each key ki,j = H(τD||cparents(i, j)) can be computed and then each label

e
(j)
i is replaced with e

(j−1)
i = Dec(ki,j ⊕ e(j)i). The keys ki,j can be computed in parallel. If they

are stored in a buffer in memory then all the labels can be decoded in parallel as well. There is a
smooth tradeoff between the additional space required and the parallel time speedup. With an
additional buffer of k blocks the labels can decoded in reverse topological order in parallelized
groups of k ≤ n blocks at a time achieving a factor k parallel speedup. Moreover, the extraction
is already faster than replication due to asymmetry in the runtime of Dec vs Enc.

PoRep Security A PoRep construction is secure if it satisfies ε-rational replication (Sec-
tion 2.3). It was shown (Lemma 2, [19]) that this security definition is satisfied9 if the PoRep
is both a PoS and a PoRC. Roughly, the PoRep achieves ε-rational replication (with soundness
error µ) if it is a PoS with a 1 − ε + δ space gap and it is a PoRC that a 1 − δ fraction of the
committed data and corresponding replica blocks are retrievable (both with soundness error µ).

While both variants can be tuned to a µ-sound (1− δ)-PoRC (Section ??) for any µ and δ,
i.e. a 1− δ fraction of the committed data inputs are retrievable from any prover passing with
probability µ, the second variant is tighter (i.e. achieves smaller δ keeping other parameters
equal). In the first variant there is a factor ` union bound loss because although the proof in
aux ensures there are a bounded number of errors (i.e. incorrectly encoded labels) in each layer,
if just one label on the ith index in one of the layers is incorrect the ith block of the replica
may no longer encode di. Here we do not care about the correctness of the keys only how many
blocks of D can be successfully decoded from R.

Our analysis will focus on proving that the ZigZag PoRep, similar to the stacked DRG PoS,
is an arbitrarily tight PoS with only ` = O(log(1/ε) layers.

4.2 Invertible pebbling games

The red-black pebbling game no longer entirely captures the PoS security of the ZigZag PoRep
due to the involvement of the encoding scheme (Enc,Dec) in the labeling rather than purely
a collision-resistant hash function. Most significantly, the labels are now invertible. In terms
of the dependency graph of the labeling computation, the keys in each layer Vi still need to
be computed in topological order, however the labels may either be derived by decoding labels
in layer Vi+1 or encoding labels in layer Vi−1. We modify the black pebbling game to capture
invertibility of labels by coloring edges.

9Technically this security reduction requires a “knowledge of compression” assumption in order to remain true
under composition with other storage protocols.

33

White & green colored edges White edges are “one-way streets” corresponding to edge
dependencies involved in deriving keys via calls to the random oracle and are treated like normal
pebbling game edges. Green edges are “two-way street”, but still have a direction and different
rules in either direction. If there is a directed green edge from u to v then a pebble can be placed
on v if and only if u and all nodes with white edges to v have pebbles. A pebble can be placed
on u if and only if v and all nodes with white edges to v have pebbles.

PoS soundness We still analyze the soundness of a PoS with invertible labels through the
game Red-Black-Pebbles as in Definition 1, however with the modification that the adversary
plays the black pebbling game with white/green edges as described above instead of the plain
black pebbling game. Unfortunately, it is no longer clear that soundness under this security
definition is equivalent to soundness of the underlying labeling game in the random oracle
model. Pietrzak [33] proved this equivalence only for parallel soundness of the standard red-
black pebbling game and the random-oracle labeling game. If Enc/Dec are modeled as random
permutations then it seems reasonable that a similar equivalence could be proven in the ideal
cipher model, where a prover who uses too little space could either compress a random ora-
cle’s function table (used to derive keys) or a random permutation’s function table. However,
exploring the details of this analysis further is beyond the scope of this paper.

Labeling games with VDEs If Enc/Dec are instantiated with a VDE scheme in order to
slow down the adversary on smaller graphs then this also subtly changes the pebbling analysis.
Queries to the VDE are significantly more expensive than queries to H so they cannot be
treated equally as pebbling moves. However, as remarked in [19], without loss of generality one
can assume a parallel adversary always queries the VDE to derive a label whenever both the
data/label input and key are available. Therefore, we can model the VDE and hash function
queries as a single pebbling move that can be made only when there are labels on all the
dependencies, including the input label and all the labels required for the key derivation.

4.3 PoS analysis of ZigZag PoRep

Our analysis follows the same general outline as the PoS analysis for the stacked DRG PoS on
GSDR[`]. Here we analyze the hardness of the modified game Red-Black-PebblesA(GZZ [`], V`,Chal)
using green/white edges, or equivalently the soundness of the PoS in this model. The directed
edges within every layer Vi are white, whereas the directed edges between the same index nodes
in adjacent layers are green. (There are no other directed edges between layers).

As before, the bulk of the analysis involves showing that pebbling the entire last level V`
(i.e. all unpebbled nodes) from an initial configuration of only (1− ε)n black pebbles overall and
a bounded number δin of red pebbles in each level requires pebbling (in topological order) an
entire 80% unpebbled subgraph in some layer. Pebbling 80% of this subgraph in topological order
requires βn parallel rounds due to the depth robustness of each layer. Using the same notation
as before, this means that GZZ [`] is (γn,~δ, βn−1, 1)-hard. The proof that this translates to PoS
soundness needs to be updated as well because Claim 4 did a case-by-case analysis using the
expansion properties of GSDR[`]. Claim 2 and Claim B are not affected by the new white/green
edge rules and the structural differences between GSDR[`] and GZZ [`] (the only relevant structural
property used in these claims is that these graphs are layered).

34

Index sets and nodes We associate nodes in any layer with indices in [n] and say that an
index “is unpebbled in Vi” if the node at that index in Vi is initially unpebbled (including
black and red pebbles). We use the same notations in Notation 1 (Section 3) to denote the Ui
unpebbled index sets and Pi pebbled index sets in each layer, with ρi, δi, and γi defined the
same.

Forward dependencies Bounding the parallel complexity of pebbling a set of nodes in GZZ [`]
is no longer as simple as tracing unpebbled directed paths in the graph due to the fact that
pebbling moves can occur in either the “forward” or “reverse” directions. The direction in
which a dependency is pebbled is important to pebbling complexity. For instance, suppose all
nodes in V2 except the nth node (call it vn) were pebbled and no pebbles were placed in V1.
The parallel complexity of completing V2 is just 3 rounds in this case: all the dependencies of
the nth node un could be pebbled in the first round, un could be pebbled in the second round,
and finally vn in the third. On the other hand, if there were pebbles on the first n− 1 nodes of
V1 then the complexity would be n rounds because all the nodes in V2 must be pebbled in the
forward direction before vn. Our analysis will focus on identifying dependencies that must be
pebbled in the forward direction, which we call forward dependencies. The following claim gives
a helpful strategy for tracing forward dependencies in GZZ [`].

Claim 8. Let X be a set of unpebbled nodes in V` of GZZ [`]. Form the set Y as follows. Initialize
Y := X. Iterate over the layers starting from V`−1. In each layer Vi add a node to Y if it is
unpebbled and has a green edge to a node in Y ∩ Vi+1 (i.e the same index node in Vi+1 is in Y).
Additionally, add to Y any unpebbled node in Vi that has a two-hop directed path to Y ∩ Vi+1

via an expander white edge followed by a green edge. All nodes in Y are unpebbled forward
dependencies of X.

Proof. The proof is by finite strong induction on the nodes added in levels ` to i. In the base
case Y just consists of X in V` and the statement is vacuously true (all nodes in X must be
pebbled in the forward direction). Now assume that all nodes added to Y in layers V`, ..., Vi+1

are forward dependencies of X. If an unpebbled node u ∈ Vi has a green edge to a node v in
Y then u must be pebbled before v because by hypothesis v must be pebbled in the forward
direction. Clearly, u must also be pebbled in the forward direction (otherwise v must be pebbled
before u). This makes u a forward dependency of X. Next consider any unpebbled u′ ∈ Vi with
a white directed expander edge to u. This is a dependency of u and therefore a dependency
of X. The node u′ also has a green edge the same index node v′ in Vi+1. Since the expander
edges are the same in each layer with alternating directions there is a directed white edge from
v to v′ and so v must have a pebble before u′ can be pebbled in the reverse direction via v′.
This cannot happen because u′ is a dependency of v. Hence, u′ must be pebbled in the forward
direction. We have shown that both u′ and u are forward dependencies of X.

The following lemma provides lower bounds on the dependency expansion of subsets in any
given layer and is the main fact needed for the remaining analysis.

Lemma 6. For any α ∈ (0, 1) and i ∈ [`] and a set X of αn unpebbled nodes in layer Vi of
GZZ [`], if α− ρi−1 − ρi−2 ≤ 1/3 then X has at least (2(α− ρi−1 − ρi−2)− δi−1 − δi−2)n forward
dependencies in layer Vi−2. Otherwise, X has at least (0.12 + α − ρi−1 − ρi−2 − δi−1 − δi−2)n
forward dependencies in Vi−2.

35

Proof. Fixing any given subset S of Vi of size αn, we define the following index sets:

• X = S ∩ Ui is the index set of the αn unpebbled nodes contained in this subset of Vi.

• X ′ = X ∩ Ui−1 is the index subset of X that is unpebbled in Vi−1

• X ′′ = X ′ ∩ Ui−2 is the index subset of X ′ that is unpebbled in Vi−2.

• Γout(X
′) are the indices of nodes on the boundary of X ′ in Vi with edges from X ′. Γout(X

′)
is disjoint from X ′ as it does not include nodes in X ′ with internal edges to X ′. Γout(X

′′) is
defined the same way for the set X ′′.

• Γin(X ′) are the indices of nodes on the boundary of X ′′ in Vi with edges to X ′. Γin(X ′′) is
defined the same.

We partition the (ρi−1 + δ)n pebbles on Vi−1 as follows:

pTi−1n = |Pi−1 ∩ Γin(X ′)| pDi−1n = |Pi−1 ∩ Γout(X
′)| pi−1n (the remaining pebbles)

Likewise, we partion the (ρi−2 + δ)n pebbles on Vi−2 into:

pDi−2n = |Pi−2 ∩ Γin(X ′′)| pTi−2 = |Pi−2 ∩ Γout(X
′′)| pi−2n (the remaining pebbles)

Define the index set Z = X ′′∪(Γout(X
′)∩Ui−1∩Ui−2)∪(Γout(X

′′)∩Ui−2). X ′′ are unpebbled
nodes connected to X via green edges. Γout(X

′) ∩ Ui−1 are unpebbled direct dependencies of
X ′ in Vi−2 due to reversal of edges, and Γout(X

′)∩Ui−1 ∩Ui−1 are connected to these via green
edges. Γin(X ′) are targets of X ′ in Vi−2 and Γin(X ′)∩Ui−2 are unpebbled direct dependencies of
X ′′. Thus, by Claim 8, all nodes at the indices Z in Vi−2 are all unpebbled forward dependencies
of X.

Finally, recall from Claim that Γin(X ′′)∪Γout(X
′′)∪X ′′ = Γ(X ′′)∪X ′′ inherits the expansion

of the bipartite expander used in the construction. Since |X ′′| = α′′ ≥ α − ρi−1 − ρi−2, in the
case that α − ρi−1 − ρi−2 ≤ 1/3 then |Γout(X

′′) ∪X ′′| ≥ 2|α − ρi−1 − ρi−2| with overwhelming
probability, assuming the expander construction uses Chung’s degree 8 bipartite expanders (by
Corollary 1, Section 2.7). Thus:

|Z| ≥ |X ′′|+ (|Γout(X
′)| − pDi−1n− pTi−2n) + (|Γin(X ′′)| − pDi−2n

≥ |X ′′|+ |Γout(X
′′)|+ |Γin(X ′′)| − pDi−1n− pTi−2n− pDi−2n

≥ (2(α− pi−1 − pi−2)− pDi−1 − pTi−2 − pDi−2)n
≥ (2(α− ρi−1 − ρi−2)− δi−1 − δi−2)n

In the case that α−ρi−1−ρi−2 ≥ 1/3 then |X ′′| ∈ (0.33, 0.80) and Γ(X ′′) ≥ 0.12 (by Claim 2,
Section 2.7).

|Z| ≥ |X ′′|+ |Γ(X ′′)| − (pDi−1 + pTi−2 + pDi−2)n

≥ (0.12 + α− pi−1 − pDi−1 − pi−2 − pTi−2 − pDi−2)n
≥ (0.12 + α− ρi−1 − ρi−2 − δi−1 − δi−2)n

36

Theorem 4. The labeling PoS on GZZ [`] with Chal sampling λ/δ challenges in each level Vi and
κ online challenges in V` is ((1− ε−2δ)n, βn−1, e−λ)-sound with κ = 2λ/ε, δ < min(0.01, ε/3),
ε+ 2δ ≤ 0.24, and ` = 2 log2(

1
3(ε−3δ)) + 18.

Proof. For any GSDR[`], if the set of unpebbled nodes in V` are connected via unpebbled paths
to at least 0.80n unpebbled forward dependencies in some prior level Vi, then pebbling all of V`
requires pebbling all these 0.80n unpebbled nodes in topological order, which requires βn − 1
rounds due to the fact that Vi is (n, 0.80n, βn) depth robust. Claim 11 thus implies that GZZ [`]
is (1−ε, ~δ, βn−1, 1)-hard where δi = δ < ε/3 for all i and ` = 2 log2(

1
3(ε−3δ))+16 when δ < 0.01.

Assuming ε+2δ ≤ 0.24, Claim 9 implies that GZZ [`+2] is (1− ε−2δ, ~δ, βn−1, 1− ε/2)-hard
extending ~δ so that δ`+1 = δ` = δ. Finally, by Claim 2 the labeling PoS on GZZ [` + 1] with
challenge set V` and Chal sampling λ in each level Vi is ((1− ε− 2δ)n, βn− 1,max{(1− δ)λ, (1−
ε/2)κ})-sound. When λi = λ/δ and κ = 2λ/ε, the PoS is ((1− ε)n, βn− 1, e−λ)-sound.

The next claim proves the same result as Claim 4 but for the graph GZZ [`].

Claim 9. For any ε + 2δ ≤ 0.24, if GZZ [` − 2] is (1 − ε + 2δ, ~δ, t − 2, 1)-hard then GZZ [`] is
(1 − ε, ~δ∗,min(βn − 1, t), 1 − ε/2)-hard where ~δ∗ is identical to ~v on all common indices and
δ = δ` = δ`−1 = δ`−2 ≤ ε/2.

Proof. Let γ = 1− ε denote the black pebbled initially placed on GSDR[`]. As noted in Claim 4,
every subset of V` of size (1 − ε/2)n contains at least (α` − ε/2)n unpebbled nodes. Without
loss of generality we assume α` − ε/2 ≤ 0.80 (otherwise these nodes already require βn rounds
to pebble).

Fixing any given subset S of V` of size (1− ε/2)n, let X = S ∩U`, the unpebbled set among
the nodes at indices S in V`. We will show that X requires more than min(βt, t) rounds to
pebble given the hypothesis that GZ [` − 2] is (1 − ε + 2δ, ~δ, t − 2, 1)-hard. Since this holds for
any choice of S this shows that GZZ [`] is (1− ε, ~δ∗,min(βn− 1, t), 1− ε/2)-hard.

As noted, |X| ≥ (α` − ε/2)n. Let α∗ = α` − ε/2− ρ`−1 − ρ`−2. The proof is broken into two
cases:

Case α∗ ≤ 1/3: Let Z denote the unpebbled forward dependencies of X inside V`−2. From
Lemma 6 we know that |Z| ≥ (2α∗ − δ)n. Thus:

|Z| ≥ 2(α` − ρ`−1 − ρ`−2 − δ)n− εn = (2(1− ρ` − ρ`−1 − ρ`−2 − 2δ)− ε)n

Let |Z|/n = α′. Using the identity γ`−2 = γ − ρ` − ρ`−1 − ρ`−2 gives:

α′ − γ`−2 ≥ 2(1− 2δ)− ρ` − ρ`−1 − ρ`−2 − γ − ε ≥ 2(1− γ − 2δ)− ε = ε− 4δ

Setting γ′ = 1− ε+ 2δ, the above relation shows that α′−γ`−2 ≥ 1−γ′−2δ. Thus, by Claim B,
if GZZ [` − 2] is (γ′, ~δ, t − 2, 1)-hard then no adversary can pebble Z in t − 2 or fewer rounds.
Since these are forward dependencies of X at least t rounds are required to pebbled X.

Case α∗ > 1/3 : In this case Lemma 6 showed that |Z| ≥ (0.12 − 2δ + α − ρ`−1 − ρ`−2)n.
Noting that α ≥ α` − ε/2 and γ`−2 = γ − ρ` − ρ`−1 − ρ`−2 and 1− ρ` − δ = α` we derive:

α′ − γ`−2 ≥ 0.12− 2δ + α` − ε/2 + ρ` − γ = 0.12− 2δ + 1− γ − δ − ε/2 = 0.12− 3δ + ε/2

37

Given that GZZ [`− 2] is (γ′, ~δ, t− 2, 1)-hard with γ′ = 1− ε+ 2δ no adversary can pebble Z
in t− 2 rounds as long as 0.12 + ε/2− 3δ ≥ ε− 2δ, which is true for ε+ 2δ ≤ 0.24.

The remaining claims complete the analysis by showing that GZZ [`] is (γn,~δ, βn − 1, 1)-
hard. These claims follow Claim 5, Claim 6, and Claim 6 very closely, substituting the new
dependency expansion relations proved in Lemma 6. We assume the reader is familiar with the
proofs of these prior claims and we will not repeat all the details.

Claim 10. If GZZ [`] for ` = log2(
1

3(ε−3δ)) initially has at most γn black pebbles for γ ≤ 1 − ε
and at most δ < ε/3 red pebbles in each layer then the unpebbled nodes U` in V` have least n/3
unpebbled forward dependencies in some layer Vi. Moreover, αi − ρi−1 − ρi−2 ≥ 1/3.

Proof. Let αi denote the fraction of nodes in Vi that are unpebbled forward dependencies of U`
with α`n = |U`|. Suppose α`−i − ρ`−i−1 − ρ`−i−2 ≤ 1/3 for i = 0 to 2k. By Lemma 6, αj−2 ≥
2(αj−ρj−1−ρj−2−δ). We prove by induction that α`−2k ≥ 2kα`−2k(ρ`−1+ρ`−2)−(2k+1−2)δ.
The base case k = 0 is trivial. Assuming this holds for k, then:

α`−2(k+1) ≥ 2(α`−k − ρ`−2k−1 − ρ`−2k−2 − δ)
≥ 2(2kα` − 2k(ρ`−1 + ρ`−2)− ρ`−2k−1 − ρ`−2k−2 − (2k+1 − 2)δ − δ
≥ 2(2kα` − 2k(ρ`−1 + ρ`−2)− (2k+1 − 1)δ) ≥ 2k+1α` − 2k+1(ρ`−1 + ρ`−2)− (2k+2 − 2)δ

We used the fact that when k > 0 the expression 2k(ρ`−1+ρ`−2)−ρ`−2k−1−ρ`−2k−2 is maximized
when ρ`−1 + ρ`−2 = γ` and ρ`−i = 0 for all i > 2.

This shows that α`−2k ≥ 2kα` − 2kγ` − 2k+1δ. Substituting γ` = γ + α` − 1 + δ ≤ α` + δ − ε
gives:

α`−2k ≥ 2kα` − 2k(α` + δ − ε)− 2k+1δ = 2k(ε− 3δ)

Therefore, αi − ρi−1 − ρi−2 ≥ 1/3 at some index i > `− log2(
1

3(ε−3δ)).

Claim 11. If GZZ [`] with ` = 2 log2(
1

3(ε−2δ)) + 20.80−ε+δ
0.12−2δ initially has at most γn black pebbles

for γ ≤ 1− ε and at most δ < min(0.06, ε/3) red pebbles in each layer then the unpebbled nodes
in V` have at least 0.80n unpebbled forward dependencies in some layer Vi.

Proof. From Claim 10 there exists an index i where Vi contains more than n/3 forward depen-
dencies of U`. We break our analysis into two cases depending on the initial size of U`. First,
there are two important subclaims:

Subclaim 1: αi − γi ≥ ε− δ for all i.

This is true for the base case α` − γ` ≥ 1 − ρ` − δ − (γ − ρ`) ≥ ε − δ. Now suppose that
αi− γi ≥ ε− δ and ε > 4δ. By the analysis in Lemma 6 and the identity γi−2 = γi− ρi−1− ρi−2
we get that αi−2 − γi−2 ≥ |Γ(X ′′)| − 2δ + αi − γi ≥ |Γ(X ′′)|+ ε− 3δ where X ′′ was a set of size
at least αi − γi − 2δ ≥ ε − 3δ ≥ δ. Thus, αi−2 − γi−2 ≥ ε − δ as long as Γ(X ′′) ≥ 2δ. As long
as δ < 0.06, then either |X ′′| < 0.10 and is at least 3-expanding (see Table 2.2, Lemma 2) so
|Γ(X ′′)| ≥ 2|X ′′| ≥ 2δ, or otherwise |X ′′| ∈ (0.10, 0.80) and Γ(|X ′′|) ≥ 0.12 (Corollary 2).

38

Subclaim 2: If αi − ρi−1 − ρi−2 > 1/3 then αi−k − ρi−k−1 − ρi−k−2 ≥ 0.12 for all k.

This is true for the base case αi by hypothesis. For the inductive step, suppose that αi−k −
ρi−k−1 − ρi−k−2 ∈ (0.12, 0.80). By the analysis in Lemma 6 and Corollary 2, αi−k−2 ≥ 0.12 −
2δ + αi − γi. Putting this together with αi−k − γi−k > ε− δ from Subclaim 1 above shows:

αi−k−2 − ρi−k−3 − ρi−k−4 ≥ 0.12− 2δ + αi−k − ρi−k−1 − ρi−k−2 − ρi−k−3 − ρi−k−4
≥ 0.12− 2δ + αi−k − γi−k ≥ 0.12 + ε− 3δ

Thus, the inductive step holds true as long as ε > 3δ.

Now we proceed with the two cases. Let α∗ = α` − ρ`−1 − ρ`−2.

Case α∗ ≥ 1/3: It follows from Subclaim 1, Subclaim 2 and Lemma 6 that α`−2k ≥ k(0.12−
2δ) + α` − γ` ≥ k(0.12 − 2δ) + ε − δ. Therefore α`−2k ≥ 0.80 for k ≥ 0.80−ε+δ

0.12−2δ (e.g. k = 8 for
δ ≤ 0.01).

Case α∗ < 1/3: By Claim 10 there exists an index i ≥ ` − 2 log2(
1

3(ε−3δ)) where αi −
ρi−1 − ρi−2 ≥ 1/3. Then just as in the previous case, Subclaim 1 and Subclaim 2 imply that
αi−2k ≥ 0.80 for k ≥ 0.80/(0.12− 2δ). Therefore, setting:

` = 2 log2(
1

3(ε− 3δ)
) + 2

0.80− ε+ δ

0.12− 2δ

there is some index i where αi ≥ 0.80. In particular, for δ ≤ 0.01, the number of required levels
is at most 2 log2(

1
3(ε−3δ)) + 16.

Acknowledgments

Dan Boneh and Nicola Greco contributed to this work through helpful comments and conversa-
tions. Nicola and Juan Benet came up with the name “ZigZag PoRep”.

References

[1] Proof of replication. Protocol Labs, 2017. https://filecoin.io/proof-of-replication.
pdf.

[2] Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko, Krzysztof Pietrzak, and Leonid
Reyzin. Beyond hellman’s time-memory trade-offs with applications to proofs of space. In
ASIACRYPT, 2017.

[3] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen.
Mimc: Efficient encryption and cryptographic hashing with minimal multiplicative com-
plexity. In ASIACRYPT, pages 191–219, 2016.

[4] Ralph Phillips Alexander Lubotzky and Peter Sarnak. Ramanujan graphs. In Combinator-
ica, 1988.

[5] Joël Alwen, Jeremiah Blocki, and Benjamin Harsha. Practical graphs for optimal side-
channel resistant memory-hard functions. In CCS, 2017.

[6] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Sustained space complexity. In
EUROCRYPT, 2018.

39

https://filecoin.io/proof-of-replication.pdf
https://filecoin.io/proof-of-replication.pdf

[7] Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi. Proofs of space:
When space is of the essence. In SCN 2014, 2014.

[8] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary
Peterson, and Dawn Song. Provable data possession at untrusted stores. In ACM Conference
on Computer and Communications Security, 2007.

[9] Leonid Alexandrovich Bassalygo. Asymptotically optimal switching circuits. In Problemy
Peredachi Informatsii, 1981.

[10] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In
Theory of Cryptography, 2016.

[11] Dan Boneh, Joseph Bonneau, Benedikt Bunz, and Ben Fisch. Verifiable delay functions.
2018. To appear in CRYPTO 2018.

[12] Kevin D. Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: theory and im-
plementation. In CCSW’09 Proceedings of the 2009 ACM workshop on Cloud computing
security), 2009.

[13] Dario Catalano and Dario Fiore. Vector commitments and their applications. In PKC 2013,
2013.

[14] Ethan Cecchetti, Ian Miers, and Ari Juels. Pies: Public incompressible encodings for de-
centralized storage. Cryptology ePrint Archive, Report 2018/684, 2018. https://eprint.
iacr.org/2018/684.

[15] F.R.K. Chung. On concentrators, superconcentrators, generalizers, and nonblocking net-
works. In Bell System Technical Journal, 1979.

[16] Moni Naor Cynthia Dwork and Hoeteck Wee. Pebbling and proofs of work. In CRYPTO,
2005.

[17] Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs of retrievability via hardness
amplification. In Theory of Cryptography Conference (TCC), 2009.

[18] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak.
Proofs of space. In CRYPTO, 2015.

[19] Ben Fisch. Poreps: Proofs of space on useful data. Cryptology ePrint Archive, Report
2018/678, 2018. https://eprint.iacr.org/2018/678.

[20] Ben Fisch, Joseph Bonneau, Juan Benet, and Nicola Greco. Proofs of replication using
depth robust graphs. In Blockchain Protocol Analysis and Security Engineering 2018, 2018.
https://cyber.stanford.edu/bpase2018.

[21] Antonio Faonio Giuseppe Ateniese, Ilario Bonacina and Nicola Galesi. Proofs of space:
when space is of the essence. In Security and Cryptography for Networks, 2014., 2014.

[22] Dan Boneh Henry Corrigan-Gibbs and Stuart Schechter. Balloon hashing: a provably
memory-hard function with a data-independent access pattern. In Asiacrypt, 2016.

[23] Ari Juels and Burton S Kaliski Jr. Pors: Proofs of retrievability for large files. In Proceedings
of the 14th ACM conference on Computer and communications security, pages 584–597.
Acm, 2007.

[24] Arjen K Lenstra and Benjamin Wesolowski. A random zoo: sloth, unicorn, and trx. IACR
Cryptology ePrint Archive, 2015, 2015.

[25] Sergio Demian Lerner. Proof of unique blockchain storage, 2014. https://bitslog.

wordpress.com/2014/11/03/proof-of-local-blockchain-storage/.
[26] Benôıt Libert, Somindu C. Ramanna, and Moti Yung. Functional commitment schemes:

From polynomial commitments to pairing-based from simple assumptions. In ICALP, 2016.
[27] Benôıt Libert and Moti Yung. Concise mercurial vector commitments and independent

40

https://eprint.iacr.org/2018/684
https://eprint.iacr.org/2018/684
https://eprint.iacr.org/2018/678
https://cyber.stanford.edu/bpase2018
https://bitslog.wordpress.com/2014/11/03/proof-of-local-blockchain-storage/
https://bitslog.wordpress.com/2014/11/03/proof-of-local-blockchain-storage/

zero-knowledge sets with short proofs. In TCC, 2010.
[28] Mohammad Mahmoody, Tal Moran, and Salil P Vadhan. Time-lock puzzles in the random

oracle model. In CRYPTO. Springer, 2011.
[29] Silvio Micali. Computationally sound proofs. In SIAM Journal on Computing., 2000.

Preliminary version appeared in FOCS 1994.
[30] Salil Vadhan Omer Reingold and Avi Wigderson. Entropy waves, the zig-zag graph product,

and new constant-degree expanders and extractors. In FOCS, 2000.
[31] Sunoo Park, Krzysztof Pietrzak, Albert Kwon, Joël Alwen, Georg Fuchsbauer, and Peter

Gai. Spacemint: A cryptocurrency based on proofs of space. Cryptology ePrint Archive,
Report 2015/528, 2015. http://eprint.iacr.org/2015/528.

[32] Ronald L. Graham Paul Erdös and Endre Szemeredi. On sparse graphs with dense long
paths. In Computers & Mathematics with Applications, 1975.

[33] Krzysztof Pietrzak. Proofs of Catalytic Space. Cryptology ePrint Archive # 2018/194,
2018.

[34] Arnold K. Pizer. Ramanujan graphs and hecke operators. In Bull. Amer. Math. Soc., 1990.
[35] Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In TCC, 2016.
[36] Uwe Schöning. Better expanders and superconcentrators by kolmogorov complexity. In

SIROCCO, 1997.
[37] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In Asiacrypt, 2008.
[38] R. Michael Tanner. Explicit concentrators from generalized n-gons. In Siam Journal on

Algebraic and Discrete Methods, 1984.
[39] Martin Tompa. Time-space tradeoffs for computing functions, using connectivity properties

of their circuits. In STOC, 1978.
[40] Leslie G. Valiant. Graph-theoretic properties in computational complexity. In Journal of

Computer and System Sciences, 1976.

A Concurrent work: PIEs

Independently and concurrently10 to our work, Cecchetti et. al. [14] proposed a similar idea to
our stacked DRGs (using butterfly networks instead of expander graphs) to construct what they
called publicly incompressible encodings (PIEs).

PIE vs tight PoS A PIE has a similar soundness security definition to a PoS (c.f. Definition
1 in [14] and Page 7 [18] or Definition 9 [33]). An “n-encoder” PIE is a special case of a graph
labeling PoS. An additional correctness requirement of a PIE is that the labeling is decodable
(exactly like PoReps based on graph labeling, see definitions in [19,33]). However, the soundness
of a PIE is weaker than a PoS because the definition of a PIE assumes that the prover cannot
cheat in the computation of the encoding. Equivalently, it assumes the verifier knows the
correct labeling of the graph. A PoS addresses the more general setting that the verifier does
not know the correct labeling. The authors of PIEs remark that proving to a weaker verifier that
the labeling was computed correctly is orthogonal, however this tends to be the most critical
component affecting proof size and thus practicality of the construction. (In fact, to convert

10A preprint of their paper was first made publicly available on same day as a technical report containing
the constructions described in this work, https://web.stanford.edu/~bfisch/porep_short.pdf, and the full
version of this paper was submitted to Cryptology ePrint Archive a week later.

41

http://eprint.iacr.org/2015/528
https://web.stanford.edu/~bfisch/porep_short.pdf

the construction they propose using stacked Butterfly graphs into a PoS using interactive oracle
proofs would result in approximately a factor log n larger proof size than the construction we
propose using stacked expander graphs, or a factor log n larger SNARK proof complexity if
using SNARKs to compress the proof size). Nonetheless, a PIE combined with a suitable proof
of correct encoding would result in a tight PoS and PoRep.

Proof size: Butterfly graphs vs expanders The specific construction of a PIE proposed
in [14] uses stacked DRGs (exactly like our construction), but connects each adjacent layer
with a Butterfly graph instead of expander edges. Each layer has an n-node (n, α, β)-DRG and
layers are connected by a Butterfly graph, each consisting of (n/2) log n nodes and n log n edges.
Instantiating the generic graph-labeling PoS or PoRep on this graph also gives a tight PoS
or PoRep provided that the proof involves sufficient queries to bound the number of incorrect
labels in each layer and Butterfly connector to δn. This requires the proof to query (λ/δ) log n
labels in each layer/connector, for a total of (λ/δ)` log n overall. We prove in Appendix B that
` = 1/(1 − α) layers is sufficient.11 For concrete comparison, when α = 0.80 and ε = 0.01 the
number of proof queries required for the stacked DRGs with Butterfly graphs is proportional to
5 log nλ/ε and with expander graphs it is proportional to 11λ/ε. The Butterfly graph proofs are
already a 5× larger for kilobyte size data, and is 15×-20× larger for gigabyte or terabyte size
data.

Compression-robustness vs proof of space Cecchetti et. al. introduce a definition called
compression-robustness and prove that the stacked DRGs with Butterfly graph connectors is
compression-robust. A (1, δ)-compression-robust graph is a DAG with n sources, n sinks, bal-
anced “data” input/output edges on each internal node, and all other edges treated as “key”
edges such that after removal of fewer than n data edges and all key edges that share an origin
node with one of these data edges there remains a path ending in a sink that includes at least
δn key edges. Any DAG with n sources/sinks and balanced data input/output edges in which
deletion of fewer than n nodes leaves a path of length at least δn (containing δn key edges)
ending in a sink satisfies this property. This is because any path that remains after removing
these nodes would also remain after removing only outgoing edges of these nodes. In fact, this
covers many cases, except the case where a node in the path has multiple data outputs and does
not contribute a key edge to the path.

Compression-robustness of the underlying encoder graph does not in general imply that
the graph encoding is a proof of space, or even a PIE, at least not with the same tightness.
Namely, we can provide a simple counterexample of a (1, δ)-compression-robust graph for which
the adversary can compress its storage to n − 1 data outputs and still recompute the nth
data output with fewer than δn sequential rounds of KDF/PRP oracle queries. The reason
this counterexample exists has to do with the fact that data labels can either be computed
from upstream labels (predecessors) using KDF/PRP or also decoded from downstream labels
(successors) using the inverse PRP. This means that a long path in the graph that remains after
removing data edges (or equivalently unpebbled path after placing pebbles) does not necessarily
need to be recomputed in topological order and therefore may not require sequential work.

11While it was proved in [14] that removal of fewer than n edges from the entire graph with 1/α + 1 layers
leaves a path of length βn, it was not proven that this missing path is sequentially hard to pebble. Furthermore,
the analysis did not show that this construction combined with an imperfect proof of correct encoding is a proof
of space (i.e. when the prover is allowed up to δn errors per level).

42

Compression-robustness is insufficient for PoS/PIE The counterexample graphG′ starts
with any (1, δ)-compression-robust graph G on n− 1 sources U and n− 1 sinks V and builds a
new graph G′ as follows. Add n − 1 new sources, connecting each source to a distinct node in
U , and n− 1 new sinks, connecting each node of V to a distinct sink. Next add key edges to U
and V turning each into a complete DAG. Finally, add an nth source u, an nth sink v, and a
node w that connects u to v via single input/output “data” edges. Add key edges from every
node in U and V to w. We claim this DAG is (1,min(δ, 1/2))-compression-robust. Consider any
removal of n− 1 data edges. If any of these edges include any edge incident on u, w, or v, then
fewer than n− 1 data edges are removed from G. By construction, this means that G contains
a path containing at least δn key edges and ending in a sink. Otherwise, no edges incident to
u, w, or v are removed. Furthermore, fewer than n/2 edges have been removed from either U
or V , thus one of U or V still contains a path of at least length n/2 (along key edges). The
endpoint of this path connects via a non-removed key edge to w, which connects to the sink v.
Therefore, the graph is (1,min(δ, 1/2))-compression-robust. On the other hand, if an adversary
stores only the data outputs to the first n − 1 sinks then it can decode all the labels of G in
parallel. Once it has computed these labels it can recover the labels on the data outputs of w
and v in two sequential steps.

This first counterexample showed there exists a (1, δ)-compression-robust graph encoding
that the adversary can “compress” to n− 1 data outputs. We now give another counterexample
for which the adversary achieves a larger compression factor. Consider two stacked copies of
G′, a (1, δ)-compression-robust graph on n/2 nodes, connected such that the sinks of the first
copy G′1 are the sources of the second copy G′2. We then add n/2 new sinks V and sources
U connected via an intermediary layer of n/2 nodes W so that each u ∈ U is connected to
a unique v ∈ V via a unique intermediary w ∈ W . Finally, add key edges from every non
sink/source nodes in G′′ = G′1 ∪G′2 to each node in W . Suppose that k data output edges from
W to the sinks V are removed, and n − k − 1 data edges from G′′ are removed for a total of
n − 1 removed edges. If k ≥ n/2 then there are fewer than n/2 − 1 edges removed from G′′,
hence there is a path including δn/2 key edges ending in a sink of G′′. Otherwise, if e1 is the
number of data edges removed from G′1 and e2 is the number of data edges removed from G′2
then min(e1, e2) ≤ n/2 − k − 1. If e2 is the smaller value then there is a path including δn/2
key edges ending in a sink of G′′. If e1 is the smaller value, then there are at least k distinct
paths including δn/2 key edges in G′1 ending in k distinct sinks of G′1. Although these are not
sinks of G′′, at least one of these paths connect to a sink in V because every node in G′1 whose
data output has not been removed still has key edges to every node in W . At least one data
output from some w ∈ W to some v ∈ V has not been removed because k < n/2, hence the
path in G′1 connects to v. Thus, this graph is (1, δ/2)-compression robust. On the other hand,
if the adversary stores only the n/2 data outputs of G′′, then it can decode in 2` rounds of
parallel queries all the data labels in G′′, where ` is the number of layers in G′, and then recover
the data outputs to the sinks V in a single additional round of parallel queries. In total this
requires 2` + 1 parallel operations, (e.g. O(log n) when G′ is constructed with stacked DRGs
and Butterfly graph connectors).

In summary, this counterexample demonstrates the existence of an n-encoder graph in which
removing fewer than n data edges leaves a path along at least δn/2 key edges, yet the PoS/PIE
adversary can compress its storage of the encoding by at least a factor two (storing only n/2
data labels) and can recover the entire encoding without doing significant sequential work.

In the following section, we provide a different analysis of this construction, which is simplified

43

Figure A.1: Illustration of the counterexample graph built from two mock (1, δ)-“compression-
robust” graphs G′1 and G′2 on n/2 nodes. The result is a (1, δ)-“compression-robust” whose
labeling game is neither a tight PoS nor a PIE. Red edges are key edges and blue edges are data
edges.

by using the fact that Butterfly graphs are superconcentrators [39,40]. Superconcentrators with
n nodes and n sinks have the property that any k sinks are connected to any k sources via k
vertex disjoint paths. In this sense they have similar connectivity properties to extreme bipartite
expanders. This analysis also accounts for the bounded number of deliberate errors the adversary
can make in its computation of the graph labels (using a pebbling game analysis).

B Stacked DRGs with Superconcentrators

We show that instantiating the generic graph-labeling PoS on stacked DRGs connected between
layers with superconcentrators instead of bipartite expanders (as in our construction) is also a
tight PoS. This is a generalization of the construction described in [14]. Stacked superconcen-
trators (specifically stacked Butterfly graphs) have also been used before in the literature on
proofs of space [7], just like stacked bipartite expanders [35]. They were also used in the PoS
construction by Dziembowski et. al. in combination with DRGs [18]. The main difference here
is how the DRGs and superconcentrators are interleaved, achieving a tighter PoS, and also how
they are used to encode data.

The proof is quite straightforward and in particular much easier than analyzing the stacked
DRGs with expanders. An n-superconcentrator is a graph with n sources and n nodes such that
that any k ≤ n sources and k nodes are connected via k vertex disjoint paths. The Butterfly
graph is a special superconcentrator on n log n nodes where all nodes except the sources have
in-degree two and all except the nodes have out-degree two [39, 40]. More generally, an n-
superconcentrator is d-balanced if every non-source has in-degree d and every non-node has
out-degree d. If Vi and Vi+1 are connected via a superconcentrator with balanced in-degree and
out-degree then the graph labeling on Vi+1 can encode the data labels on Vi (similar to the
ZigZag PoRep). Each node assigns a unique component of its data label to each of its outgoing
edges, and the label on each node is a PRP of the data inputs associated with each incoming

44

edge.

Graph construction and labeling The graph GDRSuper consists of layers V1, ..., V` where
each Vi contains n nodes and the edges of a depth robust graph. A layered set of nodes Gi and
edges Ei connect Vi to Vi+1 such that (Vi ∪ Gi ∪ Vi+1, Ei) is a d-balanced n-superconcentrator
with sources Vi and nodes Vi+1. Note that the edges Ei of the superconcentrator do not include
any edges internal to Vi or Vi+1. A labeling is then computed such that the label on each node
of Gi encodes components of the labels on each of its parent nodes and each node of Vi encodes
components of the labels on each of its parent nodes in Gi−1. Every label is broken into d blocks,
represented as a length d vector. The jth component of a label c is denoted c[j]. Concretely, if
a node v ∈ Gi has d predecessors v1, ..., vd and the edge (vj , v) is the ejth outgoing edge from
vj , then the label on cv is Enc(cv1 [e1], ..., cvd [ed]). The label on node v ∈ Vi that has parents
v1, ...vd in Gi−1 and parents u1, .., ud′ in Vi is a keyed encoding Enc(kv, cv1 [e1], ..., cvd [ed]) where
kv = H(cu1 , ..., cud′). This is exactly like ZigZag PoRep which treats labels on parents in the
previous level as data inputs and all other parent labels as key derivation inputs.

Pebbling game vs labeling game Placing/storing a pebble on a node v corresponds to
computing/storing its label cv. A green edge corresponds to a data input and a white edge
corresponds to a key input. Recall that the rules of the pebble game with white/green edges are
that a pebble can only be placed on v if there are pebbles on all its immediate parent nodes, or
alternatively if for each of its children nodes u such that (v, u) is a green edge there is a pebble
on u and all nodes with white edges to u.

When the key derivation uses a random oracle then intuitively the key derivation inputs,
namely the labels on all the nodes with white edges to v, must be known before the key for v
can be derived. As noted in our analysis of ZigZag PoRep, when Enc is a PRP (modeled as an
ideal cipher) then intuitively all the components on the parent labels that are input to cv must
be known, along with the key, before cv can be even partially computed from these inputs (in
the forward direction). Additionally cv can be completely decoded only if all the labels on the
nodes that encode components of cv are known (i.e. nodes with data edges from v). While each
ith component of cv could be individually decoded from the label on the target of the ith edge
from v, these components are not useful to derive any new labels that are known.

This only provides heuristic intuition for why the pebbling game captures the security of the
labeling game and is not a proof! A formal proof requires an adaptation of Pietrzak’s analysis
of the random oracle labeling game and black pebbling game to show that any adversary who
defeats the labeling game in some number of rounds with s bits of storage can be used to
construct an adversary who defeats the pebbling game in the same number of rounds with
≈ s/m initial pebbles (m is length of the label), as otherwise it could compress the function
table of the random oracle and/or ideal cipher.

Analysis Our first two claims establish that for any pebbling strategy using fewer than n
black pebbles and appropriately bounded red pebbles in each level, a constant fraction of the
final layer of nodes V` in GSuperDR[`] are endpoints of long paths, i.e. of length at least βn,
on unpebbled nodes. Furthermore, each node in this long path individually connects via an
unpebbled path along green (data) edges to an unpebbled node in V`. This detail is important
for showing that the long path must be pebbled in topological order in the black pebbling game
with white/green edges.

45

In rough comparison to the analysis of [14] for the special case of Butterfly graphs, our
Claim 12 encompasses their Theorem 2. Claim 13 matches their Proposition 1, but also takes
into account the additional red pebbled nodes (i.e corresponding to any incorrectly derived
labels not caught by the probabilistic proof of correctness). Finally, Claim 14 shows that the
unpebbled paths identified in Claim 13 require sequential work to pebble (i.e. they must be
pebbled in topological order) in the game with white/green edges, where pebbling can occur in
both forward/reverse directions along green edges (corresponding to encode/decode operations
respectively). This was not shown in the previous analysis [14].

Claim 12. Let GSuperDR[`] be the graph described above with ` = 1
1−α−δ layers of stacked DRGs

where each layer is connected by a balanced n-superconcentrator and each DRG is (n, α, β) depth
robust. For any ε > 0, if (1− ε)n black pebbles are initially placed on GDRSuper[`] with at most
δn additional pebbles on each level Vi ∪Gi where δ < ε/2 then there exists an unpebbled path P
of length at least βn ending in an unpebbled node of V`. Moreover, every node in P individually
connects via a path on green edges (i.e. data edges) to an unpebbled node in V`.

Proof. Let ρi denote the number of black pebbles placed on Vi ∪ Gi. Let Ui denote a set of
unpebbled nodes in Vi of size ui. Let W be any subset of ui nodes in Vi−1. There are ui
vertex disjoint paths starting from ui distinct nodes in W , passing through Gi−1, and ending
in ui distinct nodes in Ui. Since there are at most ρi−1 + δn pebbles on Vi−1 ∪ Gi−1 at least
ui − ρi−1 − δ of these paths do not contain any pebbles. Assuming ui − ρi−1 − δ > 0, there
exists at least one unpebbled path from W to Ui starting at a node w ∈W . All these paths are
exclusively along green edges, they do not involve the edges internal to Vi−1 or Vi.

Form a new W ′ ⊆ Vi−1 of the same size by removing w and adding a new w′ from Vi−1 \W .
Repeating the argument shows the existence of another unpebbled path from W ′ to Ui. Repeat
the process of removing one of the starting nodes of an unpebbled path from Vi−1 to Ui each time
and adding a new node from Vi−1 that has not yet been included. This iterative process continues
1− ui times until there are no more fresh nodes to be included, and removes in sequence 1− ui
starting nodes of unpebbled paths to Ui. The remaining nodes in the final set W ′′ contain an
additional ui−ρi−δn unpebbled vertices with unpebbled paths to Ui. Thus, the total number of
distinct nodes in Vi−1 with unpebbled paths to Ui is at least n−ui+ui−ρi−1−δn = n−ρi−1−δn.
Denote this set by Ui−1 and ui−1 = |Ui−1|. We have shown that ui−1 ≥ n− ρi−1 − δn provided
that ui ≥ ρi−1 − δn.

Consider U` to be the set of all unpebbled nodes in V`. For each i < `, let Ui be the set of
unpebbled nodes in Vi that are connected via unpebbled paths to the set Ui+1, or equivalently
by induction they are the set of unpebbled nodes in Vi that are connected to U` via unpebbled
paths. We now prove by induction that |Ui| = ui ≥ n− ρi − δn using the result of our analysis
above. First, u` = n− ρ`− δn and ρ` ≤ (1− ε)n− ρ`−1, so u` ≥ εn+ ρ`−1− δn. Since ε > 2δ by
hypothesis this also shows u` > ρ`−1 + δn. Next, assuming that ui+1 ≥ ρi + δn, it follows that
ui ≥ n−ρi− δn as shown above. Therefore ui−ρi−1− δn ≥ n−ρi−1−ρi−2δn ≥ (ε−2δ)n > 0.
By induction, every ui ≥ ρi−1 + δn and ui ≥ n− ρi − δn.

Equivalently, we have shown that for all i, ρi ≥ n − ui − δn. Suppose that u1, ..., u` < αn.
Then

∑`
i=1 ρi > (1−α−δ)n` > (1−ε)n. This contradicts the hypothesis that

∑`
i=1 ρi ≤ (1−ε)n.

Therefore, it must be the case that ui ≥ αn for some i ≤ `. Each of these ui unpebbled nodes
in Vi connects via a green edge unpebbled path to U`. Furthermore, among these ui unpebbled
nodes in Vi there is an unpebbled white edge path of length βn because Vi is (n, α, β) depth

46

robust. The endpoint of this path is still in Ui and is thus connected via an unpebbled green
edge path to U`.

Claim 13. For any ε > 0, if (1 − ε)n black pebbles are initially placed on GDRSuper[`] with at
most δn additional pebbles on each level Vi ∪ Gi where δ < ε/4, then there are at least εn/2
unpebbled paths of length at least βn ending in εn/2 distinct nodes in V`. All nodes along all of
these paths individually connect via green edge paths to an unpebbled node of V`.

Proof. By the same reasoning as Claim (Section 3), if for any configuration of γn black pebbles on
the graph GSuperDR[`] with δn additional red pebbles in each Vi ∪Gi there exists an unpebbled
path of length t ending in an unpebbled node of V`, then for any configuration of γ′n black
pebbles placed on nodes outside V` and δn red in each level, every set U of (1− (γ − γ′)− δ)n
unpebbled nodes in V` contains at least one endpoint of a length t unpebbled path. This is
simply because the remaining nodes in V` \ U can be entirely pebbled with (γ − γ′)n black and
δn red pebbles for a total usage of γn black pebbles overall.

If (1− ε)n black pebbles are placed overall then certainly at most (1− ε)n are placed outside
of V`. Setting ε′ = ε/2, and further restricting δ < εn/4, we have already shown in Claim 12 that
for any configuration of ε′n black pebbles with δn red in each level leaves an unpebbled path of
length βn ending in V`. Moreover, all nodes along this path are connected via an unpebbled path
along green edges to V`. Therefore, equating γ = 1−ε/2 and γ′ = 1−ε, every set of (1−ε/2−δ)n
unpebbled nodes in V` contain an endpoint of an unpebbled path of length βn. There are at
least (1 − ε − δ)n unpebbled nodes U in V` for any configuration of the (1 − ε)n black pebbles
and red pebbles, therefore at least εn/2 nodes in U are the endpoints of length βn unpebbled
paths. To see this, consider subsets of U of size (1 − ε/2 − δ)n. Each subset U ′ ⊆ U contains
the endpoint of a length βn unpebbled path. We iterate the following procedure. Remove one
of these endpoints from U ′ and place it in a list of used nodes, then form a new subset of the
same size by adding a node in U \ U ′ that is not in the used list. After ε/2 iterations there are
no more unused nodes and ε/2 distinct endpoints have been identified and added to the list.

Finally we show that for any unpebbled directed path P in GSuperDR[`] of length t consist-
ing of nodes that all connect individually via an unpebbled green edge path to a node in V`,
any pebbling strategy requires at least t rounds to pebble P in the black pebbling game with
white/green edges.

Claim 14. Any unpebbled path P in GSuperDR[`] consisting of nodes that each individually
connect via unpebbled green edge paths to an unpebbled node in V` requires t rounds to pebble in
the black pebbling game with white/green edges, where edges between two nodes in some Vi are
white and all other edges are green.

Proof. We can break up a path P into green edge sections and white edge sections. A white edge
section of a path is a directed path within some Vi, whereas green edge sections pass through
some Gi. We separately claim that white edge sections and green edge sections must be pebbled
in topological order by any pebbling strategy. Furthermore, if a white edge section in some Vi
precedes a green edge section that connects Vi and Vi+1 then the white edge section must be
pebbled in topological order before the green edge section.

First consider a green edge section Pg ⊆ P . Pg is also a segment of an unpebbled green
edge path to a node in V` because by hypothesis the endpoint of Pg connects via an unpebbled

47

green edge path to a node in V`. We now prove by induction that any unpebbled green edge
path ending in a node in V` must be pebbled in topological order. This implies that Pg must
be pebbled in topological order. For the base case, there is only one node (a node in V`), and
the claim is trivial. Now suppose that any unpebbled directed path of length t− 1 along green
edges ending in V` must be pebbled in topological order. Let P ′ be a length t unpebbled green
edge path to V` starting at a node u. P ′ breaks into a path P ′′ of length t− 1 starting at v and
a node u with a directed green edge to v. The only way to pebble v is either by first pebbling
its parents (including u) or by first pebbling the targets of all its green edges (assuming it has
at least one green edge target). If v is in V` then it doesn’t have any green edge targets, and
therefore can only be pebbled via its parents. If v is not in V` then it has a directed edge to
another vertex w in P ′′, hence by hypothesis any strategy must pebble v before w. This implies
u must be pebbled before v, hence P ′ must be be pebbled in topological order. We conclude
that Pg must be pebbled in topological order.

Second consider a white edge section Pw ⊆ P in some Vi that precedes a green edge section Pg
connecting Vi to Vi+1. By hypothesis all nodes in this path individually connect via unpebbled
green edges paths to Vi+1. Consider any node u along the path. We claim that any pebbling
strategy which pebbles this path does not pebble u via its green edge targets. Since u connects
via an unpebbled green edge path to V`, at least one of its green edge targets is unpebbled.
Furthermore, these two nodes are along an unpebbled green edge path ending in V` and thus
must be pebbled in topological sequence as already shown. Since each node of Pw cannot be
pebbled via its green edge targets, they are each pebbled via their parent nodes, which include
their predecessors in Pw. Therefore Pw must be pebbled in topological order. Finally, as both
Pw and Pg must be pebbled in topological order and the starting node v of Pg is the ending
node of Pw, it follows that Pw must be pebbled before Pg.

C Mixing Data Labels in Stacked DRGs with Expanders

Cecchetti et. al. introduced a very nice idea, which is to split data across over multiple output
edges, effectively mixing the data encoded by different labels and not just the key derivation
dependencies. This works as long as the non sink/source nodes have balanced in-degree and
out-degree (for data edges). Our stacked construction with bipartite expanders naturally has
balanced in-degree and out-degree for edges crossing between layers since Chung’s randomized
construction is a d-regular bipartite expander. Thus, with degree 8 expanders we can break up
the labels into 8 components on every node that are each propagated along a different output
edge, just as in the construction using d-balanced n-superconcentrator connectors. This turns
the Stacked-DRG PoS into a PoRep that admits parallelized decoding. The advantage over
ZigZag PoRep is the number of layers in the stacked DRGs with bipartite expanders, for which
we were able to give a tighter bound (by roughly a factor of two). Even the buffer size used for
the encoding need not exceed the file size. The data components along all input edges to a node
on the next level are consumed all at once and space can be freed for the data components of the
newly computed label. The locality of data writes is not preserved and tracking the locations of
stored data label components is more complex, as they are no longer simply stored within the
buffer at the node’s index.

48

