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Abstract. In this paper, we propose a novel cryptanalytic technique
called correlated sequence attack on block ciphers. Our attack exploits the
properties of given key dependent sequences of length t to obtain other
keyed sequences of same length with σ (0 ≤ σ < t) computations of the
non-linear function. We call these sequences (σ, t)-correlated sequences,
and utilize them in a meet-in-the-middle attack for 2t rounds. We apply
this technique on Simon-32/64 and Simeck-32/64 block ciphers, con-
struct (1, 8)-correlated sequences and present the first 25-round attack
on both ciphers. Next, we analyze the 8-th element of these sequences
by considering the key scheduling algorithms and differential properties,
and show that the attack can be improved by two rounds with the same
complexities as of the 25-round attack. Overall, our technique is used
to attack up to 27 rounds of both Simon-32/64 and Simeck-32/64 with
a time complexity less than that of average exhaustive search and data
complexity of 3.
Our attack extends the number of previously attacked rounds by 4 and
has a success probability 1. This reduces the security margin of both
these ciphers to 16%. Up to our knowledge, this is currently the best
attack on Simon-32/64 and Simeck-32/64.

Keywords: Correlated sequences, Simon, Simeck, Meet-in-the-middle
attack

1 Introduction

Over the past few years, lightweight cryptography has been actively discussed in
academia and industry to target the challenges posed by resource constrained en-
vironments such as RFID (EPC tags and NFC), IoT devices and sensor networks.
As a result, several lightweight block ciphers such as HIGHT [15], PRESENT [7],
LED [14], KATAN and KTANTAN [10], PICCOLO [23], SIMON and SPECK
[5], SIMECK [30], SKINNY [6], GIFT [3] have been proposed. Recently, National
Institute of Standards and Technology (NIST) intiated a call for the standard-
ization of lightweight cryptographic primitives due to the noticeable lack of such
standards [1, 20].

Among most of the aforementioned block ciphers, Simon [5] designed by the
US National Security Agency (NSA) in 2013, acheive overwhelming performance



in hardware due to its simple non-linear round function which consists of bitwise
XORs and ANDs only. Later in CHES 2015, Yang et al. [30] proposed Simeck
that has a smaller hardware footprint than Simon, by combining the good design
components of both Simon and Speck.

Initially, the designers of Simon neither provided design rationale nor security
evaluation, and Simeck adopts the similar structure. Accordingly, both ciphers
attracted a lot of attention from the cryptographic community. Several papers
have analyzed their security and investigated the parameter choices of the round
function to get a deeper understanding of design rationale of these ciphers [2, 8,
9, 13, 16, 17, 18, 19, 21, 22, 24, 26, 28, 27, 31]. Currently, the best cryptanalytic
results on Simon and Simeck are reduced-round differential/linear and integral
attacks. As a result, the average security margin1 of ten variants of Simon and
three variants of Simeck is 29% and 20%, respectively [4, 8, 21, 22]. The smaller
versions, namely Simon-32/64 and Simeck-32/64, with blocksize and keysize, 32
and 64-bit, respectively, have security margin of 28%.

In this work, we propose a new attack called correlated sequence attack and
show that the application of this attack on Simon-32/64 and Simeck-32/64 re-
duces their security margin to only 16%. Table 1 depicts a summary of the
cryptanalytic results on Simon-32/64 and Simeck-32/64. In what follows, we list
the contributions of this paper.

– We present a novel attack technique called correlated sequence attack on
block ciphers. For a fixed key, we consider t rounds of cipher as a keyed se-
quence of length t, i.e, (s0, s1, . . . , st−1), where si is the state at i-th round.
Our attack exploits the properties of given keyed sequences of length t to ob-
tain other keyed sequences of same length with σ (0 ≤ σ < t) computations of
the non-linear function. We call these sequences (σ, t)-correlated sequences.
We show how to utilize these sequences in a meet-in-the-middle attack for
2t rounds. Unlike other attacks [16, 17, 22, 29], this attack works without
the use of dedicated programming tools such as SAT/SMT or Mixed Integer
Linear Programming solvers.

– We apply the method of correlated sequences on Simon-32/64 and
Simeck-32/64, and provide the theoretical construction of (1, 8)-correlated
sequences. We show that all keyed sequences can be computed linearly from
the keyed sequences whose 6-th element is zero.

– We use (1, 8)-correlated sequences for 6 encryption and 6 decryption rounds
in a meet-in-the-middle attack [12] and present the first 24 and 25 round key
recovery attack on Simon-32/64 and Simeck-32/64.

– By incorporating the properties of correlated sequences, key scheduling al-
gorithms and one round differentials, we show that 8-th element of these
sequences can take atmost 215 values. As a result, we improve the key re-
covery attack by 2 rounds with the same complexities as of the 25-round
attack.

1 1− # attacked rounds
# full rounds
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Table 1: Summary of attacks on Simon-32/64 and Simeck-32/64

Attack Cipher #
attacked
rounds /

32

Data Memory
(Bytes)

Time Success
rate

Differential
Simon-32/64 [27] 21 231 - 255.25 0.51

Simon-32/64 [21] 22 232 - 258.76 0.315

Simeck-32/64 [17] 19 231 233 240 -

Simeck-32/64 [21] 22 232 - 257.9 0.417

Linear
Simon-32/64 [8] 23 231.19 - 261.84 0.277

Simeck-32/64 [22] 23 231.91 - 261.78 0.456

Integral
Simon-32/64 [28] 21 231 254 263 1

Simon-32/64 [13] 22 231 255.8 263 1

Simon-32/64 [9] 24 232 233.64 263 1

Simeck-32/64 [31] 21 231 246.22 263 1

Impossible Differential
Simon-32/64 [11] 20 232 245.5 262.8 -

Simeck-32/64 [30] 20 232 258 262.5 -

Zero correlation
Simon-32/64 [25] 21 232 231 259.4 -

Simeck-32/64 [32] 21 232 247.67 258.78 -

Meet-in-the-middle Simon-32/64 [24] 18 8 252 262.57 1

Correlated sequence Simon-32/64

24 3 250 262.87 1

25 3 250 262.94 1

attack 26 3 250 262.88 1

Sections 5 and 6 27 3 250 262.94 1

Simeck-32/64

24 3 250 262.87 1

25 3 250 262.94 1

26 3 250 262.88 1

27 3 250 262.94 1

The rest of the paper is organized as follows. In Section 2, we define the
notations used throughout the paper and review the specifications of Simon
and Simeck. Sections 3 and 4 present the definitions and basic properties
of the correlated sequence attack and the construction of such sequences for
Simon-32/64 and Simeck-32/64, respectively. In Section 5, we show how we use
correlated sequences to mount 25-round key recovery attack on Simon-32/64
and Simeck-32/64. In Section 6, we show that the attack can be improved by 2
rounds leading to 27 round key recovery attack. Finally, the paper is concluded
in Section 7.

2 Preliminaries

In this section, we give a brief description of Simon and Simeck. The notations
used throughout the paper are defined in Table 2.

2.1 Specification of Simon and Simeck

Simon-2n/mn, where 2n and mn denote the blocksize and key length, re-
spectively, is a family of block ciphers proposed by NSA in 2013 [5]. It
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Table 2: Notations

Notation Description

+ bitwise XOR

& bitwise AND

n wordsize

K key space

F2 {0,1}
Fn
2 n dimensional vector space over F2

Li left cyclic shift operator, i.e., for x ∈ Fn
2 , Li(x) =

(xi, xi+1, . . . , xn−1, x0, x1, . . . , xi−1)

Cs coset modulo 2n − 1, i.e., Cs = {s, 2s, . . . , 2ns−1s} where
ns is the smallest number such that s ≡ 2nss mod 2n−1,
and s is the smallest number in Cs and denotes the coset
leader

|S| cardinality of set S

A[i] i-th element of A

Img(f) Image set of f

adopts a Non-Linear Feedback Shift Register (NLFSR) based structure as
depicted in Figure 1. At each round, the state is updated non-linearly us-
ing the function f(a,b,c)(x) = La(x)&Lb(x) + Lc(x) where (a, b, c) = (8, 1, 2).
For r-round cipher, the (i + 2)-th element of NLFSR sequence is given by
si+2 = f(8,1,2)(si+1) + si + ki where ki ∈ Fn

2 is the i-th round subkey2 and
0 ≤ i < r. Finally, the ciphertext is the r-th state of NLFSR, i.e., (sr+1, sr).

s1 s0

f(8,1,2)

n
n

kr−1, · · · , k1, k0

n n

Fig. 1: Simon block cipher

Simeck-2n/mn was proposed in CHES 2015 by Yang et al. [30] and adopts a
similar structure as Simon. However, it has more efficient and compact hardware
implementation because of reuse of the round function in the key scheduling
algorithm. The shift parameters of Simeck are given by (a, b, c) = (5, 0, 1).

2 k0, k1, . . . , km−1 are first m n-bit words of key.
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For n = 16 and m = 4, r = 32 and the subkeys for i ≥ 4 are calculated as
follows.

Simon-32/64 key scheduling algorithm. ki+4 = Zi−4 + ki + ki+1 +
L15(ki+1) + L13(ki+3) + L12(ki+3).

Simeck-32/64 key scheduling algorithm. ki+4 = Zi−4 + f(5,0,1)(ki+1) + ki.
The attack presented in this paper is not affected by the constants Zi and

the reader may refer to [5, 30] for more details of their respective key schedul-
ing algorithms. From now onwards, we refer to f(a,b,c) as Simon-like non-linear
function unless the parameter set (a, b, c) is explicitly mentioned.

3 Correlated Sequence Attack

In this section, we formally introduce the correlated sequence attack. We first
define the correlated sequences of block ciphers. Next, we show how to use such
sequences in a meet-in-the-middle (MitM) attack.

Consider an n-bit block cipher with r rounds and mn-bit master key
k = (k0, k1, . . . , km−1) as depicted in Figure 2. Let si denote the state at i-th
round. Then, for 0 ≤ i < r, si+1 = rf(si, ki) where rf denotes the round function,
and is generally a composition of two functions, namely i) a linear function χ
and ii) a non-linear function ρ.

rf rf rf rfs0 s1 s2 s3 sr−1 sr

k0 k1 k2 kr−1

n n n n

n

rf

ρ: nonlinear function χ: linear function

Fig. 2: Generic diagram of a block cipher

3.1 Correlated sequences

Definition 1 (Keyed sequence). Given k and 1 ≤ t < r. We say S(k,t) =
(s0, s1, . . . , st−1) is a keyed sequence of length t, if si+1 = rf(si, ki) for
0 ≤ i < t− 1.

From Definition 1, it is clear that we need to compute rf t times to obtain
S(k,t). This implies that ρ is computed t times in total. Thus, to obtain another
sequence S(k′,t) of same length t, the worst case is to compute ρ exactly t times.
The idea of correlated sequences is “Given S(k,t) and k′ 6= k, obtain the
sequence S(k′,t) by computing the non-linear function ρ atmost t times.”

We now present a toy example to illustrate this idea before providing the
formal definition.
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Example 1. Consider a 4-bit toy Simon-like block cipher with 8-bit blocksize
and 16-bit key as depicted in Figure 3. Let the non-linear function is given by
ρ(x) = L(x)&x + L2(x) where x ∈ F4

2. The length seven keyed sequences are
given in Table 3. We note the following observations from Table 3.

1. For all k, s4 = k2, s5 = 0 and s6 = k2 + k4.
2. For all k′, s′4 = k′2, s′5 = 1 and s′6 = k′2 + k′4 + ρ(1).
3. For each row, k′3 = k3 + 1 and s′6 = s6 + k4 + k′4 + ρ(1).

s1 s0

ρ

ρ(x) = L(x)&x+ L2(x)

ki ki+1 ki+2 ki+3

ki+1 + L3(ki+1) ki+3 + L(ki+3)
110zi

z = (1, 1, 1, 1, 1)

Fig. 3: 4-bit toy Simon-like cipher

We now define the correlated sequences in Definition 2.

Definition 2 ((σ, t)-correlated sequences). Given S(k,t) and 0 ≤ σ < t. We
say S(k,t) and S(k′,t) are (σ, t)-correlated sequences if S(k′,t) can be obtained from
S(k,t) by computing the non-linear function ρ exactly σ times.

Remark 1. σ = 0 =⇒ S(k,t) and S(k′,t) are linearly related.

Definition 3 (Correlated keys). Given S(k,t). We define correlated keys as
the set CK(k) = {k′ |S(k,t) and S(k′,t) are (0, t)-correlated sequences}.

For example, in Table 3, for each row S(k,t) and S(k′,t) are (1, 7) correlated
sequences, |CK((0, 0, 0, 0))| = 15 (gray colored rows) and |CK((0, 0, 0, 1))| = 15
(light gray rows). Thus, to obtain all 32 sequences, we only need to compute
S((0,0,0,0),5) and S((0,0,0,1),5) which requires only one computation of ρ.

3.2 MitM attack using correlated sequences

Let (s0, sr) denote the plaintext and ciphertext pair encrypted with the
mn-bit master key k. As depicted in Figure 4, we first use s0 to construct
(σ, t1)-correlated sequences and their corresponding CK(·) for t1 rounds. Next,
starting with sr, we follow the same approach. We then do partial encryption
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Table 3: Keyed sequences

k0 k1 k2 k3 k4 s0 s1 s2 s3 s4 s5 s6 k′0 k′1 k′2 k′3 k′4 s′0 s′1 s′2 s′3 s′4 s′5 s′6

0 0 0 0 13 0 0 0 0 0 0 13 0 0 0 1 14 0 0 0 0 0 1 10

0 0 1 4 1 0 0 0 0 1 0 0 0 0 1 5 2 0 0 0 0 1 1 7

0 0 2 8 4 0 0 0 0 2 0 6 0 0 2 9 7 0 0 0 0 2 1 1

0 0 3 14 14 0 0 0 0 3 0 13 0 0 3 15 13 0 0 0 0 3 1 10

0 0 4 1 14 0 0 0 0 4 0 10 0 0 4 0 13 0 0 0 0 4 1 13

0 0 5 5 2 0 0 0 0 5 0 7 0 0 5 4 1 0 0 0 0 5 1 0

0 0 6 13 11 0 0 0 0 6 0 13 0 0 6 12 8 0 0 0 0 6 1 10

0 0 7 11 1 0 0 0 0 7 0 6 0 0 7 10 2 0 0 0 0 7 1 1

0 0 8 2 11 0 0 0 0 8 0 3 0 0 8 3 8 0 0 0 0 8 1 4

0 0 9 7 4 0 0 0 0 9 0 13 0 0 9 6 7 0 0 0 0 9 1 10

0 0 10 10 2 0 0 0 0 10 0 8 0 0 10 11 1 0 0 0 0 10 1 15

0 0 11 13 11 0 0 0 0 11 0 0 0 0 11 12 8 0 0 0 0 11 1 7

0 0 12 11 1 0 0 0 0 12 0 13 0 0 12 10 2 0 0 0 0 12 1 10

0 0 13 14 14 0 0 0 0 13 0 3 0 0 13 15 13 0 0 0 0 13 1 4

0 0 14 7 4 0 0 0 0 14 0 10 0 0 14 6 7 0 0 0 0 14 1 13

0 0 15 0 13 0 0 0 0 15 0 2 0 0 15 1 14 0 0 0 0 15 1 5

s0 sr

t1 rounds t1 roundst2 rounds

partial
encryption

(σ, t1)-correlated

sequences

CK(·)

(σ, t1)-correlated

sequences

CK(·)

Fig. 4: MitM attack using correlated sequences

for t2 rounds starting from t1-th round and match the state values at (t1 + t2)-th
round.

Let Tf (resp. Tb) denote the number of computations of ρ to construct
(σ, t1)-correlated sequences and their corresponding CK(·) in forward (resp.
backward) direction. Then, the time complexity in terms of the number of com-
putations of ρ is given by Tonline = Tf + Tb + 2|K| × t2

r . Clearly, Tonline < 2|K|.

Remark 2. The above attack returns 2n(m−1) keys that map s0 to sr. The correct
key can then be found out by performing an exhaustive search on the remaining
known dmn

n e − 1 plaintext-ciphertext pairs.

4 Correlated Sequences of Simon-2n/4n and
Simeck-2n/4n

In this section, we show the construction of correlated sequences of
Simon-2n/4n and Simeck-2n/4n. We first look at the theoretical properties
of non-linear function f(a,b,c). Next, we use these properties to construct
(1, 8)-correlated sequences. We assume that a 6= b 6= c.
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4.1 Properties of Simon-like non-linear function

Property 1. Let s be the coset leader corresponding to the coset Cs, then for
0 ≤ i < |Cs|, we have

1. f(a,b,c)(L
i(s)) = Li(f(a,b,c)(s))

2. f(a,b,c)(s) = La−1(s) + Lb−1(s) + Lc−1(s), if s = 011 . . . 1︸ ︷︷ ︸
n

.

Property 2. Let s = 0101 . . . 01︸ ︷︷ ︸
n

and a, b are not both simultaneously even or

odd, then

f(a,b,c)(s) =

{
s if c ≡ 0 mod 2

L(s) otherwise

Properties 1 and 2 imply that we need to compute the values of f(a,b,c) for
2n−1

n coset leaders only. However, as f(a,b,c) is quadratic and the only linear term
involved in it is Lc(.), we have f(a,b,c)(x) = Lc(x) + z for all x ∈ Fn

2 and some
constant z ∈ Fn

2 . As a result, we can partition the coset leaders based on the
values of z. Since, f(a,b,c) is linear on each partition, we call such partition as
z-linear segment set and formally define it in Definition 4 as follows.

Definition 4 (z-linear segment set). The z-linear segment set of f(a,b,c) is
the set of coset leaders CLz given by CLz = {s | f(a,b,c)(s) + Lc(s) = z}.

Table 4 lists the z-linear segment sets for n = 8 and (a, b, c) = (8, 1, 2), while
the number of z-linear segments (denoted by Nz) for varying n are presented in
Table 5. (Note that since n = 8, the shifts (8, 1, 2) is equivalent to (0, 1, 2).)

Example 2. In Table 4, consider z = 2 and 3 ∈ CL2. Then, for all
x ∈ C3 = {3, 6, 12, 24, 48, 96, 192, 129}, f(8,1,2) is computed as follows.

x f(8,1,2)(x)

3 L2(3) + 2 = 14

6 L2(6) + L(2) = 28

12 L2(12) + L2(2) = 56

24 L2(24) + L3(2) = 112

48 L2(28) + L4(2) = 224

96 L2(96) + L5(2) = 193

192 L2(192) + L6(2) = 131

129 L2(129) + L7(2) = 7
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Table 4: z-linear segment sets for n = 8
and (a, b, c) = (8, 1, 2)

z CLz z CLz

0 {0, 1, 5, 9, 17, 21, 37, 85} 2 {3, 11, 19, 43}
6 {7, 23, 39, 87 } 8 {13, 45}
14 {15} 16 {25}
18 {27, 91 } 24 {29}
30 {95, 31} 32 {53}
34 {51} 38 {55}
50 {59} 56 {61}
62 {63} 78 {111}
102 {119} 126 {127}
255 {255} 13 {47}

Table 5: Number of z-linear segment
sets for varying n

n # coset leaders Nz

(a, b, c)

(8, 1, 2) (5, 0, 1)

8 36 20 17

10 108 42 14

12 352 119 119

14 1182 50 287

16 4116 909 798

4.2 Construction of (1, 8)-correlated sequences

Let (s0, s1) be any random 2n-bit value and K(k0,k1) =
{(k0, k1, k2, k3) | (k2, k3) ∈ Fn

2 × Fn
2} be the set of 22n keys with k0 and

k1 fixed to some constant value. For t ≥ 6 and 0 ≤ i < 2n, define

P(i, t,K(k0,k1)) = {(k, S(k,t)) | k ∈ K(k0,k1) and s5 = i}

as the set of keys and their corresponding sequences which maps s5 to i.

We start with the simpler case, i.e., s5 = 0. First, we construct
P(0, 8,K(k0,k1)) and then show how to construct P(i, 8,K(k0,k1)) using the knowl-
edge of P(0, 8,K(k0,k1)).

4.2.1 Construction of P(0, 8,K(k0,k1)). We divide the construction of
P(0, 8,K(k0,k1)) into 3 steps, namely i) Finding P(0, 6,K(k0,k1)), ii) Obtaining
P(0, 7,K(k0,k1)) from P(0, 6,K(k0,k1)), and iii) Obtaining P(0, 8,K(k0,k1)) from
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P(0, 7,K(k0,k1)). For each step, we denote the number of computations of f(a,b,c)
by Tstep. We now present the details of each step as follows.

Step 1: Finding P(0, 6,K(k0,k1)). We note that ∀k ∈ K(k0,k1), S(k,4) is a con-
stant sequence and requires only 2 computations of f(a,b,c). Hence, finding the
keys for which s5 = 0 is equivalent to solve f(a,b,c)(X + k2) = k3 + s3 where
X = f(a,b,c)(s3) + s2. We use z-linear segments (see Definition 4) to solve this
equation. As a result, Tstep1 = 2 +Nz.

Remark 3. |P(0, 6,K(k0,k1))|= 2n, as s4 = X + k2 can take all 2n distinct values.

Step 2: Obtaining P(0, 7,K(k0,k1)) from P(0, 6,K(k0,k1)). Let (k, S(k,6)) ∈
P(0, 6,K(k0,k1)) and consider the following relation s4 + s6. We have
s4 + s6 = s4+ f(a,b,c)(s5) + s4 + k4 = s4 + 0 + s4 + k4 =⇒ s6 = s4 + k4.
Thus, Tstep2

= 0.

Step 3: Obtaining P(0, 8,K(k0,k1)) from P(0, 7,K(k0,k1)). Let (k, S(k,7)),
(k′, S(k′,7)) ∈ P(0, 7,K(k0,k1)) be such that s′4 = s6. Thus, f(a,b,c)(s6) =
f(a,b,c)(s

′
4) = k′3 + s3 (follows from Step 1). We note that such a pair always

exists. This follows directly from Remark 3. We now evaluate s7 as follows:
s7 = f(a,b,c)(s6) + s5 + k5 = s3 + k′3 + 0 + k5 = s3 + k′3 + k5. Hence, Tstep3

= 0.

4.2.2 Computing P(i, 8,K(k0,k1)) from P(0, 8,K(k0,k1)). We could use the sim-
ilar construction shown above to get P(i, 8,K(k0,k1)) for 1 ≤ i < 2n. However,
this would require 2n(2 + Nz) computations of f(a,b,c) in total. In Theorem 1,
we show how to reduce this number to (2 + 2Nz).

Lemma 1. Let I(k0,k1) = {k3|((k0, k1, k2, k3), S((k0,k1,k2,k3),6)) ∈ P(0, 6,K(k0,k1))}3
and k = (k0, k1, 0, I(k0,k1)[0]). Let 1 ≤ k2 < 2n and k′ = (k0, k1, k2, I(k0,k1)[k2])
be such that k 6= k′. Then, the following hold.

1. S(k,4) = S(k′,4)

2. s′4 = X + k2, where X = f(a,b,c)(s3) + s2
3. s′6 = s6 + k4 + k′4 + k2
4. s′7 = s3 + k′5 + I(k0,k1)[k2 + k′4]
5. s7 = s3 + k5 + I(k0,k1)[k4]
6. |CK(k)|= 2n − 1

Proof. 1. Since s0, s1, s2 and s3 are independent of k3, it follows that
S(k,4) = S(k′,4).

2. We have s′4 = f(a,b,c)(s
′
3) + s′2 + k2 = f(a,b,c)(s3) + s2 + k2 =⇒ s′4 = X + k2.

3. Consider the following relation s′6 + s6.

s′6 + s6 = f(a,b,c)(s
′
5) + s′4 + k′4 + f(a,b,c)(s5) + s4 + k4

= s′4 + k′4 + s4 + k4

= X + k2 + k′4 +X + k4 =⇒ s′6 = s6 + k4 + k′4 + k2.

3 |I(k0,k1)|= 2n (see Remark 3). Thus, I(k0,k1) can have multiple values of k3.
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4. Note that by Step 3 of construction of P(0, 8,K(k0,k1)), we have
s′7 = s3 + k′5 + k′′3 . Hence, we need to find the index j such that
I(k0,k1)[j] = k′′3 . This is equivalent to finding j for which s′′4 = s′6. Since,
s′6 + s′4 = k′4 =⇒ j = k′2 + k′4 = k2 + k′4 .

5. Follows directly from part 4.
6. The proof is trivial, as for all 2n−1 values of k2, s′6 and s′7 can be computed

linearly. ut

Theorem 1. Let k = (k0, k1, 0, I(k0,k1)[0]), (k, S(k,6)) ∈ P(0, 6,K(k0,k1)) and

k̃ = (k0, k1, 0, I(k0,k1)[0] + i) where 1 ≤ i < 2n. Then, the following hold.

1. S(k,5) = S(k̃,5)

2. (k̃, S(k̃,6)) ∈ P(i, 6,K(k0,k1))

3. s̃6 = s6 + k4 + k̃4+f(a,b,c)(i)

4. s̃7 = s3 + i+ k̃5 + I(k0,k1)[k̃2 + k̃4 + f(a,b,c)(i)]
5. |CK(k)|= |CK(k̄)|= 2n − 1

Proof. The proof of 1, 2, 3 and 4 is similar to Lemma 1. For part 5, note that
for 1 ≤ j < 2n, (k0, k1, j, I(k0,k1)[j]) ∈ CK(k) ⇐⇒ (k0, k1, j, I(k0,k1)[j] + i) ∈
CK(k̄). This follows because s5 + s̄5 = k3 + k̄3 =⇒ k3 + k̄3 = i. Thus,
|CK(k)|= |CK(k̄)|= 2n − 1. ut

A brief comparison of different approaches with the number of computations
of f(a,b,c) to obtain P(i, 8,K(k0,k1)) is provided in Table 6.

Table 6: Comparison of different approaches with the number of com-
putations of f(a,b,c)

Approach # computations of f(a,b,c)

(a, b, c)

(8, 1, 2) (5, 0, 1)

Naive 232 × 6 232 × 6

Theorem 1 and z-linear segment sets (2 + 1818) (2 + 1596)

5 Key Recovery Attack on 25 rounds Simon-32/64 and
Simeck-32/64

In this section, we show the key recovery attack procedure on 25-round4

Simon-32/64 and Simeck-32/64. We utilize (1, 8)-correlated sequences as de-
scribed in Section 4 for 6 encryption and 6 decryption rounds in a MitM attack.
As a result, we do partial encryption for 12 rounds, starting from round 6 and
match the left half of state, i.e., s19 at 19-th round with the stored value.

In Algorithm 1, we present a generic procedure for recovering the secret
key. It takes input as 3 known plaintext-ciphertext pairs encrypted either by

4 (s0, s1) is the plaintext and (s25, s26) is the ciphertext after 25 rounds.
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Simon-32/64 or Simeck-32/64 and returns the secret key. The attack procedure
is divided into two phases, namely i) Offline phase and ii) Online phase. The time
complexities of both phases are given by T offline and T online, where a subscript
(for e.g., T online

i ) denotes the time complexity of i-th step of the corresponding
phase. In what follows, we present the details of both phases.

Algorithm 1 Generic secret key finding algorithm

1: Input : {(s00, s01), (s025, s
0
26), (s10, s

1
1), (s125, s

1
26), (s20, s

2
1), (s225, s

2
26)}

2: Output : secret key k
3: CREATE D(s025, s

0
26) . T offline

4: function FIND SECRET KEY(Input) . T online

5: K = EXTRACT KEYS(s00, s
0
1, s

0
25, s

0
26)

6: for k̄ ∈ K do
7: if Encrypt(s10, s

1
1) equals (s125, s

1
26) then

8: K1.append(k̄)
9: end if

10: end for
11: for k̄ ∈ K1 do
12: if Encrypt(s20, s

2
1) equals (s225, s

2
26) then

13: K2.append(k̄)
14: end if
15: end for
16: return(K2 = {k})
17: end function

5.1 Offline phase

In this phase, we construct 232 data structures that are used in the online phase
to compute the value of s19 for all 264 keys without doing any nonlinear oper-
ation. For a fixed k24 and k23, we denote such a structure by D(k24,k23) where
each structure has 3 rows, i.e., row0, row1 and row3. By Theorem 1, we observe
that for 0 ≤ i < 216, s19 can be computed linearly if s23, I(k24,k23) and the
index k22 + k20 + f(a,b,c)(i) are known for P(i, 6,K(k24,k23))

5. Thus, we assign
D(k24,k23).row0 ← s23 and D(k24,k23).row1 ← I(k24,k23). To find the index value

for each key, it is enough to store the values of s̃6 + f(a,b,c)(s23) + s24 + k̃4
in D(k24,k23).row2, where k̃ = (k24, k23, 0, I(k24,k23)[0] + i). This follows be-

cause (k̃, S(k̃,8)) ∈ P(i, 8,K(k24,k23)) and |CK(k)|= |CK(k̄)|= 216 − 1 (using

Theorem 1).
The function CREATE D in Algorithm 2 construct 232 data strutures for all

values of k24 and k23, while the function COMPUTE s19 evaluates the value of
s19 for any key using the stored structures.

Complexities of offline phase. The memory required to store a sin-
gle structure is (1 + 216 + 216) × 16 bit. Thus, the total memory
is given by 232 × (1 + 216 + 216)× 16 ≈ 250 bytes. The time complex-
ity in terms of the number of computations of f(a,b,c) is given by

5 We apply correlated sequences in decryption side.
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Algorithm 2 Constructing data structures for 6 decryption rounds

1: function create D(s25, s26)
2: for k24 = 0 to 216 − 1 do
3: for k23 = 0 to 216 − 1 do
4: D(k24,k23).row0 ← s23 . T offline

0

5: D(k24,k23).row1 ← I(k24,k23) . T offline
1

6: TEMP = []
7: for i = 0 to 216 − 1 do . T offline

2

8: k̃ = (k24, k23, 0, I(k24,k23)[0] + i)

9: TEMP.append(s̃6 +X + k̃4) . X = f(a,b,c)(s23) + s24
10: end for
11: D(k24,k23).row2 ←TEMP
12: end for
13: end for
14: end function

T offline = 232(T offline
0 + T offline

1 + T offline
2 ) = 232( 2

25 + Nz
25 + Nz

25 ). From
Table 5, we have Nz = 909 (resp. 798) for Simon-32/64 (resp. Simeck-32/64).
Hence, the respective T offline are 238.19 and 238.

Algorithm 3 Obtaining s19 from stored data structures

1: function compute s19(k24, k23, k22, k21, k20, k19)
2: if k22 = 0 then
3: δ = k21
4: else
5: δ = k21 + D(k24,k23).row1[k22]
6: end if
7: s19 = D(k24,k23).row0 + δ + k19 + D(k24,k23).row1[k22 + k20 + D(k24,k23).row2[δ]]
8: return(s19)
9: end function

5.2 Online phase

In this phase, we first find the set of keys that maps (s00, s
0
1) to (s025, s

0
26).

The algorithmic details of this step is shown in Algorithm 4. The function
EXTRACT KEYS in Algorithm 4 uses Lemma 1 and Theorem 1 in steps 9-
12 and 22-25, respectively, and returns the set (K) of 248 keys6. The correct
secret key can then be obtained by doing brute force search on K using another
two known plaintext-ciphertext pairs.

6 We are matching 16-bit state and the key size is 64-bit.
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Complexity of online phase. The time complexity is calculated as follows:

T online
0 =

2

25︸︷︷︸
2-round encryption

+
Nz

25︸︷︷︸
# computations of f(a,b,c) to get P(0, 6,K(k0,k1))

T online
1 = 216 × 12

25︸ ︷︷ ︸
12-round encryption

T online
2 =

Nz

25︸︷︷︸
# computations of f(a,b,c) to get P(i, 8,K(k0,k1))

T online
3 = (232 − 216)× 12

25︸ ︷︷ ︸
12-round encryption

T online = 232(T online
0 + T online

1 + T online
2 + T online

3 ) + 248 + 216︸ ︷︷ ︸
brute force

≈ 232(
2 + 2Nz

25
+ 232 × 12

25
) + 248 + 216

≈ 264 × 12

25
≈ 262.94.

The time complexity of complete attack is dominated by T online ≈ 262.94.

Remark 4. For the 24-round attack, the data and memory complexities are the
same. However, the time complexity is 264 × 11

24 ≈ 262.87.

6 Improving Key Recovery Attack by 2 Rounds

In this section, we show how to improve the key recovery attack presented in
previous section by 2 rounds with the same complexities as of the 25-round
attack. For a fixed partition P(i, 8,K(k0,k1)), we incorporate the properties of
key scheduling algorithms (KSA) and one round differentials and show that
P(i, 9,K(k0,k1)) can be computed from P(i, 8,K(k0,k1)) by computing f(a,b,c) at
most 215 times. As a result, both forward and middle rounds can be extended
by one round each, i.e., partial encryption starts from round 7 and matching is
done at 20-th round. The results of the following two properties can be obtained
directly by the definition of P(i, 8,K(k0,k1)) and key scheduling algorithms. We
present the main result of this section in Lemma 2.

Property 3 (Simon KSA and P(i, 8,K(k0,k1))). Let n = 16, F : Fn
2 → Fn

2 be
such that F (x) = f(8,1,2)(x + ∆y) + x + Ln−1(x) + Ln−6(y) + Ln−8(y), where
y = I(k0,k1)[x] and ∆y = Ln−3(y) + Ln−4(y). Then, |Img(F (x))|≤ 2n−1.

Property 4 (Simeck KSA). Let n ≥ 4, ki+4 = f(5,0,1)(ki+1) + ki and i ≥ 4. Then
for a fixed (k0, k1) pair, k4 is constant for all 2n × 2n values of k2 and k3.
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Algorithm 4 Extracting keys that maps (s0, s1) to (s25, s26)

1: function extract keys(s0, s1, s25, s26)
2: K = []
3: for k0 = 0 to 216 − 1 do
4: for k1 = 0 to 216 − 1 do
5: Obtain I(k0,k1) and s3 . T online

0

6: k = (k0, k1, 0, I(k0,k1)[0])
7: s6 = s4 + k4
8: s7 = s3 + I(k0,k1)[k4]
9: for j = 0 to 216 − 1 do . Lemma 1

10: k′ = (k0, k1, j, I(k0,k1)[j]) . j = 0 =⇒ k = k′, s′6 = s6, s
′
7 = s7

11: s′6 = s6 + k′4
12: s′7 = s3 + k′5 + I(k0,k1)[j + k′4]
13: Encrypt (s′7, s

′
6) for 12 rounds and get s′19 . T online

1

14: if s′19==compute s19(k′24, k
′
23, k

′
22, k

′
21, k

′
20, k

′
19) then

15: K.append(k′)
16: end if
17: end for
18: for z in z-linear segmet sets do
19: for x ∈ CLz and x 6= 0 do
20: for i = 0 to |Cx|−1 do
21: T = Lc(Cx[i]) + Li(z) . T online

2

22: for j = 0 to 216 − 1 do . Theorem 1
23: k̃ = (k0, k1, j, I(k24,k23)[j] + Cx[i])

24: s̃6 = s6 + k4 + k̃4 + T
25: s̃7 = s3 + Cx[i] + k̃5 + I(k0,k1)[j + k̃4 + T ]
26: Encrypt (s̃7, s̃6) for 12 rounds and get s̃19 . T online

3

27: if s̃19==compute s19(k̃24, k̃23, k̃22, k̃21, k̃20, k̃19) then
28: K.append(k̃)
29: end if
30: end for
31: end for
32: end for
33: end for
34: end for
35: end for
36: return(K)
37: end function

Property 5 (Differential [16]). Let n ≥ 4, ∆ ∈ Fn
2 be fixed. Then,

|Img(f(a,b,c)(x) + f(a,b,c)(x+ ∆))|≤ 2n−1.

Lemma 2. Given n = 16 and (a, b, c) = (8, 1, 2)/(5, 0, 1). Then, ∀(k, S(k,8)) ∈
P(i, 8,K(k0,k1)), s7 can take atmost 2n−1 values.

Proof. Consider the value of s7 in the following cases:
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– Case 1 : (a, b, c) = (8, 1, 2)

s7 = f(8,1,2)(s6) + s5 + k5 = f(8,1,2)(s4 + k4 + f(8,1,2)(i)) + i+ k5

= f(8,1,2)(X + k2 + k4 + f(8,1,2)(i)) + i+ k5, X = f(8,1,2)(s3) + s2

= f(8,1,2)(C0 + k2 + (L13(k3) + L12(k3))

+C1 + k2 + L15(k2) + L10(k3) + L8(k3) (Simon KSA)

Here C0 and C1 are constants and given by:

C0 = X + f(8,1,2)(i) + k0 + k1 + L15(k1) + Z0

C1 = i+ Z1 + L13(Z0) + L12(Z0) + L13(k0) + L12(k0)

= +k1 + L13(k1) + L11(k1)

By Property 3, s7 can take atmost 2n−1 values.

– Case 2 : (a, b, c) = (5, 0, 1)

s7 = f(5,0,1)(s6) + s5 + k5 = f(5,0,1)(s4 + k4 + f(5,0,1)(i)) + i+ k5

= f(5,0,1)(X + k2 + k4 + f(5,0,1)(i)) + i+ k5, X = f(5,0,1)(s3) + s2

= f(5,0,1)(∆ + k2) + C1 + f(5,0,1)(k2) (Property 4)

Similar to previous case, ∆ and C1 are constants and given by:

∆ = X + f(5,0,1)(i) + k0 + f(5,0,1)(k1) + Z0

C1 = i+ Z1 + k1

The proof then follows from Property 5. ut

From Lemma 2, we note that for each partition P(i, 8,K(k0,k1)), s7 can take
atmost 215 values. In Algorithm 5, we compute the indices for which s7 values
are same. We only evaluate f(a,b,c)(s7) for the distinct indices only. Hence, 215

computations of f(a,b,c) are needed to obtain P(i, 9,K(k0,k1)). We incorporate
Algorithm 5 in the online phase of the attack. The partial encryption then starts
from (s8, s7) and matching is done at 20-th round.

Algorithm 5 Equal indices algorithm

1: function get equal index(P(i, 8,K(k0,k1)), I(k0,k1))
2: INDICES = []
3: T = f(a,b,c)(i)
4: for j = 0 to 216 − 1 do
5: k = (k0, k1, j, I(k0,k1)[j])
6: INDICES.append(I(k0,k1)[j + k4 + T ] + k5)
7: end for
8: Return(INDICES)
9: end function
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Attack complexities. The data and memory complexities are same as 25-round
attack. The time complexity is given by:

T online = 232(T online
0 + T online

1 + T online
2 + T online

3 )

+ 248 + 216︸ ︷︷ ︸
brute force

≈ 232(
2 + 2Nz

27
+ 231 × 1

27
+ 232 × 13

27
) + 248 + 216

≈ 264 × 13

27
≈ 262.94.

Remark 5. The complexities of 26-round attack are calculated accordingly.

7 Concluding Remarks

In this work, we have proposed correlated sequence attack and demonstrated
its application on two lightweight block ciphers Simon-32/64 and Simeck-32/64.
As a result, we presented the first 24, 25, 26, 27-round attack on these ciphers
with data and memory complexities of 3 and 250 bytes, respectively. The time
complexities are 262.87(resp. 262.94) for 24, 26 (resp. 25, 27)-round attacks.

We observe that correlated sequences play a crucial role in the security eval-
uation, as improving the length of correlated sequences by 1 extends the number
of attacked rounds by 2. Furthermore, we expect that the presented attack on
Simon-32/64 and Simeck-32/64 can be improved by uplifting the coset leaders
properties from the round function to partitions P(i, 9,K(k0,k1)). It should be
noted that our cryptanalytic technique has similar applications to other variants
of Simon and Simeck, which we plan to investigate in our future work.
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TAN — A family of small and efficient hardware-oriented block ciphers. In:
Clavier C., Gaj K. (eds.), CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer,
Heidelberg (2009)

[11] Derbez, P., and Fouque, P.-A. Automatic search of meet-in-the-middle and
impossible differential attacks. n: Robshaw M., Katz J. (eds), Crypto 2016. LNCS,
vol. 9815, pp. 157–184. Springer, Heidelberg (2016)

[12] Diffie, W., and Hellman, M. E. Special feature exhaustive cryptanalysis of
the nbs data encryption standard. Computer 10(6), pp. 74–84. (1977)

[13] Fu, K., Sun, L., and Wang, M. New integral attacks on simon. IET Information
Security 11(5), pp. 277–286. (2016)

[14] Guo, J., Peyrin, T., Poschmann, A., and Robshaw, M. The led block cipher.
In: B. Preneel and T. Takagi (eds.), CHES 2011. LNCS, vol. 6917, pp. 326–341.
Springer, Heidelberg (2011)

[15] Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee, C., Chang,
D., Lee, J., Jeong, K., et al. HIGHT: A new block cipher suitable for low-
resource device. In: Goubin L., Matsui M (eds.), CHES 2006. LNCS, vol. 4249,
pp. 46–59. Springer, Heidelberg (2006)

[16] Kölbl, S., Leander, G., and Tiessen, T. Observations on the simon block
cipher family. In: R. Gennaro and M. Robshaw (eds.), CRYPTO 2015. LNCS,
vol. 9215, pp. 258–269. Springer, Heidelberg (2015)

[17] Kölbl, S., and Roy, A. A brief comparison of simon and simeck. In: Bogdanov
A. (eds), LightSec 2016. LNCS, vol. 10098, pp. 69–88. Springer, Cham (2016)

[18] Kondo, K., Sasaki, Y., and Iwata, T. On the design rationale of simon block
cipher: integral attacks and impossible differential attacks against simon variants.
In: Manulis M., Sadeghi AR., Schneider S. (eds), ACNS 2016. LNCS, vol. 9696,
pp. 518–536. Springer, Cham (2016)

[19] Liu, Z., Li, Y., and Wang, M. Optimal differential trails in simon-like ciphers.
IACR Transactions on Symmetric Cryptology 2017 1, pp. 358–379. (2017) http:

//dx.doi.org/10.13154/tosc.v2017.i1.358-379

[20] McKay, K., Bassham, L., Sönmez Turan, M., and Mouha, N.: Report on
lightweight cryptography (NISTIR8114). (2017)

[21] Qiao, K., Hu, L., and Sun, S. Differential analysis on simeck and simon with
dynamic key-guessing techniques. In: Camp O., Furnell S., Mori P. (eds), ICISSP
2016. LNCS, vol. 691, pp. 64–85. Springer, Cham (2016)

[22] Qin, L., Chen, H., and Wang, X. Linear hull attack on round-reduced simeck
with dynamic key-guessing techniques. In: Liu J., Steinfeld R. (eds) Information
Security and Privacy, ACISP 2016. LNCS, vol. 9723, pp. 409–424. Springer, Cham
(2016)

18

https://doi.org/10.1155/2018/5160237
http://dx.doi.org/10.13154/tosc.v2017.i1.358-379
http://dx.doi.org/10.13154/tosc.v2017.i1.358-379


[23] Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., and
Shirai, T. Piccolo: an ultra-lightweight blockcipher. In: Preneel B., Takagi T.
(eds), CHES 2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

[24] Song, L., Hu, L., Ma, B., and Shi, D. Match box meet-in-the-middle attacks
on the simon family of block ciphers. In: Eisenbarth T., Öztürk E. (eds), LightSec
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