New Configurations of Grain Ciphers: Security Against Slide Attacks

Diana Maimut¹ and George Teşeleanu^{1,2}

¹ Advanced Technologies Institute
 10 Dinu Vintilă, Bucharest, Romania
 {diana.maimut,tgeorge}@dcti.ro
 ² Department of Computer Science
 "Al.I.Cuza" University of Iaşi 700506 Iaşi, Romania,
 george.teseleanu@info.uaic.ro

Abstract. eSTREAM brought to the attention of the cryptographic community a number of stream ciphers including Grain v0 and its revised version Grain v1. The latter was selected as a finalist of the competition's hardware-based portfolio. The Grain family includes two more instantiations, namely Grain-128 and Grain-128a.

The scope of our paper is to provide an insight on how to obtain secure configurations of the Grain family of stream ciphers. We propose different variants for Grain and analyze their security with respect to slide attacks. More precisely, as various attacks against initialization algorithms of Grain were discussed in the literature, we study the security impact of various parameters which may influence the LFSR's initialization scheme.

1 Introduction

The Grain family of stream ciphers consists of four instantiations Grain v0 [12], Grain v1 [13], Grain-128 [11] and Grain-128a [18]. Grain v1 is a finalist of the hardware-based eSTREAM portfolio [1], a competition for choosing both hardware and software secure and efficient stream ciphers.

The design of the Grain family of ciphers includes an LFSR. The loading of the LFSR consists of an initialization vector (IV) and a certain string of bits P whose lengths and structures depend on the cipher's version. Following the terminology used in [6], we consider the IV as being padded with P. Thus, throughout this paper, we use the term *padding* to denote P. Note that Grain v1 and Grain-128 make use of *periodic* IV padding and Grain-128a uses *aperiodic* IV padding.

A series of attacks against the Grain family padding techniques appeared in the literature [5,6,8,16] during the last decade. In the light of these attacks, our paper proposes the first security analysis³ of generic IV padding schemes for Grain ciphers in the *periodic* as well as the *aperiodic* cases.

In this context, the concerns that arise are closely related to the security impact of various parameters of the padding, such as the position and structure of the padding block. Moreover, we consider both *compact* and *fragmented* padding blocks in our study. We refer to the original padding schemes of the Grain ciphers as being compact (*i.e.* a single padding block is used). We denote as fragmented padding the division of the padding block into smaller blocks of equal length⁴.

By examining the structure of the padding and analyzing its compact and especially fragmented versions, we actually study the idea of extending the key's life. The latter could be achieved by introducing a variable padding according to suitable constraints. Hence, the general question that

³ against slide attacks

⁴ we consider these smaller blocks as being spread among the linear feedback register's data

arises is the following: what is to be loaded in the LFSRs of Grain ciphers in order to obtain secure settings?. Note that our study is preliminary, taking into account only slide attacks. We consider other types of attacks as future work.

We stress that finding better attacks than the ones already presented in the literature is outside the scope of our paper, as our main goal is to establish sound personalized versions of the Grain cipher. Hence, our work does not have any immediate implication towards breaking any cipher of the Grain family. Nevertheless, our observations become meaningful either in the lightweight cryptography scenario or in the case of an enhanced security context (e.g. secure government applications).

Lightweight cryptography lies at the crossroad between cryptography, computer science and electrical engineering [17]. Thus, trade-offs between performance, security and cost must be considered. Given such constraints and the fact that embedded devices operate in hostile environments, there is an increasing need for new and varied security solutions, mainly constructed in view of the current ubiquitous computing tendency. As the Grain family lies precisely within the lightweight primitives' category, we believe that the study presented in the current paper is of interest for the industry and, especially, government organizations.

When dealing with security devices for which the transmission and processing of the IV is neither so costly nor hard to handle (e.g. the corresponding communication protocols easily allow the transmission), shrinking the padding up to complete removal might be considered. More precisely, we suggest the use of a longer IV in such a context in order to increase security. Moreover, many Grain-type configurations could be obtained if our proposed padding schemes are used. Such configurations could be considered as personalizations of the main algorithm and, if the associated parameters are kept secret, the key's life can be extended.

Structure of the Paper. We introduce notations and give a quick reminder of the Grain family technical specifications in Section 2. Section 3 describes generic attacks against the Grain ciphers. In Section 4 we discuss the core result of our paper: a security analysis of IV padding schemes for Grain ciphers. We conclude and underline various interesting ideas as future work in Section 5. We recall Grain v1 in Appendix A, Grain-128 in Appendix B and Grain-128a in Appendix C. We do not recall the corresponding parameters of Grain v0, even though the results presented in the current paper still hold in that case. In Appendices D and E we provide test values for our proposed algorithms.

2 Preliminaries

Notations. During the following, capital letters will denote padding blocks and small letters will refer to certain bits of the padding. We use the big-endian convention. Hexadecimal strings are marked by the prefix 0x.

$MSB_{\ell}(Q)$	stands for the most significant ℓ bits of Q
$LSB_{\ell}(Q)$	stands for the least significant ℓ bits of Q
$MID_{[\ell_1,\ell_2]}(Q)$	stands for the bits of Q between position ℓ_1 and ℓ_2
$x \ y$	represents the string obtained by concatenating y to x
\in_R	selecting an element uniformly at random
x	the bit-length of x
b^t	stands for t consecutive bits of b
NULL	stands for an empty variable

2.1 Grain Family

Grain is a hardware-oriented stream cipher initially proposed by Hell, Johansson and Meier [12] and whose main building blocks are an n bit *linear feedback shift register* (LFSR), an n bit *non-linear feedback shift register* (NFSR) and an *output function*. Because of a weakness in the output function, a key recovery attack [7] and a distinguishing attack [14] on Grain v0 were proposed. To solve these security issues, Grain v1 [13] was introduced. Also, Grain-128 [11] was proposed as a variant of Grain v1. Grain-128 uses 128-bit keys instead of 80-bit keys. Grain 128a [18] was designed to address cryptanalysis results [4, 9, 10, 15, 19] against the previous version. Grain 128a offers optional authentication. We stress that, in this paper, we do not address the authentication feature of Grain-128a.

Let $X_i = [x_i, x_{i+1}, \ldots, x_{i+n-1}]$ denote the state of the NFSR at time *i* and let g(x) be the nonlinear feedback polynomial of the NFSR. $g(X_i)$ represents the corresponding update function of the NFSR. In the case of the LFSR, let $Y_i = [y_i, y_{i+1}, \ldots, y_{i+n-1}]$ be its state, f(x) the linear feedback polynomial and $f(Y_i)$ the corresponding update function. The filter function $h(X_i, Y_i)$ takes inputs from both the states X_i and Y_i .

We shortly describe the generic algorithms KLA, KSA and PRGA below. As KSA is invertible, a state $S_i = X_i || Y_i$ can be rolled back one clock to S_{i-1} . We further refer to the transition function from S_i to S_{i-1} as KSA⁻¹.

Fig. 1: Output Generator and Key Initialization of Grain ciphers

Key Loading Algorithm (KLA). The Grain family uses an *n*-bit key K, an *m*-bit initialization vector IV with m < n and some fixed padding $P \in \{0, 1\}^{\alpha}$, where $\alpha = n - m$. The key is loaded in the NFSR, while the pair (IV, P) is loaded in the LFSR using a one-to-one function further denoted as $\text{Load}_{IV}(IV, P)$.

Key Scheduling Algorithm (KSA). After running KLA, the output⁵ z_i is XOR-ed to both the LFSR and NFSR update functions, *i.e.*, during one clock the LFSR and the NFSR bits are updated as $y_{i+n} = z_i + f(Y_i), x_{i+n} = y_i + z_i + g(X_i)$.

⁵ during one clock

Pseudorandom Keystream Generation Algorithm (PRGA). After performing KSA routine for 2n clocks, z_i is no longer XOR-ed to the LFSR and NFSR update functions, but it is used as the output keystream bit. During this phase, the LFSR and NFSR are updated as $y_{i+n} = f(Y_i)$, $x_{i+n} = y_i + g(X_i)$.

Figure 1 depicts an overview of KSA and PRGA. Common features are depicted in black. In the case of Grain v1, the pseudorandom keystream generation algorithm does not include the green path. The red paths correspond to the key scheduling algorithm.

The corresponding parameters of Grain v1 are described in Appendix A, while Grain-128 is tackled in Appendix B and Grain-128a in Appendix C. The appendices also include the $Load_{IV}$ functions and the KSA⁻¹ algorithms for all versions.

Security Model. In the Chosen IV - Related Key setting (according to [6, Section 2.1]), an adversary is able to query an encryption oracle (which has access to the key K) in order to obtain valid ciphertexts. For each query i, the adversary can choose the oracle's parameters: an initialization vector IV_i , a function $\mathcal{F}_i : \{0,1\}^n \to \{0,1\}^n$ and a message m_i . The oracle encrypts m_i using the Key-IV pair ($\mathcal{F}_i(K), IV_i$). The adversary's task is to distinguish the keystream output from a random stream.

Assumptions. Based on the results of the experiments we conducted, we further assume that the output of KSA, KSA^{-1} and PRGA is independently and uniformly distributed. More precisely, all previous algorithms were statistically tested applying the NIST Test Suite [2]. During our experiments we used the following setup:

- 1. X_i is a randomly generated *n*-bit state using the GMP library [3];
- 2. Y_i'' is either $0^{2\alpha}$ or $1^{2\alpha}$;
- 3. $Y_i = Y'_i ||Y''_i|$, where Y'_i is a randomly generated $(m \alpha)$ -bit state using the GMP library.

3 Generic Grain Attacks

As already mentioned in Section 2, the Grain family uses an NFSR and a nonlinear filter (which takes input from both shift registers) to introduce nonlinearity. If after the initialization process, the LFSR is in an all zero state, only the NFSR is actively participating to the output. As already shown in the literature, NFSRs are vulnerable to distinguishing attacks [7, 15, 20].

Weak Key-IV pair. If the LFSR reaches the all zero state after 2n clocks we say that the pair (K, IV) is a weak Key-IV pair. An algorithm which produces weak Key-IV pairs for Grain v1 is presented in [20]. We refer the reader to Algorithm 1 for a generalization of this algorithm to any of the Grain ciphers.

Given a state V, we define it as valid if there exists an $IV \in \{0, 1\}^m$ such that $\text{Load}_{IV}(IV, P) = V$, where P is the fixed padding. We further use a function $\text{Extract}_{IV}(V)$ which is the inverse of $\text{Load}_{IV}(\cdot, P)$. The probability to obtain a weak Key-IV pair by running Algorithm 1 is $1/2^{\alpha}$.

A refined version of the attack from [20] is discussed in [5] and generalized in Algorithm 2. The authors of [5] give precise differences between keystreams generated using the output of Algorithm 2 for Grain v1 (see Theorem 1), Grain-128 (see Theorem 2) and Grain-128a (see Theorem 3).

Algorithm 1. Generic Weak Key-IV Attack

Output: A Key-IV pair (K', IV')1 Set $s \leftarrow 0$ while s = 0 do 2 Choose $K \in_R \{0,1\}^n$ and let $V \in \{0,1\}^n$ be the zero LFSR state (0,...,0)3 Run KSA⁻¹(K || V) routine for 2n clocks and produce state S' = K' || V4 if V' is valid then 5 Set $s \leftarrow 1$ and $IV' \leftarrow \texttt{Extract}_{IV}(V')$ 6 return (K', IV')7 end 8 9 end

Theorem 1. For Grain v1, two initial states S_0 and $S_{0,\Delta}$ which differ only in the 79th position of the LFSR, produce identical output bits in 75 specific positions among the initial 96 key stream bits obtained during the PRGA.

Remark 1. More precisely, the 75 positions are the following ones:

 $k \in [0,95] \setminus \{15,33,44,51,54,57,62,69,72,73,75,76,80,82,83,87,90,91,93-95\}.$

Theorem 2. For Grain-128, two initial states S_0 and $S_{0,\Delta}$ which differ only in the 127th position of the LFSR, produce identical output bits in 112 specific positions among the initial 160 key stream bits obtained during the PRGA.

Remark 2. More precisely, the 112 positions are the following ones:

 $k \in [0, 159] \setminus \{32, 34, 48, 64, 66, 67, 79 - 81, 85, 90, 92, 95, 96, 98, 99, 106, 107, 112, 114, 117, 119, 122, 124 - 126, 128, 130 - 132, 138, 139, 142 - 146, 148 - 151, 153 - 159\}.$

Theorem 3. For Grain-128a, two initial states S_0 and $S_{0,\Delta}$ which differ only in the 127th position of the LFSR, produce identical output bits in 115 specific positions among the initial 160 key stream bits obtained during the PRGA.

Remark 3. More precisely, the 115 positions are the following ones:

 $k \in [0, 159] \setminus \{ 33, 34, 48, 65 - 67, 80, 81, 85, 91, 92, 95, 97 - 99, 106, 107, 112, 114, 117, 119, 123 - 125, 127 - 132, 138, 139, 142 - 146, 149 - 151, 154 - 157, 159 \}.$

We further present an algorithm that checks which keystream positions produced by the states S and S_{Δ} are identical (introduced in Algorithm 2). Note that if we run Algorithm 3 we obtain less positions than claimed in Theorems 1 to 3, as shown in Appendix E. This is due to the fact that Algorithm 3 is prone to producing internal collisions and, thus, eliminate certain positions that are identical in both keystreams. Note that Theorem 4 is a refined version of Remarks 1 to 3 in the sense that it represents an automatic tool for finding identical keystream positions.

Modified Pseudorandom Keystream Generation Algorithm (PRGA'). To obtain our modified PRGA we replace + (XOR) and \cdot (AND) operations in the original PRGA with | (OR) operations.

Algorithm 2. Search for Key-IV pairs that produce almost similar initial keystream

Input: An integer $r \in \{0, 2n\}$ **Output:** Key-IV pairs (K, IV) and (K', IV') $\mathbf{1} \ \text{Set} \ s \leftarrow \mathbf{0}$ 2 while s = 0 do Choose $K \in_R \{0, 1\}^n$ and $IV \in_R \{0, 1\}^m$ 3 Run KSA(K||IV) routine for 2n clocks to obtain an initial state $S_0 \in \{0, 1\}^{2n}$ 4 Construct $S_{0,\Delta}$ from S_0 by flipping the bit on position r5 Run KSA⁻¹($S_{0,\Delta}$) routine for 2n clocks and produce state S' = K' ||V'|6 if V' is valid then $\mathbf{7}$ Set $s \leftarrow 1$ and $IV' \leftarrow \texttt{Extract}_{IV}(V')$ 8 return (K, IV) and (K', IV')9 end 10 11 end

Theorem 4. Let r be a position of Grain's internal state, q_1 the number of desired identical positions in the keystream and q_2 the maximum number of search trials. Then, Algorithm 3 finds at most q_1 identical positions in a maximum of q_2 trials.

Proof. We note that in Algorithm 3 the bit b_r on position r is set. If b_r is taken into consideration while computing the output bit of PRGA then the output of PRGA' is also set due to the replacement of the original operations (+ and ·) with | operations. The same argument is valid if a bit of Grain's internal state is influenced by b_r .

The above statements remain true for each internal state bit that becomes set during the execution of Algorithm 3.

Algorithm 3. Search for identical keystream position in Grain **Input:** Integers $r \in \{0, 2n\}$ and $q_1, q_2 > 0$ **Output:** Keystream positions φ 1 Set $s \leftarrow 0$ and $\varphi \leftarrow \emptyset$ **2** Let $S \in \{0,1\}^{2n}$ be the zero state $(0,\ldots,0)$ **3** Construct S_{Δ} from S by flipping the bit on position r while $|\varphi| \leq q_1$ and $s < q_2$ do $\mathbf{4}$ Set $b \leftarrow PRGA'(S_{\Delta})$ and update state S_{Δ} with the current state $\mathbf{5}$ if b = 0 then 6 7 Update $\varphi \leftarrow \varphi \cup \{s\}$ 8 end Set $s \leftarrow s+1$ 9 10 end 11 return φ

4 Proposed Ideas

4.1 Compact Padding

Attacks that exploit the periodic padding used in Grain-128 where first presented in [8, 16] and further improved in [5]. We generalize and simplify these attacks below.

Setup. Let $Y_1 = [y_0, \ldots, y_{d_1-1}]$, where $|Y_1| = d_1$, let $Y_2 = [y_{d_1+\alpha}, \ldots, y_{n-1}]$, where $|Y_2| = d_2$ and let $IV = Y_1 ||Y_2$. We define

$$Load_{IV}(IV, P) = Y_1 ||P|| Y_2.$$

Let $S = [s_0, \ldots, s_{n-1}]$ be a state of the LFSR, then we define

$$\text{Extract}_{IV}(S) = s_0 \| \dots \| s_{d_1 - 1} \| \dots \| s_{d_1 + \alpha} \| \dots \| s_{n-1}.$$

Padding. Let $\alpha = \lambda \omega$ and $|P_0| = \ldots = |P_{\omega-1}| = \lambda$, then we define $P = P_0 || \ldots ||P_{\omega-1}$. We say that P is a periodic padding of order λ if λ is the smallest integer such that $P_0 = \ldots = P_{\omega-1}$.

Periodic padding of order α is further referred to as aperiodic padding.

Theorem 5. Let P be a periodic padding of order λ and let i = 1, 2 denote an index. For each (set of) condition(s) presented in Column 2 of Table 1 there exists an attack whose corresponding success probability is presented in Column 3 of Table 1.

	Conditions	Success Probability
1.	$d_1 \ge \lambda \text{ or } d_2 \ge \lambda$	$1/2^{\lambda}$
2.	$d_1 \ge \lambda$ and $d_2 \ge \lambda$	$1/2^{\lambda-1}$
3.	$d_i < \lambda$	$1/2^{2\lambda-d_i}$

Table 1: Attack	Parameters	for	Theorem	5
-----------------	------------	-----	---------	---

- *Proof.* 1. The proof follows directly from Algorithms 5 and 7. Given the assumptions in Section 2, the probability that the first λ keystream bits are zero is $1/2^{\lambda}$.
- 2. The proof is a direct consequence of Item 1.
- 3. The proof is straightforward in the light of Algorithms 8 and 9. Given the assumptions in Section 2, the probability that $V'_1 = P_0$ is $1/2^{\lambda-d_1}$ and the probability that $V'_2 = P_{\omega-1}$ is $1/2^{\lambda-d_2}$. Also, the probability that the first λ keystream bits are zero is $1/2^{\lambda}$. Since the two events are independent, we obtain the desired success probability.

Algorithm 4. $Pair_1(\sigma, S)$
Input: Number of clocks σ and a state S.
Output: A Key-IV pair (K', IV') or \perp
1 Run KSA ⁻¹ (S) routine for σ clocks and produce state $S' = (K' V_1' P P_{\omega-1} V_2')$, where $ V_1' = d_1$ and
$ V_2' = d_2 - \lambda$
2 Set $IV' \leftarrow V_1' P_{\omega-1} V_2'$
3 if (K', IV') produces all zero keystream bits in the first λ PRGA rounds then
4 return (K', IV')
5 end
6 return \perp

Algorithm 5. Constructing Key-IV pairs that generate λ bit shifted keystream

Output: Key-IV pairs (K', IV') and (K, IV)1 Set $s \leftarrow 0$ while s = 0 do 2 Choose $K \in_R \{0,1\}^n, V_1 \in_R \{0,1\}^{d_1-\lambda}$ and $V_2 \in_R \{0,1\}^{d_2}$ 3 Set $IV \leftarrow V_1 ||P_0||V_2$, $S \leftarrow K ||V_1||P_0||P||V_2$ and $output \leftarrow \texttt{Pair}_1(\lambda, S)$ 4 if $output \neq \bot$ then 5 Set $s \leftarrow 1$ 6 return (K, IV) and output 7 end 8 9 end

Algorithm 6. $\operatorname{Pair}_2(\sigma, S)$

Input: Number of clocks σ and a state S. Output: A Key-IV pair (K', IV'). 1 Run KSA(S) routine for σ clocks and produce state $S' = (K' ||V_1'|| P_0 ||P|| V_2')$, where $|V_1'| = d_1 - \lambda$ and $|V_2'| = d_2$ 2 Set $IV' \leftarrow V_1' ||P_0|| V_2'$ 3 return (K', IV')

Remark 4. Let $d_2 = 0, \lambda = 1, P_0 = 1$. If $\alpha = 16$, then the attack described in [16] is the same as the attack we detail in Algorithm 9. The same is true for [8] if $\alpha = 32$. Also, if $\alpha = 32$ then Algorithm 5 is a simplified version of the attack presented in [5].

Remark 5. To minimize the impact of Theorem 5, one must choose a padding value such that $\lambda = \alpha$ and either $d_1 < \alpha$ or $d_2 < \alpha$. In this case, because of the generic attacks described in Section 3, the success probability can not drop below $1/2^{\alpha}$. The designers of Grain-128a have chosen $d_2 = 0$ and P = 0xffffffe. In [6], the authors introduce an attack for Grain-128a, which is a special case of the attack we detail in Algorithm 5.

Theorem 6. Let P be an aperiodic padding, $1 \le \gamma < \alpha/2$ and $d_2 < \alpha$. Also, let i = 1, 2 denote an index. If $LSB_{\gamma}(P) = MSB_{\gamma}(P)$, then for each condition presented in Column 2 of Table 2 there exists an attack whose corresponding success probability is presented in Column 3 of Table 2.

	Condition	Success Probability
1.	$d_i \ge \alpha - \gamma$	$1/2^{\alpha-\gamma}$
2.	$d_i < \alpha - \gamma$	$1/2^{2\alpha-2\gamma-d_i}$

 Table 2: Attack Parameters for Theorem 6

- *Proof.* 1. The first part of proof follows from Algorithm 5 with the following changes:
 - (a) λ is replaced by $\alpha \gamma$;
 - (b) P_0 is replaced by $MSB_{\alpha-\gamma}(P)$;
 - (c) $P_{\omega-1}$ is replaced by $LSB_{\alpha-\gamma}(P)$.

Therefore, the probability that the first $\alpha - \gamma$ keystream bits are zero is $1/2^{\alpha-\gamma}$. Similarly, the second part follows from Algorithm 7.

2. To prove the first part, we use the above changes on Algorithm 8, except that instead of replacing $P_{\omega-1}$ we replace $LSB_{d_1}(P_0)$ with $MID_{[\gamma+d_1-1,\gamma]}(P)$. Thus, we obtain the probability $1/2^{\alpha-\gamma}$. Similarly, for the second part we use Algorithm 9.

Algorithm 7. Constructing Key-IV pairs that generate λ bit shifted keystream

Output: Key-IV pairs (K', IV') and (K, IV)1 Set $s \leftarrow 0$ while s = 0 do 2 Choose $K \in_R \{0,1\}^n, V_1 \in_R \{0,1\}^{d_1}$ and $V_2 \in_R \{0,1\}^{d_2-\lambda}$ 3 Set $IV \leftarrow V_1 || P_{\omega-1} || V_2$ 4 if (K, IV) produces all zero keystream bits in the first λ PRGA rounds then $\mathbf{5}$ Set $s \leftarrow 1$ and $S \leftarrow (K \| V_1 \| P \| P_{\omega-1} \| V_2)$ 6 7 return (K, IV) and $\operatorname{Pair}_2(\lambda, S)$ end 8 9 end

Algorithm 8. Constructing Key-IV pairs that generate λ bit shifted keystream

Output: Key-IV pairs (K'', IV'') and (K, IV) $\mathbf{1} \ \text{Set} \ s \leftarrow \mathbf{0}$ ² while s = 0 do Choose $K \in_R \{0, 1\}^n$ and $V_2 \in_R \{0, 1\}^{d_2}$ 3 Set $IV \leftarrow LSB_{d_1}(P_0) || V_2$ 4 Run KSA⁻¹($K \| LSB_{d_1}(P_0) \| P \| V_2$) routine for $\lambda - d_1$ clocks and produce state $S' = (K' \| V_1' \| P \| V_2')$, 5 where $|V_1'| = \lambda$ and $|V_2'| = d_2 - \lambda + d_1$ if $V_1' = p_0$ then 6 Set $S \leftarrow K' ||P_0||P||V_2'$ and $output \leftarrow \texttt{Pair}_1(d_1, S)$ 7 if $output \neq \bot$ then 8 Set $s \leftarrow 1$ 9 **return** (K, IV) and *output* 10 end 11 end 12 13 end

Remark 6. To prevent the attacks presented in the proof of Theorem 6, the padding must be chosen such that $MSB_{\gamma}(P) \neq LSB_{\gamma}(P), \forall 1 \leq \gamma < \alpha/2$. Grain 128a uses such a padding P = 0xffffffe. Another example was suggested in [8] to counter their proposed attacks: P = 0x00000001.

Constraints. Taking into account all the previous remarks, we may conclude that $good^6$ compact padding schemes are aperiodic and, in particular, satisfy $MSB_{\gamma}(P) \neq LSB_{\gamma}(P)$, $\forall 1 \leq \gamma < \alpha/2$. Also, another constraint is the position of the padding, *i.e.* $d_1 < \alpha$ or $d_2 < \alpha$ must be satisfied.

Remark 7. In the compact padding case, the number of padding schemes that verify the security restrictions represent 26% of the total 2^{α} . The previous percentage and the values we mention below were determined experimentally.

For $\alpha = 16$ and $0 \le d_1, d_2 < 16$ we obtain $17622 \simeq 2^{14}$ compact padding schemes resistant to previous attacks. Thus, the complexity of a brute-force attack increases with 2^{19} .

For $\alpha = 32$ and $0 \le d_1, d_2 < 32$ we obtain $1150153322 \simeq 2^{30}$ compact padding schemes resistant to previous attacks. Thus, the complexity of a brute-force attack increases with 2^{36} .

⁶ resistant to the aforementioned attacks

Algorithm 9. Constructing Key-IV pairs that generate λ bit shifted keystream

Output: Key-IV pairs $(K'', \overline{IV''})$ and (\overline{K}, IV) $\texttt{1} \ \text{Set} \ s \leftarrow 0$ while s = 0 do $\mathbf{2}$ Choose $K \in_R \{0, 1\}^n$ and $V_1 \in_R \{0, 1\}^{d_1}$ 3 Set $IV \leftarrow V_1 || MSB_{d_2}(P_{\omega-1})$ 4 if K, IV produces all zero keystream bits in the first λ PRGA rounds then $\mathbf{5}$ Run KSA $(K||V_1||P||MSB_{d_2}(P_{\omega-1}))$ routine for $\lambda - d_2$ clocks and produce state $S' = (K'||V_1'||P||V_2')$, 6 where $|V_1'| = d_1 - \lambda + d_2$ and $|V_2'| = \lambda$ if $V_2' = P_{\omega-1}$ then 7 Set $s \leftarrow 1$ and $S \leftarrow (K' || V_1' || P || P_{\omega-1})$ 8 return (K, IV) and $Pair_2(d_2, S)$ 9 10 end end 11 12 end

4.2 Fragmented Padding

Setup. Let $\alpha = c \cdot \beta$, where c > 1. Also, let $IV = B_0 ||B_1|| \dots ||B_c$ and $P = P_0 ||P_1|| \dots ||P_{c-1}$, where $|B_0| = d_1$, $|P_0| = \dots = |P_{c-1}| = |B_1| = \dots = |B_{c-1}| = \beta$ and $|B_c| = d_2$. In this case, we define

$$Load_{IV}(IV, P) = B_0 ||P_0||B_1||P_1|| \dots ||B_{c-1}||P_{c-1}||B_c$$

Let $S = S_0 \| \dots \| S_{2c}$ be a state of the LFSR, such that $|S_0| = d_1$, $|S_1| = \dots = |S_{2c-1}| = \beta$ and $|S_{2c}| = d_2$. Then we define

$$\texttt{Extract}_{IV}(S) = S_0 \|S_2\| \dots \|S_{2c}\|$$

Theorem 7. Let i = 1, 2 denote an index. In the previously mentioned setting, for each (set of) condition(s) presented in Column 2 of Table 3 there exists an attack whose corresponding success probability is presented in Column 3 of Table 3.

	Conditions	Success Probability
1.	$d_1 \ge \beta$ or $d_2 \ge \beta$	$1/2^{\beta}$
2.	$d_1 \ge \beta$ and $d_2 \ge \beta$	$1/2^{\beta - 1}$
3.	$d_i < \beta$	$1/2^{2\beta-d_i}$

Table 3: Attack 1	Parameters 1	for Theorem 7
-------------------	--------------	---------------

- *Proof.* 1. We only prove the case i = 1 as the case i = 2 is similar in the light of Algorithm 7. The proof follows directly from Algorithm 12. Given the assumptions in Section 2, the probability that the first β keystream bits are zero is $1/2^{\beta}$.
- 2. The proof is a direct consequence of Item 1.
- 3. Again, we only prove the case i = 1. The proof is straightforward in the light of Algorithm 16. Given the assumptions in Section 2, the probability that $V'_1 = P_0$ is $1/2^{\beta-d_1}$. Also, the probability that the first β keystream bits are zero is $1/2^{\beta}$. Since the two events are independent, we obtain the desired success probability.

Algorithm 10. Update₁()

Output: Variable value

- 1 Set value $\leftarrow P_0$
- **2** for i = 1 to c 1 do
- **3** Update value \leftarrow value $||P_i||P_i$
- 4 end
- 5 return value

Algorithm	11.	Pair ₂	(σ, S))
TIGOTIOIIII		1 0 1 1 3	\sim	/

Input: Number of clocks σ and a state S. Output: A Key-IV pair (K', IV') or \perp 1 Run KSA⁻¹(S) routine for σ clocks and produce state $S' = (K' ||V_1'|| value ||V_2')$, where $|V_1'| = d_1$ and $|V_2'| = d_2 - \beta$ 2 Set $IV' \leftarrow V_1' ||P||V_2'$ 3 if (K', IV') produces all zero keystream bits in the first β PRGA rounds then 4 | return (K', IV')5 end 6 return \perp

Algorithm 12. Constructing Key-IV pairs that generate β bit shifted keystream

Output: Key-IV pairs (K', IV') and (K, IV) $\mathbf{1} \ \text{Set} \ s \leftarrow \mathbf{0}$ 2 while s = 0 do Choose $K \in_R \{0,1\}^n, V_1 \in_R \{0,1\}^{d_1-\beta}$ and $V_2 \in_R \{0,1\}^{d_2}$ 3 Set value $\leftarrow P_0 \| \texttt{Update}_1(), IV \leftarrow V_1 \| P \| V_2, S \leftarrow K \| V_1 \| value \| V_2 \text{ and } output \leftarrow \texttt{Pair}_3(\beta, S)$ 4 if $output \neq \bot$ then 5 Set $s \leftarrow 1$ 6 return (K, IV) and output 7 8 end 9 end

Remark 8. Let $\delta < \beta$ and $\beta > 1$. To prevent the attacks presented in Theorem 7, we have to slightly modify the structure of the *IV*. We need at least one block $|B_i| = \delta$, where $1 \le i \le c - 1$. We further consider that $|B_i| = \delta$, $\forall 1 \le i \le c - 1$.

Theorem 8. Let $|B_i| = \delta$, $\forall 1 \leq i \leq c-1$. Also, let $1 \leq \gamma \leq \beta$, $1 \leq t \leq c$ and $0 \leq j \leq t-1$. If $LSB_{\gamma}(P_{c-1-j}) = MSB_{\gamma}(P_{t-1-j}) \forall j$ then for each (set of) condition(s) presented in Column 2 of Table 4 there exists an attack whose corresponding success probability is presented in Column 3 of Table 4.

	Conditions	Success Probability
1.	$d_1 \ge \beta - \gamma + (\beta + \delta)(c - t), \ \delta \ge \beta - \gamma$	$1/2^{\beta-\gamma+(\beta+\delta)(c-t)}$
2.	$d_1 \ge \beta - \gamma + (\beta + \delta)(c - t), \ \delta < \beta - \gamma,$ $MSB_{\beta - \gamma - \delta}(P_{c-1-j}) = LSB_{\beta - \gamma - \delta}(P_{t-2-j}) \ \forall j$	$1/2^{\beta-\gamma+(\beta+\delta)(c-t)}$
3.	$d_1 < \beta - \gamma + (\beta + \delta)(c - t), \ \delta \ge \beta - \gamma$	$1/2^{2\beta-2\gamma+2(\beta+\delta)(c-t)-d_1}$
4.	$ \begin{aligned} d_1 < \beta - \gamma + (\beta + \delta)(c - t), \ \delta < \beta - \gamma, \\ MSB_{\beta - \gamma - \delta}(P_{c - 1 - j}) = LSB_{\beta - \gamma - \delta}(P_{t - 2 - j}) \ \forall j \end{aligned} $	$1/2^{2\beta-2\gamma+2(\beta+\delta)(c-t)-d_1}$

Table 4: Attack Parameters for Theorem 8

Proof. 1. The proof follows directly from Algorithm 19 (described in the last appendix of our paper). Given the assumptions in Section 2, the probability that the first $\beta - \gamma + (\beta + \delta)(c - t)$ keystream bits are zero is $1/2^{\beta - \gamma + (\beta + \delta)(c - t)}$.

The proofs for the remaining cases presented in Table 4 follow directly from previous results. Thus, we omit them. $\hfill \Box$

Theorem 9. Let $|B_i| = \delta$, $\forall 1 \le i \le c-1$. Also, let $1 \le \gamma \le \beta$, $1 \le t \le c$ and $0 \le j \le t-2$. If $\delta \ge \beta - \gamma$ then for each (set of) condition(s) presented in Column 2 of Table 5 there exists an attack whose corresponding success probability is presented in Column 3 of Table 5.

	Conditions	Success Probability
1.	$ \begin{aligned} d_1 &\geq \delta - \beta + \gamma + \beta(c-t+1) + \delta(c-t), \\ MSB_{\gamma}(P_{c-1-j}) &= LSB_{\gamma}(P_{t-2-j}) \forall j \end{aligned} $	$1/2^{\delta-\beta+\gamma+\beta(c-t+1)+\delta(c-t)}$
2.	$ \begin{aligned} d_1 < \delta - \beta + \gamma + \beta(c - t + 1) + \delta(c - t), \\ MSB_{\gamma}(P_{c-1-j}) = LSB_{\gamma}(P_{t-2-j}) \forall j \end{aligned} $	$1/2^{2\delta-2\beta+2\gamma+2\beta(c-t+1)+2\delta(c-t)-d_1}$

Table 5: Attack Parameters for Theorem 9

- *Proof.* 1. The proof follows directly from Algorithm 20 (described in the last appendix of our paper). Given the assumptions in Section 2, the probability that the first $\delta \beta + \gamma + \beta(c t + 1) + \delta(c t)$ keystream bits are zero is $1/2^{\delta \beta + \gamma + \beta(c t + 1) + \delta(c t)}$.
- 2. The proof is similar to the proof of Theorem 7, Item 3.

Remark 9. Taking into account the generic attacks described in Section 3, any probability bigger than $1/2^{\alpha}$ is superfluous. As an example, when $\alpha = 32$ we obtain a good padding scheme for the following parameters $d_2 = 0, \beta = 16, \delta = 14, P_0 = 0x8000, P_1 = 0x7fff$.

Remark 10. Let $c = 2, \delta \leq \beta - 2, \gamma < \beta$ and $P_0 \neq P_1$. The best success probability of a slide attack when the following conditions are met:

$$\begin{split} \gamma > 1: & LSB_{\gamma}(P_1) \neq MSB_{\gamma}(P_0) \\ & LSB_{\gamma}(P_0) \neq MSB_{\gamma}(P_1), \\ \gamma > 0: & LSB_{\gamma}(P_1) \neq MSB_{\gamma}(P_1) \\ & LSB_{\gamma}(P_0) \neq MSB_{\gamma}(P_0), \end{split}$$

is $1/2^{\alpha-1+\delta} \ge 1/2^{\alpha}$. The number of padding schemes that verify the security restrictions represent 2% of the total 2^{α} . The previous percentage and the values we mention below were determined experimentally.

For $\alpha = 16, \beta = 8, 1 \le \delta \le 6, \gamma < 8$ and $d_1 = d_2 = 0$ we obtain $1840 \simeq 2^{10}$ fragmented padding schemes resistant to previous attacks. Thus, the complexity of a brute-force attack increases with 2^{14} .

For $\alpha = 32, \beta = 16, 1 \le \delta \le 14, \gamma < 16$ and $d_1 = d_2 = 0$ we obtain 117113488 $\simeq 2^{23}$ fragmented padding schemes resistant to previous attacks. Thus, the complexity of a brute-force attack increases with 2^{28} .

5 Conclusion

We analyzed the security of various periodic and aperiodic IV padding methods⁷ for the Grain family of stream ciphers, proposed corresponding attacks and discussed their success probability.

Future Work. A closely related study which naturally arises is analyzing the security of breaking the padding into aperiodic blocks. Another idea would be to study how the proposed padding techniques interfere with the security of the authentication feature of Grain-128a. A question that arises is if the occurrence of slide pairs may somehow be converted into a distinguishing or key recovery attack. Another interesting point would be to investigate what would happen to the security of the Grain family with respect to differential, linear or cube attacks in the various padding scenarios we outlined. One more future work idea could be to analyze various methods of preventing the all zero state of Grain's LFSR.

References

- 1. eSTREAM: the ECRYPT Stream Cipher Project. http://www.ecrypt.eu.org/stream/
- 2. NIST SP 800-22: Download Documentation and Software. https://csrc.nist.gov/Projects/ Random-Bit-Generation/Documentation-and-Software
- 3. The GNU Multiple Precision Arithmetic Library. https://gmplib.org/
- Aumasson, J.P., Dinur, I., Henzen, L., Meier, W., Shamir, A.: Efficient FPGA Implementations of High-Dimensional Cube Testers on the Stream Cipher Grain-128. https://eprint.iacr.org/2009/218.pdf (2009)
- Banik, S., Maitra, S., Sarkar, S.: Some Results on Related Key-IV Pairs of Grain. In: Proceedings of the 2nd International Conference on Security, Privacy, and Applied Cryptography Engineering – SPACE'12. Lecture Notes in Computer Science, vol. 7644, pp. 94–110. Springer (2012)
- Banik, S., Maitra, S., Sarkar, S., Meltem Sönmez, T.: A Chosen IV Related Key Attack on Grain-128a. In: Proceedings of the 18th Australasian Conference on Information Security and Privacy – ACISP'13. Lecture Notes in Computer Science, vol. 7959, pp. 13–26. Springer (2013)

⁷ compact and fragmented

- Berbain, C., Gilbert, H., Maximov, A.: Cryptanalysis of Grain. In: Proceedings of the 18th International Workshop on Fast Software Encryption – FSE'06. Lecture Notes in Computer Science, vol. 4047, pp. 15–29. Springer (2006)
- Cannière, C., Küçük, Ö., Preneel, B.: Analysis of Grain's Initialization Algorithm. In: Progress in Cryptology AFRICACRYPT'08. Lecture Notes in Computer Science, vol. 5023, pp. 276–289. Springer (2008)
- Dinur, I., Güneysu, T., Paar, C., Shamir, A., Zimmermann, R.: An Experimentally Verified Attack on Full Grain-128 Using Dedicated Reconfigurable Hardware. In: Advances in Cryptology – ASIACRYPT'11. Lecture Notes in Computer Science, vol. 7073, pp. 327–343. Springer (2011)
- Dinur, I., Shamir, A.: Breaking Grain-128 with Dynamic Cube Attacks. In: Proceedings of the 18th International Workshop on Fast Software Encryption – FSE'11. Lecture Notes in Computer Science, vol. 6733, pp. 167–187. Springer (2011)
- 11. Hell, M., Johansson, T., Maximov, A., Meier, W.: A Stream Cipher Proposal: Grain-128. In: International Symposium on Information Theory ISIT'06. pp. 1614–1618. IEEE (July 2006)
- 12. Hell, M., Johansson, T., Meier, W.: Grain A Stream Cipher for Constrained Environments. Tech. Rep. 010 (2005), eCRYPT Stream Cipher Project Report
- Hell, M., Johansson, T., Meier, W.: Grain: A Stream Cipher for Constrained Environments. International Journal of Wireless and Mobile Computing 2(1), 86–93 (May 2007)
- 14. Khazaei, S., Hassanzadeh, M., Kiaei, M.: Distinguishing Attack on Grain. Tech. Rep. 071 (2005), eCRYPT Stream Cipher Project Report
- Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional Differential cryptanalysis of NLFSR-Based Cryptosystems. In: Advances in Cryptology – ASIACRYPT'10. Lecture Notes in Computer Science, vol. 6477, pp. 130–145. Springer (2010)
- Küçük, Ö.: Slide Resynchronization Attack on the Initialization of Grain 1.0. http://www.ecrypt.eu.org/stream (2006)
- 17. Maimut, D.: Authentication and Encryption Protocols: Design, Attacks and Algorithmic Improvements. Ph.D. thesis, École normale supérieure (2015)
- Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: A New Version of Grain-128 with Optional Authentication. International Journal of Wireless and Mobile Computing 5(1), 48–59 (Dec 2011)
- Stankovski, P.: Greedy Distinguishers and Nonrandomness Detectors. In: Progress in Cryptology IN-DOCRYPT'10. Lecture Notes in Computer Science, vol. 6498, pp. 210–226. Springer (2010)
- Zhang, H., Wang, X.: Cryptanalysis of Stream Cipher Grain Family. https://eprint.iacr.org/2009/109.pdf (2009)

A Grain v1

In the case of Grain v1, n = 80 and m = 64. The padding value is $P = 0 \times ffff$. The values IV and P are loaded in the LFSR using the function LoadIV(IV, P) = IV ||P. Given $S \in \{0, 1\}^{80}$, we define $ExtractIV(S) = MSB_{64}(S)$.

We denote by $f_1(x)$ the primitive feedback of the LFSR:

$$f_1(x) = 1 + x^{18} + x^{29} + x^{42} + x^{57} + x^{67} + x^{80}.$$

We denote by $g_1(x)$ the nonlinear feedback polynomial of the NFSR:

$$g_{1}(x) = 1 + x^{18} + x^{20} + x^{28} + x^{35} + x^{43} + x^{47} + x^{52} + x^{59} + x^{66} + x^{71} + x^{80} + x^{17}x^{20} + x^{43}x^{47} + x^{65}x^{71} + x^{20}x^{28}x^{35} + x^{47}x^{52}x^{59} + x^{17}x^{35}x^{52}x^{71} + x^{20}x^{28}x^{43}x^{47} + x^{17}x^{20}x^{59}x^{65} + x^{17}x^{20}x^{28}x^{35}x^{43} + x^{47}x^{52}x^{59}x^{65}x^{71} + x^{28}x^{35}x^{43}x^{47}x^{52}x^{59}.$$

The boolean filter function $h_1(x_0, \ldots, x_4)$ is

 $h_1(x_0, \dots, x_4) = x_1 + x_4 + x_0x_3 + x_2x_3 + x_3x_4 + x_0x_1x_2 + x_0x_2x_3 + x_0x_2x_4 + x_1x_2x_4 + x_2x_3x_4.$

The output function is

$$z_i^1 = \sum_{j \in \mathcal{A}_1} x_{i+j} + h_1(y_{i+3}, y_{i+25}, y_{i+46}, y_{i+64}, x_{i+63}), \text{ where } \mathcal{A}_1 = \{1, 2, 4, 10, 31, 43, 56\}.$$

Algorithm 13. KSA^{-1} routine for Grain v1

Input: State $S_i = (x_0, \dots, x_{79}, y_0, \dots, y_{79})$ Output: The preceding state $S_{i-1} = (x_0, \dots, x_{79}, y_0, \dots, y_{79})$ 1 $v = y_{79}$ and $w = x_{79}$ 2 for t = 79 to 1 do 3 $| y_t = y_{t-1}$ and $x_t = x_{t-1}$ 4 end 5 $z = \sum_{j \in A_1} x_j + h_1(y_3, y_{25}, y_{46}, y_{64}, x_{63})$ 6 $y_0 = z + v + y_{13} + y_{23} + y_{38} + y_{51} + y_{62}$ 7 $x_0 = z + w + y_0 + x_9 + x_{14} + x_{21} + x_{28} + x_{33} + x_{37} + x_{45} + x_{52} + x_{60} + x_{62} + x_{63}x_{60} + x_{37}x_{33} + x_{15}x_{9} + x_{60}x_{52}x_{45} + x_{33}x_{28}x_{21} + x_{63}x_{45}x_{28}x_{9} + x_{60}x_{52}x_{37}x_{33} + x_{63}x_{60}x_{52}x_{45}x_{37} + x_{33}x_{28}x_{21}$

B Grain-128

In the case of Grain-128, n = 128 and m = 96. The padding value is P = 0xfffffffff. The values IV and P are loaded in the LFSR using the function LoadIV(IV, P) = IV ||P. Given $S \in \{0, 1\}^{128}$, we define $ExtractIV(S) = MSB_{96}(S)$.

We denote by $f_{128}(x)$ the primitive feedback of the LFSR:

$$f_{128}(x) = 1 + x^{32} + x^{47} + x^{58} + x^{90} + x^{121} + x^{128}.$$

We denote by $g_{128}(x)$ the nonlinear feedback polynomial of the NFSR:

$$g_{128}(x) = 1 + x^{32} + x^{37} + x^{72} + x^{102} + x^{128} + x^{44}x^{60} + x^{61}x^{125} + x^{63}x^{67} + x^{69}x^{101} + x^{80}x^{88} + x^{110}x^{111} + x^{115}x^{117}.$$

The boolean filter function $h_{128}(x_0, \ldots, x_8)$ is

$$h_{128}(x_0, \dots, x_8) = x_0 x_1 + x_2 x_3 + x_4 x_5 + x_6 x_7 + x_0 x_4 x_8$$

The output function is

$$z_i^{128} = \sum_{j \in \mathcal{A}_{128}} x_{i+j} + y_{i+93} + h_{128}(x_{i+12}, y_{i+8}, y_{i+13}, y_{i+20}, x_{i+95}, y_{i+42}, y_{i+60}, y_{i+79}, y_{i+95}),$$

where $\mathcal{A}_{128} = \{2, 15, 36, 45, 64, 73, 89\}.$

Algorithm 14. KSA^{-1} routine for Grain-128

Input: State $S_i = (x_0, \dots, x_{127}, y_0, \dots, y_{127})$ Output: The preceding state $S_{i-1} = (x_0, \dots, x_{127}, y_0, \dots, y_{127})$ 1 $v = y_{127}$ and $w = x_{127}$ 2 for t = 127 to 1 do 3 $| y_t = y_{t-1}$ and $x_t = x_{t-1}$ 4 end 5 $z = \sum_{j \in A_{128}} x_{i+j} + y_{93} + h_{128}(x_{12}, y_8, y_{13}, y_{20}, x_{95}, y_{42}, y_{60}, y_{79}, y_{95}),$ 6 $y_0 = z + v + y_7 + y_{38} + y_{70} + y_{81} + y_{96}$ 7 $x_0 = z + w + y_0 + x_{26} + x_{56} + x_{91} + x_{96} + x_{84}x_{68} + x_{65}x_{61} + x_{48}x_{40} + x_{59}x_{27} + x_{18}x_{17} + x_{13}x_{11} + x_{67}x_3$

C Grain-128a

In the case of Grain-128a, n = 128 and m = 96. The padding value is $P = 0 \times ffffffe$. The values IV and P are loaded in the LFSR using the function LoadIV(IV, P) = IV ||P. Given $S \in \{0, 1\}^{128}$, we define $ExtractIV(S) = MSB_{96}(S)$.

We denote by $f_{128a}(x)$ the primitive feedback of the LFSR:

$$f_{128a}(x) = 1 + x^{32} + x^{47} + x^{58} + x^{90} + x^{121} + x^{128}.$$

We denote by $g_{128a}(x)$ the nonlinear feedback polynomial of the NFSR:

$$g_{128a}(x) = 1 + x^{32} + x^{37} + x^{72} + x^{102} + x^{128} + x^{44}x^{60} + x^{61}x^{125} + x^{63}x^{67} + x^{69}x^{101} + x^{80}x^{88} + x^{110}x^{111} + x^{115}x^{117} + x^{46}x^{50}x^{58} + x^{103}x^{104}x^{106} + x^{33}x^{35}x^{36}x^{40}.$$

The boolean filter function $h_{128a}(x_0, \ldots, x_8)$ is

$$h_{128a}(x_0,\ldots,x_8) = x_0x_1 + x_2x_3 + x_4x_5 + x_6x_7 + x_0x_4x_8.$$

The output function is

$$z_i^{128a} = \sum_{j \in \mathcal{A}_{128a}} x_{i+j} + y_{i+93} + h_{128a}(x_{i+12}, y_{i+8}, y_{i+13}, y_{i+20}, x_{i+95}, y_{i+42}, y_{i+60}, y_{i+79}, y_{i+94}),$$

where $\mathcal{A}_{128a} = \{2, 15, 36, 45, 64, 73, 89\}.$

Algorithm 15. KSA^{-1} routine for Grain-128a

Input: State $S_i = (x_0, \dots, x_{127}, y_0, \dots, y_{127})$ Output: The preceding state $S_{i-1} = (x_0, \dots, x_{127}, y_0, \dots, y_{127})$ 1 $v = y_{127}$ and $w = x_{127}$ 2 for t = 127 to 1 do 3 $| y_t = y_{t-1}$ and $x_t = x_{t-1}$ 4 end 5 $z = \sum_{j \in A_{128a}} x_j + y_{93} + h_{128a}(x_{12}, y_8, y_{13}, y_{20}, x_{95}, y_{42}, y_{60}, y_{79}, y_{94})$ 6 $y_0 = z + v + y_7 + y_{38} + y_{70} + y_{81} + y_{96}$ 7 $x_0 = z + w + y_0 + x_{26} + x_{56} + x_{91} + x_{96} + x_3x_{67} + x_{11}x_{13} + x_{17}x_{18} + x_{27}x_{59} + x_{40}x_{48} + x_{61}x_{65} + x_{68}x_{84} + x_{88}x_{92}x_{93}x_{95} + x_{22}x_{24}x_{25} + x_{70}x_{78}x_{82}$

D Examples

Within Tables 6 to 8, the padding is written in blue, while the red text denotes additional data necessary to mount the proposed attacks. Test vectors presented in this section are expressed as hexadecimal strings. For simplicity, we omit the 0x prefix.

Table 6: Examples of Generic Attacks.

Cipher Key		Key	LFSR Loading
	Grain v1	a8af910f2755c064d713	1c60b94e09512adbffff
Algorithm 1	Grain 128	525c3676953ecec2bc5388f1474cdc61	b78d3637b64425015fa3ef63fffffff
Algorithm 1	Grain 128a	a04f944e6ca1e1406537a0ef215689a3	aaaebb010224478f48567997ffffffe

Table 7: Examples of Compact Padding Attacks (index i = 1).

	Cipher	Key	LFSR Loading	Keystream
	Grain v1	7e72b6f960cf9165b891	1007bc3594e07f7f7fa5	004e2da99a27392383696e9e7120370a
		72b6f960cf9165b89145	07bc3594e0 <mark>7f7f7f</mark> a580	4e2da99a27392383696e9e7120370a48
		00166499157d39c9	4a9a37ef1e3dfc13	0000767555544452028555570640205
Theorem 5	Crain 199	5a723b601eccfffb	7fff7fff7fffeb05	000070755aC4C055028Caa577964929e
Condition 1	Grani-128	6499157d39c95a72	37ef1e3dfc13 <mark>7fff</mark>	767555 ad ad 52028 app 577064020 af 1 a0
(Algorithm 5)		3b601eccfffb2fd1	7fff7fffeb05d636	/6/55ac4cd53028caa5//964929e11c0
(Algorithm 5)		b9e20a7619a8d622	ef53aafa3c6c47ca	0000haa1202a11hEE4460f47f0f27h7f
	Crain 128a	5152cfa83eb73361	7fff7fff7fff5cd	00000ac1203a110334d091d719127071
	Grani-128a	0a7619a8d6225152	aafa3c6c47ca7fff	
		cfa83eb7336175a5	7fff7ffff5cd98ba	bac1203a11b354d091d719127b71d545
	Crain v1	455b5df993b367e37b60	07f7f7fe9b4a3044efd1	0095e584ea234610f7ec250a948a8267
	Gram vi	5b5df993b367e37b604d	f7f7fe9b4a3044efd139	95e584ea234610f72ec250a948a8267c
		9302f6b9d7136599	8d7fff7fff7fff10	00007coE62c6821b62868250f547cdff
Theorem 5	Crain 128	ac1caee130c596bb	d59595e5568beb11	00007Ca565C6651b656662591547Cd11
Condition 2	Grani-126	f6b9d7136599ac1c	ff7fff7fff10d595	7-2-E62-6921b629692E0fE47-dff60Eb
(Algorithm 8)		aee130c596bb0dc8	95e5568beb11628c	/ 2303200310030002591547 20110950
(Algorithm 8)		0f478aa147938251	cd7fff7fff7fffed	000050362-17248748185-08505-7-58
	Crain 198a	5e0a94d3357764f4	bb0e00ddcb18d1eb	000000002417200740100000000000000000
	Grain-128a	8aa1479382515e0a	ff7fff7fffedbb0e	E0260-1704874818E-08E0b-7-b804-0
		94d3357764f4b8bb	00ddcb18d1eb0416	59502a172d674616560650be7Cb624a0
	Grain v1	4febc079167f99bdb1db	bd4710804f9e <mark>ff0f</mark> f0fa	000575b77251f3946864d1bdc2510212
		bc079167f99bdb1db338	710804f9e <mark>ff0ff0f</mark> a272	575b77251f3946864d1bdc251021229b
	Grain-128	5a0d4b3907f65ce5	0bbd00872ecb0732	000006520142242244006465208205
		f036b3671614244b	ffff00ffff00fffe	000000002014ecdeeod499646ba06a91
Theorem 6		3907f65ce5f036b3	872ecb0732 <mark>ffff00</mark>	620140cdoo8d40064620820fd03085
Condition 1		671614244be57112	ffff00fffeaf68a2	002014ecdee8d4990400a08a91095085
		6472c21093cd2225	2c9c47771ed4f648	00000001060708661038670031b1df0
	Crain 128a	4118e1a69230e0ac	ffff00ffff00ffde	0000036130676000133007623101010
	Grani-120a	1093cd22254118e1	771ed4f648 <mark>ffff00</mark>	901960708661938670331b1df09f3063
		a69230e0ac668222	ffff00ffdeb9f179	9e190e7e800193807ea31b1d1091300a
	Croin v1	701aa599737c957a0b5e	07ff0ff0fdedd9bd4d1b	000f9b9045f817c551a7c56c18e4ec02
	Gram vi	aa599737c957a0b5eb77	f0ff0fdedd9bd4d1b1bf	f9b9045f817c51a7c56c18e4ec025d85
	Crain 128	30bfe11f3b7080be	aafdffff00ffff00	00000082725f22df71728258dc2f47fd
Theorem 6 Condition 2	Grani-128	47396a37f889b57c	ff38ff5b14da5371	0000008475515841717262564Ca14714
		1f3b7080be47396a	ff00ffff00ff38ff	9-735f3-df71709059dc-f47fd6-d-d1
		37f889b57cac5367	5b14da53715a4291	Sarssisadi / 1/202500ca14/100edadi
	Grain-128a	c4b8607e854abc5f	950bffff00ffff00	00000681060aa4bf10c0181bd7c4d95
	Gram-120a	7a74eba33d563ad1	ff7182c277b77e8f	00000000000000000000000000000000000000
		7e854abc5f7a74eb	ff00ffff00ff7182	681060aa4bf10c0181bd7e4d957b5f2a
		a33d563ad125aaff	c277b77e8f5db61f	001000000010100010100104090100120

	Cipher	Kev	LFSR Loading	Keystream
		cc0d50254f72d88d3c71	3a86d173777777777b2c	04c79ebb4db7bc675644b3d0bf2a59a4
	Grain v1	c0d50254f72d88d3c714	a86d173777777777b2cf	4c79ebb4db7bc675644b3d0bf2a59a47
		c506d0ca5bff72e1	63ba70cf067f7f7f	
	G · 100	6ea07fd8f98d7ba3	7f <mark>7f</mark> 7f7f7f879f9b	004e2c99a48677b4c21719e14e620d48
Theorem 7	Grain-128	06d0ca5bff72e16e	ba70cf06 <mark>7f7f7f7f</mark>	
Condition 1		a07fd8f98d7ba368	7f7f7f7f879f9be1	4e2c99a48677b4c21719e14e620d4884
(Algorithm 12)		0948bd1a0a5d275c	895ba804147f7f7f	002-541-2040-44670-04-017277-600
	Crucia 199a	54744db3dc27cec8	7f 7f7f7f7f 2f9892	003351163849C44670D04C0173776698
	Gram-128a	48bd1a0a5d275c54	5ba80414 <mark>7f7f7f7f</mark>	2 - Ef1 - 2 - 40 - 44670 - 04 - 017277 - 60 - 47
		744db3dc27cec82b	7f7f7f7f2f9892f1	52511656090440700000017577669601
	Grain v1	77a73157cabfa60349dc	77777777318f59ac6aff	0c61bfa06e1c22011dcefe673765acb7
		7a73157cabfa60349dc3	7777777318f59ac6affd	c61bfa06e1c22011dcefe673765acb7f
The second 7		9aca3bd2cf312080	7f7f7f7f7f7f7f7f7f	004624d2271d3420104b2fd1058675fd
I neorem (Grain-128	769338bec86f9da6	b6f7e83b3793f746	00402402271034201040210103007510
Condition 3	Gram-120	ca3bd2cf31208076	7f7f7f7f7f7f7f7fb6	4624d2271d3420104b2fd1058675fd45
(Algorithm 16)		9338bec86f9da63f	f7e83b3793f746ff	40240227100420104021010000701040
		0e9eb1a896077e93	7f7f7f7f7f7f7f7f7f	007f06d63e3545f6b7c4b50d255b6663
	Grain-128a	5b21de8700f3ef44	29b03ff3e82cda8b	0011000000010100101000020000000
		9eb1a896077e935b	7f7f7f7f7f7f7f29	7f06d63e3545f6b7c4b50d255b6663ea
		21de8700f3ef4462	b03ff3e82cda8bfc	
	Grain-128	d3ea84c99a8b1354	ed52bf1b25 <mark>ff0f</mark> f0	0001590b803ff3c9972d96481a6e8ad4
		71d8c320b870e109	fff0ff0f4ed8f575	
Theorem 8		a84c99a8b135471d	2bf1b25ff0ff0fff	1590b803ff3c9972d96481a6e8ad48ee
Condition 1		8c320b870e109120	OffOf4ed8f575dac	
(Algorithm 19)		9ee02802ccf920e6	ab24f8ab82ff0ff0	00082e1cbbb25fa325518665a17f2efc
	Grain-128a	868a8aa46113a406	fff0ff0fd32dc4e9	
		02802ccf920e6868	418ab82110110111	82e1cbbb25fa325518665a17f2efc2eb
		a8aa46113a40681d		
		8d89931ae1e13215		000e612c620ae1765ded57a835b713ac
	Grain-128	//bba20640c193a1		
Theorem 9		9931ae1e1321577D		e612c620ae1765ded57a835b713ace4a
Condition 2		626262808f0 as 24 a		
Condition 2		02020200010Ca24C		0003f5a6d1b7f615dfb32e34cea7cc4a
	Grain-128a	262808f0ca24ccc5	26f9535ff0ff0ff0	
		17bb03fb5c3cb20f	ff0fdfo92o568o4f	3f5a6d1b7f615dfb32e34cea7cc4a106
		116ddd14b4c006cb		
		4100001404009000 0181ao8830ada60d	d7of096c7a8700a3	00076a8e9def620dfe704b264988da02
	Grain-128	ddd14b4c096cb018		
Theorem 8 Condition 3		1ae8830ada69d3b6	f096c7a8700a318f	76a8e9def620dfe704b264988da02cc0
		724d58601b44396d	84ff0ff0fff0ff0ff0f	
		60e83723a65bfa7b	6c25a1d79af2a85c	0008ab9f20d8a418932150d3ba97400e
	Grain-128a	d58601b44396d60e	f0ff0fff0ff0f6c2	
		83723a65bfa7b973	5a1d79af2a85c626	8ab9f20d8a418932150d3ba97400ebd5

	Grain 128	97516dced374a089	3aff0ff0ff0ff0f1	000-0-000-45-0-4046-14000152-24
		88ce86acaa2ff1a4	12b72427d44b92f1	000a8e820bed1b8cd9d651d822113b34
		16dced374a08988c	f0ff0ff0ff0f112b	- 0 - 0001 - 161 0 - 10 105 1 10001 621 24040
Theorem 8		e86acaa2ff1a4399	72427d44b92f1bba	a8e820bed1b8cd9d651d822113b34846
Condition 4		a29ae6fb8b23f747	4bff0ff0ff0ff0fc	
	Crain 199a	f3723e59df0d3a8e	92ace3a64691e733	00000409723847007210185865119096
	Grani-120a	ae6fb8b23f747f37	f0ff0ff0ff0fc92a	~44607029474b70f6f9E6~E1f0406b29
		23e59df0d3a8eabb	ce3a64691e733a54	cd469/2384/db/216185665119d96b38
		930cb0086c93293e	f767352c26395e8a	00000000111doo.0006807b6628001100b
	Grain-128	9722a710e28a1375	ffffb0ffff80fffb	000000000000000000000000000000000000000
Theorem 0		086c93293e9722a7	2c26395e8affffb0	0.444
Condition 1		10e28a1375ec5696	ffff80fffbb6fcf2	0a44dcae9a68c7b66389e440ebbd1198
(Algorithm 20)	Grain-128a	270f72277e7540cf	c7df3ee9c792f5d5	000000fd9bbdb2d2586865704f425022
(Algorithm 20)		9a58fa4426e28aae	ffffd0ffff00fff1	000001000000000000000000000000000000000
		277e7540cf9a58fa	e9c792f5d5 <mark>ffffd0</mark>	fd8hbdb3d3a8c885704f43a022557a80
		4426e28aaebc06e1	ffff00fff13204c5	100000000000000000000000000000000000000
		895bea372ffe4e76	a8147 <mark>ffff80fff</mark> fe	00000045520450555056565524021542
	Crucin 199	e84113dd18afa6b9	0fff2cd80e83e74	0000040559419041010401150921542
	Grani-126	372ffe4e76e84113	fff80ffff0fff2c	4b5304f0baf0f6a6ff3d0215422cbdbb
Theorem 9 Condition 2		dd18afa6b9fb5cef	d80e83e74e3d134e	400094190a1010a0110u9210422c0ubb
		70a2fecddbc94115	9e132ffff50ffffd	000000283926bac772007d3d12b/d597
	Grain 128a	017b571df0854817	0fff5cf89b04484d	0000002839200eC11200103012040391
		cddbc94115017b57	fff50ffffd0fff5c	2839a6bec77a007d3d12b4d597c9041b
		1df08548178142d5	f89b04484d01fb4b	200340560114001404125440591090415

\mathbf{E} Propagation of Single Bit Differentials

Parameters. In Theorem 4, let $q_2 = 96$ for Grain $v1^8$ and $q_2 = 160$ for Grain-128 and Grain-128a⁹.

Flipped Bit Position	Number of Identical Keystream Bits	Positions of Identical Keystream Bits
15	50	0-11, 13-17, 19-30, 33-35, 37, 38, 40-46, 48, 51, 53, 55, 58, 61-63, 71
31	59	$0\text{-}5, \ 7\text{-}23, \ 25\text{-}27, \ 29\text{-}33, \ 35\text{-}41, \ 43\text{-}46, \ 49\text{-}51, \ 54, \ 56\text{-}59, \ 61, \ 62, \ 64, \ 67, \ 69, \ 74, \ 77, \ 79, \ 87$
47	63	0, 2-21, 23, 24, 26-39, 41, 42, 45-49, 51-53, 55-57, 59, 60, 62, 65, 66, 70, 73-75, 77, 78, 80, 95
63	63	0-16, 18-27, 29-34, 36, 37, 39, 40, 42-45, 47-52, 54, 55, 58, 61-63, 65, 68, 69, 72, 73, 76, 81, 90, 91, 94
79	74	0-14, 16-32, 34-43, 45-50, 52, 53, 55, 56, 58-61, 63-68, 70, 71, 74, 77-79, 81, 84, 85, 88, 89, 92

Table 9: Propagation of a Single Bit Differential in the case of Grain v1's LFSR.

 8 as in Theorem 1 9 as in Theorem 2, respectively Theorem 3

Flipped Bit Position	Number of Identical Keystream Bits	Positions of Identical Keystream Bits
15	23	$0-4, \ 6-10, \ 12, \ 15, \ 16, \ 19, \ 20-22, \ 26, \ 27, \ 28, \ 29, \ 31, \ 33$
31	32	1-19, 22-26, 28, 31, 32, 35, 36, 42, 43, 49
47	32	0-15, 17, 18, 20-25, 28, 29, 30, 32, 33, 35, 40, 41, 42
63	25	1-6, 8-16, 19, 21-23, 26, 29-31, 33, 39
79	41	0-15, 17-22, 24-32, 35, 37-39, 42, 45-47, 49, 55

Table 10: Propagation of a Single Bit Differential in the case of Grain v1's NFSR.

Table 11: Propagation of a Single Bit Differential in the case of Grain-128's LFSR.

Flipped Bit Position	Number of Identical Keystream Bits	Positions of Identical Keystream Bits
31	92	0-10, 12-17, 19-22, 24-56, 58, 60-63, 65, 67-69, 71, 72, 74-79, 81-85, 87, 88, 90, 93, 94, 97, 100, 103, 109, 116, 119, 126, 129, 135, 141, 148
55	97	0-12, 14-34, 36-41, 43-46, 48, 49, 51, 53-65, 67-80, 86, 87, 89, 91-93, 95, 96, 100-102, 105-107, 109, 111, 112, 118, 121, 127, 133, 153, 159
79	101	$\begin{array}{c} 1\text{-}18,\ 20\text{-}36,\ 38\text{-}41,\ 43,\ 45\text{-}57,\ 60\text{-}65,\ 67\text{-}70,\ 72,\ 73,\ 75,\ 78\text{-}88,\ 92\text{-}94,\ 96\text{-}99,\ 101,\ 103,\ 104,\ 110,\\ 111,\ 113,\ 115,\ 119,\ 120,\ 125,\ 126,\ 130,\ 131,\ 133,\ 145,\ 151,\ 157\end{array}$
103	86	0-7, 9, 11-23, 25-39, 41, 44-54, 58-60, 62-65, 67, 69, 70, 73, 76-81, 84-86, 91, 92, 94, 96, 97, 99, 105, 109, 110-112, 116, 117, 123, 128, 143, 144
127	108	$ 0-31,\ 33,\ 35-47,\ 49-63,\ 65,\ 68-78,\ 82-84,\ 86-89,\ 91,\ 93,\ 94,\ 97,\ 100-105,\ 108-110,\ 115,\ 116,\ 118,\\ 120,\ 121,\ 123,\ 129,\ 133-136,\ 140,\ 141,\ 147,\ 152 $

Table 12: Propagation of a Single Bit Differential in the case of Grain-128's NFSR.

Flipped Bit Position	Number of Identical Keystream Bits	Positions of Identical Keystream Bits
31	52	$0\text{-}15,\ 17,\ 18,\ 20\text{-}28,\ 30\text{-}36,\ 39\text{-}42,\ 45,\ 48\text{-}50,\ 54\text{-}56,\ 58,\ 62,\ 63,\ 65,\ 66,\ 71,\ 72$
55	65	$0\text{-}9,\ 11\text{-}18,\ 20\text{-}39,\ 41,\ 42,\ 44,\ 45,\ 47,\ 49\text{-}52,\ 55\text{-}60,\ 63\text{-}66,\ 69,\ 73,\ 74,\ 82,\ 87,\ 89,\ 95,\ 96$
79	55	$0\text{-}5,\ 7\text{-}14,\ 16\text{-}33,\ 35\text{-}42,\ 46,\ 48,\ 49,\ 52,\ 54,\ 55,\ 58,\ 60,\ 61,\ 63,\ 65,\ 68,\ 71,\ 74,\ 80$
103	63	0-7, 9-13, 15-29, 31-38, 41-44, 47-50, 53-57, 59-61, 63-66, 70, 73, 79, 85, 87, 92, 98
127	87	0-31, 33-37, 39-53, 55-62, 65-68, 71-74, 77-81, 83-85, 87-90, 94, 97, 103, 109, 111, 116, 122

Flipped Bit Position	Number of Identical Keystream Bits	Positions of Identical Keystream Bits
31	83	$0\text{-}10,\ 12\text{-}17,\ 19\text{-}22,\ 24\text{-}57,\ 60\text{-}63,\ 67\text{-}69,\ 71,\ 72,\ 74\text{-}79,\ 81\text{-}85,\ 87\text{-}89,\ 93,\ 94,\ 109,\ 111,\ 115$
55	94	0-12, 14-34, 36-41, 43-46, 48-50, 53-65, 67-81, 86, 87, 91-93, 95, 96, 100-102, 105-108, 111, 112, 118, 133, 139
79	100	$\begin{array}{c} 1\text{-}18,\ 20\text{-}36,\ 38\text{-}42,\ 45\text{-}57,\ 60\text{-}65,\ 67\text{-}70,\ 72\text{-}74,\ 78\text{-}89,\ 92\text{-}94,\ 96\text{-}100,\ 103,\ 104,\ 110,\ 111,\ 115,\\ 119,\ 120,\ 125,\ 126,\ 130\text{-}132,\ 136,\ 157\end{array}$
103	93	0-8, 11-23, 25-40, 44-55, 58-60, 62-66, 69, 70, 72, 76-81, 84-87, 91, 92, 94, 96-98, 102, 109, 110-113, 116, 117, 123, 124, 128, 134, 143, 144, 149, 156
127	113	0-32, 35-47, 49-64, 68-79, 82-84, 86-90, 93, 94, 96, 100-105, 108-111, 115, 116, 118, 120-122, 126, 133-137, 140, 141, 147, 148, 152, 158

Table 13: Propagation of a Single Bit Differential in the case of Grain-128a's LFSR.

Table 14: Propagation of a Single Bit Differential in the case of Grain-128a's NFSR.

Flipped Bit Position	Number of Identical Keystream Bits	Positions of Identical Keystream Bits
31	44	0-15, 17, 18, 20-28, 30-36, 41, 49, 50, 54-56, 58, 63, 65, 66
55	55	0-9, 11-18, 20-39, 41, 42, 44, 45, 47, 49-52, 55-60, 65, 74
79	48	$0\text{-}5, \ 7\text{-}14, \ 16\text{-}33, \ 35\text{-}39, \ 41, \ 46, \ 49, \ 52, \ 54, \ 55, \ 58, \ 60, \ 61, \ 63, \ 68$
103	43	0-7, 9-13, 15-29, 31-38, 42, 53, 55-57, 59, 61
127	67	0-31, 33-37, 39-53, 55-62, 66, 77, 79-81, 83, 85

F Algorithms

Algorithm 16. Constructing Key-IV pairs that generate β bit shifted keystream **Output:** Key-IV pairs (K', IV') and (K, IV) $\mathbf{1} \ \text{Set} \ s \leftarrow \mathbf{0}$ 2 while s = 0 do Choose $K \in_R \{0, 1\}^n$ and $V_2 \in_R \{0, 1\}^{d_2}$ 3 Set value \leftarrow Update₁() and $IV \leftarrow LSB_{\alpha-\beta+d_1}(P) ||V_2|$ 4 Run KSA⁻¹($K || LSB_{d_1}(P_0) || value || V_2$) routine for $\beta - d_1$ clocks and produce state 5 $S' = (K' ||V'_1|| value ||V'_2)$, where $|V'_1| = \beta$ and $|V'_2| = d_2 - \beta + d_1$ if $V_1' = P_0$ then 6 Set $S \leftarrow K' || P_0 || value || V'_2$ and $output \leftarrow \operatorname{Pair}_3(d_1, S)$ 7 $\mathbf{if} \ output \neq \bot \ \mathbf{then}$ 8 Set $s \leftarrow 1$ 9 **return** (K, IV) and *output* 10 \mathbf{end} 11 \mathbf{end} $\mathbf{12}$ 13 end

Algorithm 17. Update ₂ (start, stop)				
Input: Indexes <i>start</i> and <i>stop</i>				
Output: Variable value				
1 Set $value \leftarrow NULL$				
2 for $i = start$ to stop do				
3 Choose $C_i \in_R \{0,1\}^{\delta}$				
4 Update value \leftarrow value $ C_i P_i$				
5 end				
6 return value				

\mathbf{A}	lgorithm	18.	Update ₃	(val	ue_1 ,	val	ue_2)
--------------	----------	-----	---------------------	------	----------	-----	--------	---

Input: Variables $value_1$ and $value_2$ Output: Variable value1 for i = t to c - 1 do 2 | Choose $B_i \in_R \{0, 1\}^{\delta}$ 3 | Update $value_1 \leftarrow value_1 ||B_i||P_i$ and $value_2 \leftarrow value_2 ||B_i|$ 4 end 5 Set $value \leftarrow value_1 ||value_2$

6 return value

Algorithm 19. Constructing Key-IV pairs that generate $\beta - \gamma + (\beta + \delta)(c - t)$ bit shifted keystream

Output: Key-IV pairs (K', IV') and (K, IV)**1** Set $s \leftarrow 0$ 2 while s = 0 do Choose $K \in_R \{0,1\}^n, V_1 \in_R \{0,1\}^{d_1-\beta+\gamma-(\beta+\delta)(c-t)}$ and $V_2 \in_R \{0,1\}^{d_2}$ 3 Set $value_1 \leftarrow P_0 \| \texttt{Update}_2(0, c-t-2) \| C_{c-t-1} \| MSB_{\beta-\gamma}(P_{c-t}) \text{ and } value_2 \leftarrow value_1$ 4 5 Update $value_1 \leftarrow value_1 || P_0$ for i = 1 to t - 1 do 6 Choose $B_i \in_R \{0,1\}^{\delta-\beta+\gamma}$ 7 Update $value_1 \leftarrow value_1 ||B_i||MSB_{\beta-\gamma}(P_{c-t+i})||P_i$ and $value_2 \leftarrow value_2 ||B_i||MSB_{\beta-\gamma}(P_{c-t+i})||P_i||P_i$ 8 9 end Set $value_1 || value_2 \leftarrow Update_3(value_1, value_2)$ and $IV \leftarrow V_1 || value_2 || V_2$ 10 Run KSA⁻¹($K || V_1 || value_1 || V_2$) routine for $\beta - \gamma + (\beta + \delta)(c - t)$ clocks and produce state 11 $S' = (K' || V'_1 || value_1 || V'_2)$, where $|V'_1| = d_1$ and $|V'_2| = d_2 - \beta + \gamma - (\beta + \delta)(c - t)$ Set $IV' \leftarrow V_1' ||value_1|| V_2'$ 12 if (K', IV') produces all zero keystream bits in the first $\beta - \gamma + (\beta + \delta)(c - t)$ PRGA rounds then 13 Set $s \leftarrow 1$ 14 **return** (K, IV) and (K', IV')15 end 16 17 end

Algorithm 20. Constructing Key-IV pairs that generate $\delta - \beta + \gamma + \beta(c - t + 1) + \delta(c - t)$ bit shifted keystream

Output: Key-IV pairs (K', IV') and (K, IV)1 Set $s \leftarrow 0$ while s = 0 do $\mathbf{2}$ Choose $K \in_R \{0,1\}^n, V_1 \in_R \{0,1\}^{d_1-\delta+\beta-\gamma-\beta(c-t+1)-\delta(c-t)}, V_2 \in_R \{0,1\}^{d_2}$ and $C_{c-t+1} \in_R \{0,1\}^{\delta-\beta+\gamma-\beta}$ 3 Set $value_1 \leftarrow P_0 || Update_2(1, c-t) || C_{c-t+1}$ and $value_2 \leftarrow value_1$ 4 Update $value_1 \leftarrow value_1 || P_0$ $\mathbf{5}$ 6 for i = 1 to t - 1 do Choose $B_i \in_R \{0,1\}^{\delta-\beta+\gamma}$ 7 Update $value_1 = value_1 ||LSB_{\beta-\gamma}(P_{c-t+i})||B_i||P_i$ and $value_2 = value_2 ||LSB_{\beta-\gamma}(P_{c-t+i})||B_i||P_i$ 8 end 9 10 Set $value_1 || value_2 \leftarrow Update_3(value_1, value_2)$ and $IV \leftarrow V_1 || value_2 || V_2$ Run KSA⁻¹($K ||V_1||value_1||V_2$) routine for $\delta - \beta + \gamma + \beta(c - t + 1) + \delta(c - t)$ clocks and produce state 11 $S' = (K' || V'_1 || value_1 || V'_2)$, where $|V'_1| = d_1$ and $|V'_2| = d_2 - \delta + \beta - \gamma - \beta(c - t + 1) - \delta(c - t)$ Set $IV' \leftarrow V_1' \|value_1\|V_2'$ 12 if (K', IV')13 produces all zero keystream bits in the first $\delta - \beta + \gamma + \beta(c - t + 1) + \delta(c - t)$ PRGA rounds then Set $s \leftarrow 1$ 14 **return** (K, IV) and (K', IV')15 end 16 17 end