
New Configurations of Grain Ciphers: Security Against Slide
Attacks

Diana Maimuţ1 and George Teşeleanu1,2

1 Advanced Technologies Institute
10 Dinu Vintilă, Bucharest, Romania
{diana.maimut,tgeorge}@dcti.ro
2 Department of Computer Science

“Al.I.Cuza” University of Iaşi 700506 Iaşi, Romania,
george.teseleanu@info.uaic.ro

Abstract. eSTREAM brought to the attention of the cryptographic community a number of stream
ciphers including Grain v0 and its revised version Grain v1. The latter was selected as a finalist of
the competition’s hardware-based portfolio. The Grain family includes two more instantiations, namely
Grain-128 and Grain-128a.
The scope of our paper is to provide an insight on how to obtain secure configurations of the Grain family
of stream ciphers. We propose different variants for Grain and analyze their security with respect to
slide attacks. More precisely, as various attacks against initialization algorithms of Grain were discussed
in the literature, we study the security impact of various parameters which may influence the LFSR’s
initialization scheme.

1 Introduction

The Grain family of stream ciphers consists of four instantiations Grain v0 [12], Grain v1 [13], Grain-
128 [11] and Grain-128a [18]. Grain v1 is a finalist of the hardware-based eSTREAM portfolio [1],
a competition for choosing both hardware and software secure and efficient stream ciphers.

The design of the Grain family of ciphers includes an LFSR. The loading of the LFSR consists
of an initialization vector (IV) and a certain string of bits P whose lengths and structures depend
on the cipher’s version. Following the terminology used in [6], we consider the IV as being padded
with P . Thus, throughout this paper, we use the term padding to denote P . Note that Grain v1
and Grain-128 make use of periodic IV padding and Grain-128a uses aperiodic IV padding.

A series of attacks against the Grain family padding techniques appeared in the literature
[5,6,8,16] during the last decade. In the light of these attacks, our paper proposes the first security
analysis3 of generic IV padding schemes for Grain ciphers in the periodic as well as the aperiodic
cases.

In this context, the concerns that arise are closely related to the security impact of various
parameters of the padding, such as the position and structure of the padding block. Moreover, we
consider both compact and fragmented padding blocks in our study. We refer to the original padding
schemes of the Grain ciphers as being compact (i.e. a single padding block is used). We denote as
fragmented padding the division of the padding block into smaller blocks of equal length4.

By examining the structure of the padding and analyzing its compact and especially fragmented
versions, we actually study the idea of extending the key’s life. The latter could be achieved by
introducing a variable padding according to suitable constraints. Hence, the general question that

3 against slide attacks
4 we consider these smaller blocks as being spread among the linear feedback register’s data

https://orcid.org/0000-0002-9541-5705
https://orcid.org/0000-0003-3953-2744

arises is the following: what is to be loaded in the LFSRs of Grain ciphers in order to obtain secure
settings?. Note that our study is preliminary, taking into account only slide attacks. We consider
other types of attacks as future work.

We stress that finding better attacks than the ones already presented in the literature is outside
the scope of our paper, as our main goal is to establish sound personalized versions of the Grain
cipher. Hence, our work does not have any immediate implication towards breaking any cipher
of the Grain family. Nevertheless, our observations become meaningful either in the lightweight
cryptography scenario or in the case of an enhanced security context (e.g. secure government ap-
plications).

Lightweight cryptography lies at the crossroad between cryptography, computer science and
electrical engineering [17]. Thus, trade-offs between performance, security and cost must be consid-
ered. Given such constraints and the fact that embedded devices operate in hostile environments,
there is an increasing need for new and varied security solutions, mainly constructed in view of the
current ubiquitous computing tendency. As the Grain family lies precisely within the lightweight
primitives’ category, we believe that the study presented in the current paper is of interest for the
industry and, especially, government organizations.

When dealing with security devices for which the transmission and processing of the IV is nei-
ther so costly nor hard to handle (e.g. the corresponding communication protocols easily allow the
transmission), shrinking the padding up to complete removal might be considered. More precisely,
we suggest the use of a longer IV in such a context in order to increase security. Moreover, many
Grain-type configurations could be obtained if our proposed padding schemes are used. Such con-
figurations could be considered as personalizations of the main algorithm and, if the associated
parameters are kept secret, the key’s life can be extended.

Structure of the Paper. We introduce notations and give a quick reminder of the Grain family
technical specifications in Section 2. Section 3 describes generic attacks against the Grain ciphers.
In Section 4 we discuss the core result of our paper: a security analysis of IV padding schemes
for Grain ciphers. We conclude and underline various interesting ideas as future work in Section 5.
We recall Grain v1 in Appendix A, Grain-128 in Appendix B and Grain-128a in Appendix C. We
do not recall the corresponding parameters of Grain v0, even though the results presented in the
current paper still hold in that case. In Appendices D and E we provide test values for our proposed
algorithms.

2 Preliminaries

Notations. During the following, capital letters will denote padding blocks and small letters will
refer to certain bits of the padding. We use the big-endian convention. Hexadecimal strings are
marked by the prefix 0x.

MSBℓ(Q) stands for the most significant ℓ bits of Q
LSBℓ(Q) stands for the least significant ℓ bits of Q

MID[ℓ1,ℓ2](Q) stands for the bits of Q between position ℓ1 and ℓ2
x∥y represents the string obtained by concatenating y to x
∈R selecting an element uniformly at random
|x| the bit-length of x
bt stands for t consecutive bits of b

NULL stands for an empty variable

2

2.1 Grain Family

Grain is a hardware-oriented stream cipher initially proposed by Hell, Johansson and Meier [12]
and whose main building blocks are an n bit linear feedback shift register (LFSR), an n bit non-
linear feedback shift register (NFSR) and an output function. Because of a weakness in the output
function, a key recovery attack [7] and a distinguishing attack [14] on Grain v0 were proposed.
To solve these security issues, Grain v1 [13] was introduced. Also, Grain-128 [11] was proposed
as a variant of Grain v1. Grain-128 uses 128-bit keys instead of 80-bit keys. Grain 128a [18] was
designed to address cryptanalysis results [4, 9, 10, 15, 19] against the previous version. Grain 128a
offers optional authentication. We stress that, in this paper, we do not address the authentication
feature of Grain-128a.

Let Xi = [xi, xi+1, . . . , xi+n−1] denote the state of the NFSR at time i and let g(x) be the
nonlinear feedback polynomial of the NFSR. g(Xi) represents the corresponding update function
of the NFSR. In the case of the LFSR, let Yi = [yi, yi+1, . . . , yi+n−1] be its state, f(x) the linear
feedback polynomial and f(Yi) the corresponding update function. The filter function h(Xi, Yi)
takes inputs from both the states Xi and Yi.

We shortly describe the generic algorithms KLA, KSA and PRGA below. As KSA is invertible,
a state Si = Xi∥Yi can be rolled back one clock to Si−1. We further refer to the transition function
from Si to Si−1 as KSA−1.

NFSR LFSR

g f

h

zi

Fig. 1: Output Generator and Key Initialization of Grain ciphers

Key Loading Algorithm (KLA). The Grain family uses an n-bit key K, an m-bit initialization vector
IV with m < n and some fixed padding P ∈ {0, 1}α, where α = n −m. The key is loaded in the
NFSR, while the pair (IV, P) is loaded in the LFSR using a one-to-one function further denoted
as LoadIV (IV, P).

Key Scheduling Algorithm (KSA). After running KLA, the output5 zi is XOR-ed to both the LFSR
and NFSR update functions, i.e., during one clock the LFSR and the NFSR bits are updated as
yi+n = zi + f(Yi), xi+n = yi + zi + g(Xi).

5 during one clock

3

Pseudorandom Keystream Generation Algorithm (PRGA). After performing KSA routine for 2n
clocks, zi is no longer XOR-ed to the LFSR and NFSR update functions, but it is used as the
output keystream bit. During this phase, the LFSR and NFSR are updated as yi+n = f(Yi),
xi+n = yi + g(Xi).

Figure 1 depicts an overview of KSA and PRGA. Common features are depicted in black. In
the case of Grain v1, the pseudorandom keystream generation algorithm does not include the green
path. The red paths correspond to the key scheduling algorithm.

The corresponding parameters of Grain v1 are described in Appendix A, while Grain-128 is
tackled in Appendix B and Grain-128a in Appendix C. The appendices also include the LoadIV
functions and the KSA−1 algorithms for all versions.

Security Model. In the Chosen IV - Related Key setting (according to [6, Section 2.1]), an adversary
is able to query an encryption oracle (which has access to the key K) in order to obtain valid
ciphertexts. For each query i, the adversary can choose the oracle’s parameters: an initialization
vector IVi, a function Fi : {0, 1}n → {0, 1}n and a message mi. The oracle encrypts mi using
the Key-IV pair (Fi(K), IVi). The adversary’s task is to distinguish the keystream output from a
random stream.

Assumptions. Based on the results of the experiments we conducted, we further assume that the
output of KSA, KSA−1 and PRGA is independently and uniformly distributed. More precisely, all
previous algorithms were statistically tested applying the NIST Test Suite [2]. During our experi-
ments we used the following setup:

1. Xi is a randomly generated n-bit state using the GMP library [3];
2. Y ′′

i is either 02α or 12α;
3. Yi = Y ′

i ∥Y ′′
i , where Y ′

i is a randomly generated (m− α)-bit state using the GMP library.

3 Generic Grain Attacks

As already mentioned in Section 2, the Grain family uses an NFSR and a nonlinear filter (which
takes input from both shift registers) to introduce nonlinearity. If after the initialization process,
the LFSR is in an all zero state, only the NFSR is actively participating to the output. As already
shown in the literature, NFSRs are vulnerable to distinguishing attacks [7, 15,20].

Weak Key-IV pair. If the LFSR reaches the all zero state after 2n clocks we say that the pair
(K, IV) is a weak Key-IV pair. An algorithm which produces weak Key-IV pairs for Grain v1 is
presented in [20]. We refer the reader to Algorithm 1 for a generalization of this algorithm to any
of the Grain ciphers.

Given a state V , we define it as valid if there exists an IV ∈ {0, 1}m such that LoadIV (IV, P) =
V , where P is the fixed padding. We further use a function ExtractIV (V) which is the inverse of
LoadIV (·, P). The probability to obtain a weak Key-IV pair by running Algorithm 1 is 1/2α.

A refined version of the attack from [20] is discussed in [5] and generalized in Algorithm 2. The
authors of [5] give precise differences between keystreams generated using the output of Algorithm 2
for Grain v1 (see Theorem 1), Grain-128 (see Theorem 2) and Grain-128a (see Theorem 3).

4

Algorithm 1. Generic Weak Key-IV Attack
Output: A Key-IV pair (K′, IV ′)

1 Set s← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}n and let V ∈ {0, 1}n be the zero LFSR state (0, ..., 0)
4 Run KSA−1(K∥V) routine for 2n clocks and produce state S′ = K′∥V ′

5 if V ′ is valid then
6 Set s← 1 and IV ′ ← ExtractIV (V ′)
7 return (K′, IV ′)

8 end
9 end

Theorem 1. For Grain v1, two initial states S0 and S0,∆ which differ only in the 79th position of
the LFSR, produce identical output bits in 75 specific positions among the initial 96 key stream bits
obtained during the PRGA.

Remark 1. More precisely, the 75 positions are the following ones:

k ∈ [0, 95] \ {15, 33, 44, 51, 54, 57, 62, 69, 72, 73, 75, 76, 80, 82, 83, 87, 90, 91, 93− 95}.

Theorem 2. For Grain-128, two initial states S0 and S0,∆ which differ only in the 127th position
of the LFSR, produce identical output bits in 112 specific positions among the initial 160 key stream
bits obtained during the PRGA.

Remark 2. More precisely, the 112 positions are the following ones:

k ∈ [0, 159] \ { 32, 34, 48, 64, 66, 67, 79− 81, 85, 90, 92, 95, 96, 98, 99, 106, 107, 112, 114, 117, 119,

122, 124− 126, 128, 130− 132, 138, 139, 142− 146, 148− 151, 153− 159}.

Theorem 3. For Grain-128a, two initial states S0 and S0,∆ which differ only in the 127th position
of the LFSR, produce identical output bits in 115 specific positions among the initial 160 key stream
bits obtained during the PRGA.

Remark 3. More precisely, the 115 positions are the following ones:

k ∈ [0, 159] \ { 33, 34, 48, 65− 67, 80, 81, 85, 91, 92, 95, 97− 99, 106, 107, 112, 114, 117, 119,

123− 125, 127− 132, 138, 139, 142− 146, 149− 151, 154− 157, 159}.

We further present an algorithm that checks which keystream positions produced by the states
S and S∆ are identical (introduced in Algorithm 2). Note that if we run Algorithm 3 we obtain less
positions than claimed in Theorems 1 to 3, as shown in Appendix E. This is due to the fact that
Algorithm 3 is prone to producing internal collisions and, thus, eliminate certain positions that are
identical in both keystreams. Note that Theorem 4 is a refined version of Remarks 1 to 3 in the
sense that it represents an automatic tool for finding identical keystream positions.

Modified Pseudorandom Keystream Generation Algorithm (PRGA′). To obtain our modified PRGA
we replace + (XOR) and · (AND) operations in the original PRGA with | (OR) operations.

5

Algorithm 2. Search for Key-IV pairs that produce almost similar initial keystream
Input: An integer r ∈ {0, 2n}
Output: Key-IV pairs (K, IV) and (K′, IV ′)

1 Set s← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}n and IV ∈R {0, 1}m
4 Run KSA(K∥IV) routine for 2n clocks to obtain an initial state S0 ∈ {0, 1}2n
5 Construct S0,∆ from S0 by flipping the bit on position r
6 Run KSA−1(S0,∆) routine for 2n clocks and produce state S′ = K′∥V ′

7 if V ′ is valid then
8 Set s← 1 and IV ′ ← ExtractIV (V ′)
9 return (K, IV) and (K′, IV ′)

10 end
11 end

Theorem 4. Let r be a position of Grain’s internal state, q1 the number of desired identical
positions in the keystream and q2 the maximum number of search trials. Then, Algorithm 3 finds
at most q1 identical positions in a maximum of q2 trials.

Proof. We note that in Algorithm 3 the bit br on position r is set. If br is taken into consideration
while computing the output bit of PRGA then the output of PRGA′ is also set due to the replace-
ment of the original operations (+ and ·) with | operations. The same argument is valid if a bit of
Grain’s internal state is influenced by br.

The above statements remain true for each internal state bit that becomes set during the
execution of Algorithm 3. ⊓⊔

Algorithm 3. Search for identical keystream position in Grain
Input: Integers r ∈ {0, 2n} and q1, q2 > 0
Output: Keystream positions φ

1 Set s← 0 and φ← ∅
2 Let S ∈ {0, 1}2n be the zero state (0, . . . , 0)
3 Construct S∆ from S by flipping the bit on position r
4 while |φ| ≤ q1 and s < q2 do
5 Set b← PRGA′(S∆) and update state S∆ with the current state
6 if b = 0 then
7 Update φ← φ ∪ {s}
8 end
9 Set s← s+ 1

10 end
11 return φ

4 Proposed Ideas

4.1 Compact Padding

Attacks that exploit the periodic padding used in Grain-128 where first presented in [8, 16] and
further improved in [5]. We generalize and simplify these attacks below.

6

Setup. Let Y1 = [y0, . . . , yd1−1], where |Y1| = d1, let Y2 = [yd1+α, . . . , yn−1], where |Y2| = d2 and let
IV = Y1∥Y2. We define

LoadIV (IV, P) = Y1∥P∥Y2.

Let S = [s0, . . . , sn−1] be a state of the LFSR, then we define

ExtractIV (S) = s0∥ . . . ∥sd1−1∥ . . . ∥sd1+α∥ . . . ∥sn−1.

Padding. Let α = λω and |P0| = . . . = |Pω−1| = λ, then we define P = P0∥ . . . ∥Pω−1. We say that
P is a periodic padding of order λ if λ is the smallest integer such that P0 = . . . = Pω−1.

Periodic padding of order α is further referred to as aperiodic padding.

Theorem 5. Let P be a periodic padding of order λ and let i = 1, 2 denote an index. For each
(set of) condition(s) presented in Column 2 of Table 1 there exists an attack whose corresponding
success probability is presented in Column 3 of Table 1.

Conditions Success Probability

1. d1 ≥ λ or d2 ≥ λ 1/2λ

2. d1 ≥ λ and d2 ≥ λ 1/2λ−1

3. di < λ 1/22λ−di

Table 1: Attack Parameters for Theorem 5

Proof. 1. The proof follows directly from Algorithms 5 and 7. Given the assumptions in Section 2,
the probability that the first λ keystream bits are zero is 1/2λ.

2. The proof is a direct consequence of Item 1.
3. The proof is straightforward in the light of Algorithms 8 and 9. Given the assumptions in

Section 2, the probability that V ′
1 = P0 is 1/2λ−d1 and the probability that V ′

2 = Pω−1 is
1/2λ−d2 . Also, the probability that the first λ keystream bits are zero is 1/2λ. Since the two
events are independent, we obtain the desired success probability.

Algorithm 4. Pair1(σ, S)
Input: Number of clocks σ and a state S.
Output: A Key-IV pair (K′, IV ′) or ⊥

1 Run KSA−1(S) routine for σ clocks and produce state S′ = (K′∥V ′
1∥P∥Pω−1∥V ′

2), where |V ′
1 | = d1 and

|V ′
2 | = d2 − λ

2 Set IV ′ ← V ′
1∥Pω−1∥V ′

2

3 if (K′, IV ′) produces all zero keystream bits in the first λ PRGA rounds then
4 return (K′, IV ′)
5 end
6 return ⊥

⊓⊔

7

Algorithm 5. Constructing Key-IV pairs that generate λ bit shifted keystream
Output: Key-IV pairs (K′, IV ′) and (K, IV)

1 Set s← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}n, V1 ∈R {0, 1}d1−λ and V2 ∈R {0, 1}d2
4 Set IV ← V1∥P0∥V2, S ← K∥V1∥P0∥P∥V2 and output← Pair1(λ, S)
5 if output ̸= ⊥ then
6 Set s← 1
7 return (K, IV) and output

8 end
9 end

Algorithm 6. Pair2(σ, S)
Input: Number of clocks σ and a state S.
Output: A Key-IV pair (K′, IV ′).

1 Run KSA(S) routine for σ clocks and produce state S′ = (K′∥V ′
1∥P0∥P∥V ′

2), where |V ′
1 | = d1 − λ and

|V ′
2 | = d2

2 Set IV ′ ← V ′
1∥P0∥V ′

2

3 return (K′, IV ′)

Remark 4. Let d2 = 0, λ = 1, P0 = 1. If α = 16, then the attack described in [16] is the same as the
attack we detail in Algorithm 9. The same is true for [8] if α = 32. Also, if α = 32 then Algorithm 5
is a simplified version of the attack presented in [5].

Remark 5. To minimize the impact of Theorem 5, one must choose a padding value such that λ = α
and either d1 < α or d2 < α. In this case, because of the generic attacks described in Section 3, the
success probability can not drop below 1/2α. The designers of Grain-128a have chosen d2 = 0 and
P = 0xfffffffe. In [6], the authors introduce an attack for Grain-128a, which is a special case of
the attack we detail in Algorithm 5.

Theorem 6. Let P be an aperiodic padding, 1 ≤ γ < α/2 and d2 < α. Also, let i = 1, 2 denote an
index. If LSBγ(P) = MSBγ(P), then for each condition presented in Column 2 of Table 2 there
exists an attack whose corresponding success probability is presented in Column 3 of Table 2.

Condition Success Probability

1. di ≥ α− γ 1/2α−γ

2. di < α− γ 1/22α−2γ−di

Table 2: Attack Parameters for Theorem 6

Proof. 1. The first part of proof follows from Algorithm 5 with the following changes:
(a) λ is replaced by α− γ;
(b) P0 is replaced by MSBα−γ(P);
(c) Pω−1 is replaced by LSBα−γ(P).
Therefore, the probability that the first α− γ keystream bits are zero is 1/2α−γ . Similarly, the
second part follows from Algorithm 7.

2. To prove the first part, we use the above changes on Algorithm 8, except that instead of replacing
Pω−1 we replace LSBd1(P0) with MID[γ+d1−1,γ](P). Thus, we obtain the probability 1/2α−γ .
Similarly, for the second part we use Algorithm 9.

⊓⊔8

Algorithm 7. Constructing Key-IV pairs that generate λ bit shifted keystream
Output: Key-IV pairs (K′, IV ′) and (K, IV)

1 Set s← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}n, V1 ∈R {0, 1}d1 and V2 ∈R {0, 1}d2−λ

4 Set IV ← V1∥Pω−1∥V2

5 if (K, IV) produces all zero keystream bits in the first λ PRGA rounds then
6 Set s← 1 and S ← (K∥V1∥P∥Pω−1∥V2)
7 return (K, IV) and Pair2(λ, S)

8 end
9 end

Algorithm 8. Constructing Key-IV pairs that generate λ bit shifted keystream
Output: Key-IV pairs (K′′, IV ′′) and (K, IV)

1 Set s← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}n and V2 ∈R {0, 1}d2
4 Set IV ← LSBd1(P0)∥V2

5 Run KSA−1(K∥LSBd1(P0)∥P∥V2) routine for λ− d1 clocks and produce state S′ = (K′∥V ′
1∥P∥V ′

2),
where |V ′

1 | = λ and |V ′
2 | = d2 − λ+ d1

6 if V ′
1 = p0 then

7 Set S ← K′∥P0∥P∥V ′
2 and output← Pair1(d1, S)

8 if output ̸= ⊥ then
9 Set s← 1

10 return (K, IV) and output

11 end
12 end
13 end

Remark 6. To prevent the attacks presented in the proof of Theorem 6, the padding must be chosen
such that MSBγ(P) ̸= LSBγ(P), ∀ 1 ≤ γ < α/2. Grain 128a uses such a padding P = 0xfffffffe.
Another example was suggested in [8] to counter their proposed attacks: P = 0x00000001.

Constraints. Taking into account all the previous remarks, we may conclude that good6 compact
padding schemes are aperiodic and, in particular, satisfy MSBγ(P) ̸= LSBγ(P), ∀ 1 ≤ γ < α/2.
Also, another constraint is the position of the padding, i.e. d1 < α or d2 < α must be satisfied.

Remark 7. In the compact padding case, the number of padding schemes that verify the security
restrictions represent 26% of the total 2α. The previous percentage and the values we mention below
were determined experimentally.

For α = 16 and 0 ≤ d1, d2 < 16 we obtain 17622 ≃ 214 compact padding schemes resistant to
previous attacks. Thus, the complexity of a brute-force attack increases with 219.

For α = 32 and 0 ≤ d1, d2 < 32 we obtain 1150153322 ≃ 230 compact padding schemes resistant
to previous attacks. Thus, the complexity of a brute-force attack increases with 236.

6 resistant to the aforementioned attacks

9

Algorithm 9. Constructing Key-IV pairs that generate λ bit shifted keystream
Output: Key-IV pairs (K′′, IV ′′) and (K, IV)

1 Set s← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}n and V1 ∈R {0, 1}d1
4 Set IV ← V1∥MSBd2(Pω−1)
5 if K, IV produces all zero keystream bits in the first λ PRGA rounds then
6 Run KSA(K∥V1∥P∥MSBd2(Pω−1)) routine for λ− d2 clocks and produce state S′ = (K′∥V ′

1∥P∥V ′
2),

where |V ′
1 | = d1 − λ+ d2 and |V ′

2 | = λ
7 if V ′

2 = Pω−1 then
8 Set s← 1 and S ← (K′∥V ′

1∥P∥Pω−1)
9 return (K, IV) and Pair2(d2, S)

10 end
11 end
12 end

4.2 Fragmented Padding

Setup. Let α = c · β, where c > 1. Also, let IV = B0∥B1∥ . . . ∥Bc and P = P0∥P1∥ . . . ∥Pc−1, where
|B0| = d1, |P0| = . . . = |Pc−1| = |B1| = . . . = |Bc−1| = β and |Bc| = d2. In this case, we define

LoadIV (IV, P) = B0∥P0∥B1∥P1∥ . . . ∥Bc−1∥Pc−1∥Bc.

Let S = S0∥ . . . ∥S2c be a state of the LFSR, such that |S0| = d1, |S1| = . . . = |S2c−1| = β and
|S2c| = d2. Then we define

ExtractIV (S) = S0∥S2∥ . . . ∥S2c.

Theorem 7. Let i = 1, 2 denote an index. In the previously mentioned setting, for each (set of)
condition(s) presented in Column 2 of Table 3 there exists an attack whose corresponding success
probability is presented in Column 3 of Table 3.

Conditions Success Probability

1. d1 ≥ β or d2 ≥ β 1/2β

2. d1 ≥ β and d2 ≥ β 1/2β−1

3. di < β 1/22β−di

Table 3: Attack Parameters for Theorem 7

Proof. 1. We only prove the case i = 1 as the case i = 2 is similar in the light of Algorithm 7. The
proof follows directly from Algorithm 12. Given the assumptions in Section 2, the probability
that the first β keystream bits are zero is 1/2β.

2. The proof is a direct consequence of Item 1.
3. Again, we only prove the case i = 1. The proof is straightforward in the light of Algorithm 16.

Given the assumptions in Section 2, the probability that V ′
1 = P0 is 1/2β−d1 . Also, the proba-

bility that the first β keystream bits are zero is 1/2β. Since the two events are independent, we
obtain the desired success probability.

10

Algorithm 10. Update1()
Output: Variable value

1 Set value← P0

2 for i = 1 to c− 1 do
3 Update value← value∥Pi∥Pi

4 end
5 return value

Algorithm 11. Pair3(σ, S)
Input: Number of clocks σ and a state S.
Output: A Key-IV pair (K′, IV ′) or ⊥

1 Run KSA−1(S) routine for σ clocks and produce state S′ = (K′∥V ′
1∥value∥V ′

2), where |V ′
1 | = d1 and

|V ′
2 | = d2 − β

2 Set IV ′ ← V ′
1∥P∥V ′

2

3 if (K′, IV ′) produces all zero keystream bits in the first β PRGA rounds then
4 return (K′, IV ′)
5 end
6 return ⊥

Algorithm 12. Constructing Key-IV pairs that generate β bit shifted keystream
Output: Key-IV pairs (K′, IV ′) and (K, IV)

1 Set s← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}n, V1 ∈R {0, 1}d1−β and V2 ∈R {0, 1}d2
4 Set value← P0∥Update1(), IV ← V1∥P∥V2 , S ← K∥V1∥value∥V2 and output← Pair3(β, S)
5 if output ̸= ⊥ then
6 Set s← 1
7 return (K, IV) and output

8 end
9 end

⊓⊔

Remark 8. Let δ < β and β > 1. To prevent the attacks presented in Theorem 7, we have to slightly
modify the structure of the IV . We need at least one block |Bi| = δ, where 1 ≤ i ≤ c − 1. We
further consider that |Bi| = δ, ∀ 1 ≤ i ≤ c− 1.

Theorem 8. Let |Bi| = δ, ∀ 1 ≤ i ≤ c − 1. Also, let 1 ≤ γ ≤ β, 1 ≤ t ≤ c and 0 ≤ j ≤ t − 1. If
LSBγ(Pc−1−j) = MSBγ(Pt−1−j) ∀j then for each (set of) condition(s) presented in Column 2 of
Table 4 there exists an attack whose corresponding success probability is presented in Column 3 of
Table 4.

11

Conditions Success Probability

1. d1 ≥ β − γ + (β + δ)(c− t), δ ≥ β − γ 1/2β−γ+(β+δ)(c−t)

2. d1 ≥ β − γ + (β + δ)(c− t), δ < β − γ,
MSBβ−γ−δ(Pc−1−j) = LSBβ−γ−δ(Pt−2−j) ∀j

1/2β−γ+(β+δ)(c−t)

3. d1 < β − γ + (β + δ)(c− t), δ ≥ β − γ 1/22β−2γ+2(β+δ)(c−t)−d1

4. d1 < β − γ + (β + δ)(c− t), δ < β − γ,
MSBβ−γ−δ(Pc−1−j) = LSBβ−γ−δ(Pt−2−j) ∀j

1/22β−2γ+2(β+δ)(c−t)−d1

Table 4: Attack Parameters for Theorem 8

Proof. 1. The proof follows directly from Algorithm 19 (described in the last appendix of our
paper). Given the assumptions in Section 2, the probability that the first β − γ + (β + δ)(c− t)
keystream bits are zero is 1/2β−γ+(β+δ)(c−t).
The proofs for the remaining cases presented in Table 4 follow directly from previous results.

Thus, we omit them. ⊓⊔

Theorem 9. Let |Bi| = δ, ∀ 1 ≤ i ≤ c − 1. Also, let 1 ≤ γ ≤ β, 1 ≤ t ≤ c and 0 ≤ j ≤ t − 2.
If δ ≥ β − γ then for each (set of) condition(s) presented in Column 2 of Table 5 there exists an
attack whose corresponding success probability is presented in Column 3 of Table 5.

Conditions Success Probability

1. d1 ≥ δ − β + γ + β(c− t+ 1) + δ(c− t),
MSBγ(Pc−1−j) = LSBγ(Pt−2−j)∀j

1/2δ−β+γ+β(c−t+1)+δ(c−t)

2. d1 < δ − β + γ + β(c− t+ 1) + δ(c− t),
MSBγ(Pc−1−j) = LSBγ(Pt−2−j)∀j

1/22δ−2β+2γ+2β(c−t+1)+2δ(c−t)−d1

Table 5: Attack Parameters for Theorem 9

Proof. 1. The proof follows directly from Algorithm 20 (described in the last appendix of our
paper). Given the assumptions in Section 2, the probability that the first δ − β + γ + β(c− t+
1) + δ(c− t) keystream bits are zero is 1/2δ−β+γ+β(c−t+1)+δ(c−t).

2. The proof is similar to the proof of Theorem 7, Item 3.

⊓⊔

Remark 9. Taking into account the generic attacks described in Section 3, any probability bigger
than 1/2α is superfluous. As an example, when α = 32 we obtain a good padding scheme for the
following parameters d2 = 0, β = 16, δ = 14, P0 = 0x8000, P1 = 0x7fff.

12

Remark 10. Let c = 2, δ ≤ β − 2, γ < β and P0 ̸= P1. The best success probability of a slide attack
when the following conditions are met:

γ > 1 : LSBγ(P1) ̸= MSBγ(P0)

LSBγ(P0) ̸= MSBγ(P1),

γ > 0 : LSBγ(P1) ̸= MSBγ(P1)

LSBγ(P0) ̸= MSBγ(P0),

is 1/2α−1+δ ≥ 1/2α. The number of padding schemes that verify the security restrictions represent
2% of the total 2α. The previous percentage and the values we mention below were determined
experimentally.

For α = 16, β = 8, 1 ≤ δ ≤ 6, γ < 8 and d1 = d2 = 0 we obtain 1840 ≃ 210 fragmented padding
schemes resistant to previous attacks. Thus, the complexity of a brute-force attack increases with
214.

For α = 32, β = 16, 1 ≤ δ ≤ 14, γ < 16 and d1 = d2 = 0 we obtain 117113488 ≃ 223 fragmented
padding schemes resistant to previous attacks. Thus, the complexity of a brute-force attack increases
with 228.

5 Conclusion

We analyzed the security of various periodic and aperiodic IV padding methods7 for the Grain
family of stream ciphers, proposed corresponding attacks and discussed their success probability.

Future Work. A closely related study which naturally arises is analyzing the security of breaking the
padding into aperiodic blocks. Another idea would be to study how the proposed padding techniques
interfere with the security of the authentication feature of Grain-128a. A question that arises is
if the occurrence of slide pairs may somehow be converted into a distinguishing or key recovery
attack. Another interesting point would be to investigate what would happen to the security of the
Grain family with respect to differential, linear or cube attacks in the various padding scenarios
we outlined. One more future work idea could be to analyze various methods of preventing the all
zero state of Grain’s LFSR.

References

1. eSTREAM: the ECRYPT Stream Cipher Project. http://www.ecrypt.eu.org/stream/
2. NIST SP 800-22: Download Documentation and Software. https://csrc.nist.gov/Projects/

Random-Bit-Generation/Documentation-and-Software
3. The GNU Multiple Precision Arithmetic Library. https://gmplib.org/
4. Aumasson, J.P., Dinur, I., Henzen, L., Meier, W., Shamir, A.: Efficient FPGA Implementations of High-

Dimensional Cube Testers on the Stream Cipher Grain-128. https://eprint.iacr.org/2009/218.pdf (2009)
5. Banik, S., Maitra, S., Sarkar, S.: Some Results on Related Key-IV Pairs of Grain. In: Proceedings of the 2nd

International Conference on Security, Privacy, and Applied Cryptography Engineering – SPACE’12. Lecture
Notes in Computer Science, vol. 7644, pp. 94–110. Springer (2012)

6. Banik, S., Maitra, S., Sarkar, S., Meltem Sönmez, T.: A Chosen IV Related Key Attack on Grain-128a. In:
Proceedings of the 18th Australasian Conference on Information Security and Privacy – ACISP’13. Lecture
Notes in Computer Science, vol. 7959, pp. 13–26. Springer (2013)

7 compact and fragmented

13

http://www.ecrypt.eu.org/stream/
https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software
https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software
https://gmplib.org/
https://eprint.iacr.org/2009/218.pdf

7. Berbain, C., Gilbert, H., Maximov, A.: Cryptanalysis of Grain. In: Proceedings of the 18th International Workshop
on Fast Software Encryption – FSE’06. Lecture Notes in Computer Science, vol. 4047, pp. 15–29. Springer (2006)

8. Cannière, C., Küçük, Ö., Preneel, B.: Analysis of Grain’s Initialization Algorithm. In: Progress in Cryptology –
AFRICACRYPT’08. Lecture Notes in Computer Science, vol. 5023, pp. 276–289. Springer (2008)

9. Dinur, I., Güneysu, T., Paar, C., Shamir, A., Zimmermann, R.: An Experimentally Verified Attack on Full Grain-
128 Using Dedicated Reconfigurable Hardware. In: Advances in Cryptology – ASIACRYPT’11. Lecture Notes in
Computer Science, vol. 7073, pp. 327–343. Springer (2011)

10. Dinur, I., Shamir, A.: Breaking Grain-128 with Dynamic Cube Attacks. In: Proceedings of the 18th International
Workshop on Fast Software Encryption – FSE’11. Lecture Notes in Computer Science, vol. 6733, pp. 167–187.
Springer (2011)

11. Hell, M., Johansson, T., Maximov, A., Meier, W.: A Stream Cipher Proposal: Grain-128. In: International
Symposium on Information Theory – ISIT’06. pp. 1614–1618. IEEE (July 2006)

12. Hell, M., Johansson, T., Meier, W.: Grain - A Stream Cipher for Constrained Environments. Tech. Rep. 010
(2005), eCRYPT Stream Cipher Project Report

13. Hell, M., Johansson, T., Meier, W.: Grain: A Stream Cipher for Constrained Environments. International Journal
of Wireless and Mobile Computing 2(1), 86–93 (May 2007)

14. Khazaei, S., Hassanzadeh, M., Kiaei, M.: Distinguishing Attack on Grain. Tech. Rep. 071 (2005), eCRYPT Stream
Cipher Project Report

15. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional Differential cryptanalysis of NLFSR-Based Cryptosys-
tems. In: Advances in Cryptology – ASIACRYPT’10. Lecture Notes in Computer Science, vol. 6477, pp. 130–145.
Springer (2010)

16. Küçük, Ö.: Slide Resynchronization Attack on the Initialization of Grain 1.0. http:www.ecrypt.eu.org/stream
(2006)

17. Maimuţ, D.: Authentication and Encryption Protocols: Design, Attacks and Algorithmic Improvements. Ph.D.
thesis, École normale supérieure (2015)

18. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: A New Version of Grain-128 with Optional Authen-
tication. International Journal of Wireless and Mobile Computing 5(1), 48–59 (Dec 2011)

19. Stankovski, P.: Greedy Distinguishers and Nonrandomness Detectors. In: Progress in Cryptology – IN-
DOCRYPT’10. Lecture Notes in Computer Science, vol. 6498, pp. 210–226. Springer (2010)

20. Zhang, H., Wang, X.: Cryptanalysis of Stream Cipher Grain Family. https://eprint.iacr.org/2009/109.pdf
(2009)

14

http:www.ecrypt.eu.org/stream
https://eprint.iacr.org/2009/109.pdf

A Grain v1

In the case of Grain v1, n = 80 and m = 64. The padding value is P = 0xffff. The values IV
and P are loaded in the LFSR using the function LoadIV (IV, P) = IV ∥P . Given S ∈ {0, 1}80, we
define ExtractIV (S) = MSB64(S).

We denote by f1(x) the primitive feedback of the LFSR:

f1(x) = 1 + x18 + x29 + x42 + x57 + x67 + x80.

We denote by g1(x) the nonlinear feedback polynomial of the NFSR:

g1(x) = 1 + x18 + x20 + x28 + x35 + x43 + x47 + x52 + x59 + x66 + x71 + x80

+ x17x20 + x43x47 + x65x71 + x20x28x35 + x47x52x59 + x17x35x52x71

+ x20x28x43x47 + x17x20x59x65 + x17x20x28x35x43 + x47x52x59x65x71

+ x28x35x43x47x52x59.

The boolean filter function h1(x0, . . . , x4) is

h1(x0, . . . , x4) = x1 + x4 + x0x3 + x2x3 + x3x4 + x0x1x2 + x0x2x3 + x0x2x4 + x1x2x4 + x2x3x4.

The output function is

z1i =
∑
j∈A1

xi+j + h1(yi+3, yi+25, yi+46, yi+64, xi+63), where A1 = {1, 2, 4, 10, 31, 43, 56}.

Algorithm 13. KSA−1 routine for Grain v1
Input: State Si = (x0, . . . , x79, y0, . . . , y79)
Output: The preceding state Si−1 = (x0, . . . , x79, y0, . . . , y79)

1 v = y79 and w = x79

2 for t = 79 to 1 do
3 yt = yt−1 and xt = xt−1

4 end
5 z =

∑
j∈A1

xj + h1(y3, y25, y46, y64, x63)

6 y0 = z + v + y13 + y23 + y38 + y51 + y62
7 x0 = z + w + y0 + x9 + x14 + x21 + x28 + x33 + x37 + x45 + x52 + x60 + x62 + x63x60 + x37x33 + x15x9+

x60x52x45 + x33x28x21 + x63x45x28x9 + x60x52x37x33 + x63x60x21x15 + x63x60x52x45x37 + x33x28x21x15x9 +
x52x45x37x33x28x21

15

B Grain-128

In the case of Grain-128, n = 128 and m = 96.The padding value is P = 0xffffffff. The values
IV and P are loaded in the LFSR using the function LoadIV (IV, P) = IV ∥P . Given S ∈ {0, 1}128,
we define ExtractIV (S) = MSB96(S).

We denote by f128(x) the primitive feedback of the LFSR:

f128(x) = 1 + x32 + x47 + x58 + x90 + x121 + x128.

We denote by g128(x) the nonlinear feedback polynomial of the NFSR:

g128(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60 + x61x125

+ x63x67 + x69x101 + x80x88 + x110x111 + x115x117.

The boolean filter function h128(x0, . . . , x8) is

h128(x0, . . . , x8) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8.

The output function is

z128i =
∑

j∈A128

xi+j + yi+93 + h128(xi+12, yi+8, yi+13, yi+20, xi+95, yi+42, yi+60, yi+79, yi+95),

where A128 = {2, 15, 36, 45, 64, 73, 89}.

Algorithm 14. KSA−1 routine for Grain-128
Input: State Si = (x0, . . . , x127, y0, . . . , y127)
Output: The preceding state Si−1 = (x0, . . . , x127, y0, . . . , y127)

1 v = y127 and w = x127

2 for t = 127 to 1 do
3 yt = yt−1 and xt = xt−1

4 end
5 z =

∑
j∈A128

xi+j + y93 + h128(x12, y8, y13, y20, x95, y42, y60, y79, y95),

6 y0 = z + v + y7 + y38 + y70 + y81 + y96
7 x0 = z + w + y0 + x26 + x56 + x91 + x96 + x84x68 + x65x61 + x48x40 + x59x27 + x18x17 + x13x11 + x67x3

16

C Grain-128a

In the case of Grain-128a, n = 128 and m = 96. The padding value is P = 0xfffffffe. The values
IV and P are loaded in the LFSR using the function LoadIV (IV, P) = IV ∥P . Given S ∈ {0, 1}128,
we define ExtractIV (S) = MSB96(S).

We denote by f128a(x) the primitive feedback of the LFSR:

f128a(x) = 1 + x32 + x47 + x58 + x90 + x121 + x128.

We denote by g128a(x) the nonlinear feedback polynomial of the NFSR:

g128a(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60 + x61x125 + x63x67 + x69x101

+ x80x88 + x110x111 + x115x117 + x46x50x58 + x103x104x106 + x33x35x36x40.

The boolean filter function h128a(x0, . . . , x8) is

h128a(x0, . . . , x8) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8.

The output function is

z128ai =
∑

j∈A128a

xi+j + yi+93 + h128a(xi+12, yi+8, yi+13, yi+20, xi+95, yi+42, yi+60, yi+79, yi+94),

where A128a = {2, 15, 36, 45, 64, 73, 89}.

Algorithm 15. KSA−1 routine for Grain-128a
Input: State Si = (x0, . . . , x127, y0, . . . , y127)
Output: The preceding state Si−1 = (x0, . . . , x127, y0, . . . , y127)

1 v = y127 and w = x127

2 for t = 127 to 1 do
3 yt = yt−1 and xt = xt−1

4 end
5 z =

∑
j∈A128a

xj + y93 + h128a(x12, y8, y13, y20, x95, y42, y60, y79, y94)

6 y0 = z + v + y7 + y38 + y70 + y81 + y96
7 x0 = z + w + y0 + x26 + x56 + x91 + x96 + x3x67 + x11x13 + x17x18 + x27x59 + x40x48 + x61x65 + x68x84 +

x88x92x93x95 + x22x24x25 + x70x78x82

D Examples

Within Tables 6 to 8, the padding is written in blue, while the red text denotes additional data
necessary to mount the proposed attacks. Test vectors presented in this section are expressed as
hexadecimal strings. For simplicity, we omit the 0x prefix.

17

Table 6: Examples of Generic Attacks.

Cipher Key LFSR Loading

Algorithm 1

Grain v1 a8af910f2755c064d713 1c60b94e09512adbffff
Grain 128 525c3676953ecec2bc5388f1474cdc61 b78d3637b64425015fa3ef63ffffffff
Grain 128a a04f944e6ca1e1406537a0ef215689a3 aaaebb010224478f48567997fffffffe

Table 7: Examples of Compact Padding Attacks (index i = 1).

Cipher Key LFSR Loading Keystream

Theorem 5
Condition 1

(Algorithm 5)

Grain v1 7e72b6f960cf9165b891 1007bc3594e07f7f7fa5 004e2da99a27392383696e9e7120370a
72b6f960cf9165b89145 07bc3594e07f7f7fa580 4e2da99a27392383696e9e7120370a48

Grain-128

00166499157d39c9
5a723b601eccfffb

4a9a37ef1e3dfc13
7fff7fff7fffeb05 000076755ac4cd53028caa577964929e

6499157d39c95a72
3b601eccfffb2fd1

37ef1e3dfc137fff
7fff7fffeb05d636 76755ac4cd53028caa577964929ef1c0

Grain-128a

b9e20a7619a8d622
5152cfa83eb73361

ef53aafa3c6c47ca
7fff7fff7ffff5cd 0000bac1203a11b554d69fd7f9f27b7f

0a7619a8d6225152
cfa83eb7336175a5

aafa3c6c47ca7fff
7fff7ffff5cd98ba bac1203a11b554d69fd7f9f27b7fd545

Theorem 5
Condition 3

(Algorithm 8)

Grain v1 455b5df993b367e37b60 07f7f7fe9b4a3044efd1 0095e584ea234610f7ec250a948a8267
5b5df993b367e37b604d f7f7fe9b4a3044efd139 95e584ea234610f72ec250a948a8267c

Grain-128

9302f6b9d7136599
ac1caee130c596bb

8d7fff7fff7fff10
d59595e5568beb11 00007ca563c6831b63868259f547cdff

f6b9d7136599ac1c
aee130c596bb0dc8

ff7fff7fff10d595
95e5568beb11628c 7ca563c6831b63868259f547cdff695b

Grain-128a

0f478aa147938251
5e0a94d3357764f4

cd7fff7fff7fffed
bb0e00ddcb18d1eb 000059362a172d8748185e0850be7cb8

8aa1479382515e0a
94d3357764f4b8bb

ff7fff7fffedbb0e
00ddcb18d1eb0416 59362a172d8748185e0850be7cb824a0

Theorem 6
Condition 1

Grain v1 4febc079167f99bdb1db bd4710804f9eff0ff0fa 000575b77251f3946864d1bdc2510212
bc079167f99bdb1db338 710804f9eff0ff0fa272 575b77251f3946864d1bdc251021229b

Grain-128

5a0d4b3907f65ce5
f036b3671614244b

0bbd00872ecb0732
ffff00ffff00fffe 0000006b2014ecdee8d499646ba08a9f

3907f65ce5f036b3
671614244be57112

872ecb0732ffff00
ffff00fffeaf68a2 6b2014ecdee8d499646ba08a9fd93085

Grain-128a

6472c21093cd2225
4118e1a69230e0ac

2c9c47771ed4f648
ffff00ffff00ffde 0000009e196e7e866193867ea31b1df0

1093cd22254118e1
a69230e0ac668222

771ed4f648ffff00
ffff00ffdeb9f179 9e196e7e866193867ea31b1df09f306a

Theorem 6
Condition 2

Grain v1 701aa599737c957a0b5e 07ff0ff0fdedd9bd4d1b 000f9b9045f817c551a7c56c18e4ec02
aa599737c957a0b5eb77 f0ff0fdedd9bd4d1b1bf f9b9045f817c51a7c56c18e4ec025d85

Grain-128 30bfe11f3b7080be
47396a37f889b57c

aafdffff00ffff00
ff38ff5b14da5371 0000008a735f3adf71728258dcaf47fd

1f3b7080be47396a
37f889b57cac5367

ff00ffff00ff38ff
5b14da53715a4291 8a735f3adf71728258dcaf47fd6edad1

Grain-128a c4b8607e854abc5f
7a74eba33d563ad1

950bffff00ffff00
ff7182c277b77e8f 000000681060aa4bf10c0181bd7e4d95

7e854abc5f7a74eb
a33d563ad125aaff

ff00ffff00ff7182
c277b77e8f5db61f 681060aa4bf10c0181bd7e4d957b5f2e

18

Table 8: Examples of Fragmented Padding Attacks (index i = 1).

Cipher Key LFSR Loading Keystream

Theorem 7
Condition 1

(Algorithm 12)

Grain v1 cc0d50254f72d88d3c71 3a86d173777777777b2c 04c79ebb4db7bc675644b3d0bf2a59a4
c0d50254f72d88d3c714 a86d173777777777b2cf 4c79ebb4db7bc675644b3d0bf2a59a47

Grain-128

c506d0ca5bff72e1
6ea07fd8f98d7ba3

63ba70cf067f7f7f
7f7f7f7f7f879f9b 004e2c99a48677b4c217f9e14e620d48

06d0ca5bff72e16e
a07fd8f98d7ba368

ba70cf067f7f7f7f
7f7f7f7f879f9be1 4e2c99a48677b4c217f9e14e620d4884

Grain-128a

0948bd1a0a5d275c
54744db3dc27cec8

895ba804147f7f7f
7f7f7f7f7f2f9892 003a5f1e38d9c44670b0dc017377e698

48bd1a0a5d275c54
744db3dc27cec82b

5ba804147f7f7f7f
7f7f7f7f2f9892f1 3a5f1e38d9c44670b0dc017377e698d7

Theorem 7
Condition 3

(Algorithm 16)

Grain v1 77a73157cabfa60349dc 77777777318f59ac6aff 0c61bfa06e1c22011dcefe673765acb7

7a73157cabfa60349dc3 7777777318f59ac6affd c61bfa06e1c22011dcefe673765acb7f

Grain-128

9aca3bd2cf312080
769338bec86f9da6

7f7f7f7f7f7f7f7f
b6f7e83b3793f746 004624d2271d3420104b2fd1058675fd

ca3bd2cf31208076
9338bec86f9da63f

7f7f7f7f7f7f7fb6
f7e83b3793f746ff 4624d2271d3420104b2fd1058675fd45

Grain-128a

0e9eb1a896077e93
5b21de8700f3ef44

7f7f7f7f7f7f7f7f
29b03ff3e82cda8b 007f06d63e3545f6b7c4b50d255b6663

9eb1a896077e935b
21de8700f3ef4462

7f7f7f7f7f7f7f29
b03ff3e82cda8bfc 7f06d63e3545f6b7c4b50d255b6663ea

Theorem 8
Condition 1

(Algorithm 19)

Grain-128

d3ea84c99a8b1354
71d8c320b870e109

ed52bf1b25ff0ff0
fff0ff0f4ed8f575 0001590b803ff3c9972d96481a6e8ad4

a84c99a8b135471d
8c320b870e109120

2bf1b25ff0ff0fff
0ff0f4ed8f575dac 1590b803ff3c9972d96481a6e8ad48ee

Grain-128a

9ee02802ccf920e6
868a8aa46113a406

ab24f8ab82ff0ff0
fff0ff0fd32dc4e9 00082e1cbbb25fa325518665a17f2efc

02802ccf920e6868
a8aa46113a40681d

4f8ab82ff0ff0fff
0ff0fd32dc4e9473 82e1cbbb25fa325518665a17f2efc2eb

Theorem 8
Condition 2

Grain-128

8d89931ae1e13215
77bba20640c193a1

f18ccfbf3cff0ff0
ff0ff0fde5af2b58 000e612c620ae1765ded57a835b713ac

9931ae1e1321577b
ba20640c193a13b8

ccfbf3cff0ff0ff0
ff0fde5af2b58811 e612c620ae1765ded57a835b713ace4a

Grain-128a

626262808f0ca24c
cc517bb93fb5c3cb

c4ca6f9535ff0ff0
ff0ff0fdfe92e568 0003f5a6d1b7f615dfb32e34cea7cc4a

262808f0ca24ccc5
17bb93fb5c3cb22f

a6f9535ff0ff0ff0
ff0fdfe92e568a4f 3f5a6d1b7f615dfb32e34cea7cc4a106

Theorem 8
Condition 3

Grain-128

416ddd14b4c096cb
0181ae8830ada69d

80ff0ff0fff0ff0f
d7ef096c7a8700a3 00076a8e9def620dfe704b264988da02

ddd14b4c096cb018
1ae8830ada69d3b6

f0ff0fff0ff0fd7e
f096c7a8700a318f 76a8e9def620dfe704b264988da02cc0

Grain-128a

724d58601b44396d
60e83723a65bfa7b

84ff0ff0fff0ff0f
6c25a1d79af2a85c 0008ab9f20d8a418932150d3ba97400e

d58601b44396d60e
83723a65bfa7b973

f0ff0fff0ff0f6c2
5a1d79af2a85c626 8ab9f20d8a418932150d3ba97400ebd5

19

Theorem 8
Condition 4

Grain 128

97516dced374a089
88ce86acaa2ff1a4

3aff0ff0ff0ff0f1
12b72427d44b92f1 000a8e820bedfb8cd9d651d8221f3b34

16dced374a08988c
e86acaa2ff1a4399

f0ff0ff0ff0f112b
72427d44b92f1bba a8e820bedfb8cd9d651d8221f3b34846

Grain-128a

a29ae6fb8b23f747
f3723e59df0d3a8e

4bff0ff0ff0ff0fc
92ace3a64691e733 000cd469723847db72f6f856e51f9d96

ae6fb8b23f747f37
23e59df0d3a8eabb

f0ff0ff0ff0fc92a
ce3a64691e733a54 cd469723847db72f6f856e51f9d96b38

Theorem 9
Condition 1

(Algorithm 20)

Grain-128

930cb0086c93293e
9722a710e28a1375

f767352c26395e8a
ffffb0ffff80fffb 0000000a44dcae9a68c7b66389e440eb

086c93293e9722a7
10e28a1375ec5696

2c26395e8affffb0
ffff80fffbb6fcf2 0a44dcae9a68c7b66389e440ebbdf198

Grain-128a

270f72277e7540cf
9a58fa4426e28aae

c7df3ee9c792f5d5
ffffd0ffff00fff1 000000fd8bbdb3d3a8c885704f43a022

277e7540cf9a58fa
4426e28aaebc06e1

e9c792f5d5ffffd0
ffff00fff13204c5 fd8bbdb3d3a8c885704f43a022557a89

Theorem 9
Condition 2

Grain-128

895bea372ffe4e76
e84113dd18afa6b9

a8147ffff80fffffe
0fff2cd80e83e74 0000004b5394f9baf0f6a6ff3d921542

372ffe4e76e84113
dd18afa6b9fb5cef

fff80fffff0fff2c
d80e83e74e3d134e 4b5394f9baf0f6a6ff3d9215422cbdbb

Grain-128a

70a2fecddbc94115
017b571df0854817

9e132ffff50ffffd
0fff5cf89b04484d 0000002839a6bec77a007d3d12b4d597

cddbc94115017b57
1df08548178142d5

fff50ffffd0fff5c
f89b04484d01fb4b 2839a6bec77a007d3d12b4d597c9041b

E Propagation of Single Bit Differentials

Parameters. In Theorem 4, let q2 = 96 for Grain v18 and q2 = 160 for Grain-128 and Grain-128a9.

Table 9: Propagation of a Single Bit Differential in the case of Grain v1’s LFSR.

Flipped
Bit

Position

Number of
Identical

Keystream
Bits

Positions of Identical
Keystream Bits

15 50 0-11, 13-17, 19-30, 33-35, 37, 38, 40-46, 48, 51, 53, 55, 58, 61-63, 71

31 59 0-5, 7-23, 25-27, 29-33, 35-41, 43-46, 49-51, 54, 56-59, 61, 62, 64, 67, 69, 74, 77, 79, 87

47 63 0, 2-21, 23, 24, 26-39, 41, 42, 45-49, 51-53, 55-57, 59, 60, 62, 65, 66, 70, 73-75, 77, 78, 80, 95

63 63 0-16, 18-27, 29-34, 36, 37, 39, 40, 42-45, 47-52, 54, 55, 58, 61-63, 65, 68, 69, 72, 73, 76, 81,
90, 91, 94

79 74 0-14, 16-32, 34-43, 45-50, 52, 53, 55, 56, 58-61, 63-68, 70, 71, 74, 77-79, 81, 84, 85, 88, 89, 92

8 as in Theorem 1
9 as in Theorem 2, respectively Theorem 3

20

Table 10: Propagation of a Single Bit Differential in the case of Grain v1’s NFSR.

Flipped
Bit

Position

Number of
Identical

Keystream
Bits

Positions of Identical
Keystream Bits

15 23 0-4, 6-10, 12, 15, 16, 19, 20-22, 26, 27, 28, 29, 31, 33

31 32 1-19, 22-26, 28, 31, 32, 35, 36, 42, 43, 49

47 32 0-15, 17, 18, 20-25, 28, 29, 30, 32, 33, 35, 40, 41, 42

63 25 1-6, 8-16, 19, 21-23, 26, 29-31, 33, 39

79 41 0-15, 17-22, 24-32, 35, 37-39, 42, 45-47, 49, 55

Table 11: Propagation of a Single Bit Differential in the case of Grain-128’s LFSR.

Flipped
Bit

Position

Number of
Identical

Keystream
Bits

Positions of Identical
Keystream Bits

31 92 0-10, 12-17, 19-22, 24-56, 58, 60-63, 65, 67-69, 71, 72, 74-79, 81-85, 87, 88, 90, 93, 94, 97, 100,
103, 109, 116, 119, 126, 129, 135, 141, 148

55 97 0-12, 14-34, 36-41, 43-46, 48, 49, 51, 53-65, 67-80, 86, 87, 89, 91-93, 95, 96, 100-102, 105-107,
109, 111, 112, 118, 121, 127, 133, 153, 159

79 101 1-18, 20-36, 38-41, 43, 45-57, 60-65, 67-70, 72, 73, 75, 78-88, 92-94, 96-99, 101, 103, 104, 110,
111, 113, 115, 119, 120, 125, 126, 130, 131, 133, 145, 151, 157

103 86 0-7, 9, 11-23, 25-39, 41, 44-54, 58-60, 62-65, 67, 69, 70, 73, 76-81, 84-86, 91, 92, 94, 96, 97, 99,
105, 109, 110-112, 116, 117, 123, 128, 143, 144

127 108 0-31, 33, 35-47, 49-63, 65, 68-78, 82-84, 86-89, 91, 93, 94, 97, 100-105, 108-110, 115, 116, 118,
120, 121, 123, 129, 133-136, 140, 141, 147, 152

Table 12: Propagation of a Single Bit Differential in the case of Grain-128’s NFSR.

Flipped
Bit

Position

Number of
Identical

Keystream
Bits

Positions of Identical
Keystream Bits

31 52 0-15, 17, 18, 20-28, 30-36, 39-42, 45, 48-50, 54-56, 58, 62, 63, 65, 66, 71, 72

55 65 0-9, 11-18, 20-39, 41, 42, 44, 45, 47, 49-52, 55-60, 63-66, 69, 73, 74, 82, 87, 89, 95, 96

79 55 0-5, 7-14, 16-33, 35-42, 46, 48, 49, 52, 54, 55, 58, 60, 61, 63, 65, 68, 71, 74, 80

103 63 0-7, 9-13, 15-29, 31-38, 41-44, 47-50, 53-57, 59-61, 63-66, 70, 73, 79, 85, 87, 92, 98

127 87 0-31, 33-37, 39-53, 55-62, 65-68, 71-74, 77-81, 83-85, 87-90, 94, 97, 103, 109, 111, 116, 122

21

Table 13: Propagation of a Single Bit Differential in the case of Grain-128a’s LFSR.

Flipped
Bit

Position

Number of
Identical

Keystream
Bits

Positions of Identical
Keystream Bits

31 83 0-10, 12-17, 19-22, 24-57, 60-63, 67-69, 71, 72, 74-79, 81-85, 87-89, 93, 94, 109, 111, 115

55 94 0-12, 14-34, 36-41, 43-46, 48-50, 53-65, 67-81, 86, 87, 91-93, 95, 96, 100-102, 105-108, 111,
112, 118, 133, 139

79 100 1-18, 20-36, 38-42, 45-57, 60-65, 67-70, 72-74, 78-89, 92-94, 96-100, 103, 104, 110, 111, 115,
119, 120, 125, 126, 130-132, 136, 157

103 93 0-8, 11-23, 25-40, 44-55, 58-60, 62-66, 69, 70, 72, 76-81, 84-87, 91, 92, 94, 96-98, 102, 109,
110-113, 116, 117, 123, 124, 128, 134, 143, 144, 149, 156

127 113 0-32, 35-47, 49-64, 68-79, 82-84, 86-90, 93, 94, 96, 100-105, 108-111, 115, 116, 118, 120-122,
126, 133-137, 140, 141, 147, 148, 152, 158

Table 14: Propagation of a Single Bit Differential in the case of Grain-128a’s NFSR.

Flipped
Bit

Position

Number of
Identical

Keystream
Bits

Positions of Identical
Keystream Bits

31 44 0-15, 17, 18, 20-28, 30-36, 41, 49, 50, 54-56, 58, 63, 65, 66

55 55 0-9, 11-18, 20-39, 41, 42, 44, 45, 47, 49-52, 55-60, 65, 74

79 48 0-5, 7-14, 16-33, 35-39, 41, 46, 49, 52, 54, 55, 58, 60, 61, 63, 68

103 43 0-7, 9-13, 15-29, 31-38, 42, 53, 55-57, 59, 61

127 67 0-31, 33-37, 39-53, 55-62, 66, 77, 79-81, 83, 85

22

F Algorithms

Algorithm 16. Constructing Key-IV pairs that generate β bit shifted keystream
Output: Key-IV pairs (K′, IV ′) and (K, IV)

1 Set s← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}n and V2 ∈R {0, 1}d2
4 Set value← Update1() and IV ← LSBα−β+d1(P)∥V2

5 Run KSA−1(K∥LSBd1(P0)∥value∥V2) routine for β − d1 clocks and produce state
S′ = (K′∥V ′

1∥value∥V ′
2), where |V ′

1 | = β and |V ′
2 | = d2 − β + d1

6 if V ′
1 = P0 then

7 Set S ← K′∥P0∥value∥V ′
2 and output← Pair3(d1, S)

8 if output ̸= ⊥ then
9 Set s← 1

10 return (K, IV) and output

11 end
12 end
13 end

Algorithm 17. Update2(start, stop)
Input: Indexes start and stop
Output: Variable value

1 Set value← NULL
2 for i = start to stop do
3 Choose Ci ∈R {0, 1}δ
4 Update value← value∥Ci∥Pi

5 end
6 return value

Algorithm 18. Update3(value1, value2)
Input: Variables value1 and value2
Output: Variable value

1 for i = t to c− 1 do
2 Choose Bi ∈R {0, 1}δ
3 Update value1 ← value1∥Bi∥Pi and value2 ← value2∥Bi

4 end
5 Set value← value1∥value2
6 return value

23

Algorithm 19. Constructing Key-IV pairs that generate β − γ + (β + δ)(c − t) bit shifted
keystream

Output: Key-IV pairs (K′, IV ′) and (K, IV)
1 Set s← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}n, V1 ∈R {0, 1}d1−β+γ−(β+δ)(c−t) and V2 ∈R {0, 1}d2
4 Set value1 ← P0∥Update2(0, c− t− 2)∥Cc−t−1∥MSBβ−γ(Pc−t) and value2 ← value1
5 Update value1 ← value1∥P0

6 for i = 1 to t− 1 do
7 Choose Bi ∈R {0, 1}δ−β+γ

8 Update value1 ← value1∥Bi∥MSBβ−γ(Pc−t+i)∥Pi and value2 ← value2∥Bi∥MSBβ−γ(Pc−t+i)

9 end
10 Set value1∥value2 ← Update3(value1, value2) and IV ← V1∥value2∥V2

11 Run KSA−1(K∥V1∥value1∥V2) routine for β − γ + (β + δ)(c− t) clocks and produce state
S′ = (K′∥V ′

1∥value1∥V ′
2), where |V ′

1 | = d1 and |V ′
2 | = d2 − β + γ − (β + δ)(c− t)

12 Set IV ′ ← V ′
1∥value1∥V ′

2

13 if (K′, IV ′) produces all zero keystream bits in the first β − γ + (β + δ)(c− t) PRGA rounds then
14 Set s← 1
15 return (K, IV) and (K′, IV ′)

16 end
17 end

Algorithm 20. Constructing Key-IV pairs that generate δ − β + γ + β(c− t+ 1) + δ(c− t)
bit shifted keystream

Output: Key-IV pairs (K′, IV ′) and (K, IV)
1 Set s← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}n, V1 ∈R {0, 1}d1−δ+β−γ−β(c−t+1)−δ(c−t), V2 ∈R {0, 1}d2 and Cc−t+1 ∈R {0, 1}δ−β+γ

4 Set value1 ← P0∥Update2(1, c− t)∥Cc−t+1 and value2 ← value1
5 Update value1 ← value1∥P0

6 for i = 1 to t− 1 do
7 Choose Bi ∈R {0, 1}δ−β+γ

8 Update value1 = value1∥LSBβ−γ(Pc−t+i)∥Bi∥Pi and value2 = value2∥LSBβ−γ(Pc−t+i)∥Bi

9 end
10 Set value1∥value2 ← Update3(value1, value2) and IV ← V1∥value2∥V2

11 Run KSA−1(K∥V1∥value1∥V2) routine for δ − β + γ + β(c− t+ 1) + δ(c− t) clocks and produce state
S′ = (K′∥V ′

1∥value1∥V ′
2), where |V ′

1 | = d1 and |V ′
2 | = d2 − δ + β − γ − β(c− t+ 1)− δ(c− t)

12 Set IV ′ ← V ′
1∥value1∥V ′

2

13 if (K′, IV ′)
produces all zero keystream bits in the first δ − β + γ + β(c− t + 1) + δ(c− t) PRGA rounds then

14 Set s← 1
15 return (K, IV) and (K′, IV ′)

16 end
17 end

24

	New Configurations of Grain Ciphers: Security Against Slide Attacks

