
DIZK: A Distributed Zero Knowledge Proof System*

Howard Wu
howardwu@berkeley.edu

UC Berkeley

Wenting Zheng
wzheng@eecs.berkeley.edu

UC Berkeley

Alessandro Chiesa
alexch@berkeley.edu

UC Berkeley

Raluca Ada Popa
raluca.popa@berkeley.edu

UC Berkeley

Ion Stoica
istoica@berkeley.edu

UC Berkeley

Abstract

Recently there has been much academic and industrial interest in practical implementations of zero
knowledge proofs. These techniques allow a party to prove to another party that a given statement is
true without revealing any additional information. In a Bitcoin-like system, this allows a payer to prove
validity of a payment without disclosing the payment’s details.

Unfortunately, the existing systems for generating such proofs are very expensive, especially in terms
of memory overhead. Worse yet, these systems are “monolithic”, so they are limited by the memory
resources of a single machine. This severely limits their practical applicability.

We describe DIZK, a system that distributes the generation of a zero knowledge proof across machines
in a compute cluster. Using a set of new techniques, we show that DIZK scales to computations of up to
billions of logical gates (100× larger than prior art) at a cost of 10 µs per gate (100× faster than prior art).
We then use DIZK to study various security applications.

Keywords: zero knowledge proofs; cluster computing; SNARKs

*The authors are grateful to Jiahao Wang for participating in early stages of this work. This work was supported by the Intel/NSF
CPS-Security grants #1505773 and #20153754, the UC Berkeley Center for Long-Term Cybersecurity, and gifts to the RISELab
from Amazon, Ant Financial, CapitalOne, Ericsson, GE, Google, Huawei, IBM, Intel, Microsoft, and VMware. The authors thank
Amazon for donating compute credits to RISELab, which were extensively used in this project.

1



Contents

1 Introduction 3

2 Background on zkSNARKs 5
2.1 High-level description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The zkSNARK language and interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 The zkSNARK protocol of Groth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Design overview of DIZK 10

4 Design: distributing arithmetic 11
4.1 Distributed fast polynomial arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.1 Arithmetic via evaluation and interpolation . . . . . . . . . . . . . . . . . . . . . . 11
4.1.2 Distributed FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1.3 Distributed Lag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Distributed multi-scalar multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.1 Distributed fixMSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.2 Distributed varMSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Design: distributing the zkSNARK setup 13

6 Design: distributing the zkSNARK prover 15

7 Applications 16
7.1 Authenticity of photos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.2 Integrity of machine learning models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Implementation 19

9 Experimental setup 20

10 Evaluation of the distributed zkSNARK 20
10.1 Evaluation of the setup and prover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
10.2 Evaluation of the components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

10.2.1 Field components: Lag and FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
10.2.2 Group components: fixMSM and varMSM . . . . . . . . . . . . . . . . . . . . . . 21

10.3 Effectiveness of our techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

11 Evaluation of applications 24

12 Related work 24

13 Limitations and the road ahead 25

14 Conclusion 25

References 26

2



1 Introduction

Cryptographic proofs with strong privacy and efficiency properties, known as zkSNARKs (zero-knowledge
Succinct Non-interactive ARgument of Knowledge) [Mic00, GW11, BCCT12], have recently received
much attention from academia and industry [BCS16, BBC+17, Gro10, Lip12, BCI+13, GGPR13, PGHR13,
BCG+13, BCTV14b, KPP+14, ZPK14, CFH+15, DFKP13, BCG+14, WSR+15, CFH+15, JKS16, KMS+16,
NT16, DFKP16, BFR+13], and have seen industrial deployments [ZCa17, QED17, Chr17, JPM17].

For example, zkSNARKs are the core technology of Zcash [ZCa17, BCG+14], a popular cryptocurrency
that, unlike Bitcoin, preserves a user’s payment privacy. Bitcoin requires users to broadcast their private
payment details in the clear on the public blockchain, so other participants can check the validity of the
payment. In contrast, zkSNARKs enable users to broadcast encrypted transactions details and prove the
validity of the payments without disclosing what the payments are.

More formally, zkSNARKs allow a prover (e.g., a Zcash user making a payment) to convince a verifier
(e.g., any other Zcash user) of a statement of the form “given a function F and input x, there is a secret
w such that F (x,w) = true”. In the cryptocurrency example, w is the private payment details, x is the
encryption of the payment details, and F is a predicate that checks that x is an encryption of w and w is
a valid payment. These proofs provide two useful properties: succinctness and zero knowledge. The first
property offers extremely small proofs (128 B) and cheap verification (2 ms plus a few µs per byte in x),
regardless of how long it takes to evaluate F (even if F takes years to compute). The second property enables
privacy preservation, which means that the proof reveals no information about the secret w (beyond what is
already implied by the statement being proved).

The remarkable power of zkSNARKs comes at a cost: the prover has a significant overhead. zkSNARKs
are based on probabilistically checkable proofs (PCPs) from Complexity Theory, which remained prohibitively
slow for two decades until a line of recent work brought them closer to practical systems (see Section 12
and Fig. 1). One of the main reasons for the prover’s overhead is that the statement to be proved must be
represented via a set of logical gates forming a circuit, and the prover’s cost is quasi-linear in this circuit’s
size. Unfortunately, this prover cost is not only in time but also in space.

Thus, in existing systems, the zkSNARK prover is a monolithic process running on a single machine that
quickly exceeds memory bounds as the circuit size increases. State-of-the-art zkSNARK systems [SCI17]
can only support statements of up to 10-20 million gates, at a cost of more than 1 ms per gate. Let us put this
size in perspective via a simple example: the SHA-256 compression function, which maps a 512-bit input to
a 256-bit output, has more than 25,000 gates [BCG+14]; no more than 400 evaluations of this function fit in
a circuit of 10 million gates, and such a circuit can be used to hash files of up to a mere 13 kB. In sum, 10
million gates is not many.

This bottleneck severely limits the applicability of SNARKs, and motivates a basic question: can
zkSNARKs be used for circuits of much larger sizes, and at what cost?

DIZK. We design and build DIZK (DIstributed Zero Knowledge), a zkSNARK system that far exceeds the
scale of previous state-of-the-art solutions. At its core, DIZK distributes the execution of a zkSNARK across
a compute cluster, thus enabling it to leverage the aggregated cluster’s memory and computation resources.
This allows DIZK to support circuits with billions of gates (100× larger than prior art) at a cost of 10 µs per
gate (100× faster than prior art).

We evaluate DIZK on two applications: proving authenticity of edited photos (as proposed in [NT16]),
and proving integrity of machine learning models. In both cases, DIZK allows reaching much larger instance
sizes. E.g., we ran image editing transformations on photos of 2048 by 2048 pixels.

Overall, DIZK makes a significant and conceptual step forward, enlarging the class of applications

3



feasible for zkSNARKs. We have implemented DIZK via Apache Spark [Apa17], and will release it under a
permissive software license.

DIZK does inherit important limitations of zkSNARKs (see Section 13). First, while DIZK supports
larger circuits than prior systems, its overhead is still prohibitive for many practical applications; improving
the efficiency of zkSNARKs for both small and large circuits remains an important challenge. Also, like
other zkSNARKs, DIZK requires a trusted party to run a setup procedure that uses secret randomness to
sample certain public parameters; the cost of this setup grows with circuit size, which means that this party
must also use a cluster, which is harder to protect against attackers than a single machine.

Nevertheless, the recent progress on zkSNARKs has been nothing short of spectacular, which makes us
optimistic that future advancements will address these challenges, and bring the power of zkSNARKs to
many more practical applications.

Challenges and techniques. Distributing a zkSNARK is challenging. Protocols for zkSNARKs on large
circuits involve solving multiple large instances of tasks about polynomial arithmetic over cryptographically-
large prime fields and about multi-scalar multiplication over elliptic curve groups. For example, generating
proofs for billion-gate circuits requires multiplying polynomials of degree that is in the billions, and merely
representing these polynomials necessitates terabit-size arrays. Even more, fast algorithms for solving these
tasks, such as Fast Fourier Transforms (FFTs), are notoriously memory intensive, and rely on continuously
accessing large pools of shared memory in complex patterns. But each node in a compute cluster can store
only a small fraction of the overall state, and thus memory is distributed and communication between nodes
incurs network delays. In addition, these heavy algorithmic tasks are all intertwined, which is problematic as
reshuffling large amounts of data from the output of one task to give as input to the next task is expensive.

We tackle the above challenges in two steps. First, we single out basic computational tasks about
field and group arithmetic and achieve efficient distributed realizations of these. Specifically, for finite
fields, DIZK provides distributed FFTs and distributed Lagrange interpolant evaluation (Section 4.1.1); for
finite groups, it provides distributed multi-scalar multiplication with fixed bases and with variable bases
(Section 4.2). Throughout, we improve efficiency by leveraging characteristics of the zkSNARK setting
instead of implementing agnostic solutions.

Second, we build on these components to achieve a distributed zkSNARK. Merely assembling these
components into a zkSNARK as in prior monolithic systems, however, does not yield good efficiency.
zkSNARKs transform the computation of a circuit into an equivalent representation called a Quadratic
Arithmetic Program [GGPR13, PGHR13]: a circuit with N wires and M gates is transformed into a
satisfaction problem about O(N) polynomials of degree O(M). The evaluations of these polynomials
yield matrices of size O(N) × O(M) that are sparse, with only O(N + M) non-zero entries. While this
sparsity gives rise to straightforward serial algorithms, the corresponding distributed computations suffer
from consistent stragglers that incur large overheads.

The reason lies in how the foregoing transformation is used in a zkSNARK. Different parts of a zkSNARK
leverage the sparsity of the matrices above in different ways: the so-called QAP instance reduction relies on
their column sparsity (Section 5), while the corresponding QAP witness reduction relies on their row sparsity
(Section 6). However, it turns out that the columns and rows are almost sparse: while most columns and rows
are sparse, some are dense, and the dense ones create stragglers.

We address this issue via a two-part solution. First, we run a lightweight distributed computation that
quickly identifies and annotates the circuit with information about which columns/rows are dense. Second,
we run a hybrid distributed computation that uses different approaches to process the sparse and dense
columns/rows. Overall we achieve efficient distributed realizations for these QAP routines. This approach
outperforms merely invoking generic approaches that correct for load imbalances such as skewjoin [ske17].

4



Finally, we emphasize that most of the technical work described above can be re-used as the starting
point to distribute many other similar proof systems (see Fig. 1). We have thus packaged these standalone
components as a separate library, which we deem of independent interest.

We also briefly mention that supporting billion-gate circuits required us to generate and use a pairing-
friendly elliptic curve suitable for this task. See Section 9 for details.
Authenticity of photos & integrity of ML models. We study the use of DIZK for two natural applications:
(1) authenticity of edited photos [NT16] (see Section 7.1); and (2) integrity of machine learning models (see
Section 7.2). Our experiments show that DIZK enables such applications to scale to much larger instance
sizes than what is possible via previous (monolithic) systems.

An application uses DIZK by constructing a circuit for the desired computation, and by computing values
for the circuit’s wires from the application inputs. We do this, for the above applications, via distributed
algorithms that exploit the parallel nature of computations underlying editing photos and ML training
algorithms. Circuit gates, and their evaluations, are jointly computed by machines in the compute cluster.
Cryptography at scale? DIZK exemplifies a new paradigm. Cryptographic tools are often executed as
monolithic procedures, which hampers their applicability to large problem sizes. We believe that explicitly
designing such tools with distributed architectures like compute clusters in mind will help create a toolkit for
“cryptography at scale”, and we view DIZK as a step in this direction for the case of zkSNARKs.

Does it benefit from distributed
Type of Theory Built FFT? variable-base fixed-base QAP

proof system foundations systems MSM? MSM? reduction?
batch arguments

[IKO07]
[SBW11, SMBW12, SVP+12]

3 3 3 3
based on LPCPs [SBV+13, VSBW13, BFR+13]

SNARKs
[Mic00, BCS16] [BBC+17, BBHR18] 3

based on PCPs
SNARKs [Gro10, Lip12] [PGHR13, BCG+13, BCTV14b]

based on LPCPs [BCI+13, GGPR13] [KPP+14, ZPK14, CFH+15]
3 3 3 3

Figure 1: Some proof systems that can benefit from the library of distributed subroutines that we develop.

2 Background on zkSNARKs

The notion of a zkSNARK, formulated in [Mic00, GW11, BCCT12], has several definitions. The one that we
consider here is known as publicly-verifiable preprocessing zkSNARK (see [BCI+13, GGPR13]).

We cover necessary background on zkSNARKs: we provide a high-level description (Section 2.1), an
informal definition (Section 2.2), and the protocol that forms our starting point (Section 2.3).

2.1 High-level description

A zkSNARK can be used to prove/verify statements of the form “given a public predicate F and a public
input x, I know a secret input w such that F (x,w) = true”. It consists of three algorithms: the setup, prover,
and verifier. (See Fig. 2.)

• The setup receives a predicate F (expressed in a certain way as discussed in Section 2.2) and outputs a
proving key pkF and verification key vkF . Both keys are published as public parameters and pkF /vkF can
be used to prove/verify any number of statements about F (involving different inputs). In particular, the
setup for F needs to be run only once.

5



Setup

Prover Verifier

accept 
or reject

run once per F

pkF vkF

repeat for any x,w
Here is a proof π that I know 
a secret w s.t. F(x,w)=true.

proving key verification 
key

π

x

input

w

x

secret input 

secret randomness

F
(expressed as a 
set of constraints)

predicate

Figure 2: Components of a zkSNARK. Shaded components
are those that we distribute so to support proving/verifying
statements about large computations. Prior systems run
these as monolithic procedures on a single machine.

F
predicate

Setup

Prover

Verifier

accept 
or reject

secret randomness

pkF
vkF

π

Here is a proof π that I know 
a secret w s.t. F(x,w)=true.

w

x
x

input

secret input 

Figure 3: A distributed zkSNARK. The setup algorithm is
run on a compute cluster, and generates a long proving key
pk, held in distributed storage, and a short verification key
vk. The prover algorithm is also run on a compute cluster.

While the setup outputs keys that are public information, its intermediate computation steps involve secret
values that must remain secret. This means that the setup must be run by a trusted party — this is, of course,
a challenging requirement, and prior work has studied mitigations (see Section 13).

• The prover receives the proving key pkF , a public input x for F , and a secret input w for F , and outputs a
proof π. The proof attests to the statement “given F and x, I know a secret w such that F (x,w) = true”,
but reveals no information about w (beyond what is implied by the statement). The generation of π involves
randomness that imbues it with zero knowledge. Anyone can run the prover.

• The verifier receives the verification key vkF , a public input x for F , and a proof π, and outputs a decision
bit (“accept” or “reject”). Anyone can run the verifier.

A zkSNARK’s costs are determined by the “execution time” TF of F (see Section 2.2) and the size k of the
input x (which is at most TF ). The execution time is at least the size of the input and, in many applications,
much larger than it. Thus we think of TF as very big and k as much smaller than TF .

The key efficiency feature of a zkSNARK is that the verifier running time is proportional to k alone
(regardless of TF ) and the proof has constant size (regardless of k, TF ). The size of vkF is proportional to k
(regardless of TF ).

However, the setup and the prover are very expensive: their running times are (at least) proportional to
TF . The size of pkF is large, because it is proportional to TF .

Running the setup and prover is a severe bottleneck in prior zkSNARK systems since time and space
usage grows in TF . Our focus is to overcome these bottlenecks.

2.2 The zkSNARK language and interface

While typically one expresses a computation F via a high-level programming language, a zkSNARK requires
expressing F via a set of quadratic constraints φF , which is closely related to circuits of logical gates. A
zkSNARK proof then attests that such a set of constraints is satisfiable. The size of φF is related to the

6



execution time of F . There has been much research [PGHR13, BCG+13, BCTV14b, BFR+13, KPP+14,
ZPK14, CFH+15, WSR+15, BCTV14a, ZGK+17, ZGK+18, KPS18] devoted to techniques for encoding
programs via sets of constraints, but this is not our focus; in this paper, we consider φF as given.
The zkSNARK language. We describe the type of computation used in the interface of a zkSNARK. Rather
than being boolean, values are in a field F of a large prime order p.

An R1CS instance φ over F is parameterized by the number of inputs k, number of variables N (with
k ≤ N ), and number of constraints M ; φ is a tuple (k,N,M,a,b, c) where a,b, c are (1 + N) ×M
matrices over F.

An input for φ is a vector x in Fk, and a witness for φ is a vector w in FN−k. An input-witness pair (x,w)
satisfies φ if, letting z be the vector F1+N that equals the concatenation of 1, x, and w, the following holds
for all j ∈ [M ]: (∑N

i=0 ai,jzi

)
·
(∑N

i=0 bi,jzi

)
=
∑N

i=0 ci,jzi .

One can think of each quadratic constraint above as representing a logical gate. Indeed, boolean (and
arithmetic) circuits are easily reducible to this form. We can thus view a,b, c as containing the “left”, “right”,
and “output” coefficients respectively; rows index variables and columns index constraints.
The zkSNARK interface. A zkSNARK consists of three algorithms: setup S , prover P , and verifier V .
• Setup. On input a R1CS instance φ = (k,N,M,a,b, c), S outputs a proving key pk and verification key vk.
• Prover. On input a proving key pk (generated for an R1CS instance φ), input x in Fk, and witness w in
FN−k, P outputs a proof π attesting that φ(x, ·) is satisfiable.

• Verifier. On input a verification key vk (also generated for φ), input x in Fk, and proof π, V outputs a
decision bit.

The zkSNARK properties. The key properties of a zkSNARK are the following. Let φ be any R1CS
instance, and let (pk, vk) be a key pair generated by S on input φ. (The statements below hold for a random
choice of such keys.)
• Completeness. For every input-witness pair (x,w) that satisfies φ, any proof sampled as π ← P(pk, x, w)

is such that V(vk, x, π) = 1.
• Soundness. For every input x such that φ(x, ·) is not satisfiable, no efficient malicious prover can produce

a proof π such that V(vk, x, π) = 1.
• Zero knowledge. For every input-witness pair (x,w) that satisfies φ, a proof sampled as π ← P(pk, x, w)

reveals no information about the witness w (beyond the fact that the statement being proved is true).
• Succinctness. The proof π has size O(1) and the running time of V is O(k). (Both expressions hide a

polynomial dependence on the security parameter.)

2.3 The zkSNARK protocol of Groth

Our system provides a distributed implementation of a zkSNARK protocol due to Groth [Gro16]. We selected
Groth’s protocol because it is one of the most efficient zkSNARK protocols. That said, our techniques are
easily adapted to similar zkSNARK protocols [GGPR13, BCI+13, PGHR13, DFGK14, GM17]. In order to
facilitate later discussions, we now describe Groth’s protocol, limiting our description to outlining the steps in
its setup, prover, and verifier. We refer the reader to [Gro16] for more details, including for the cryptographic
assumptions that underlie security (briefly, the protocol is proved secure in the so-called generic group model).
For reference, we include the full protocol in Fig. 4 using the notation introduced in this section.
QAPs. Groth’s zkSNARK protocol uses Quadratic Arithmetic Programs (QAPs) [GGPR13, PGHR13] to
efficiently express the satisfiability of R1CS instances via certain low-degree polynomials. Essentially, the

7



M constraints are “bundled” into a single equation that involves univariate polynomials of degree O(M).
The prover’s goal is then to convince the verifier that this equation holds. In fact, it suffices for the verifier to
know that this equation holds at a random point because distinct polynomials of small degree (relative to the
field size) can only agree on a small number of points.

In more detail, we now define what is a QAP instance, and what does satisfying such an instance mean.
A QAP instance Φ over F has three parameters, the number of inputs k, number of variables N (with

k ≤ N ), and degree M ; Φ is a tuple (k,N,M,A,B,C, D) where A,B,C are each a vector of 1 + N
polynomials over F of degree < M , and D is a subset of F of size M .

An input for Φ is a vector x in Fk, and a witness for Φ is a pair (w, h) where w is a vector in FN−k and h
is a vector in FM−1. An input-witness pair

(
x, (w, h)

)
satisfies Φ if, letting z ∈ F1+N be the concatenation

of 1, x, and w: (∑N
i=0Ai(X)zi

)
·
(∑N

i=0Bi(X)zi

)
=
∑N

i=0Ci(X)zi +
(∑M−2

i=0 hiX
i
)
· ZD(X) ,

where ZD(X) :=
∏
α∈D(X − α).

One can efficiently reduce R1CS instances to QAP instances [GGPR13, PGHR13]: there is a QAP instance
reduction qapI and a QAP witness reduction qapW. Our system provides distributed implementations of
both, so we now describe how they work.

QAP instance reduction. For every R1CS instance φ = (k,N,M,a,b, c), qapI(φ) outputs a QAP
instance Φ = (k,N,M,A,B,C, D) that preserves satisfiability: for every input x in Fk, φ(x, ·) is satisfiable
iff Φ(x, ·) is satisfiable. It works as follows: let D be a subset of F of size M and then, for each i ∈
{0, 1, . . . , N}, let Ai be the polynomial of degree < M that interpolates over D the i-th row of the matrix a;
similarly for each Bi and Ci with regard to rows of b and c.

QAP witness reduction. For every witness w in FN−k s.t. (x,w) satisfies φ, qapW(φ, x,w) outputs h
in FM−1 s.t. (x, (w, h)) satisfies Φ. It works as follows: let h be the coefficients of the polynomial H(X)
of degree less than M − 1 that equals the quotient of (

∑N
i=0Ai(X)zi) · (

∑N
i=0Bi(X)zi)−

∑N
i=0Ci(X)zi

and ZD(X).

Bilinear encodings. Groth’s protocol uses bilinear encodings, which enable hiding secrets while still
allowing for anyone to homomorphically evaluate linear functions as well as zero-test quadratic functions.
These rely on bilinear groups.

We denote by G a group, and consider only groups that have a prime order p, which are generated by an
element G. We use additive notation for group arithmetic: P +Q denotes addition of the two elements P and
Q. Thus, s · P denotes scalar multiplication of P by the scalar s ∈ Z. Since p · P equals the identity element,
we can equivalently think of a scalar s as in the field F of size p. The encoding (relative to G) of a scalar
s ∈ F is [s] := s · G; similarly, the encoding of a vector of scalars s ∈ Fn is [s] := (s1 · G, . . . , sn · G). The
encoding of a scalar can be efficiently computed via the double-and-add algorithm; yet (for suitable choices
of G) its inverse is conjecturally hard to compute, which means that [s] hides (some) information about s.
Encodings are also linearly homomorphic: [αs+ βt] = α[s] + β[t] for all α, β, s, t ∈ F.

Bilinear encodings involve three groups of order p: G1,G2,G3 generated by G1,G2,G3 respectively. The
encoding of a scalar s ∈ F in Gi is [s]i := s · Gi. Moreover, there is also an efficiently computable map
e : G1 ×G2 → G3, called pairing, that is bilinear: for every nonzero α, β ∈ F, it holds that e ([α]1, [β]2) =
αβ · e (G1,G2). (Also, e is non-degenerate in the sense that e ([1]1, [1]2) 6= [0]3.) Pairings allow zero-testing
quadratic polynomials evaluated on encodings. For example, given [s]1, [t]2, [u]1, one can test if st+ u = 0
by testing if e ([s]1, [t]2) + e ([u]1, [1]2) = [0]3.

8



Setup. The setup S receives an R1CS instance φ =
(k,N,M,a,b, c) and then samples a proving key pk
and a verification key vk as follows. First, S re-
duces the R1CS instance φ to a QAP instance Φ =
(k,N,M,A,B,C, D) by running the algorithm qapI.
Then, S samples random elements t, α, β, γ, δ in F (this
is the randomness that must remain secret). After that,
S evaluates the polynomials in A,B,C at the element
t, and computes

Kvk(t) :=

(
βAi(t) + αBi(t) + Ci(t)

γ

)
i=0,...,k

Kpk(t) :=

(
βAi(t) + αBi(t) + Ci(t)

δ

)
i=k+1,...,N

and

Z(t) :=

(
tjZD(t)

δ

)
j=0,...,M−2

.

Finally, the setup algorithm computes encodings of these
elements and outputs pk and vk defined as follows:

pk :=

(
[α]1,

[β]1, [δ]1
[β]2, [δ]2

, [A(t)]1,
[B(t)]1
[B(t)]2

,
[Kpk(t)]1
[Z(t)]1

)
vk :=(e (α, β) , [γ]2, [δ]2, [K

vk(t)]1) .

Prover. The prover P receives a proving key pk, input
x in Fk, and witness w in FN−k, and then samples a
proof π as follows. First, P extends the x-witness w
for the R1CS instance φ to a x-witness (w, h) for the
QAP instance Φ by running the algorithm qapW. Then,

P samples random elements r, s in F (this is the ran-
domness that imbues the proof with zero knowledge).
Next, letting z := 1‖x‖w, P computes three encodings
obtained as follows

[Ar]1 :=[α]1 +

N∑
i=0

zi[Ai(t)]1 + r[δ]1 ,

[Bs]1 :=[β]1 +

N∑
i=0

zi[Bi(t)]1 + s[δ]1

[Bs]2 :=[β]2 +

N∑
i=0

zi[Bi(t)]2 + s[δ]2 .

Then P uses these two compute a fourth encoding:

[Kr,s]1 := s[Ar]1 + r[Bs]1 − rs[δ]1

+

N∑
i=k+1

zi[K
pk
i (t)]1 +

M−2∑
j=0

hj [Zj(t)]1 .

The output proof is π := ([Ar]1, [Bs]2, [Kr,s]1).
Verifier. The verifier V receives a verification key vk,
input x in Fk, and proof π, and, letting x0 := 1, checks
that the following holds:

e ([Ar]1, [Bs]2) = e (α, β)

+e

(
k∑

i=0

xi[K
vk
i (t)]1, [γ]2

)
+ e ([Kr,s]1, [δ]2) .

Figure 4: The zkSNARK setup, prover, and verifier of Groth [Gro16] (using notation from Section 2.3).

9



3 Design overview of DIZK

Fig. 3 shows the outline of DIZK’s design. The setup and the prover in DIZK are modified from monolithic
procedures to distributed jobs on a cluster; F , pkF , and w are stored as data structures distributed across
multiple machines instead of on a single machine. The verifier remains unchanged from the vanilla protocol
as it is inexpensive, enabling DIZK’s proofs to be verified by existing implementations of the verifier. The
underlying zkSNARK protocol that we implement is due to Groth [Gro16], and is described in Section 2.3.

Spark. We implemented DIZK using Apache Spark [Apa17], a popular framework for cluster computing.
The design principles behind DIZK can be applied to other frameworks [DG04, Had17, IBY+07].

Spark consists of two components: the driver and executors. Applications are created by the driver and
consist of jobs broken down into stages that dictate a set of tasks. An executor is a unit of computation. Large
data is represented via Resilient Distributed Datasets (RDDs).

System interface. The interface of DIZK matches the interface of a zkSNARK for proving/verifying
satisfiability of R1CS instances (see Section 2.2) except that large objects are represented via RDDs.

• The setup receives an R1CS instance φ = (k,N,M,a,b, c) and outputs corresponding keys pk and vk.
As instance size grows (i.e., as the number of variables N and of constraints M grow), φ and pk grow in
size (linearly in N and M ), so both are represented as RDDs.

• The prover receives the proving key pk, input x in Fk, and witness w in FN−k. The prover outputs a proof
π of constant size (128 B). The input size k is typically small while the witness size N − k is typically
large, so we represent the input as a simple array and the witness as an RDD.

When using DIZK in an application, the application setup needs to provide φ to the DIZK setup, and the
application prover needs to provide x and w to the DIZK prover. Since these items are big, they may also
need to be generated in a distributed way; we do so for our applications in Section 7.

High-level approach. The setup and prover in serial implementations of zkSNARKs run monolithic
space-intensive computations that quickly exceed memory bounds. Our approach for an efficient distributed
implementation is as follows.

First, we identify the heavy computational tasks that underlie the setup and prover. In Groth’s protocol
(Fig. 4) these fall in three categories: (1) arithmetic (multiplication and division) for polynomials of large
degree over large prime fields; (2) multi-scalar multiplication over large prime groups; (3) the QAP instance
and witness reductions described in Section 2.3. Such computations underlie other proof systems (see Fig. 1).

Second, we design distributed implementations of these components. While there are simple strawman
designs that follow naive serial algorithms, these are too expensive (e.g., run in quadratic time); on the other
hand, non-naive serial algorithms gain efficiency by leveraging large pools of memory. We explain how to
distribute these memory-intensive algorithms.

Finally, we assemble the aforementioned distributed components into a distributed setup and prover. This
assembly poses additional challenges because the data workflow from one component to the next involves
several large-scale re-shuffles that need to be tackled with tailored data structures.

Fig. 5 presents a diagram of the main parts of the design, and we describe them in the following sections:
Section 4 discusses how to distribute polynomial arithmetic and multi-scalar multiplication; Section 5
discusses how to distribute the QAP instance reduction, and how to obtain the distributed setup from it;
Section 6 discusses how to distribute the QAP witness reduction, and how to obtain the distributed prover
from it.

10



Prover

QAP witness reduction

varMSM

FFT

Setup

QAP instance reduction

fixMSM

Lag

pkF vkF π

F pkF w
x

Figure 5: Distributed setup and prover (and sub-components).

4 Design: distributing arithmetic

We describe the computational tasks involving finite field and finite group arithmetic that arise in the
zkSNARK, and how we distribute these tasks. These form subroutines of the distributed setup and prover
computations (see Sections 5 and 6).

4.1 Distributed fast polynomial arithmetic

The reduction from an R1CS instance φ = (k,N,M,a,b, c) to a QAP instance Φ = (k,N,M,A,B,C, D)
(in the setup) and its witness reduction (in the prover) involves arithmetic on Θ(N) polynomials of degree
Θ(M); see Section 2.3. (Recall that N is the number of variables and M is the number of constraints.) We
distribute the necessary polynomial arithmetic, allowing us to scale to N and M that are in the billions.

4.1.1 Arithmetic via evaluation and interpolation

Fast polynomial arithmetic is well-known to rely on fast algorithms for two fundamental tasks: polynomial
evaluation and interpolation. In light of this, our approach is the following: (i) we achieve distributed fast
implementations of evaluation and interpolation, and (ii) use these to achieve distributed fast polynomial
arithmetic such as multiplication and division.

Recall that (multi-point) polynomial evaluation is the following problem: given a polynomial P (X) =∑n−1
j=0 cjX

j over F and elements u1, . . . , un in F, compute the elements P (u1), . . . , P (un). One can do this
by simply evaluating P at each point, costing Θ(n2) field operations overall.

Conversely, polynomial interpolation is the following problem: given elements u1, v1, . . . , un, vn in
F, compute the polynomial P (X) =

∑n−1
j=0 cjX

j over F such that vi = P (ui) for every i ∈ {1, . . . , n}.
One can do this by using u1, . . . , un to compute the Lagrange interpolants L1(X), . . . , Ln(X), which costs
Θ(n2 log n) field operations [vG13], and then output

∑n
j=1 vjLj(X), which costs another Θ(n2).

Both are straightforward to distribute, but they are too expensive due to the quadratic growth in n.

4.1.2 Distributed FFT

Fast Fourier Transforms (FFTs) [vG13] provide much faster solutions, which run in time Õ(n).

11



For instance, the Cooley–Tukey algorithm [CT65] solves both problems with O(n log n) field operations,
provided that F has suitable algebraic structure (in our setting it does). The algorithm requires storing an
array of n field elements in working memory, and performing O(log n) “passes” on this array, each costing
O(n). The structure of this algorithm can be viewed as a butterfly network since each pass requires shuffling
the array according to certain memory patterns.

While the Cooley–Tukey algorithm implies a fast parallel algorithm, its communication structure is not
suitable for compute clusters. Informally, at each layer of the butterfly network, half of the executors are left
idle and the other half have their memory consumption doubled; moreover, each such layer requires a shuffle
involving the entire array.

We take a different approach, suggested by Sze [Sze11], who studies the problem of computing the
product of terabit-size integers on compute clusters, via MapReduce. Sze’s approach uses only a single
shuffle. Roughly, an FFT computation with input size n is reduced to two batches of

√
n FFT computations,

each on input size
√
n. The first batch is computed by the mappers; after the shuffle, the second batch is

computed by the reducers. We use the same approach, and achieve a distributed FFT for finite fields.

4.1.3 Distributed Lag

An additional task that arises (in the setup, see Section 5) is a problem related to polynomial evaluation
that we call Lag (from “Lagrange”): given a domain {u1, . . . , un} ⊆ F and an element t ∈ F, compute the
evaluation at t of all Lagrange interpolants L1(X), . . . , Ln(X) for the domain.

A common approach to do so is via the barycentric Lagrange formula [BT04]: compute the barycentric
weights r1, . . . , rn as ri := 1/

∏
j 6=i(ui − uj), and then compute L1(t), . . . , Ln(t) as Li(t) := ri

t−ui · L(t)
where L(X) :=

∏n
j=1(X − uj).

When the domain is a multiplicative subgroup of the field generated by some ω ∈ F (in our setting it is),
this approach results in an expression, Li(X) = ωi/n

X−ωi · (Xn − 1), that is cheap to evaluate. This suggests a
simple but effective distributed strategy: each executor in the cluster receives the value t ∈ F and a chunk of
the index space i, and uses the inexpensive formula to evaluate Li(t) for each index in that space.

4.2 Distributed multi-scalar multiplication

In addition to the expensive finite field arithmetic discussed above, the setup and prover also perform
expensive group arithmetic, which we must efficiently distribute.

After obtaining the evaluations of Θ(N +M) polynomials, the setup encodes these values in the groups
G1 and G2, performing the encoding operations s → [s]1 and s → [s]2 for Θ(N + M) values of s. In
contrast, the prover computes linear combinations of Θ(N +M) encodings. (See Fig. 4.) Again, we seek to
scale to N and M that are in the billions.

These operations can be summarized as two basic computational problems within a group G of a prime
order p (where scalars come from the field F of size p).

• Fixed-base multi-scalar multiplication (fixMSM). Given a vector of scalars s in Fn and element P in G,
compute the vector of elements s · P in Gn.

• Variable-base multi-scalar multiplication (varMSM). Given a vector of scalars s in Fn and a vector of
elements (Pi)ni=1 in Gn, compute the element

∑n
i=1 si · Pi in G.

For small n, both problems have simple solutions: for fixMSM, compute each element si · P and output it;
for varMSM, compute each element si · Pi and output the sum of all these elements.

12



In our setting, these solutions are expensive not only because n is huge, but also because the scalars are
(essentially) random in F, whose cryptographically-large prime size p has k ≈ 256 bits. This means that the
(average) number of group operations in these simple solutions is ≈ 1.5kn, a prohibitive cost.

Both problems can be solved via algorithms that, while being much faster, make an intensive use of
memory. We next discuss our approach to efficiently distribute these.

4.2.1 Distributed fixMSM

Efficient algorithms for fixMSM use time-space tradeoffs [BGMW93]. Essentially, one first computes a
certain look-up table of multiples of P , and then uses it to compute each si · P . As a simple example, via
log |F| group operations, one can compute the table (P, 2 · P, 4 · P, . . . , 2log |F| · P), and then compute each
si · P with only log |F|/2 group operations (on average). More generally one can increase the “density” of the
look-up table and further reduce the time to compute each si · P . As n increases, it is better for the look-up
table to also grow, but larger tables require more memory to store them.

A natural approach to distribute this workload across a cluster is to evenly divide the n scalars among the
set of executors, have each executor build its own in-memory look-up table and perform all assigned scalar
multiplications aided by that table, and then assemble the output from all executors.

This approach does not fit Spark well, because each executor receives many “partitions” and these cannot
hold shared references to local results previously computed by the executor.

Instead, we let a single executor (the driver) build the look-up table and broadcast it to all other executors.
Each executor receives this table and a share of the scalars, and computes all its assigned scalar multiplications.

4.2.2 Distributed varMSM

An efficient algorithm for varMSM is Pippenger’s algorithm [Pip76], which is within 1 + o(1) of optimal for
nearly all scalar vectors [Pip80]. In the setting of serial zkSNARKs this algorithm outperforms, by 20-30%,
the popular Bos–Coster algorithm [de 94, §4]. (Other well-known algorithms like Straus’ algorithm [Str64]
and the Chang–Lou algorithm [CL03] are not as fast on large instances; see [BDLO12].)

Given scalars s1, . . . , sn and their bases P1, · · · ,Pn, Pippenger’s algorithm chooses a radix 2c, computes
bs1/2ccP1 + · · ·+ bsn/2ccPn, doubles it c times, and sums it to (s1 mod 2c)P1 + · · ·+ (sn mod 2c)Pn.
To perform the last step efficiently, the algorithm sorts the base elements into 2c buckets according to
(s1 mod 2c), . . . , (sn mod 2c) (discarding bucket 0), sums the base elements in the remaining buckets to
obtain intermediate sumsQ1, . . . ,Q2c−1, and computesQ1+2Q2+· · ·+(2c−1)Q2c−1 = (s1 mod 2c)P1+
· · · + (sn mod 2c)Pn. For a suitable choice of 2c, this last step saves computation because each bucket
contains the sum of several input bases.

A natural approach to distribute Pippenger’s algorithm is to set the number of partitions to 2c and use a
custom partitioner that takes in a scalar si as the key and maps its base element bi to partition (si mod 2c).
While this approach is convenient, we find in practice that the cost of shuffling in this approach is too high.
Instead, we find it much faster to merely split the problem evenly across executors, run Pippenger’s algorithm
serially on each executor, and combine the computed results.

5 Design: distributing the zkSNARK setup

The zkSNARK setup receives as input an R1CS instance φ = (k,N,M,a,b, c) and then samples a proving
key pk and a verification key vk, following the protocol in Fig. 4.

13



Informally, the protocol has three stages: (i) evaluate the polynomials A,B,C at a random element t,
where A,B,C are from the QAP instance Φ = (k,N,M,A,B,C, D) corresponding to φ; (ii) compute
certain random linear combinations of these; (iii) compute encodings of corresponding vectors. The second
stage is straightforward to distribute, and the third stage is an instance of fixMSM (see Section 4.2.1). Thus
here we discuss efficient distribution of the first stage only.

Recall from the QAP instance reduction (in Section 2.3) that A = (A0, . . . ,AN ) where Ai is the
polynomial of degree < M that interpolates over D the i-th row of the matrix a; similarly for each B and C
with regard to b and c. Focusing on a for simplicity and letting L1, . . . , LM be the Lagrange interpolants for
the set D (i.e., Lj evaluates to 1 at the j-th element of D and to 0 everywhere else in D), the task we need to
solve in a distributed way is the following.

in: a ∈ F(1+N)×M and t ∈ F
out: (Ai(t))

N
i=0 where Ai(t) :=

∑M
j=1 ai,jLj(t)

One should treat the parameters N and M as huge (no single machine can store vectors of length N or M ).
In both serial zkSNARK systems and in our distributed system, the first step is to compute (Lj(t))

M
j=1.

We do so via the distributed Lag protocol described in Section 4.1.3, which computes and stores (Lj(t))
M
j=1

in an RDD. We now focus on the remainder of the task.
A key property of the matrix a exploited in serial zkSNARK systems is its sparsity, i.e., a contains very

few non-zero entries. This enables the serial algorithm to iterate through every nonzero ai,j , look up the value
Lj(t), and add ai,jLj(t) to the i-th entry in A(t). Distributing this approach in the natural way, however,
results in a solution that is both inefficient in time and cannot scale to large N and M , as discussed next.
Strawman. Represent a = (ai,j)i,j and (Lj(t))j as two RDDs and perform the following computations:

1. Join the set (ai,j)i,j with the set (Lj(t))j by index j.
2. Map each pair (ai,j , Lj(t)) to its product ai,jLj(t).
3. Reduce the evaluations by i to get (

∑M
j=1 ai,jLj(t))

N
i=0.

When running this computation, we encounter notable issues at every step: the set of joined pairs (ai,j , Lj(t))
is unevenly distributed among executors, the executors take drastically differing amounts of time to perform
the pair evaluations, and a small set of executors quickly exceed memory bounds from insufficient heap space.

Our problems lie in that, while the matrix a is sparse, its columns are merely almost sparse: most columns
are sparse, but a few are dense. This occurs when in an R1CS instance φ some constraints “touch” many
variables. This is not a rarity, but a common occurrence in typical constraint systems. E.g., consider the
basic linear-algebraic operation of computing the dot product between a large variable vector and a large
constant vector. The single constraint in φ that captures this dot product has as many variables as the number
of non-zero constants in the constant vector, inducing a dense column.

The default (hash-based) partitioner of the join algorithm maps all entries in a column to the same
executor, and thus executors for dense columns become stragglers due to overload.

While there exist alternative join algorithms to handle load imbalances, like blockjoin and skewjoin
[ske17], these do not perform well in our setting, as we now explain.

First, blockjoin replicates each entry in one RDD (the one for (Lj(t))j) in the hopes that when
joining with the other RDD (the one for (ai,j)i,j) the partitions will be more evenly spread across executors.
However, in our setting we cannot afford blowing up the size of the first RDD.

Second, skewjoin takes a more fine-grained approach, by first computing statistics of the second RDD
and then using these to inform how much to replicate each entry in the first RDD. While the blow up in space
is smaller, it is still undesirable.

14



Even so, a problem of both approaches is that replicating entries entails changing the keys of the two
RDDs, by first adding certain counters to each key before the join and then removing these after the join to
continue with the protocol. Each of these changes requires expensive shuffles to relocate keys to the correct
partitions based on their hash. Also, another inefficiency is due to performing a single monolithic join on the
two (modified) RDDs, which uses a lot of working memory.

We circumvent all these problems via a systematic two-part solution tailored to our setting, as described
below. (And only briefly mention that the foregoing skewjoin approach does not scale beyond 50 million
constraints on even 128 executors and, until then, is twice as slow as our solution below.)

Part 1: identify dense vectors. Before running the setup, DIZK runs a lightweight, distributed computation
to identify the columns that have many non-zero elements and annotates them for Part 2. Using a straight-
forward map and reduce computation would also result in stragglers because of the dense columns. DIZK
avoids stragglers for this task as follows. Suppose that the matrix a is stored as an RDD with ` partitions.
First, DIZK assigns each partition to a random executor. Second, each executor computes, for every column
j, the number of non-zero elements it receives. Third, the executors run a shuffle, during which the elements
for the same column go to the same executor. Finally, each executor computes the final count for the columns
assigned to it. Thus even dense columns will have at most ` values to aggregate, which avoids stragglers.

DIZK then identifies which columns have more than a threshold of non-zero elements and annotates them
for use in Part 2. We heuristically set the threshold to be

√
M . Since a is overall sparse, there are not many

dense constraints. Let Ja be the set of indices j identified as dense.

Part 2: employ a hybrid solution. DIZK now executes two jobs: one for the few dense columns, and one
for the many sparse columns. The first computation filters each dense column into multiple partitions, so that
no executor deals with an entire dense column but only with a part of it, and evaluates the joined pairs. The
second computation is the strawman above, limited to indices not in Ja. We do so without having to re-key
RDDs or incur any replication. In more detail, the computation is:

1. For all dense column indices j ∈ Ja:
(a) filter a by index j to obtain column aj as an RDD;
(b) join the RDD (ai,j)i,j with Lj(t) for j;
(c) map each pair (ai,j , Lj(t)) to its product ai,jLj(t).

2. Join the set (ai,j)i,j /∈Ja with Lj(t) by index j.
3. Map each pair (ai,j , Lj(t)) to its evaluation ai,jLj(t).
4. Union (ai,jLj(t))j∈Ja with (ai,jLj(t))j /∈Ja .
5. Reduce all ai,jLj(t) by i using addition to get (Ai(t))

N
i=0.

6 Design: distributing the zkSNARK prover

The zkSNARK prover receives a proving key pk, input x in Fk, and witness w in FN−k, and then samples a
proof π, following the protocol in Fig. 4.

Informally, the protocol has two stages: (i) extend the x-witness w for the R1CS instance φ to a x-
witness (w, h) for the QAP instance Φ; (ii) use x, w, h and additional randomness to compute certain linear
combinations of pk. The second stage is an instance of varMSM (see Section 4.2.2). Thus here we discuss
efficient distribution of the first stage only.

Recall from the QAP witness reduction (in Section 2.3) that h is the vector of coefficients of the

15



polynomial H(X) of degree less than M − 1 that equals the ratio

(
∑N

i=0Ai(X)zi) · (
∑N

i=0Bi(X)zi)−
∑N

i=0Ci(X)zi
ZD(X)

.

This polynomial division can be achieved by: (a) choosing a domainD′ disjoint fromD of sizeM (so that the
denominator ZD(X) never vanishes on D′, avoiding divisions by zero); (b) computing the component-wise
ratio of the evaluations of the numerator and denominator on D′ and then interpolating the result. Below we
discuss how to evaluate the numerator on D′ because the same problem for the denominator is not hard since
ZD(X) is a sparse polynomial (for suitably chosen D).

The evaluation of the numerator on D′ can be computed by first evaluating the numerator on D, and then
using FFT techniques to convert this evaluation into an evaluation on the disjoint domain D′ (run an inverse
FFT on D and then a forward FFT on D′). The second part can be done via a distributed FFT (Section 4.1.2)
but the first part needs a discussion.

Let us focus for simplicity on computing the evaluation of the polynomial Az(X) :=
∑N

i=0Ai(X)zi on
D, which is one of the terms in the numerator. Since the evaluation of Ai on D equals the i-th row of a, the
task that needs to be solved in a distributed way is the following.

in: a ∈ F(1+N)×M and z ∈ F1+N

out: (
∑N

i=0 ai,jzi)
M
j=1

Again, the parameters N and M are huge, so no single machine can store arrays with N or M field elements.
Strawman. Encode a = (ai,j)i,j and z = (zi)i as two RDDs and perform the following distributed
computation:

1. Join the set (ai,j)i,j and the set (zi)i by the index i.
2. Map each (ai,j , zi) pair to their product ai,jzi.
3. Reduce the evaluations by index j to get (

∑N
i=0 ai,jzi)

M
j=1.

When running this computation, we ran into a stragglers problem that is the converse of that described in
Section 5: while the matrix a is sparse, its rows are almost sparse because, while most rows are sparse, some
rows are dense. The join was overloading the executors assigned to dense rows.

The reason underlying the problem is also the converse: some variables participate in many constraints.
This situation too is a common occurrence in R1CS instances. For example, the constant value 1 is used often
(e.g., every constraint capturing boolean negations) and this constant appears as an entry in z.

Generic solutions for load imbalances like skewjoin [ske17] were not performant for the same reasons
as in Section 5.
Our approach. We solve this problem via a two-part solution analogous to that in Section 5, with the
change that the computation is now for rows instead of columns. The dense vectors depend on the constraints
alone so they do not change during proving, even for different inputs x. Hence, Part 1 runs once during setup,
and not again during proving (only Part 2 runs then).

7 Applications

We study two applications for our distributed zkSNARK: (1) authenticity of edited photos [NT16] (see
Section 7.1); and (2) integrity of machine learning models (see Section 7.2). In both cases the application
consists of algorithms for two tasks. One task is expressing the application predicate as an R1CS instance,

16



which means generating a certain set of constraints (ideally, as small as possible) to pass as input to the setup.
The other task is mapping the application inputs to a satisfying assignment to the constraints, to pass as input
to the prover.

Recall that our distributed zkSNARK expects the R1CS instance (set of constraints) and witness (assign-
ment) to be distributed data structures (see Section 3). In both applications above, distributing the constraint
generation and witness generation across multiple machines is not hard, and thus we write our algorithms to
do so, for convenience. (For large enough instance sizes, this also confers greater efficiency.)

We now describe our approach to constraint and witness generation for each application, and how we
distribute these.

7.1 Authenticity of photos

Authenticity of photos is crucial for journalism and investigations but is difficult to ensure due to powerful
digital editing tools. One approach is to rely on special cameras that sign photos via secret keys embedded
in them, so that anyone can verify the signature accompanying an image. (Some such cameras already
exist.) However, often it is not useful or acceptable to release the original photograph because, e.g., some
information needs to be redacted or blurred. These operations, however, cause the problem that the signature
will not verify relative to the edited photo. A recent paper proposes an approach, called PhotoProof [NT16],
that relies on zkSNARKs to prove, in zero knowledge, that the edited image was obtained from a signed (and
thus valid) input image only according to a set of permissible transformations. (More precisely, the camera
actually signs a commitment to the input image, and this commitment and signature also accompany the
edited image, and thus can be verified separately.)

We benchmark our system on this application because the system implemented in [NT16] relies on
monolithic zkSNARK implementations and is thus limited to small photo sizes. Additionally, the generation
of constraints and witnesses for many photo transformations is easy to distribute across machines. Overall,
the greater scalability of our distributed zkSNARK allows reaching relatively large images (see Section 11).
Below we describe the three transformations that we implemented: crop, rotation, and blur; the first two
are also implemented in [NT16], while the third one is from [Kut]. Throughout, we consider images of
dimension r × c that are black and white, which means that each pixel is an integer between 0 and 255; we
represent such an image as a list of rc field elements each storing a pixel. Our algorithms can be extended to
color images via RGB representation, but we do not do so in this work.

Crop. The crop transformation is specified by a r × c mask and maps an input r × c image into an output
r × c image by keeping or zeroing out each pixel according to the corresponding bit in the mask. This choice
is realized via a MUX gadget controlled by the mask’s bit. We obtain that the number of constraints is rc
and the number of variables is 3rc. In our implementation, we distribute the generation of constraints and
variable assignment by individually processing blocks of pixels.

Rotation. The rotation transformation is specified by an angle θ ∈ [0, π/4] and maps a pixel in position
(x, y) to position

(
cos θ − sin θ
sin θ cos θ

)
(x, y); this rotates the image by angle θ around (0, 0). Some pixels go outside

the image and are thus lost, while “new” pixels appear and we set those to zero.
We follow the approach of [NT16], and use the method of rotation by shears [Pae86], which uses the

identity
(
cos θ − sin θ
sin θ cos θ

)
=
(

1 − tan(θ/2)
0 1

)(
1 0

sin θ 1

)(
1 − tan(θ/2)
0 1

)
. The first is a shear by row, the second a shear

by column, and the third again a shear by row. Each shear is performed by individually invoking a barrel
shifter to every row or column, with the correct offset.

Computing the correct offsets involves computing, for each row index i ∈ [r] the integer btan(θ/2) · ic
and for each column index j ∈ [c] the integer bsin(θ) · jc, which amounts to r+ c real number multiplications

17



followed by rounding. Computing tan(θ/2) and sin(θ) from θ may seem expensive, but [NT16] shows how
to use non-deterministic advice to do so cheaply: given a and b that allegedly equal tan(θ/2) and sin θ,
the prover also supplies c and d that allegedly equal sin(θ/2) and cos(θ/2), and the constraints check that
c2 + d2 = 1, da = c, and 2cd = b. These equations are also over the real numbers. Overall, this amounts to
r+c+O(1) arithmetic operations on real numbers, which we realize via finite field operations by considering
finite-precision representations of these numbers.

Once all offsets are computed (and represented in binary) we perform the shears. A row shear uses
rc log(c) constraints and rc log(c) variables, because each of the r row barrel shifters uses c log(c) constraints
and c log(c) variables. Similarly, a column shear uses rc log(r) constraints and rc log(r) variables. Thus,
the three shears (row, column, row) overall use rc(2 log(c) + log(r)) constraints and rc(2 log(c) + log(r))
variables. These costs dominate the costs of computing offets.

In our implementation, we distribute the generation of constraints and variable assignment by distributing
each shear, by generating each barrel shifter’s constraints and variable assignment in parallel.

Blur. The blur transformation is specified by a position (x, y), height u, and width v; it maps an input r× c
image into an output r × c image in which Gaussian blur has been applied to the u × v rectangle whose
bottom-left corner is at (x, y). More precisely, we approximate Gaussian blur via three sequential box blurs
[Kut]. Each box blur consists of a horizontal blur followed by a vertical blur; each of these directional blurs is
specified by a length r. Informally, each pixel in the selected region is replaced with the average of the 2r+ 1
pixels at distance at most r in either direction (including itself). Overall, Gaussian blur is approximated by
six directional blurs.

To realize this transformation as constraints, we need to verify, for each of the uv positions in the selected
region and for each of the 6 directional blurs, that the new pixel is the correct (rounded) average of the 2r+ 1
pixels in the old image.

Letting v be the new pixel and v0, . . . , v2r the old pixels, we check that
∑r

i=0 vi = (2r + 1)v + w via
one constraint and w < 2r + 1 via an integer comparison (we view v and w as the quotient and remainder
when dividing the sum by 2r + 1). This uses 1 + dlog2(2r + 1)e constraints and variables.

Overall, we use uv · 6 · (1 + dlog2(2r + 1)e) constraints and uv · (13 + 6dlog2(2r + 1)e) variables.
In our implementation, since each new pixel only depends on few surrounding pixels, we distribute the

generation of constraints and witnesses by blocks in the selected region.

7.2 Integrity of machine learning models

Suppose that a hospital owns sensitive patient data, and a researcher wishes to build a (public) model by
running a (public) training algorithm on this sensitive data. The hospital does not want (or legally cannot)
release the data; on the other hand, the researcher wants others to be able to check the integrity of the model.
One way to resolve this tension is to have the hospital use a zkSNARK to prove that the model is the output
obtained when running it on the sensitive data.1

In this paper, we study two operations: linear regression and covariance matrix calculation (an important
subroutine for classification algorithms). Both use core linear-algebraic operations, which are computations
that are simple to express as constraints and to distribute across machines.

Linear regression. Least-squares linear regression is a popular supervised machine learning training
1More precisely, the hospital also needs to prove that the input data is consistent, e.g., with some public commitment that others

trust is a commitment to the hospital’s data. This can be a very expensive computation to prove, but we do not study it in this paper
since hash-based computations have been studied in many prior works, and we instead focus on the machine learning algorithms. In
a real-world application both computations should be proved.

18



algorithm that models the relationship between variables as linear. The input is a labeled dataset D = (X,Y )
where the rows of X ∈ Rn×d and Y ∈ Rn×1 are the observations’ independent and dependent variables.

Assuming that Xw ≈ Y for some w ∈ Rd×1, the algorithm’s goal is to find such a w. The algorithm
finds w by minimizing the mean squared-error loss: 1

n minw
∑n

i=1(Xiw − Yi)2, where Xi is the i-th row of
X and Yi the i-th entry of Y . The solution to this optimization problem is w = (XTX)−1XTY .

While the formula to compute w uses a matrix inversion, one can easily check correctness of w without
inversions by checking that XTXw = XT y. The problem is thus reduced to checking matrix multiplications,
which can be easily expressed and distributed as we now describe.

In a matrix multiplication AB = C where A is n1 × n2 and B is n2 × n3 there are n1n3 dot products.
We check each dot product via n2 + 1 constraints: n2 constraints to check pairwise multiplications, and
one constraint to check their summation. Overall, we use n1n3 · (n2 + 1) constraints, which involve
n1n2 + n2n3 + n1n3 · (n2 + 1) variables.

We generate the constraints and variable assignments by following a distributed block-based algorithm
for matrix multiplication [Can69, LRF97, vW97]. Such an algorithm splits the output matrix into blocks, and
assigns each block to a machine. After shuffling values of the input matrices so that values needed to produce
a block are on the same machine, the output matrix is obtained by independently computing each block via
matrix multiplication on the shuffled values. We follow this simple approach: each block independently
generates its constraints and variable assignments after receiving the necessary values. This simple approach
works well for us because memory usage is dominated by the number of constraints and variables rather than
the size of the input/output matrices.

Covariance matrix. Computing covariance matrices is an important subroutine in classification algorithms
such as Gaussian naive Bayes and linear discriminant analysis [Bis06]. These algorithms classify observations
into discrete classes, e.g., images into digits [LeC98], by constructing a probability distribution for each class.
This reduces to computing the mean and covariance matrix for each class of sample points.

Namely, suppose that {xi ∈ Rd×1}i=1..n is an input data set from a single class. Its covariance matrix
is M := 1

n−1
∑n

i=1(xi − x̄)(xi − x̄)T ∈ Rd×d, where x̄ := ( 1
n

∑n
i=1 xi) ∈ Rd×1 is the average of the n

observations.
We check correctness ofM as follows. First, we check correctness of the mean x̄ by individually checking

each of the d entries; for each entry we use the same approach as in the case of blur (in Section 7.1) and thus use
1 + dlog2 ne constraints and variables; overall this costs d · (1 + dlog2 ne) constraints and variables. Then, we
check correctness of each matrix multiplication (xi−x̄)(xi−x̄)T , using n·2(d+d2) constraints and variables.
Finally, we check correctness of the “average” of the n resulting matrices, using d2 · (1 + dlog2(n − 1)e)
constraints and variables. This all adds up to d(1+dlog2 ne)+2(d+d2)n+d2(1+dlog2(n−1)e) constraints
and variables.

8 Implementation

We implemented the distributed zkSNARK in around 10K lines of Java code over Apache Spark [Apa17],
a popular cluster computing framework. All data representations are designed to fit within the Spark
computation model. For example, we represent an R1CS instance φ = (k,N,M,a,b, c) via three RDDs,
one for each of the three matrices a,b, c, and each record in an RDD is a tuple (j, (i, v)) where v is the
(i, j)-th entry of the matrix. (Recall from Section 2.2 that a,b, c are coefficient matrices that determine all
constraints of the instance.) Since DIZK deals with large instances, we carefully adjust the RDD partition
size such that each partition fits on an executor’s heap space.

19



9 Experimental setup

We evaluated DIZK on Amazon EC2 using r3.large instances (2 vCPUs, 15 GiB of memory) and r3.8xlarge
instances (32 vCPUs, 244 GiB of memory). For single-machine experiments, we used one r3.large instance.
For distributed experiments, we used a cluster of ten r3.8xlarge instances for up to 128 executors, and a
cluster of twenty r3.8xlarge for 256 executors.

We instantiate the zkSNARK via a 256-bit Barreto–Naehrig curve [BN06], a standard choice in prior
zkSNARK implementations. This means that G1 and G2 are elliptic curve groups of a prime order p of 256
bits, and the scalar field F has this same size.

An important technicality is that we cannot rely on curves used in prior zkSNARK works, because they
do not support the large instance sizes in this work, as we now explain. To allow for efficient implementations
of the setup and the prover one needs a curve in which the group order p is such that p− 1 is divisible by 2a,
where 2a is larger than the maximum instance size to be supported [BCG+13]. As the instance sizes that we
support are in the billions, we would like, say, a ≥ 40.

We thus generated (by modifying the sampling algorithm in [BN06]) a 256-bit Barreto–Naehrig curve
with a = 50, which suffices for our purposes. The curve is E/Fq : y2 = x3 + 13 with q = 17855808334804
902850260923831770255773779740579862519338010824535856509878273, and its order is p = 178558
08334804902850260923831770255773646114952324966112694569107431857586177.

10 Evaluation of the distributed zkSNARK

We evaluated our distributed zkSNARK and established that:

• We support instances of more than a billion gates, a significant improvement over serial implementations,
which exceed memory bounds at 10-20 million gates.

• Fixing a number of executors on the cluster and letting the instance size increase (from several millions to
over a billion), the running time of the setup and prover increases close to linearly as expected, demonstrating
scalability over this range of instance sizes.

• Fixing an input size and letting the number of executors grow (from a few to hundreds), the running time of
the setup and prover decreases close to linearly as expected, demonstrating parallelization over this range
of executors.

In the next few sub-sections we support these findings.

10.1 Evaluation of the setup and prover

We evaluate our distributed implementation of the zkSNARK setup and prover. Below we use “instance size”
to denote the number of constraints M in a R1CS instance.2

First, we measure the largest instance size (as a power of 2) that is supported by:

• the serial implementation of Groth’s protocol in libsnark [SCI17], a state-of-the-art zkSNARK library;
• our distributed implementation of the same protocol.

2The number of variables N also affects performance, but it is usually close to M and so our discussions only mention M with
the understanding that N ≈ M in our experiments. The number of inputs k in an R1CS instance is bounded by the number of
variables N , and either way does not affect the setup’s and prover’s performance by much; moreover, k is much, much smaller than
N in typical applications and so we do not focus on it.

20



(Also, we plot the same for the serial implementation of PGHR [PGHR13]’s protocol in libsnark, a
common zkSNARK choice.)

Data from our experiments, reported in Fig. 6, shows that using more executors allows us to support larger
instance sizes, in particular supporting billions of constraints with sufficiently many executors. Instances of
this size are much larger than what was previously possible via serial techniques.

Next, we measure the running time of the setup and the prover on an increasing number of constraints
and with an increasing number of executors. Data from our experiments, reported in Fig. 7, shows that (a) for
a given number of executors, running times increase nearly linearly as expected, demonstrating scalability
over a wide range of instance sizes; (b) for a given instance size, running times decrease nearly linearly as
expected, demonstrating parallelization over a wide range of number of executors.

Finally, we again stress that we do not evaluate the zkSNARK verifier because it is a simple and fast
algorithm that can be run even on a smartphone. Thus, we simply use libsnark’s implementation of the
verifier [SCI17], whose running time is ≈ 2 ms + 0.5 µs · k where k is the number of field elements in the
R1CS input (not a large number in typical applications).

10.2 Evaluation of the components

We separately evaluate the performance and scalability of key components of our distributed SNARK
implementation: the field algorithms for Lag and FFT (Section 10.2.1) and group algorithms for fixMSM
and varMSM (Section 10.2.2). We single out these components since they are starting points to distribute
proof systems similar to the one that we study (see Fig. 1).

10.2.1 Field components: Lag and FFT

We evaluate our distributed implementation of Lag (used in the setup) and FFT (used in the prover). For
the scalar field F, we measure the running time, for an increasing instance size and increasing number of
executors in the cluster. Data from our experiments, reported in Fig. 8, shows that our implementation
behaves as desired: for a given number of executors, running times increase close to linearly in the instance
size; also, for a given instance size, running times decrease close to linearly as the number of executors grow.

10.2.2 Group components: fixMSM and varMSM

We evaluate our implementation of distributed algorithms for fixMSM (used in the setup) and varMSM
(used in the prover). For each of the elliptic-curve groups G1 and G2, we measure the total running time, for
increasing instance size and number of executors in the cluster. Data from our experiments, reported in Fig. 9,
shows that our implementation behaves as desired: for a given number of executors, running times increase
close to linearly in the instance size; also, for a given instance size, running times decrease close to linearly in
the number of executors.

10.3 Effectiveness of our techniques

We ran experiments (32 and 64 executors for all feasible instances) comparing the performance of the setup
and prover with two implementations: (1) the implementation that is part of DIZK, which has optimizations
described in the design sections (Section 4, Section 5, Section 6); and (2) an implementation that does not
employ these optimizations (e.g., uses skewjoin instead of our solution, and so on). Our data established
that our techniques allow achieving instance sizes that are 10 times larger, at a performance that is 2-4 times
faster in the setup and prover.

21



19 20 21 22 23 24 25 26 27 28 29 30 31
log2 instance size

libsnark PGHR
libsnark Groth

1
4
8

16
32
64

128
256

# 
ex

ec
ut

or
s

Largest supported instance size

Figure 6: Largest instance size supported by libsnark’s se-
rial implementation of PGHR’s protocol [PGHR13] and Groth’s
protocol [Gro16] vs. our distributed system.

16 18 20 22 24 26 28 30
log2 instance size

4
6
8

10
12
14

lo
g

2
 ti

m
e 

(s
ec

)

Setup

16 18 20 22 24 26 28 30
log2 instance size

4
6
8

10
12
14

lo
g

2
 ti

m
e 

(s
ec

)

Prover

# executors

1 4 8 16 32 64 128 256

1 4 8 16 32 64 128 256
# executors

3
4
5
6
7
8
9

10
11
12
13
14

lo
g

2
 ti

m
e 

(s
ec

)

1 4 8 16 32 64 128 256
# executors

3
4
5
6
7
8
9

10
11
12
13
14
15

lo
g

2
 ti

m
e 

(s
ec

)

log2 instance size

215

223

216

224

217

225

218

226

219

227

220

228

221

229

222

230

Figure 7: Setup and prover running times for different combi-
nations of instance size and number of executors.

16 18 20 22 24 26 28 30 32 34 36
log2 instance size

1
3
5
7
9

11
13

lo
g

2
 ti

m
e 

(s
ec

)

Lag

16 18 20 22 24 26 28 30 32 34
log2 instance size

0
2
4
6
8

10
12

lo
g

2
 ti

m
e 

(s
ec

)

FFT

# executors

1 4 8 16 32 64 128 256

Figure 8: Running times of Lag and FFT over F for different
combinations of instance size and number of executors.

16 18 20 22 24 26 28 30 32 34
log2 instance size

-2
0
2
4
6
8

lo
g

2
 ti

m
e 

(s
ec

)

fixMSM in G1

16 18 20 22 24 26 28 30 32
log2 instance size

2
4
6
8

10
12
14

lo
g

2
 ti

m
e 

(s
ec

)

fixMSM in G2

16 18 20 22 24 26 28 30 32
log2 instance size

-1
1
3
5
7
9

11

lo
g

2
 ti

m
e 

(s
ec

)

varMSM in G1

16 18 20 22 24 26 28 30 32
log2 instance size

-1
1
3
5
7
9

11

lo
g

2
 ti

m
e 

(s
ec

)

varMSM in G2

# executors

1 4 8 16 32 64 128 256

Figure 9: Running times of fixMSM, varMSM over G1,G2

for combinations of instance size and number of executors.

22



225 226 227 228 229 230

# constraints

23

24

25

tim
e 

(s
ec

)

32 executors
64 executors
128 executors

(a) Constraints generation

225 226 227 228 229 230

# constraints

23

24

25

26

27

28

tim
e 

(s
ec

)

32 executors
64 executors
128 executors

(b) Witness generation

23 24 25 26 27 28

# executors

22

23

24

25

26

tim
e 

(s
ec

)

2.0e+08 constraints
1.6e+08 constraints

(c) Constraints generation

23 24 25 26 27 28

# executors

25

26

27

28

29

tim
e 

(s
ec

)

2.0e+08 constraints
1.6e+08 constraints

(d) Witness generation

Figure 10: Scalability of linear regression.

Application Size Generate
constraints

Generate
witness

matrix multiplication
(of 700× 700 matrices) 685 M 12 s 62 s

covariance matrix
(for 20K points in 100 dims) 402 M 13 s 67 s

linear regression
(for 20K points in 100 dims) 404 M 18 s 77 s

2048× 2048
image

blur 13.6 M 3 s 31 s
crop 4.2 M 1 s 34 s

rotation 138 M 7 s 14.6 s

Figure 11: Costs of some applications: number of constraints, time to generate constraints, and time to generate the
witness. (Both times are for 64 executors.)

23



11 Evaluation of applications

We evaluated the performance of constraint and witness generation for the applications described in Section 7.
Fig. 11 shows, for various instances of our applications, the number of constraints and the performance of

constraint and witness generation. In all cases, witness generation is markedly more expensive than constraint
generation due to data shuffling. Either way, both costs are insignificant when compared to the corresponding
costs of the SNARK setup and prover. Hence, we did not try to optimize this performance further.

Fig. 10 shows the scaling behavior of constraint and witness generation for one application, linear
regression. Figs. 10a and 10b show the time for constraint and witness generation when fixing the number of
executors and increasing the instance size (as determined by the number of constraints); the graphs show
that time scales nearly linearly, which means that the algorithm parallelizes well with respect to instance
size. On the other hand, Figs. 10c and 10d show the time for constraint and witness generation when fixing
the instance size and increasing the number of executors; the graphs show that the system scales well as the
number of executors are increased (at some point, a fixed overhead dominates, so the time flattens out).

12 Related work

Optimization and implementation of proof systems. Recent years have seen beautiful works that optimize
and implement information-theoretic and cryptographic proof systems. These proof systems enable a weak
verifier (e.g., a mobile device) to outsource an expensive computation to a powerful prover (e.g., a cloud
provider). For example, doubly-efficient interactive proofs for parallel computation [GKR15] have been
optimized and implemented in software [CMT12, TRMP12, Tha13, Tha15] and hardware [WHG+16,
WJB+17]. Also, batch arguments based on Linear PCPs [IKO07] have attained remarkable efficiency
[SBW11, SMBW12, SVP+12, SBV+13, VSBW13, BFR+13].

Some proof systems, such as zkSNARKs, also provide zero knowledge, which is important for applica-
tions [DFKP13, BCG+14, WSR+15, CFH+15, JKS16, KMS+16, NT16, DFKP16].

Approaches to construct zkSNARKs include using PCPs [Mic00, BCS16, BBC+17, BBHR18], Linear
PCPs [Gro10, Lip12, BCI+13, GGPR13, PGHR13, BCG+13, BCTV14b, KPP+14, ZPK14, CFH+15, Gro16,
GM17], Interactive Proofs [ZGK+17, ZGK+18, WTS+18], and others. Other works relax the requirement
that proof verification is cheap, aiming only at short proofs [GMO16, AHIV17, BBB+18].

The comparison between all of these approaches, and their various instantiations, is multi-faceted and
lies beyond the scope of this work. We only mention that the zkSNARK considered in this work belongs to
the second approach, and to the best of our knowledge achieves the smallest known proof length.

Proof systems & distributed systems. While prior work does not distribute the prover’s computation
across a cluster, some prior work studied how even monolithic provers can be used to prove correct execution
of distributed computations. For example, the system Pantry [BFR+13] transforms a proof system such as
a batch argument or a zkSNARK into an interactive argument for outsourcing MapReduce computations
(though it does not preserve zero knowledge). Also, the framework of Proof-Carrying Data [CT10, CT12]
allows reasoning, and proving the correctness of, certain distributed computations via the technique of
recursive proof composition of SNARKs. This technique can be used to attain zkSNARKs for MapReduce
[CTV15], and also for “breaking up” generic computation into certain sub-computations while proving each
of these correct [BCTV14a, CFH+15].

Our work is complementary to the above approaches: prior work can leverage our distributed zkSNARK
(instead of a “monolithic” one) so to enlarge the instance sizes that it can feasibly support. For instance,
Pantry can use our distributed zkSNARK as the starting point of their transformation.

24



Trusted hardware. If one assumes trusted hardware, achieving “zero knowledge proofs”, even ones that
are short and cheap to verify, is easier. For example, trusted hardware with attested execution (e.g. Intel SGX)
suffices [TZL+17, PST17]. DIZK does not assume trusted hardware, and thus protects against a wider range
of attackers at the prover than these approaches.

13 Limitations and the road ahead

While we are excited about scaling to larger circuits, zkSNARKs continue to suffer from important limitations.
First, even if DIZK enables using zkSNARKs for much larger circuits than what was previously possible,

doing so is still very expensive (we resort to using a compute cluster!) and so scaling to even larger sizes
(say, hundreds of billions of gates) requires resources that may even go beyond those of big clusters. Making
zkSNARKs more efficient overall (across all circuit sizes) remains a challenging open problem.

Second, the zkSNARKs that we study require a trusted party to run a setup procedure that uses secret
randomness to sample certain public parameters. This setup is needed only once per circuit, but its time
and space costs also grow with circuit size. While DIZK provides a distributed setup (in addition to the
same for the prover), performing this setup in practice is challenging due to many real-world security
concerns. Currently-deployed zkSNARKs have relied on Secure Multi-party Computation “ceremonies” for
this [BCG+15, BGG16], and it remains to be studied if those techniques can be distributed by building on
our work, perhaps by considering multiple clusters each owned by a party in the ceremony.

Our outlook is optimistic. The area of efficient proof systems has seen tremendous progress [WB15],
not only in terms of real-world deployment [ZCa17] but also for zkSNARK constructions that, while still
somewhat expensive, merely rely on public randomness [BCS16, BBC+17, BBHR18]. (No setup is needed!)

14 Conclusion

We design and build DIZK, a distributed zkSNARK system. While prior systems only support circuits of
up to 10-20 million gates (at a cost of 1 ms per gate in the prover), DIZK leverages the combined CPU and
memory resources in a cluster to support circuits of up to billions of gates (at a cost of 10 µs per gate in the
prover). This is a qualitative leap forward in the capabilities zkSNARKs, a recent cryptographic tool that has
garnered much academic and industrial interest.

25



References
[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:

Lightweight sublinear arguments without a trusted setup. In Proceedings of the 24th ACM Confer-
ence on Computer and Communications Security, CCS ’17, pages 2087–2104, 2017.

[Apa17] Apache Spark, 2017. http://spark.apache.org/.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In Proceedings of the 39th IEEE
Symposium on Security and Privacy, S&P ’18, pages 319–338, 2018.

[BBC+17] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan Hamilis, Evgenya
Pergament, Michael Riabzev, Mark Silberstein, Eran Tromer, and Madars Virza. Computational integrity
with a public random string from quasi-linear PCPs. In Proceedings of the 36th Annual International
Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT ’17, pages 551–579,
2017.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and post-
quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046, 2018.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance to
succinct non-interactive arguments of knowledge, and back again. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, ITCS ’12, pages 326–349, 2012.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In Proceedings of the 33rd Annual
International Cryptology Conference, CRYPTO ’13, pages 90–108, 2013.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and
Madars Virza. Zerocash: Decentralized anonymous payments from Bitcoin. In Proceedings of the 2014
IEEE Symposium on Security and Privacy, SP ’14, pages 459–474, 2014.

[BCG+15] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars Virza. Secure sampling of
public parameters for succinct zero knowledge proofs. In Proceedings of the 36th IEEE Symposium on
Security and Privacy, S&P ’15, pages 287–304, 2015.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non-interactive
arguments via linear interactive proofs. In Proceedings of the 10th Theory of Cryptography Conference,
TCC ’13, pages 315–333, 2013.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In Proceedings of
the 14th Theory of Cryptography Conference, TCC ’16-B, pages 31–60, 2016.

[BCTV14a] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via cycles
of elliptic curves. In Proceedings of the 34th Annual International Cryptology Conference, CRYPTO ’14,
pages 276–294, 2014. Extended version at http://eprint.iacr.org/2014/595.

[BCTV14b] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive zero
knowledge for a von Neumann architecture. In Proceedings of the 23rd USENIX Security Symposium,
Security ’14, pages 781–796, 2014. Extended version at http://eprint.iacr.org/2013/879.

[BDLO12] Daniel J. Bernstein, Jeroen Doumen, Tanja Lange, and Jan-Jaap Oosterwijk. Faster batch forgery identifi-
cation. In Proceedings of the 13th International Conference on Cryptology in India, INDOCRYPT ’12,
pages 454–473, 2012.

[BFR+13] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, Andrew J. Blumberg, and Michael
Walfish. Verifying computations with state. In Proceedings of the 25th ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 341–357, 2013.

26

http://spark.apache.org/
http://eprint.iacr.org/2014/595
http://eprint.iacr.org/2013/879


[BGG16] Sean Bowe, Ariel Gabizon, and Matthew Green. A multi-party protocol for constructing the public
parameters of the Pinocchio zk-SNARK. https://github.com/zcash/mpc/blob/master/
whitepaper.pdf, 2016.

[BGMW93] Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley, and David B. Wilson. Fast exponentiation with
precomputation. In Proceedings of the 11th Annual International Conference on Theory and Application
of Cryptographic Techniques, EUROCRYPT ’92, pages 200–207, 1993.

[Bis06] Christopher M. Bishop. Pattern recognition and machine learning. Springer-Verlag New York, 2006.

[BN06] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order. In Proceedings
of the 12th International Conference on Selected Areas in Cryptography, SAC’05, pages 319–331, 2006.

[BT04] Jean-Paul Berrut and Lloyd N. Trefethen. Barycentric Lagrange interpolation. SIAM Review, 46(3):501–
517, 2004.

[Can69] Lynn E Cannon. A cellular computer to implement the Kalman filter algorithm. Technical report, DTIC
Document, 1969.

[CFH+15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael Naehrig,
Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable computation. In Proceedings of the 36th
IEEE Symposium on Security and Privacy, S&P ’15, pages 250–273, 2015.

[Chr17] Chronicled, 2017. https://www.chronicled.com/.

[CL03] Chin-Chen Chang and Der-Chyuan Lou. Fast parallel computation of multi-exponentiation for public key
cryptosystems. In Proceedings of the 4th International Conference on Parallel and Distributed Computing,
Applications and Technologies, PDCAT ’2003, pages 955–958, 2003.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation with
streaming interactive proofs. In Proceedings of the 4th Symposium on Innovations in Theoretical Computer
Science, ITCS ’12, pages 90–112, 2012.

[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex Fourier series.
Mathematics of Computation, 19:297–301, 1965.

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments from signature cards. In
Proceedings of the 1st Symposium on Innovations in Computer Science, ICS ’10, pages 310–331, 2010.

[CT12] Alessandro Chiesa and Eran Tromer. Proof-carrying data: Secure computation on untrusted platforms
(high-level description). The Next Wave: The National Security Agency’s review of emerging technologies,
19(2):40–46, 2012.

[CTV15] Alessandro Chiesa, Eran Tromer, and Madars Virza. Cluster computing in zero knowledge. In Proceedings
of the 34th Annual International Conference on Theory and Application of Cryptographic Techniques,
EUROCRYPT ’15, pages 371–403, 2015.

[de 94] Peter de Rooij. Efficient exponentiation using precomputation and vector addition chains. In Proceedings
of the 13th Annual International Conference on Theory and Application of Cryptographic Techniques,
EUROCRYPT ’94, pages 389–399, 1994.

[DFGK14] George Danezis, Cedric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs with
applications to succinct NIZK arguments. In Proceedings of the 20th International Conference on the
Theory and Application of Cryptology and Information Security, ASIACRYPT ’14, pages 532–550, 2014.

[DFKP13] George Danezis, Cedric Fournet, Markulf Kohlweiss, and Bryan Parno. Pinocchio Coin: building Zerocoin
from a succinct pairing-based proof system. In Proceedings of the 2013 Workshop on Language Support
for Privacy Enhancing Technologies, PETShop ’13, 2013.

27

https://github.com/zcash/mpc/blob/master/whitepaper.pdf
https://github.com/zcash/mpc/blob/master/whitepaper.pdf
https://www.chronicled.com/


[DFKP16] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, and Bryan Parno. Cinderella: Turning
shabby X.509 certificates into elegant anonymous credentials with the magic of verifiable computation. In
Proceedings of the 37th IEEE Symposium on Security and Privacy, S&P ’16, pages 235–254, 2016.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large clusters. In
Proceedings of the 6th Symposium on Operating System Design and Implementation, OSDI ’04, pages
137–149, 2004.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and
succinct NIZKs without PCPs. In Proceedings of the 32nd Annual International Conference on Theory
and Application of Cryptographic Techniques, EUROCRYPT ’13, pages 626–645, 2013.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Interactive proofs
for muggles. Journal of the ACM, 62(4):27:1–27:64, 2015.

[GM17] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge from simulation-
extractable SNARKs. In Proceedings of the 37th Annual International Cryptology Conference,
CRYPTO ’17, pages 581–612, 2017.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster zero-knowledge for boolean
circuits. In Proceedings of the 25th USENIX Security Symposium, Security ’16, pages 1069–1083, 2016.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Proceedings of the
16th International Conference on the Theory and Application of Cryptology and Information Security,
ASIACRYPT ’10, pages 321–340, 2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Proceedings of the 35th Annual
International Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT ’16,
pages 305–326, 2016.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC ’11,
pages 99–108, 2011.

[Had17] Apache Hadoop, 2017. http://hadoop.apache.org/.

[IBY+07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: distributed data-
parallel programs from sequential building blocks. In Proceedings of the 2007 EuroSys Conference,
EuroSys ’07, pages 59–72, 2007.

[IKO07] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short PCPs. In
Proceedings of the Twenty-Second Annual IEEE Conference on Computational Complexity, CCC ’07,
pages 278–291, 2007.

[JKS16] Ari Juels, Ahmed E. Kosba, and Elaine Shi. The ring of Gyges: Investigating the future of criminal smart
contracts. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 283–295, 2016.

[JPM17] J.P. Morgan Quorum, 2017. https://www.jpmorgan.com/country/US/EN/Quorum.

[KMS+16] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. Hawk: The
blockchain model of cryptography and privacy-preserving smart contracts. In Proceedings of the 2016
IEEE Symposium on Security and Privacy, SP ’16, pages 839–858, 2016.

[KPP+14] Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, Mahmoud F. Sayed, Elaine Shi,
and Nikos Triandopoulos. TRUESET: Faster verifiable set computations. In Proceedings of the 23rd
USENIX Security Symposium, Security ’14, pages 765–780, 2014.

[KPS18] Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. xJsnark: A framework for efficient
verifiable computation. In Proceedings of the 39th IEEE Symposium on Security and Privacy, S&P ’18,
pages 543–560, 2018.

28

http://hadoop.apache.org/
https://www.jpmorgan.com/country/US/EN/Quorum


[Kut] Ivan Kutskir. Fastest Gaussian blur (in linear time). http://blog.ivank.net/
fastest-gaussian-blur.html.

[LeC98] Yann LeCun. The MNIST database of handwritten digits, 1998. http://yann.lecun.com/exdb/
mnist/.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge ar-
guments. In Proceedings of the 9th Theory of Cryptography Conference on Theory of Cryptography,
TCC ’12, pages 169–189, 2012.

[LRF97] Hyuk-Jae Lee, James P. Robertson, and José A. B. Fortes. Generalized Cannon’s algorithm for parallel
matrix multiplication. In Proceedings of the 11th International Conference on Supercomputing, ICS ’97,
pages 44–51, 1997.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298, 2000.
Preliminary version appeared in FOCS ’94.

[NT16] Assa Naveh and Eran Tromer. Photoproof: Cryptographic image authentication for any set of permissible
transformations. In Proceedings of the 2016 IEEE Symposium on Security and Privacy, SP ’16, pages
255–271, 2016.

[Pae86] Alan W. Paeth. A fast algorithm for general raster rotation. In Proceedings on Graphics Interface
’86/Vision Interface ’86, pages 77–81, 1986.

[PGHR13] Brian Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio: Nearly practical verifiable
computation. In Proceedings of the 34th IEEE Symposium on Security and Privacy, Oakland ’13, pages
238–252, 2013.

[Pip76] Nicholas Pippenger. On the evaluation of powers and related problems. In Proceedings of the 17th Annual
Symposium on Foundations of Computer Science, FOCS ’76, pages 258–263, 1976.

[Pip80] Nicholas Pippenger. On the evaluation of powers and monomials. SIAM Journal on Computing, 9(2):230–
250, 1980.

[PST17] Rafael Pass, Elaine Shi, and Florian Tramèr. Formal abstractions for attested execution secure processors.
In Proceedings of the 36th Annual International Conference on Theory and Application of Cryptographic
Techniques, EUROCRYPT ’17, pages 260–289, 2017.

[QED17] QED-it, 2017. http://qed-it.com/.

[SBV+13] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan Parno, and Michael Walfish.
Resolving the conflict between generality and plausibility in verified computation. In Proceedings of the
8th EuoroSys Conference, EuroSys ’13, pages 71–84, 2013.

[SBW11] Srinath Setty, Andrew J. Blumberg, and Michael Walfish. Toward practical and unconditional verification
of remote computations. In Proceedings of the 13th USENIX Conference on Hot Topics in Operating
Systems, HotOS ’11, pages 29–29, 2011.

[SCI17] SCIPR Lab. libsnark: a C++ library for zkSNARK proofs, 2017. https://github.com/
scipr-lab/libsnark.

[ske17] skewjoin, 2017. https://github.com/tresata/spark-skewjoin.

[SMBW12] Srinath Setty, Michael McPherson, Andrew J. Blumberg, and Michael Walfish. Making argument systems
for outsourced computation practical (sometimes). In Proceedings of the 2012 Network and Distributed
System Security Symposium, NDSS ’12, 2012.

[Str64] Ernst G. Straus. Addition chains of vectors (problem 5125). The American Mathematical Monthly,
71(7):806–808, 1964.

29

http://blog.ivank.net/fastest-gaussian-blur.html
http://blog.ivank.net/fastest-gaussian-blur.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://qed-it.com/
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://github.com/tresata/spark-skewjoin


[SVP+12] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blumberg, and Michael Walfish.
Taking proof-based verified computation a few steps closer to practicality. In Proceedings of the 21st
USENIX Security Symposium, Security ’12, pages 253–268, 2012.

[Sze11] Tsz-Wo Sze. Schönhage–Strassen algorithm with mapreduce for multiplying terabit integers. In Pro-
ceedings of the 2011 International Workshop on Symbolic-Numeric Computation, SNC ’11, pages 54–62,
2011.

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Proceedings of the 33rd Annual
International Cryptology Conference, CRYPTO ’13, pages 71–89, 2013.

[Tha15] Justin Thaler. A note on the GKR protocol. http://people.cs.georgetown.edu/jthaler/
GKRNote.pdf, 2015.

[TRMP12] Justin Thaler, Mike Roberts, Michael Mitzenmacher, and Hanspeter Pfister. Verifiable computation with
massively parallel interactive proofs. In Proceedings of the 4th USENIX Workshop on Hot Topics in Cloud
Computing, HotCloud ’12, 2012.

[TZL+17] Florian Tramèr, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and Elaine Shi. Sealed-glass
proofs: Using transparent enclaves to prove and sell knowledge. In Proceedings of the 2017 IEEE
European Symposium on Security and Privacy, EuroS&P ’17, pages 19–34, 2017.

[vG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge University Press,
3rd edition, 2013.

[VSBW13] Victor Vu, Srinath Setty, Andrew J. Blumberg, and Michael Walfish. A hybrid architecture for interactive
verifiable computation. In Proceedings of the 34th IEEE Symposium on Security and Privacy, Oakland ’13,
pages 223–237, 2013.

[vW97] Robert A. van de Geijn and Jerrell Watts. SUMMA: scalable universal matrix multiplication algorithm.
Concurrency - Practice and Experience, 9(4):255–274, 1997.

[WB15] Michael Walfish and Andrew J. Blumberg. Verifying computations without reexecuting them. Communi-
cations of the ACM, 58(2):74–84, 2015.

[WHG+16] Riad S. Wahby, Max Howald, Siddharth J. Garg, Abhi Shelat, and Michael Walfish. Verifiable ASICs. In
Proceedings of the 37th IEEE Symposium on Security and Privacy, S&P ’16, pages 759–778, 2016.

[WJB+17] Riad S. Wahby, Ye Ji, Andrew J. Blumberg, Abhi Shelat, Justin Thaler, Michael Walfish, and Thomas
Wies. Full accounting for verifiable outsourcing. Cryptology ePrint Archive, Report 2017/242, 2017.

[WSR+15] Riad S. Wahby, Srinath Setty, Zuocheng Ren, Andrew J. Blumberg, and Michael Walfish. Efficient
RAM and control flow in verifiable outsourced computation. In Proceedings of the 22nd Network and
Distributed System Security Symposium, NDSS ’15, 2015.

[WTS+18] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish. Doubly-efficient
zkSNARKs without trusted setup. In Proceedings of the 39th IEEE Symposium on Security and Privacy,
S&P ’18, pages 975–992, 2018.

[ZCa17] ZCash Company, 2017. https://z.cash/.

[ZGK+17] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos Papamanthou.
vSQL: Verifying arbitrary SQL queries over dynamic outsourced databases. In Proceedings of the 38th
IEEE Symposium on Security and Privacy, S&P ’17, pages 863–880, 2017.

[ZGK+18] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos Papamanthou.
vRAM: Faster verifiable RAM with program-independent preprocessing. In Proceedings of the 39th IEEE
Symposium on Security and Privacy, S&P ’18, pages 203–220, 2018.

[ZPK14] Yupeng Zhang, Charalampos Papamanthou, and Jonathan Katz. Alitheia: Towards practical verifiable
graph processing. In Proceedings of the 21st ACM Conference on Computer and Communications Security,
CCS ’14, pages 856–867, 2014.

30

http://people.cs.georgetown.edu/jthaler/GKRNote.pdf
http://people.cs.georgetown.edu/jthaler/GKRNote.pdf
https://z.cash/

	Abstract
	Contents
	1 Introduction
	2 Background on zkSNARKs
	2.1 High-level description
	2.2 The zkSNARK language and interface
	2.3 The zkSNARK protocol of Groth

	3 Design overview of DIZK
	4 Design: distributing arithmetic
	4.1 Distributed fast polynomial arithmetic
	4.1.1 Arithmetic via evaluation and interpolation
	4.1.2 Distributed FFT
	4.1.3 Distributed Lag

	4.2 Distributed multi-scalar multiplication
	4.2.1 Distributed fixMSM
	4.2.2 Distributed varMSM


	5 Design: distributing the zkSNARK setup
	6 Design: distributing the zkSNARK prover
	7 Applications
	7.1 Authenticity of photos
	7.2 Integrity of machine learning models

	8 Implementation
	9 Experimental setup
	10 Evaluation of the distributed zkSNARK
	10.1 Evaluation of the setup and prover
	10.2 Evaluation of the components
	10.2.1 Field components: Lag and FFT
	10.2.2 Group components: fixMSM and varMSM

	10.3 Effectiveness of our techniques

	11 Evaluation of applications
	12 Related work
	13 Limitations and the road ahead
	14 Conclusion
	References

