
A Reusable Fuzzy Extractor with Practical Storage Size:
Modifying Canetti et al. ’s Construction

Jung Hee Cheon, Jinhyuck Jeong�, Dongwoo Kim, Jongchan Lee

{jhcheon, wlsyrlekd�, dwkim606, jclee0208}@snu.ac.kr

Department of Mathematical Sciences, Seoul National University, Seoul, Korea

Abstract. After the concept of a Fuzzy Extractor (FE) was first introduced by Dodis et al. , it has
been regarded as one of the candidate solutions for key management utilizing biometric data. With
a noisy input such as biometrics, FE generates a public helper value and a random secret key which
is reproducible given another input similar to the original input. However, “helper values” may
cause some leakage of information when generated repeatedly by correlated inputs, thus reusability
should be considered as an important property. Recently, Canetti et al. (Eurocrypt 2016) proposed
a FE satisfying both reusability and robustness with inputs from low-entropy distributions. Their
strategy, the so-called Sample-then-Lock method, is to sample many partial strings from a noisy
input string and to lock one secret key with each partial string independently.
In this paper, modifying this reusable FE, we propose a new FE with size-reduced helper data
hiring a threshold scheme. Our new FE also satisfies both reusability and robustness, and requires
much less storage memory than the original. To show the advantages of this scheme, we analyze
and compare our scheme with the original in concrete parameters of the biometric, IrisCode. As a
result, on 1024-bit inputs, with false rejection rate 0.5 and error tolerance 0.25, while the original
requires about 1TB for each helper value, our scheme requires only 300MB with an additional
1.35GB of common data which can be used for all helper values.

Keywords: Fuzzy extractors, reusability, key derivation, digital lockers, threshold scheme, biometric
authentication

1 Introduction

Biometrics are metrics derived from biological characteristics inherent to each individual, such as fin-
gerprints, iris patterns, facial features, gait, etc. A noteworthy property of this biometric information is
inseparability. Biometric information cannot be separated from its owner, and can be used to authen-
ticate a person without requiring other keys or passwords. However, biometric authentication has its
problems; First, once biometric information is leaked to an adversary it is not easy to revoke. This makes
protecting biometric information more crucial. Second, whenever one generates biometric data from their
biological source using a device, small errors occur naturally because of the various environments and
conditions.

This obstacle causes much harder problems in “Privacy-preserving Biometric Authentication” since
classical cryptographic systems are constructed so that even little errors in inputs lead to huge errors in
outputs. For privacy-preserving biometric authentication, there are recent works [1–4] using cryptographic
tools, especially, homomorphic encryption. They propose a secure biometric authentication system which
is executed with encrypted biometrics, to prevent an adversary from obtaining any information about
the biometrics. Such an authentication system, however, may lose its power if the secret key is leaked
and thus secret key management is a subject of major concern. Storing the secret key in secure memory
and tamper-resistant hardware such as TrustZone and SoftwareGuardExtensions might be a solution,
but these hardwares are too expensive, and/or can be vulnerable to physical attacks. For these reasons,
generating a secret key whenever biometrics are scanned was proposed as an alternative solution, and the
notion of Fuzzy Extractors (FE) was introduced by Dodis et al. It is a cryptographic primitive which
extracts the same key from noisy inputs [5, 6].

More precisely, a fuzzy extractor consists of two algorithms; a generating algorithm (Gen) and a
reproducing algorithm (Rep). Gen generates a random secret key and a public helper value from input

mailto:jhcheon@snu.ac.kr
mailto:wlsyrlekd@snu.ac.kr
mailto:dwkim606@snu.ac.kr
mailto:jclee0208@snu.ac.kr

biometrics. Rep reproduces the same key from the helper value and a biometric, when it is sufficiently
similar to the original used in the Gen algorithm.

For the security of a FE, there are some important properties such as robustness and reusability. A
fuzzy extractor is robust if an adversary cannot forge a given helper value in a way that Rep outputs
a wrong key even though the input biometric is legitimate. This robustness is quite important, since in
a non-robust FE, a user cannot trust the key generated by Rep, rendering the FE meaningless. On the
other hand, a FE is reusable if it remains secure even if several pairs (random key, and related helper
value) issued from correlated inputs are revealed to an adversary. Considering biometric authentication
via FE, reusability guarantees that the authentication system is still safe for future use even if some
helper values and related keys of a user have been compromised.

In [7], Apon et al. modified the constuction of [8] based on the LWE-assumption making it reusable
with a common matrix for every input of Gen. Unfortunately, it fails to satisfy robustness since it is
susceptible to trivial forgery. In Eurocrypt 2016, Canetti et al. proposed a reusable fuzzy extractor [9].
It is the first reusable robust fuzzy extractor without assumptions on correlations of multiple readings
of the source, applying the sample-then-lock method with cryptographic digital lockers. It can tolerate
cn lnn
k errors in a given n-bit input allowing running time in nc with a security parameter of at most k.

However, some biometrics such as IrisCode have error linear (20% ∼ 30%) in n.

In this paper, we point out that Canetti et al. ’s fuzzy extractor is inappropriate for these cases;
it requires too much storage space for the helper value. In their construction, each locker acts as an
oracle to check each partial substring of the input biometric, outputting the original secret key if that
substring is correct. Therefore, a smaller substring size directly leads to a decrease in the security of
the fuzzy extractor. Without diminishing the size of substrings, the number of lockers should increase
exponentially, leading to impractical storage requirement in cases with linear errors of input.

The main idea of our construction is to overcome this oracle by modifying the digital lockers and
using shorter substrings. We also exploit a (perfect) threshold scheme to divide each locker, preserving
security. More precisely, we provide m modified lockers, and each unordered τ -pair of them is applied with
a recovery algorithm of a threshold scheme for reproducing the secret key. As a result, the probability
that each modified locker is unlocked successfully becomes larger under the same security, leading to a
crucial decrease of storage for the helper values. Although time consumption increases as a side-effect, this
trade-off is favorable because it can be relieved with parallel computing. More precisely, our contribution
can be summarized as follows;

• Combining the reusable FE of [9] and a threshold scheme, we propose a new size-reduced reusable
fuzzy extractor satisfying robustness.1 Our construction is based on the same or weaker conditions
on the biometric source distribution than Canetti et al. ’s construction.

• We analyze this new FE and the original with concrete parameters focusing on the biometric IrisCode.
As a result, we highly reduced the amount of storage space required. For example, when using a 1024
bit biometric with false rejection rate2 0.5, the original requires about 6GB of each helper value for
error tolerance 0.2, 1TB for 0.25, and 270TB for 0.3. On the other hand, our scheme requires only
1.6MB for 0.2, 300MB for 0.25, and 111GB for 0.3 with an additional 1.35GB of common data which
is commonly used for every helper value. One can find more information in Table 1 and Table 2.

• In fact, there is a trade-off between required time and storage space; approximately, a decrease by a
factor of 103 in storage space causes an tenfold increase in required time. We implement our scheme
as a proof-of-concept with parallel computing via Cuda, and show that the trade-off can be relieved
outstandingly.

Road Map. In Section 2, we provide some preliminaries for our work. In Section 3, we briefly introduce
the reusable fuzzy extractor of Canetti et al. with concrete analysis. In Section 4, we give our construction
of new fuzzy extractor and analysis of it.

1 Robustness can easily be satisfied by the random-oracle-based transform of [10] as mentioned in [9]. Thus, we
only focus on the reusability in this paper.

2 The false rejection rate is the probability that the reproducing algorithm Rep fails to regenerate the secret
value even though a legitimate input is given.

2

2 Preliminaries

Through this paper, for a natural number a, |a| denotes the bit size of a. Here we mostly adhere to the
notations used by Canetti et al. , for convenience.

2.1 Entropy

Let Xi be a random variable over some alphabet Z for i = 1, . . . , n. We denote by a random variable
X = X1, . . . , Xn := (X1, . . . , Xn). The minentropy H∞(X) of X is defined as

H∞(X) = − log[max
x

Pr(X = x)],

and the average (conditional) minentropy H̃∞(X|Y) of X given Y defined as

H̃∞(X|Y) = − log[Ey max
x

Pr(X = x|Y = y)].

The computational distance between variables X and Y is defined by δD(X,Y) = |E[D(X)]−E[D(Y)]|
for a given distinguisher D, and for a class of distinguishers D we define δD(X,Y) = max

D∈D
δD(X,Y). We

will consider the class Ds of distinguishers (circuit) of size at most s which output a single bit.

2.2 Fuzzy extractor and reusability

Fuzzy extractors (FE) consist of two algorithms; Gen and Rep. Gen takes an input w such as biometric
data and outputs an extracted string r and a helper value p ∈ {0, 1}∗. Rep takes as input w′ and p
and outputs the previous r whenever w′ is similar to w. In this work, we focus on computational fuzzy
extractors. (For the information-theoretic notions, see [6].) The formal definition of computational fuzzy
extractors and their notion of security follows.

Definition 1 (Computational Fuzzy Extractors [8]) Given a metric space (M, dis), let W be a
family of probability distributions over M. A pair of randomized procedures “generate” (Gen) and “re-
produce” (Rep) is an (M,W, κ, t)-computational fuzzy extractor that is (εsec, ssec)-hard with error δ if
Gen and Rep satisfy the following properties:

– The generate procedure Gen on input w ∈ M outputs an extracted string r ∈ {0, 1}κ and a helper
string p ∈ {0, 1}∗.

– Correctness The reproduction procedure Rep takes an element w′ ∈M and a bit string p ∈ {0, 1}∗
as inputs. The correctness property guarantees that if dis(w,w′) ≤ t and (r, p) ← Gen(w), then
Pr[Rep(w′, p) = r] ≥ 1− δ where the probability is over the randomness of (Gen, Rep).

– Security For any distribution W ∈ W, the string r is pseudorandom conditioned on p, that is
δDssec ((R,P), (Uκ, P)) ≤ εsec.

Fuller et al. proposed a computational fuzzy extractor based on the Learning with Error (LWE)
problem [8]. However, their construction does not satisfy robustness and reusability, which mean the
security against an adversary forging a given helper value while avoiding detection,3 and the security
of a reissued pair (r, p) ← Gen(w) when an adversary has extorted some pairs (ri, pi) ← Gen(wi) for
correlated w and wi’s, respectively.

The formal definition of a reusable fuzzy extractor is as follows:

Definition 2 (Reusable Fuzzy Extractor [9]) Let W be a family of distributions overM. Let (Gen,
Rep) be a (M,W, κ, t)-computational fuzzy extractor that is (εsec, ssec)-hard with error δ. Let (W 1,W 2, . . . ,W ρ)
be ρ correlated random variables such that each W j ∈ W. Let D be an adversary. Define the following
game for all j = 1, . . . , ρ:

– Sampling The challenger samples wj ←W j and u← {0, 1}κ.
– Generation The challenger computes (rj , pj)← Gen(wj).

3 We refers the formal definition of robustness to [11].

3

– Distinguishing The advantage of D is

Adv(D) := Pr[D(r1, . . . , rj−1, rj , rj+1, . . . , rρ, p1, . . . , pρ) = 1]

− Pr[D(r1, . . . , rj−1, u, rj+1, . . . , rρ, p1, . . . , pρ) = 1].

(Gen,Rep) is (ρ, εsec, ssec)-reusable if for all D ∈ Dssec and for all j = 1, . . . , ρ, the advantage is at
most εsec.

The first reusable fuzzy extractor without assumptions about the correlations on multiple readings of
the source is proposed by Canetti et al. in Eurocrypt 2016 using the digital lockers with sample-then-lock
construction [9]. We analyze this scheme with concrete parameters focusing on the biometric IrisCode. It
requires too much storage space to tolerate up to 20% or more errors in 1024-bit iris code. To overcome
this problem, we propose a modified FE exploiting threshold scheme, which satisfies both robustness
and reusability. More details including Canetti et al. ’s construction and analysis of it are in Section 3.
Construction of our new fuzzy extractor is in Section 4.

On the other hand, recently, another reusable fuzzy extractor has been proposed by [7] adapting
the LWE-based FE [8]. They presented a generic technique for converting any weakly reusable FE to
a strongly reusable one in the random-oracle model, and made a (strongly) reusable FE by modifying
the original LWE-based FE into a weakly reusable one. Furthermore, they provided a construction of
a strongly reusable FE based on the LWE assumption, not relying on the random oracles. However, it
does not satisfy robustness. On the contrary, Canetti et al. [9]’s constructions can easily be made robust
by the random-oracle-based transform of [10], and so can our modification.

2.3 (τ,m)-threshold scheme

The (τ,m)-threshold scheme is a secret sharing scheme with participants m and threshold τ . It consists
of a Distribution Algorithm DAτ,m and a Recovery Algorithm RAτ,m. DAτ,m takes a secret s, and divides
it into m shares which are distributed to each participant. RAτ,m takes τ inputs, and outputs the original
secret s only if each τ input is the corresponding share generated by DAτ,m(s). For the security of this
threshold scheme, an adversary with less than τ shares should not be able to obtain any information
about the secret.

The basic idea of a secret sharing scheme was introduced by Shamir and Blakely independently [12,13].
Shamir’s scheme is based on polynomial interpolation, and it requires heavy computation for DAτ,m and
RAτ,m due to the employment of a τ -degree polynomial. To reduce computational costs, a new secret
sharing scheme using just EXCLUSIVE-OR (XOR) operations was proposed for special cases, such as
(2, 3), (2,m), (3,m)-threshold schemes by Ishizu et al. , Fujii et al. , Kuihara et al. , respectively [14–16].
Finally, Kurihara et al. proposed a (τ,m)-threshold scheme [17] generalizing previous schemes.

Perfect (τ,m)-threshold scheme. In the (τ,m)-threshold scheme, leakage of information about the
secret can be measured by entropy. Let H(X) denote the Shannon entropy of a random variable X. Let
s ∈ S and si ∈ Si be a secret and a share respectively, and S, Si be the random variables of secrets and
shares, respectively.
A (τ,m)-secret sharing scheme is perfect if

H(S|SI) =

{
0 if I contains k or more elements

H(S) otherwise

where I = {i1, i2, . . . , ij} ⊆ {1, 2, . . . , N}, and SI = Si1Si2 . . . Sij := (Si1 , Si2 , . . . , Sij).

Kurihara et al. ’s (τ,m)-threshold scheme [17]. In fact, our scheme can be instantiated with any
perfect secret sharing scheme. For the clarity of description and the concrete parameter comparison with
Canetti et al. , we utilize Kurihara et al. ’s (τ,m)-threshold scheme [17]. As far as we know, it is one
of the most efficient (τ,m)-threshold schemes which are perfect. From now on, (τ,m)-threshold scheme
refers to Kurihara et al. ’s (τ,m)-threshold scheme. In the following, we list some properties of DAτ,m
and RAτ,m of Kurihara et al. ’s scheme used in this paper.

4

1. DAτ,m can only be constructed for a prime m. For a general m, one can take a prime mp larger than
m, run DAτ,mp , and discard the surplus shares.

2. For a fixed D ∈ Z>0, and an input secret s ∈ {0, 1}D(mp−1), DAτ,m(s) outputs si ∈ {0, 1}D(mp−1)

for i = 1, 2, . . . ,mp.
3. RAτ,m takes as input τ shares of secrets, and outputs s if all τ inputs are correct shares.

For a set S′ = {s′1, . . . , s′τ}, we denote RAτ,m(S′) := RAτ,m(s′1, . . . , s
′
τ).

4. DAτ,m requires at most τDmp(mp − 1) XOR operations.
5. Each RAτ,m requires at most τDmp(mp−1) XOR operations given D(mp−1) by τD(mp−1) binary

matrices. (Each of which can be generated by O(τ3m3
p) bitwise XOR operations).

3 Canetti et al. ’s Reusable Fuzzy Extractor

As mentioned before, Canetti et al. proposed a reusable fuzzy extractor using digital lockers and sample-
then-lock construction. In this section, we review their construction and give an analysis on concrete
parameters focusing on the case when the input biometric is IrisCode.

3.1 Sources with α-entropy k-samples

As in the Canetti et al. ’s construction [9], we assume that the source W = W1W2 . . .Wn, consisting of
strings of length n over some alphabet Z is a source with α-entropy k-samples, i.e., H̃∞(Wj1Wj2 . . .Wjk |j1, j2, . . . jk) ≥
α for k uniformly random indices 1 ≤ j1, j2, . . . , jk ≤ n.

3.2 Digital lockers

A digital locker is a kind of symmetric encryption scheme which is secure even if many correlated keys
have already been used before [18]. It is composed of two algorithms; lock, and unlock. The lock algo-
rithm encrypts val (a value) with key (a key), and outputs lock(key, val). The unlock algorithm decrypts
lock(key, val) with given key′, outputs val if key = key′, and aborts (⊥) otherwise. The digital locker can
be instantiated as lock(key, val) = (nonce, H(nonce, key) ⊕ (val‖0s)) where nonce is a nonce , ‖ denotes
concatenation, and s is a security parameter. unlock is instantiated by XORing(⊕) H(nonce, key′) with
lock(key, val). H can be a random oracle [19], or a cryptographic hash function with specific proper-
ties [20]. Note that nonce is usually different for each lock, and by hashing it with key, the correlation
between keys disappears. For the following definition of digital lockers, let idealUnlock(key, val) be the
oracle that returns val when given key, and ⊥ otherwise.

Definition 3 (Digital locker) The pair of algorithms (lock, unlock) with security parameter λ is an
`-composable secure digital locker with error γ if the following holds:

– Correctness For all key and val, Pr[unlock(key, lock(key, val)) = val] ≥ 1− γ. Furthermore, for any
key′ 6= key, Pr[unlock(key′, lock(key, val)) =⊥] ≥ 1− γ.

– Security For every PPT adversary A and every positive polynomial p, there exists a (possibly inef-
ficient) simulator S and a polynomial q(λ) such that for any sufficiently large s, any polynomial-long
sequence of values (vali, keyi) for i = 1, . . . , `, and any auxiliary input z ∈ {0, 1}∗,∣∣∣Pr

[
A
(
z, {lock (keyi, vali)}

`
i=1

)
= 1
]
− Pr

[
S
(
z, {|keyi|, |vali|}

`
i=1

)
= 1
]∣∣∣ ≤ 1

p(s)

where S is allowed q(λ) oracle queries to the oracles {idealUnlock(keyi, vali)}`i=1.

3.3 Description

The main idea of Canetti et al. ’s scheme [9] is that a random string r ∈ {0, 1}κ is locked multiple times
by some substrings v1, . . . , v` of an input string w and thus each locked value can be unlocked only with
v1, . . . , v`, respectively. To reproduce the same r, one must extract substrings v′1, . . . , v′` corresponding
to v1, . . . , v`, at least one of which must be identical to its counterpart, and proceed to unlock with those
substrings.

5

Construction(Sample-then-Lock, [9]). LetM = {0, 1}n be an input space and w = w1 . . . wn ∈M,
where wi ∈ {0, 1}. Let ` be a positive integer and let (lock, unlock) be an `-composable secure digital locker
with error γ. To recover the random value r in Rep, information on how the substrings are generated
should be stored. Thus a helper value p containing the indices of the bits of w = w1 . . . wn which are
used for each substring is generated along with r in Gen. The algorithms are in the next table.

Algorithm 1: Gen and Rep of Canetti et al.’s Reusable Fuzzzy Extractor
Gen Rep

Input: w = w1 . . . wn Input: w′ = w′1 . . . w
′
n, p = p1 . . . p`

1. Sample r
$←− {0, 1}κ

2. For i = 1, . . . , ` 1. For i = 1, . . . , `

(i) Uniformly choose ji,m
$←− {1, . . . , n} (i) Parse pi as ci, (ji,1, . . . , ji,k)

for each 1 ≤ m ≤ k (ii) v′i ← w′ji,1 . . . w
′
ji,k

(ii) vi ← wji,1 . . . wji,k (iii) ri ← unlock(v′i, c)
(iii) ci ← lock(vi, r) If ri 6=⊥, then output ri.
(iv) pi ← ci, (ji,1, . . . , ji,k)

3. Output (r, p) where p = p1 . . . p` 2. Output ⊥

3.4 Analysis on concrete parameters

In this subsection, we give an analysis of Canetti et al. ’s fuzzy extractor with concrete parameters with
IrisCode as the input biometric. To make the False Rejection Rate (FRR) less than δ, it requires the
following condition: (

1−
(

1− t

n

)k)`
+ ` · γ ≤ δ.

Using the approximation ex ≈ 1 + x, they suggested parameter conditions ` · γ ≤ δ/2, tk = cn log n, and

` ≈ nc log 2
δ for some constant c. Note that under these parameter conditions, we have

(
1−

(
1− t

n

)k)` ≈
(1− e− tkn)` ≈ exp(−`e− tkn) ≈ δ/2 where e is the natural constant.

However, if lock(key, val) = (nonce, H(nonce, key) ⊕ val||0s) where H is a hash function, we can set
better parameters since γ = 2−s is small enough. In our parameter setting, we set δ = 1/2, κ = 128, and
use SHA24 with 224-bit output as an instantiation of H. Then, lock(vi, r) has an error rate γ ≈ 2128−224 =
2−96, and ` · γ is negligible. Therefore, we set parameters so that the first term of the above condition is

slightly smaller than δ = 1/2, instead of δ/2. Now, we have
(

1−
(
1− t

n

)k)` ≈ exp(−`e− tkn) . δ from

` ≈ nc log 1
δ = e

tk
n and tk = cn log n.5

Error tolerance. Many researches have indicated that the Threshold Hamming Distance T := t
n of

IrisCode should lie between 20% and 35% [21–23]. According to this, we set T = 0.2, 0.25, 0.3, 0.35.

Security. With the helper value p, an adversary without biometric information can run a brute force
attack on digital locker lock(vi, r) with an exhaustive search for vi which is a partial biometric of a user.
Therefore, k = |vi| must be larger than at least the security parameter λ. We set k = λ = 80.6

Iteration number. Given T = t/n, k, and δ = 0.5, we set iteration number ` ≈ e
tk
n so that the false

rejection rate is smaller than 0.5.
4 One can also use SHA3 or other hash functions.
5 We take δ = 1/2 for convenience. One can achieve δ = 1/2b increasing ` to b`.
6 In fact, we should take into account the min-entropy of the partial biometric, but we will assume that the

min-entropy is k for simplicity.

6

Storage space. The helper value p consists of two parts; indices and locks for each iteration. The
indices for each iteration represent k among n bit positions of the biometric, and requires (k log n)-bits
of storage space. On the other hand, since we use SHA2-224, |r|= κ = 128, k = 80, and the output size
of hash function is 224bits. We set the nonce for the hash input to 144 bits7. As we need ` iterations,
the total storage space for lockers is ` · (k log n+ 368) bits.

Time consumption. To measure actual time consumption, we implemented Canetti et al. ’s reusable
fuzzy extractor as a C++ program. We used g++ 5.4.0 to compile C++ source codes under the C++ 11
standard and ran them on a GNU/Linux ubuntu 4.4.0-62-generic machine that has a Intel(R) Xeon(R)
E5-2620 v4 2.10GHz CPU with a 64GB RAM and a x86 64 architecture. We measured the average time
for 1 unlock under various sets of parameters, and obtained results as displayed in the table below.

Table 1: Security, storage space and time consumption with δ = 1/2, κ = 128, SHA2-224.

Security Biometric Error Tolerance Iterations Storage space (Byte) Rep

k n T ` index lock Total Time(unlock) (µs)

80 512 0.20 4.41× 107 3.97G 2.03G 6.00G 12.6

80 512 0.25 6.85× 109 617G 315G 932G 12.6

80 512 0.30 1.87× 1012 168T 86.0T 254T 12.6

80 512 0.35 7.79× 1014 70.1P 35.8P 106P 12.6

80 1024 0.20 4.00× 107 4.00G 1.84G 5.84G 13.9

80 1024 0.25 6.85× 109 685G 315G 1T 13.9

80 1024 0.30 1.87× 1012 187T 86.0T 273T 13.9

80 1024 0.35 6.90× 1014 69.0P 31.8P 101P 13.9

80 2048 0.20 4.00× 107 4.40G 1.84G 6.24G 15.5

80 2048 0.25 6.85× 109 754G 315G 1.07T 15.5

80 2048 0.30 1.77× 1012 194T 81.3T 276T 15.5

80 2048 0.35 6.50× 1014 71.5P 29.9P 101P 15.5

In Table 1, we present security, storage space, and time required for each unlock with concrete pa-
rameters.8 The maximum required time of Rep is `×Time(unlock). As fully carrying out all ` iterations
of Rep is unfeasible for most parameter sets due to the large storage space requirements, we ran Rep for
a much smaller number of iterations and computed the average running time for each single iteration of
Rep and measured the storage memory theoretically.

The form of digital lockers are the same for all cases, and time for unlock changes little by input size.
Note that the iteration ` and Storage space highly (exponentially) depends on T , but not on n.

4 Our Construction and Analysis

Note that, in Canetti et al. ’s scheme, tk = cn log n and l ≈ nc log 2
δ give large ` values, leading to

large storage space for T ∈ [0.2, 0.35]. One easy strategy for reducing memory requirements is reducing
k. However, a smaller k value implies less security, since an adversary can easily unlock lock(key, val) if
k = |key| is small.

We solve this problem by preventing adversaries from checking their guesses on each individual lock.
For this purpose, we use a modified digital locker (lock′, unlock′). It is a symmetric encryption scheme
very similar to the original digital locker except for one difference; unlock′ outputs a random string

7 In fact, we should take the size of nonce so that the resulting locker is `-composable, i.e., no collision occurs
among ` nonces. In our cases, 144(=224-80) bit is sufficient for the size of nonce.

8 Canetti et al. [9] mentioned that with sophisticated samplers, one can decrease the required storage. However,
it can only decrease the storage for index, and the storage for locks can not be decreased.

7

instead of ⊥ when key′ 6= key. With this modified digital locker, adversaries can not check whether their
guesses are right or not, since they can not distinguish a random string from val in our construction.

However, a fuzzy extractor must output ⊥ when the input is not legitimate. We additionally exploit
a (τ,m)-threshold scheme to enable legitimacy checking. More precisely, we encrypt each share with the
modified lock, so that the adversary can recover the original secret s only if he or she has found τ or more
correct shares by unlocking corresponding lock′s with their correct keys. Then, the legitimacy check of
the recovered secret s′ is done by unlock(s′, lock(s, r)).

4.1 Construction

The details of our construction are as follows. First, the modified digital locker can be instantiated as the
original digital locker with the reduction of the zero-padding portion, i.e., lock′(key, val) := (nonce, π ◦
H(nonce, key) ⊕ val) for val ∈ {0, 1}v and key ∈ {0, 1}k, where π : {0, 1}µ −→ {0, 1}v is the canonical
projection of the first v bits of vectors in {0, 1}µ, the output space of hash H. Unlock′ is similar to unlock,
XORing (⊕) lock′ with π ◦ H(nonce, key′). The notion of security for the modified digital locker is the
same as that of the original digital locker, except that if key′ 6= key, unlock′(key′, lock(key, val)) outputs
val′ 6= val which is indistinguishable from a uniformly random string. H can be a random oracle or the
same cryptographic hash function H as in the original digital locker.

The Gen algorithm takes as input a bit string w with length n. For a divisor d of n,9 we consider
the set Pd(n) of partitions P = {Bj : |Bj |= d}mj=1 of [n] = {1, . . . , n} where m = n/d.10 For a partition

Pi ∈ Pd(n), we denote vi,j = wBj := wj1 , . . . , wjd , where Bj = {j1, . . . , jd} ∈ Pi. We first choose a
random string r ∈ {0, 1}κ and lock it with a random secret si ∈ {0, 1}k resulting in lock(si, r).

11

Next we split this si into several shares {si,j}mj=1 using the Distribution Algorithm DAτ,m of the
(τ,m)−threshold scheme. We now choose a random partition Pi ∈ Pd(n), which specifies vi,j ’s for
j = 1, . . . ,m. Finally, lock the shares si,j with the substrings vi,j of w using the modified locker, resulting
in lock′(vi,j , si,j). We iterate this process N times, and output the public helper value which can be
represented by {lock(si, r), lock

′(vi,j , si,j)|mj=1,Pi}Ni=1.

The Rep algorithm is simple. Each partition Pi in the helper value specifies v∗i,j ’s from the input w∗.

Unlock all modified lock′(vi,j , si,j)’s with v∗i,j ’s. Finally, use Recovery Algorithm RAτ,m to recover si from
s∗i,j , and check if the recovered s∗i is correct by unlocking lock(si, r). Output r if at least one of such
unlocks was successful, and output ⊥ otherwise.

Algorithm 2: Gen and Rep of our RFE
Gen Rep

Input: w = w1 . . . wn Input: w∗ = w∗1 . . . w
∗
n, p = (p1 . . . pN)

1. Sample r
$←− {0, 1}κ

2. For i = 1, . . . , N 1. For i = 1, . . . , N

(i) Choose Pi ∈ Pd(n) and sample si
$←− {0, 1}k (i) Parse pi as ci,1, . . . , ci,m,Pi, di

(ii) si,1, . . . , si,m ← DAτ,m(si) where m = n/d (ii) For j = 1, . . . ,m

(iii) for j = 1, . . . ,m (ii)-1 v∗i,j = w∗Bj where {B1, . . . , Bm} = Pi
(iii)-1 vi,j = wBj where {B1, . . . , Bm} = Pi (ii)-2 s∗i,j ← unlock′(v∗i,j , ci,j)

(iii)-2 ci,j ← lock′(vi,j , si,j) (iii) For each subset S of {s∗i,j}mj=1 with cardinality τ ,

(iv) di ← lock(si, r) (iii)-1 s∗i ← RAτ,m(S)

(v) pi ← ci,1, . . . , ci,m,Pi, di (iii)-2 r∗i ← unlock(s∗i , di), and if r∗i 6=⊥ then output r∗i .

3. Output (r, p) where p = (p1 . . . pN) 2. Output ⊥

9 We can also consider a divisor d of n′ ≤ n, and follow the construction taking n′ instead of n.
10 For convenience, we only consider the partitions whose elements have the same cardinality. An analogous

statement can be made for more general partitions.
11 Note that, in (τ,m) threshold scheme, the size of secret k is D(mp−1) for some D ∈ Z>0. We take D satisfying

proper security.

8

4.2 Parameters and security analysis

Correctness and security. To ensure correctness of the FE, the parameters must satisfy

FRR := Pr[⊥← Rep(w∗)|dis(w,w∗) ≤ t] ≤ δ.

To compute this probability, for fixed Pi and w∗ with dis(w,w∗) = t, let

q = Pr
[
s = s∗i |s∗i ← RAτ,m(S) for some S ∈ Pτ ({s∗i,j}mj=1)

]
. (1)

Note that q is independent from the index i. Then, FRR is at most (1 − q)N + N · γ considering
incorrectness arising from error γ in the lockers. As in 3.4 we ignore N · γ and set (1− q)N ≈ 1− qN .
δ = 1/2

Here, we state a lemma calculating the exact value of q. A proof is given in the appendix.

Lemma 4 Let M = {0, 1}n be the input space of the reusable fuzzy extractor in Construction with pa-
rameters n, d, λ, τ, δ, t as previously defined. For an input w = w1w2 . . . wn, let (r, p) ← Gen(W). If a
certifier has a query input w∗ = w∗1 . . . w

∗
n with dis(w,w∗) = t,

q := Pr(r∗i = r) =
τmCτ

nCt

m∑
η=τ

(−1)η−τ · m−τCη−τ ×n−ηd Ct
η

for all i = 1, . . . , N.

Here aCb denotes the usual binomial coefficient a!
b!(a−b)! for integers a, b such that 0 ≤ b ≤ a.

We can easily see that our fuzzy extractor is reusable, as is Canetti et al. ’s.

Theorem 5 Let λ be a security parameter and W be a family of sources with α-entropy k-samples over
Zn where α = ω(log λ). Then for any ssec = poly(λ) there exists an εsec = ngl(λ) such that Construction
is a (Zn,W, κ, t)- computational fuzzy extractor that is (εsec, ssec)-hard with error δ = (1−q)N +mN ·γ,
where the formula for q is given in Lemma 4.

Proof. The proofs for correctness and security are analogous to those of [9] and are in the appendix.

Reusability. As in [9], reusability follows easily from the security of digital lockers. To enable ρ
reuses, we need N(m + 1) · ρ composable digital lockers. Then we can simulate an adversary given
r1, . . . , ri−1, ri+1, . . . , rρ, and p1, . . . , pρ as a simulator with r1, . . . , ri−1, ri+1, . . . , rρ as auxiliary input in
the security of digital locker (see Definition 3). Now, we can prove the reusability similarly to Theorem
5.

Theorem 6 Fix ρ and let all the variables be as in Theorem 5, except that (lock, unlock) is N(m+ 1) · ρ
- composable instead of N(m + 1) - composable12 (for κ-bit values and keys over Zk). Then for all
ssec = poly(n) there exists some εsec = ngl(n) such that Construction is a (ρ, εsec, ssec)-reusable fuzzy
extractor.

Comparison with [9]. In Canetti et al. ’s work [9], they used the subsets of strings (biometrics) to lock
and take multiple samples for correctness. However, for reliable error tolerance, they required too many
samples, resulting in the use of enormous amounts of memory space as displayed in Table 1. We divide
said subsets into small pieces and use the threshold scheme to diminish storage space requirement. As a
result, our scheme consumes more time as it requires multiple RA operations in recovering the secret. We
will show that this can be resolved through the use of parallel computing. In [9], the source of w needed
to be α-entropy k-samples, i.e., H̃∞(Wj1Wj2 . . .Wjk |j1, j2, . . . jk) ≥ α for k uniformly random indices
1 ≤ j1, j2, . . . , jk ≤ n. Our construction requires a slightly different condition regarding the distribution
of the source : H̃∞(Wj1Wj2 . . .Wjk |j1, j2, . . . jk) ≥ α for k uniformly random indices 1 ≤ j1, j2, . . . , jk ≤ n
selected without repetition.

12 Canetti et al. ’s construction requires ` or `ρ -composable digital lockers, and ` ≥ N(m+ 1) in our parameter
settings.

9

4.3 Analysis on concrete parameters

To analyze our scheme as in 3.4 with concrete parameters, we calculated the storage space and number
of operations needed when employing Kurihara et al. ’s threshold scheme. We set δ = 1/2, κ = 128,
T = t

n = 0.2, 0.25, 0.3, k̃ := τd ≥ λ = 80 and used SHA2-224 as the hash function as in section 3.4.

Security. To recover r, an adversary equipped with helper value p must correctly guess at least τ of the
d−bit keys for lock′’s. Therefore, τ · d should be at least λ = 80, the security parameter. (Note that as
in Canetti et al. ’s scheme, we should consider the min-entropy of the partial biometric of length τd.)

Iteration number. For given T = t
n , k̃ = τd, and δ = 0.5, we can find iteration number N such that

FRR ≤ (1− q)N +N · γ ≤ 0.5 where q is defined in Lemma 4. As in section 3.4, Nγ is negligible.

Storage space. The helper value p again consists of two parts; indices and digital lockers. Indices for
each iteration indicate which among m sets in a partition of [n] each biometric bit belongs to, and take
up roughly (n logm)-bits of memory space. The size of a locker (of either type) is the sum of the output
size 224 bits of hash function SHA2-224 and that of the nonce in the hash input which is 144 bits. Since
we need m+1 lockers (1 for lock(si, r)) each for a total of N iterations, the total memory required for p is
N ·(n logm+(224+144)·(m+1)) bits. This is denoted as “Help.val.” in Table 2. For efficient computation
of the secret sharing scheme, we will additionally store

(
m
τ

)
precomputed (mp − 1) × τ(mp − 1) binary

matrices needed for each of the
(
m
τ

)
recovery algorithms. The matrices are reused for all N iterations.

The amount of memory space dedicated to these matrices is denoted as “Mat. for RA” in Table 2.

Time consumption. We implemented our fuzzy extractor in the same environment as in Section 3.4.
Here we give a table for the required storage space, time consumption, and security of our reusable

fuzzy extractor. Again, we did not run the program for all N iterations, but instead ran it for a smaller
number of iterations multiple times to obtain average values of the time costs of the unlock′ and (RA +
unlock) operations. “All unlock′ ” denotes the time for (ii), and “1(RA + unlock)” denotes the time for
each subset S in (iii) of Rep (Algorithm 2).

Table 2: The table for the storage space, time consumption and security of our scheme.

Security Biometric Error Tolerance
d τ m

Iterations Storage Space (Byte) Time / Iteration (µs)

k̃ = τd n T N Mat. for RA index lock Help.val. All unlock′ 1(RA + unlock)

80 512 0.2 16 5 32 1674 1.47G 0.54M 2.45M 3.00M 184 25.2

80 512 0.2 20 4 25 38612 44.6M 11.5M 44.4M 55.9M 146 16.3

80 512 0.25 16 5 32 3.82× 105 1.47G 122M 562M 685M 184 25.2

80 512 0.3 16 5 32 1.98× 108 1.47G 63.5G 292G 355G 184 25.2

80 1024 0.2 20 4 51 516 1.35G 0.37M 1.21M 1.59M 292 39.0

81 1024 0.2 27 3 37 26786 34.0M 17.9M 45.6M 63.5M 428 18.8

80 1024 0.25 20 4 51 97751 1.35G 71.0M 228M 300M 292 39.0

80 1024 0.3 20 4 51 3.63× 107 1.35G 26.3G 85.1G 111G 292 39.0

81 2048 0.2 27 3 75 1546 616M 2.47M 5.33M 7.80M 440 60.9

81 2048 0.25 27 3 75 326030 616M 520M 1.12G 1.64G 440 60.9

In our FE, Rep takes at most N ·
((
m
τ

)
· Time(RA + unlock) + Time(All unlock′)

)
time. The maximum

time for Gen is N ·
(
Time(DA + lock) + Time(All lock′)

)
.13

We visualized the trade-off between time and helper value storage space in Fig. 1.14 Every point in
the figure comes from either Table 1 or Table 2. The amount of required memory tends to decrease by

13 Since Time(RA) ≈ Time(DA), maximal time of Rep is much bigger than that of Gen, and we only consider the
time of Rep.

14 The space for “Mat. for DA” is excluded since it is a common data for every users. It doesn’t affect the
tendency in this graph overall.

10

a factor of approximately 103, i.e. from GB to MB(or TB to GB) whenever time consumption increases
tenfold. Although time consumption seems impractical for both FEs, this can be solved with parallel
computing methods since Rep consists of mutually independent iterative routines. We actually imple-
mented our scheme with parallel computing using CUDA as proof of this (though not optimized), and
the obtained positive results. We compiled CUDA and C++(test driver) codes using nvcc v7.5.17 with
the SM53 architecture and under the C++ 11 standard. Then we ran the program on the aforemen-
tioned GNU/Linux machine with the same CPU, with an additional NVIDIA GeForce GTX 1080 GPU
attached for the parallel computing. For the case (n, p, d, τ,m) = (1024, 0.2, 27, 3, 37), the algorithm Rep
takes only 151 seconds, which is 20 times faster than without parallelization.

Fig. 1: A log-scaled graph of storage space for helper values and time (Original and Ours)

5 Conclusion

We analyzed the reusable fuzzy extractor of Canetti et al. with concrete parameters regarding iris authen-
tication with IrisCode and found out that the required storage space is too large to be used in practice.
To solve this problem, we propose a modified reusable fuzzy extractor using a perfect threshold scheme.
Our modification cuts down the memory cost by a considerable amount. Though this approach yields
a trade-off between memory and time costs, this can be resolved through parallel computing, since Rep
consists of independent subroutines. When fully parallelized, our scheme reduces memory requirements
from GB or TB to MB in many cases, while still operating in reasonable time.

Acknowledgements. The authors would like to thank the anonymous reviewers of ACISP 2018 for their
valuable comments. This work were supported by Samsung Electronics, Co., Ltd. (No. 0421-20150074).

References

1. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.: Privacy-preserving face recog-
nition. In: Privacy Enhancing Technologies, 9th International Symposium, PETS 2009. Proceedings, pp.
235–253 (2009). doi:10.1007/978-3-642-03168-7 14

2. Kulkarni, R., Namboodiri, A.M.: Secure hamming distance based biometric authentication. In: International
Conference on Biometrics, ICB 2013, pp. 1–6 (2013). doi:10.1109/ICB.2013.6613008

3. Karabat, C., Kiraz, M.S., Erdogan, H., Savas, E.: THRIVE: threshold homomorphic encryption based se-
cure and privacy preserving biometric verification system. EURASIP J. Adv. Sig. Proc. 2015, 71 (2015).
doi:10.1186/s13634-015-0255-5

4. Cheon, J.H., Chung, H., Kim, M., Lee, K.: Ghostshell: Secure biometric authentication using integrity-based
homomorphic evaluations. IACR Cryptology ePrint Archive 2016, 484 (2016)

11

http://dx.doi.org/10.1007/978-3-642-03168-7_14
http://dx.doi.org/10.1109/ICB.2013.6613008
http://dx.doi.org/10.1186/s13634-015-0255-5

5. Dodis, Y., Reyzin, L., Smith, A.D.: Fuzzy extractors: How to generate strong keys from biometrics and other
noisy data. In: Advances in Cryptology - EUROCRYPT 2004, International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 523–540 (2004). doi:10.1007/978-3-540-24676-3 31

6. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: How to generate strong keys from
biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008). doi:10.1137/060651380

7. Apon, D., Cho, C., Eldefrawy, K., Katz, J.: Efficient, reusable fuzzy extractors from lwe. In: International Con-
ference on Cyber Security Cryptography and Machine Learning, pp. 1–18. Springer (2017). doi:10.1007/978-
3-319-60080-2 1

8. Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. In: International Conference on the Theory
and Application of Cryptology and Information Security, pp. 174–193. Springer (2013). doi:10.1007/978-3-
642-42033-7 10

9. Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.D.: Reusable fuzzy extractors for low-entropy
distributions. In: Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pp. 117–146 (2016). doi:10.1007/978-3-662-
49890-3 5

10. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authentication using biometric
data. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp.
147–163. Springer (2005). doi:10.1007/11426639 9

11. Dodis, Y., Kanukurthi, B., Katz, J., Reyzin, L., Smith, A.D.: Robust fuzzy extractors and authenti-
cated key agreement from close secrets. IEEE Trans. Information Theory 58(9), 6207–6222 (2012).
doi:10.1109/TIT.2012.2200290

12. Shamir, A.: How to share a secret. Communications of the ACM (11), 612–613 (1979).
doi:10.1145/359168.359176

13. Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. AFIPS 1979 National Computer Conference, pp.
313–317 (1979). doi:10.1109/AFIPS.1979.98

14. Ishizu, H., Ogihara, T.: A study on long-term storage of electronic data. In: Proc. IEICE General Conf.,
D-9-10, 1, p. 125 (2004)

15. Fujii, Y.: A fast (2, n)-threshold scheme and its application. Proc. CSS2005 pp. 631–636 (2005)
16. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A fast (3, n)-threshold secret sharing scheme using

exclusive-or operations. IEICE transactions on fundamentals of electronics, communications and computer
sciences 91(1), 127–138 (2008). doi:10.1093/ietfec/e91-a.1.127

17. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A new (k, n)-threshold secret sharing scheme and
its extension. Information Security pp. 455–470 (2008). doi:10.1007/978-3-540-85886-7 31

18. Canetti, R., Kalai, Y.T., Varia, M., Wichs, D.: On symmetric encryption and point obfuscation. In: Theory
of Cryptography Conference, pp. 52–71. Springer (2010). doi:10.1007/978-3-642-11799-2 4

19. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfuscation. In: International confer-
ence on the theory and applications of cryptographic techniques, pp. 20–39. Springer (2004). doi:10.1007/978-
3-540-24676-3 2

20. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In: Advances in Cryptology -
EUROCRYPT 2008, 27th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Proceedings, pp. 489–508 (2008). doi:10.1007/978-3-540-78967-3 28

21. Hollingsworth, K.P., Bowyer, K.W., Flynn, P.J.: Improved iris recognition through fusion of hamming distance
and fragile bit distance. IEEE transactions on pattern analysis and machine intelligence 33(12), 2465–2476
(2011). doi:10.1109/TPAMI.2011.89

22. Daugman, J.: Probing the uniqueness and randomness of iriscodes: Results from 200 billion iris pair compar-
isons. Proceedings of the IEEE 94(11), 1927–1935 (2006). doi:10.1109/JPROC.2006.884092

23. Desoky, A.I., Ali, H.A., Abdel-Hamid, N.B.: Enhancing iris recognition system performance using templates
fusion. Ain Shams Engineering Journal 3(2), 133–140 (2012). doi:10.1109/ISSPIT.2010.5711758

A The Proof of Theorems

Lemma 4 LetM = {0, 1}n be the input space of the reusable fuzzy extractor in Construction with param-
eters n, d, λ, τ, δ, t defined as in Parameter Setting. For an input w = w1w2 . . . wn, let (r, p)← Gen(W).
If a certifier has a query input w∗ = w∗1 . . . w

∗
n with dis(w,w∗) = t,

q := Pr(r∗i = r) =
τmCτ

nCt

m∑
η=τ

(−1)η−τ · m−τCη−τ ×n−ηd Ct
η

for all i = 1, . . . , N.

Here aCb denotes the usual binomial coefficient a!
b!(a−b)! for integers a, b such that 0 ≤ b ≤ a.

12

http://dx.doi.org/10.1007/978-3-540-24676-3_31
http://dx.doi.org/10.1137/060651380
http://dx.doi.org/10.1007/978-3-319-60080-2_1
http://dx.doi.org/10.1007/978-3-319-60080-2_1
http://dx.doi.org/10.1007/978-3-642-42033-7_10
http://dx.doi.org/10.1007/978-3-642-42033-7_10
http://dx.doi.org/10.1007/978-3-662-49890-3_5
http://dx.doi.org/10.1007/978-3-662-49890-3_5
http://dx.doi.org/10.1007/11426639_9
http://dx.doi.org/10.1109/TIT.2012.2200290
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1109/AFIPS.1979.98
http://dx.doi.org/10.1093/ietfec/e91-a.1.127
http://dx.doi.org/10.1007/978-3-540-85886-7_31
http://dx.doi.org/10.1007/978-3-642-11799-2_4
http://dx.doi.org/10.1007/978-3-540-24676-3_2
http://dx.doi.org/10.1007/978-3-540-24676-3_2
http://dx.doi.org/10.1007/978-3-540-78967-3_28
http://dx.doi.org/10.1109/TPAMI.2011.89
http://dx.doi.org/10.1109/JPROC.2006.884092
http://dx.doi.org/10.1109/ISSPIT.2010.5711758

Proof. Let Aj be the set of events with r∗i,j = ri,j , which is also the set of events with v∗i,j = vi,j . Let us

define AJ :=
⋂
j∈J Aj , A

∗
J := AJ ∩ (

⋂
j∈G−J A

{
j) for any subset J of the index set G := {1, 2, . . . ,m},

and denote by Gη the family of all η-element subsets of G for η = 1, . . . ,m.
For η = τ, . . . ,m, and J = {g1, . . . , gη} ∈ Gη, we have

Pr(AJ) = Pr(Ag1 ∩ . . . ∩Agη) =
n−ηdCt

nCt
,

since Ag1 ∩ . . .∩Agη is equal to the set of events in which all t of the indices j such that wj 6= w∗j belong
to the m − η boxes in {Bg|g /∈ {g1, . . . , gη}}. Also, as a consequence of the definitions of AJ and A∗Q,
and that all of the set of events A∗Q are exclusive, we have

Pr(AJ) =
∑

J⊆Q⊆G

Pr(A∗Q).

From our use of the (τ , m) - threshold scheme, the set of events in which r∗i = ri is the union of all AJ
for which J ⊂ G and |J |≥ τ , which in turn is the disjoint union of all AQ for which Q ⊂ G and |Q|≥ τ ,
and thus

q =
∑
Q⊂G
|Q|≥τ

Pr(A∗Q).

From the symmetry between elements of Gη, the cardinality of which is |Gη|=m Cη, we can deduce that∑
J∈Gη

Pr(AJ) =m Cη · n−ηd
Ct

nCt
.

Combining this with

τ ·m Cτ ×m−τ Cη−τ
η

=η−1 Cτ−1 ×m Cη for η = τ, . . . ,m,

we can observe that the rightmost side of the equation in the lemma statement is equal to

1

nCt

m∑
η=τ

(−1)η−τ ·η−1 Cτ−1 ×m Cη ×n−ηd Ct =

m∑
η=τ

[(−1)η−τ ·η−1 Cτ−1 ·
∑
J∈Gη

Pr(AJ)]

=

m∑
η=τ

(−1)η−τ ·η−1 Cτ−1 ·
∑
J∈Gη

∑
J⊂Q

Pr(A∗Q)

=
∑
Q⊂G
|Q|≥τ

∑
J⊂Q
|J|≥τ

(−1)|J|−τ ·|J|−1 Cτ−1

Pr(A∗Q)

=
∑
Q⊂G
|Q|≥τ

 |Q|∑
η=τ

(−1)η−τ ·η−1 Cτ−1 ×|Q| Cη

Pr(A∗Q),

the third equation following from simple double counting. Thus it follows from the identity of the following
Lemma A.1

x∑
η=τ

(−1)η−τ ·η−1 Cτ−1 ×x Cη = 1 for x = τ, τ + 1, . . . ,m

that the coefficients of Pr(A∗Q) in the previous equation are all 1, and therefore that the rightmost side
of the equation is indeed equal to q =

∑
Q⊂G
|Q|≥τ

Pr(A∗Q). ut

13

Lemma A.1 For any integer x ≥ τ , we have

x∑
η=τ

(−1)η−τ ·η−1 Cτ−1 ×x Cη = 1.

Proof. Simple computations regarding the binomial coefficients in the left hand side give us

x∑
η=τ

(−1)η−τ ·η−1 Cτ−1 ·x Cη = x×x−1 Cτ−1 ·
x∑
η=τ

(−1)η−τ

η
·x−τ Cη−τ .

Integrating the generating function f(y) = yτ−1(1− y)x−τ =
∑x
η=τ (−1)η−τ ·x−τ Cη−τ · yη−1, we have∫ y

0

f(z)dz =

x∑
η=τ

(−1)η−τ

η
·x−τ Cη−τ · yη,

and taking y = 1, we arrive at

x∑
η=τ

(−1)η−τ

η
·x−τ Cη−τ =

∫ 1

0

f(z)dz.

Using integration by parts results in∫ 1

0

yτ−1(1− y)x−τdy =
τ − 1

x− τ + 1

∫ 1

0

yτ−2(1− y)x−τ+1dy,

the repeated use of which leads to∫ 1

0

yτ−1(1− y)x−τdy = . . . =
(τ − 1) · · · 1

(x− τ + 1) · · · (x− 1)

∫ 1

0

(1− y)x−1dy =
1

x×x−1 Cτ−1
,

which in turn implies our desired result. ut

Theorem 5 Let λ be a security parameter andW be a family of sources with α-entropy k-samples15 over
Zn where α = ω(log λ). Then for any ssec = poly(λ) there exists an εsec = ngl(λ) such that Construction
is a (Zn,W, κ, t)- computational fuzzy extractor that is (εsec, ssec)-hard with error δ = (1−q)N +mN ·γ,
where the formula for q is given in 4.

Proof. Correctness follows from Lemma 4.
The security proof is almost the same as the proof of Canettiet al. ’s [9], except that we additionally

consider lock′ and recovery algorithm (RA) of the threshold scheme. We assume that RA is given to the
distinguisher and simulator though we don’t denote it explicitly.

Let R,P be the random variables on r, and the public helper value, respectively. U is a uniformly
random variable over {0, 1}κ. For the proof, we will show that for all ssec = poly(λ), there exists εsec =
ngl(λ) such that δDssec ((R,P), (U,P)) ≤ εsec. In other words, we need to bound |E[D(R,P)]−E[D(U,P)]|
by a negligible function 1

p(λ) for some polynomial p(·). We will denote D = Dssec from now on.

First, we can substitute the distinguisher D by an unbounded simulator S with the security of digital
lockers (Definition 3). That is, there is a polynomial q(·) and an unbounded time simulator S, which

makes at most q(λ) queries to the oracles idealUnlock(si, r)
N
i=1, such that∣∣∣E[D(R,P)]− E

[
S idealUnlock(si,r)

N
i=1
(
R, {lock′i,j |mj=1,Pi}Ni=1, k, κ

)]∣∣∣ ≤ 1

3p(λ)
,

where lock′i,j = lock′(vi,j , si,j). Note that this is also true for R substituted by U .

15 We set D,mp such that k ≤ D(mp − 1), and take k = D(mp − 1).

14

Now, we claim that∣∣∣ E [S idealUnlock(si,r)
N
i=1
(
R, {lock′i,j |mj=1,Pi}Ni=1, k, κ

)]
− E

[
S idealUnlock(si,r)

N
i=1
(
U, {lock′i,j |mj=1,Pi}Ni=1, k, κ

)] ∣∣∣ ≤ 1

3p(λ)
.

Given idealUnlock, the only way of S to distinguish r ∈ R and u ∈ U is to query idealUnlock and get a non-
⊥ response, which is equivalent to correctly guessing si of idealUnlock(si, r). Unbounded simulator S can
guess si directly or by guessing the share si,j of si with lock′d,k,µ(vi,j , si,j). Note that we exploited perfect
(τ,m)-threshold scheme so that H(Si|Si,j , j ∈ J) = H(Si) if J contains elements less than τ . In other
words, S must correctly guess τ si,j ’s to find si using RA or S gets no advantage over randomly(uniformly
random) guessing si. Guessing τ si,j ’s with lock′d,k,µ(vi,j , si,j) is equivalent to guessing τ vi,j ’s. Note that
our construction satisfies dτ ≥ k, and guessing τ of the vi,j ’s is at least harder than guessing k bits of
the partial biometrics. The argument regarding the probability of guessing k bits of partial biometrics
correctly when given q(λ) queries on idealUnlock is the same as in the proof of Lemma 1 in [9].

First, we modify S slightly so that it quits immediately after getting a non-⊥ answer.16 Then, the
view of S on q or less queries have q+1 values. (q values of getting a non-⊥ answer on the i-th query, and 1
value of getting all ⊥ answers.) By Lemma 2.2b in [6], H̃∞(Vi|V iew(S), ji,j) ≥ H̃∞(Vi|ji,j)− log(q+1) ≥
α− log(q+1). Therefore, at each query, the probability that S gets a non-⊥ answer is at most (q+1)/2α.
Since there are q queries of S, the overall probability is bounded by q(q+ 1)/2α. Now, α = ω(log λ) gives
q(q+1)

2α ≤ 1
3p(λ) , and the claim holds. ut

16 It has no advantage in distinguishing r and u. Refer to [9]

15

	A Reusable Fuzzy Extractor with Practical Storage Size: Modifying Canetti et al. 's Construction
	Introduction
	Preliminaries
	Entropy
	Fuzzy extractor and reusability
	(,m)-threshold scheme
	Perfect (,m)-threshold scheme.
	 Kurihara et al. 's (,m)-threshold schemeKu+08new.

	Canetti et al. 's Reusable Fuzzy Extractor
	Sources with -entropy k-samples
	Digital lockers
	Description
	Analysis on concrete parameters
	Error tolerance.
	Security.
	Iteration number.
	Storage space.
	Time consumption.

	Our Construction and Analysis
	Construction
	Parameters and security analysis
	Correctness and security.
	Reusability.
	Comparison with CFP+16.

	Analysis on concrete parameters
	Security.
	Iteration number.
	Storage space.
	Time consumption.

	Conclusion
	The Proof of Theorems

