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Abstract. Following the development of quantum computing, the demand
for post-quantum alternatives to current cryptosystems has firmly increased
recently. The main disadvantage of those schemes is the amount of resources
needed to implement them in comparison to their classical counterpart.
In conjunction with the growth of the Internet of Things, it is crucial to
know if post-quantum algorithms can evolve in constraint environments
without incurring an unacceptable performance penalty. In this paper, we
propose an instantiation of a module-lattice-based KEM working over a ring
of dimension 128 using a limited amount of memory at runtime. It can be
seen as a lightweight version of Kyber [7] or a module version of Frodo [8].
We propose parameters targeting popular 8-bit AVR microcontrollers and
security level 1 of NIST. Our implementation fits in around 2 KB of RAM
while still providing reasonable efficiency and 128 bits of security, but at
the cost of a reduced correctness.

1 Introduction

Since the publication of an efficient quantum algorithm able to break both dis-
crete logarithm and factorization problems [25], a joint effort has been made from
part of the cryptographic community to overcome this future threat under the
name of post-quantum cryptography. Recently, the National Institute of Standards
and Technology asked researchers to develop and implement several proposals for
post-quantum public-key algorithms to pave the way to standardization. After the
first round of submissions, the most represented family of post-quantum scheme is
the one using lattices problems. For several years, lattice-based cryptography has
seen a lot of development, in theory, as well as in practice. Lattice-based problems
like learning with errors (LWE) [24] offer a huge versatility in terms of crypto-
graphic applications, ranging from the most basic primitives like signatures and
key-exchanges, to advanced constructions such as fully homomorphic encryption.
During its early phase, it was unclear if this problem was enabling practical instan-
tiations since it required to work with huge matrices over the integers. Latter, a
more structured version of the problem based on operations in the ring of integers
of number fields was proposed under the name ring learning with errors (RLWE)
[21]. It reduced drastically keys sizes and sped up computation thanks to efficient
polynomial algorithms based on a discrete Fourier transform. Unfortunately, it also
reduced the confidence we have in these cryptosystems since security is now based
on problems in algebraically structured lattices called ideal lattices. Recently, a new
approach based on module lattices has been successfully used to take the middle
ground between LWE and RLWE, while maintaining efficiency. Nevertheless, even



if proposals to the NIST competition were packaged with optimized software, the
primitives and parameters choices stayed generic and were targeting modern per-
sonal computers with common architecture such as x86 CPUs. In the real world,
cryptography is also used to secure devices found in the myriad of embedded sys-
tems appearing with the internet of things (IoT). Those devices live in a really
constraint environment, often with low computing power and very limited storage.
While slow primitives can be acceptable if no firm time constraints have to be met
or if cryptography is only a marginal part of the whole system, the lack of memory
space to run those primitive is a real issue in practice and is not fixable without
modifying the hardware. Let us, for example, take NewHope[3] [2], it is defined
as a Diffie-Hellman like key exchange over the ring Z12289[X]/〈X1024 + 1〉 which
means that, even using an optimal encoding, one ring element takes over 1700 KB
of RAM. On small embedded devices such has the ATmega328p, it means that one
polynomial already consume the whole memory. 1 Hence, it is interesting to study
what kind of trade-offs can be made in order to bring post-quantum algorithm to
the embedded world. Naturally, some sacrifices will be made in security, correct-
ness or efficiency to obtain a lightweight version of those post-quantum primitives
but small devices often have a threat model different than a general computer con-
nected to the internet and it is not unusual to lighten cryptographic schemes in
this context.

Our work. In this work, we propose an instantiation of a post-quantum key encap-
sulation mechanism (KEM) based on the hardness of problems on module lattices
with parameters tailored for low memory devices. The scheme can be seen as a
module version of Frodo or a lightweight, uncompressed, version of Kyber. We pro-
vide experimental results obtained with a software implementation on 8-bit AVR
microcontrollers showing that it is indeed possible to implement a lattice-based key
exchange on very constraint platforms without scarifying too much security. The
novelty in comparison to Kyber is the usage of the ring Zq[X]/〈X128 + 1〉 offering
more versatility in the choice of the parameters and more specifically allowing to
set q to 257 while still benefiting from the discrete Fourier transform for polynomial
multiplication. Having a ring of smaller dimension also offers other advantages such
as a less algebraically structured problem and limits the amount of coefficients un-
packed during the execution of the algorithm. We maintain a classical security level
of more than 128 bits and a post-quantum security of around 100 bits with pes-
simistic analysis. The main drawback is the lowered correctness preventing those
parameters to be used in full generality.

Previous work. Lattice-based cryptography implementations on low-power devices
has been studied under different angles in the litterature [13,4,22,11,6,9]. Implemen-
tations specifically targeting 8-bit AVR microcontrollers can be found in [23,20,19].
Since standard LWE is to heavy for embedded systems, they focus on RLWE. Up to
our knowledge, the specific case of MLWE has not yet been treated extensively in
the literature. The main reason it that it is a pretty new construction and most of
the issues are common to RLWE since the bottleneck of computation is arithmetic
in polynomial rings.

1 Obviously, NewHope was not made to fit specifically on small devices, it offers really
high security and was crafted as a general key exchange targeting future standardiza-
tion.
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Software The software written for this work is placed in the public domain and is
available at https://github.com/fragerar/Module-KEM-128

2 Preliminaries

2.1 Notations

We use Zq to denote the ring of integers modulo q and R for the polynomial ring
Zq[X]/〈Xn + 1〉. Elements of R and scalars are represented by lower case letters
(e.g. p ∈ R). For vectors, we use bold lower case letters (v ∈ Rk) and for matrices,
bold capital letters (M ∈ Rk×k). An algorithm alg ran on input x with result put
in y is written y ← alg(x) or y = alg(x) if it is in an equation. Sometimes we
want to explicitly provide a random tape r to alg and write y ← alg(x; r). The

operation of sampling a value v from a distribution χ is noted v
r←− χ. When a set

is provided instead of an explicit distribution, we mean the uniform distribution
over this set. Since we work with the Number Theoretic Transform, we may want
to explicitly indicate whether a polynomial is in frequency domain. In this case, we
use the tilde notation: ṽ ← NTT(v). For a vector of polynomials v, we write ‖v‖∞
the maximum of the set of the absolute values of the coefficients of all its entries.

2.2 Cryptographic notions

Sharing a key in order to communicate over an insecure channel using symmetric
algorithm is one of the most fundamental task of public-key cryptography. This
can be achieved using a key encapsulation mechanism (KEM) constructed from a
public-key encryption scheme (PKE) semantically secure against chosen plaintext
attacks (CPA). The transition from a CPA-secure PKE to a CPA-secure KEM
is straightforward, the key is sampled at random and encrypted under the public
key of the recipient who retrieve it using his private key. Obtaining a KEM se-
cure against chosen ciphertext attacks (CCA) is more complex and require special
transformations such as Fujisaki-Okamoto [12]. In the following we review basic
notions of CPA-PKE and CCA-KEM. All algorithms implicitly take as input the
public parameters of the system and the security parameter.

Public-key encryption scheme

Definition 1. (PKE). A public-key encryption scheme (PKE) is a tuple (KeyGen,
Encrypt, Decrypt) composed of the following algorithms :

– KeyGen(): a randomized algorithm outputing a secret/public key pair (sk,pk).
– Encrypt(pk,m): a randomized algorithm taking as input a public key pk and

a message m and outputing a ciphertext ct
– Decrypt(sk, ct): a deterministic algorithm taking as input a secret key sk and

a ciphertext ct and outputing a message m.

Definition 2. (CPA security for PKE) A PKE is said to be CPA-secure if the
probability that any polynomial time adversary (modeled as a set of two algorithms
{A,A′} is negligibly close to 1

2 :

– The challenger runs the key generation algorithm and outputs a key pair
(sk, pk)← Keygen().
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– The adversary learns the pk and outputs two messages (m0,m1)← A(pk).
– The challengers choose a bit b and outputs a ciphertext ct← Encrypt(pk,mb).
– The adversary outputs a bit b′ ← A′(ct, pk) and wins the game if b = b′

Key encapsulation mechanism

Definition 3. (KEM). A key encapsulation mechanism (KEM) with key space
K is a tuple (KeyGen, Encaps, Decaps) composed of the following algorithms :

– KeyGen(): a randomized algorithm outputing a secret/public key pair (sk,pk).
– Encaps(pk): a possibly randomized algorithm taking as input a public key and

ouputing a ciphertext ct, together with a symmetric key K ∈ K.
– Decaps(sk, ct): a deterministic algorithm taking as input a secret key and a

ciphertext and outputing a symmetric key K ′.

Definition 4. (δ-Correctness) [14] A key encapsulation mechanism is said to be
δ-correct if

P[Decaps(sk, ct) 6= K ′ | (sk, pk)← KeyGen(); (ct,K)← Encaps(pk)] ≤ δ

It captures the fact that the value shared by the two parties is indeed the same
with probability 1− δ.

Definition 5. (CCA security for KEM) A KEM is said to be CCA-secure if
the probability that any polynomial time adversary (modeled as an algorithm A)
is negligibly close to 1

2 :

– The challenger runs the key generation algorithm and outputs a key pair
(sk, pk)← Keygen().

– The challenger gets a ciphertext/key pair by running (ct,K0) ← Encaps(pk)
and generates a random key K1 ∈ K.

– The challengers choose a bit b and reveal kb to the adversary.
– The adversary outputs a bit b′ ← A(ct, kn, pk). Here, A has access to a decap-

sulation oracle Odecaps defined as Decaps(sk, ·). The only restriction is that it
will not accept queries on ct. The adversary wins the game if b = b′.

2.3 Module learning with errors

We base the hardness of our scheme on the module learning with errors (MLWE)
problem. It has been extensively studied by Langlois and Stehlé in [17]. Let R =
Zq[X]/〈Xn + 1〉 and χ a narrow error distribution over R, that is to say output-
ing polynomials with small coefficients over the integers with high probability. Its
decision version is defined as follow :

Definition 6. ((Decisional-)MLWE). Let ai
r←− Rk. For a secret vector s← Rk

and a polynomially bounded number of samples ti = 〈ai, s〉+ ei ∈ R with ei
r←− χ,

distinguish the distribution of the ti from the uniform distribution over R. For
a fixed number of samples m, we write the problem in matrix form where, for
A ∈ Rm×k, the goal is to distinguish A · s + e from the uniform distribution over
Rm
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If one set n = 1, the MLWE problem is simply the LWE problem [24]. If one
set m = k = 1, it becomes the RLWE problem [21].
It is also possible to consider multiple instances of MLWE at the same time where
the secret is now a matrix S over Rk×m′

. As shown in [17], this problem enjoys
worst-case to average-case reductions from lattices problems believed to be hard
for a quantum adversary.

2.4 Binomial distribution

As in [7,3], we use the centered binomial as error distribution in order to facilitate
sampling. Since the support of the error distribution can be taken quite small
thanks to our choice of q = 257, an approach based on gaussian sampling with
precomputed table is also possible.
The center binomial of parameter p, denoted Bp is the distribution of the outcome
of
∑p
i=1(bi − b′i) with bi and b′i sampled uniformly at random in {0, 1}. For our

modulus q, we only need to use B1 to get secure MLWE instances. Hence, the
distribution is simply: P[X = −1] = 0.25, P[X = 0] = 0.5 and P[X = 1] = 0.25.

2.5 Number Theoretic Transform

When the ring R = Zq[X]/〈Xn + 1〉 is instanciated with n a power of 2, q a prime
and q ≡ 1 (mod) 2n, the multiplication between two ring elements can be per-
formed using a specialized discrete Fourier transform algorithm called the Number
Theoretic Transform (NTT).
For v a vector in Znq and ω a primitive n-th root of unity in Znq we define ṽ = NTT(v)

the vector such that ṽ[k] =
∑n−1
i=0 v[i] ·ωik and vinv = INTT(v) the vector such that

vinv[k] = n−1 ·
∑n−1
i=0 v[i] · ω−ik. We have that v = INTT(NTT(v)) and that for

two vectors a,b ∈ Znq , c = a ∗ b = INTT(NTT(a) ◦ NTT(b)) (with ◦ denoting the
coefficient-wise product) is the cyclic convolution product of a and b.

Interestingly, if we see polynomials as their coefficients vectors in Znq , a∗b corre-
spond to the usual multiplication a · b in Zq[X]/〈Xn−1〉. To multiply in R instead
of this NTRU-like ring, we have to take care of the minus signs appearing when
reducing modulo Xn + 1. In order to do that, we must perform a coefficient-wise
multiplication between the inputs of the NTT and a vector containing powers of a
2n-th primitive root of unity ψ and a coefficient-wise multiplication between the
output of INTT and a vector containing the inverse powers of ψ.

Putting all together, for ψ a primitive 2n-th root of unity in Zq, ψpow the
vector (1, ψ, ψ2, ..., ψn−1) and ψ−1pow the vector (1, ψ−1, ψ−2, ..., ψ−(n−1)), the prod-
uct of two polynomials a, b ∈ R seen as elements in Znq is given by a · b =
ψ−1pow ◦ INTT(NTT(a ◦ ψpow) ◦ NTT(b ◦ ψpow)).
Fortunately, it is possible to directly incorporate the multiplication with ψpow and
ψ−1pow into the computation of the NTT and INTT. Hence, in the following, when
referring to those two functions, we means their versions enabling the computation
of the product in R. The purpose of using the Number Theoretic Transform to
perform products is efficiency, indeed, with FFT algorithms, we can compute NTT

and INTT (hence multiplication) in O(n · log n). Borrowing terminology from signal
processing, we call an output of NTT a vector in frequency domain and an output
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of INTT (or an untransformed vector) a vector in time domain. In RLWE-based or
MLWE-based scheme, a meticulous usage of the time and frequency domain can
greatly enhance the speed of the primitive.

2.6 Key encoding and decoding

In LWE-based key exchange protocols, the two parties eventually compute two
noisy versions of the exchanged value. Since symmetric algorithms are only useful
if the exact same key is used on both side, it required to encode the key in a way
allowing correct reconciliation. The usual approach in encryption-based KEM is to
encode the key K as a polynomial p with coefficients in {0, b q2c}. Since those two
values are at maximal distance in Zq, even if an error polynomial e is added to p,
it is still possible to retrieve K as long as ‖e‖∞ ≤ b

q
4c using a threshold decoder.

– p = Encode(K = b1b2...bλ) :=
∑λ
i bi · b

q
2c ·X

i

– K = Decode(p′ = p+ e) :=
(
bi = 1 if q

4 < p′i <= 3q
4 else bi = 0

)
2.7 AVR 8-bit microcontrollers

In this work, we target the popular ATmega328p and ATmega2560 microcontrollers
found, for example, on the user friendly Arduino Board (respectively UNO and
Mega 2560). They are both part of the Atmel AVR family of microcontroller and
support the same instruction set. They can be programmed in C/C++ or using
AVR assembly language. Most operations operates on 8 bits but there exist a
native multiplication operation 8 × 8 → 16 (but no floating point support). Both
microcontrollers run at the same speed but provide a different amount of memory.

ATmega328p ATmega2560

SRAM (KB) 2 8
Flash Memory (KB) 32 256
Clock Speed (MHZ) 16 16

3 Module-lattice-based KEM over the ring R

3.1 CPA-KEM from MLWE encryption

Our focus in this paper is a module-LWE-based key encapsulation mechanism con-
structed from the CPA-secure LWE encryption of Lindner and Peikert[18]. It is
described in Algorithms 1, 2 and 3. The variables of the scheme are the following:

– k is the main security parameter. The dimension of the LWE problem seen as
an unstructured lattice problem is k · n× k · n.

– n is the dimension of the ring R = Zq[X]/〈Xn + 1〉.
– l controls the size λ of the exchanged secret key in terms of multiples of the

ring size, λ = n · l.
– l′ controls the number of coefficients used to encrypt one bit of key.
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Algorithm 1 KeyGen

Input: Public parameter A ∈ Rk×k
Output: Key pair pk = T ∈ Rk×l, sk = S ∈ Rk×l

1: (S,E)← Bk×lp × Bk×lp

2: T← A · S + E
3: return pk = T, sk = S

Algorithm 2 CPA.Encaps

Input: Public parameter A, public key T, random symmetric key K ∈ {0, 1}n·l

Output: Encrypted key ct = (U,V) ∈ Rk×l
′
×Rl×l

′

1: (R,E1,E2)
r←− Bk×lp × Bl×l

′
p × Bl×l

′
p

2: U← AT ·R + E1 ∈ Rk×l
′

3: V← TT ·R + E2 + encode(K) ∈ Rl×l
′

4: return ct = (U,V)

Algorithm 3 CPA.Decaps

Input: Encapsulated Key ct = (U,V), secret key S
Output: Symmetric Key K

1: K = decode(V − ST ·U)
2: return K

3.2 CCA transformation

As in [8,7,10], we extended it to a CCA-secure KEM by using a generic transforma-
tion. We use the same approach as [10] by using the FO6⊥ transform of [14] proved
secure by [16]. We made the small modification of comparing hashes of ciphertexts
instead of ciphertexts themselves. It allows us to discard the first ciphertext as soon
as we can to limit memory usage in practice. The goal is to avoid the unaffordable
situation of having two ciphertexts living in memory at the same time. Another
possibility, with even lower memory footprint, could be to rewrite a new encapsu-
lation routine subtracting to the previous ciphertext and verifying that it is equal
to zero at the end but we believe it might be a bit far-fetched.

Algorithm 4 CCA.Encaps

Input: Public parameter A, public key T
Output: Key K and its encapsulation ct

1: m
r←− {0, 1}λ

2: (K̂, r)← H(T,m)
3: ct = CPA.Encaps(A,T,m; r)
4: K = H(K̂, ct)
5: return (ct,K)
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Algorithm 5 CCA.Decaps

Input: Public parameter A, secret key sk = (S, z), public key T and encapsulated key
ct
Output: Key K

1: m′ ← CPA.Decaps(ct,S)
2: (K̂′, r′)← H(T,m′)
3: ct′ ← CPA.Encaps(A,T,m′; r′)
4: if H(ct′) = H(ct) then
5: K = H(K̂, ct)
6: else
7: K = H(z, ct)

8: return K

4 Instantiation over Z257[X]/〈X128 + 1〉

In order to get a compact instantiation, we decided that a good strategy was to
limit the dimension of the polynomials. The idea is that since the algorithms are
mainly made of matrix-vector multiplications and dot products between vectors of
ring elements, it is possible to get an efficient implementation while only having a
minimal number of coefficients unpacked (see 4.2). Obviously, it would be possible
to work with all coefficients packed all the time but the performances would be
greatly decreased since the NTT is constantly reading and modifying the polyno-
mial. Our implementation works with only one polynomial unpacked at the time.
In [7], the authors justified the choice of n = 256 by the fact that they wanted
to encapsulate a key of 256 bits, one bit per coefficient. While it perfectly makes
sense, we decided to work with the ring Zq[X]/〈X128 +1〉 for the following reasons:

1. It gives more flexibility in the size of underlying LWE instance since we can
use all multiples of 128.

2. It enables the NTT algorithm for the very appealing Fermat modulus 257.

3. Its module-LWE problem is less structured.

4. Unpacked polynomials are smaller.

5. It is still possible to exchange 256 bits secrets without increasing to much the
memory footprint.2

In this work, we consider two sets of parameters detailed in Table 4. In the name
KEM a b c, a refers to the dimension of the underlying standard LWE instance, b
is the value of the modulus and c is the dimension of the exchanged secret. The
reason for having two sets is that while the security of the KEM itself does not
depend on the size of the exchanged key, the final goal is often to use a symmetric
algorithm afterward and one worried by Grover’s algorithm may want to use a
256-bit key.

2 The keys will be larger but in our case we store them in the less expensive flash memory
of the microcontroller
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n q k l l′ λ |ct| (Bytes)

KEM 384 257 128 128 257 3 1 1 128 576
KEM 384 257 256 128 257 3 2 1 256 720

With the first set, the two matrix multiplications are actually a matrix-vector
multiplication and a dot product. We can then rewrite the scheme as in Figure 4.
We also explicitly wrote the NTT in order to get a clear view of what has to be
computed. In the following, the analysis will be made with respect to this set for
the sake of brevity but is essentially the same for the second one.

KeyGen(Ã) :

1: s̃← NTT(Binomial())
2: ẽ← NTT(Binomial())
3: t̃← Ã · s̃ + ẽ
4: return t̃, s̃

Encaps(Ã, t̃,K) :

1: r̃← NTT(Binomial())
2: ẽ1 ← NTT(Binomial())
3: ẽ2 ← NTT(Binomial())
4: ũ← ÃT · r̃ + ẽ1

5: ṽ ← t̃T · r̃ + ẽ2 + Encode(K)
6: return ũ, ṽ

Decaps(̃s, ũ, ṽ,K) :

1: K = Decode(INTT(ṽ − s̃ · ũ))
2: return K

Fig. 1. Practical instantiation for the set KEM 384 257 128

4.1 Computing modulo 257

When doing arithmetic in Zq[X]/〈Xn + 1〉, it is really convenient to have access to
the Number Theoretic Transform to multiply polynomials. Not only it offers a gen-
eral O(n log n) algorithm to multiply ring elements but it also give some optimiza-
tion opportunities by carefully choosing when to go in and out of the frequency do-
main. Unfortunately since the transform require primitive 2n-th root of unity to ex-
ist in Zq, not all values of q are allowed for a fixed ring, the requirement is that q−1
divides 2n. For the ring of dimension 256, the smallest prime having this property is
7681 and is the one used in Kyber. When switching to the ring of dimension 128, we
can now set q to the Fermat prime 257. Not only this reduces the size of the polyno-
mials which are now really close to one byte per coefficient but it also enjoy really ef-
ficient modular reductions. The trick is to realize that working modulo 257, a (k+1)-

bit integer v ≡
∑k
i=0 ci ·2i ≡

∑7
i=0 ci ·2i+28

∑k−8
j=0 cj ·2j ≡

∑7
i=0 ci ·2i−

∑k−8
j=0 cj ·2j ,

using the congruence 28 ≡ −1 mod 257. It means that the modular reduction of
can be computed via v = (v&0xFF) - (v >> 8).
The main operation we need to implement to compute the KEM is the modular
multiplication Z257×Z257 → Z257. The ATmega328p being a 8-bit microcontroller,
it is quite cumbersome to work with big integers and we want to limit the size of
the intermediate computations to two registers (16 bits). Elements of Zq are often
naturally represented as integers in the set {0, 1, ..., q − 1}. In our case, the multi-
plication of two such integers for q = 257 would cause an overflow on 16 bits for
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256∗256 which would be inconvenient to handle. Fortunately, arithmetic in Zq does
not depend on the representative used for the cosets. Hence, we decided to represent
Z257 with the signed integers in S = {−128, ..., 0, .., 128}, this does not impair per-
formances since the microcontroller can natively handle signed multiplications and
the multiplication does not overflow on 16 bits anymore. Even better, we can even
use representatives in a set slightly larger than S without overflowing, this is really
useful to save reductions when adding polynomials from the error distribution to
uniformly random ones because we can omit (lazy reduction) to reduce coefficients
with absolute values a bit over 128 since they will still be correctly reduced by
the multiplication algorithm. The reduction of a 16-bit integer into S is somewhat
more involved than just shifting and subtracting but is still really lightweight and
requires neither division nor multiplication. The C-like procedure is described in
algorithm 6 but a specialized AVR assembly version is used in the code.

Algorithm 6 Reduction of an int16 to {−128, ..., 128} modulo 257

function mod257(v)
v ← ((v&0xFF )− (v >> 8))
v ← v − (0x101&((0x80− v) >> 15))

4.2 Representation of packed polynomials

We use two data structures to store polynomials, Poly = int16[128] (using 2048
bits) and Packed_poly = uint8[144] (using 1152 bits). The goal of Poly is to pro-
vide an ”easy to work with” representation of polynomials of degree 128 over Z257,
each coefficient is stored as a 16-bit signed integer in the array. This representation
is very loose, a lot of space is wasted since outside of intermediate computations,
only 257 different values are needed but accessing a given coefficient is really fast.
On the other hand Packed_poly is a more compact representation, it is not optimal
since the entropy of the polynomial is log2(257) ∗ 128 = 1024.72 bits but reaching
optimality would require a really inefficient procedure to pack and unpack values.
Instead we made a reasonable trade-off between ease of encoding and compactness.
The 128 first uint8 represent the 8 least significant bits of the two’s complement
representation of each coefficient in [−128, 128] and the last 16 values contain sign
bits, packed by 8. Hence, even though we use 9 bits to represent 257 values, the
unpack procedure only has to retrieve the sign bit with some boolean operations
and fill the upper register with copies of it the reconstruct the 16-bit integer.

4.3 Memory efficient algorithm

We now describe how to compute algorithm of Figure 4 with a limited stack usage.
Note that the goal here is not to aggressively save every possible byte of RAM but to
make a reasonable trade-off permitting to work in memory constraint environments.
Pseudo code is given in algorithm 7, let us described the previously undefined
functions:

– fill error poly(p, r): Fill the polynomial p with coefficients sampled from
the error distribution using the randomness r
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– pointwise add mul packed(p1,p2,p3): Compute p3 = p1 · p2 + p3 coefficient
wise with p2 and p3 in packed form.

– add key(p, K): Add encoding of the key K to the polynomial p
– XOF(out,outlen,in,inlen): Expand a seed in of size inlen into a pseudo random

value out of size outlen.

Outside temporary values, the only variables living in RAM during the execu-
tion are the key K as an array of bytes, x of type Poly, V of type Packed_poly

and U as an array of k Packed_poly. The public parameter and the public key
are both stored in the frequency domain in flash memory. The first part of the
algorithm preprocess V and U to fill their entries with coefficients from the error
distribution (and encodes the key). The purpose of setting the errors before com-
puting the products is to avoid requiring the memory area containing U and V to
be all zeros since further operations will only add values and never set them. The
next part aims to compute both the matrix-vector multiplication AT · r and the
dot product TT · r at the same time by iteratively sampling r entry by entry. At
each iteration of the outer loop, one entry of r is sampled, multiplied by a full row
of A (the matrix is transposed) and by an entry of T, and added respectively to
U and V. Since all polynomials live in the frequency domain, all coefficients are
accessed only once during additions and multiplications. For this reason, we can
directly apply those operations on packed polynomials by unpacking and repacking
each coefficient on the fly without unpacking the whole polynomial.

Algorithm 7 Memory efficient KEM computation

XOF(random tape, random size, seed, seed size)
fill error poly(x, random tape) . sample e2
add key(x, K) . e2 + Encode(K)
NTT(x)
pack(x, V[i])
for i=0; i < k; ++i do

fill error poly(x, random tape) . sample e1

NTT(x)
pack(x, U[i])

for i=0; i < k; ++i do
fill error poly(x, random tape) . sample r
NTT(x)
for j=0; j < k; ++j do

pointwise add mul packed(A[i*K + j], x, U[j]) . AT · r + e1

pointwise add mul packed(T[i], x, V) . TT · r + e2 + Encode(K)

4.4 Randomness generation

High quality randomness is always important for cryptographic applications. On
UNIX-based systems, it is a common practice to read bytes from /dev/urandom

to get random numbers. On microcontrollers, the situation is more complex and
unfortunately, no algorithmic solution can solve the lack of entropy pool. Since we
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needed to deterministically regenerate a random tape for the CCA-secure version,
we only used random() to generate the key and a seed. The seed is deterministically
expanded using Salsa20 to generate a pseudo-random stream of bytes. The choice
of Salsa20 is somewhat arbitrary and does not affect the core of the implementation
(cSHAKE would be another good option) but we decided to reuse the code of the
µNaCL library [15] optimized for AVR 8-bit architecture.

4.5 Security

Estimating the exact security of LWE instances is a complex task and is a constantly
evolving field. Some estimations make pessimistic analyses based on possible future
advances in cryptanalyses while others stick closer to the performances of current
algorithms. Fortunately Albrecht and al. [1] developed a tool facilitating the task
of assessing bit security of LWE-based schemes. Even though we use a structured
problem (module lattices), cryptanalysis algorithm do not take advantage of this
fact and the MLWE problem is treated as standard LWE.
We run the estimator with the two following command:

n = 384; q = 257; stddev = sqrt(1/2); alpha = alphaf(sigmaf(stddev), q)

_ = estimate_lwe(n, alpha, q, reduction_cost_model=BKZ.sieve)

estimating a security of 134 bits and

Q_Core_Sieve=lambda beta, d, B: ZZ(2)**RR(0.265*beta)

n = 384; q = 257; stddev = sqrt(1/2); alpha = alphaf(sigmaf(stddev), q)

_ = estimate_lwe(n, alpha, q, reduction_cost_model=Q_Core_Sieve)

indicating a quantum security of at least 95 bits using really pessimistic estimations.
This places the security above level 1 of NIST.

4.6 Correctness

During decapsulation, the recipient first computes

v − sT · u = t · r−A · s · r− sT · e1 + e2 + Encode(K)

= A · s · r + e · r−A · s · r− sT · e1 + e2 + Encode(K)

= e · r− sT · e1 + e2 + Encode(k)

then uses the Decode() algorithm and hopefully recovers the correct key. Since
it is a simple threshold decoder without any additional error-correcting procedure,
the keys exchanged are the same if all coefficients of ∆ =

∣∣e · r− sT · e1 + e2

∣∣
are less than b q4c. Let us estimate the correctness of the scheme by computing
the probability of ‖∆‖∞ < 64. Since this polynomial is the result of the sum
of two dot products and an error polynomial, each of its coefficient is a sum of
128 · 2 · 3 = 768 random variables from the product of B1 with itself (let us call
it B21) and a random variable from B1. Estimating bounds on the sum of random
variable is not always easy but in case of small supports, it is possible to explicitly
compute all convolutions. The distribution B21 is easy to determine by hand. Let
A ∼ B1 and B ∼ B1:

P [AB = 0] =
3

4
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P [AB = z | z ∈ {−1, 1}] =
1

8

We wrote a Python script using Numpy to compute the 768 convolutions by
B21 in a square-and-multiply fashion and convoluted a last time with B1 to take
into account e2. We then applied the union bound on the 128 coefficients of ∆ to
determine the overall failure probability. We determined that the scheme is 2−10.7-
correct. This is clearly a limitation in comparison to general purpose KEMs.

5 Experimental results

Experimental results are presented in Table 1. The first set of parameters has been
benchmarked on the ATmega328p and the second one on the ATmega2560. We can
see that the core of the key encapsulation, that is to say the module-lattice-based
CPA encryption, offers satisfying performances, even in such a constraint environ-
ment. Regarding memory footprint, we were glad to be able to fit the algorithm
in under 2KB of RAM, making its computation on the small ATmega328P pos-
sible. The unsatisfactory result is the runtime of the CCA version. Since it uses
CPA.Encaps and CPA.Decaps as black boxes, its inefficiency is due to the com-
putation of the hash functions on a whole ciphertext. We used the well known
BLAKE32 and SHA3 since our work in totally orthogonal to this choice but a
lightweight alternative might be to consider.3

Parameters Algorithm Speed (ms) Total stack (Bytes)

KEM 384 257 128

CPA.Encaps 64.36 1320
CPA.Decaps 12.44 944
CCA.Encaps 106.70 1519
CCA.Decaps 194.87 1613

KEM 384 257 256

CPA.Encaps 77.98 1497
CPA.Decaps 20.36 1161
CCA.Encaps 269.52 2022
CCA.Decaps 638.94 2016

Table 1. Experimental results on ATmega328p and ATmega2560.

6 Conclusion

In this work, we studied a key encapsulation mechanism derived from Kyber and
Frodo with parameters tailored for embedded systems and more specifically small
8-bit popular AVR microcontrollers. As a novelty, we decided to work over a ring of
dimension 128. This allows us to reduce the number of unpacked coefficients con-
currently living in memory and also to use the NTT compatible modulus 257. This
Fermat prime enables a really efficient reduction procedure which is welcome since
the AVR architecture does not support neither vectorized instructions nor float-
ing point operations. We assessed the security of those parameters using common

3 See [5] for an extensive comparison of hash functions on AVR.

13



estimation techniques and corroborate their legitimacy by providing experimental
results on ATmega328p and ATmega2560. The price to pay is a reduced correctness
of the scheme which prevents it to be used in all contexts. Nevertheless, it provides
an interesting trade-off for the IoT world.
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