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Abstract. In a recent paper the authors and their collaborators pro-
posed a new hard problem, called the finite field isomorphism problem,
and they used it to construct a fully homomorphic encryption scheme.
In this paper, we investigate how one might build a digital signature
scheme from this new problem. Intuitively, the hidden field isomorphism
allows us to convert short vectors in the underlying lattice of one field
into generic looking vectors in an isomorphic field.
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1 Introduction

In [3], the authors and their collaborators presented a new hard problem, the
Finite Field Isomorphism Problem. We briefly recall the problem here. Let q
be a prime, let Fq be the finite field with q elements, and let f(x) ∈ Fq[x]
and F (y) ∈ Fq[y] be irreducible monic polynomials of degree n. Then

X := Fq[x]/(f(x)) and Y := Fq[y]/(F (y)) (1)

are isomorphic fields with qn elements. As usual, we identify elements of X
and Y with vectors having integer coordinates between − 1

2q and 1
2q, and we use

this identification measure the size of field elements. It is then an experimental
observation that, except for trivial cases, the isomorphism X → Y does not
respect the Archimedian property of size. Indeed, when f and F are distinct
monic irreducible polynomials, it is observed that polynomials within a sphere
of small radius in X appear to be essentially uniformly distributed in Y, with
respect to both the L∞ and the L2 norms.

Definition 1. Finite Field Isomorphism Problems (FFI): Let k ≥ 1 be
an integer, let X and Y be as in (1), let φ be an isomorphism φ : X ∼−→ Y, let
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1 ≤ β ≤ 1
2q be a parameter, and let X[β] denote the set of a(x) ∈ X with L∞-

norm bounded by ‖a‖ ≤ β. Choose a1(x), . . . ,ak(x) uniformly and randomly
from X[β], and let Ai = φ(ai) for 1 ≤ i ≤ k be the corresponding images in Y.

The Computational FFI problem (CFFI): Given Y and the list of polynomials
A1(y), . . . ,Ak(y), recover f(x) and/or one or more of a1(x), . . . ,ak(x).

The Decisional FFI problem (DFFI): Let ε > 0. Let b1(x) be randomly chosen
in X[β], let B1(y) = φ(b1), and let B2(y) be randomly chosen in Y. Given
the data Y,A1(y), . . . ,Ak(y), and given the pair

{
B1(y),B2(y)

}
in a random

order, identify, with probability greater than 1/2 + ε, which element of the pair
was constructed using φ.

Remark 1. Under reasonable independence assumptions and for reasonable pa-
rameters, the CFFI has a unique solution. Thus for randomly chosen F (y) and
A1(y), . . . ,Ak(y), it is an exercise to estimate the probability that there exists
an f(x) ∈ X[β] and a1(x), . . . ,ak(x) ∈ X[β] and an isomorphism X→ Y sending
ai to Ai for all 1 ≤ i ≤ k. This probability is roughly n−1

(
(2β + 1)k+1/qk)n.

In [3], the authors gave a detailed construction of how to build an isomor-
phism X → Y, described a preliminary analysis of the hardness of the FFI
problems, and constructed a new fully homomorphic encryption scheme from
the decisional version of the FFI problem. In this paper we explain how to build
a signature scheme from the computational version of the FFI problem via the
following framework, where we refer the reader to Section 3.3 for the definitions
of the lattices Lh and LH .

1. Generate a signature s, which is a a short vector within or close to a lattice
Lh related to the hidden field X.

2. Publish its image S ∈ Y, and demonstrate the validity of the signature by
showing a relationship between S and a lattice LH related to the public field
Y.

Since we have assumed that the map X → Y behaves like a random map-
ping, there is a negligible probability that the public lattice LH will have any
exceptionally short vectors. Therefore, we can build trapdoors using short vec-
tors in Lh without the necessity of concealing the trapdoor from the attacker.
This allows us to use very efficient methods to generate s. As an example, we
will show how this can be done using NTRU lattices

Verification is still possible due to the homomorphic property of the map
X → Y, but various lattice attacks on the public key, e.g., searching for the
trapdoor from the lattice, are blunted or eliminated due to the non-linear nature
of the isomorphism X→ Y.

In this paper, we instantiate the above idea using the pqNTRUSign signature
scheme [9,8,10], a candidate in the NIST PQC competition [17]. We name this
new scheme pqFFSign.

We briefly recall that an NTRU lattice L is a built using a ring of the form
X := Z[X]/f(X)Z[X], where f(X) = XN ± 1 or some similar polynomial with



small coefficients [9]. More precisely, one creates a sublattice of X×X by choosing
small secret polynomials and taking solutions to a congruence modulo a public
integer q. The private key is the short lattice vectors coming from the small
polynomials, and the public key is a basis consisting of long vectors. The secret
short vectors, as usual, can be used to solve approximate closest vector problems,
and a signature in the pqNTRUSign scheme consists of a solution to an appr-
CVP, where an additional congruence modulo a small prime p is used to tie
the document to the signature. Details are given in the cited references, but the
important point is that the NTRU ring and the NTRU lattice are public values,
and the NTRU lattice contains one or more very short vectors, a property that
could potentially be exploited by lattice reduction algorithms.

The key idea in the present paper is that we do not allow the attacker to see
the lattice X, which contains one or more vectors that are considerably shorter
than predicted by the Gaussian heuristic. Instead, we use the isomorphism X→
Y to transfer the entire problem to a lattice that does not have any especially
short vectors. In this way, some previously described attacks against the private
key of NTRU lattices, such as the hybrid attack [11], become impossible, since the
very short vectors that exist in an NTRU lattice are mapped to random-looking
vectors in the image lattice. However, even for pqFFSign, forgery attack via
transcript analysis is still possible, so we rely as usual on rejection sampling [13,4]
to seal the information leakage in transcripts. Due to space constraints, we omit
a full description and analysis of rejection sampling here, but it is easy to adapt
the material already described in the original pqNTRUSign paper.

Lattice-based signatures and rejection sampling. Signature schemes based on
hard lattice problems have a history of almost 20 years. Early lattice-based sig-
nature schemes, such as GGHSign [6] and NTRUSign [7], leaked private key
information via transcripts of message/signature pairs. An attacker could cre-
ate a signing key from a long enough transcript using methods for “learning a
parallelepiped” [5,16].

In [13], Lyubashevsky proposed a rejection sampling method to thwart tran-
script leakage attacks. Using his technique, signatures are produced according to
a fixed public distribution, typically either a Gaussian or a uniform distribution.
A transcript reveals only this public distribution, and contains no information
about the particular signing key that is used to generate the signatures. This
technique has become the de facto method for avoiding transcript leakage in
lattice-based signature schemes; cf. as [4,14,8,10]. However, to ensure that the
output signature follows a given distribution, a large number of randomly gen-
erated candidate signatures may need to be rejected before a suitable signature
is accepted. This may significantly slow down the signing procedure.



2 Preliminaries

2.1 Notation

Let f(x) ∈ Fq[x] and F (y) ∈ Fq[y] be monic irreducible polynomials of degree n.
We use f and F to construct two copies of Fqn , which we denote by

X := Fq[x]/(f(x)) and Y := Fq[y]/(F (y)),

and we let φ : X → Y be an isomorphism of fields. In general, polynomials
denoted by lower case letters will be polynomials in X, and their isomorphic
images in Y will be denoted with the corresponding capital letters. A vector form
of a polynomial is the vector consisting of all coefficients of the given polynomial.
We will often identify polynomials and vectors when there is no ambiguity.

Consider a polynomial a(x) = a0 + a1x + · · · + an−1x
n−1 ∈ X. We will

informally say that a(x) is short if for all i, the congruence class ai mod q re-
duced into the interval (−q/2, q/2] is small relative to q. An important class of
such polynomials are those satisfying ai ∈ {−1, 0, 1}; these are called trinary
polynomials. We denote by

‖a‖ = max
0≤i≤n−1

|ai| and ‖a‖2 = (a20 + · · ·+ a2n−1)1/2

the L∞-norm and the L2-norm of a, respectively, where it is understood that
the coefficients of a are normalized to lie in the interval (−q/2, q/2]. N.B. In our
notation, the unsubscripted absolute value ‖ · ‖ is the L∞-norm, not the usual
Euclidean L2-norm.

We now list some additional notation that is used in the rest of this paper:

• [Secret] a(x), b(x) ∈ X short irreducible monic polynomials of degree n.

• [Secret] h(x) ≡ b(x) ·
(
pa(x)

)−1
(mod f(x)) ∈ X.

• [Public] H(y) ∈ Y is the image in Y of h(x) ∈ X.
• [Secret] U is an n-by-n invertible matrix with small entries, e.g., in {−1, 0, 1}.

2.2 Two Uniformity Heuristics

We start with a heuristic which says that polynomials in Fq[x] with small coef-
ficients are as likely to be irreducible as random polynomials.

Heuristic 1 Let q be odd, and let 1 ≤ β ≤ 1
2q. Then there are approximately

1
n

(
b2β+1c

)n
distinct irreducible monic polynomials a over Fq[x] satisfying ‖a‖ ≤

β.

Heuristic 1 is based on the very reasonable assumption that monic irreducible
polynomials are uniformly distributed over Fq[x] with respect to the L∞-norm,
together with the well known prime number theorem for function fields, which
states that the number of distinct irreducible monic polynomials of degree n
in Fq[x] is on the order of qn/n; see [12, Chapter 7, Section 2, Corollary 2].



Similarly, classical primality tests for integers such as Miller–Rabin [15,18] are
easily adapted to the function field setting. It is thus easy to check, at least
with very high probability, whether a given polynomial is irreducible, and the
probability of success is roughly 1/n.

We invoke Heuristic 1 primarily to ensure that the signer will be able to find
a pqFFSign private key. It also could help with combinatorial security in the
sense that it says that the space of pqFFSign private keys is too large to search.
However, since there does not appear to be an algorithm that directly lists the
irreducible polynomials in the set of bounded coefficient polynomials, the actual
combinatorial security comes from the size of the full set of bounded coefficient
polynomials.

We will also mention the following additional uniformity heuristic on inverses,
which might help in future security analyses of pqFFSign. However, we note
that this heuristic is not related to the hardness of the finite field isomorphism
problem.

Heuristic 2 Let q ≥ 2, and let U ∈ GLn(Fq) be an invertible matrix with small
entries, for example entries randomly chosen from {−1, 0, 1}. Then the entries
of U−1 are approximately uniformly distributed in Fq.

This is similar to various well-established assumptions. Uniformity of prod-
ucts of the form U−11 U2, with U1 and U2 small-entry circulant matrices, was used
in analyzing the security of NTRUEncrypt [9]. If we instead choose the coeffi-
cients of U1 and U2 from a discrete Gaussian distribution for certain parameters,
then it is proven in [19] that U−11 U2 is almost uniformly distributed in GLn(Fq).

We note that Heuristic 2 says that when our secret basis c1(x), . . . , cn(x)
for X is written as linear combinations of the (almost) standard basis x, x2, . . . , xn,
the coefficients of those linear combinations look reasonably random in Fq.

3 The pqFF-Sign Signature Scheme

For this section, we fix the following parameters:

• n, the degree of the polynomials f(x) and F (Y ).
• q, a (moderate) size prime.
• β, a size parameter satisfying 1 ≤ β ≤ 1

2q, used to specify the size of the
coefficients of a “small” polynomial.

• p, a (very small) prime different from q.
• B, a closeness parameter, used to determine if a claimed signature is a

good enough solution to a CVP to be a valid signature.

3.1 An Algorithm to Find an Isomorphism

We recall how to find suitable polynomials f(x) and F (y) and an explicit iso-
morphism

φ : Fq[x]/(f(x))
∼−−→ Fq[y]/(F (y))



as described in more detail in [3]. Recall that we need to find four polynomials
f ,F ,φ,ψ satisfying:

• f(x) ∈ Fq[x] is irreducible monic of degree n with ‖f(x)‖ ≤ β.
• F (y) ∈ Fq[y] is irreducible monic of degree n with random coefficients.
• φ(y) ∈ Fq[y] and ψ(x) ∈ Fq[x] have degree less than n.
• F (y)

∣∣ f(φ(y)
)
.

• φ
(
ψ(x)

)
≡ x (mod f(x)).

The key idea here is that x will be identified with φ(y) and y will be identified
with ψ(x), and the conditions on φ and ψ say that this identification gives an
explicit isomorphisms. The algorithm for finding these quantities is sketched in
Algorithm 1.

Remark 2. For a given f and F , there are exactly n choices for φ, namely the n
roots of f in Y. (The general theory of finite fields ensures that f splits com-
pletely in Y ∼= Fqn .) Alternatively, given one value of φ(y), the complete set

of possibilities for φ(y) are
{
φ(y)q

i

mod F (y) : 0 ≤ i < n
}

. These are exactly
the Gal(Y/Fq)-conjugates of φ, where Gal(Y/Fq) ∼= Gal(Fqn/Fq) is cyclic of
order n, generated by the q-power Frobenius map.

Algorithm 1 Finite Field Isomorphism Generation (See [3] for details.)

1: Sample f(x) uniformly from the set of monic degree n polynomials a(x) ∈ Fq[x]
satisfying ‖a‖ ≤ β until finding an f that is irreducible.

2: Sample F (y) uniformly from the set of monic degree n polynomials in Fq[y] until
finding an F that is irreducible. (Alternatively, use an F provided by a trusted
source.)

3: Find a root of f(y) in the finite field Y := Fq[y]/(F (y)) ∼= Fqn , and lift this root
to a polynomial φ(y) ∈ Fq[y] of degree less than n.

4: Construct the unique polynomial ψ(x) ∈ Fq[x] of degree less than n satisfying
ψ
(
φ(y)

)
≡ y (mod F (y)).

5: return f(x), F (y), φ(y) and ψ(x).

3.2 The Detailed Scheme

The pqFFSign signature scheme uses three algorithms: KeyGen, Signing and
Verify. In addition it also requires a Hash function

Hash : {documents} × {public keys} −→
(
−1

2
p,

1

2
p

]2n
that maps a document and a public key into a 2n-dimensional vector with small
coefficients. We assume as usual that Hash is a cryptographically secure hash
function in which each bit of the given document and each bit of the given public
key affects every bit of the output.



Key generation The key generation algorithm

KeyGen(λ)→ pk, sk

takes as the input a bit-security parameter λ, i.e., the goal is a scheme whose
running time is O(2λ). It outputs a public key pk and a secret key sk as follows:

– Generate a parameter set Ξ = {n, p, q, β,B} as a function of λ, where in
particular p is a small integer, co-prime to q, satisfying pn/2 ≥ 2λ. (This
ensures that a collision search on a set of size pn is infeasible for the desired
bit-security.)

– Generate a finite field isomorphism {f ,F ,φ,ψ} as described in Section 3.1.
– Generate polynomials a(x) and b(x) in Fq[x] with coefficients bounded by β.

– Compute h(x) ≡
(
pa(x)

)−1
b(x) (mod f(x)) ∈ X.3

– Compute H(y) := h
(
φ(y)

)
∈ Y, the image of h(x) in Y.

– Choose an invertible n-by-n matrix U ∈ GLn(Fq) with small coefficients,
e.g., with coefficients bounded by β.

– Define c1(x), c2(x), · · · , cn(x) ∈ X by the relation

U


c1(x)
c2(x)

...
cn(x)

 ≡

x
x2

...
xn

 (mod q,f(x)). (2)

(See Remark 5 for the significance of the relation (2).)
– Compute the images C1(y), . . . ,Cn(y) ∈ Y of c1(x), . . . , cn(x).
– Output the following signing key sk and verification key pk:

pk := {Ξ,F (y),H(y),C1(y), . . . ,Cn(y)},
sk := {Ξ,f(x), φ(y), ψ(x), U,a(x), b(x), c1(x), . . . , cn(x)}.

Signing The signing algorithm

Sign(µ, sk)→ σ

takes a message µ and a secret key sk as the input, and outputs a signature σ
as follows:

– Hash the message and the public key to form a pair of n-dimensional mod p
vectors,

Hash(µ,pk) = (δ, ε) := (δ1, . . . , δn, ε1, . . . , εn).

– Generate (δ, ε) satisfying:

δ ≡ δ (mod p), ‖δ‖ ≤ 1

2
q −B,

ε ≡ ε (mod p), ‖ε‖ ≤ 1

2
q −B,

3 For comparison purposes, we note that h(x) has the form of a typical NTRU public
key.



and with the property that the polynomials

s(x) :=

n∑
i=1

δici(x) and t(x) :=

n∑
i=1

εici(x), (3)

satisfy the relation

s(x)h(x) ≡ t(x) (mod q,f(x))

in the field X. An algorithm to compute a valid pair (δ, ε) is given in Sec-
tion 3.3.

– Output: The signature is the pair σ := (δ, ε).

Verification The verification algorithm

Verify(µ, σ,pk)→ ACCEPT/REJECT

takes a message µ, a signature σ, and a public key pk as the input. It first uses
the message and the public key to compute

(δ, ε) := Hash(µ,pk).

It then checks the validity of the following conditions:

δ ≡ δ (mod p), ‖δ‖ ≤ 1

2
q −B, (4)

ε ≡ ε (mod p), ‖ε‖ ≤ 1

2
q −B. (5)

(
n∑
i=1

δiCi(y)

)
H(y) =

n∑
i=1

εiCi(y) in Y. (6)

(See Remark 3 for the purpose of these conditions.) Output: ACCEPT if (4),
(5), and 6 are true, REJECT otherwise.

Remark 3. The mod p conditions in (4) and (5) for δ and ε serve to link the
signature to the document and to the public key. The equality (6) and the norm
conditions in (4) and (5) give a relation in Y that reflects a relation among short
vectors in X.

Remark 4. A comparison shows that the primary difference between pqNTRU-
Sign and pqFFSign is that in the former, signatures are created by using polyno-
mials in the ring Z[x]/

(
f(x)

)
whose coefficients are small relative to the standard

basis 1, x, . . . , xn−1, while in the latter we use polynomials with small coefficients
relative to the basis c1(x), . . . , cn(x). The advantage of this approach is that the
verifier only sees a relation involving C1(y), . . . ,Cn(y) in Y.



Remark 5. The polynomials c1(x), c2(x), . . . , cn(x) form an Fq-basis for X, and
C1(y),C2(y), . . . ,Cn(y) form an Fq-basis for Y. Each Cj(y) is the image of the
corresponding cj(x) under the isomorphism that sends x 7→ φ(y). This same
isomorphism preserves the coefficients of linear combinations of the cj(x), that
is, ∑

αjcj(x) 7→
∑

αjCj(y).

The key property on which pqFFSign is based is the relation (2) and the fact that
the coefficients of U are small, from which it follows that each of the monomials
x, x2, . . . , xn is a linear combination of the cj(x) with small coefficients. From
this it follows that any polynomial in x with small coefficients can in turn be
written as a polynomial in cj(x) with small coefficients. Note that Heuristic 2
says that the converse will not be true, i.e., it says that the coefficients of the
cj(x) will be uniformly distributed mod q.

3.3 Algorithm To Find (δ, ε)

We note that the choice of the security parameter B provides a balance between
combinatorial security (large B is good) and the difficulty of generating a valid
signature using the private key (small B is good).

Definition 2. For any polynomial h(x) ∈ X = Fq[x]/
(
f(x)

)
, we define the

associated NTRU lattice to be the 2n-dimensional lattice

Lh :=

{(
u(x),v(x)

)
∈ Z[x]2 :

deg(u) ≤ n− 1, deg(v) ≤ n− 1,
v(x) ≡ u(x)h(x) (mod q,f(x))

}
.

Similarly for LH . We note that
(
pa(x), b(x)

)
is a short vector in Lh, but its

image in LH is unlikely to be short.

1. For j = 1, . . . , n, choose δ
(0)
j at random such that |δ(0)j | < 1

2q − B and

δ
(0)
j ≡ δj (mod p) and set

s0(x) =

n∑
j=1

δ
(0)
j cj(x).

2. Define t0(x) by
t0(x) ≡ s0(x)h(x) (mod q,f(x))

and write

t0(x) ≡
n−1∑
i=0

tix
i (mod q,f(x)).

Note that by construction we have
(
s0(x), t0(x)

)
∈ Lh.

3. Rewrite t0(x) as a linear combination of the basis c1(x), . . . , cn(x) of X, say

t0(x) =

n∑
j=1

ηjcj(x) for some η1, . . . , ηn with −1

2
q < ηj ≤

1

2
q.



If all of the ηj lie in the interval (− 1
2q + B, 12q − B], proceed to Step (iv);

otherwise go back to Step (i) and choose new values for the δ
(0)
j . (For ap-

propriate choices of parameters, the probability of success at this step is
reasonably high; see [8] for details. As described in [8], this step may be used
to implement rejection sampling, which provides security against transcript
attacks.)

4. Construct
(
u(x),v(x)

)
∈ Lh such that

u(x) =

n∑
j=1

δ
(u)
j cj(x) and v(x) =

n∑
j=1

δ
(v)
j cj(x),

with |δ(u)j |, |δ
(v)
j | < B for all j, with δ

(u)
j ≡ 0 (mod p), and δ

(v)
j + ηj ≡ εj

(mod p) for all j. The procedure for this step is sufficiently complicated that
we give the details in Section 3.3.1.

5. Set s(x) = s0(x) + u(x) and t(x) = t0(x) + v(x). Write s(x) and t(x) as
linear combination of the basis polynomials c1(x), . . . , cn(x) as in (3), and
read off the coefficients of those linear combinations to create the vectors δ
and ε that form the signature.

3.3.1 Details of Step 4 To construct the desired
(
u(x),v(x)

)
, we construct

an appropriate r(x) which is short, and set

u(x) = pr(x)a(x) and v(x) = r(x)b(x).

We want to find an r(x) that satisfies

r(x)b(x) =

n∑
j=1

δ
(v)
j cj(x) with the |δ(v)j | < B and δ

(v)
j + ηj ≡ εj (mod p),

and also satisfies

pr(x)a(x) =

n∑
j=1

δ
(u)
j cj(x) with the |δ(u)j | < B and δ

(u)
j ≡ 0 (mod p).

Suppose first that we have any r(x) that is sufficiently short. Since a(x) is
short, we see that r(x)a(x) is also short, and we may write

r(x)a(x) =

n∑
i=1

dix
i ∈ X with small di.

Then the δ
(u)
j s in the formula

pr(x)a(x) =

n∑
j=1

δ
(u)
j cj(x)

are given by

(δ
(u)
1 , . . . , δ(u)n ) = p(d1, . . . , dn)U.



As long as all of the di and all of the entries of U are sufficiently small, we

will have |δ(u)j | < B and δ
(u)
j ≡ 0 (mod p) for all j. Thus for whatever sufficiently

short r(x) we choose, the δ
(u)
j ≡ 0 (mod p) condition will hold.

We turn now to finding a short r(x) that satisfies

r(x)b(x) =

n∑
j=1

δ
(v)
j cj(x) with |δ(v)j | < B and δ

(v)
j ≡ εj − ηj (mod p).

To accomplish this, write b(x) =
∑n−1
i=0 bix

i, set

(b0,0, b0,1, . . . , b0,n−1) = (b0, b1, . . . , bn−1),

and for 1 ≤ i < n, define (bi,0, bi,1, . . . , bi,n−1) by

xib(x) ≡ bi,0 + bi,1x+ · · ·+ bi,n−1x
n−1 (mod f(x)).

Let B denote the matrix whose i, j entry is bi,j and consider the product BU .
The entries of BU are small because the bi,j and the entries of U are small. For
any

r(x) =

n−1∑
i=0

rix
i ≡

n∑
i=1

r′ix
i (mod f(x))

we have

r(x)b(x) = (r′1, r
′
2, . . . , r

′
n)BU


c1(x)
c2(x)

...
cn(x)

 .

To solve for r(x), first define

(r′1, r
′
2, . . . , r

′
n) ≡ (δ

(v)

1 , δ
(v)

2 , . . . , δ
(v)

n )(BU)−1 (mod p)

and lift each r′j to r′j ∈ (−p/2, p/2]. Then define δ
(v)
j by

(δ
(v)
1 , . . . , δ(v)n ) = (r′1, . . . , r

′
n)BU.

This accomplishes the goal

r(x)b(x) =

n∑
j=1

δ
(v)
j cj(x) with δ

(v)
j ≡ δ(v)j (mod p).

4 Security Considerations

We highlight some of best known attacks. Due to page limitations, we leave other
(less effective) known attacks in the appendix.



4.1 The Size of B

The key point is to choose B in such a way that the final signature lies inside
an appropriate subset of the (− 1

2q,
1
2q] box. Recall that

(δ
(v)
1 , . . . , δ(v)n ) = (r′1, . . . , r

′
n)BU.

The coefficients r′i lie in the interval (−p/2, p/2]. Let K be chosen to be the

maximum of the absolute values of the entries of BU . Then each |δ(v)j | will be

bounded above by a constant multiple of pK
√
n. The same almost applies to

|δ(u)j |, but because of the multiple of p it will be larger by a factor of p unless some

scaling is done to compensate for this, for example, by choosing the original δ
(0)
j

from an interval smaller than (−q/2, q/2]. So B must be on the order of pK
√
n.

The size of K will be optimal when U and B are as sparse as possible.

4.2 Recovering the Isomorphism/Solving CFFI Problem

The attacker is given polynomials C1(y), . . . ,Cn(y) ∈ Y that are the images
of unknown short polynomials c1(x), . . . , cn(x) ∈ X via an unknown isomor-
phism X→ Y. For the general CFFI problem, if the attacker knows at least 2n
elements of Y that are images of short elements of X, then she can set up a
mixed lattice/combinatorial attack to recover the short elements of X and the
isomorphism X→ Y. See Section B in the appendix for details.

This attack requires 2n elements, but the public key for pqFFSign provides
the attacker with only n images of short elements of X, not 2n. So the attack
would seem to fail at this point. However, the fact that f(x) is small means that
products of small elements of X remain reasonably small. Indeed, that is a key
fact being exploited by pqFFSign. So for 1 ≤ i ≤ n, the attacker can create
additional elements by taking products such as Cn+i(y) := C1(y)Ci(y) mod
F (y) in Y, and these new elements of Y will be images of somewhat small
elements of X. This may allow the attack described in Section B to proceed,
with the caveat that the target vectors will now be considerably larger than in
the basic version of the CFFI problem. On the other hand, since the coordinates
of the target vectors will now consist of n very small numbers and n moderately
small numbers, the targets are unbalanced. So a full analysis of the underlying
lattice problem requires balancing the lattice to account for this imbalance in
the targets’ coordinates.

4.3 Recovering the Unique Shortest Vector

There are two main security concerns that determine parameters in pqNTRUSign.
One is the problem of recovering the private key from the public NTRU key, and
the other is the problem of forgery. Of these, the one that has the biggest impact
on parameter size is the public key to private key problem. This is because, to
make rejection sampling efficient, the q needs to be chosen large compared to n.



This makes the lattice problem somewhat easier and forces an increase in the
size of n. The forgery problem requires smaller parameters to achieve the same
security levels.

In this context there appear at first to be two NTRU-type problems: Re-
covering a(x), b(x) from h(x), and recovering the corresponding polynomials
A(y),B(y) from H(y). However, the polynomial h(x) is private and is only re-
vealed if the underlying isomorphism is discovered, in which case the scheme is
considered broken. So this lattice problem does not apply to pqFFSign.

On the other hand, the polynomial H(y) is public, but the corresponding
problem of recovering A(y),B(y) from H(y) is not a lattice problem because
A(y) and B(y) are polynomials with coefficients that are essentially random
mod q, so they are not short. This is a consequence of the fundamental obser-
vation that the isomorphism between the two copies of Fqn does not respect
the archimedian properties of the polynomials’ coefficients. Further, since A(y)
and B(y) are not short, recovery of them does not appear to be helpful to the
attacker.

There is a lattice attack to recover the matrix U from the Cj(y), and this
would suffice to break the scheme, but the dimension of the lattice required
to solve this problem is at least n2. We describe this attack in Section C. For
all of these reasons, it thus appears that it suffices to set parameters to avoid
forgery attacks, and this should allow for smaller signatures and better operating
characteristics. In particular, by choosing the small prime p as close as possible to√
q, we can make the Gaussian defect of a solution very close to one, which thus

makes lattice reduction attacks very difficult even in relatively small dimensions.

5 Conclusion and Future Work

In this work we present a signature scheme (partially) based on the Compu-
tational Finite Field Isomorphism Problem (CFFI). Future research directions
include:

The hardness of the finite field isomorphism problem: In this paper, we
have indicated several ways in which one might try to solve the CFFI problem.
However, the quantitative difficulty of the CFFI problem is presently unclear.

Average-case/worse-case hardness: There exists an easy instance of the
CFFI problem, namely when f(x) = F (y). It would be of interest to prove that
random (or even, all) instances of the CFFI problem with f(x) 6= F (y) are
equally difficult.

Transcript security and rejection sampling : A sufficiently long raw pqNTRU-
Sign transcript allows an attacker to reconstruct a short lattice basis due to the
way in which signatures are generated. The use of rejection sampling eliminates
this attack by leading to transcripts that are independent of the underlying lat-
tice. (See [8] for details.) Similarly, raw pqFFSign reveals a transcript of short



vectors (δ, ε) that may contain information about f or (a, b) or U . We expect
that rejection sampling can be used to produce key-independent transcripts.
Formulating and proving such a result should not be hard, but remains to be
done.

Security reduction between pqFFSign and CFFI : It is clear that the se-
curity of pqFFSign, the signature scheme that we have proposed in this paper,
relies on the difficulty of CFFI. The converse is not clear. It would be quite
interesting to give a security reduction showing, say, that breaking pqFFSign
plus an algorithm solving some sort of standard hard CVP lattice problem is
equivalent to solving the CFFI problem.

Analyze the balanced lattice attack : As discussed in Section 4.2, the lattice
attack (Section B) on the pure CFFI problem needs to be balanced before being
applied to pqFFSign. Doing this will yield constraints on the various parameters
required to achieve a desired level of security. Further, even if the lattice attack
succeeds completely, there is still what appears to be a difficult combinatorial
problem to solve. This combinatorial problem deserves further study.
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where (δ, ε) mod p = (δ, ε). Hence (δ, ε) is a vector in a translated lattice

(δ, ε) ∈ L1 := pZ2n + (δ, ε).

Next, using the formulas

S(y) =

n∑
i=1

δiCi(y), T (y) =

n∑
i=1

εiCi(y), S(y)H(y) = T (y),

we have
δC(y)H(y) = εC(y).

That is, (δ, ε) is also in the lattice

(δ, ε) ∈ L2 := RowSpan

(
qIn 0

CHC−1 In

)
.

We observe that any vector in the intersection L1∩L2 is a potential signature.
We have

det(L1) = p2n, det(L1) = qn, det(L1 ∩ L2) = p2nqn,
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where the last equality uses the assumption that gcd(p, q) = 1. Hence the Gaus-
sian heuristic for the shortest nonzero vector in L1 ∩ L2 is

GH(L1 ∩ L2) =

√
2 dim(L1 ∩ L2)

πe
det(L1 ∩ L2)

1
dim =

√
p2qN

πe
.

Further, we se that the L2 norm of the target vector is bounded by∥∥(δ, ε)
∥∥
2
≤
√

2Nq.

This yields the root Hermite factor

γ(L1 ∩ L2) =

( √
2Nq√

p2qN/πe

)1/2n

=
(√

2πeq/p
)1/2n

.

Hence a lattice attack will be infeasible if we choose parameters to ensure that(√
2πeq/p

)1/2n
< γexp,

where γexp is chosen to be the experimental Hermite factor expected to be achiev-
able via lattice reduction algorithms. For example, using the LLL-BKZ 2.0 al-
gorithms, a Hermite factor γ = 1.005 seems to be secure; see [2].

B A Combined Lattice-Combinatorial Attack on the
CFFI Problem

We consider the CFFI problem under the assumption that k ≥ 2n, so the at-
tacker is given polynomials A1(y), . . . ,Ak(y) ∈ Y that are the images of polyno-
mials a1(x), . . . ,ak(x) ∈ X having small coefficients. We identify a polynomial
C(y) = C0+ · · ·+Cn−1yn−1 ∈ Y with the row vector C := (C0, . . . , Cn−1) ∈ Fnq ,
and similarly for elements of X. Then the (unknown) isomorphism ψ : Y → X
is given by an n × n matrix Ψ , i.e., Ψ is the matrix of ψ relative to the bases
{1, . . . , yn−1} of Y and {1, . . . , xn−1} of X. Note that with this notation, we have
ψ
(
C(y)

)
= CΨ .

We form four n× n matrices

M :=

A1

...
An

 , N :=

An+1

...
A2n

 , m :=

a1

...
an

 , n :=

an+1

...
a2n

 .

In other words, the rows of M are the vectors A1, . . . ,An, and similarly for the
other matrices. Then by assumption we have the matrix formulas

MΨ = m and NΨ = n, and thus NM−1m = n,



where all computations are done in Fq. Note that although the matrix Ψ has
unknown random coefficients, the matrices m and n have unknown small coeffi-
cients, and the matrices M and N are known. So this last formula will allow us
to describe a known lattice with unknown short target vectors.

For each 1 ≤ t ≤ n, let

vt :=

(
column vector whose first n coordinates are the tth-column
of m and whose second n coordinates are the tth-column of n.

)
∈ Z2n,

where we have, as usual, lifted numbers from Fq to an interval centered at 0.
Then the relation NM−1m = n tells us that

vt ∈ L := ColumnSpan

(
I 0

NM−1 qI

)
.

We may thus use lattice reduction methods to search for the n short vectors
v1, . . . , vn in the known lattice L.

The lattice L satisfies

dimL = 2n and DetL = qn,

so the Gaussian expected norm of the smallest vector in L is

GH(L) =
√

dimL/πe(DetL)1/ dimL =

√
2nq

πe
.

On the other hand, if we assume that the coefficients of a1, . . . ,a2n are random
integers in the interval from −β to β, as in the statement of CFFI, then the
expected length of each target vector vt is roughly τ :=

√
2n/3β. Hence the

root Hermite ratio is

γ(L) :=

(
GH(L)

τ

)1/ dimL

≈

(
1

β

√
3q

πe

)1/2n

.

We remark that currently a Hermite ratio smaller than 1.005 appears to achieve
reasonable security; cf. [2].

There are two additional issues. First, it is not clear that the set

S := {vt : 1 ≤ t ≤ n}

of target vectors consists of the n shortest linearly independent vectors in L.
Thus even a complete lattice reduction that finds an “optimal basis” for L may
only return some small linear combinations of the elements of S. The attacker
would then have to unsort these small linear combinations to find the set S.

Second, even if the attacker finds the exact set of short vector S, there is a
combinatorial problem to solve, since the set S comes with no preferred order.
But the coordinates of vt are the coefficients of xt in a1, . . . ,a2n, so recovery
of a1, . . . ,a2n and reconstruction of Ψ works only if the set of short vectors S is
put in the correct order. There are n! ways to reorder S, so if n is large, a full
search, or even a collision search, is infeasible. It remains an open problem to
find a faster method to correctly order the elements of S.



C Attack to Recover U

During key generation we construct a set of polynomials c1(x), . . . , cn(x) by
choosing an n× n sparse matrix U and setting

c1(x)
c2(x)

...
cn(x)

 ≡ U−1

x
x2

...
xn

 (mod q).

Then for example we have

n∑
i=1

u1,ici(x) = x,

n∑
i=1

u2,ici(x) = x2,

n∑
i=1

u3,ici(x) = x3,

so using the fact that x · x2 = x3, we find that(
n∑
i=1

u1,ici(x)

) n∑
j=1

u2,jcj(x)

 ≡ ( n∑
k=1

u3,kck(x)

)
(mod f(x), q).

This in turn gives a formula in Y,(
n∑
i=1

u1,iCi(y)

) n∑
j=1

u2,jCj(y)

 ≡ ( n∑
k=1

u3,kCk(y)

)
(mod F (y), q).

Multiplying this out gives

n∑
i=1

u1,iu2,i︸ ︷︷ ︸
vi

Ci(y)2 +

n−1∑
i=1

n∑
j=i+1

(u1,iu2,j + u1,ju2,i)︸ ︷︷ ︸
wij

Ci(y)Cj(y)

≡

(
n∑
k=1

u3,kCk(y)

)
(mod F (y), q).

Reducing the various Ci(y)Cj(y) products modulo F (y) yields a system of n
linear equations over Fq in the variables

{vi : 1 ≤ i ≤ n} ∪ {wij : 1 ≤ i < j ≤ n} ∪ {u3,k : 1 ≤ k ≤ n}.

To ease notation, we write N = 1
2n(n + 3) for the number of variables, we

write t = (vi, wij , u3,k) for the vector consisting of these variables, and we let M
be the N × n matrix giving the system of linear equations over Fq. Then we
obtain a matrix formula (

t ∗
)(IN M

0 qIn

)
=
(
t 0
)
.



This gives a lattice problem of dimension N +n and determinant qn with target
vector t.4

The size of the target t depends on the distribution of the entries in U . For
simplicity, suppose that the entries of U are chosen uniformly and independently
from {−1, 0, 1}. Then each wij satisfies

Prob(wij = ±2) =
2

81
, Prob(wij = ±1) =

20

81
, Prob(wij = 0) =

37

81
.

So even ignoring the vi and u3,k coordinates of t, we find that the expected value
of ‖t‖22 is at least

n(n− 1)

2

(
2

81
· 4 +

20

81
· 1 +

37

81
· 0
)

=
14

81
(n2 − n),

so we expect ‖t‖ to be roughly n
√

14/9. On the other hand, the Gaussian ex-
pected length of the shortest non-zero vector in the lattice is roughly√

n2/πe · (qn)1/n
2

≈ 0.1 · n · q1/n.

Thus even for quite large values of q, the target vector is likely to be considerably
larger than many other (useless) short vectors in the lattice. For example, if
n = 100, then the target only becomes a likely shortest vector if q > 10111.

D A Non-Linear Attack

It is possible to use multiplication and reduction modulo F (y) in Y to set up an
attack in which one has to find small solutions to certain non-linear equations.
Such problems appear to be completely infeasible, which we illustrate with a toy
example with n = 3.

The attacker knows the polynomials

c′(y) = c′0 + c′1y + c′2y
2, c′′(y) = c′′0 + c′′1y + c′′2y

2, h(y) = y2 + h0y + h1.

To make life easier, we take h(y) = y3 + y + 1. The attacker tries to find the
small polynomials

m′(x) = m′0 +m′1x+m′2x
2 and m′′(x) = m′′0 +m′′1x+m′′2x

2

by eliminating the polynomial φ(y) = φ0 + φ1y + φ2y
2 from the congruences

c′0 + c′1y + c′2y
2 ≡ m′0 +m′1(φ0 + φ1y + φ2y

2) +m′2(φ0 + φ1y + φ2y
2)2

(mod y3 + y + 1),

c′′0 + c′′1y + c′′2y
2 ≡ m′′0 +m′′1(φ0 + φ1y + φ2y

2) +m′′2(φ0 + φ1y + φ2y
2)2

(mod y3 + y + 1).

4 With a bit more work, one can eliminate the 0 in the target and obtain a lattice
problem of dimension N , but since N is so much larger than n, the gain is negligible.



Expanding and reducing modulo y3 + y + 1, we find that

c′0 + c′1y + c′2y
2 = (m′2φ

2
0 +m′1φ0 − 2m′2φ2φ1 +m′0)

+ (2m′2φ1φ0 − 2m′2φ2φ1 +m′1φ1 −m′2φ22)y

+ (2m′2φ2φ0 +m′2φ
2
1 −m′2φ22 +m′1φ2)y2,

and similarly for c′′. So we get 6 equations

m′2φ
2
0 +m′1φ0 − 2m′2φ2φ1 +m′0 = c′0

2m′2φ1φ0 − 2m′2φ2φ1 +m′1φ1 −m′2φ22 = c′1

2m′2φ2φ0 +m′2φ
2
1 −m′2φ22 +m′1φ2 = c′2

m′′2φ
2
0 +m′′1φ0 − 2m′′2φ2φ1 +m′′0 = c′′0

2m′′2φ1φ0 − 2m′′2φ2φ1 +m′′1φ1 −m′′2φ22 = c′′1

2m′′2φ2φ0 +m′′2φ
2
1 −m′′2φ22 +m′′1φ2 = c′′2

in the 9 variables m′0,m
′
1,m

′
2,m

′′
0 ,m

′′
1 ,m

′′
2 , φ0, φ1, φ2. These equations are linear

in the small variables m′i and m′′i , but are non-linear in the large variables φi
that need to be eliminated. Eliminating the large variables, we are left with three
highly non-linear polynomials in the six unknowns m′i,m

′′
i . In other words, we

need to find points with small coordinates on a 3-dimensional variety sitting in
6-dimensional space.

To investigate further, we computed an explicit example. We worked over F11

and took (c′0, c
′
1, c
′
2, c
′′
0 , c
′′
1 , c
′′
2) = (1, 2, 3, 4, 5, 6). We used the Grobner-basis rou-

tine in Magma [1] to eliminate φ0, φ1, φ2 from the 6 equations. The resulting
equations for the 6 variables m′i,m

′′
i covered more then two pages of small type

and had no discernable structure.
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