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Abstract. In this paper, we investigate the hardware circuit complexity
of the class of Boolean functions recently introduced by Tang and Maitra
(IEEE-TIT 64(1): 393 402, 2018). While this class of functions has very
good cryptographic properties, the exact hardware requirement is an
immediate concern as noted in the paper itself. In this direction, we
consider different circuit architectures based on finite field arithmetic and
Boolean optimization. An estimation of the circuit complexity is provided
for such functions given any input size n. We study different candidate
architectures for implementing these functions, all based on the finite
field arithmetic. We also show different implementations for both ASIC
and FPGA, providing further analysis on the practical aspects of the
functions in question and the relation between these implementations and
the theoretical bound. The practical results show that the Tang-Maitra
functions are quite competitive in terms of area, while still maintaining
an acceptable level of throughput performance for both ASIC and FPGA
implementations.

Keywords: Boolean Functions, Bent Functions, Cryptology, Finite Fields, Hard-
ware Implementation, Stream Cipher.

1 Introduction

Boolean functions are used in many domains such as sequences, cryptogra-
phy, coding theory and combinatorics. In many cryptosystems, for example,
linear/non-linear feedback shift register (LFSR and NFSR) based stream ciphers,
a Boolean function is used to combine the outputs of several LFSRs/NFSRs. A
special class of Boolean functions, having the maximum distance from the set
of all affine functions, are known as bent functions. Introduced by Rothaus in
1976 [Rot76], these functions maximally resist any kind of affine approximations.

However, bent functions are not directly used as cryptographic primitives,
since they are not balanced. Moreover, bent functions f ∈ Bn (we denote the
set of n-variable Boolean functions as Bn) exist only for even number of vari-
ables and its degree is at most n

2 . Dillon [Dil74] constructed a class of bent



functions, which is called the partial spread (PS) class of bent functions, and
the bent functions in PSap is a subclass of PS. Another generic class of bent
functions, called Maiorana–McFarland class (denoted by M), was introduced
in [McF73] and further investigated in [Dil74]. Further, Dobbertin [Dob94] and
Carlet [Car93] constructed different classes of bent functions. For more details
of bent Boolean functions, we refer to [MM16,CS09]. Recently, Tang and Maitra
[TM18, Construction 1] constructed a class of cryptographically significant bal-
anced Boolean functions by modifying a special type of bent functions in PSap.
Such functions have very good nonlinearity and autocorrelation at the same
time. Further research in this direction has been reported in [KMT18].

Since the functions of [TM18] are derived from Dillon type bent functions
(related to Maiorana-McFarland type functions), the actual hardware should fol-
low from the finite field implementation ideas. This is the task that we take up
here. Noting that such functions might be useful in lightweight stream ciphers,
we try to see how efficiently one can actually implement such functions. In fact,
we note that the 12-variable function requires area less than 500 GE (gate equiv-
alent) which may be embedded in a lightweight stream cipher circuit of 1000 GE.
Functions on 22-variables can be implemented with little more than 3000 GE.
This underlines that such implementations might be of interest as primitives in
stream cipher design.

Our Contributions In this paper, we study the circuit complexity of the Tang-
Maitra class of Boolean functions. Since the construction is based on finite field
arithmetic, we consider different representations for finite fields F2n . The first
two representations are the polynomial and normal bases representations. The
third representation is the discrete-log representation of the finite field elements
(though there are some additional complexities that we will discuss later). The
results are summed up in the following three lemmas:

1. Lemma 1: The polynomial basis implementation of a Tang-Maitra function
on n variables, where n is even, has the circuit complexity bounded byO(2k+
k2) and depth of O(k), where n = 2k.

2. Lemma 2: The normal basis implementation of a Tang-Maitra function on n
variables, where n is even, has the circuit complexity bounded by O(2k+k3),
where n = 2k.

3. Lemma 4: The discrete-log implementation of a Tang-Maitra function on n
variables, where n is even, has the circuit complexity bounded by O(2k +
k2 + 2k/k2), where n = 2k.

We also propose a general circuit construction for Rotation Symmetric Boolean
Functions (RSBF), bounded by O(k2 + 2k/k2) (Lemma 3). Further, we briefly
discuss the relationship between these different representations (Section 3.3) to
clarify the well-known understanding of polynomial and normal bases repre-
sentations related to certain cryptographic properties. Finally, we practically
implement several instances of the Tang-Maitra functions for different values of
n, where n is the number of variables. We show the implementation results for



both ASIC and FPGA, providing a comparison with the hardware implementa-
tion GMM class of Boolean functions (Section 4). The results are based on the
polynomial representation, which has the lowest asymptotic circuit complexity.

2 Preliminaries

2.1 Finite field F2n arithmetic

The finite field F2n is an extension field of F2 of degree n, where F2 is a prime
field of two elements {0, 1}. In other words, F2n is the field of polynomials of
degree at most n−1 over F2. It consists of 2n elements and two basic operations
are defined for it:

1. Addition (⊕): polynomial addition modulo 2.
2. Multiplication (�): polynomial multiplication modulo F [x], where F [x] is an

irreducible polynomial of degree n over F2.

There are three more operations of interest: Squaring, Inversion and the Trace
Function, but they can be defined using the former two basic operations. Since
there can be more than one irreducible polynomial of degree n, F2n according
to this definition is not unique. However, all the fields generated by different
irreducible polynomial choice are isomorphic, i.e., a certain field can be changed
to another one by a permutation of the elements.

The trace function is a frequently referred to, in finite field theory. It is
defined as Trn1 : F2n → F2,

Trn1 (α) = α⊕ α2 ⊕ α22 ⊕ . . .⊕ α2n−1

, for all α ∈ F2n (1)

We list here certain properties of the trace function Trn1 that are important for
our work. An interested reader may refer to [LN94] for a complete discussion
related to finite fields F2n . These properties are:

1. Trn1 (α⊕ β) = Trn1 (α)⊕ Trn1 (β), for all α, β ∈ F2n .
2. Trn1 (α2) = Trn1 (α), for all α ∈ F2n .

2.2 Boolean functions

Let Fn2 be the vector space of dimension n over F2 and any element x ∈ Fn2 can
be written as x = (xn−1, . . . , x1, x0), where xi ∈ F2, 0 ≤ i ≤ n−1. Any function
f from Fn2 (or F2n) to F2 is called Boolean function in n variables. The set of
n-variable Boolean functions is denoted by Bn. Any Boolean function f ∈ Bn
can be represented in a unique way as

f(x) =
⊕
α∈Fn

2

µαx
α0
0 xα1

1 . . . x
αn−1

n−1 ,

for all x ∈ Fn2 , where µα ∈ F2. This polynomial representation is called the
algebraic normal form (ANF) of f ∈ Bn. The algebraic degree of a Boolean
function f ∈ Bn is defined as deg(f) = maxα∈Fn

2
{wt(α) : µα 6= 0}, where wt(α)

is the Hamming weight of α ∈ Fn2 , defined as wt(α) =
∑n−1
i=0 αi (the sum is over

the ring of integers). Further more details, we refer to [MM16,CS09].



2.3 F2n practical representations

In order to perform operations on finite field elements in practice, we need to
represent the elements and operations in terms of binary representations and cir-
cuits/algorithms, respectively. In this section, we describe three possible repre-
sentations, with the advantages and disadvantages of each. An inquisitive reader
can find more details in [DIS09].

Polynomial basis Let α ∈ F2n be a root of the irreducible polynomial F [x] used

to define F2n . Hence, F2n can be defined as {a(α)|a(α) =
⊕n−1

i=0 aiα
i}, where ai ∈

F2. Therefore, x(α) can be represented by the binary string (xn−1, . . . , x1, x0).
Operations are performed as follows:

1. Addition: Addition is performed using coefficient-wise XOR.
2. Multiplication: Multiplication is more complicated. Since multiplication is

defined as polynomial multiplication, the circuit complexity is O(n1+ε),
where ε > 0.5 for the available circuits, as opposed to O(n) in case of ad-
dition. However, we explain the matrix-vector multiplication method, which
has a complexity of O(n2), as it is useful in discussing the complexity of
squaring and the trace function. In the first step, we compute the polyno-
mial d(x) = a(x) · b(x) of degree at most 2n − 2. This is performed by the
equation



d0
d1
...

dn−1
...

d2n−2


=



a0 0 0 . . . 0 0
a1 a0 0 . . . 0 0
...

...
...

. . .
...

an−1 an−2 an−3 . . . a1 a0
0 an−1 an−2 . . . a2 a1
...

...
...

. . .
...

0 0 0 . . . 0 an−1




b0
b1
...

bn−1

 (2)

This step requires n2 AND gates and (n− 1)2 XOR gates. The second step
is to compute c(x) ≡ d(x) mod F [x], which is performed by the equation


c0
c1
...

cn−1

 =
[
I R

]


d0
d1
...

dn−1
...

d2n−2


(3)

where I is an n × n identity matrix and R is a matrix whose elements are
functions of F [x]. This step requires wt(R) XOR gates and it can be lowered
by choosing a suitable F [x], e.g., a trinomial.



3. Squaring: It can be implemented using only reduction (and wiring). This is
due to the fact that a(x) · a(x) = an−1x

2n−2 ⊕ an−2x2n−4 ⊕ . . . ⊕ a1x2 ⊕
a0. Hence, only the last step of the matrix-vector multiplication method is
required, leading to a circuit with wt(R) XOR gates.

4. Inversion: Inversion is the most complex operation in polynomial basis. It
requires O(n2) gates. For example, a straightforward implementation of the
Extended Euclidean Algorithm for Inversion requires around (24n2 + 24n)
MUXes, (n2 + n) AND gates and (5n2 + 5n) XOR gates. Complex Boolean
optimization heuristics are usually used to design more efficient circuits.

5. Trace Function Trn1 : Requires n− 1 squarings and n− 1 XOR gates, as only

the constant coefficients of α2i need to be added. The overall complexity is
(wt(R) + 1)(n− 1) XOR gates.

Normal basis The polynomial basis representation can be viewed as a vector
space representation with the basis {1, α, α2, α3, . . . , αn−1}. Since it is known
that the finite field representation is not unique, it is useful to look for other
suitable bases that can be used. One special basis is the normal basis, which is
defined as {β, β2, β22 , . . . , β2n−1}, where β2n = β and βi 6= β for all 1 < i < 2n,

with β is a primitive element of F2n . F2n is defined as {a(β)|a(β) =
⊕n−1

i=0 aiβ
2i},

where ai ∈ F2. Since the vectors of the normal basis are linearly independent, all
the elements of F2n can be generated as linear combinations of the basis vectors.

Again, x(β) can be represented by the binary string (xn−1, . . . , x1, x0) and
addition is the same as in the case of polynomial basis. While multiplication
is even more complex than in the case of polynomial basis (O(n1+ε), where
ε > 0.6), two of the operations we are interested in are very simple using the
normal basis representation; Squaring and Trn1 . Equation (4) shows that squaring
in F2n is a linear operation, while Equation (5) is an application of Fermat’s Little
Theorem to F2n . Using these two properties, it can be shown that in the normal
basis representation x2 is just a cyclic shift of the bit representation of x and
Trn1 (x) =

⊕n−1
i=0 xi.

(β ⊕ γ)2 = β2 ⊕ γ2, for all β, γ ∈ F2n (4)

β2n = β, for all β ∈ F2n (5)

Inversion, however, is not efficient in the normal basis. Using Fermat’s little
theorem, it requires circuit complexity of O(n2+ε), where ε > 0.6, since ex-
ponentiation requires n − 2 multiplication operations. On the other hand, for
special choices of n, more efficient circuits can be implemented. For example,
for n = 2r + 1 only log(n − 1) multiplications are required. Similar results are
available for the cases when n = m ∗ k, using Tower Fields [IT88].

Discrete-log representation Another interesting representation of finite field
elements is the discrete logarithmic representation. Let α be a primitive element
of F2n . Then α2n = α, αi 6= α, for all 0 ≤ i ≤ 2n − 2 and any nonzero element
x ∈ F2n is represented as x = αi for a 0 ≤ i ≤ 2n− 2. A special representation is



used for x = 0. Hence, only the exponent i needs to be stored. Since α has order
of 2n − 1, each of the 2n − 1 non-zero field elements have unique representation
∈ Z2n−1. Besides, i = 2n − 1 is used to represent x = 0. This representation
is very useful for applications that include a lot of multiplication, squaring and
inversion operations.

However, the transformation to/from discrete-log is a non-linear operation,
and the relation between this representation and the polynomial basis represen-
tation is non-linear. Hence, it cannot be used directly for the Tang-Maitra func-
tions without implementing this non-linear transformation increasing the circuit
complexity (details are given in Section 3.3). This representation is discussed in
details in Appendices A and B as the cost of such non-linear transformations
cannot be estimated immediately.

2.4 The Tang-Maitra Class of Functions

Tang and Maitra [TM18] constructed a class of Boolean functions with good
cryptographic properties by modifying PSap, a subclass of partial spread, as
follow:

Construction 1 [TM18, Construction 1] Let n = 2k and λ, µ ∈ F∗2n , where
k ≥ 9 is an odd integer. An n-variable Boolean function over F2n is defined as
follows

f(x, y) =


h0(y) if x = 0

h1(y) if x = µ

Trk1(λxy ) otherwise

(6)

Here we assume that Trk1(λx0 ) = 0, for all x ∈ F2k . The functions h0 and h1 must
satisfy some cryptographic properties, which can be found in [TM18,KMT18].
In Section 3, we provide circuits for Construction 1 using different finite field
representations and derive an estimation of its circuit complexity.

3 Circuit Architectures of the Tang-Maitra Class of
Functions

In order to study the hardware complexity of the Tang-Maitra class of functions,
we need to divide it into its smaller components, which are:

1. Three equality comparators (x = 0, x = µ, y = 0).
2. Finite field inverter y−1.
3. Constant multiplier λx.
4. Finite field multiplier (λx) · y−1.
5. The trace function Trk1 .
6. The circuits for h0 and h1.
7. A 4× 1 multiplexer.
8. A 3×2 encoder to convert the output of the three comparator into 2 selection

bits.



From the previous decomposition, we can already observe some of the properties
of the hardware combinational circuit and also some simple optimizations. First,
the cost of the multiplexer and encoder is small, constant and does not depend
on k. Precisely, for any k, 6 AND gates and 3 OR gates are needed for the 4× 1
multiplexer and the required encoder can be implemented using 3 AND gates
and 2 OR gates. Second, an obvious optimization is to choose λ ≡ e where e
is the multiplicative identity element of F2k . Hence, regardless of the finite field
representation use, the cost for the constant multiplication λx is zero. Third,
while the comparator cost is linear in k, precisely k XNOR gates and k − 1
AND gates, we can choose µ in a way that reduces the overall cost of the three
comparators. We consider, µ such that consider wt(µ ⊕ 0) = 1. The two k-bit
comparators x = 0 and x = µ can be implemented using only one (k − 1)-bit
comparators, 2 single bit comparators and 2 extra AND gates. Overall, the three
comparators will require 2k + 1 XNOR gates and 2k − 1 AND gates.

In the rest of this section, we discuss the overall circuit using different finite
field representations, providing estimations for the cost using each of them. Since
h0 and h1 are constructed as Boolean functions and not as finite field functions,
we consider their cost to be roughly the same for all representations. In the
next section, we discuss their cost more precisely. For all figures, thick arrows
represent k-bit buses, blue blocks have poly(k) cost, green blocks have constant
cost and red boxes represent blocks of unknown cost.

3.1 Circuit based on polynomial basis

Lemma 1. The polynomial basis implementation of the Tang-Maitra function
of n variables, where n is even, has a circuit complexity bounded by O(2k + k2)
and depth of O(k), where n = 2k.

Figure 1 shows the polynomial basis circuit. The first branch for the multiplexer
is the default option, which computes Trk1(λxy ). Addition over F2k using polyno-

mial basis is carry-free. Besides, 0 is represented as the binary string 0k and 1
is represented the binary string 0k−11. Hence, the addition part of Trk1 can be
performed by adding only the least significant bits, requires k − 1 XOR gates,
instead of k(k − 1). Choosing λ ≡ e, the cost of this branch is the cost of 1
inversion, 1 multiplication, k − 1 squaring and k − 1 XOR gates. Multiplication
costs O(k1+ε), where 0.5 ≤ ε ≤ 1. The cost for every squaring is O(k), and
inversion has cost of O(k2). The overall complexity of this branch is O(k2) and
depth of O(k). However, as explained in Section 2.3, this complexity can be bad
in practice due to large coefficients. Besides, the circuit complexity of the h0 and
h1 is bounded by O(2k).

3.2 Circuit based on normal basis

Lemma 2. The normal basis implementation of the Tang-Maitra function of n
variables, where n is even, has a circuit complexity bounded by O(2k+k3), where
n = 2k.
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Fig. 1: Polynomial basis circuit for a Tang-Maitra function

Figure 2 shows the normal basis circuit, it is similar to the polynomial basis
circuit, from a high-level point of view. However, since the trace function is im-
plemented as the XOR of all input bits, squaring is not required. The complexity
of the first branch is O(k3), but it should be either smaller than or comparable
to the polynomial basis circuit in practice. Besides, for certain choices of k (e.g.
k = 2r+1 or k = m(2r+1)), the complexity can be in the order of O(k2 · log(k)).
λ is chosen as e and µ = β.

3.3 Comments on Different Representations

The Tang-Maitra functions are defined as finite field functions. However, the
cryptographic properties of interest were evaluated for the Boolean circuit gen-
erated by implementing the polynomial representation of the underlying field.
An important question is: are the cryptographic properties of the Tang-Maitra
functions preserved under the change of basis/representation? The answer to
that question is that if the change of representation operation is a linear (or
affine) operation, they are preserved. Hence, both the polynomial and normal
bases representations have the same cryptographic properties. However, since
the transformation to/from discrete-log is a non-linear operation, it cannot be
used directly without adjusting the input.

Let α be a primitive element of F2k , and Bkp and Bkn be the polynomial and
normal bases of F2k over F2, respectively. Then

Bkp = {1, α, α2, . . . , αk−1}, Bkn = {α, α2, . . . , α2k−1

}.

Thus, any element x ∈ F2k can be written as x =
⊕k−1

j=0 ajα
j and also x =⊕k−1

j=0 bjα
2j , where aj , bj ∈ F2, 0 ≤ j ≤ k−1. The binary strings (ak−1, . . . , a1, a0)



y == 0

x == 0

x == µ

3x2
Encoder

h0(y)

h1(y)

0

XOR Tree

λ� x

y−1

�

Fig. 2: Normal basis circuit for a Tang-Maitra function

and (bk−1, . . . , b1, b0) are called the binary representation of x with respect to
polynomial and normal bases, respectively. It is clear that two binary represen-
tations of F2k using two bases, normal and polynomial bases, are related by a
linear nonsingular mapping.

For discrete-log representation of F2k , let 0 = (1, 1, . . . , 1), all one vector of

Fk2 , and αi = (ck−1, . . . , c1, c0), where i =
∑k−1
j=0 cj2

j and cj ∈ F2, 0 ≤ j ≤ k−1,

for all 0 ≤ i ≤ 2k−2. In this representation, it is not possible to write all elements
of F2k in the linear combination of k linearly independent elements and there is
no linear (or affine) mapping between discrete-log and normal (or polynomial)
basis representations.

We know that cryptographic properties of a Boolean function such as alge-
braic degree, balancedness, Walsh–Hadamard spectra, autocorrelation spectra,
nonlinearity are invariant under the nonsingular affine transformations. But, if
the transformations are not affine, then these properties may or may not be
same.

For example let k = 3 and α be a primitive element of F23 such that α3 ⊕
α2 ⊕ 1 = 0. Then B3

p = {1, α, α2} and B3
n = {α, α2, α4} are the polynomial and

normal bases of F3
2 over F2, respectively. For discrete-log representation of F23 , let

0 = (1, 1, 1) and αi = (c2, c1, c0), where i =
∑2
j=0 cj2

j and cj ∈ F2, 0 ≤ j ≤ 2,

for all 0 ≤ i ≤ 6. The binary representations of F23 with respect to B3
p , B3

n and
discrete-log are given in Table 1.

One can check that using the nonsingular matrix

A =

1 1 1
1 0 0
0 1 0

 , (7)



Table 1: Binary representations of F23 with respect different bases
F23 Tr31(x) Tr31(x3) Polynomial basis Normal basis Discrete-log representation

0 0 0 000 000 111
1 1 1 001 111 000
α 1 0 010 001 001
α2 1 0 100 010 010
α3 0 1 101 101 011
α4 1 0 111 100 100
α5 0 1 011 110 101
α6 0 1 110 011 110

the binary representation of F23 with respect to normal and polynomial bases
are related. There is no such linear (or affine) transformation that maps between
discrete-log and normal (or polynomial) basis. This we explain by an example
here.

Suppose f, g ∈ B3 are defined as f(x) = Tr31(x) and g(x) = Tr31(x3), for all
x ∈ F23 (defined as in Table 1). The algebraic degrees of f and g are 1 and
2 respectively. Then the algebraic normal form (ANF) of f(x1, x2, x3) over F3

2

with respect to normal and polynomial bases is x1 ⊕ x2 ⊕ x3, but with respect
to discrete-log representation, it becomes x1x2⊕x2x3⊕x1x3⊕ 1. Moreover, the
ANF of g(x1, x2, x3) over F3

2 with respect to normal an polynomial bases are
x1x2 ⊕ x2x3 ⊕ x1x3 and x1 ⊕ x2x3 respectively, but with respect to discrete-log
representation, it is x1 ⊕ x2 ⊕ x3 ⊕ 1. Thus, while there are certain advantages
in the discrete-log representation, unless the proper nonlinear transformation
cannot be decided, the implementation is not complete. Still we explain the
implementation in discrete-log domain in Appendices A, B.

3.4 Comparison

We assume the complexity of h0 and h1 is the same for the three representa-
tions. Comparing the asymptotic complexity of Trk1(λxy ), polynomial basis has
the smallest area complexity, while the normal basis has the smallest logical
Depth. Moreover, in practice, sometimes the normal basis circuit can have a
better area compared to the polynomial basis circuit, especially for good choices
of k. The discrete-log circuit (Appendix B) has good parameters for small n,
in practice, but due to its non-linearity with respect to the polynomial basis, it
needs input adjustment, which can be costly.

4 Practical Implementations

In order to verify the theoretical bounds discussed in the paper, we have imple-
mented the polynomial basis construction for the cases of n ∈ {12, 14, 16, 18, 20, 22}
for both FPGA and ASIC.



Table 2: Implementation Results on the Virtex-7 FPGA
n LUTs Critical Path (ns) Logic Levels

12 16 2.25 5

12 [PCZ17] 115 3.47 9

14 42 2.98 6

16 89 3.53 8

16 [PCZ17] 828 4.73 11

18 196 5.13 11

20 640 18.86 33

22 813 23.6 40

For FPGA, the design have been synthesized on Virtex-7 using Xilinx ISE
14.7 design flow, given in Table 2. The results show quadratic and linear in-
crease in the number of LUTs and the critical path, respectively. This conforms
with the theoretical estimations in the paper. The technology mapping tech-
niques from [KCP17] have been used to reduce the area, specially for h0 and
h1 functions. In comparison with the implementations of the GMM functions
in [PCZ17], the area and performance on FPGA are both better. Moreover, while
the complexity h0 and h1 is theoretically exponential, the results show that the
dominant factor of the circuit cost in practice is the cost of the trace function.
The results also show that the circuit is relatively more costly for n > 18.

For ASIC, we have used Synopsys Design Compiler for both the Open Source
Nangate 45nm and TSMC 65nm Standard Cell Libraries, given in Tables 3 and
4. The implementations from [PCZ17] have also been synthesized for the same
technology. The ASIC results also follow the theoretical estimations. However,
compared to [PCZ17], the cost of the Tang-Maitra functions is higher in terms
of performance, due to the depth of linear order. With respect to area, the Tang-
Maitra functions show a quadratic growth rate, compared to the sub-exponential
rate in [PCZ17]. In addition, while the Tang-Maitra ASIC implementations are
slower than the GMM ASIC implementations, the clock frequency for 22 vari-
ables is still more than 100 MHz, which is faster than the speed required by
many practical applications. The hardware results in this paper combined with
the cryptographic properties of the Tang-Maitra functions show that they can
be a building block for promising cryptographic primitives. Besides, we have
not studied the effect of advanced circuit optimization techniques on the ASIC
implementations, which can further improve both the area and performance.

5 Conclusion

In this paper, we consider how a recently proposed construction of cryptograph-
ically significant Boolean functions in [TM18] can be efficiently implemented.
Such functions are derived from Dillon type bent functions and can be inter-
preted as Maiorana-McFarland bent functions as well. Given that the functions
have very good nonlinearity and autocorrelation properties, they may be useful
as primitives in hardware stream cipher design. In particular, such functions can



Table 3: Implementation Results on the Nangate 45nm ASIC Technology Library
n Area(GE) Critical Path (ns) Clock Frequency (MHz)

12 580 2.9 344

12 [PCZ17] 381 0.95 1052

14 898 3.49 286

16 1328 4.56 219

16 [PCZ17] 1778 1.47 680

18 1657 5.66 176

20 2602 6.73 148

22 3501 7.95 126

Table 4: Implementation Results on the TSMC 65nm ASIC Technology Library
n Area(GE) Critical Path (ns) Clock Frequency (MHz)

12 477 3.46 289

12 [PCZ17] 378 1.51 1052

14 802 4.79 208

16 1250 5.62 177

16 [PCZ17] 1510 1.64 680

18 1503 6.82 147

20 2366 8.37 119

22 3273 9.84 102

be exploited for lightweight stream ciphers too. The implementation methods
follow different ideas of finite field representation and the actual implementation
results are explained. One may note that in truth table domain (considering the
Boolean functions as a mapping from {0, 1}n → {0, 1}), the Maiorana-McFarland
type bent functions can be seen as the concatenation of small affine functions.
A theoretical view from this direction is being explored in an independent and
parallel work [TKMM18] recently.

In a stream cipher, other than the Boolean function the main circuit com-
ponent is LFSR or NFSR and the state size is decided by that. Thus, with a
Boolean function with 500 GEs may be accommodated in a complete stream
cipher circuit of 1000 GEs. Further, the Boolean function that we use have very
good autocorrelation spectra, which may resist against proper signature gener-
ation in Differential Fault Attack. The complete design of stream cipher using
such functions and the resistance against different attacks will be presented in
the journal version of this paper.
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A Discrete-Log Representation of F2n Arithmetic

The Discrete-Log representation is described in Section 2.3. Multiplication can
be defined as

x1 � x2 =

{
2n − 1 if x1 = 2n − 1 or x2 = 2n − 1

x1 + x2 (mod 2n − 1) otherwise
(8)



While inversion can be defined as

x−1 =

{
2n − 1 if x = 2n − 1

−x (mod 2n − 1) otherwise
(9)

Both operations require circuit complexity of O(n), which is smaller than the
corresponding circuits for both normal and polynomial bases. While the same
can be said about squaring, we show now that it can be implemented as a cyclic
shift operation (similar to the case of normal basis). Squaring can be written in
terms of multiplication as follows, where × is used for integer multiplications as
opposed to finite field multiplication �,

x2 =

{
2n − 1 if x = 2n − 1

2× x (mod 2n − 1) otherwise
(10)

and

2× x (mod 2n − 1) =

{
x� 1 if 2× x < 2n − 1

(x� 1)− (2n − 1) otherwise
(11)

Using the two’s complement representation of integer arithmetic, Equation (11)
can be written as

2×x (mod 2n−1) =

{
x� 1 if 2× x < 2n − 1

(x� 1) + 2n + 1 (mod 2n) otherwise
(12)

Equation (12) means that the squaring operation in the discrete-log representa-
tion is a left shift operation with the most significant bit of x becoming the least
significant bit, i.e., a cyclic shift of x.

In addition, however, in the discrete-log representation is complicated. It can
be implemented by using look-up tables or by conversion to another represen-
tation. Hence, studying the complexity of trace function is this representation
without using addition is an interesting problem. Using property 2 of trace func-
tion in Section 2.1 and and Equation (12), we can conclude, as in the case of
normal basis, that trace function is a Rotation Symmetric Boolean Function
(RSBF). Now we define the rotation symmetric Boolean functions. Let xi ∈ F2

for 0 ≤ i ≤ n− 1. We define

ρrn(xi) = x(i+r) mod n =

{
xi+r, if i+ r ≤ n− 1;
xi+r−n, if i+ r ≥ n.

Let Pn = {ρ0n, ρ1n, . . . , ρn−1n } be the permutation group which contains the rota-
tions of n symbols, defined as

ρin(x) = ρin(xn−1, xn−2, . . . , x0) = (x(n−1+i) mod n, x(n−2+i) mod n, . . . , x(i) mod n).

Definition 1. A Boolean function f in n variables is said to be rotation sym-
metric if and only if for any x ∈ Fn2 , f(ρin(x)) = f(x), for all 0 ≤ i ≤ n− 1.



The problem of defining an RSBF is related to the problem of necklace equiv-
alence in combinatorics. This helps to derive an upper bound on the circuit
complexity of a trace function in the discrete-log representation.

Definition 2. A binary necklace of length n is an equivalence class of n-character
strings over the alphabet {0, 1}, where two arrangements are equivalent if one
can be obtained from the other by applying cyclic rotations.

Definition 3. The lexicographical representation of a binary necklace N is the
member of [N ] with the maximum number of leading 0’s.

B Circuit for the Tang-Maitra functions based on
discrete-log representation

The circuit in Figure 3 can be used to compute the Tang-Maitra function when
the inputs are in the discrete-log representation. The operation x

y is computed

as x − y (mod 2k − 1), with complexity O(k). After that, Trk1 is computed as
an RSBF. In this Section, we give a circuit for any RSBF, with sub-exponential
complexity O(k2 + 2k/k2).

y == all ones

x == all ones

x == α2n−1

3x2
Encoder

h0(y)

h1(y)

0

Trace

λ� x

y

Modular
Subtraction

Orbit
Detection

Fig. 3: Discrete-log circuit for a Tang-Maitra function

Rotation symmetric Boolean function Circuits Let f be a rotation sym-
metric Boolean function in k variables, i.e., f(ρik(x)) = f(x)), for all 0 ≤ i ≤ k−1.
Hence, [x] is an equivalence class (orbit) that includes all the rotations of x, i.e.,
[x] = {ρik(x)|0 ≤ i ≤ k − 1}. We choose the representative of that class to be



ρrk(x), such that ρrk(x) ≥ ρik(x), for all 0 ≤ i ≤ k − 1. In other words, it is the
rotation of x that has the maximum integer value. For more details of rotation
symmetric Boolean function we refer to [FF98,Fon99]. This is the lexicographical
representation of [x] based on the alphabet {0, 1}.

Lemma 3. A rotation symmetric Boolean function (RSBF) of k variables has
a circuit complexity bounded by O(k2 + 2k/k2).

Lemma 4. The discrete-log implementation of the Tang-Maitra function of n
variables, where n is even, has a circuit complexity bounded by O(2k+k2+2k/k2),
where n = 2k.

Proof. In order to convert any x to its lexicographical orbit representation, the
orbit detection circuit generates all the k rotations of x, then chooses the value of
x that has the maximum integer value using a selection tree that consists of k−1
two-input MAX circuits. Every two-input MAX circuit consists of k + 1 integer
subtractor (6k+6 gates) and k 2×1 MUXes, 3K gates. Hence, the orbit detection
circuit has a complexity of around 9k2 − 3k − 6 gates. After the lexicographical
orbit representation has been detected, a circuit decides whether the given orbit
functional value is 0 or 1. This circuit expects only 1 of the lexicographical
representations, which, according to Burnside’s Lemma and [SM08, Theorem 3],

are NO = 1
k

∑
d|k φ(d)2

k
d , where φ is Euler’s phi-function. Hence, nx = 2k −NO

values in the Truth table of such circuit can be set as DON’T CARES ’X’.
In [Spi80], the author gave an analysis of the circuit complexity of combinational
circuits with a large number of DON’T CARES. The number of AND/OR/NOT
gates was given by

L∞ = (1− d)H(p)L∞(G),

where d = nx

2k
, p = n1

(1−d)2k , H(p) = −p log(p)−(1−p) log(1−p) and L∞(G) = 2k

k .

By substitution for the case of the trace circuit, the number of gates is NO

n H(p),

where H(p) ≤ 1. Hence, the circuit complexity is O(NO

n ), and from Burnside’s

Lemma, it can be expressed as O( 2k

k ). Hence, the overall complexity of this
construction is O(k2 + 2k/k2). ut


