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Abstract. Structured linear block codes such as cyclic, quasi-cyclic and quasi-dyadic
codes have gained an increasing role in recent years both in the context of error control and
in that of code-based cryptography. Some well-known families of structured linear block
codes have been separately and intensively studied, without searching for possible bridges
between them. In this paper, we start from well-known examples of this type and general-
ize them into a wider class of codes that we call F-reproducible codes. Some families of
F-reproducible codes have the property that they can be entirely generated from a small
number of signature vectors, and consequently admit matrices that can be described in a
very compact way. We denote these codes as Compactly Reproducible codes, and show
that they encompass known families of compactly describable codes such as quasi-cyclic
and quasi-dyadic codes. We then consider some cryptographic applications of codes of
this type and show that their use can be advantageous for hindering some current attacks
against cryptosystems relying on structured codes. This suggests that the general frame-
work we introduce may enable future developments of code-based cryptography.
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1 Introduction

Defining linear block codes that possess a certain inner structure and verify some
regularity properties is a natural process in coding theory. Arguably, the most rel-
evant example is represented by the class of cyclic codes, which includes several
families of codes that proved to be important throughout the history of communica-
tions, such as BCH and Hamming codes, as well as the binary Golay codes, Reed-
Solomon codes and many others. This class is defined by the property of having
codewords that are invariant under the action of a specific permutation, namely the
cyclic (circular) shift, which consists of cyclically rotating a vector by one posi-
tion to the right (equivalently, to the left). Other examples which are well-known
in literature include constacyclic codes, negacyclic codes, quasi-cyclic codes and
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many others.

Recently, this research direction has been investigated further: Misoczki and
Barreto in 2009 introduced quasi-dyadic codes [38], which contain codewords
invariant under a different type of permutation. The work was motivated by its
implications for the McEliece cryptosystem [36], and in particular by the neces-
sity of having a family of codes whose generator and parity-check matrices can be
represented in a compact way. This is because, in code-based cryptography, the
public key of an encryption (or signature) scheme usually consists precisely of a
generator or parity-check matrix of a linear block code. With the size of the codes
used in code-based cryptography (typical code lengths are in the order of 103 to
104), describing a whole matrix results in a public key of several kilobytes, and this
size increases quadratically in the code length. This has historically prevented the
use of the original McEliece cryptosystem, which exploits random-looking public
codes, in many applications. On the other hand, structured codes admit a genera-
tor and parity-check matrix which can be entirely described by one or few rows;
this allows for a very important reduction in public key size, and it is arguably a
fundamental step towards making code-based cryptography truly practical. Previ-
ous efforts to reduce key size were centered on quasi-cyclic algebraic codes [28]
and have been since then extended to codes of a different nature, namely the Low-
Density Parity-Check (LDPC) codes [40] and their recent generalization known
as Moderate-Density Parity-Check (MDPC) codes [39]. These codes are charac-
terized by sparse parity-check matrices and admit matrices in quasi-cyclic form,
formed by circulant square blocks. Due to their efficient decoding algorithms
and the lack of additional algebraic structure that could lead to structural attacks,
schemes based on Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) codes
[5] and Quasi-Cyclic Moderate-Density Parity-Check (QC-MDPC) codes [39] are
among the most promising solution in this area.

The importance of code-based cryptography has risen dramatically in modern
times due to the work of Shor [46], who showed how it will be possible to ef-
fectively break cryptography based on “classical” number theory problems by in-
troducing polynomial-time algorithms for factoring large integers and computing
discrete logarithms on a quantum computer. This calls for cryptographic primi-
tives that rely on different hard problems, which will not be affected once quan-
tum computers of an appropriate size will be available. Code-based cryptography
is one of the most important areas in this scenario, and ever since McEliece’s sem-
inal work in 1978 [36], has shown no vulnerabilities against quantum attackers.
Moreover, generic decoding attacks, which have exponential complexity, have
improved only marginally over nearly 40 years of cryptanalysis. Together with
lattice-based schemes, code-based cryptography is at the basis of many candidates



Reproducible Families of Codes and Cryptographic Applications 3

for the Post-Quantum Standardization call recently launched by NIST [2].

In this paper, we provide a general framework for the definition of structured
codes, which are of increasing interest in several McEliece and Niederreiter cryp-
tosystem variants. First, we introduce the notion of F-reproducible codes as a
general framework for describing both structured and unstructured codes. Then,
we introduce some special families of F-reproducible codes, that we denote as
CR codes, which require a smaller-than-maximum number of degrees of freedom
for the representation of each code belonging to the same family. This general-
izes existing families of structured codes used in code-based cryptosystems. We
also propose a framework for constructing F-reproducible codes of any kind, and
present concrete families of non-trivial CR codes which have not appeared in lit-
erature before. Our goal is to provide a generic framework to serve as a basis for
future constructions, as indeed was the case in [20], which references a preprint
version of this work.

To highlight the importance of these codes in cryptography, we mention that,
among the twenty-six candidates that were admitted to the second round of the
NIST’s standardization effort [23], five are based on structured random and pseudo-
random codes, which are the focus of this paper. In particular, BIKE and LEDAcrypt
are two public-key encryption schemes based on, respectively, QC-MDPC and
QC-LDPC codes, which naturally fit into the general framework we describe in
this paper. The same occurs for the system named HQC, in which part of the
public key consists in a random QC code. Although we focus on the Hamming
metric case, the framework we describe could also be applied to the generation of
structured codes in the rank metric (with the proper modifications). ROLLO and
RQC are other two candidates that could be encompassed by such a framework in
the rank metric domain.

The paper is organized as follows. In Section 2 we recall some basic concepts
and introduce the notation we use throughout the paper. In Section 3 we intro-
duce F-reproducible matrices, and we use them to define the new class of codes
in Section 4. Section 5 is devoted to the study of their possible use in code-based
cryptosystems, and provides some practical constructions for this purpose. In Sec-
tion 6 we draw some conclusions.

2 Preliminaries and notation

We denote with Fq the finite field with q elements, where q is a prime power. For
two sets X and Y , XY denotes the set of all maps from Y to X . For a set S we
then denote by 2S its power set, i.e. the set containing all possible subsets of S,
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exploiting the well-known bijection with the set of functions from S to {0, 1}. We
use bold letters to denote vectors and matrices. Given a vector a, we refer to its
element in position i as ai. The size-k identity matrix is denoted as Ik, while the
k × n null matrix is denoted as 0k×n. Finally, we use the term pseudo-ring to
denote a structure that satisfies all the ring axioms, apart from the existence of the
multiplicative identity. Such a structure is also typically known as rng.

2.1 Coding theory background

A linear code C is a k-dimensional subspace of the n-dimensional vector space
over the finite field Fq. The parameters n (length) and k (dimension) are positive
integers with k ≤ n. The value r = n− k is known as codimension of the code.

Definition 2.1 (Hamming metric). The Hamming weight wt(x) of a vector x ∈ Fnq
is the number of its non-zero entries. The Hamming distance d(x,y) between
two vectors x,y ∈ Fnq is defined as the weight of their difference, i.e. d(x,y) =
wt(x−y). The minimum distance d of a code C is defined as the minimum distance
between any two different codewords of C, or equivalently as the minimum weight
over all non-zero codewords.

A linear code of length n, dimension k, and minimum distance d is called an
[n, k, d]-code.

The error-correcting capability of a linear code is connected to its minimum
distance, and in particular it corresponds to b(d − 1)/2c under bounded distance
decoding. When soft-decision decoding is used, a linear block code with distance
d may correct up to d− 1 symbol errors.

Definition 2.2 (Generator and parity-check matrices). Let C be a linear code over
Fq. We call generator matrix of C a k × n matrix G whose rows form a basis for
the vector space defined by C, i.e.:

C = {xG : x ∈ Fkq}.

For any matrix H and any vector x, the vector HxT is called syndrome of x.
We then call parity-check matrix of C a full rank r × n matrix H such that every
codeword belonging to C has syndrome 0 with respect to H, i.e.

C = {x ∈ Fnq : HxT = 0}.

Note that the parity-check matrix of a code C is also a generator matrix of the
dual code C⊥, i.e. the linear code formed by all the words of Fnq that are orthogonal
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to C. It follows that for any generator matrix G and parity-check matrix H of a
code, we have HGT = 0r×k.

Both matrices are required to have full rank. Moreover, notice that, clearly, nei-
ther matrix is unique: for instance, given a generator matrix G it is always possible
to obtain another generator matrix for the same code by a linear transformation,
that is, the left multiplication by an invertible k × k matrix S, so that G′ = SG.
This corresponds to a change of basis for the vector space. A similar property
is verified by the parity-check matrix. Finally, two generator matrices generate
equivalent codes if one is obtained from the other by a permutation of columns.
These two facts are at the basis of the McEliece cryptosystem.

Joining the two properties above, we can write any generator matrix G in sys-
tematic form as G = [Ik|A], where | denotes concatenation. If C is generated by
G = [Ik|A], then a (systematic) parity-check matrix for C is H = [−AT |Ir].

2.2 The McEliece cryptosystem

The McEliece public-key encryption scheme [36] was introduced by R. J. McEliece
in 1978. The original scheme uses binary Goppa codes, with which it remains un-
broken (with a proper choice of parameters), but the scheme can be used with any
class of codes for which an efficient decoding algorithm is known.

Key Generation Let G be a generator matrix of a linear [n, k, d]-code over Fq
with an efficient decoding algorithm D which can correct up to t = b(d − 1)/2c
errors under bounded-distance decoding. Let S be an invertible k × k matrix and
P be a random n × n permutation matrix over Fq. The private key is (S,G,P)
and the public key is G′ := SGP.

Encryption To be able to encrypt a plaintext, it has to be represented as a vec-
tor m of length k over Fq. The encryption algorithm chooses a random error
vector e of weight t in Fnq , and computes the ciphertext c = mG′ + e.

Decryption The decryption algorithm first computes ĉ = cP−1 = mSG +
eP−1. As P is a permutation matrix, eP−1 has the same weight as e. Therefore,
D can be used to decode the errors and obtain m̂ = mS = D(ĉ). Finally, the
plaintext is retrieved as m = m̂S−1.

In successive papers, the original McEliece cryptosystem was refined and tweaked
many times; for example it is now common practice to replace the scrambling



6 P. Santini, E. Persichetti and M. Baldi

method given by S and P with the computation of the systematic form, i.e. G′

is the systematic form of G. This is possible when the McEliece cryptosystem is
embedded into a larger framework to convert it into an IND-CCA21 secure Public
Key Encryption (PKE) scheme or Key Encapsulation Mechanism (KEM), and has
the additional advantage (beyond the obvious simpler formulation) of a smaller
public key (since only the non-identity submatrix needs to be stored).

The (one-way) security of McEliece is based on the following hard problem.

Problem 2.3 (Syndrome Decoding Problem). Given an r × n full-rank matrix H
and a vector s, both with entries in Fq, and a non-negative integer t; find a vec-
tor e ∈ Fnq of weight t such that HeT = sT .

The Syndrome Decoding Problem (SDP) is a well-known problem in com-
plexity theory, and it has been shown to be NP complete [18]. Note that, since
the McEliece cryptosystem uses an [n, k, d] code, the number of error vectors of
weight t is

(
n
t

)
(q − 1)t, while the number of possible syndromes is qr. Therefore(

n

t

)
(q − 1)t < qr

is a necessary condition for the existence of at most one solution to the problem,
i.e., for the decoding process to have a unique solution.

2.3 Sparse-matrix codes

One of the most delicate points about the McEliece cryptosystem is that, in order
for the security to reduce to the SDP, it is assumed that the matrix used as the public
key is indistinguishable from a uniformly random matrix of the same size. This
is a plausible assumption, which however has been shown to be false in several
cases. For many variants of McEliece (e.g. [47]), in fact, this opened up avenues of
attack which simply ruled out the variant altogether. Even the long-standing binary
Goppa codes have been shown to be distinguishable from random codes [27] when
the code rate is chosen carelessly (too high). This is arguably one of the main
reasons that pushed researchers away from algebraic codes, and towards codes of
a different nature.

Low-Density Parity-Check (LDPC) codes are defined by parity-check matrices
whose main requirement is to be sparse, with a very low row and column weight.

1 The term IND-CCA2 stands for Indistinguishability under Adaptively Chosen Ciphertext At-
tack, which is the highest security notion for a PKE and KEM since it considers the strongest
adversarial model.
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These codes are easy to generate, and moreover admit a variety of choices for
the decoding algorithm D, inspired by the Bit Flipping (BF) decoder of Gallager
[29], which is very efficient in practice. For these reasons, this class of codes
is a natural candidate for the McEliece cryptosystem. A first instantiation was
studied in [40], where a private LDPC matrix was considered, along with a linearly
trasformed version of the same matrix used as the public key. As highlighted
in [40], security of the private LDPC code is not preserved unless the public matrix
is dense. Thus, in such a framework, the private LDPC code C is represented
through its sparse parity-check matrix H, while the public key corresponds to a
dense generator matrix G for C. It is important to note that, from the knowledge
of G, the opponent can compute several parity-check matrices H′ for C, but they
will not lead to an efficient decoding, unless they are sparse. As explained in
section 2.2, typically having G in systematic form is enough to guarantee such a
property. Indeed, we can always write H = [H0|H1], where H0 and H1 have
size r × k and r × r, respectively, and H1 is full rank. Then, the corresponding
generator matrix in systematic form is obtained as G = [Ik|HT

0 H−T1 ]. Typically
(unless for particular choices of H) the inverse of a sparse matrix is dense, and so
H−T1 is dense: in such a case, the multiplication of HT

0 by H−T1 is enough to hide
the structure of H into the one of G.

It is important to note that, due to their probabilistic nature, decoding algorithms
for LDPC codes are characterized by a non-trivial Decoding Failure Rate (DFR).
This means that, in the case of a decoding failure, Bob must ask Alice for a re-
transmission of the plaintext, encrypted with a different error vector. In order to
avoid frequent retransmissions, which would obviously increase the latency of the
system, the DFR must be kept sufficiently low; typically, values are in the range
of 10−6 to 10−9. As we will discuss later, this fact represents a crucial difference,
with respect to the case of algebraic codes, since it leads to a new family of at-
tacks, aimed at recovering the secret key by observing Bob’s reactions. This also
has implications on the security model against a Chosen Ciphertext Attack (CCA)
for these systems [32]. Therefore, finding reliable models for their DFR is nec-
essary to ensure that its value is negligible for those instances designed to achieve
indistinguishability under chosen ciphertext attack (IND-CCA) [9].

2.4 Main attacks

We briefly recall the two main types of attacks that can be mounted against the
McEliece cryptosystem and its variants when using sparse-matrix codes.
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Decoding attacks

Decoding attacks are aimed at recovering the plaintext from the ciphertext by per-
forming decoding through the public code. In fact, being unable to retrieve the
private code representation that enables efficient decoding, an attacker can still try
to perform decoding through the public code, which looks like a general random
code.

At the current state of the art, the best procedure for this task is the Information-
Set Decoding (ISD) algorithm, which was first introduced by Prange in 1962 [42],
and has received many improvements during the years [16, 34, 35, 48]. However,
ISD and all its variants are characterized by an exponential complexity: the search
for a weight-w codeword has asymptotic complexity equal to 2αw, where the value
of the constant α depends on the code parameters and on the particular algorithm
we are analyzing. Even in a quantum setting, ISD algorithms are still character-
ized by exponential complexity: indeed, the only known application of a quantum
algorithm to an ISD algorithm, which consists in using Grover’s algorithm [30]
to speed up the search, leads to a reduction in the complexity, with respect to the
classical case, which cannot be larger than half the exponent α [19].

Key-recovery attacks

When LDPC codes are used, key recovery attacks boil down to recovering low-
weight codewords from the dual of the public code, which is again a decoding
problem. Let us denote by C⊥ the dual code of C, having generator matrix H.
Since the rows of H are sparse, and of maximum weight w � n, they are
minimum-weight codewords in C⊥ with overwhelming probability, and so can be
searched with a generic algorithm for finding low-weight words, for which ISD
algorithms can be used as well.

Since the difficulty of such a task increases with the weight of the searched
codewords, it makes sense to relax the notion of “low-density”: the authors in [39]
introduce the notion of “moderate-density” by increasing the allowed row weight
in the parity-check matrix from O(log(n)) to O(

√
n), thus defining moderate-

density parity-check (MDPC) codes. It is still possible to decode MDPC codes
with the previously-mentioned algorithms; the error-correction capacity gets ob-
viously worse, but the gain in security makes this tradeoff worth it. In the end,
the adoption of LDPC and MDPC codes in modern variants of the McEliece cryp-
tosystem does not reduce the security against key recovery attacks, since attacks
deriving from the structure of the secret code can be easily avoided by fixing the
minimum weight of the rows of H.
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2.5 Structured sparse-matrix codes

Using generic LDPC and MDPC codes without any structure in the McEliece cryp-
tosystem is not a practical choice, as pointed out in [40]. This is because the need
to avoid sparse public matrices makes the resulting public key sizes significantly
larger than the ones we can obtain with other families of codes, like Goppa codes.
In fact, even if the private sparse parity-check matrix can be compactly represented
through the positions of its non-null entries (and so, a row with Hamming weight
equal to w can be stored just with w log2 n log2 q bits), applying this technique to
the public key is not possible, since a sparse G might compromise the security of
the system. One way to avoid this issue is to add some structure to the code family.
This idea was first introduced by considering Quasi-Cyclic (QC) codes [28], and
was then extended to LDPC codes [8] and algebraic codes [17]. In all cases, the
authors propose to use QC codes to reduce the public key size. A QC code can be
simply seen as a code which admits parity-check and generator matrices made of
circulant blocks. A circulant matrix is a matrix in which every row is obtained as
the cyclic shift of the previous one; an example of a circulant matrix is

A =


a0 a1 . . . ap−1

ap−1 a0 . . . ap−2
...

...
. . .

...
a1 a2 . . . a0

 .

Any circulant matrix is fully described by one of its rows, conventionally the
first one. This means that, in the McEliece cryptosystem, we can describe the
public key completely using just the first row of each one of its circulant blocks;
it is clear that this results in a significant reduction in the public key size with re-
spect to instances using non-structured public matrices. However, this additional
structure presents some drawbacks, since it exposes the system to structural weak-
nesses. In particular, the QC structure summed to the algebraic structure of the
underlying codes provides a lot of information to the attacker, and opens up the
possibility of structural attacks aimed at recovering the private code. The most
famous structural attack of this type is known as FOPT [26], and works by solving
a multivariate algebraic system with Gröbner bases techniques together with the
QC property, which greatly reduces the number of unknowns of the system. As a
result, it seems very hard to provide secure schemes which involve QC algebraic
codes (Goppa, GRS etc.), while still obtaining an effective key reduction: the re-
cent NIST proposal BIG QUAKE [1] shows a reduction of about 1/4 in the key size
compared to what would be obtained in a “classical” McEliece using unstructured
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binary Goppa codes.

Therefore, once again, it seems safer to deploy code-based schemes using sparse-
matrix codes, since in this case there is no additional algebraic structure, and the
QC property alone is not enough to provide a structural attack. However, some
care is still necessary when using sparse-matrix codes. In particular, two main
aspects have to be considered:

• ISD algorithms might obtain a speed up from the QC structure. This results in
a complexity reduction for the relevant attacks. Such a speedup is achieved
for both key recovering attacks and decoding attacks (following from the
Decoding One Out of Many (DOOM) approach [45]). The attack complexity
remains exponential in the key length, but the attack speedup leads to an
increase in the row weight of H and in the number of errors to be used during
encryption, which in turn results in an increase in the key length.

• It has been recently shown that the probability of a decoding failure de-
pends on the number of overlapping ones between the error vector and rows
of H [31]. In addition, in a circulant matrix, all the rows are character-
ized by the same set of cyclic distances between set symbols (given two
ones at positions i and j, the corresponding cyclic distance is computed as
min {±(i− j) mod p}, with p being the circulant size). Based on these
considerations, it has been shown in [31] that an adversary can mount a key
recovery attack by impersonating Alice, producing many ciphertexts and re-
questing Bob to decrypt them. The adversary can then exploit Bob’s reac-
tions concerning decoding failures, which are of public knowledge, in order
to gather information about the secret key structure. The set of all distances of
the rows of H is called distance spectrum, and can be used to reconstruct H.
This problem can be related to a graph problem, in which a row of H corre-
sponds to a clique with maximum size. For a sparse QC matrix, such a graph
is sparse as well, which gives a small number of cliques. This means that,
once the distance spectrum is known, recovering the corresponding parity-
check matrix is not a hard task in most cases.

Currently, the countermeasures that have been devised against the aforemen-
tioned reaction attacks exploit the use of ephemeral keys [6, 14], of special iter-
ative decoders that allow theoretical modeling of their failure rate [43, 49], or of
particular families of codes that make the reconstruction of the secret key unfea-
sible [44]. However, all these solutions come with some price to pay, since a new
key-pair must be generated for each encryption (in the first case) or the size of the
public key must be increased (in the second and third cases).
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As we will see in the rest of this paper, the idea of using some structure to re-
duce the public key size can be strongly generalized. In particular, we will show
that existing solutions are just very special cases of a wider framework, character-
ized by a large variety of options. This generalization comes with no increase in
public key size, while on the other hand potentially allows to avoid DOOM and/or
reaction attacks, or at least to reduce their efficiency.

3 Reproducibility

We now introduce the main notions we use to provide a generalized approach to
the design of structured codes.

Definition 3.1. Let n, k ∈ N, with k = `m where also `,m ∈ N. Let F =
{σ0, · · · ,σ`−1} be a family of ` linear maps, with σi : Fnq 7→ Fnq (thus, we can
think of each σi as a square matrix of size n and values in Fq). We say that a k×n
matrix A is an F-reproducible matrix if there exists an m× n matrix a such that

A =


a · σ0

a · σ1
...

a · σ`−1

 (3.1)

We call m the reproducible order and a the signature set, and write A = F(a).
We say that a code C ⊆ Fnq is an F-reproducible code if it admits a generator
matrix and/or a parity-check matrix which are F-reproducible.

Let us consider an F-reproducible code described by an F-reproducible gener-
ator matrix G ∈ Fk×nq such that, for F = {σ0, · · · ,σ`−1}, we have

G =


g · σ0

g · σ1
...

g · σ`−1

 , (3.2)

where g is the m × n signature set of G. Then, for the fixed family F of linear
maps, the code is completely represented through g. The same reasoning applies
to an F-reproducible code described by an F-reproducible parity-check matrix
H ∈ Fr×nq with signature set h.
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Proposition 3.2. Any [n, k, d]-code over Fq is an F-reproducible code for at least
one choice of F and the corresponding signature set. Such a choice corresponds
to ` = 1, m = k, g = G and F = {In}, where In is the n × n identity ma-
trix. Equivalently, the code can be described through the parity-check matrix H
considering ` = 1, m = r, h = H and F = {In}.

Once the familyF is defined, anF-reproducible matrix can be described just by
its signature set. Consequently, when the family of mapsF is fixed and universally
known, having an F-reproducible generator matrix (or equivalently parity-check
matrix) with ` > 1 leads to a more compact representation of the code with respect
to storing its full generator or parity-check matrix. This happens because F is
universally known, and it does not need to be included in the code representation,
thus the signature set alone is sufficient for representing the code.

If we consider a single code, then it is always possible to find some family
F according to which such a code has an F-reproducible generator matrix (or
equivalently parity-check matrix) with ` > 1. This is detailed in the following two
propositions.

Proposition 3.3. Any single [n, k, d]-code over Fq admits multiple generator and
parity-check matrices, thus it can be an F-reproducible code for several choices
of F and the corresponding signature set.

Proof. The proof is straightforward and omitted for saving space.

Proposition 3.4. For any single [n, k, d]-code C over Fq, a family F with ` = k
entries can be defined according to which such a code admits an F-reproducible
generator matrix with reproducible order m = 1. Similarly, a family F with
` = r entries can be defined according to which C admits an F-reproducible
parity-check matrix with reproducible order m = 1.

Proof. Let G ∈ Fk×nq be a valid generator matrix for the code C. Let us consider
the i-th row gi of G and defineσi, i ∈ [1; k], as the n×nmatrix ∈ Fn×nq having its
first row equal to gi, and all the other rows filled with arbitrary entries. Then, G is
easily obtained as G = F (a), with a = [1, 0, 0, . . . , 0]. The fact that C admits an
F-reproducible parity-check matrix with reproducible order m = 1 can be proved
with a similar reasoning.

From Proposition 3.4 we know that any single code is F-reproducible for some
family F yielding ` > 1 and m < k (considering the generator matrix) or m < r
(considering the parity-check matrix). However, if instead of a single code we
consider a group of codes and aim at representing all of them as F-reproducible
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codes for the same, universally known family of maps F , then it is not always
possible to find a solution with ` > 1 and m < k (considering the generator
matrix) or m < r (considering the parity-check matrix). The only trivial solutions
that always exist are those of the type considered in Proposition 3.2, yielding ` = 1
and m = k (considering the generator matrix) or m = r (considering the parity-
check matrix), and thus not enabling more compact code representations than those
corresponding to storing the full generator or parity-check matrix. We are instead
interested in group of codes that, besides these trivial solutions, also admit F-
reproducible generator and parity-check matrices for a fixed F with ` > 1 and
m < k or m < r, as detailed in the next definition.

Definition 3.5. We say that a group of [n, k, d]-codes over Fq are compactly re-
producible (CR) codes if, for a fixed F with ` > 1, each of them admits at least
one F-reproducible generator matrix with m < k, or at least one F-reproducible
parity-check matrix with m < r, thus enabling a more compact code representa-
tion with respect to storing the full generator or parity-check matrix.

The condition for a code to be CR can be generalized, in order to take into
account other structures that enable a compact representation.

Definition 3.6. Let Ai,j ∈ Fki,j×ni,jq be F-reproducible matrices, each with its
own dimensions, signature set ai,j ∈ Fmi,j×ni,jq and family of linear functions
Fi,j . Let A be a matrix obtained using as building blocks the matrices Ai,j ; then,
we say that A is F-quasi-reproducible.

Definition 3.7. Let us consider a group of linear codes over Fq. If, for a fixed
F with ` > 1, any code C in such a group can be described by an F-quasi-
reproducible generator matrix G ∈ Fk×nq such that m < k, and/or an F-quasi-
reproducible parity-check matrix H ∈ Fr×nq such that m < r, then we say that C
is a quasi-compactly reproducible (QCR) code.

It is clear that, in order to describe an F-quasi-reproducible matrix, we just
need the ensemble of the signature sets of its building blocks, together with the
corresponding families of linear functions. Quasi-reproducibility generalizes the
concept of reproducibility, since each reproducible code can be seen as a particular
quasi-reproducible code, with a generator matrix described just by one signature
set. A particular type of quasi-reproducible codes is the one in which the blocks
Ai,j are square matrices, defined by the same family F .

We are now ready to introduce a very important notion regarding the set of F-
reproducible matrices obtained via a given family of transformations. Specifically,
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consider a family of linear functions F =
{
σ0,σ1, · · · ,σ p

m
−1

}
, where each σi

is a p × p matrix over Fq. We denote by MF ,mq the set of all F-reproducible
matrices over Fq obtained via signatures of size m × p and F , equipped with the
usual operations of matrix sum and multiplication. Then the following results2

hold.

Theorem 3.8. The setMF ,mq is an abelian group with respect to the sum.

Proof. Showing thatMF ,mq is an additive abelian group is quite straightforward.
In fact, the signature of the sum of two matrices corresponds to the sum of the
original signatures. Commutativity and associativity follow from the element-wise
sum between two matrices. The identity is given by the null signature (i.e., the
signature made of all zeros), while the inverse of a matrix with signature a is the
matrix with signature −a.

On the other hand, it is possible to show that the set, with respect to the mul-
tiplication, is a semigroup; in this case, the only requirements are closure and
associativity. While associativity easily follows from the properties of the multi-
plication between two matrices, in order to guarantee closure, we must make an
additional assumption.

Theorem 3.9.MF ,mq is a semigroup with respect to the multiplication if and only
if for every matrix M ∈MF ,mq , we have

σiM = Mσi, ∀i ∈ N, 0 ≤ i ≤ p

m
− 1.

Proof. We show that commutativity is necessary first. For what we discussed
above, we only need to prove closure. Let A and B be two matrices of MF ,mq ,
with respective signatures a0, b0, that is

A =


a0

a0σ1
...

a0σ p
m
−1

 =


a0

a1
...

a p
m
−1

 , B =


b0

b0σ1
...

b0σ p
m
−1

 =


b0

b1
...

b p
m
−1

 .
2 For simplicity we assume σ0 = Ip, but this is not necessary and the results hold even if F does

not contain the identity function.
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Multiplying these two matrices we get

C = AB =


a0B

a1B
...

a p
m
−1B

 =


a0B

a0σ1B
...

a0σ p
m
−1B

 =


c0

c1
...

c p
m
−1

 . (3.3)

Now by hypothesis
ci = a0σiB = a0Bσi = c0σi, (3.4)

for all i ≤ p
m − 1. It follows that C is F-reproducible and defined by F .

Conversely, suppose MF ,mq is a semigroup, and in particular that it is closed
with respect to multiplication. Consider again two matrices A and B and their
product, defined as in Equation 3.3. Since by hypothesis C ∈ MF ,mq , and there-
fore is F-reproducible, we have that ci = c0σi for all i ≤ p

m − 1. It follows
that

a0σiB = ci = c0σi = a0Bσi. (3.5)

Now, since equation (3.5) holds in general for every signature a0, it must be that
σiB = Bσi, which concludes the proof.

Finally, note that multiplication distributes over addition, as usual. This means
that, if Theorem 3.9 holds, MF ,mq verifies all the requisites of a mathematical
pseudo-ring, i.e. a ring without multiplicative identity, as defined in Section 2. We
call this the F-reproducible pseudo-ring induced by F over Fq.

3.1 Pseudo-rings induced by families of permutations

In the particular case of signatures made of just one row (i.e., reproducible order
m = 1) and the functions σi being permutations, we have a further result, which
is described in Theorem 3.10. We point out that all the results we present in this
section can be generalized, in order to consider the case m > 1, but we will not
go into further details here. Since a p × p permutation corresponds to a matrix
in which every row and column has weight equal to 1, it can equivalently be de-
scribed as a bijection over [0, p − 1] ⊂ N. Given a permutation matrix σi, we
denote the corresponding bijection as fσi . If the element of σi in position (v, z)
is equal to 1, then fσi(v) = z. The inverse of fσi is denoted as f−1

σi , which is
the bijection associated to the permutation matrix σ−1

i = σTi ; if fσi(v) = j, then
f−1
σi (j) = v. Let a and a′ be two row vectors with entries {a0, a1, a2, . . .} and
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{
a′0, a

′
1, a
′
2, . . .

}
respectively, such that a′ = aσi. Then, a′j = af−1

σi
(j). If instead

a′T = σia
T , then a′j = afσi (j). We use fσi ◦ fσj to denote the bijection defined

by the application of fσi after fσj . In other words, fσi ◦ fσj corresponds to the
permutation matrix σiσj , and fσi ◦ fσj (v) = fσi

(
fσj (v)

)
. The identity Ip can

be seen as the particular permutation that does not change the order of the ele-
ments; the corresponding bijection, which will be denoted as fIp , is such that each
element is mapped into itself (in other words, fIp(v) = v).

Theorem 3.10. Let F = {σ0 = Ip,σ1, · · · ,σp−1} be a family of linear trans-
formations, with each σi being a permutation, and suppose that F induces the
F-reproducible pseudo-ringMF ,1q over Fq. Then, the following relation must be
satisfied

σjσi = σfσi (j), ∀i, j ∈ N, 0 ≤ i ≤ p− 1, 0 ≤ j ≤ p− 1.

Proof. SinceMF ,1q is a pseudo-ring, we know from Theorem 3.9 that, for every
matrix B ∈MF ,1q and every function σi ∈ F , it must be σiB = Bσi. In particu-
lar, the left-hand term multiplication of σi by B corresponds to a row permutation,
such that

σiB =


bfσi (0)

bfσi (1)
...

bfσi (p−1) =

 =


b0σfσi (0)

b0σfσi (1)
...

b0σfσi (p−1)

 , (3.6)

where bi denotes the i-th row of B. The product Bσi instead defines a column
permutation of B, and can be expressed as

Bσi =


b0σ0

b0σ1
...

b0σp−1

σi =


b0σ0σi

b0σ1σi
...

b0σp−1σi

 . (3.7)

Putting together equations (3.6) and (3.7), we obtain

σjσi = σfσi (j), (3.8)

which must be satisfied for every pair of indexes (i, j).

Starting from the result of Theorem 3.10, we can easily derive some other prop-
erties that F must satisfy.
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Corollary 3.11. Let F be a family of permutations such that the inducedMF ,mq is
a pseudo-ring. Then, F has the following properties

(a) fσi(0) = i, ∀i;

(b) ∀i ∃j s.t. fσi ◦ fσj = fIp .

Proof. Since F satisfies the hypothesis of Theorem 3.10, we have

σfσi (0) = σ0σi = Ipσi = σi, (3.9)

which can be satisfied only if fσi(0) = i, and this proves property (a).
Since each fσi is a bijection of the integers in [0, p− 1], we know that, for a fixed
value of i, there is a value j ∈ [0, p− 1] such that fσi(j) = 0. Then, we have

σjσi = σfσi (j) = σ0 = Ip. (3.10)

In other words, the bijections corresponding to fσi and fσj are one the inverse of
the other, and this proves property (b).

Corollary 3.12. Let F be a family of permutations such that the inducedMF ,mq is
a pseudo-ring. Then,MF ,1q is a ring, which we call, by analogy, F-reproducible
ring induced by F .

Proof. Let us show thatMF ,1q contains the multiplicative identity, i.e., the p × p
identity matrix. Because of Corollary 3.11, F is formed by p × p permutations
such that fσi(0) = i,∀i. If we generate the element ofMF ,1q corresponding to the
signature u = [1, 0, · · · , 0], we easily obtain the p× p identity matrix Ip.

Theorem 3.13. Let F be a family of permutations such that the inducedMF ,mq is
a pseudo-ring. Then,MF ,1q is an F-reproducible ring and the invertible elements
ofMF ,1q form a multiplicative group.

Proof. Based on Corollary 3.12, MF ,1q is an F-reproducible ring provided with
multiplicative identity. Now, we need to prove that any non-singular matrix in
MF ,1q admits inverse inMF ,1q . Let us consider a matrix A ∈ MF ,mq , with signa-
ture a, and let B be its inverse. Since AB = Ip, we have

AB =


a

aσ1
...

aσp−1

B = Ip =


u

uσ1
...

uσp−1

 ,
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with u = [1, 0, · · · , 0] as in Corollary 3.12. Then we have aσiB = uσi. For
i = 0, we have u = aB. Hence, for whichever value i, we get

aσiB = uσi = aBσi,

which can be satisfied for whichever a only if σi and B commute. Because of
Theorem 3.9, this means that B ∈MF ,1q .

Sum and multiplication are not the only matrix operations we consider. In The-
orem 3.14 we analyze how transposition acts on the matrices belonging to an F-
reproducible pseudo-ringMF ,1q .

Theorem 3.14. LetMF ,1q be an F-reproducible pseudo-ring; if

f−1
σj (i) = f−1

σv (0), v = f−1
σi (j), ∀i, j s.t. 0 ≤ i ≤ p− 1, 0 ≤ j ≤ p− 1

thenMF ,1q is closed under the transposition operation.

Proof. Let A ∈ MF ,1q , with signature a, and denote as B = AT its transpose.
The i-th row of B corresponds to the i-th column of A. In particular, the i-th
column of A is defined as 

ai

af−1
σ1 (i)

af−1
σ2 (i)

...
af−1
σp−1 (i)


.

Because B is the transpose of A, the i-th row of B corresponds to the i-th column
of A. Let us denote as b0 the first row of B, that is

b0 = [a0, af−1
σ1 (0)

, · · · , af−1
σp−1 (0)

] = [af−1
σ0 (0)

, af−1
σ1 (0)

, · · · , af−1
σp−1 (0)

]. (3.11)

Let us consider the i-th row of B, and denote it as bi; if transposition has closure
inMF ,1q , then it must be

bi = [ai, af−1
σ1 (i)

, · · · , af−1
σp−1 (i)

] = [af−1
σ0 (i)

, af−1
σ1 (i)

, · · · , af−1
σp−1 (i)

] = b0σi.

(3.12)
Now suppose that fσi(v) = j; then, the j-th entry of bi corresponds to the v-th
entry of b0, that is af−1

σv (0)
. In other words, we have bi,j = az , with

z = f−1
σv (0), v = f−1

σi (j). (3.13)
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In order to satisfy eq. (3.12), az must be equal to the j-th entry of the i-th column
of A, that is af−1

σj
(i). Then, it must be f−1

σj (i) = z, that is

f−1
σj (i) = f−1

σv (0), v = f−1
σi (j), (3.14)

which concludes the proof.

Depending on the properties stated in the previous theorems, the familyF might
induce different algebraic structures over Fp×pq . In particular, let us consider the
case of F corresponding toMF ,1q satisfying both Theorems 3.13 and 3.14. Let A

be a square matrix whose elements are picked fromMF ,1q . By definition, we have
A−1 = det(A)−1adj(A), where det(A) is the determinant of A and adj(A) is
the adjugate of A. Computing det(A) involves only sums and multiplications:
this means that det(A) ∈ MF ,1q ; because of Theorem 3.13, det(A)−1 ∈ MF ,1q .
Computing adj(A) involves sums, multiplications and transpositions: because of
Theorem 3.14, we have that the entries of adj(A) are again elements of MF ,1q .
This means that A−1 is a matrix whose elements belong toMF ,1q , and so has the
same F-quasi-reproducible structure of A.

3.2 Known examples of F -reproducible pseudo-rings

In Section 3.1 we have described some properties that a family of permutations F
must have to guarantee that it induces algebraic structures on Fp×pq . Well-known
cases of such objects, with common use in cryptography, are circulant matrices
and dyadic matrices.

Circulant Matrices As we have seen before, a circulant matrix is a p×p matrix
for which each row is obtained as the cyclic shift of the previous one. In particular,
a circulant matrix can be seen as a square F-reproducible matrix, whose signature
corresponds to the first row and the functions σi defining F correspond to πi,
where π is the unitary circulant permutation matrix with entries

πl,j =

{
1 if l + 1 ≡ j mod p
0 otherwise

(3.15)

Basically, the bijection representing π is defined as

fπ(v) = v + 1 mod p. (3.16)

It can be easily shown that

fσi(v) = fπi(v) = fπ ◦ fπ · · · ◦ fπ︸ ︷︷ ︸
i times

(v) = v + i mod p, (3.17)
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which leads to πp = Ip and πiπj = πi+j mod p. Since permutation matrices are
orthogonal, their inverses correspond to their transposes, and thus (πi)T = πp−i.
With these properties, we have

σiσj = π
i+j mod p = σi+j mod p, (3.18)

which is compliant with Theorem 3.10, since fσi(j) = i + j mod p. With some
simple computations, it can be easily shown that circulant matrices satisfy Theo-
rem 3.14 and that the multiplication between two circulant matrices is commuta-
tive.

Dyadic Matrices A dyadic matrix is a p× p matrix, with p being a power of 2,
whose signature is again its first row. The rows of a dyadic matrix are obtained by
permuting the elements of the signature, such that the element at position (i, j) is
the one in the signature at position i⊕j, where⊕ denotes the bitwise XOR between
i and j. Then, a dyadic matrix can be written as an F-reproducible matrix, for
which each function σi is the dyadic matrix whose signature has all-zero entries,
except that at position i. This means that σi can be described by the following
bijection

fσi(v) = v ⊕ i mod p. (3.19)

If we combine two transformations, we obtain

fσi ◦ fσj (v) = (v ⊕ j)⊕ i = v ⊕ (i⊕ j) = fσi⊕j (v). (3.20)

Since fσi(j) = i ⊕ j, this proves that the family of dyadic matrices is compliant
with Theorem 3.10. It can be straightforwardly proven that dyadic matrices are
symmetric (and so, satisfy Theorem 3.14), and that the multiplication between
two dyadic matrices is commutative.

Circulant and dyadic matrices are just two particular cases of F-reproducible
pseudo-rings, and can obviously be further generalized by considering signatures
that are composed by more than one row. In addition, several more construc-
tions can be obtained. For instance, for every permutation matrix ψ and every
F-reproducible pseudo-ringMF ,mq , induced by F =

{
σ0 = Ip, σ1, · · · , σ p

m
−1

}
,

we can obtain a new F-reproducible pseudo-ring as

MF ′,mq =
{

M′∣∣M′ = ψMψT , M ∈MF ,mq

}
. (3.21)

The corresponding family of transformations is F ′ =
{
σ′0, σ

′
1, · · · , σ′p

m
−1

}
, with

σ′i = σfψ(i)ψ
T . Proving that F ′ actually induces a pseudo-ring is quite simple;
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indeed, for any two matrices A = ψMAψ
T and B = ψMBψ

T , with MA,MB ∈
MF ,m, we have

A + B = ψMAψ
T +ψMBψ

T = ψ(MA + MB)ψ
T , (3.22)

AB = ψMAψ
TψMBψ

T = ψMAMBψ
T , (3.23)

which return matrices belonging to MF
′,m

q , since MA + MB ∈ MF ,mq and
MAMB ∈MF ,mq . In addition, if multiplication is commutative inMF ,mq , then it
will be commutative inMF

′,m
q too. To prove this fact, let us consider two matrices

MA,MB ∈MF ,mq , such that MAMB = MBMA. Then, for A = ψMAψ
T and

B = ψMBψ
T , we have

AB = ψMAψ
TψMBψ

T = ψMAMBψ
T =

= ψMBMAψ
T = ψMBψ

TψMAψ
T = BA.

It is easy to prove that, ifMF ,mq is closed under transposition,MF
′,m

q is too.

4 Compactly reproducible codes

In the previous section we have described the properties that a family of func-
tions F must have in order to generate F-reproducible matrices. This opens a
wide range of possibilities for obtaining codes with compact representations, that
is, compactly reproducible (CR) codes according to Definition 3.5. In fact, F-
reproducible pseudo-rings allow to design codes that can be described in a very
compact manner. Codes of this type are of interest in code-based cryptography,
where small public keys are important.

In this section we describe how to design CR codes, and the properties that
characterize them. In particular we study how to achieve an F-reproducible repre-
sentation for the parity-check matrix H starting from an F-reproducible generator
matrix G. In addition, we provide intuitive methods to obtain random-looking CR
codes, starting from their parity-check matrix.

Let C be a CR code over Fq, with length n, dimension k and codimension r =
n−k, with anF-reproducible generator matrix G ∈ Fk×nq defined by the signature
g0 ∈ Fm×nq and the fixed and universally known family of transformations F . In
particular, according to Definition 3.5 we have ` = k

m > 1 and we write F =
{σ0,σ1, · · · ,σl−1}. Without loss of generality, we can suppose that σ0 = id =
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In. The matrix G can thus be expressed as

G =


g0

g1
...

g`−1

 =


g0

g0σ1
...

g0σ`−1

 . (4.1)

Let H ∈ Fr×nq be a parity-check matrix for C and s be one of the factors of r; if r
is a prime, necessarily s = 1. Then, H can be expressed as

H =


h0

h1
...

h r
s
−1

 , (4.2)

where each hi is a matrix with dimensions s × n. Since by definition GHT =
0k×r, it must be

gih
T
j = g0σih

T
j = 0m×s, ∀i, j ∈ N s.t. 0 ≤ i ≤ l− 1, 0 ≤ j ≤ r

s
− 1. (4.3)

Let us assume that g0H
T = 0m×n: as we explain later, in the practical case of

a cryptographic scheme, this condition can be easily satisfied. The following the-
orem considers a particular construction for a CR code, and states some properties
that its parity-check matrix must satisfy.

Theorem 4.1. Let G ∈ Fk×nq be an F-reproducible matrix, with signature g0 ∈
Fm×nq (hence,m divides k) and familyF =

{
σ0,σ1, · · · ,σ k

m
−1

}
. For simplicity,

we suppose σ0 = In. Let r = n − k, and H ∈ Fr×nq such that g0H
T = 0m×r.

Let s be a factor of r, and denote by hj the subset of rows of H at positions
{js, js+ 1, · · · , (j + 1)s− 1}. If we can define a function f(x0, x1) : [0, km −
1]× [0, rs − 1] ⊂ N2 → [0, rs − 1] ⊂ N, such that

hjσ
T
i = hf(i,j), ∀i, j ∈ N, 0 ≤ i ≤ k

m
− 1, 0 ≤ j ≤ r

s
− 1, (4.4)

then G and HT are orthogonal, i.e. GHT = 0k×r.
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Proof. Since the generator matrix G isF-reproducible, with signature g0, we have

G =


g0

g1
...

g k
m
−1

 =


g0

g0σ1
...

g0σ k
m
−1

 , H =


h0

h1
...

h r
s
−1

 . (4.5)

In order for G to be a valid generator matrix, it must be GHT = 0k×r, that is

gih
T
j = g0σih

T
j = 0m×s, ∀i, j ∈ N s.t. 0 ≤ i ≤ k

m
− 1, 0 ≤ j ≤ r

s
− 1.

(4.6)
By hypothesis, g0 is an m× n matrix such that g0H

T = 0m×r, which means

g0h
T
j = 0m×s, ∀j ∈ N s.t. 0 ≤ j ≤ r

s
− 1. (4.7)

Consider now the product gih
T
j = g0σih

T
j , for i ≥ 1. If we can define a function

f(x0, x1) : [0, km−1]× [0, rs−1] ⊂ N2 → [0, rs−1] ⊂ N with the aforementioned
property described by (4.4), then for all couples of indexes i, j we have

σih
T
j = hTf(i,j), (4.8)

and (4.6) is surely satisfied, since

gih
T
j = g0σih

T
j = g0h

T
f(i,j) = 0m×s, (4.9)

where g0h
T
f(i,j) = 0m×s because of (4.7).

Remark 4.2. Note that, if r is a prime, then we either have s = r or s = 1. The
first case may lead to somehow trivial constructions: we have that the function f
is constant, since it maps any pair (x0, 0) (with x0 ∈ [0, km − 1]) to 0. This implies
that the matrix H is such that HσTi = H, for any σi ∈ F : if the functions σi have
all full rank (for instance, they are permutations), then H cannot have maximum
rank r. Hence, when r is a prime, the only case with practical interest is that of
s = 1 (that is, the one in which each hj is actually a row vector).

For G and H to be, respectively, the generator and parity-check matrix of a
code C, some conditions have to be verified, given in Corollary 4.3 below.

Corollary 4.3. Let G ∈ Fk×nq be an F-reproducible matrix, with signature g0 ∈
Fm×nq (hence,m is among the factors of k) and familyF =

{
σ0,σ1, · · · ,σ k

m
−1

}
.
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Let H ∈ Fr×nq be a matrix such that GHT = 0k×n, and suppose that it satisfies
the hypothesis of Theorem 4.1. For H and G to be, respectively, the parity-check
and generator matrices of a code C with length n, dimension k and redundancy r,
the following conditions are necessary

(a) F contains k
m distinct linear transformations;

(b) k
m ≤

r
s ;

(c) for any three integers i ∈ [0, km − 1] and j′, j′′ ∈ [0, rs − 1], with j′ 6= j′′, it
must be f(i, j′) 6= f(i, j′′).

Proof. We want the F-reproducible k × n matrix G to be the generator matrix
of a code with dimension k: then, G must have rank equal to k. If F contains
two transformations σi = σj , with i 6= j, then the rows of G obtained as g0σi
are identical to the ones obtained as g0σj . If G has some identical rows, then
its rank cannot be maximum, and this proves condition (a). It is straightforward
to show that this condition can also be expressed as follows: there cannot exist
three integers i′, i′′ ∈ [0, km − 1], with i′ 6= i′′, and j ∈ [0, rs − 1], such that
f(i′, j) = f(i′′, j). Indeed, if we can determine such integers, then

hjσ
T
i′ = hf(i′,j) = hf(i′′,j) = hjσ

T
i′′ ,

which results in σi′ = σi′′ .

We can then easily prove condition (b). Indeed, fix an integer j ∈ [0, rs −1] and
consider, for all i ∈ [0, km − 1], all the images f(i, j): because of condition (a),
these images must be distinct. However, the dimension of the codomain of f(i, j)
is equal to r

s : if k
m > r

s , then (a) cannot be satisfied. This proves (b).
If H is the parity-check matrix of a code with redundancy r, then it must have
rank equal to r. If we suppose that there exists three integers i ∈ [0, km − 1],
j′, j′′ ∈ [0, rs − 1], with j′ 6= j′′, such that f(i, j′) = f(i, j′′) then, because of
Theorem 4.1, we also have hj′σ

T
i = hj′′σ

T
i , which implies hj′ = hj′′ . If H has

some identical rows, then its rank must be < r, and this proves condition (c).

Theorem 4.1 and Corollary 4.3 allow to generate a CR code in a very simple
way. Given a family of transformations F , first obtain a matrix H with the charac-
teristics required by the theorem. Then, for the code C having H as parity-check
matrix, a variety of F-reproducible generator matrices can be found. Indeed, let
G be a generator matrix for C: by definition, since GHT = 0k×r, we know that
whichever subset g0 formed bym rows of G is such that g0H

T = 0m×r. Then, g0
is a valid signature for an F-reproducible generator matrix, defined by the family
F . On condition that both H and G have full rank, and m < k =⇒ l > 1,
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then they can be used to represent the CR code C with length n, dimension k and
redundancy r.

We point out that the properties defined by theorem 4.1 can be described in a
graphical way, considering the fact that the linear functions σi define a mapping
acting on the ensemble of matrices hj . We can consider a directed graph G, with r

s
nodes, labeled from 0 to r

s −1. In such a graph, we have an edge from a node j0 to
a node j1 if there exists an integer i such that hj0σ

T
i = hj1 . In addition, every edge

is labeled with the corresponding function σTi . With this construction, the graph
G contains all the information about the mapping defined by F . The meaning of
the graph is the following: if there exists a length-l path from a node j0 to a node
j1, whose edges have labels = = {i0, i1, · · · , il−1}, then it must be

hj1 = hj0

∏
i∈=
σTi . (4.10)

We can now consider two different paths having the same starting and final nodes,
with corresponding sets of edges labeled as =a and =b. Then, it must be∏

i∈=a
σTi =

∏
i∈=b

σTi . (4.11)

The definitions we have introduced in the previous section describe codes whose
generator matrices can be efficiently described just by a subset of their entries; for
this reason, they are natural candidates for being used in a McEliece cryptosystem.
Actually, some variants of this type have already been proposed during the years,
with the aim of reducing the public-key size by exploiting such a property. We
show that these already existing variants are encompassed by our general frame-
work, and that the possibilities for obtaining such features are actually many more
than those already exploited.

In some cases, a quasi-compactly reproducible (QCR) code can be seen as a
particular case of a CR code (and viceversa). Let us consider a code C with length
n = n0p, dimension k = p and codimension r = (n0 − 1)p, for some integer
n0 ∈ N. Let us suppose that G is obtained as a row of n0 blocks with size p × p,
that is

G = [G0|G1| · · · |Gn0−1]. (4.12)

This form of the generator matrix is commonly used in sparse-matrix code-based
cryptosystems [7,39]. Suppose that G in (4.12) is anF-quasi-reproducible matrix,
i.e., each Gi is an element of the pseudo-ringMFi,miq and has signature Vi. If the
signatures have all the same number of rows (that is, mi = m), then such a G
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can be seen as a particular F-reproducible matrix. Let us write the i-th family of
transformations as Fi =

{
σ
(i)
0 ,σ

(i)
1 , · · · ,σ(i)

p
m
−1

}
and define an overall family of

transformations F =
{
σ0,σ1, · · · ,σ p

m
−1

}
, such that

σi =



σ
(0)
i 0p×p 0p×p · · · 0p×p

0p×p σ
(1)
i 0p×p · · · 0p×p

0p×p 0p×p σ
(2)
i · · · 0p×p

...
...

...
. . .

...

0p×p 0p×p 0p×p · · · σ(n0−1)
i


. (4.13)

Then, it is easy to see that a matrix in the form (4.12) is also an F-reproducible
matrix obtained through F in (4.13), with signature

g0 =
[
g
(0)
0

∣∣∣ g
(1)
0

∣∣∣ · · · ∣∣∣g(n0−1)
0

]
. (4.14)

4.1 CR codes from Householder matrices

A Householder matrix [33] is a matrix that is at the same time orthogonal and
symmetric. Let us consider a set of distinct Householder matrices ψ0, · · · ,ψv−1.
We have that, for all j = 0, . . . , v − 1, it must be ψ−1

j = ψTj = ψj . In order
to fulfill the conditions of Theorem 4.1, these matrices must form a commutative
group, that is

ψiψj = ψjψi, 0 ≤ i, j ≤ v − 1. (4.15)

Let us consider two sets containing all the 2v distinct binary v-tuples, i.e.{
a(i)
∣∣∣ 0 ≤ i ≤ 2v − 1, a(i) ∈ Fv2 , s.t. a(i) 6= a(j), ∀i 6= j

}
,{

b(i)
∣∣∣ 0 ≤ i ≤ 2v − 1, b(i) ∈ Fv2 , s.t. b(i) 6= b(j), ∀i 6= j

}
.

(4.16)

For the sake of simplicity, let us fix a(0) = 01×v. It is clear that these two sets are
identical, except for the order of their elements. We can now define a family of
transformations F , containing 2v linear functions σi, defined as

σi =
v−1∏
l=0

ψ
a
(i)
l
l , (4.17)

where a(i)l is the l-th entry of a(i). Since we are considering Householder matrices
with the property (4.15), it is easy to verify that σ2

i = In, and it follows that each
function is an involution.
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The family F can be used to define an F-reproducible generator matrix G for
a code C; a parity-check matrix for C can then be the F-reproducible matrix H,
with signature h0 ∈ Fs×nq , whose rows are obtained as

hj = h0

(
v−1∏
l=0

ψ
b
(j)
l
l

)T
. (4.18)

If H has full rank, the corresponding code has redundancy r = s2v, and

hjσ
T
i = hj

(
v−1∏
l=0

ψa
(i)

l

)T
= h0

(
v−1∏
l=0

ψb
(j)

l

)T (v−1∏
l=0

ψ
a
(i)
l
l

)T
=

= h0

(
v−1∏
l=0

ψ
a
(j)
l ⊕b

(i)
l

l

)T
= hf(i,j),

where ⊕ denotes the modulo 2 sum and

f(i, j) = u, s.t. b(u) = a(i) ⊕ b(j). (4.19)

It is straightforward to show that such a function satisfies the properties required by
Theorem 4.1 and Corollary 4.3. The corresponding code has length n, dimension
k = m2v and redundancy r = s2v, thus the code rate corresponds to m

m+s . In
addition, we point out that it might be possible to tune the code parameters, by
selecting only proper subsets of all the binary v-tuples, in order to form the rows
of both G and H.

4.2 CR codes from powers of a single function

In this section we present another construction of reproducible codes satisfying
Theorem 4.1. Let us consider an n × n matrix π such that πb = In, for some
integer b. Let v be a divisor of b; obviously, if b is a prime, then v = 1. We can
use π to build a family F of k

m ≤
b
v linear transformations, where k is the desired

code dimension and m is the number of rows in a signature. Indeed, the functions
in F can be defined as σi = πvzi , where the values zi are distinct integers ≤ b

v .
For simplicity, we assume z0 = 0, i.e. σ0 = In. Then, given a m × n signature
g0, we can use the family F to obtain a generator matrix G for a code C as
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G =



g0

g1

g2
...

g k
m
−1


=



g0

g0π
vz1

g0π
vz2

...
g0π

vz k
m−1


. (4.20)

An F-reproducible parity-check matrix for C can be obtained by taking an s × n
matrix h0, and using it to generate the parity-check matrix H as

H =



h0

h1

h2
...

h b
v
−1


=



h0

h0(π
b−v)T

h0(π
b−2v)T

...
h0(π

v)T


. (4.21)

If H is full rank, then C has redundancy r = s bv ; the code dimension and redun-
dancy must be linked to the code length according to k + s bv = n.

It is quite easy to show that such a parity-check matrix is compliant with Theo-
rem 4.1. In fact, we have

hjσ
T
i = h0(π

b−jv)T (πvzi)T = h0

[
πb+(zi−j)v

]T
. (4.22)

If zi ≥ j, we have[
πb+(zi−j)v

]T
=
[
π2b−b+(zi−j)v

]T
=
[
πb−(

b
v
+j−zi)v

]T [
πb
]T

=

=
[
πb−(

b
v
+j−zi)v

]T
=
[
πb−(j−zi mod b

v
)v
]T
.

In the case of zi < j, we can write[
πb+(zi−j)v

]T
=
[
πb−(j−zi)v

]T [
πb−(j−zi mod b

v
)v
]T
. (4.23)

Thus, we have proven that

hjσ
T
i = h0

[
πb−(j−zi mod b

v
)v
]T

= h(j−zi mod b
v
), (4.24)
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such that the function f(x0, x1) required by Theorem 4.1 is defined as

f(x0, x1) = x1 − zx0 mod
b

v
. (4.25)

For instance, a simple construction can be obtained by choosing m = s = 1 and
k = r = n/2: the matrices G and H are two F-reproducible matrices, with
signatures that are row vectors of length n, and are characterized by the same
number of rows (thus, C has rate 1/2).

For what concerns property (b), we can consider the following equivalence

x0 − x′1 ≡ x0 − x′′1 mod
r

s
, (4.26)

which turns into
x′′1 − x′1 ≡ 0 mod

r

s
. (4.27)

Then, it is clear that it must be x′, x′′ < r
s : however, this condition is quite straight-

forward, since j denotes the row index of the matrix blocks in H. In the same way,
when considering the index of the transformation σi, we have

x′0 − x1 ≡ x′′0 − x1 mod
r

s
, (4.28)

which turns into
x′0 − x′′0 ≡ 0 mod

r

s
. (4.29)

Again, in order to guarantee that the previous equivalence has no solution, it must
be x′0, x

′′
0 <

r
s . This basically means that we must have k ≤ m r

s .

Remark. There is a clear analogy between the concept of reproducibility and that
of automorphism group of a code. Remember that, by automorphism group, we
refer to the set of functions that map a code into itself. For instance, consider codes
obtained from generator matrices as in (4.20), and assume that π is a permutation.
Let us further assume, for simplicity, that v = 1 and choose k = b, i.e., suppose
the code has dimension equal to the order of the considered permutation π. We
then have F = {In,π,π2, · · · ,πk−1}, and for each each g0 ∈ Fnq we obtain an
F-reproducible generator matrix as

G =



g0

g0π

g0π
2

...
g0π

k−1


.
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It is trivial to show that F is in the automorphism group of the code C having G
as generator matrix. Indeed, each codeword is obtained as

c = uG =

k−1∑
j=0

ujg0π
j , uj ∈ Fq.

If we permute c according to a permutation πi, we obtain

cπi =

k−1∑
j=0

uig0π
i+j =

k−1∑
j=0

u′jg0π
j = u′G, with u′j = uj−i mod k.

Thus, u′ is a cyclic permutation of u: this proves that cπi ∈ C. Hence, the
automorphism group of C contains all permutations of the form πi, for i ∈ [1; k−
1]. With similar arguments, one can prove that analogous results hold for other
families of transformations that we consider in this paper.

4.3 Code-based schemes from QCR codes

The algebraic structures we have introduced in the previous sections can be used
to generate key pairs in code-based cryptosystems. For instance, let us consider a
parity-check matrix H made of r0×n0 matrices belonging to a pseudo-ringMF ,mq .
In order to use H as the private key of a sparse-matrix code-based instance of the
Niederreiter cryptosystem, we must guarantee that H is sufficiently sparse: this
property can be easily achieved by choosing a family F of sparse matrices σi,
which guarantee that an F-reproducible matrix defined by a sparse signature will
be sparse as well. In such a case, we can obtain the public key as H′ = SH, where
S is a random dense matrix, whose elements are picked overMF ,mq . Because of
Theorem 3.9, the entries of H′ belong to MF ,mq , thus they maintain the same
structure defined by F .

If m = 1 and F is a family of permutations satisfying Theorem 3.10, then
MF ,1q is actually a ring (see Corollary 3.12). Then, the secret key can be chosen
as H = [H0,H1, · · · ,Hn0−1], with Hi ∈ MF ,1q , while the public key can cor-
respond to the systematic form of H, that is H′ = H−1

0 H. Indeed, because of
Theorem 3.13, we have H−1

0 ∈M
F ,1
q , and so H′ is a matrix constituted of blocks

overMF ,1q . This is the approach followed in previous instances of the McEliece
and Niederreiter cryptosystems based on QC-LDPC and QC-MDPC codes [7,39],
which, however, only considered the special case of circulant matrices as Hi.

Suppose we have a family F satisfying Theorem 3.14, for which multiplication
inMF ,1q is commutative (see Section 3.2 for some examples). Then, we can use
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the F-reproducible pseudo-ring induced by F to obtain key pairs for a McEliece
cryptosystem. For instance, we can choose H = [H0,H1], with Hi ∈ MF ,1q , and
obtain a generator matrix as G = S[HT

1 ,−HT
0 ], with S ∈MF ,1q . The matrices H

and G can be used as the private and public key, respectively, for a McEliece cryp-
tosystem. Even if this case might seem quite specific, it is of significant interest
since it is exactly the structure appearing in the first of the three variants (BIKE-1)
of the BIKE proposal to the NIST competition [4].

When both Theorems 3.13 and 3.14 are satisfied, we can obtain a generator
matrix in systematic form, which is still an F-reproducible matrix. In fact, starting
from a r×n parity-check matrix H, where the elements are picked randomly from
MF ,1q , we can use the corresponding parity-check matrix in systematic form as
the public key for a Niederreiter cryptosystem instance. In the same way, we can
compute the systematic generator matrix, and use it as the public key in a McEliece
cryptosystem instance.

The idea of using codes that are completely reproducible, and not formed by
reproducible pseudo-rings, opens up for the possibility of a whole new way of
generating key pairs in the McEliece cryptosystem. Indeed, once we have gen-
erated a sparse parity-check matrix H, we can use it as the secret key. Then, a
possible public key can be obtained by taking a bunch of linearly independent
codewords, and using them as the signature of the public generator matrix. If such
codewords correspond to rows of the generator matrix in systematic form, then we
obviously obtain another significant reduction in the public key size, since there is
no need for publishing the first k bits of each one of the selected codewords.

It is clear that having a CR public code may lead to a significant reduction in the
public-key size. Indeed, once the structure of the matrix is fixed by the protocol
(i.e. dimensions, family F), the whole public-key can be efficiently represented
using just the signatures of each building block.

5 Cryptographic properties and attacks

In the previous sections we have introduced the notion of reproducibility and have
described some properties of reproducible codes. Our analysis has shown that
there can be a wide variety of methods which allow obtaining reproducible codes.
As we have seen in Section 4.3, these codes can be used to generate key-pairs
in code-based cryptosystems. The main advantage is the possibility of reducing
the information needed to represent the matrix used as the public key. In particu-
lar, following the considerations in Section 2.3, this framework is well suited for
sparse-matrix code-based cryptosystems. Let C be a secret code with parity-check



32 P. Santini, E. Persichetti and M. Baldi

matrix H, and suppose that the public key is constituted by a general generator
matrix (for the McEliece case) or parity-check matrix (for the Niederreiter case)
of C. Then, the following properties must be satisfied:

a) H is sufficiently sparse to perform efficient decoding;

b) the knowledge of the public key does not admit efficient techniques for ob-
taining H or another valid sparse parity-check matrix H′.

When property a) is satisfied, C is an LDPC code and so admits an efficient de-
coding algorithm D. We point out that this property can be easily satisfied if we
choose F as a family of sparse matrices: this way, choosing a sparse signature for
H guarantees that H will be sparse as well. Satisfying property b) might result in
being the most delicate part, since it depends on the particular reproducible struc-
ture we consider. However, as the case of circulant matrices clearly shows, this
property might not be hard to satisfy. For instance, let us consider the systematic
form of H = [H0|H1] obtained as H′ = H−1

1 H. For a generic sparse matrix,
there is no constraint regarding the density of its inverse. This means that, unless
for particular structures (like orthogonal matrices), H−1

1 is dense with overwhelm-
ing probability, and this is enough to hide the structure of H into that of H′. For
the systematic generator matrix, we have G′ = [Ik|(H−1

1 H0)
T ], and so we can

make analogous considerations.

Regardless of the particular choice of F , it is important to note that this ad-
ditional structure does not expose the secret key to the risk of enumeration. For
instance, let us consider the construction described in Section 4.2, in which the sig-
nature H is defined by a signature of sizem×n, with all the rows having weightw.
If we assume that the rows are picked in such a way as to be linearly independent,
the cardinality of the secret key is then approximately equal to

(
n
w

)m. It is easy to
see that, for practical choices of the parameters, this number is sufficiently large
to make attacks based on the enumeration of the secret key unfeasible. In the next
sections we provide some considerations on attacks that work for QC codes and
that may be hindered by proper families of reproducible codes. We only provide
some qualitative arguments, and leave detailed and thorough considerations about
these attacks for future works.

5.1 Reaction attacks

Reaction attacks [22, 24, 25, 31] are a recent kind of attacks aimed at recovering
the private key by exploiting events of decoding failure. In this section we briefly
describe the attack proposed in [31], and then we make some considerations about
reproducible codes. In particular, we consider a binary QC code with parity-check
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matrix H = [H0|H1], where each Hi is a sparse p × p circulant with row and
column weight equal to w. Then, the resulting code has length n = 2p, dimension
and redundancy equal to p.

In a reaction attack, the opponent impersonates Alice, producing ciphertexts
and sending them to Bob. Events of decoding failure can be detected since, in the
case of a decoding failure, Bob must ask for a retransmission. A crucial player
in a reaction attack is the distance spectrum, that is the set of all distances pro-
duced by the elements of value 1 in a vector [31]. If a distance d appears µ times
in the spectrum, we say that it has multiplicity equal to µ; if a distance is not in
the spectrum, we say that it has zero multiplicity. In the case of QC codes, these
distances are computed cyclically: given two ones at positions x0 and x1, the cor-
responding distance is obtained as d = min {±(x0 − x1) mod p}. In a circulant
matrix, all the rows are characterized by the same distance spectrum; in particular,
an opponent performing a reaction attack aims to obtain the distance spectrum of
the rows of H0. For this purpose, he collects the produced ciphertexts into subsets
Σd, such that each error vector used for the encryption of a ciphertext in Σd has d
in the distance spectrum of its first circulant block. Then he observes a sufficiently
large number of Bob’s reactions and assigns a decoding failure probability to each
set. As observed in [31], the decoding failure probability of Σd depends on the
presence of couples of ones in the rows of H0, at the same distance d. Indeed,
suppose that the first length-p block of e has a couple of ones forming the distance
d; then, the following properties hold

• if the distance spectrum of H0 contains d with multiplicity µ, then the couple
of ones overlaps with µ rows of H;

• if the distance spectrum of H0 does not contain d, then the couple of ones
does not overlap with any row of H.

These justify the fact that the average syndrome weight of the ciphertexts belong-
ing to the same set Σd depends on the multiplicity of d in the spectrum of H0,
as observed in [22]. In particular, the syndrome weight slightly decreases as µ
increases, and this causes the difference in the corresponding decoding failure
probabilities [22]. This allows an opponent to obtain the distance spectrum of H0,
since he can guess the multiplicity of each distance d by looking at the decoding
failure probability of the corresponding set Σd. Since H0 is sparse, its distance
spectrum is not dense, which means that it contains a small number of distances,
with multiplicities that generically are rather low. It is then possible to recover H0
from the knowledge of its distance spectrum, with a procedure that can be related
to that of finding cliques of prefixed size in a given graph. In principles, cliques
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finding algorithms run with a time complexity that grows exponentially with the
clique size; however, for sparse graphs (i.e., graphs that contain a small number of
edges), the problem becomes significantly easier [24, 31].

In summary, reaction attacks against QC codes are possible because of two
factors:

i) a sufficiently high DFR;

ii) the invariance of the set of distances between pairs of ones in a row of the
secret key with respect to the row index. This guarantees feasibility of the key
reconstruction phase, since the resulting graph (in which rows of the secret
key are represented by cliques of fixed size) is sparse.

In particular, one can try to counter reaction attacks by choosing codes for which
condition ii) is not met. For instance, in [44] authors propose to use a specific
family of QC monomial codes with the property that the distances between pairs
of ones in the secret key fill the distance spectrum. In this way, the density in the
obtained graph becomes maximal and, as a consequence, reconstructing the secret
key becomes unfeasible. We argue that families of reproducible codes may, in
general, be characterized by analogous properties.

For simplicity, consider the example of a reproducible code with k = r = p
and n = 2p, with a signature made of just one row, and a family F of func-
tions σi that are obtained as consecutive powers of a permutation ψ. In addi-
tion, suppose that ψ is obtained as the product of two disjoint p-cycles. In other
words, ψ is such that that we can find two disjoint sets

{
a
(0)
0 , a

(0)
1 , · · · , a(0)p−1

}
and{

a
(1)
0 , a

(1)
1 , · · · , a(1)p−1

}
, for which

fψ

(
a
(b)
j

)
= a

(b)
j+1 mod p, b ∈ {0, 1} . (5.1)

It is clear that
fσi

(
a
(b)
j

)
= a

(b)
j+i mod p, b ∈ {0, 1} ,∀i. (5.2)

Suppose now that the signature of H has two ones at positions a(0)v and a
(0)
l ,

with a
(0)
l − a

(0)
v = d. Then, in the i-th row of H these ones correspond to

the positions a(0)v+i mod p and a
(0)
l+i mod p. The corresponding distance is d′ =

a
(0)
l+i mod p − a

(0)
v+i mod p which, in general, is different from d.

As a toy example, set p = 7 and supposeψ is formed by the cycles {1, 8, 5, 3, 7, 0, 13}
and {4, 12, 10, 6, 15, 11, 2}. For simplicity, suppose that in the secret signature
there are two ones in positions 0 and 1. These correspond to the ones at positions
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13 and 8 in the second row of H, at positions 1 and 8 in the third row, etc. The
distances between these ones are all different and, furthermore, are not an invariant
of the row index. Thus, differently from the case of QC codes, the distances that
are produced between ones in the first row of the secret key are not maintained in
the other rows.

With this simple example we have shown that, differently from the QC case, the
distance spectrum of generic reproducible codes becomes richer and, as a conse-
quence, the graph which is used to discover the secret key becomes denser. Thus,
the secret key reconstruction phase, which is the final step of a reaction attack,
may be hindered, and this may be enough to remove the basis upon which reaction
attacks are built. Asserting the resistance of general families of transformations
requires a deeper investigation, although some conclusions can already be drawn.

5.2 Decoding One Out of Many

In [45], Sendrier introduced a technique, called Decoding One Out of Many (tradi-
tionally known with the acronym DOOM), which is able to speed up the execution
of ISD algorithms for certain families of codes, including QC codes. In general,
this technique can be applied whenever there are multiple instances of SDP with
just one solution. When ISD is used to perform a decoding attack, the gain ob-
tained from DOOM can be explained as follows. Consider the public parity-check
matrix H′ and a set of N different syndromes S =

{
s(0), s(1), · · · , s(N−1)

}
to

be decoded. Suppose that, ∀e(i) such that H′e(i)
T

= s(i), there exists a bijec-
tive function that allows to obtain e(i) from e(0) and vice-versa. We denote such
a function by B, so that e(i) = B(e(0)) and e(0) = B−1(e(i)). Then each pair{
s(i),H′

}
can be considered as the input of an ISD algorithm aimed at finding

e(0) with weight ≤ w such that H′B(e(0))T = H′e(i)
T

= s(i). According to
DOOM, we consider Ni independent calls to an ISD algorithm. As soon as one of
these runs successfully comes to an end, the whole algorithm ends as well, since
e(0) has been found. The corresponding gain is equal to |S| /

√
Ni = N/

√
Ni,

which becomes
√
N when Ni = N . Obviously, exploiting DOOM is beneficial

when the Ni independent decoding instances have comparable complexity. This
only occurs on the condition that e(i) = B(e(0)) has the same Hamming weight as
e(0), or almost the same.

The rationale of exploiting DOOM for a decoding attack is to intercept one ci-
phertext and then try to obtain other valid ciphertexts from it, corresponding to
transformed versions of the same error vector. Let us consider the case in which
the opponent intercepts a ciphertext corresponding to an initial syndrome s(0), and
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wants to recover the vector e(0) used during encryption. Then, in order to apply
DOOM, the opponent must produce other syndromes corresponding to as many
error vectors being deterministic functions of e(0). In other words, suppose that
ISD returns the solution e(i) for s(i), then it must be e(i) = Ae(0), with A be-
ing a full-rank matrix. For instance, in the QC case, the opponent can obtain a
set of p syndromes S just by cyclically shifting the initial syndrome s(0) and the
corresponding error vector e(0).

In general terms, the applicability of DOOM can be modeled as follows. Start-
ing from a syndrome s(0) = H′e(0)T , we want to determine a transformation Φ of
the syndrome that corresponds to a transformation Ψ of the error vector, that is

Φs(0) = ΦH′e(0)T = H′
(
e(0)Ψ

)T
= H′ΨTe(0)T , (5.3)

where Φ and Ψ are two matrices over Fq, with size r× r and n× n, respectively.
The previous equation must be satisfied for every vector e(0); this can happen only
if

∃ Φ ∈ Fr×rq , ΨFn×nq s.t. ΦH′ = H′ΨT . (5.4)

For the general class of reproducible codes, the applicability of DOOM must
be carefully analyzed. For instance, consider a code obtained with the procedure
described in Section 4.2, using a family of functions F consisting of powers of a
single function. If this is a permutation, due to Theorem 4.1, we have that Hσi
with σi ∈ F always results in a permutation of the rows of H. So, the opponent
can build the set S, which is used as input for the DOOM algorithm, by multiplying
the initial syndrome by the matrices σi.

However, as we have described in the previous sections, reproducible families
of codes can be obtained in many different ways. For instance, we can use func-
tions σi that are powers of a matrix θ that is not a permutation. In this case, the
opponent can still produce a set S, since equation (5.3) can be satisfied by choos-
ing Ψ = σi; the corresponding reordering of the rows of H is a cyclic shift by
i positions. However, it results that e(i) = e(0)σi. Unless θ is a permutation,
powers of this matrix would contain a rather large number of non-null entries: for
instance, if θ is selected at random, then we expect that for any σi the portion of
non null components is close to q−1

q . In such a case, any e(i) would have a rather

large Hamming weight (say, close to q−1
q ), way larger than that of e(0). According

to [21], we can approximate the time complexity of an ISD algorithm searching
for a vector with weight t as 2ct, where c = − log2(1 − k

n). If t is the weight of
e(0), then we have that the ISD algorithm taking s(0) as input is expected to run
in time 2ct. Since all the other syndromes s(i), with i ≥ 1, are associated to error
vectors with weights significantly larger than t, applying ISD on them requires
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a time-complexity that is significantly larger than 2ct. Then, there is no gain in
considering this set of multiple instances, since the additional instances (which are
produced by the opponent) are associated to an ISD complexity that is significantly
larger than that of the original one.

We notice that codes of this type may be employed in cryptosystems where
codes in compact form are not required to admit efficient decoding. This is the
case, for instance, of the HQC KEM [37] and the AGS identification scheme [3].
In both schemes, a code in compact form is needed to obtain a syndrome decoding
instance: while in HQC decoding is done with a public and fixed code, in AGS
decoding is not involved at all. Hence, in this type of applications, the adoption
of reproducible families of codes may be convenient: defeating DOOM would
obviously result in the possibility of choosing better parameters for a scheme.

5.3 Construction examples

We provide some explicit constructions of reproducible codes that can be advanta-
geous for the use in code-based cryptographic schemes, with the aim of illustrating
the potential of the introduced theoretical framework.

Quasi-Dyadic MDPC Codes

Dyadic matrices, which we have already mentioned in Section 3.2, have been used
with some measure of success in cryptography, but always in the context of alge-
braic codes. The first proposal using Quasi-Dyadic (QD) Goppa codes [38] was
cryptanalyzed [26] almost in its entirety. A later proposal based on Generalized
Srivastava (GS) codes [41] was designed to be more robust against the previous
attack, and led to one of the NIST submissions for the key exchange functionality,
DAGS [10, 11]. Nevertheless, the threat of structural attacks is always present, as
shown by the recent results of Barelli and Couvreur [13]. On the other hand, using
dyadic matrices has undeniable advantages, not only in terms of key reduction,
but also because it leads to fast and efficient arithmetic (as shown in [12]) while at
the same time featuring a reproducible structure which is less “obvious” than that
provided by circulant matrices.

The reasons mentioned above are why we believe that designing MDPC codes
with a QD structure, i.e. QD-MDPC codes, has potential in cryptography. Dyadic
matrices have many good properties (e.g. they are symmetric and orthogonal) and
satisfy Theorems 3.9-3.13, which means the ensemble MF ,1q of dyadic matrices
forms a fully-fledged ring (which is also commutative). A formal definition of
reproducible codes having such a structure is given below.
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Definition 5.1 (QD-MDPC Codes). LetMF ,1q be the ring of dyadic matrices. We
call Quasi-Dyadic MDPC (QD-MDPC) code of type (r0, n0) a linear code of
length n = n0p and redundancy r ≤ r0p that admits a parity-check matrix in
the form H = {Zij}, where Zij ∈MF ,1q for all 0 ≤ i ≤ r0 − 1, 0 ≤ j ≤ n0 − 1,
such that H has row weight O(

√
n).

Constructing a code-based cryptosystem from QD-MDPC codes is actually
rather intuitive, since we can follow the guidelines detailed in Section 4.3. How-
ever, due to the very same properties we just mentioned, building QD-MDPC
codes for cryptographic purposes requires some caution. For example, in the
simplest instantiation, one could form a parity-check matrix by selecting just two
blocks, i.e. H = [H0,H1], with Hi ∈ MF ,1q of size p × p. However, this
would not be secure. In fact, since dyadic matrices are orthogonal, the density of
the inverse matrix is not guaranteed. This means that a Niederreiter instantiation
would not be secure, since the non-systematic block is obtained as H−1

0 H1. Sim-
ilarly, to use the McEliece framework, one could compute a generator matrix as
G = [G0,G1] = S[HT

1 ,−HT
0 ], where S ∈ MF ,1q is dense, but then the prod-

uct G0G
−1
1 may still reveal the private key, due to the sparsity of the inverse of a

dyadic matrix.

As a consequence, to construct code-based schemes using this particular family
of reproducible codes, it is recommended to choose r0 ≥ 2, and employ “true”
block matrices, with blocks inMF ,1q .

Block-wise circulant matrices

As shown in Section 3.2, circulant matrices are a classic special case of repro-
ducible matrices and have already been used in cryptography for quite some time.
For a traditional circulant matrix, the signature corresponds to its first row and the
set of transformations is F =

{
σ0 = Ip,σ1 = π,σ2 = π2, . . . ,σp−1 = πp−1

}
,

where π is the unitary circulant permutation matrix (3.15).

The concept of circulant matrix can be easily generalized into that of a block-
wise circulant matrix, or a periodically circulant matrix as defined in [15]. Such a
generalization of circulant matrices can be described in the form ofF-reproducible
matrices as follows. Let us considerm > 1, such thatm|p, and anm×p signature
z formed by m independent rows of p elements each, with entries over Fq. Then,
let us consider a fixed family of linear maps F formed by the set of permutations

F =
{
σ0 = Ip,σ1 = πm,σ2 = π2m, · · · ,σ p

m
−1 = πp−m

}
, (5.5)
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which inducesMF ,mq as the set of all F-reproducible matrices of the type

Z =



z

zπm

zπ2m

...
zπp−m


. (5.6)

These matrices are indeed block-wise circulant, in the sense that any block of m
rows is originated by the previous block of m rows through a cyclic shift by m
positions. It is easy to verify that, for every matrix Z ∈MF ,mq , we have

σiZ = πimZ = Zπim = Zσi, ∀i ∈ N, 0 ≤ i ≤ p

m
− 1.

Based on Theorem 3.9,MF ,mq is a semigroup with respect to the multiplication,
and therefore a pseudo-ring. With this in mind, we can define the following object.

Definition 5.2 (BC-MDPC Codes). LetMF ,mq be the pseudo-ring formed by block-
wise circulant matrices of the form (5.6). We call Block-wise Cyclic MDPC (BC-
MDPC) code of type (r0, n0) a linear code of length n = n0p and redundancy r ≤
r0p that admits a parity-check matrix in the form H = {Zij}, where Zij ∈MF ,mq

for all 0 ≤ i ≤ r0 − 1, 0 ≤ j ≤ n0 − 1, such that H has row weight O(
√
n).

Circulant matrices have the property that any distance between a pair of ones
in their first row can be found in any other position in one of the other rows,
due to the unitary cyclic shift between any row and the subsequent one. In this
more general formulation, shifts by m positions replace unitary shifts, therefore
the aforementioned property no longer holds. Therefore, we expect that using BC-
MDPC codes could hinder reaction attacks of the type introduced in [31], which
rely on such a property of circulant matrices.

Remark 5.3. Note that the above formulation of BC-MDPC codes could be made
even more general. In fact, in Definition 5.2, these codes are described as made of
blocks all coming from the same pseudo-ringMF ,mq . However, this is not strictly
necessary to preserve a reproducible structure. One could in fact select block-wise
circulant components with different reproducible orders, which would lead to a
BC-MDPC code of reproducible order m = lcm(mi). We believe that such a
formulation could be an interesting avenue to investigate in future works.
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6 Conclusion

We have introduced the notions of reproducibility and quasi-reproducibility. They
capture the idea of matrices that can be compactly represented through a signa-
ture, i.e., a subset of rows, and a family of functions which generate all remaining
rows. We have provided theoretical results about the existence and properties of
these families of matrices, which only depend on the chosen family of transfor-
mations. Alongside, we have extended these notions to coding theory, and have
introduced the concept of reproducible and quasi-reproducible codes, which are
codes described by a generator or a parity-check matrix yielding a compact rep-
resentation. We have shown that existing and well-known families of structured
codes are encompassed within this framework, and have provided some concrete
constructions of other families of reproducible codes.

A direct application of this work is in code-based cryptography, where the rep-
resentation of a code is commonly used as the public key. As the recent NIST
call for the standardization of post-quantum cryptosystems clearly emphasizes,
random and pseudo-random codes are of interest for many code-based cryptosys-
tems. In particular, at the current state of the art, many systems rely on the quasi-
cyclic structure of codes in order to reduce the public key size. Essentially, all the
schemes employing such structured codes can be generalized to the use of repro-
ducible codes, via some of the constructions we have shown in this paper. While
the compactness of the public key is preserved, advantages come from the fact
that attacks targeting the specific quasi-cyclic structure can be avoided when more
general code constructions are considered. Although a complete cryptanalysis of
these new families of codes requires a deeper investigation, and is out of the scope
of this paper, these potential benefits motivate the study of reproducible codes as a
generalization of quasi-cyclic and other known structured codes.
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