
Efficient Logistic Regression on Large Encrypted
Data

Kyoohyung Han1, Seungwan Hong1, Jung Hee Cheon1, and Daejun Park2

1 Seoul National University, Seoul, Republic of Korea
{satanigh, swanhong,jhcheon}@snu.ac.kr

2 University of Illinois at Urbana-Champaign, Champaign, IL, USA
{dpark69}@illinois.edu

Abstract. Machine learning on encrypted data is a cryptographic method
for analyzing private and/or sensitive data while keeping privacy. In the
training phase, it takes as input an encrypted training data and outputs
an encrypted model without using the decryption key. In the prediction
phase, it uses the encrypted model to predict results on new encrypted
data. In each phase, no decryption key is needed, and thus the privacy of
data is guaranteed while the underlying encryption is secure. It has many
applications in various areas such as finance, education, genomics, and
medical field that have sensitive private data. While several studies have
been reported on the prediction phase, few studies have been conducted
on the training phase due to the inefficiency of homomorphic encryption
(HE), leaving the machine learning training on encrypted data only as a
long-term goal.

In this paper, we propose an efficient algorithm for logistic regression on
encrypted data, and evaluate our algorithm on real financial data con-
sisting of 422,108 samples over 200 features. Our experiment shows that
an encrypted model with a sufficient Kolmogorov Smirnow statistic value
can be obtained in ∼17 hours in a single machine. We also evaluate our
algorithm on the public MNIST dataset, and it takes ∼2 hours to learn
an encrypted model with 96.4% accuracy. Considering the inefficiency of
HEs, our result is encouraging and demonstrates the practical feasibility
of the logistic regression training on large encrypted data, for the first
time to the best of our knowledge.

1 Introduction

Suppose multiple financial institutions want to predict credit scores of their cus-
tomers. Although each institution could independently learn a prediction model
using various machine learning techniques, they may be able to collectively learn
a better model by considering all of their data together for training. However,
it is risky in terms of data security to share financial data between institutions,
being even illegal in many countries.



Homomorphic encryption (HE), an encryption scheme that allows arbitrary
computations on encrypted data,3 can be used to solve this dilemma. Using HE,
multiple institutions can share their data in an encrypted form and run machine
learning algorithms on the encrypted data without ever decrypting. This HE-
based approach is flexible in that the training computation can be delegated to
any party (or even an untrusted third party) without revealing the training data
(other than their own). This flexibility is desirable, as other approaches require
additional assumptions and conditions that may not be realizable in practice
(see Section 1.4 for more details).

Despite many advantages, however, HE has not been used for computation-
intensive tasks such as machine learning (especially on the training phase), hav-
ing been thought to be impractical due to its large computation overhead. Indeed,
basic operations (e.g., addition or multiplication) on ciphertexts are several (i.e.,
three to seven) orders of magnitude slower than the corresponding operations on
plaintexts even in the state-of-the-art [GHS12,HS15,CKKS17,vDGHV10,BV14,
BV11, Bra12, BGV12, LATV12, CLT14, DM15]. Moreover, some complex opera-
tions may cause additional overhead when they are reduced to a combination of
basic operations.4 For example, fractional number (e.g., fixed-point or floating-
point) arithmetic operations on ciphertexts are quite expensive, as they involve
bit-manipulation operations that are expressed as complex arithmetic circuits of
a large depth.

In addition to the sheer amount of computation, the use of various complex
operations, such as floating-point arithmetic and non-polynomial functions (e.g.,
sigmoid), makes it challenging to apply HE to machine learning algorithms.
Indeed, HEs have been applied to machine learning algorithms only in non-
realistic settings [GLN12,KSK+18] where only small-size training datasets over
a small number of features are considered; or, they have been applied only on
the prediction phase [BLN14,BPTG15,GBDL+16,LLH+17,CdWM+17,JVC18,
BMMP17] where the amount of computation is much smaller than that of the
training phase.

1.1 Our Results and Techniques

In this paper, we present an efficient algorithm for logistic regression on en-
crypted data, and demonstrate its practical feasibility against realistic size datasets,
for the first time to the best of our knowledge. We evaluate our algorithm against
a real, private financial dataset consisting of 422,108 samples over 200 features.
Our implementation successfully learned a quality model in ∼17 hours on a sin-
gle machine, where we tested it against a validation set of 844,217 samples and

3 Precisely, it is a fully homomorphic encryption (FHE) that supports the unlimited
number of operations on ciphertexts. However, throughout the paper, we will refer
to it as simply HE as long as the precise meaning is clear in the context.

4 Most of HE schemes support only basic operations like addition and multiplication as
built-in, and require other operations to be represented in the form of a combination
of the built-in operations.

2



obtained a sufficient Kolmogorov Smirnov statistic value of 50.84. The perfor-
mance is “only” two to three orders of magnitude slower than that of plaintext
learning, which is encouraging, considering the inherent computational overhead
of HEs. We also executed our algorithm on the public MNIST dataset for more
detailed evaluation, and it took ∼2 hours to learn an encrypted model with
96.4% accuracy. Below we describe the principal techniques used in our efficient
logistic regression algorithm on a large encrypted dataset.

Approximate HE Our algorithm leverages the recent advances of (word-wise)
approximate HE schemes and the approximate bootstrapping method to reduce
the computational overhead. The approximate HE can quickly compute approx-
imated results of complex operations, avoiding the bit-manipulation overhead.
(Refer to Section 1.4 for comparison with other HE schemes.) Similarly, the
approximate bootstrapping can efficiently bootstrap a ciphertext at the cost of
additional approximation noise.

While both the approximate HE and the approximate bootstrapping can
reduce the computational overheads, they have the disadvantage of introducing
an additional noise for each computation step. Even if it is small, the noise may
affect the overall machine learning performance (e.g., the convergence rate and
accuracy), but it had not been clear how critical the small noise is. We empirically
show that the additional noise is not significant to deteriorate the accuracy of a
learned model and the convergence rate. Indeed, our finding is consistent with the
results of low-precision training approaches in the literature [DSFRO17,ZLK+16,
GAGN15,CBD14] which have also empirically shown that small approximation
(round-off) errors due to the low-precision are manageable.

HE-Optimized, Vectorized Logistic Regression Algorithm The approximate HE
scheme we use also supports the packing method [CKKS17] which can further re-
duce the computation overhead. In the packed HEs, a single ciphertext represents
an encryption of a vector of plaintexts, and ciphertext operations correspond to
point-wise operations on plaintext vectors, so-called single instruction multiple
data (SIMD) operations.

To maximize the benefits of the packed scheme, we vectorize our logistic
regression algorithm to utilize the SIMD operations as much as possible. For
example, the inner product operation is represented as a SIMD-multiplication
followed by a sequence of rotations and SIMD-additions (Section 4.2). Moreover,
we carefully tune the vectorized algorithm to minimize redundant computations
caused by the use of the SIMD operations, reduce the depth of nested mul-
tiplications, and minimize the approximation noises by reordering operations
(Section 4.3).

Parallelized Bootstrapping One of the most expensive operations of HEs is the
bootstrapping operation (even with the approximate bootstrapping method).
This operation needs to be periodically executed during the entire computation.
In logistic regression, for example, it should be executed every few iterations, and

3



dominates the overall training time. It is critical for performance to optimize the
bootstrapping operation.

We design our algorithm to parallelize the bootstrapping operation. It splits
a ciphertext into multiple smaller chunks and executes bootstrapping on each
chunk in parallel, achieving a significant speedup of the overall performance.
Moreover, we carefully design the packing of training data (see below) so that our
algorithm continues to use the chunks without merging them in the next training
iterations, which additionally saves time it takes to reconstruct a ciphertext from
the chucks.

HE-Optimized, Efficient Partition of Training Data As mentioned above, we
pack multiple plaintexts in a single ciphertext, and it is critical for performance
how to pack (i.e., partition) the training dataset. The training data can be seen
as an n × m matrix with n samples and m features. A naive encoding would
pack each row (or column) into a ciphertext, resulting in a total of n (or m)
ciphertexts. This encoding, however, is not efficient, since it either does not
utilize the maximum capacity of the ciphertexts, or requires too much capacity,
increasing the computation overhead drastically.

We design an efficient partition of training data in which a sub n′ ×m′ ma-
trix is packed into a single ciphertext, where the size of the matrix is set to the
maximum capacity of each ciphertext, and m′ is set to align with the aforemen-
tioned parallelization technique, avoiding an extra overhead of the ciphertext
reconstruction (Section 4.2).

Approximating Non-Polynomial Functions As mentioned earlier, non-polynomial
functions are computationally expensive in HEs. We mitigate this performance
overhead issue by approximating them as polynomials. A sigmoid function, for
example, is replaced by its polynomial approximation in our training algorithm.
Note that, however, an approximation at a point such as Taylor expansion is
not adequate for logistic regression (and machine learning in general) since the
deviation could be too large at other points. Instead, we use an interval approx-
imation whose difference on the interval is minimized in terms of least squares.
Combined with a proper input normalization, the interval approximation has
provided sufficient precision for logistic regression in our experiment.

1.2 Contributions

Our specific contributions and novelty in our algorithm, among the techniques
described in the previous section, are as follows.

– We adopt, for the first time, the combination of the approximate HE and the
approximate bootstrapping for the machine learning (training) on encrypted
data. We demonstrate its practical feasibility by evaluating it on realistic size
datasets, and empirically show that the approximation noise is not significant
to deteriorate the overall learning performance. Note that adopting only the
approximate HE without the approximate bootstrapping (as in [KSW+18,

4



KSK+18]) is not sufficient to achieve the level of scalability reported in this
paper. The bootstrapping operation is essential for the scalability and its
optimization is critical for the overall performance. Refer to Section 1.4 for
more detailed comparison to related work.

– We present novel optimization techniques, especially ones for the bootstrap-
ping operation. We parallelize a bootstrapping operation by splitting a ci-
phertext, while we carefully design the partition of a training dataset to
avoid reconstructing the split ciphertexts, which significantly reduces the
parallelization overhead. We also fine-tune the evaluation order to minimize
the accumulated approximation noises due to the approximate HE scheme.
We admit, however, that the SIMD vectorization and the polynomial ap-
proximation are not novel.

1.3 Usage Model of Our Approach

There are several usage scenarios of our approach as illustrated in Figure 1.
One typical scenario is in a private cloud machine learning (Figure 1-a), where
a user uploads his private data after encrypting with HE, and later downloads
an encrypted model from the cloud that has performed the machine learning
training on the encrypted data. The private key of the HE scheme is owned only
by the user, and the cloud possesses only the public parameters and evaluation
keys. In this case, we can use a symmetric HE scheme that is more efficient than
an asymmetric HE scheme.

Our approach can also be used in the multiple data owner setting (Figure 1-
b). In that case, each data owner shares the public key of the HE scheme and
uploads his data to the cloud after encrypting with HE. The cloud performs
the same task as before and outputs an encrypted model. This model can be
decrypted by the decryptor who owns the private key. Here the decryptor can
be either a single entity or a group of entities that have their own share of the
private key. In the latter case, an additional key sharing protocol is required for
the public key to be jointly generated by the entities having a random share of
the private key. We may use the threshold HE schemes [JRS17,CDN01] for that.

Note that, in the protocol, no information is revealed to each other except
the learned model unless the underlying HE scheme is broken or its secret key is
disclosed. This is the case even if the cloud is compromised. Hence it could be an
ultimate solution for analyzing private or sensitive data while keeping privacy.
In the financial area, for example, it can be used to construct a prediction model
for the credit score from private financial data. In this case, each bank sends its
encrypted data to a cloud, and the cloud performs a machine learning algorithm
on the collected encrypted data, and sends back the encrypted prediction model
to the contributed banks. The banks can collaboratively decrypt it, and share
the model using a threshold or group decryption [JRS17, CDN01]. Another ex-
ample comes from genomic and medical data. Genomic and medical data are
very useful for analyzing and predicting diseases [KSK+18, JWB+17]. Due to
its private and sensitive nature, however, the use of data is extremely limited

5



(a) Single data owner

(b) Multiple data owners

Fig. 1: Secure machine learning on the cloud via homomorphic encryption

especially for sharing data among hospitals. Our model can solve this problem
by collecting genomic or medical data from hospitals after encryption and per-
forming a machine learning on these data. The learned model can be decrypted
by a trusted third party such as a government agency, and distributed to the
participated hospitals. Refer to [ACC+17] for more applications in other areas
such as education and national security.

6



1.4 Related Work

There have been several studies on performing a machine learning without reveal-
ing private information. Here we consider two major types of approaches: HE-
based approaches and the multi-party computation (MPC)-based approaches.

HE-Based Approaches Graepel et al. [GLN12] presented a homomorphic eval-
uation algorithm of two binary classifiers (i.e., linear means and Fisher’s linear
discriminant classifiers), and Kim et al. [KSW+18, KSK+18] proposed a homo-
morphic evaluation of logistic regression. However, they provided only a proof-
of-concept evaluation, where small-scale training datasets (consisting of only
dozens of samples and features) are considered. Moreover, it is not clear how
scalable their approaches are as the size of datasets and the number of iterations
increase. Indeed, their implementations require the multiplication depth (i.e.,
the number of iterations) to be bounded, meaning that their implementations
are not scalable. Our algorithm, however, is scalable in the sense that it can
admit an arbitrary number of iterations, and the time complexity is linear in
terms of the number of iterations.

There also have been reported studies on homomorphic evaluation of the pre-
diction phase of machine learning algorithms including neural networks [BLN14,
BPTG15,GBDL+16,LLH+17,CdWM+17,JVC18,BMMP17]. However, the pre-
diction phase is much simpler than the training phase in terms of the amount
of computation (especially in terms of the multiplication depth), and thus their
techniques are hard to be applied to the training phase directly.

On the other hand, Aono et al. [AHPW16] presented a protocol for secure lo-
gistic regression using the additively homomorphic encryption. It approximates
the cost function by a low-degree polynomial, and encrypts the training data in
the form of the monomials of the polynomial. Then, the approximated cost func-
tion can be homomorphically evaluated by simply adding the encrypted mono-
mials. This protocol, however, has the disadvantage that the number and/or
the size of ciphertexts increase exponentially as the degree of the polynomial
approximation increases.

MPC-Based Approaches Nikolaenko et al. [NWI+13] proposed an MPC-based
protocol for training linear regression model, which combines a linear homomor-
phic encryption and the Yao’s garbled circuit construction [Yao86]. Mohassel and
Zhang [MZ17] improved the protocol by using secure arithmetic operations on
shared decimal numbers, and applied it to logistic regression and neural network
training.

The MPC-based approaches, however, incur large communication overhead,
where the communication overhead increases drastically as the number of par-
ticipants increases. Moreover, they require all of the participants to be online
during the entire training process, which adds another limitation in practice.
To mitigate this problem, an approach using two delegating servers was pro-
posed [MZ17], where multiple parties upload their data to two servers and del-
egate the training task to the servers using the two-party computation (2PC).

7



This approach, however, requires an additional assumption that two servers do
not collude. Recall that our HE-based approach requires no assumption on the
server, and can admit even a compromised server.

Other HE Schemes The bit-wise HE schemes [DM15, CGGI17] provide an ef-
ficient bootstrapping operation, and can admit a boolean circuit directly as a
complex operation that involves bit-manipulation. However, their operations are
inherently slow due to their large circuit depth. On the other hand, the word-wise
HE schemes [BGV12, FV12, Bra12, CKKS17] provide more efficient operations
since their circuit depth can be significantly reduced. However, they suffer from
an expensive bootstrapping operation due to the large size of ciphertexts. Also,
they do not provide the same level of efficiency for complex operations that
involve bit-manipulation, as their circuit depth is still large in the form of an
arithmetic circuit over words. The word-wise approximate HE scheme, adopted
in our algorithm, can improve the efficiency of bit-manipulating complex op-
erations at the cost of approximation noises. It is useful in applications where
the small approximation noises in the intermediate computation steps are not
critical for the final computation result, which is indeed the case for most of the
machine learning algorithms.

2 Preliminaries

This section provides a brief background of logistic regression and homomorphic
encryption.

2.1 Logistic Regression and Gradient Descent Method

Logistic regression is a machine learning algorithm to learn a model for clas-
sification. We focus on the binary classification throughout this paper for the
simplicity of the presentation. In logistic regression, we consider the following
model:

log

[
Pr(Y = 0|X = x)

Pr(Y = 1|X = x)

]
= 〈w, (1,x)〉

where:5

Pr(Y = 1|X = x) =
1

1 + e−〈w,(1,x)〉

Pr(Y = 0|X = x) =
e−〈w,(1,x)〉

1 + e−〈w,(1,x)〉

for an input vector X of d features, a class Y , a weight vector w ∈ Rd+1.
The goal of the logistic regression training, given m samples {(xi, yi)}m, is

to find a weight vector w that minimizes the negative log likelihood function

5 We write 〈·, ·〉 for the inner product, and (1,x) for a vector extended with 1 from x.

8



`(w) = − 1
m · logL(w), where:

L(w) =

m∏
i=1

hw(xi)
yi · (1− hw(xi))

1−yi

with hw(xi) = σ(〈w, (1,xi)〉) and σ(x) = 1/(1 + e−x). Since `(w) is convex,
we can use the gradient descent method to find the vector w that minimizes
`(w). The gradient descent method for logistic regression is formulated as the
following recurrence relation:

wi+1 = wi − α ·∆w`(wi)

for a learning rate α. The gradient of the log likelihood function is as follows:

∆w`(w) = − 1

m

m∑
i=1

σ(−〈zi,w〉) · zi

where zi = y′i · (1,xi) ∈ Rd+1, and y′i = 2yi − 1 ∈ {−1, 1}.

2.2 Kolmogorov Smirnov Statistic

Kolmogorov Smirnov (KS) statistic is a statistic value that tells whether a given
model can distinguish between occurrence and nonoccurrence of a certain event.
Mathematically, the KS value is computed by the maximum difference between
the cumulative percentage of occurrence and nonoccurrence of the event. The
higher the KS value is, the better the model distinguishes the event. In general,
the model is considered to distinguish the event well when its KS value is greater
than 40. In logistic regression, the model is the weight vector w, and the event
is to determine y = 1. The KS statistic is a common measure to test the quality
of the model in the financial area.

2.3 Fully Homomorphic Encryption

The concept of homomorphic encryption (HE) that allows computation on en-
crypted data was proposed by Rivest et al. [RAD78]. There have been several pro-
posals that support a single operation. For example, ElGamal Encryption scheme
allows the multiplication of ciphertexts, and Okamoto-Uchiyama scheme [OU98]
and Pailler encryption scheme [Pai99] support the addition of ciphertexts with-
out decryption. However, a homomorphic encryption scheme that supports both
addition and multiplication had been a longstanding open problem. Supporting
the two operations is important because an arbitrary computation function can
be composed of addition and multiplication on Z2.

The first secure HE (based on the hardness assumption of a plausible number-
theoretic problem) was proposed by Gentry [Gen09]. He first constructed a Some-
what Homomorphic Encryption (SHE) scheme that supports all kinds of opera-
tions without decryption but by a limited number. In his SHE scheme, after some

9



number of operations, the plaintext may not be recovered from the correspond-
ing ciphertext mainly because the noise in the encryption grows too large to
alter the plaintext in the ciphertext. He also suggested a so-called bootstrapping
procedure that converts a ciphertext with large noise into another ciphertext
with the same plaintext but small noise to allow more operations. By this pro-
cedure, he proved that his SHE can be used to evaluate an arbitrary function
on encrypted values with the bootstrapping technique without ever decrypting.
Such schemes are called Fully Homomorphic Encryption (FHE) schemes.

Since his work, various kinds of FHE schemes have been suggested. Most of
them are based on one of the following three hardness problems: Learning with
Errors (LWE) problem [Reg09], Ring-LWE problem [LPR10] and Approximate
GCD problem [vDGHV10]. Their message space is either an element of Zp or
a vector over Zp for a positive integer p. When p = 2, it is advantageous in
bit operations and bootstrapping, but rather slow for integer arithmetic. For
example, one addition of two k-bit integers requires the evaluation of depth O(k)
circuit. On the other hand, if p is large, an integer arithmetic can be efficient
until the result is smaller than p. However, the operation can be complicated
and becomes inefficient after this point.

Recently, an approximate homomorphic encryption scheme is proposed by
Cheon et al. [CKKS17] to solve this problem. The scheme, called HEAAN, sup-
ports efficient encrypted floating point operations by providing a rounding of
plaintext (called rescaling) to discard insignificant figures from the plaintext
as well as addition and multiplication. For example, when p = Ω(log d) it
can evaluate a d-power of a real number approximately with log d multiplica-
tions/rescalings of ciphertexts.

2.4 Polynomial Approximation

The classic ways of finding a polynomial approximation are Taylor expansion
and Lagrange interpolation. These methods provide a precise approximation on
a small range close to the point of interest, but their approximation error could
drastically increase outside the small range.

The least squares fitting polynomial, on the other hand, provides a good
approximation on a large range.

Definition 1 (Least Squares Fitting Polynomial). For the given N points
(yi, xi) and the degree d, the least squares fitting polynomial p(x) is a polyno-
mial of degree d that has the smallest square sum error,

∑
(yi − p(xi))2, among

polynomials of degree ≤ d.

A method to construct the least squares fitting polynomial is as follows. Let
p(x) = a0 + a1x+ · · ·+ adx

d and compute the partial derivatives of the square
sum. Then the problem is reduced to solving the following system of equations:

N
∑N

i=1 xi . . .
∑N

i=1 x
d
i∑N

i=1 xi
∑N

i=1 x
2
i . . .

∑N
i=1 x

d+1
i

...
...

. . .
...∑N

i=1 x
d
i

∑N
i=1 x

d+1
i . . .

∑N
i=1 x

2d
i

 ·

a0
a1
...
ad

 =


∑N

i=1 yi∑N
i=1 xiyi

...∑N
i=1 x

d
i yi



10



There are various (numerical) methods that can be used to solve the above
matrix equation.

3 Approximate Homomorphic Encryption

We briefly describe the approximate HE scheme, HEAAN, that we use in our
homomorphic logistic regression algorithm.

3.1 Ring Learning with Errors Problem

Let us fix an integer N and a prime q. Let R = Z[x]/(xN + 1) and Rq = R/qR.
Let χ be an error distribution over Rq. For a given polynomial s ∈ Rq, we define
the Ring Learning With Error (RLWE) distribution RLWEq,χ,s by:

RLWEq,χ,s = {(b, a) ∈ R2
q : a← U(Rq), e← χ, b = a · s+ e.}

Here U(Rq) is the uniform distribution over Rq. The RLWE problem is to distin-
guish the uniform distribution in R2

q with the RLWE distribution. This problem
is widely used in various public key cryptographic schemes including homomor-
phic encryption. The security of the homomorphic encryption scheme we use
also depends on the hardness of RLWE problem.

3.2 HEAAN Scheme

First, let us define some distributions used in the scheme. For a real σ > 0,
DG(σ2) is the distribution in ZN that each component comes from the discrete
Gaussian distribution of variance σ2. For a positive integer h, HWT(h) is the
set of vectors in {−1, 0, 1}N whose hamming weight is h. Finally, for a real
0 ≤ ρ ≤ 1, ZO(ρ) is the distribution in {−1, 0, 1}N that each component is
either 1 or −1 with probability ρ/2, respectively, and 0 with probability 1 − ρ.
Let R = Z[x]/(xN + 1) and RQ = ZQ[x]/(xN + 1) where Q and N are powers
of two. A ciphertext is in the polynomial ring R2

Q and a secret key is randomly
selected from HWT(h). Note that Q and N are determined by both the depth
of a target circuit and a security parameter λ.

HEAAN is a leveled HE scheme. A ciphertext is associated with a modulus,
and the ciphertext modulus decreases for each homomorphic operation. Once
the modulus goes below a lower bound, no more operation can be conducted
on the associated ciphertext until it is bootstrapped (see Section 3.3 for the
bootstrapping operation). HEAAN keeps track of this ciphertext modulus in
a form of level. A ciphertext level ` denotes a ciphertext modulus of 2`. The
maximum level L is log2Q. If the same scaling factor ∆ = 2pBits is used in the
entire homomorphic computation, for example, log2Q should be set to be at
least d · pBits, where d is the depth of the computation circuit of interest and
pBits is the number of bits for precision. We also denote 2` by Q`.

11



KeyGen(λ, L) The key generation procedure is as follows:

– Parameters: Given the maximum level L, let Q = 2L and P = 2L. Given
the security parameter λ, we choose a power of two integer M , an integer
h, and a real number σ > 0 for an RLWE problem that has λ-bit of security
level.

– Secret key : Sample s(x)← HWT(h) and let sk = (1, s(x)) be the secret key.

– Public key : Sample a(x) ← RQ, and e(x) ← DG(σ2). Let pk = (b(x), a(x))
∈ R2

Q be the public key, where b(x) = −a(x)s(x) + e(x) (mod Q).

– Evaluation key : Sample a′(x) ← RPQ and e′(x) ← DG(σ2). Let evk =
(b′(x), a′(x)) ∈ R2

PQ be the (public) evaluation key, where b′(x) = −a′(x)s(x)+

P · s2(x) + e′(x) (mod PQ).

Encryption and Decryption To pack a vector of complex (or real) numbers of
plaintexts, we convert such a vector into an element in the polynomial ring.
For the simplicity of presentation, we describe the inverse of the conversion. By
evaluating the non-conjugate roots to a polynomial with real coefficients, we can
convert the polynomial into a vector of complex numbers. This mapping τ is an
isomorphism and can be described as follows:

τ : R[x]/(xN + 1)→ CN/2

f(x) 7→ (f(ζ5
i

2N ))0≤i<N/2

Here ζ2N = exp(2πi/2N) ∈ C is a primitive 2N th root of unity in complex
field. This packing scheme enables the batch encryption that can achieve a bet-
ter amortized performance using the single instruction multiple data (SIMD)
operations. The encoding and decoding procedures are as follows.

– encode(m ∈ CN/2, pBits): Compute τ−1(m) = m(x) ∈ R[X]/(XN + 1).
Return an integer polynomial m′(x) = b∆ ·m(x)e ∈ R for ∆ = 2pBits.

– decode(m(x) ∈ R, pBits): Compute m′(x) = m(x)/∆ ∈ R[X]/(XN +1) for
∆ = 2pBits. Return a vector of complex numbers m = τ(m′(x)) ∈ CN/2.

The encryption and decryption procedures over the encoded plaintexts are
as follows.

– encrypt(m ∈ CN/2, pBits): Compute an integer polynomialm(x) = encode(m, pBits).
Sample v(x) ← ZO(0.5) and e0, e1 ← DG(σ2). Return (b(x), a(x)) = v(x) ·
pk + (m(x) + e0(x), e1(x)) mod Q.

– decrypt(c, pBits): For the given level l ciphertext c = (b(x), a(x)), com-
pute m(x) = b(x) + a(x) · s(x) mod Q` for Q` = 2`. Return a vector m =
decode(m(x), pBits).

Homomorphic Operations Now we describe homomorphic operations on cipher-
texts. First, we have addition and multiplication as follows.

12



– add(c1, c2): Return c3 = (b1(x) + b2(x), a1(x) + a2(x)) ∈ R2
Q`

for the level
` ciphertexts c1 = (b1(x), a1(x)) and c2 = (b2(x), a2(x)). Note that c3 is
an encryption of m1 +m2 when c1 and c2 are encryptions of m1 and m2,
respectively.

– mult(c1, c2): Compute (d0, d1, d2) = (b1(x) + b2(x), a1(x)b2(x) + a2(x)b1(x),
a1(x)a2(x)) ∈ R3

Q`
for the level ` ciphertexts c1 = (b1(x), a1(x)) and c2 =

(b2(x), a2(x)). Return c3 = (d0, d1) + bP−1 · d2 · evke ∈ R2
Q`

. Note that c3
is an encryption of m1 ◦m2 with a scaling factor ∆1 · ∆2 when c1 and c2
are encryptions of m1 and m2 with scaling factors ∆1 and ∆2, respectively.
Here ◦ denotes the element-wise multiplication.

We also have addition and multiplication with a constant.

– cAdd(c, cnst, pBits): Return c′ = (b(x) + cnst · 2pBits, a(x)) mod Q` for
the level ` ciphertext c = (b(x), a(x)). Note that c′ is an encryption of the
vector (m1 + cnst, · · · ,mN/2 + cnst) when c is the encryption of m =
(m1, · · · ,mN/2) with scaling factor 2pBits.

– cMult(c, cnst, pBits): Return c′ = (cnst · 2pBits · b(x), cnst · 2pBits · a(x))
mod Q` for the level ` ciphertext c = (b(x), a(x)). Note that c′ is an encryp-
tion of cnst ·m when c is the encryption of m with scaling factor 2pBits.

– cMultByVec(c, m′, pBits): Encode m′ by m′(x) = encode(m′, pBits) and
return c′ = (m′(x) · b(x),m′(x) · a(x)) mod Q` for the level ` ciphertext
c = (b(x), a(x)). Note that c′ is an encryption of m ◦ m′ when c is the
encryption of m with scaling factor 2pBits.

The rescaling operation, an important operation of HEAAN, is given below.
The rescale operation is necessary to control the scaling factor of a ciphertext.
The scaling factor increases for each homomorphic multiplication, growing ex-
ponentially as the number of multiplications increases. A ciphertext becomes no
longer valid once the associated scaling factor becomes too large. The modDown

operation has a role in matching the level of two ciphertexts, by reducing the
level of one with a higher level.

– rescale(c, bits): Return c′ = (bb(x) · 2−bitse, ba(x) · 2−bitse) ∈ RQ`−bits
for

the given level ` ciphertext c = (b(x), a(x)). Note that c′ is an encryption of
m with a new scaling factor ∆/2bits when c is an encryption of m with a
scaling factor ∆.

– modDownBy(c, bits): Return c′ = c with level ` − bits for the given level `
ciphertext c. Note that c′ is an encryption of the same message of c and the
level of c′ only differs from c.

– modDownTo(c, c′): Return c′′ = c with level `′ for the given level ` ciphertext c
and level `′ ciphertext c′. Note that c′′ is an encryption of the same message
of c and the level of c′.

The mapping τ used in the packed encoding scheme has a nice property
that comes from the Galois mapping. Let g(f(x)) = f(x5) ∈ R[x]/(xN + 1).

Then, τ(g(f(x))) = (f(ζ5
i+1

2N ))0≤i<N/2. Therefore, applying g to a polynomial

13



ring element corresponds to shifting of the complex vector in CN/2. This property
is used in homomorphic left- and right-rotation operations.

– RotKeyGen(sk, i): Sample a′′ ← RPQ and e′′ ← DG(σ2) Let rotk = (b′′(x), a′′(x)) ∈
R2
PQ be a public key for rotation, where b′′(x) = −a′′(x)s(x) + e′(x) + P ·

s(x5
i

) mod PQ.

– leftRotate(c, i): Compute (d0, d1) = (b(x5
i

), a(x5
i

)) ∈ R2
Q`

for the given

level ` ciphertext c = (b(x), a(x)). Return c′ = (d0, 0)+bP−1·d1·rotkie ∈ R2
Q`

Note that c′ is an encryption of m′ such that m′j = m[j+i]N/2
when c is an

encryption of m.

The right-rotation operation can be simply obtained using the left-rotation, that
is, rightRorate(c, i) = leftRotate(c,−i). Refer [CKKS17] for more details.

3.3 Bootstrapping for HEAAN

Recall that the homomorphic multiplication affects both the scaling factor and
the modulus of a ciphertext. While the scaling factor can be adjusted by the
rescaling operation, the modulus can be reset only by a so-called bootstrapping
operation that we will describe in this section. The bootstrapping operation is
necessary for a computation circuit of large depth. Without the bootstrapping
operation, the number of possible nested multiplications is limited, and thus it is
infeasible to admit a circuit of large depth. Recently, a bootstrapping operation
for HEAAN has been proposed [CHK+18,Kim18]. Their scheme does not require
a bootstrapping key, but only a number of rotation keys that are used in various
linear transformations and their inverse transformations.

– bootstrap(c): Return a new ciphertext c′ with a larger ciphertext modulus.
The size of c′ is less than the maximum ciphertext modulus. Note that c′ does
not have the maximum ciphertext modulus. The homomorphic evaluation of
the decryption computation will reduce the ciphertext modulus.

To use the bootstrap() function, we need to set the maximum ciphertext mod-
ulus to be large enough to evaluate the decryption computation circuit. This
bootstrapping process decreases the ciphertext modulus, so we had to consider
it for setting parameters in our experiment.

4 Logistic Regression on Encrypted Data

In this section, we explain our algorithm for efficient logistic regression on en-
crypted data. We first present a baseline (plaintext) algorithm of the logistic
regression training, designed to be friendly to homomorphic evaluation (Sec-
tion 4.1). Then we explain how to optimize the baseline algorithm to be effi-
ciently evaluated in HEs (Sections 4.2 and 4.3).

14



4.1 HE-friendly Logistic Regression Algorithm

We first explain our baseline algorithm of the logistic regression training, as
shown in Algorithm 1, that we will further optimize in the next section. We de-
sign the baseline algorithm to be friendly to homomorphic evaluation by avoiding
the use of certain types of computations that are expensive in HEs.

Mini-Batch Gradient Descent We adopt the mini-batch gradient descent method,
where we set the mini-batch size according to the number of slots in a packed
ciphertext. We do not consider the stochastic gradient descent method since it
does not utilize the maximum capacity of the packed ciphertext. Also, we do
not consider the full-batch gradient descent method since it requires too many
and/or large ciphertexts for each iteration when the training dataset is large.

Nesterov Accelerated Gradient Optimizer We adopt Nesterov accelerated gradi-
ent (NAG) as the gradient descent optimization method. We choose NAG among
the various optimization methods, since it provides decent optimization perfor-
mance without using the division operation that is expensive in HEs. The NAG
can be formulated as follows:

wi+1 = vi − γ ·∆w`(vi)

vi+1 = (1− η) · wi+1 + η · wi

where wi and vi are two weight vectors to be updated for each iteration i,∆w`(vi)
is the gradient of the log likelihood function (as given in Section 2.1), and γ and
η are parameters.

Polynomial Approximation of Activation Function An essential step of the lo-
gistic regression training is to apply an activation function, e.g., the sigmoid
function σ(x) = 1/(1 + e−x). Since non-polynomials are very expensive to eval-
uate in HEs, we consider its (low-degree) polynomial approximation σ′ as an
alternative in our algorithm. We use the least squares fitting method to ap-
proximate the sigmoid function. The least squares fitting polynomial provides a
sufficient approximation within the given interval. Figure 2, for example, plots
the original sigmoid function, its least squares fitting polynomial (of degree 3)
within the interval [−8, 8], and its Taylor expansion (of degree 3) at the point
x = 0. Note that the Taylor polynomial provides an accurate approximation
only around the given point, while the least squares fitting polynomial provides
a good approximation in a wider range.

Baseline Algorithm The Algorithm 1 shows the resulting baseline algorithm.
Note that each sample (row) zi of the training data Zi is structured by zi =
y′i · (1,xi) ∈ Rf , where y′i = 2yi − 1 ∈ {−1, 1}, and xi and yi are the original
input samples and its class output, respectively (as described in Section 2.1).

15



Algorithm 1 HE-friendly logistic regression algorithm

Input: Mini-batches of training data {Zi} where Zi ∈ Rm×f (i.e., the mini-batch
size is m), parameters γ and η, the number of iterations K, and a polynomial
approximation of sigmoid σ′

Output: Weight vectors w,v ∈ Rf

1: Initialize weight vector: w,v ← 0
2: for k in [1..K] do
3: Select a mini-batch Zi (in order, or at random)
4: a = Zi · v
5: for j in [1..m] do
6: bj = σ′(aj)
7: end for
8: ∆ =

∑m−1
j=0 bj · Zi[j]

9: w+ = v − γ ·∆
10: v+ = (1− η) ·w+ + η ·w
11: w = w+, v = v+

12: end for

−8 −6 −4 −2 0 2 4 6 8

−0.5

0

0.5

1

1.5

y = 1/(1 + exp(−x))

y = 0.5 + 0.15x− 0.0015x3

y = 0.5 + x
4

+ x3

48

Fig. 2: Sigmoid (the first) and its two approximations using the least squares fitting
method (the second) and the Taylor expansion (the third).

4.2 HE-Optimized Logistic Regression Algorithm

Now we optimize the baseline algorithm (Algorithm 1) to be efficiently evalu-
ated in HEs against large encrypted data. Specifically, we optimize the body of
the main iteration loop (lines 3–11 of Algorithm 1). Conceptually, the optimiza-
tion consists of two parts: vectorization using homomorphic SIMD operations,
and fine-tuning the evaluation order. In this section, we explain the first part,
which will result in the vectorized body of the main iteration loop as shown in
Algorithm 4. We will explain the second part in the next section.

Let us first define some notations. For two matrices A and B, we write
A + B and A ◦ B to denote the addition and the element-wise multiplication

16



(i.e., Hadamard product) of A and B, respectively. Also, we write A◦k to denote
the element-wise exponentiation, i.e., A◦k = {aki,j} for A = {ai,j}.

Partition and Encryption of Training Data Assume that the training data
{xi,j} consists of n samples over f − 1 features, throughout this section. This
data can be seen as an n× f matrix Z including the target {yi} as follows:

Z =


z[0][0], z[0][1], · · · , z[0][f − 1]
z[1][0], z[1][1], · · · , z[1][f − 1]

...
z[n− 1][0], z[n− 1][1], · · · , z[n− 1][f − 1]


where z[i][0] = yi and z[i][j + 1] = yi · xi,j for 0 ≤ i < n and 0 ≤ j < f − 1.6

We divide Z into multiple m × g sub-matrices Zi,j (for 0 ≤ i < n/m and
0 ≤ j < f/g) as follows:

Zi,j =


z[mi][gj], · · · , z[mi][gj + (g − 1)]

z[mi+ 1][gj], · · · , z[mi+ 1][gj + (g − 1)]
...

z[mi+ (m− 1)][gj], · · · , z[mi+ (m− 1)][gj + (g − 1)]


Zi,j is supposed to be packed into a single ciphertext, and thus we setm and g in a
way that utilizes the maximum ciphertext slots, N/2, that is, m×g = N/2. Also,
we set g to the same size of the partition of a weight vector for the bootstrapping
parallelization, which in turn decides m, the size of a mini-batch block.

To encrypt Zi,j in a single ciphertext, we first represent it in a vector pi,j :

pi,j [k] = Zi,j [bk/gc][k mod g] (0 ≤ k < g ·m)

and encrypt pi,j using the scheme described in Section 3:

encZ[i][j] = encrypt(pi,j ;∆z)

Note that we have nf/mg ciphertexts to encrypt the whole training data.

Partition and Encryption of Weight Vectors We have two weight vectors,
w and v, of size f in our logistic regression algorithm due to the NAG optimiza-
tion (as shown in Section 4.1). We divide each of them into multiple sub-vectors,
wi and vi, for the purpose of the bootstrapping parallelization. Then we con-
struct matrices, Wi and Vi, each of which consists of m duplicates of each of
sub-vectors, wi and vi, as follows:

Wi =


w[gi], w[gi+ 1], · · · , w[gi+ (g − 1)]
w[gi], w[gi+ 1], · · · , w[gi+ (g − 1)]

...
w[gi], w[gi+ 1], · · · , w[gi+ (g − 1)]


6 We have yi · xi,j instead of xi,j for a simpler representation of the gradient descent

method, as described in Section 2.1. This representation also has an advantage for
computing a gradient ∆w`(vi) over ciphertexts.

17



Vi =


v[gi], v[gi+ 1], · · · , v[gi+ (g − 1)]
v[gi], v[gi+ 1], · · · , v[gi+ (g − 1)]

...
v[gi], v[gi+ 1], · · · , v[gi+ (g − 1)]


We write encW[i] and encV[i] to denote encryptions of these matrices. We ini-
tialize them to be an encryption of a zero vector.

Homomorphic Evaluation of Inner Product One of the essential operations
of logistic regression is the inner product. If we have m samples over g features,
then for each iteration, we have to compute m inner products on vectors of size g,
where each inner product requires g2 multiplication and g−1 addition operations,
that is, m·(g2 ·mult+g ·add) operations in total. Now we will show an optimized,
batch inner product method using SIMD-addition, SIMD-multiplication, and
rotation operations, which requires only two SIMD-multiplication operations and
2 log g rotation-and-SIMD-addition operations to compute the m inner products,
that is, 2 · SIMDmult + 2 log g · (rot + SIMDadd) in total. This batch method
is extremely efficient in the packed HEs where SIMD operations provide high
throughput at no additional cost compared to non-SIMD operations.

The batch inner product method is as follows. Suppose we want to compute
Z · v where Z ∈ Rm×g and v ∈ Rg. Assume that g is a power of two.7 First, we
construct a matrix V that consists of m duplicate row-vectors of v as described in
Section 4.2. Then, we can compute the Hadamard product, Z ◦V , by conducting
a single SIMD-multiplication as follows:

Z ◦ V =


Z[1][1] · v[1], Z[1][2] · v[2], · · · , Z[1][g] · v[g]
Z[2][1] · v[1], Z[2][2] · v[2], · · · , Z[2][g] · v[g]

...
...

. . .
...

Z[m][1] · v[1], Z[m][2] · v[2], · · · , Z[m][g] · v[g]


Now, we need to compute the summation of the columns, which becomes the
inner product result. We can compute the summation by repeating the rotation-
and-addition operations log g times as follows. Let Lroti(A) be a matrix obtained
by rotating each element of A to the left by i. Then, recursively evaluating the
following recurrence relation starting from A(0) = A will give us A(g), in log g
steps, whose first column is the summation of the columns of A:

A(2k+1) = A(2k) + Lrot2k (A(2k)) =


Σ2k+1

i=1 Z[1][i] · v[i] · · · −
Σ2k+1

i=1 Z[2][i] · v[i] · · · −
...

. . .
...

Σ2k+1

i=1 Z[m][i] · v[i] · · · −


Note that the other columns except the first are garbage, denoted by −, in the
above. We can clean up the garbage columns by multiplying the zero vectors, and
then duplicate the first column by applying the rotation-and-addition method.
See Algorithm 3 for the complete details.

7 Otherwise, we can pad zero columns in the end to make it a power of two.

18



Algorithm 2 SumRowVec: summation of row-vectors

Input: Matrix A with size f × g for a power of two f
Output: Matrix R with size f × g
1: R := A
2: for 0 ≤ i < log2 f do
3: R = Lrotg·2i(R) +R
4: end for
5: return R

Algorithm 3 SumColVec: summation of column-vectors

Input: Matrix A with size f × g for a power of two g
Output: Matrix R with size f × g
1: R := A
2: for 0 ≤ i < log2 g do
3: R = Lrot2i(R) +R
4: end for
5: D = {Di,j}, where Di,j = 1 if j = 0 and 0 otherwise.
6: R = R ◦D
7: for 0 ≤ i < log2 g do
8: R := Rrot2i(R) +R
9: end for

10: return R

Note that we can compute the summation of row-vectors in a similar way,
as shown in Algorithm 2. Below we illustrate the results of two procedures,
SumRowVec and SumColVec:

SumRowVec(A) =


∑

i a[i][1], · · · ,
∑

i a[i][g]∑
i a[i][1], · · · ,

∑
i a[i][g]

...,
. . . ,

...∑
i a[i][1], · · · ,

∑
i a[i][g]



SumColVec(A) =


∑

j a[1][j], · · · ,
∑

j a[1][j]∑
j a[2][j], · · · ,

∑
j a[2][j]

...,
. . . ,

...∑
j a[f ][j], · · · ,

∑
j a[f ][j]


for A = {ai,j} ∈ Rf×g.

Vectorized Algorithm Algorithm 4 shows the resulting vectorized body of
the main iteration loop using the approaches described so far in this section.
At line 6, we use the least squares fitting polynomial approximation of sigmoid,
y = 0.5+0.15x−0.0015x3 (depicted in Figure 2). The bold symbols and numbers
denote m×g matrices that consist of duplicates of corresponding elements. Note
that the approximated sigmoid function is evaluated only once per iteration even
with the partitioned weight vectors. Also, note that the two loops of iterating
over the partitioned weight vectors can be run in parallel.

19



Algorithm 4 Vectorized body of the iteration loop

Input: Matrices Zj , Wj , and Vj for 0 ≤ j < f/g
Output: Matrices W+

j and V +
j for 0 ≤ j < f/g

1: for 0 ≤ j < f/g do
2: Mj = Zj ◦ Vj

3: Mj = SumColVec(Mj)
4: end for
5: M =

∑f/g
j=0Mj

6: S = 0.5 + 0.15 ◦M − 0.0015 ◦M◦3
7: for 0 ≤ j < f/g do
8: Sj = S ◦ Zj

9: ∆j = SumRowVec(Sj)
10: W+

j = Vj − γ ◦∆j

11: V +
j = (1− η) ◦W+

j + η ◦Wj

12: end for
13: return W+

j and V +
j for 0 ≤ j < f/g

4.3 Further Optimization

Now we explain the further optimization made on the top of Algorithm 4 by
fine-tuning the evaluation order to minimize both the depth and the noise of
multiplications. Our final HE-optimized algorithm is given in Algorithm 5.8

Minimizing Multiplication Depth In homomorphic evaluation, minimizing
the depth of nested multiplications is critical to optimize the performance. The
larger the multiplication depth, the larger the ciphertext modulus and/or the
more often the bootstrapping operation needs to be executed. A large ciphertext
modulus significantly increases the computation overhead, and the bootstrapping
operation is very expensive. For example, when computing xn, a naive method
would require the nested multiplications of depth n−1, but an optimized method
such as the square-and-multiply method would require only the multiplication
depth of log n.

We further optimize Algorithm 4 by minimizing the multiplication depth.
A naive evaluation of Algorithm 4 requires the multiplication depth of 7. We
reduce the depth to 5, by using the square-and-multiply method with further
adjusting the evaluation order. This depth reduction allows us to reduce the
size of the ciphertext modulus, improving the performance. Note that our depth
minimization method will achieve a bigger depth reduction as a larger-degree
polynomial is used in the sigmoid approximation (at line 6 in Algorithm 4).

Figure 3 illustrates our optimized evaluation of Algorithm 4 using the depth
minimization method. It shows the optimized evaluation in the form of a circuit,
where the inputs are given in the top of the figure, and the outputs are in the
bottom. The circuit is layered by the multiplication depth, where each layer is

8 The definitions of encSumRowVec and encSumColVec are provided in Appendix.

20



Depth

0 Vj Zj Wj

1 Mj = Zj ◦ Vj Z′′′j = (γ · c3) ◦ ZjZ
′
j = (−γ · c1) ◦ Zj

2 M =
∑

j SumColVec(Mj) Z′′′j

3 M ′′ = M◦2 − c2
c3

M ′ = M ◦ Z′′′j

4 Vj Gj = M ′ ◦M ′′ + Z′j WjZ′jW+
j = Vj + SumRowVec(Gj)

5 V +
j = (1− η) ◦W+

j + η ◦WjW+
j

Fig. 3: An optimized evaluation circuit of Algorithm 4 using the depth minimiza-
tion method. The circuit is layered by the multiplication depth (in the left-hand
side), where each layer consists of either normal multiplication (mult) or con-
stant multiplication (cMult), with zero or more addition (add) operations. The
solid arrow denotes the input wiring, and the dotted arrow denotes the value
propagation. Since the circuit is layered by only the multiplication depth, the
inputs of the addition operation are put in the same layer (e.g., as shown in the
fourth layer). Algorithm 5 incorporates this optimized evaluation circuit.

labeled with its multiplication depth (in the left-hand side), i.e., the input layer
is labeled with 0, and the output layer is labeled with 5. Given the inputs Vj ,
Zj , and Wj ,

9 the first layer computes Mj = Zj ◦ Vj (corresponding to the line 2
in Algorithm 4), and Z ′ = (−γ · c1) ◦ Zj and Z ′′′ = (γ · c3) ◦ Zj (corresponding
to the partial computation of the lines 6, 8, and 10). The second layer computes
M = Σj(SumColVec(Mj)) (corresponding to the lines 3 and 5). The third layer
computes M ′ = M ◦ Z ′′′ and M ′′ = M◦2 − c2

c3
. The fourth layer computes

G = M ′ ◦M ′′ + Z ′ and W+
j = Vj + SumRowVec(G). The fifth layer computes

V +
j = (1− η) ◦W+

j + η ◦Wj . Note that SumRowVec(G) computed in the fourth

layer effectively computes −γ ◦∆j (at line 10 in Algorithm 4).10 Also note that
the computation of SumRowVec(G) requires only the multiplication depth of
3, while a naive evaluation of −γ ◦ ∆j would require the multiplication depth
of 5. In general, if we use a degree n polynomial approximation (at line 6 in

9 Indeed, the whole evaluation circuit consists of duplicates of the presented circuit
for each j being arranged side-by-side, which effectively parallelizes the loops in
Algorithm 4.

10 SumRowVec (G) = SumRowVec(M ′ ◦M ′′ + Z′) = SumRowVec((M ◦ (γ · c3) ◦ Zj) ◦
(M◦2 − c2

c3
) + (−γ · c1) ◦ Zj) = SumRowVec(−γ · Zj ◦ (c1 + c2 ◦M − c3 ◦M◦2)) =

SumRowVec(−γ ·Zj ◦S) = SumRowVec(−γ ·Sj) = −γ ◦ SumRowVec(Sj) = −γ ◦∆j

21



Algorithm 4), our depth minimization method will reduce the multiplication
depth from O(n) to O(log n).

Minimizing Approximation Noise Recall that the approximate HE used in
our algorithm introduces an additional noise for each homomorphic operation.
Even the homomorphic rotation and rescaling operations introduce the noise.
We further optimize our algorithm to minimize the noise by reordering the eval-
uation order of homomorphic operations. For example, the rescaling operation
has an effect of reducing the previously introduced noise. Reordering the rescal-
ing operations, thus, can reduce the overall accumulated noise. Let us illustrate
the approach. Suppose we want to multiply two ciphertexts c1 = Enc(m1) and
c2 = Enc(m2), and rotate the multiplication result. Let m3 = (m1 ◦m2). A
naive way of computing that would have the following evaluation order:

c3 = Mult(Enc(m1),Enc(m2)) = Enc(m3 ·∆+ ε1)

c4 = Rescale(c3, ∆) = Enc(m3 + ε1/∆+ ε2)

c5 = Rotate(c4, i) = Enc(Lroti(m3) + ε1/∆+ ε2 + ε3)

where ∆ is the scaling factor, and εi is the noise. However, we can reduce the final
noise by adjusting the evaluation order, i.e., by swapping the rescaling operation
and the rotation operation, as follows:

c3 = Mult(Enc(m1),Enc(m2)) = Enc(m3 ·∆+ ε1)

c′4 = Rotate(c3, i) = Enc(Lroti(m3) ·∆+ ε1 + ε2)

c′5 = Rescale(c′4, ∆) = Enc(Lroti(m3) + (ε1 + ε2)/∆+ ε3)

Note that the final noise is reduced from ε1/∆+ ε2 + ε3 to (ε1 + ε2)/∆+ ε3. Since
ε2 � ∆, this optimization effectively removes ε2.

5 Evaluation

We evaluate our algorithm of logistic regression on encrypted data against both
a real financial training dataset and the MNIST dataset. Our artifact is publicly
available at [Ano18].

5.1 Logistic Regression on Encrypted Financial Dataset

We executed our algorithm on a private, real financial dataset to evaluate the
efficiency and the scalability of our algorithm on a large dataset.

Training Dataset The encrypted dataset we consider to evaluate our logistic
regression algorithm is the real consumer credit information maintained by a
credit reporting agency.The dataset (for both training and validation), randomly
sampled by the agency, consists of 1,266,325 individuals’ credit information over

22



Algorithm 5 HE-optimized body of the iteration loop

Input: Ciphertexts encZj , encWj , and encVj for 0 ≤ j < f/g, and parameters wBits
and pBits

Output: Ciphertexts encW+
j and encV+

j for 0 ≤ j < f/g
1: for 0 ≤ j < f/g do
2: encMj = rescale(mult(encZj , encVj),wBits)
3: encMj = encSumColVec(encMj , pBits)
4: end for
5: encM =

∑f/g
j=0 encMj

6: encM′′ = rescale(mult(encM, encM),wBits)
7: encM′′ = cAdd(encM′′,−100,wBits)
8: for 0 ≤ j < f/g do
9: encZ′ = cMult(encZj ,−γ ◦ 0.5,wBits)

10: encZ′′′ = cMult(encZj ,γ ◦ 0.0015,wBits)
11: encZ′′′ = modDownTo(encZ′′′, encM)
12: encM′ = rescale(mult(encM, encZ′′′),wBits)
13: encG = rescale(mult(encM′, encM′′),wBits)
14: encG = add(encG,modDownTo(encZ′, encG))
15: encG = encSumRowVec(encG)
16: encW+

j = add(encG,modDownTo(encVj , encG))

17: encWj = modDownTo(encWj , encW
+
j )

18: encW+
j,1 = cMult(encW+

j ,1− η, pBits)
19: encW+

j,2 = cMult(encWj ,η, pBits)

20: encV+
j = add(encW+

j,1, encW
+
j,2)

21: encV+
j = rescale(encV+

j , pBits)

22: encW+
j = modDownTo(encW+

j , encV
+
j )

23: end for
24: return encV+

j and encW+
j for 0 ≤ j < f/g

200 features that are used for credit rating. Examples of the features are the loan
information (such as the number of credit loans and personal mortgages), the
credit card information (such as the average amount of credit card purchases and
cash advances in the last three months), and the delinquency information (such
as the days of credit card delinquency). The samples are labeled with a binary
classification that refers to whether each individual’s credit rating is below the
threshold.

HE Scheme Parameters We use two scaling factors ∆ = 230 and ∆c = 215,
where ∆ is the regular scaling factor (for mult) and ∆c is the constant scaling
factor (for cMult) that is used for multiplying constant matrices and scalars such
as η and γ. We have the number of ciphertext slots N/2 = 215.

We set the initial ciphertext modulus Q for the weight vectors W and V as
follows:

log2Q = 5 + wBits + I · (3 · wBits + 2 · pBits)

23



where wBits = log2∆ and pBits = log2∆c. The above formula is derived from
the fact that each iteration reduces (3 · wBits+ 2 · pBits)-bits of the ciphertext
modulus (see Section 4.3 and Figure 3 for more details). Here, I is the number
of iterations per bootstrapping operation; that is, the bootstrapping operation
is executed every I iterations. We have I = 5. Also, we set the largest ciphertext
modulus Q′ for the bootstrapping, according to the HEAAN scheme [CHK+18,
Kim18], as follows: log2Q

′ = log2Q+ 24 + 14 · (9 + wBits).

Data Performances

Financial No. Samples (training) 422,108 Accuracy 80%
No. Samples (validation) 844,217 AUROC 0.8
No. Features 200 K-S value 50.84
No. Iterations 200 Public Key Size ≈ 2 GB
Learning Rate 0.01 Encrypted Block Size 4.87 MB
Block Size (mini-batch) 512 Running Time 1060 min

Table 1: Result of machine learning on encrypted data

Experimental Results We executed our logistic regression algorithm on the
encrypted training set of 422,108 samples over 200 features. Having 200 itera-
tions, it took 1,060 minutes to learn an encrypted model, i.e., ∼5 minutes per
iteration on average, in a machine with IBM POWER8 (8 cores, 4.0GHz) and
256GB RAM. We sent the learned model to the data owner, and they decrypted
and evaluated it on the validation set of 844,217 samples, having 80% accuracy
and the KS value of 50.84. They confirmed that it provides a sufficient accuracy
compared to their internal model learned using the plaintext dataset11 and also
our learned model gives appropriate weights on the important features (e.g.,
delinquency, loan, and credit card information) as expected.

Tabel 1 shows the detailed result of our experiment. We set the learning rate
to be 0.01, and the mini-batch size to be 512. The ciphertext size of each mini-
batch block is 4.87 MB, and thus the total size of the encrypted dataset is ∼4
GB = 4.87 MB × (422,108 / 512). The public key size is ∼2 GB.

5.2 Logistic Regression on Encrypted MNIST Dataset

We executed our logistic regression algorithm on the public MNIST dataset to
provide a more detailed evaluation.

Training Dataset and Parameters We took the MNIST dataset [LCB99],
and restructured it for the binary classification problem between 3 and 8. We

11 According to their report, it took several minutes to learn a model on the plaintext
using the same algorithm, and the model provides the KS value of 51.99.

24



compressed the original images of 28×28 pixels into 14×14 pixels, by compressing
2×2 pixels to their arithmetic mean. The restructured dataset consists of 11,982
samples of the training dataset and 1,984 samples of the validation dataset.

We use the same principle for setting the HE scheme parameters as shown in
Section 5.1. We set ∆ = 240, ∆c = 215, and I = 3. Also, we approximate the sig-
moid function with the interval [−16, 16] by the least squares fitting polynomial
of degree 3, y = 0.5− 0.0843x+ 0.0002x3.

Data Performances

MNIST No. Samples (training) 11,982 Accuracy 96.4%
No. Samples (validation) 1,984 AUROC 0.99
No. Features 196 K-S value N/A
No. Iterations 32 Public Key Size ≈ 1.5 GB
Learning Rate 1.0 Encrypted Block Size 3.96 MB
Block Size (mini-batch) 1024 Running Time 132 min

Table 2: Result of machine learning on encrypted data

Experimental Results We encrypted the MNIST dataset and executed our
logistic regression algorithm. Table 2 shows the result. With 32 iterations, our
logistic algorithm took 132 minutes to learn an encrypted model. The average
time for each iteration is ∼4 minutes, which is similar to that of the financial
dataset, as expected. We decrypted the learned model and evaluated it on the
validation dataset, obtaining 96.4% accuracy.12

Microbenchmarks We also executed our logistic regression algorithm on the
plaintext dataset, and compared the result to that of the ciphertext learning.
Recall that the approximate HE used in our algorithm introduces the approxi-
mation noise for each computation step, but it had not been clear how much the
noise affects the overall training process. To evaluate the impact of the approxi-
mation noise on the overall learning performance (e.g., the convergence rate and
accuracy), we measured the accuracy for each iteration for both plaintext and
ciphertext training, and compared those results. Figure 4 shows the comparison
result. It shows that the accuracy for each iteration in the ciphertext training is
marginally different from that of the plaintext, especially in the early stage of
the training process, but they eventually converged at the final step. This result
implies that the additional noise introduced by the approximate HE evaluation
is not significant to deteriorate the accuracy of a learned model and the training
performance.

12 The accuracy seems to be lower than the usual, but the difference is mainly due to
the image compression, not because of the approximation noise. See Section 5.2 and
Figure 4 for more details.

25



5 10 15 20 25 30
0.88

0.9

0.92

0.94

0.96

0.98

Iteration Number

A
cc

u
ra

cy

Plaintext

Encrypted

Fig. 4: Comparison between encrypted and plaintext training

15 20 25 30
0.92

0.93

0.94

0.95

0.96

0.97

Iteration Number

A
cc

u
ra

cy

Least Squares Fitting

Sigmoid

Fig. 5: Comparison between sigmoid and least squares fitting (of degree 3)

We also evaluate the effect of the precision of the polynomial approxima-
tion of sigmoid. We executed the same algorithm (on the plaintext) with three
different sigmoid approximations: the original sigmoid (i.e., no approximation),
the least squares fitting polynomial, and the Taylor expansion polynomial (de-
picted in Figure 2). Figure 5 and 6 show the comparison of accuracy between
them. It shows that the approximation error of the least fitting polynomial is
not significant, resulting in only the marginal difference of accuracy. However,
the approximation error of the Taylor expansion polynomial is so large that it
fails to learn a model; that is, the accuracy decreases as the number of iteration
increases, and eventually it becomes 0 (i.e., an invalid model).

5.3 Discussion

It is not straightforward to provide the fair comparison of our performance with
those of the related works, since the previous HE-based approaches are not ca-

26



5 10 15 20

0

0.2

0.4

0.6

0.8

1

Iteration Number

A
cc

u
ra

cy

Taylor Expansion

Least Squares Fitting

Fig. 6: Comparison between Taylor expansion between least squares fitting (both of
degree 3)

pable of admitting such realistic size training datasets considered in this paper,
and the MPC-based approaches do not support the same flexibility in the usage
scenarios as ours. As a rough comparison, however, the recent MPC-based ap-
proach [MZ17] will take minutes13 to learn a model on the MNIST dataset used
in this paper, which is one or two orders of magnitude faster than ours. We note
that, however, the MPC-based approach requires the additional assumption in
the usage scenarios that either the number of participants is small, or the two
servers do not collude.

Our algorithm requires the number of iterations to be provided in advance,
which is inevitable due to the security of the underlying HE schemes. In our
experiment on the financial data, the number was obtained by asking the data
owner to provide a rough bound. We note that, however, one can use our al-
gorithm in an interactive way that the data owners decrypt the learned model
periodically (e.g., every 100 iterations), and decide whether to proceed further
or not, depending on the quality of the model at the moment.

6 Conclusion and Further Work

In this paper, we presented an efficient logistic regression algorithm on large
(fully) homomorphically encrypted data, and evaluated it against both the pri-
vate financial data and the public MNIST dataset. Our implementation suc-
cessfully learned a quality model in about 17 and 2 hours, respectively, which
demonstrates the practical feasibility of our algorithm on realistic size data.
We believe that the techniques we developed here can be also readily used for
homomorphically evaluating other machine learning algorithms such as neural
networks, which we leave as a future work.

13 The time is obtained by extrapolating their experimental result on the MNIST
dataset.

27



References

[ACC+17] David Archer, Lily Chen, Jung Hee Cheon, Ran Gilad-Bachrach, Roger A.
Hallman, Zhicong Huang, Xiaoqian Jiang, Ranjit Kumaresan, Bradley A.
Malin, Heidi Sofia, Yongsoo Song, and Shuang Wang. Applications of ho-
momorphic encryption. Technical report, HomomorphicEncryption.org,
Redmond WA, July 2017.

[AHPW16] Yoshinori Aono, Takuya Hayashi, Le Trieu Phong, and Lihua
Wang. Scalable and secure logistic regression via homomorphic
encryption. Cryptology ePrint Archive, Report 2016/111, 2016.
https://eprint.iacr.org/2016/111.

[Ano18] Anonymous. http://anonymous.4open.science/repository/0b20aa40-6f0c-
46bf-887e-933b6d4952fa/, 2018.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled)
fully homomorphic encryption without bootstrapping. In Proceedings of
the 3rd Innovations in Theoretical Computer Science Conference, pages
309–325. ACM, 2012.

[BLN14] Joppe W Bos, Kristin Lauter, and Michael Naehrig. Private predictive
analysis on encrypted medical data. Journal of biomedical informatics,
50:234–243, 2014.

[BMMP17] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal
Paillier. Fast homomorphic evaluation of deep discretized neu-
ral networks. Cryptology ePrint Archive, Report 2017/1114, 2017.
https://eprint.iacr.org/2017/1114.

[BPTG15] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Ma-
chine learning classification over encrypted data. In NDSS, volume 4324,
page 4325, 2015.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switch-
ing from classical GapSVP. In CRYPTO, pages 868–886, 2012.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryp-
tion from ring-LWE and security for key dependent messages. In Advances
in Cryptology–CRYPTO 2011, pages 505–524. Springer, 2011.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomor-
phic encryption from (standard) LWE. SIAM Journal on Computing,
43(2):831–871, 2014.

[CBD14] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training
deep neural networks with low precision multiplications. arXiv preprint
arXiv:1412.7024, 2014.

[CDN01] Ronald Cramer, Ivan Damg̊ard, and Jesper B Nielsen. Multiparty compu-
tation from threshold homomorphic encryption. In International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages
280–300. Springer, 2001.

[CdWM+17] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance
Morel, and Emmanuel Prouff. Privacy-preserving classification on deep
neural network. IACR Cryptology ePrint Archive, 2017:35, 2017.

[CGGI17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Improving TFHE: faster packed homomorphic operations and efficient
circuit bootstrapping. 2017. https://eprint.iacr.org/2017/430.

[CHK+18] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yong-
soo Song. Bootstrapping for approximate homomorphic encryption. In

28



Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 360–384. Springer, 2018.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomor-
phic encryption for arithmetic of approximate numbers. In International
Conference on the Theory and Application of Cryptology and Information
Security, pages 409–437. Springer, 2017.

[CLT14] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-
invariant fully homomorphic encryption over the integers. In Public-Key
Cryptography–PKC 2014, pages 311–328. Springer, 2014.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomor-
phic encryption in less than a second. In Advances in Cryptology–
EUROCRYPT 2015, pages 617–640. Springer, 2015.

[DSFRO17] Christopher De Sa, Matthew Feldman, Christopher Ré, and Kunle Oluko-
tun. Understanding and optimizing asynchronous low-precision stochastic
gradient descent. In Proceedings of the 44th Annual International Sym-
posium on Computer Architecture, pages 561–574. ACM, 2017.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. Cryptology ePrint Archive, Report 2012/144, 2012.
http://eprint.iacr.org/.

[GAGN15] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. Deep learning with limited numerical precision. In Inter-
national Conference on Machine Learning, pages 1737–1746, 2015.

[GBDL+16] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael
Naehrig, and John Wernsing. Cryptonets: Applying neural networks to
encrypted data with high throughput and accuracy. In International Con-
ference on Machine Learning, pages 201–210, 2016.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
STOC, volume 9, pages 169–178, 2009.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P Smart. Homomorphic evaluation
of the AES circuit. In CRYPTO 2012, pages 850–867. Springer, 2012.

[GLN12] Thore Graepel, Kristin Lauter, and Michael Naehrig. Ml confidential:
Machine learning on encrypted data. In International Conference on In-
formation Security and Cryptology, pages 1–21. Springer, 2012.

[HS15] Shai Halevi and Victor Shoup. Bootstrapping for HElib. In Advances in
Cryptology–EUROCRYPT 2015, pages 641–670. Springer, 2015.

[JRS17] Aayush Jain, Peter MR Rasmussen, and Amit Sahai. Threshold fully
homomorphic encryption. IACR Cryptology ePrint Archive, 2017:257,
2017.

[JVC18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
GAZELLE: A low latency framework for secure neural network inference.
In 27th USENIX Security Symposium (USENIX Security 18), Baltimore,
MD, 2018. USENIX Association.

[JWB+17] Karthik A Jagadeesh, David J Wu, Johannes A Birgmeier, Dan Boneh,
and Gill Bejerano. Deriving genomic diagnoses without revealing patient
genomes. Science, 357(6352):692–695, 2017.

[Kim18] Andrey Kim. HEAANBOOT. https://github.com/kimandrik/HEAANBOOT,
2018.

[KSK+18] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee
Cheon. Logistic regression model training based on the approximate ho-
momorphic encryption. 2018.

29



[KSW+18] Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, and Xiaoqian Jiang.
Secure logistic regression based on homomorphic encryption: Design and
evaluation. JMIR medical informatics, 6(2):e19, 2018.

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-
fly multiparty computation on the cloud via multikey fully homomorphic
encryption. In Proceedings of the forty-fourth annual ACM symposium on
Theory of computing, pages 1219–1234. ACM, 2012.

[LCB99] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The MNIST
Database of Handwritten Digits, 1999.

[LLH+17] Ping Li, Jin Li, Zhengan Huang, Chong-Zhi Gao, Wen-Bin Chen, and Kai
Chen. Privacy-preserving outsourced classification in cloud computing.
Cluster Computing, pages 1–10, 2017.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 1–23.
Springer, 2010.

[MZ17] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable
privacy-preserving machine learning. In Security and Privacy (SP), 2017
IEEE Symposium on, pages 19–38. IEEE, 2017.

[NWI+13] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan
Boneh, and Nina Taft. Privacy-preserving ridge regression on hundreds of
millions of records. In Security and Privacy (SP), 2013 IEEE Symposium
on, pages 334–348. IEEE, 2013.

[OU98] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosys-
tem as secure as factoring. In International conference on the theory and
applications of cryptographic techniques, pages 308–318. Springer, 1998.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In International Conference on the Theory and Applications
of Cryptographic Techniques, pages 223–238. Springer, 1999.

[RAD78] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks
and privacy homomorphisms. 1978.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM (JACM), 56(6):34, 2009.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
Fully homomorphic encryption over the integers. In Advances in
cryptology–EUROCRYPT 2010, pages 24–43. Springer, 2010.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Foun-
dations of Computer Science, 1986., 27th Annual Symposium on, pages
162–167. IEEE, 1986.

[ZLK+16] Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang.
The zipml framework for training models with end-to-end low precision:
The cans, the cannots, and a little bit of deep learning. arXiv preprint
arXiv:1611.05402, 2016.

30



A Appendix: Detailed Algorithms

We provide the detailed procedures of encSumRowVec and encSumColVec that
are used in Algorithm 5.

Algorithm 6 encSumRowVec: summation of row-vectors in ciphertext

Input: A ciphertext c, an encryption of f × g matrix satisfying f · g = N
2
.

Output: A ciphertext c′

1: c′ := c
2: for 0 ≤ i < log2 f do
3: cLrot = leftRotate(c′, g · 2i)
4: c′ = add(c′, cLrot)
5: end for
6: return c′

Algorithm 7 encSumColVec: summation of column-vectors in ciphertext

Input: A ciphertext c, an encryption of f × g matrix satisfying f · g = N
2
. A scaling

parameter pBits.
Output: A ciphertext c′

1: c′ := c
2: for 0 ≤ i < log2 g do
3: cLrot = leftRotate(c′, 2i)
4: c′ = add(c′, cLrot)
5: end for
6: d := (d1, · · · , dN/2), where dj = 1 if g divides j and 0 otherwise.
7: c′ = cMultByVec(c′,d, pBits)
8: c′ = rescale(c′, pBits)
9: for 0 ≤ i < log2 g do

10: cLrot = leftRotate(c′, N
2
− 2i)

11: c′ = add(c′, cLrot)
12: end for
13: return c′

31


