Blockchained Post-Quantum Signatures

Konstantinos Chalkias*, James Brownf, Mike Hearn!, Tommy Lillehagen?,
Igor Nitto¥, Thomas Schroeter

R3

Email: *konstantinos.chalkias@r3.com, 1 james.brown@r3.com, imike@r3.com, §tommy.lillehagen@r3.com,
qIigor,nitto@rﬁ‘).com, Ilthomas.schroeter@r3.com

Abstract—Inspired by the blockchain architecture and existing
Merkle tree based signature schemes, we propose BPQS, an
extensible post-quantum (PQ) resistant digital signature scheme
best suited to blockchain and distributed ledger technologies
(DLTs). One of the unique characteristics of the protocol is that it
can take advantage of application-specific chain/graph structures
in order to decrease key generation, signing and verification
costs as well as signature size. Compared to recent improvements
in the field, BPQS outperforms existing hash-based algorithms
when a key is reused for reasonable numbers of signatures,
while it supports a fallback mechanism to allow for a practically
unlimited number of signatures if required. We provide an open
source implementation of the scheme and benchmark it.

Index Terms—post-quantum cryptography, digital signature,
distributed ledger, blockchain, Merkle tree

I. INTRODUCTION

Recent advances in quantum computing and the threat this
poses to classical cryptography has increased the interest in
PQ research. More specifically, due to Shor’s algorithm [1],
a quantum computer could easily factor a big integer in
polynomial time, thus effectively break RSA. Implementations
of Shor’s algorithm can also solve discrete logarithms and
render today’s digital signatures, such as DSA, ECDSA and
EdDSA, useless [2].

The race to build quantum computers has already begun and
companies like Google, Microsoft, IBM, D-Wave and Intel
are at the forefront. That being said, we have yet to build a
computer with the thousands of stable qubits that are required
to make classical public key cryptography obsolete. However,
there is significant progress in the field and some optimistic
predictions estimate that a large quantum computer capable of
breaking asymmetric cryptography might be available in the
next 10 to 20 years [3], [4].

The security impact of breaking public key cryptography
would be tremendous, as almost everything from HTTPS,
VPN and PKI in general, is basing their authentication, key
exchange and digital signatures on the security of RSA or
Elliptic Curve Cryptography (ECC). Blockchains would be hit
equally hard resulting in broken keys that hold coins/assets,
and would perhaps be one of the most affected sectors because
there is economic incentive for hackers to get access to
blockchain accounts anonymously.

©2018 IEEE

To address the concern of compromised keys, PQ cryptog-
raphy is dealing with the design and evaluation of systems
that will survive the quantum supremacy. Our proposed BPQS
solution is a modified version of the hash-based XMSS [5]
family of schemes. It practically makes use of a single
authentication path; thus, it is a chain and not a tree and
it mainly focuses on {one and limited}-time keys, which is
usually the most applicable to blockchains as we want to
preserve anonymity and minimise tracking.

Compared to existing schemes, our approach outperforms
limited-time schemes when required to sign only once or a
few times. Unlike one-time schemes (OTS), BPQS schemes
provide a fallback mechanism to easily support many-time
signatures. Moreover, the underlying logic of a “blockchained”
authentication path could be applied to convert any existing
hash-based scheme to a {one and/or few }-time optimised one.
To our knowledge, this is the first signature scheme that can
utilise an existing blockchain or graph structure to reduce
the signature cost to one OTS, even when we plan to sign
many times. This makes existing many-time stateful signature
schemes obsolete for blockchain applications. Moreover, the
fact that BPQS is solely based on hash functions and that
no special math theory is required for its implementation
makes it a promising candidate for existing or new blockchain
applications, and for low-end devices, such as in IoT applica-
tions, where hashing operations are already implemented and
sometimes hardware-optimised.

II. QUANTUM COMPUTING

Driven by market requirements for more time-efficient com-
puting and the ability to solve problems that were previously
considered impracticable, quantum computing is quickly mov-
ing from fundamental theoretical research to reality. 10 years
ago there was little evidence of practical quantum computers.
However, in 2018, Google unveiled Bristlecone [6], a new
quantum computing chip with 72 qubits, 22 more than the 50-
qubit processor announced by IBM in 2017. We should also
mention D-Wave, a company that recently announced a 2000-
qubit processor optimised for quantum annealing metaheuris-
tics [7]; however, there are reports that D-Wave’s quantum
speedup analysis is debatable [8]. To summarise, even though
more research and experiments are required to allow for stable

quantum chips with low error rates, it is a fact that quantum
technology is progressing.

A. Impact on Cryptography

Quantum technology has introduced new security chal-
lenges, and as mentioned above, raised the prospect of weak-
ening classical cryptography. Due to Shor’s algorithm, the
widely used public key cryptography building blocks based on
factorisation and discrete logarithms are considered broken in
the PQ era. According to some estimations [3], there is a 50 %
probability of breaking RSA and ECC by 2031. Furthermore,
Grover’s algorithm [9] might also affect symmetric encryption
and hashing, but we currently do not know how to get more
than a quadratic speedup over a classical computer, and thus
they can be made PQ safe by just increasing the key/output
sizes. We should also highlight that contrary to the quantum
hype, there are sceptics [10] who believe quantum supremacy
will never reach the level of thousands of usable logical qubits
[2] that is required to break classical cryptography.

Despite the uncertainty of when and if large-scale quantum
computers will become available, there is still significant
research and development undertaken in parallel by both
academia and the industry. There are also attempts at com-
bining classical and PQ algorithms [11], [12] so that we are
better prepared for the quantum apocalypse, if it ever happens.

It should also be mentioned that standardisation institutes,
such as NIST, have started looking at standardising PQ al-
gorithms [13], [14]. The European Telecommunications Stan-
dards Institute has been even more cautious and advised that
any organisation with a need to archive encrypted data until
2025 or beyond should be worried about the threat of quantum
computers [15]. The above raises concerns on the security-
level advertised by blockchain and DLT solutions, mainly
because public keys might hold assets/coins for decades.

B. Implications on Blockchains and DLTs

Conventional blockchains, such as Bitcoin and Ethereum,
employ classical public key cryptography to sign transactions
in their networks and they are considered vulnerable to quan-
tum attacks. Other systems, such as zCash and Quorum, heav-
ily rely on special elliptic curves to provide Zero Knowledge
Proof functionality and an ECC breach threatens the integrity
of their ledger [16].

Whilst this would be a significant vulnerability resulting
in a total compromise of the network, most blockchains
mitigate the threat by using addresses that are generated from
cryptographic hashes of the public keys. This additional layer
of security means that a public key only gets exposed to the
ledger after the first transaction that it participates in occurs
(i.e., a Bitcoin is spent). Until this point, only the hashed
recipient key (the address) is exposed and consequently attacks
such as Shor’s algorithm are not applicable at this stage.

However, the following attack vectors are still applicable,
even when hashed keys are utilised:

o Address reuse — When a transaction is signed, the public

key gets revealed and thus, the associated address is no

longer safe. Despite the recommendation of using new
addresses/keys for every transaction, older Bitcoin clients
and some mining pools still reuse addresses.

o Abandoned coins/assets — If their associated addresses
were generated without hashing, the public keys for these
older addresses would become exposed, e.g., prior to
2012 for Bitcoin.

o In-flight transactions — Once broadcast to the network
and still waiting to be placed on the blockchain, transac-
tions are vulnerable to attacks. Granted, the window of
opportunity is limited, but it is still theoretically possible
for an attacker to recover a private key and then sign
another transaction that transfers the assets to their own
address before the legitimate transaction is executed.

o Transaction rejections/failures — If a signed transaction
does not go through, e.g., due to low fees, a malicious
party preventing a transaction from relaying, or a script
failing during verification, the key will be left vulnerable
to attacks.

o Multi-sig transactions / transaction mixing — As with
the CoinJoin protocol [17], this will reveal the public keys
to other parties before a transaction is finalised.

o Advertisement of a single address — Advertising and
using the same address for, e.g., fund raising will expose
the public key on the first consuming transaction and
therefore put all subsequent fund receipts at risk.

The commonly proposed solution is to upgrade the signing
algorithms to be quantum-safe, however this will invariably
result in a hard-fork of the blockchain which introduces
various complexities. There are however blockchain solutions
that already support post-quantum techniques, such as the
Quantum Resistant Ledger (QRL) [18], IOTA [20] and Corda
[22] in which BPQS could be applied to reduce signature sizes,
while providing a fallback mechanism to allow signing with
the same key multiple times.

III. SCENARIOS FOR SIGNING WITH THE SAME KEY

OTS hashing schemes require that a key is used only
once otherwise security becomes compromised. However, in a
blockchain, there are practical scenarios that require multiple
signatures using the same key:

o Transaction failures and rejections can occur as de-
scribed in the previous section, and require additional
signatures to resolve.

e Proof of key ownership, where a Party A is required
to sign a message provided by a challenging Party B in
order for Party B to validate the ownership.

e Proof of solvency, where proof of ownership of a
minimum amount of an asset is desired, without leaking
any further information. A solution to this is for an
independent audit to be performed with results recorded
in a “send-to-self” transaction signed with the owner’s
private key(s).

o Forked blockchains, where addresses (and associated
keys) are replicated across forks and subsequently spent
in each one of them — the duplicate transactions from

the same address (signed with OTS schemes) violate
the condition that a key can be used only once and the
strength of the OTS signature will halve as a result.

« Strategic double-spending of an asset, causing transac-
tions to be rejected — whilst essentially a race condition,
this scenario can be instigated to deliberately cause a
pending transaction to fail. This might occur in the case
of accidental spending for example. Issuing a duplicate
transaction signed with the same key can cause both
transactions to fail but has the undesired consequence that
the key is re-used.

IV. HASH-BASED POST-QUANTUM DIGITAL SIGNATURES
A. One-Time Signatures

Hash-based signature schemes have been documented in the
literature since 1979, thanks to the Lamport OTS scheme [24].
The logic behind Lamport’s scheme is straightforward; the
signer generates pairs of random values per bit required to be
signed and these pairs form the private key. The public key is
formed by the hashes of those values. To sign a message, the
signer reads the message bitwise and presents one value from
each secret pair depending on the bit value. The verifier can
then validate that the hashes of all the secret values are equal
to the corresponding hash values in the public key.

Although Lamport OTS hash computations are considered
fast, key and signature sizes are relatively large. For instance,
if SHA256 is used as the underlying hash function, the public
key consists of 512 hashed outputs of 256 bits each (one
hash-pair per bit), while the signature consists of 256 secret
values (256 bits each). If we aggregate the above, the key and
signature consist of 24.5kB. Similarly, if SHA512 is applied,
about 98 kB are required.

Further enhancements to the original algorithm [19], [25],
[26], reduce the key size significantly. At present, the WOTS
[19] algorithm and its variants are considered some of the most
efficient key and signature compression methods, while Ble-
ichenbacher and Maurer’s graph-based scheme [26] attempts
to achieve the best possible efficiency in terms of signature
size and number of hash function evaluations per bit of the
message.

As a note, one of the main differences between OTS
approaches lies in the security assumptions of requiring (or
not) collision resistant hash functions and the use of extra
bitmasks. Currently, WOTS-T [27], proven to be secure in
the QROM model, is considered one the the most promising
candidates from the WOTS [19] family, because only one extra
seed value is required along with the public key to compute
the required bitmasks, while its security is not affected by
the birthday paradox and it also introduces keying of all hash
function calls to prevent multi-target second pre-image attacks.
The latter results in shorter public keys and hash-output sizes.

B. Few- and Many-Time Signatures

Although there exist multiple methods to turn a one-time
into a multi-time signature scheme [5], [28]-[30], a popular
approach is to use Merkle authentication trees by fixing

beforehand the total number of signatures which will ever be
produced. Using Merkle trees, the total number of signatures
which can be issued is defined at key generation. The main
benefit is its short signature output and fast verification, while
the drawbacks are the relatively expensive key generation time
and the fact that they are stateful. Figure 1 depicts a 4-time
(at maximum) Merkle tree signature scheme.

|PUB?KEY = h(Hs + He)
v

1
7™

_____ 7%

Hi = h(0TS;PuP) Hz = h(0TS,Pub) Hz = h(0TSgPuP) |

Hs = h(OTS,Pub) ‘

.
| 0TS, Pub | 0TS3Pub | 0TS,4Pub
A B B B
1 1 1

Fig. 1: Few-time Merkle tree signature scheme able to sign four
messages in total. Dark nodes represent the authentication path
required if we sign with OTS;.

Moving to stateless few-time signatures requires extra com-
plexity and larger signature outputs. HORS [29] (and its
extension HORST [23]) is currently the one used in the
majority of many-time stateless signature schemes, such as
SPHINCS [23].

Many-time hash-based schemes can be constructed by
combining the above {one and few}-time constructions and
they are grouped into two categories, stateful (e.g., XMSS,
LMS) [31] and stateless (e.g., SPHINCS, SPHINCS™, Gravity,
Simpira, Haraka) [23], [32]-[35]. Stateful schemes typically
produce shorter signatures, but they need a mechanism to keep
state (what paths/keys have already been used).

On the other hand, stateless schemes start with a moderately
large Merkle tree or tree-layers at the top, but instead of using
OTS signatures at the bottom, they use a few-time signature
method. The latter allows them to pick indices randomly
and thus no path-state tracking is required. The downside
to stateless schemes is their signature size; for instance, in
SPHINCS-256 [23] each signature is 41 kB long.

It is highlighted that the distinction between few- and many-
time hash-based signature schemes is not always clear. In the
literature, few-time usually refers to stateless schemes, such as
BiBa [28], HORS [29] and HORST [23], for which practical
parameters allow multiple signing operations, but not enough
signatures to be considered in many real-world applications.
On the other hand, many-time schemes can be configured to
allow highly interactive environments to reuse the same key-
pair for many years. The authors of Gravity SPHINCS [33]
claim that 1 trillion (2%°) signatures is a reasonable upper
bound, whilst SPHINCS-256 [23] allows for a maximum of 1
quadrillion (2°°) signatures. In practice, one can parameterise
a many-time scheme to support just a few or several signatures.

C. Speed and Security of Hash Functions

The underlying hash algorithm is of obvious importance to
the overall security of the proposed scheme. Several factors
influence the choice of algorithm, including speed, security
level and availability; e.g., what hardware features can be
leveraged to improve the runtime performance, and what
implementations are available in existing, well-reviewed cryp-
tography libraries.

The first thing to establish, however, is whether the al-
gorithm is resilient to PQ attacks. The SHA-2 and SHA-3
algorithms support multiple digest sizes, namely 224, 256,
384 and 512 bits [36], [37]. We observe that by leveraging
the improved search speed provided by Grover’s algorithm,
collision resistance can be reduced from a half to a third of the
chosen digest size. Consequently, in the presence of large-scale
quantum computers, 384-bit versions of SHA-2 and SHA-3
would provide 128 bits of security against collisions, whereas
the 256-bit versions would only offer 85 bits [4].

Further, we observe that quantum pre-image attacks on 256-
bit versions of SHA-2 and SHA-3 can be realised by 2'°3-8
and 21465 surface code cycles, respectively [38].

As a result of these two observations, SHA256 is considered
unsuitable for use in schemes basing their security on hash
collision resistance, but it is still secure otherwise. It should
also be mentioned that PQ algorithms have fundamentally
worse price-performance ratio than the classical van Oorschot-
Wiener hash-collision circuits, even under optimistic assump-
tions regarding the speed of quantum computers [39].

From performance measurements presented in eBACS [40],
we have evaluated the relative performance of SHA-2, SHA-3
and BLAKE2 on general-purpose CPUs. We have deliberately
chosen an Intel, an AMD and an ARM processor to cover
typical desktop and mobile units.

As can be seen from Table 1, the number of cycles per byte
decreases with the size of the input. This is expected due to
the small input sizes in this comparison and the block-wise
operation mode of the hash functions. The rate of decrease
naturally flattens out as the input grows beyond the block size.

It should also be noted that the different versions of SHA-3
generally performs worse than their SHA-2 counterparts. One
of the reasons for this is the fact that SHA-1 and SHA-2 have
better hardware support from modern processors, e.g., through
instruction set extensions like the Intel® SHA Extensions.

Note that, despite not offering protection against length
extension attacks, SHA-2 offers similar bit-level security to
SHA-3. Typically, hash-based PQ schemes, including BPQS,
are not prone to such attacks and therefore, we consider SHA-
2 to be a better alternative due to the performance benefits it
offers.

If performance is of importance, one can also consider
employing the less supported BLAKE2b [41] algorithm. We
highlight, however, the lack of wide-spread library support
compared to the aforementioned algorithms.

Table 1: Performance Metrics for SHA-2, SHA-3 and Blake

Measurements of Hash Functions®
Cycles / Byte (relative to SHA2-256 on 8 byte input)

Input SHA-2 SHA-3 BLAKE2P
Size | Intel AMD ARM | Intel AMD ARMCS | Intel AMD ARM
256-bit Output
8 | 1.00 0.19 2.99 3.48 2.89 6.78 0.47 0.38 2.30
64 | 0.24 0.04 0.54 0.46 0.38 0.85 0.05 0.04 0.28
576 | 0.13 0.02 0.20 0.25 0.21 0.40 0.05 0.04 0.15
512-bit Output
8§ | 1.49 1.12 5.72 3.58 3.00 6.79 0.53 0.46 3.23
64 | 0.19 0.14 0.71 0.48 0.40 0.85 0.07 0.05 0.41
576 | 0.09 0.05 0.30 0.43 0.36 0.71 0.03 0.03 0.14

2Based on numbers reported by ECRYPT II in eBACS [40].
- Intel - amd64, genjil22, supercop-20171020
- AMD - amd64, genji262, supercop-20171020
- ARM - armeabi, odroid, supercop-20160806

bBLAKE2s with 32-bit words, 10 rounds, and 256-bit output; BLAKE2b
with 64-bit words, 12 rounds, and 512-bit output.

“No data for SHA-3; numbers are for keccakc512/1024 with 256-
and 512-bit output sizes, respectively. These are the Keccak team’s final
submissions for SHA-3-256 and SHA-3-512.

V. BLOCKCHAINED POST-QUANTUM SIGNATURES
TAILORED TO ONE-TIME KEYS

Most if not all few-time hash-based signature schemes make
use of Merkle trees. The maximum number of messages a
basic Merkle tree signature scheme can sign is 2", where h
is the height of the tree. Also, all leaves (keys) should be
computed during key generation in order to form the root.
Due to the above, to construct a tree of height h = 40,
key generation would be considered impractical, because we
need to compute 240 OTS keys and each OTS key internally
requires many hash invocations (i.e., 512 hash invocations
with Lamport OTS or 67 for WOTS (w = 16) when using
SHA256). The trick to keeping key generation time practical,
while allowing for a large number of signatures is to use a
multi-level tree.

BPQS is a simplified single-chain variant of the XMSS
family protocols [5] which are literally an extension of the
basic Merkle tree signature scheme (see Figure 1). BPQS can
theoretically sign many times, but its design focuses on short
and fast one-time signatures with the extra option to re-sign
if and when needed. The above requirement is what a typical
blockchain or DLT requires, as the use of one-time keys is
recommended to preserve anonymity. However, a lot of things
can go wrong, e.g., a transaction might not go through or there
might be a fork in the chain, in which case one should be able
to sign more than one time without compromising security or
freezing assets (see IOTA issues [21], [42]).

An additional, surprising benefit of BPQS is that it is also an
ideal candidate for the opposite requirement; signing multiple
times with the same key. This interesting property is due to
the underlying graph-structure of blockchain and DLT systems
that effectively allow many-time signatures at a minimal cost
compared to other hash-based PQ solutions. This works by

referencing the block (or transaction) in which the same BPQS
key has been used in the past. In short, only a small part of the
new signature is required to be submitted and the rest of the
path will be delegated to the previous transaction this key was
used to sign. The latter enables us to complete the full path
to the advertised root BPQS key. Actually, because previous
transactions are verified on the ledger already, verifiers do not
even need to validate the rest of the path, as it was inherently
verified in the past. This characteristic makes BPQS very
useful for notary-based DLTs, such as Corda [22] and Fabric
[43], as the notary nodes normally sign transactions with the
same known key.

A. BPQS Scheme

BPQS requires an underlying OTS scheme. Although any
OTS solution could in theory be applied, our scheme shares
logic with the XMSS protocol family, hence the selection of
the WOTS [19] variant, use of L-Trees and generation of
bitmasks (blinding masks) define the security assumptions and
proofs, similarly to XMSS [5], its multi-level version XMSSMT
[44] and XMSS-T [27]. Also, according to [39], collision
resistance is actually cheaper using quantum algorithms, and
thus similarly to the Gravity SPHINCS [33] scheme, bitmasks
and L-Trees might be omitted.

One could state that BPQS is a subset of XMSS tailored to
fast first-time signatures. The main difference is that XMSS
overcomes the limitation to one message per key by using hash
trees which reduce the authenticity of many OTS verification
keys to one public XMSS root key. In contrast, BPQS utilises
a chain of small 2-leaf Merkle trees. Geometrically, XMSS
grows in both width and height (see Figure 1), while BPQS
grows on chain height only (see Figure 2). All in all, we
stress that BPQS is a generic blockchained construction, where
blocks are “tiny” Merkle trees, meaning that it can be param-
eterised according to the requirements of the application. In
case blinding masks are applied, their deterministic generation
should follow the same logic with the corresponding XMSS
family scheme.

There are 2 basic building blocks of BPQS:

« BPQS-FEW, which strictly supports few-time signatures

and is depicted in Figure 2 (left),

o BPQS-EXT, which theoretically can be extended to sup-

port many-time signatures, see Figure 2 (right).

In BPQS-FEW, all keys are precomputed during key gen-
eration, the penalty for each extra signature is just 1 extra
hash output, but it cannot be extended to practically support
“unlimited” signatures.

On the other hand, BPQS-EXT initially requires only two
OTS keys and in contrast to BPQS-FEW, the left leaf in each
2-leaf Merkle tree is an OTS fallback key that can be used
to sign the next signature block when required. Unfortunately,
the extensibility property comes with the cost of requiring one
extra WOTS key per new signature.

The full BPQS scheme combines both BPQS-FEW and
BPQS-EXT in a way where the last leaf in the chain of BPQS-
FEW is a BPQS-EXT fallback key. This trick allows us to

ROOT; = PUB_KEY

ROOT1 = PUB_KEY

\
/

i I

|FALLBACK3| | 0TSs |

Fig. 2: BPQS-FEW (left), a few-time signature scheme. BPQS-EXT
(right), a linearly extensible many-time signature scheme.

convert the few-time variant to a many-time one. Actually,
BPQS-EXT can be considered a special case of BPQS, in
which there is no initial BPQS-FEW chain.

[FALLBACK, |

[FALLBACK,| | 0TSs

/VV\

|FALLBACK| [oTss |

=

Fig. 3: Full BPQS protocol, with a height-3 BPQS-FEW top-level
and a BPQS-EXT fallback key to allow for extensibility.

Parameters for BPQS include:

o the WOTS variant used (e.g., WOTS-T [27]),

o the Winternitz parameter (e.g., w = 16), which defines
the base at which the initial hash is interpreted. Similarly
to XMSS [5], w defines the actual size of each WOTS
chain, which in turn affects signature size. Note that there
is no consistency on the interpretation of the Winternitz
parameter in the literature. For instance, in LMS [45] it
is defined as 2% and thus wgpgs = 16 = 24 would be
equivalent to wpvs = 4,

« the underlying hash function (i.e., SHA384),

« the number of precomputed OTS keys, meaning the initial
height (e.g., h = 4).

B. BPQS Mixed

The extensibility property of BPQS enables various custom
constructions. BPQS can be used as a building block to convert
any hash-based signature scheme into a {first or few}-time
optimised one. For instance, in Figure 4, BPQS-FEW is used
for the first (shorter) signatures and then it fallbacks to another
PQ scheme. Although in the depicted approach the key-pair
of the fallback (other) PQ scheme should be a-priori known
and precomputed, one could use the BPQS-EXT in a similar
fashion, so that this is not necessarily a requirement and the
“other” PQ key will be generated only after the few-time
signatures are exhausted. Moreover, if the “other” PQ scheme
is stateless, such as SPHINCS, the final protocol is literally a
“start stateful then go stateless” scheme.

It should be emphasised that the “other” PQ scheme might
be another BPQS scheme, so one could eventually create a
chain of different BPQS schemes. The latter would result in
shorter signatures versus just extending it with BPQS-EXT
each time.

With regards to the “Other PQ Key Params” shown in
Figure 4, it is important that some schemes are required to
publish bitmasks (or a seed in XMSS-T [27]) as part of the
initial advertised public key. Otherwise, it would allow an
adversary to select the seed/bitmask in a forgery. However,
if BPQS uses a hash function with a bigger output (e.g.,
SHA384 or SHAS512) this might not be necessary, because
the provided security-level against potential quantum collision
attacks would still be enough to prevent such attacks.

- OTHER_PQ
ROOT; = PUB_KEY B IRALSIS SR

0TS3 |

Fig. 4: A versatile BPQS protocol (BPQS-VERS1), with a BPQS-
FEW top-level of height 3, in which the last root is the public key
of another PQ scheme, such as XMSSMT [44] or SPHINCS™ [32].

ROOT,; =
OTHER_PQ PUB_KEY

C. Combined PQ Schemes

As already mentioned, BPQS can fallback to another PQ
scheme whenever required. By applying a similar logic, Fig-
ure 5 shows various custom models for combining multiple PQ
schemes into one. The approach is very simple, but allows for
very useful constructions, such as a “Stateful and Stateless”
scheme in Figures 5 A and B, or a “Stateful with Stateless
Fallback” scheme in Figure 5 C. The latter provides a solution
to clustered environments in which multiple nodes require
consensus over signature states, but a fallback mechanism is
a prerequisite for the system to stay functional if consensus
fails for any reason.

A ROOT = PUB_KEY

= PUB_ =2 RooT = PUB_KEY oW R00T = PUB_KEY
/VV\ i V A i 7
[OTSpqz : |ST‘Q$§fg'é;PQ| |STAJUEB'ffE§{—PQ | |FALLBACK| [STATRESS PO
' T
' | PUB_KEY
Fig. 5: Various recommended designs using a parallel BPQS logic to
combine multiple schemes into one concrete PQ solution. Note that

STATEFUL_PQ| |[STATELESS_PQ|
PUB_KEY PUB_KEY H

if the underlying schemes require extra parameters, such as bitmasks,
these should be published along with the root public key, similarly
to Figure 4.

The three depicted approaches offer different flexibility
when it comes to:

o choosing a balance between key generation time and size
of signature,

« deciding whether to allow for picking of the underlying
algorithms at a later time.

For instance, option B requires both PQ keys to be generated
to form the to-be-advertised combined public key, whilst
option A is practically a BPQS-EXT that will be used to sign
the “upcoming” PQ schemes. Along the same lines, option
C is a combination of A and B, but the left PQ scheme
is not required to be a-priori selected and computed. Note
that one could even combine two different stateful or stateless
schemes together, e.g., if needed for compatibility purposes,
such as when using the same key in two different blockchains,
one supporting the original SPHINCS-256 [23] and the other
supporting a variation of it (or its standardised version when
this becomes available).

VI. EXPERIMENTAL RESULTS

This section presents a performance analysis of BPQS based
on an extensive experimental evaluation and a comparison
against a selection of state-of-the-art signature schemes. The
schemes compared against were chosen due to their use and
popularity in today’s PKI and blockchain communities.

Our results are based on a prototype implementation of
BPQS available at [46], which includes details on how to
reproduce our benchmark. System specifications include an
octa-core Intel Core i7-7700HQ @ 2.80GHz with 15.5GB
RAM running Linux 4.13.0-38 and JRE 1.8.0_161. Regard-
ing the scheme implementation, the standard JCE has been
used for hash function invocations, while implementations
for other schemes are based on the BouncyCastle (ECDSA,
RSA, SPHINCS-256) [47] and the i2p (EdADSA) [48] libraries,
respectively.

Performance Comparison

Table 2 compares the performance of various signature
schemes, including BPQS for w = 4 and w = 16 using
both SHA256 and SHA384 as underlying hash functions. The
results reported are average running time in milliseconds over
a pre-generated pool of random strings. The main reason
for picking a list of messages rather than a single or a few
messages is to avoid any bias that might occur on the signature

and verification operations, due to the message-to-be-signed
structure; actually, its hash digest.

Scheme KeyGen Sign Verify
BPQS (w = 4, SHA256) 0.569 0.08 0.10
BPQS (w = 4, SHA384) 1.107 0.16 0.19
BPQS (w = 16, SHA256) 0.872 0.19 0.20
BPQS (w = 16, SHA384) 1.719 0.39 0.38
ECDSA SECP256K1 (SHA256) 0.10 0.34 0.25
Pure EdDSA Ed25519 (SHAS512) 0.18 0.08 0.16
RSA3072 (SHA256) 561.1 5.39 0.17
SPHINCS-256 (SHAS512) 0.69 144.5 1.76

Table 2: Time (ms) of key-pair generation, signing and verification
for first message. Each scheme is annotated with the hash used for
producing the input digest.

It is emphasised that our current BPQS implementation is
not optimised for parallel processing and it does not cache
intermediate results of WOTS hash iterations. It is well-
known [33] that caching on key secrets can speed up signature
processing by a large degree. In practice, because BPQS is best
suited to applications that will sign only one or a few times, the
path and number of OTS keys are relatively small and would
easily fit in memory. If all full WOTS structures are stored in
memory during key generation, signing is nothing more than
some memory lookups and would not involve running any hash
operations at all, excluding the required message-hash upfront
— in many blockchain applications, transactions are already
hash digests (Merkle tree roots) anyway. We also stress that
the cache can be recomputed on demand from a small secret
seed and it does not need to be stored in persistent memory,
as it can be regenerated after a reboot.

Even without parallelisation and/or caching, BPQS com-
pares favourably or very similarly to both classical and PQ
digital signature algorithms. It is highlighted that the simplest
form of BPQS (BPQS-EXT) has been used in the above
comparisons, where two WOTS-family keys are generated,
one to sign the first message and the other for the fallback
operation. We expect that on average a blockchain key is used
only once and additional signing is only required in rare and
special circumstances, thus our comparisons focus on the first
signing operation only. In practice, we expect that blockchain
wallets will use both caching and parallelisation, boosting
performance further.

With regards to the signature size, all BPQS modes out-
perform XMSS for the first (loga(h) — 1) signatures. BPQS
signatures grow linearly with the number of times a key is
reused, thus the length of the signature output is dynamic. It
starts small and increases per additional signature. Parameters
should be chosen to balance between initial key generation
cost and signature size. In the best case, the size increases by
the size of one hash output for each extra signature and in the
worst case by the size of one WOTS [19].

In the majority of BPQS modes, the size of the first
signature output is |[WOTS| + |H|, while for XMSS it is
always |[WOTS|+ h x |H|, where h is the Merkle tree height
used. When one of the most common WOTS with w = 16 is

1234567 8 91011121314151617181920212223242526272829303132
LELLLL] BPQS-FEW === == XMSS BPQS-VERS1 BPQS-GEN-B

Fig. 6: Signature size comparison between different modes of BPQS
and XMSS [5] supporting 32 OTS keys in total. Signature output for
all schemes is |WOTS| + = |H
hashes required to complete the signature path. In this chart, x-axis

, where x is the number of extra

is the number of signatures and y-axis is x.

used as the underlying OTS scheme, the size of each WOTS,
denoted as |WOTS], is equal to 67 x |H|, where |H| is the
digest size of the underlying hash function, i.e., 256 bits for
SHA256. Figure 6 depicts the signature size per extra signing
for the following schemes:

o BPQS-FEW (Figure 2 left), with h = 32,

o XMSS [5], with h = 5 where h is the tree height,

« BPQS-VERSI (Figure 4), with a fallback to XMSS, both
with h = 5,

o BPQS-GEN-B (Figure 5 B), where the right side is
BPQS-FEW and the left side is XMSS, both with h = 5.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we introduced BPQS and its extensions to
support {one and few}-time optimised post-quantum signa-
tures. We have also presented the security challenges that
blockchains and DLTs will soon face and why pure OTS
schemes are not recommended as a quantum-resistant replace-
ment. As shown, BPQS compares favourably even against
conventional non-quantum schemes such as RSA, ECDSA
and EdDSA, while it provides more reliable quantum-security
estimates because of its rooting in a secure cryptographic hash
function.

Among others, the main features of the BPQS protocol are:

« shorter signatures, and faster key generation, signing and
verification times than the XMSS [5] and SPHINCS
[23] family PQ protocols when signing for one or few
times, which is usually preferred in blockchain systems
to preserve anonymity,

e it is computationally comparable to non-quantum
schemes. One can take advantage of the easy-to-apply
multiple hash-chain WOTS parallelisation and caching to
provide almost instant signing and faster verification,

o its extensibility property allows for many-time signatures,
while it can also easily be customised, so it can fallback
to another many-time scheme if and when required,

o when used in blockchain and DLT applications, it can
take advantage of the underlying chain/graph structure
by referencing a previous transaction, in which the same
key is reused. This could effectively mean that each new
BPQS signature simply requires the effort of an OTS
scheme, because the rest of the signature path to the root
is in the ledger already and can be omitted,

o it could be used as a building block to implement novel
PQ schemes such as a simultaneously “Stateful and
Stateless” scheme, which might benefit clustered envi-
ronments, where nodes can fallback to stateless schemes
when consensus is lost. Additionally, such schemes can
be used for forward and backward compatibility purposes
or when requiring to reuse a key between two indepen-
dent and incompatible blockchains.

The main drawback of the original BPQS protocol is that
the size of its signature output increases linearly with the
number of signatures. However, one can mitigate this by using
a combined PQ approach or by utilising existing graph struc-
tures in blockchain applications. All in all, the customisation,
caching and extensibility properties of BPQS make it an ideal
candidate for blockchains and it could serve as a bridging
protocol between stateless, stateful and other PQ schemes.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring”, 35th FOCS, pp. 124-134, 1994.

[2] J. Proos, and C. Zalka, “Shor’s discrete logarithm quantum algorithm
for elliptic curves”, Quantum Information & Computation, v.3 i.4, 2003.

[3] M. Mosca, “Cybersecurity in an era with quantum computers: will we
be ready?”, QCrypt, 2015.

[4] “The Quantum Countdown. Quantum Computing And The Future Of
Smart Ledger Encryption”, Long Finance, http://longfinance.net/DF/
Quantum_Countdown.pdf, February 2018.

[5] J. Buchmann, E. Dahmen, and A. Hiilsing, “XMSS — A Practical
Forward Secure Signature Scheme Based on Minimal Security Assump-
tions”, PQCrypto 2011: Post-Quantum Cryptography, pp. 117-129, 2011.

[6] J. Kelly, “A Preview of Bristlecone, Google’s New Quantum Proces-
sor,” Google Research Blog, https://research.googleblog.com/2018/03/a-
preview-of-bristlecone-googles-new.html, March 2018.

[7] D-Wave, “Temporal Defense Systems Purchases the First D-
Wave 2000Q Quantum Computer”, D-Wave Press Release,
https://www.dwavesys.com/press-releases/temporal-defense-systems-
purchases-first-d-wave-2000q-quantum-computer, January 2017.

[8] T.F. Rgnnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M.
Martinis, D. A. Lidar, and M. Troyer, “Defining and Detecting Quantum
Speedup”, Science vol. 345, issue 6195, pp. 420-424, July 2014.

[9] L. K. Grover, “A fast quantum mechanical algorithm for database
search”, STOC, 1996.

[10] R. Anderson, and R. Brady, “Why quantum computing is hard-and
quantum cryptography is not provably secure”, arXiv:1301.7351, 2013.

[11] “CECPQI post-quantum cipher suite,” Wikipedia article, https://en.
wikipedia.org/wiki/CECPQI, 2016.

[12] “The Post-Quantum PKI Test server”, http://test-pqpki.com/, 2018.

[13] L. Chen, S. Jordan, Y-K. Liu, D. Moody, R. Peralta, R. Perlner, and D.
Smith-Tone, “NISTIR 8105 Report on Post-Quantum Cryptography”,
NIST, 2016.

[14] NIST, “Post-Quantum Cryptography Standardization”, https:
/lcsre.nist.gov/Projects/Post-Quantum- Cryptography/Post-Quantum-
Cryptography-Standardization, 2017.

[15] “Quantum Safe Cryptography and Security — An introduction, bene-
fits, enablers and challenges”, ETSI, http://www.etsi.org/images/files/
ETSIWhitePapers/QuantumSafeWhitepaper.pdf, 2015.

[16] E. Ben-Sasson, 1. Bentov, Y. Horesh, and M. Riabzev, “Scalable,
transparent, and post-quantum secure computational integrity”, IACR
Cryptology ePrint Archive: Report 2018/046, 2018.

[17]
(18]
[19]

[20]
[21]

[22]

[23]

[24]
[25]
[26]
[27]

(28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]
[47]
(48]

T. Ruffing, P. Moreno-Sanchez, and A. Kate, “CoinShuffle: Practical
Decentralized Coin Mixing for Bitcoin”, ESORICS, 2014.

P. Waterland, “The QRL Whitepaper”, https://theqrl.org/whitepaper/
QRL_whitepaper.pdf, 2011.

A. Hiilsing, “W-OTS+ — Shorter Signatures for Hash-Based Signature
Schemes”, IACR Cryptology ePrint Archive: Report 2017/965, 2017.
S. Popov, “The Tangle”, https://iota.org/IOTA_Whitepaper.pdf, 2017.
“How bad is reusing an address?”, IOTA forum, https://forum.iota.org/
t/how-bad-is-reusing-an-address/1277, 2017.

R. G. Brown, J. Carlyle, I. Grigg, and M. Hearn, “Corda: An Introduc-
tion”, https://docs.corda.net/_static/corda-introductory-whitepaper.pdf,
2016.

D. J. Bernstein, D. Hopwood, A. Hiilsing, T. Lange, R. Niederhagen, L.
Papachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn,
“SPHINCS: practical stateless hash-based signatures”, EUROCRYPT
2015, pp. 368-397, 2015.

L. Lamport, “Constructing digital signatures from a one-way function”,
Technical Report CSL98, SRI International, 1979.

R. C. Merkle, “A Digital Signature Based on a Conventional Encryption
Function”, CRYPTO 1987 pp. 369-378, 1987.

D. Bleichenbacher, and U. Maurer, “On the efficiency of One-Time
Digital Signatures”, ASTACRYPT, 1996.

A. Hiilsing, J. Rijneveld, and F. Song, “Mitigating Multi-Target Attacks
in Hash-based Signatures”, PKC 2016 pp. 387-416, 2016.

A. Perrig, “The BiBa one-time signature and broadcast authentication
protocol”, 8th ACM Conference on Computer and Communication
Security, pp. 28-37, 2001.

L. Reyzin, and N. Reyzin, “Better than BiBa: Short One-time Signatures
with Fast Signing and Verifying”, ACISP 2002, pp. 144-153, 2002 .
J.Buchmann, E. Dahmen, E. Klintsevich, K. Okeya, and C. Vuil-
laume. “Merkle Signatures with Virtually Unlimited Signature Capac-
ity”, ACNS, 2007.

P. Kampanakis, and S. Fluhrer, “LMS vs XMSS: Comparion of two
Hash-Based Signature Standards”, IACR Cryptology ePrint Archive:
Report 2017/349, 2017.

D. J. Bernstein, C. Dobraunig, M. Eichlseder, S. Fluhrer, S-L. Gazdag,
A. Hiilsing, P. Kampanakis, S. Kolbl,

J-P. Aumasson, and G. Endignoux, “Improving Stateless Hash-Based
Signatures”, IACR Cryptology ePrint Archive: Report 2017/933, 2017.
S. Gueron, and N. Mouha “SPHINCS-Simpira: Fast Stateless Hash-
based Signatures with Post-quantum Security”, IACR Cryptology ePrint
Archive: Report 2017/645, 2017.

S. Kolbl, M. Lauridsen, F. Mendel, and C. Rechberger, “Haraka v2 —
Efficient Short-Input Hashing for Post-Quantum Applications”, TACR
Cryptology ePrint Archive: Report 2016/098, 2016.

Federal Information Processing Standards Publication 180-4, “Secure
Hash Standard (SHS)”, Information Technology Laboratory, National
Institute of Standards and Technology, March 2012.

G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “The KECCAK
SHA-3 submission, Version 37, 2011.

M. Amy, O. Di Matteo, V. Gheorghiu, M. Mosca, A. Parent, J. Schanck,
“Estimating the Cost of Generic Quantum Pre-image Attacks on SHA-2
and SHA-3”, IACR Cryptology ePrint Archive: Report 2016/992, 2016.
D. J. Bernstein, “Cost analysis of hash collisions: Will quantum com-
puters make SHARCS obsolete?”, SHARCS 2009, 2009.
“Measurements of hash functions, indexed by machine, eBACS: EN-
CRYPT Benchmarking of Cryptographic Systems, http://bench.cr.yp.to/
results-hash.html, accessed: 21 February 2018.

M-]J. Saarinen, and J-P. Aumasson, “The BLAKE2 Cryptographic Hash
and Message Authentication Code (MAC): IETF RFC 7693.”, Internet
Engineering Task Force. DOI: 10.17487/RFC7693, 2015.

“IOTA ERROR: PRIVATE KEY REUSE DETECTED®, IOTA github,
https://github.com/iotaledger/wallet/issues/928, 2018.

C. Cachin, “Architecture of the Hyperledger Blockchain Fabric”, https:
/Iwww.zurich.ibm.com/dccl/papers/cachin_dccl.pdf, 2016.

A. Hiilsing, S-L. Gazdag, D. Butin, and J. Buchmann, “Hash-based
Signatures: An Outline for a New Standard”, NIST Workshop on
Cybersecurity in a Post-Quantum World, 2015.

D. McGrew, and M. Curcio. “Hash-Based Signatures”, https://
datatracker.ietf.org/doc/draft-mcgrew-hash-sigs, accessed: April 2018.
“BPQS library”, https://github.com/corda/bpgs, accessed: April 2018.
“Bouncy Castle Crypto APIs”, v2.1.1, release: 1.59, 2017.
“EdDSA-Java”, v0.2.0, https://github.com/str4d/ed25519-java, 2018.

