
Loamit: A Blockchain-based Residual Loanable-limit
Query System

Lijing Zhoua, Licheng Wanga,∗, Yiru Suna, Pin Lva

athe State Key Laboratory of Networking and Switching Technology, Beijing University of
Posts and Telecommunications, Bei Jing 100876, P.R. China.

Abstract

Currently, the blockchain technology is experiencing an exponential growth

in the academia and industry. Blockchain may provide the fault-tolerance,

tamper-resistance, credibility and privacy to users. In this paper, we propose a

blockchain-based residual loanable-limit query system, called Loamit. Firstly,

to the best of our knowledge, it is the first work to prevent that a client, who

lacks the ability to repay, borrows an un-repayable amount of money from in-

dependent banks without releasing the personal privacy of client. Specifically,

if a client wants to borrow a certain amount of money from a bank, then the

bank can get the client’s residual loanable-limit in the alliance of banks without

knowing details of the client’s previous loans and repayments. Secondly, most

of data in Loamit is verifiable. Therefore, malicious banks can be checked out.

Thirdly, Loamit is fault-tolerant since it may work smoothly as long as a certain

number of banks are active and honest. Finally, we deploy the Loamit system

on the Ethererum private blockchain and give the corresponding performance

evaluation.

Keywords: Blockchain, loanable-limit, bank, verifiable secret sharing.

∗Corresponding author
Email address: wanglc2012@126.com (Licheng Wang)

Preprint submitted to Journal of LATEX Templates July 6, 2018



1. Introduction

In daily life, there could exist a case that a client borrows a very huge amount

of money from many different banks, but the client does not have the ability

to repay so much money. It causes a certain degree of loss to banks. This case

could appear if the banks work independently. In fact, this problem can be5

easily resolved by allowing that every bank can honestly tell other banks how

much money the client has borrowed from the bank. However, we know that it

is impractical since this method will face several challenges as follows:

• If some banks are malicious, off-line or damaged, then the method might

be noneffective.10

• A malicious bank might modify or delete a client’s records of loans and

repayments.

• A bank cannot judge whether the data sent by other banks has been

correctly computed by these banks.

• It releases the personal privacy of clients and business privacy of banks.15

Blockchain, which is first proposed by Bitcoin [1], is a tamper-resistant

timestamp ledger of blocks that is utilized to share and store data in a dis-

tributed manner. Blockchain has attracted enormous attention from academics

and practitioners (e.g., computer science, finance and law) [2]. The advantages

of blockchain for addressing the above challenges are as follows:20

• Fault-tolerance. Blockchain network can work smoothly, although a

certain number of record-nodes might be malicious, off-line or damaged.

• Tamper-resistance. Once some data has been recorded in the blockchain

(based on PBFT consensus [3]), it cannot be modified or deleted.

• Credibility. If some data has been recorded in the blockchain, then the25

publicly verifiable part of the data is credible.

2



• Privacy. Identities and transferred messages can be hidden by using var-

ious cipher technologies such as zk-SNARKs (used in Zcash [4]), RingCT

(used in Monero [5]) and Bulletproof [6].

Therefore, a blockchain-based residual loanable-limit query system may be a30

reasonable choice to address the problem of fraudulent loan. In this system, all

banks should form an alliance. Moreover, the residual loanable-limit indicates

the residual most-amount of that a client can borrow from the alliance after loans

and repayments. Besides, the system should additionally satisfy the following

features:35

• If a client’s residual loanable-limit is a positive number, then the whole

alliance can lend the client at most the positive number of money. In

contrast, if a client’s residual loanable-limit is zero or negative, then the

whole alliance will not lend the client.

• A loan/repay business will confidentially reduce/increase the residual loanable-40

limit. In this process, except the related bank, other banks cannot learn

what has happened.

• A bank can get a client’s residual loanable-limit by inquiring other banks.

However, in this process, the bank cannot get any information except the

residual loanable-limit.45

If the method is performed, then it may significantly prevent that a client,

who lacks the ability to repay, borrows an un-repayable amount of money from

independent banks as well as protects the personal privacy of client and business

privacy of bank.

Our contributions. In summary, the contributions of this paper are as50

follows:

1. We propose a blockchain-based residual loanable-limit query system, called

Loamit. In the Loamit system, amounts of client’s loans and repayments

are confidentially shared among an alliance of banks. Moreover, a bank

3



of the alliance may confidentially obtain a client’s residual loanable-limit55

by inquiring other banks. Particularly, in this process, the bank cannot

obtain anything except the residual loanable-limit. After that, according

to the client’s residual loanable-limit, the bank can identify whether it can

to lend this client and how much money it can lend this client. To the

best of our knowledge, it is the first work to prevent that a client, who60

lacks the ability to repay, borrows an un-repayable amount of money from

independent banks without releasing the personal privacy of clients and

the business privacy of banks.

2. In Loamit, we use the verifiable secret sharing to share the amount of loan

or repayment among banks. Therefore, malicious banks can be checked65

out. Moreover, due to the threshold of secret sharing, the Loamit system

can work smoothly, although a certain number of banks are malicious,

off-line or damaged.

3. A prototype system is implemented to evaluate the feasibility of Loamit.

Specifically, the prototype system is built upon the Ethereum private70

blockchain with four record-nodes. Moreover, we use the transaction sim-

ulator to simulate banks to generate and send transactions to evaluate the

performance of Loamit.

Organization. The remainder of the paper is organized as follows. An overview

of Loamit is shown in Sec.II. Sec.III briefly introduces preliminaries. The system75

setting and model is discussed in Sec.IV. We describe the construction of the

Loamit system in Sec.V. Scenario is set up for performance evaluation in Sec.VI.

Finally, a short conclusion is given in Sect.VII.

2. An Overview of Loamit

Loamit is a blockchain-based residual loanable-limit query system, where80

all related data is recorded in the blockchain and all banks only trust data

recorded in the blockchain. Loamit is composed of an alliance of banks. For

a new client, the bank, who deals with the first bank business for the client

4



in the bank alliance, will set an initial loanable-upper-limit Limitupper to the

client. Assume that the client later borrows k times and repay t times in some85

banks of the alliance. Let the borrow-amounts be Mb,1, Mb,2 ... Mb,k and

the repay-amounts be Mr,1, Mr,2 ... Mr,t. Consequently, the client’s residual

loanable-limit Limitresidual can be computed as the following equation:

Limitresidual = Limitupper +

k∑
i=1

Mb,i −
t∑
i=1

Mr,i.

To hide borrow-amounts and repay-amounts, Loamit works as follows. Es-

sentially, the loanable-upper-limit, borrow-amounts and repay-amounts are se-90

cretly shared among the alliance by using the verifiable secret sharing. Specifi-

cally, for a new client, the bank, who deals with the first bank business for the

client in the bank alliance, will set an initial loanable-upper-limit (positive num-

ber) to the client by sending a limit-transaction to the blockchain. The limit-

transaction contains encrypted shares about the loanable-upper-limit. After95

that, other banks can confidentially get their shares from the limit-transaction,

respectively. (In fact, the bank sending the limit-transaction can set different

loanable-upper-limit to different clients according to the working background of

the clients.)

If the client later borrows coins from a bank or repay coins in a bank, then100

related bank will send a record-transaction containing encrypted shares about

the borrow-amount (negative number) or repay-amount (positive number) to

the blockchain. After that, other banks can confidentially get their shares from

the record-transaction, respectively. According to the theory of secret sharing,

we know that the shared secret values are always confidential as long as a certain105

number of banks are honest.

Moreover, when the client wants to borrow coins from a bank, the bank can

confidentially get the client’s residual loanable-limit by querying other banks.

Specifically, a queried bank can add all its shares related to the client to gen-

erate a response and then secretly sends the response to the query bank. After110

receiving responses, the query bank can verify whether the responses are cor-

rectly computed by corresponding banks. Then, if the query bank can collect

5



at least a threshold number of correct responses, then it can recover the client’s

true residual loanable-limit. Finally, if the residual loanable-limit is a posi-

tive number, then the query bank can borrow the client at most the residual115

loanable-limit number of money. However, if the residual loanable-limit is zero

or negative, then the query bank will not lend the client. In this process, the

query bank cannot get anything except the residual loanable-limit. Therefore,

Loamit can significantly protect the privacy of clients and banks. An overview

of Loamit’s working process is described in Fig.1. Let t > n
2 . Next, we take the120

(t, n) threshold Loamit system as an instance to introduce features of Loamit.

• Fault-tolerance. Loamit can work smoothly if at least t banks are active

and honest. In other word, Loamit allows that at most n − t banks are

malicious, off-line or damaged.

• Addition homomorphism. Polynomial secret sharing satisfies addi-125

tional homomorphism. That is, the sum of shares is the share of the sum

of polynomials.

• Threshold. A bank can successfully obtain a client’s residual loanable-

limit if it can collect at least t correct responses.

• Verifiability or public verifiability. Sensitive data stored in the blockchain130

is verifiable or even publicly verifiable. Specifically,

– Anyone can verify whether a commitment of share or response is

correctly computed by the corresponding bank.

– A bank can verify whether his shares are correctly computed by the

corresponding banks.135

– A bank can verify whether received responses are correctly computed

by the corresponding banks.

• Tamper-resistance and credibility If a transaction has been recorded

in the blockchain, it cannot be modified or deleted as well as all publicly

verifiable part of the transaction is credible.140

6



• Privacy. All amounts of loans and repayments are confidential to banks

as long as more than n− t banks are honest. Moreover, a bank cannot get

anything from the Loamit system except the residual loanable-limit.

3. Preliminaries

In this section, we will introduce preliminaries of blockchain. Blockchain,145

transaction and block will be shown at first.

3.1. Blockchain, transaction and block

Blockchain [1], which is a ”chain” of ”blocks”, is maintained in a distributed

manner by anonymous record-nodes via a selected consensus scheme. Con-

sensus scheme is used to ensure the consistency and tamper-resistance of the150

blockchain. The record-nodes are connected by a reliable peer-to-peer network.

In the blockchain, the transaction is the basic unit, which contains two

parts: transaction header and payload. Transaction header and payload are

shown in Table 1. In Loamit, the payload might contain secret or public data

that may be used in verification, decryption or computation.155

Furthermore, a block contains two parts: block-body and block-header. Specif-

ically, a block-body contains transactions, while a block-header contains: hash

value of this block, hash value of the previous block, current Unix time, merkle

root of transactions and some other information. The structure of a block is

shown in Table 2.160

3.2. Consensus scheme

In the process of blockchain generation, time is also divided into epoches.

In each epoch, record-nodes will generate a single block belonging to this epoch

via a selected consensus scheme. This block includes transactions generated in

this epoch or previous epoch. Upon verifying the block, all record-nodes will165

accept the block and add this block as a new one in its local blockchain. After

that, all record-nodes join in the next epoch and work for the next block.

7



Table 1: Format of Transaction

Transaction Header

Hash The transaction’s hash value

Block number Block containing the transaction

Order The transaction’s number in the block

Timestamp Creation time of the transaction

Sender Sender’s ID

Receiver Receiver’s ID

Signature Sig{the transaction’s hash value}

... ...

Payload

data1,data2,· · ·,datan

Besides, record-nodes are responsible to verify all publicly verifiable data of

transactions before the transactions are included in the blockchain. If any pub-

licly verifiable data is invalid, then honest record-nodes will reject corresponding170

transaction. The invalid transaction then will not be included in the blockchain.

Currently, there are many kinds of consensus schemes. The most popular

consensus schemes are Proof-of-work (PoW) [7], Proof-of-stake (PoS) [8] and

Practical Byzantine Fault-tolerant (PBFT) [3]. In the three consensus schemes,

they have several differences. Firstly, PoW assumes that a majority of computa-175

tional power is controlled by honest nodes. PoS assumes that a majority of coins

is controlled by honest nodes. PBFT assumes that more than 2
3 of nodes are

honest. Secondly, in the PoW-based blockchain, a node controlling more com-

puting power has a bigger probability to generate a block. In the PoW-based

blockchain, a node controlling more coins has a bigger probability to generate180

a block. However, in PBFT-based blockchain, a node controlling more nodes

has a bigger probability to generate a block. Finally, the PoW-based blockchain

and PoS-based blockchain have a obvious probability to generate a fork. The

fork means that there exist multiple valid blocks in an epoch. This will lead to

8



Table 2: Format of Block

Block Header

Name Description

Version Block version number

Hash The block’s hash value

Parent hash The previous block’s hash value

Timestamp Creation time of the block

Merkle root The root of Merkle Tree of transactions

... ...

Block Body: Transactions

Transaction1,Transaction2· · ·,Transactionn

a non-single history. However, in a PBFT-based blockchain, there is no fork.185

Therefore, a PBFT-based blockchain can have a single history.

3.3. Shamir’s (t, n) Secret Sharing

Alice wants secretly share a secret value s with n participants, and arbitrary

t of the n participants can recover s, but less than t participants cannot. To do

this, Alice needs to generate n shares about s, and then secretly send the shares190

to the n participants, respectively. After that, if someone can collect at least

t correct shares, then he can recover the secret value s. Shamir’s (t, n) secret

sharing (SSS) [9] can accomplish this. Next, we introduce the working process

of the SSS.

Firstly, Alice randomly samples a polynomial f(x) of degree t-1 from Fp[x]195

as the following polynomial:

f(x) = at−1x
t−1 + at−2x

t−2 + · · ·+ a1x + s,

where s is the secret value, a1, · · · , at−1 ∈ Fp and at−1 6= 0.

Secondly, let IDi denote Pi’s address. Alice will generate n shares as follows:

Sharei = f(IDi),

9



where i=1, 2, ...,n. Then, Alice secretly sends Share1, Share2, ...,Sharen to

the n participants, respectively.200

Finally, if someone collects t correct shares, then he can use the lagrange

interpolation to reconstruct a polynomial. Without loss of generality, let the t

shares be Share1, Share2, ...,Sharet. He can reconstruct the polynomial f(x)

as follow:

f(x) =

t∑
i=1

Sharei

t∏
j=1,j 6=i

x− IDj

IDi − IDj
.

Finally, he can get s = f(0).205

3.4. Homomorphism of SSS

Let P1, P2, ..., Pn be n participants, and IDi denotes Pi’s address. Moreover,

f1(x), f2(x),...,fk(x) are k polynomials of degree t − 1 from Fp[x]. Alice uses

the k polynomials to compute all shares to the n participants. After that, we

know that f1(IDi), f2(IDi),...,fk(IDi) are all shares of Pi. Importantly, we210

have
∑k
j=1 fj(IDi) is Pi’s share of the following polynomial

F (x) = f1(x) + f2(x) + ... + fk(x).

Therefore, if someone can collect t correct shares like
∑k
j=1 fj(ID1),

∑k
j=1

fj(ID2) ,...,
∑k
j=1 fj(IDt), then he can use the lagrange interpolation to recon-

struct the polynomial

F (x) = f1(x) + f2(x) + ... + fk(x).

Then, he can get F (0), which is the sum of f1(0), f2(0), ..., fk(0).215

4. System Setting and Adversary Model

In this section, we introduce system setting and adversary model. We will

describe Blockchain Network and Cryptographic Keys used in the system at first.

10



4.1. Blockchain Network and Cryptographic Keys

Loamit is comprised of record-nodes and banks (light-nodes). Specifically, all220

record-nodes are connected by a reliable peer-to-peer network, and each bank

connects with a certain number of record-nodes. Record-nodes are responsi-

ble to maintain the blockchain via Practical Byzantine Fault-tolerance (PBFT)

consensus scheme and store the entire blockchain list. Time is divided in to

epoches. In an epoch, record-nodes collect and verify transactions sent to the225

blockchain network, and they record valid transactions their local blocks. By

performing the PBFT consensus scheme, some record-node’s block become the

valid block of the epoch. After that, all record-nodes join in the next epoch to

build the next block. However, banks store all block-headers, rather than the

entire blockchain list.230

Moreover, Loamit uses the Shamir’s (t, n)-secret sharing (SSS) [9] to share

amounts of loans or repayments. In the implementation of Loamit, (i) secp256k1-

based [10] (a elliptic curve) ECDSA [11] is the signature schceme Sig(·), (ii)

secp256k1-based ECIES [12] is the encryption scheme Enc(·) and (iii) SHA-256

[1] is the hash function H(·). Besides, we use secp256k1-based point multiplica-235

tion to compute commitments of shares or responses.

Moreover, a node is honest if it follows all protocol instructions and is per-

fectly capable of sending and receiving information. While, a node is malicious

if it can deviate arbitrarily from protocol instructions. Finally, in a blockchain

system, all users communicate with each other via transactions of blockchain,240

and they only trust messages presented at blockchain.

4.2. Assumptions

In the Loamit system, we have the following assumptions.

• More than 2
3 of record-nodes are honest. This is the requirement of PBFT.

• In a (t, n)-threshold Loamit system containing n banks, at least n− t + 1245

banks are honest. This is the security base of SSS.

11



• Digital signature Sig(·), encryption scheme Enc(·) and hash function H(·)

are ideal such that no one can violate Sig(·), Enc(·) and H(·).

5. Loamit

In this section, we introduce how Loamit works. We will describe transaction250

and block used in the system at first.

5.1. Transaction and Block

In Loamit, transactions are divided into 4 types according to payload. They

are limit-transaction, record-transaction, query-transaction and respond-transaction

that can be described by Tlimit, Trecord, Tquery and Trespond as follows:255

Tlimit

Transaction Header

Payload

Client ID

Commitments of secret sharing polynomial

Commitments of shares

Encrypted shares

Trecord

Transaction Header

Payload

Client ID

Commitments of secret sharing polynomial

Commitments of shares

Encrypted shares

Tquery

Transaction Header

Payload

Client ID

Trespond

Transaction Header

Payload

IDTquery

Commitment of response

Encrypted response

Furthermore, record-nodes may perform two kinds of verifications on transac-

tions. The first one is the basic verification, which should be performed on all

transactions. Basic verifications contains:

• The transaction should be well-formed.260

• The transaction’s inputs should have not been used previously.

• The transaction’s signature should be valid.

12



• The sum of input coins should be equal to the sum of output coins.

Except the basic verifications, record-nodes may perform payload verifications

on limit-transaction, record-transaction and respond-transaction. It means that,265

in the payloads of limit-transaction, record-transaction and respond-transaction,

there are publicly verifiable data that can be verified by record-nodes. If a trans-

action has presented at the blockchain, then it means that record-nodes have

accepted the transaction’s publicly verifiable data. Therefore, the transaction’s

receiver can consider that the transaction’s publicly verifiable data is credi-270

ble. Thus the receiver just needs to perform some other verifications that can

be performed only by the receiver. In this way, the most part of verification

computations are performed by record-nodes and it helps to decreases bank’s

verification computations significantly. Table.3 describes verifications of limit-

transaction, record-transaction, query-transaction and respond-transaction.275

Table 3: Verifications performed by record-nodes on Transactions

Transaction Basic verification Payload verification

Tlimit X X

Trecord X X

Tquery X

Trespond X X

5.2. Construction of Loamit

To clearly introduce the Loamit system, in this subsection, we describe an

(t, n)-threshold Loamit system that contains n banks. The symbols used in the

paper are shown in Table 4.

Next, we take a client as an example to introduce the working process of280

Loamit system. C and IDC denote the client and the client’s ID, respectively.

Moreover, B1, B2, ... ,Bn denote the n banks and IDb,1, IDb,2, ... ,IDb,n

indicate the n banks’ IDs. The working process of Loamit are as follows:

13



Table 4: Symbols of Loamit

Symbol Description

g the generator of a cyclic group G

e the bilinear map, e: G× G→ G.

Fp the finite field with character p

IDb,i the i-th bank’s ID

IDc the client’s ID

V K the verification key

{pkb,i, skb,i} the i-th bank’s key pair

{pkc, skc} the client’s key pair

{Sharei,j} the i-th bank’s share of the j-th transaction

Respi the i-th bank’s respnse

• Step 1: Build an account. C wants to handle a business in B1. The

business is C’s first bank business in the n banks. Then the bank builds285

an account for C. To do this, B1 randomly samples a polynomial f0(x) of

degree t-1 from Fp[x] as the following polynomial:

f0(x) = at−1x
t−1 + at−2x

t−2 + · · ·+ a1x + limit,

where limit, a1, · · · , at−1 ∈ Fp and at−1 6= 0. Moreover, the limit is

the upper loanable-limit of C and limit is a positive number. Then B1

generates shares Share0,1, Share0,2, · · ·, Share0,n as follows:290

Share0,i = f0(IDb,i),

i from 1 to n. Then B1 generates commitments of efficiencies of f0(x) as

follows:

CMat−1 = gat−1 , CMat−2
= gat−2 , ..., CMlimit = glimit.

After that, for i from 1 to n, B1 produces commitment of Sharei as follows:

CMS
0,i = gShare0,i

14



where g is an elliptic curve base point. For i from 1 to n, B1 encrypts

Share0,1, Share0,2, · · ·, Share0,n into CS0,1, CS0,2, · · ·, CS0,n follows:295

CS0,i = Epki(Share0,i),

where pki is the Bi’s public key, i from 1 to n. Then, B1 generates a

limit-transaction Tlimit as follows:

Tlimit

Transaction Header

Payload

IDC

CMat−1 CMat−2 · · · CMlimit

CMS
0,1 CMS

0,2 · · · CMS
0,2

CS
0,1 CS

0,2 · · · CS
0,n

After that, B1 sends the Tlimit to blockchain network.

• Step 2: Record-nodes verify limit-transactions. Honest record-

nodes will verify all new limit-transactions before appending them on the300

blockchain. Specifically, when an honest record-node receives the limit-

transaction generated in Step 1, the record-node will verify the transac-

tion’s commitments of shares as follows:

– Get {CMat−1
, · · ·, CMa1 , CMlimit, CMS

0,1, · · ·, CMS
0,n} from the

limit-transaction.305

– Verify whether the following equation always holds for i from 1 to n.

(CMat−1
)ID

t−1
b,i · · · (CMa1)IDb,i(CMlimit)

= CMS
0,i

– If the above equation always holds for i from 1 to n, then the record-

node accepts the limit-transaction, otherwise the record-node rejects

it.

• Step 3: Other banks verify limit-transaction. For i from 1 to n,310

when the bank Bi sees the Tlimit in the blockchain, Bi will verify its share

as follows:

15



– Decrypt CS0,i into Share′0,i.

– If

CMS
0,i = gShare

′
0,i ,

then Bi accepts that its share included in the limit-transaction is315

valid, otherwise Bi rejects the share.

• Step 4: Record amounts of loans and repayments. If C borrows

Nbor coins from (or repay Nrep coins to) B2, then B2 will generate a

record-transaction for the loan business of C. The generation process

of record-transaction is same as the limit-transaction. Merely, if it is a320

loan business, then the secret value of record-transaction is a negative

number. In contrast, if it is a repay business, then the secret value of

record-transaction is a positive number. After that, a record-transaction

can be described as follows:

Trecord

Transaction Header

Payload

IDC

CMa′t−1
CMa′t−2

· · · CMsecret

CMS
p1,1 CMS

p1,2 · · · CMS
p1,n

CS
p1,1 CS

p1,2 · · · CS
p1,n

Then, B2 sends the record-transaction to blockchain network. After that,325

record-nodes and other banks will verify the record-transactions as same

as they do in Step 2 and Step 3.

• Step 4.5: Client check shared amounts. After the client’s record-

transactions have been recorded in the blockchain, he can check whether

his business amounts are correctly recorded in the blockchain. For in-330

stance, a commitment of the client’s loan amount is CMNloan
. In fact,

the client knows the real loan amount N ′loan corresponding to CMNloan
.

Therefore, if the following equation holds, then he will consider that the

16



commitment CMNloan
is correctly computed.

CMNloan
= gN

′
loan

• Step 5: Query. If C wants to apply a loan business in a bank. For335

instance, the bank is Bqeury. Then, Bqeury needs to check C’s residual

loanable-limit before lending coins to C. Let Nresidual denote C’s residual

loanable-limit at this moment. If Nresidual is zero or negative, then C

cannot borrow any coins from the bank. However, if Nresidual is a positive

number, then C can borrow at most Nresidual coins from Bqeury. To realize340

this function of query, Bqeury sends a query-transaction to blockchain

network for getting C’s residual loanable-limit. The query-transaction is

described as follows:

Tquery

Transaction Header

Payload

IDC

• Step 6: Respond. After the Tquery sent by Bqeury has presented in the

blockchain, if a bank wishes to respond the query, then it will generate345

a response according to the Tquery. Then the bank will secretly send his

response to Bqeury via transaction. Finally, if Bqeury may collet at least

t responses correctly computed by corresponding banks, then Bqeury can

recover the C’s correct residual loanable-limit. For instance, B3 wishes to

respond the Tquery. Let Respb,3 be the response generated by B3. B3 can350

generate Respb,3 as the following equation with all B3’s shares related to

IDC :

Respb,3 = Share0,3 + Share1,3 + ... + Sharek,3,

where Share0,3, Share1,3,...,Sharek,3 are all B3’s shares related to C.

Then, B3 generates a commitment CMRespb,3 of the Respb,3 as follow:

CMRespb,3 = gRespb,3 ,

17



After that, B3 encrypts Respb,3 into CRespb,3 as follow:355

CRespb,3 = Epkquery
(Respb,3),

where pkquery is the bank Bqeury’s public key. Then, B3 generates a

respond-transaction as follow:

T3
respond

Transaction Header

Payload

IDC CMRespb,3 CRespb,3

Finally, B3 sends the respond-transaction T 3
respond to blockchain network.

Similarly, other banks may generate and send similar respond-transactions

to blockchain network. For instance, B4 may send a respond-transaction360

as follow:

T4
respond

Transaction Header

Payload

IDC CMRespb,4 CRespb,4

• Step 7: Record-nodes verify respond-transactions. After receiv-

ing a new respond-transaction, a record-node will verify the validation of

the transaction’s commitment of response. For example, a record-node

receives T 4
respond which is B4’s respond-transaction. The record-node will365

process it as follows:

– Collect all commitments of shares of B4 related to IDC . Let the

commitments of shares be CM0,4, CM1,4,..., CMt,4.

– Extract the commitment CMRespb,4 from T 4
respond.

– If the follow equation holds,370

CM0,4CM1,4...CMt,4 = CMRespb,4 ,

then the record-node will accept the commitment of B4’s response,

otherwise the record-node rejects it.

18



• Step 8: Recover. Bqeury is the query bank. If Bqeury can collect at

least t correct responses, then Bqeury can correctly recover the real resid-

ual loanable-limit of C. For instance, T 1
respond, T

2
respond, · · ·, T trespond have375

presented at the blockchain. It means that all publicly verifiable data of

the transactions is valid. Therefore, Bqeury just needs to decrypt all en-

crypted responses. After decryptions, Bqeury get t un-encrypted responses

that are Resp′b,1, Resp′b,2,..., Resp′b,t. Then, for i from 1 to t, if the follow-

ing equation holds, then Bqeury accepts Resp′b,i, otherwise Bqeury rejects380

it.

CMRespb,i = gResp
′
b,i ,

If the t responses are all accepted, then Bqeury may use the lagrange

interpolation to reconstruct a polynomial as follow:

F̃ (x) =

t∑
i=1

Resp′b,i

t∏
j=1,j 6=i

x− IDb,j

IDb,i − IDb,j
.

Finally, Bqeury calculates F̃ (0) that is real residual loanable-limit of C.

6. Performance Evaluation385

In this section, we give a Loamit’s performance evaluation that may be

broken into three parts. The first part studies the processing time of crypto-

graphic and mathematic computations. The time of processing transactions is

researched in the second part. The last part further demonstrates the processing

time of blocks when different transactions are sent to the blockchain network.390

The section starts with the prototype system setting.

6.1. Prototype System Setting

Loamit’s efficiency mainly depends on the blockchain platform, computer

platform and performance of cryptographic schemes. For instance, in this paper,

we use the Ethererum blockchain as the platform. Specifically, in the Ethereum395

blockchain, (i) a block can contains at most 62360-byte transactions, (ii) its

average block interval is about 15 s and (iii) its transaction’s payload contains at

19



most 1014-byte data. Consequently, Loamit’s efficiency is significantly limited

by the blockchain plarform. Therefore, if we use a more efficient blockchain

platform, then we might get a better throughput.400

In the prototype system, we implement a (2,3)-threshold Loamit prototype

system that contains three banks. Let the three banks be B1, B2 and B3. If a

bank can collect two correct responses from two banks (including the response

generated by the query bank itself), then the query bank can obtain the correct

residual loanable-limit of a client. We use laptops and virtual machines to per-405

form the prototype system. Specifically, our laptop’s configuration is described

as follows: the Intel i5-5300 CPU with 2.30GHz, 4GB memory, Ubuntu 16.04.

In the local area network, we deploy a local blockchain via go-ethereum that is

a Go implementation of the Ethereum protocol [13]. In the blockchain network,

we deploy four record-nodes (miners), and we use transaction simulator [13] to410

simulate banks to generate and send transactions. Moreover, we record Loamit

system’s key data in the transaction’s payload.

Additionally, Ethererum has a embedded signature scheme that is the ECD-

SA based on the secp256k1 elliptic curve [10]. For convenience, we use the

scheme to sign messages. Besides, to encrypt sensitive data recorded in the415

payloads of limit-transaction, record-transaction and respond-transaction, we

use ECIES based on secp256k1 to encrypt some data via receiver’s public key,

where the cipher block has a length of 64 bytes. It results in that each encrypted

data has a length of 64 bytes. Moreover, the encrypted data can be decrypted

only by the corresponding receivers since only the receiver has the corresponding420

private key. Furthermore, we utilize the secp256k1-based point multiplication

to commit sensitive data.

6.2. Processing Time of Cryptographic Schemes

Generally, the time cost of performing cryptographic schemes will have a

certain degree of influence on the time of processing transactions. Therefore, in425

the sub-section, we study the time cost of cryptographic schemes.

20



For each of point multiplication, point addition, field addition, field multi-

plication, encryption, decryption, signing and verifying signatures, we perform

1000 experiments to obtain their average time cost, and the average time cost

is described in Table 5.

Table 5: Average Time cost of cryptographic schemes

Scheme Time cost

Secp256k1-based Point Mul 596.113 µs

Secp256k1-based Add 2.328 µs

Field Add 0.071 µs

Field Mul 0.531 µs

Secp256k1-curve ECDSA Sign 4.425 ms

Secp256k1-curve ECDSA Verify Sig 9.137 ms

Secp256k1-curve ECIES Encryption 8.745 ms

Secp256k1-curve ECIES Decryption 4.367 ms

Block Interval 15.3 s

430

6.3. Generate Transactions

In the Loamit system, different transactions may have different generation

time. Consequently, in the sub-section, we study generation time of transac-

tions in the prototype system. We discuss the limit-transaction and record-

transaction at first.435

In the prototype system, we implement a (2,3)-threshold Loamit instance.

Therefore, the payload of the Tlimit or Trecord includes a client’s ID, two com-

mitments of efficiencies of polynomial, three commitments of shares and three

encrypted shares as mentioned at section 5.2. According to the last sub-section,

these data have a length of 544 bytes. We know that the payload of a transac-440

tion, in the Ethererum blockchain, can include at most 1014 bytes. Therefore,

a normal transaction is enough to record all those data. Specifically, the limit-

21



transaction and record-transaction can be described as follows:

Tlimit

Transaction Header

Payload

IDC CMa1 CMlimit

CMS
0,1 CMS

0,2 CMS
0,3

CS
0,1 CS

0,2 CS
0,3

Trecord

Transaction Header

Payload

IDC CMa′1
CMsecret

CMS
p1,1 CMS

p1,2 CMS
p1,3

CS
p1,1 CS

p1,2 CS
p1,3

In the implementation, the sizes of query-transaction and respond-transaction

are fixed. Specifically, they can be described as follows:445

Tquery

Transaction Header

Payload

IDC

Tk
respond

Transaction Header

Payload

IDC CMRespb,k CRespb,k

In the above table, k=1, 2 or 3.

In our experiments, sizes of the four transactions’ payloads are shown in

Table 6. For each of Tlimit, Trecord, Tquery and Trespond, we generate 1000

transactions in order to obtain their average generation time cost, and their

average time cost are shown in Table 7.

Table 6: Payloads of Transactions Used in the Prototype System

Payload Size

Payload of Tlimit 544 bytes

Payload of Trecord 544 bytes

Payload of Tquery 32 bytes

Payload of Trespond 160 bytes

450

6.4. Verify transactions

In the prototype system, before a transaction is appended at the blockchain,

record-nodes must verify the transaction. Specifically, record-nodes verify al-

l publicly verifiable data of the transaction. Moreover, if a transaction has

22



appeared at the blockchain, then the transaction’s publicly verifiable data is455

credible. Consequently, banks do not have to verify the transaction’s publicly

verifiable data. In this way, it significantly reduces verifying computations of

banks. In the sub-section, we study transactions’ verification time cost. All

publicly verifiable data of transactions are summarized as follows:

• All transactions’ signatures are publicly verifiable data that can be ver-460

ified by record-nodes. Therefore, if a transaction has appeared at the

blockchain, then it means that the transaction’s signature is credible, and

others donot need to verify the signature.

• Except signatures, the payloads of limit-transaction, record-transaction

and respond-transaction contain public verifiable data that can be veri-465

fied by record-nodes. Specifically, they are commitments of shares and

commitments of responses.

In this way, a bank just needs to verify some key data that can be verified only

by itself.

For each of Tlimit, Trecord, Tquery and Trespond, we generate 1000 transac-470

tions, and then obtain their average verifying time cost, which are shown in

Table 7. Specifically, in Table 7, S is a signing computation, V denotes a sig-

nature verification, PM describes a point multiplication on the ECC, PA is a

point addition on the ECC, E is a encryption, D denotes a decryption, FM

describes a field multiplication and FA is a field addition. For instance, ”2P-475

M+3PA+1V+1E” denotes that the corresponding computations contain 2 point

multiplications, 3 point additions, 1 signature verification and 1 encryption.

6.5. Blockchain Performance Evaluation

We run our Loamit prototype system on the Ethereum blockchain. After

generating a certain number of blocks, the block interval tends to be stable. That480

is, generating 1000 blocks takes about 4.3 hours. In other words, generating a

block takes about 15.2 s on average. Furthermore, in the Ethereum blockchain,

a block can record transactions of at most 62360 bytes, a transaction with an

23



Table 7: Average Time cost of processing transactions

Operation on transaction Computations Time cost

Bank generates a Tlimit 1S+5PM+3E 34.465 ms

Bank generates a Trecord 1S+5PM+3E 34.576 ms

Bank generates a Tquery 1S 5.247 ms

Bank generates a Trespond 1S+kFA+1PM+1E 14.588 ms

Record-node verifies a Tlimit 1V+3PM+3PA 10.932 ms

Record-node verifies a Trecord 1V+3PM+3PA 10.872 ms

Record-node verifies a Tquery 1V 9.131 ms

Record-node verifies a Trespond 1V+kPA 9.149 ms

Bank verifies a Tlimit 1D+1PM 4.963 ms

Bank verifies a Trecord 1D+1PM 4.876 ms

Bank verifies a Trespond 1D+1PM 4.398 ms

Bank recovers the result 4FA+4FM 2.408 µs

In the table, S is a signing computation, V denotes a signature verification, PM describes a point

multiplication on the ECC, PA is a point addition on the ECC, E is a encryption, D denotes a

decryption, FM describes a field multiplication and FA is a field addition. For instance,

”2PM+3PA+1V+1E” denotes that the corresponding computations contain 2 point

multiplications, 3 point additions, 1 signature verification and 1 encryption.

empty payload is of 308 bytes and a transaction’s payload can record data of

at most 1014 bytes. Therefore, a transaction’s size should be from 308 bytes to485

308+1014=1322 bytes.

According to Table 6 and above contents, in our implementation, any trans-

action’s size can be calculated. Transactions’ sizes are shown at Table 8. A

block can record transactions of at most 62360 bytes. Therefore, if a block only

record identical transactions, then the number of recorded transactions has a490

limit. The limits are described in the Fig.2.

In our experiments, because different transactions have different significance,

so more significant transactions should be processed more early than less signif-

icant transactions. In the Ethererum blockchain, record-nodes (miners) earlier

process the transaction with more fee. Therefore, we set different transaction-495

24



Table 8: Transactions’ sizes in Our Simulation

Transaction Size

Tlimit 852 bytes

Trecord 852 bytes

Tquery 340 bytes

Trespond 468 bytes

s having different transaction fees. When different transaction are pending

in record-nodes transaction pool, transactions with more fees will be record-

ed earlier. In the Loamit prototype system, the limit-transaction and record-

transaction are the base of later transactions. Therefore, they have the first

priority. For quickly responding bank’s query, we set that query-transaction500

has the second priority and respond-transaction has the third priority. In our

experiments, their transaction fees are shown at Table 9. In our experiments,

Table 9: Transaction fee

Transaction Transaction fee

Tlimit 0.002 ETH

Trecord 0.002 ETH

Tquery 0.0015 ETH

Trespond 0.001 ETH

after a query-transaction has appeared in the n-th block of the blockchain,

corresponding respond-transaction will appear in the n + 1-th block quickly.

Therefore, the time from sending query-transaction to recovering desired resid-505

ual loanable-limit of a client may be 15 s to 30 s.

25



7. Conclusion

In this paper, we propose a blockchain-based residual loanable-limit query

system, called Loamit. The Loamit system is composed of a certain number of

banks. After opening an account for a new client, the related bank will generate510

an initial loanable-upper-limit to the client by sending a limit-transaction to

the blockchain at the same time. Moreover, all amounts of loans or repayments

are confidentially shared among banks by using verifiable secret sharing. The

shared amounts are always confidential as long as a certain number of banks

are honest. Besides, any bank can only inquire the residual loanable-limit of515

a client, rather than details of loans and repayments. Therefore, this method

significantly protects the privacy of clients and banks. Furthermore, the loamit

system can smoothly work if a threshold number of banks are active and honest.

Thereby, the proposed system has a property of fault-tolerance. Additionally,

most of data is verifiable or even publicly verifiable. Consequently, malicious520

banks can be checked out by verifying received data like shares and responses.

Finally, we deploy the Loamit on the Ethereum blockchain and give a various

performance evaluation to the proposed system.

Acknowledgment

This work is supported by the National Key Research and Development525

Program (No. 2016YFB0800602) and the National Natural Science Foundation

of China (NSFC) (No. 61502048).

References

[1] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system (2008).

[2] M. Abramowicz, Cryptocurrency-based law (2016).530

URL http://arizonalawreview.org/pdf/58-2/58arizlrev359.pdf

[3] M. Castro, B. Liskov, Practical byzantine fault tolerance and proactive

recovery, ACM Trans. Comput. Syst. 20 (4) (2002) 398–461. doi:10.

26

http://arizonalawreview.org/pdf/58-2/58arizlrev359.pdf
http://arizonalawreview.org/pdf/58-2/58arizlrev359.pdf
http://doi.acm.org/10.1145/571637.571640
http://doi.acm.org/10.1145/571637.571640
http://doi.acm.org/10.1145/571637.571640
http://dx.doi.org/10.1145/571637.571640
http://dx.doi.org/10.1145/571637.571640
http://dx.doi.org/10.1145/571637.571640


1145/571637.571640.

URL http://doi.acm.org/10.1145/571637.571640535

[4] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,

M. Virza, Zerocash: Decentralized anonymous payments from bitcoin, in:

2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA,

USA, May 18-21, 2014, 2014, pp. 459–474. doi:10.1109/SP.2014.36.

URL https://doi.org/10.1109/SP.2014.36540

[5] S. Noether, Ring signature confidential transactions for monero, IACR

Cryptology ePrint Archive 2015 (2015) 1098.

URL http://eprint.iacr.org/2015/1098

[6] K. Constantinides, S. Plaza, J. A. Blome, B. Zhang, V. Bertacco, S. A.

Mahlke, T. M. Austin, M. Orshansky, Bulletproof: a defect-tolerant545

CMP switch architecture, in: 12th International Symposium on High-

Performance Computer Architecture, HPCA-12 2006, Austin, Texas,

February 11-15, 2006, 2006, pp. 5–16. doi:10.1109/HPCA.2006.1598108.

URL https://doi.org/10.1109/HPCA.2006.1598108

[7] C. Dwork, M. Naor, Pricing via processing or combatting junk mail, in:550

Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryp-

tology Conference, Santa Barbara, California, USA, August 16-20, 1992,

Proceedings, 1992, pp. 139–147. doi:10.1007/3-540-48071-4_10.

URL https://doi.org/10.1007/3-540-48071-4_10

[8] K. Sunny, S. Nadal, The theory of a general quantum system interacting555

with a linear dissipative system, self-published paper (2012).

[9] A. Shamir, How to share a secret, Commun. ACM 22 (11) (1979) 612–613.

doi:10.1145/359168.359176.

URL http://doi.acm.org/10.1145/359168.359176

[10] D. J. Bernstein, T. Lange, Safecurves: choosing safe curves for elliptic-560

27

http://dx.doi.org/10.1145/571637.571640
http://dx.doi.org/10.1145/571637.571640
http://doi.acm.org/10.1145/571637.571640
https://doi.org/10.1109/SP.2014.36
http://dx.doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
http://eprint.iacr.org/2015/1098
http://eprint.iacr.org/2015/1098
https://doi.org/10.1109/HPCA.2006.1598108
https://doi.org/10.1109/HPCA.2006.1598108
https://doi.org/10.1109/HPCA.2006.1598108
http://dx.doi.org/10.1109/HPCA.2006.1598108
https://doi.org/10.1109/HPCA.2006.1598108
https://doi.org/10.1007/3-540-48071-4_10
http://dx.doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/3-540-48071-4_10
http://doi.acm.org/10.1145/359168.359176
http://dx.doi.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
http://safecurves.cr.yo.to
http://safecurves.cr.yo.to
http://safecurves.cr.yo.to


curve cryptography (2013).

URL http://safecurves.cr.yo.to

[11] D. Johnson, A. Menezes, S. A. Vanstone, The elliptic curve digital signature

algorithm (ECDSA), Int. J. Inf. Sec. 1 (1) (2001) 36–63. doi:10.1007/

s102070100002.565

URL https://doi.org/10.1007/s102070100002

[12] N. P. Smart, The exact security of ECIES in the generic group model, in:

Cryptography and Coding, 8th IMA International Conference, Cirencester,

UK, December 17-19, 2001, Proceedings, 2001, pp. 73–84. doi:10.1007/

3-540-45325-3_8.570

URL https://doi.org/10.1007/3-540-45325-3_8

[13] A. Schoedon, A. A. Fischer, Go-ethereum.

URL https://github.com/ethereum/go-ethereum

28

http://safecurves.cr.yo.to
http://safecurves.cr.yo.to
http://safecurves.cr.yo.to
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
http://dx.doi.org/10.1007/s102070100002
http://dx.doi.org/10.1007/s102070100002
http://dx.doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/3-540-45325-3_8
http://dx.doi.org/10.1007/3-540-45325-3_8
http://dx.doi.org/10.1007/3-540-45325-3_8
http://dx.doi.org/10.1007/3-540-45325-3_8
https://doi.org/10.1007/3-540-45325-3_8
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum


Figure 1: An overview of Loamit
Step 1: After opening an account for a client, a bank sends a limit-transaction to the blockchain

for the client. Step 2: After businesses of loans and repayments of the client, the bank of Step 1

sends loan-transactions and repay-transactions to blockchain. Step 2.5: The client can verify

whether his data are correctly processed by the corresponding bank. Step 3: If another bank

wants to know the client’s remaining limit, it sends a query-transaction to blockchain. Step 4:

Other banks see the query-transaction and download the limit-transaction, loan-transactions and

repay-transactions corresponding to the client. Step 5: Active banks send respond-transactions to

blockchain. Step 6: The query bank collects respond-transactions and then recovers the loan

remaining limit.

29



Figure 2: The most number of same transactions recorded in a block.

30


	Introduction
	An Overview of Loamit
	Preliminaries
	Blockchain, transaction and block
	Consensus scheme
	Shamir's (t,n) Secret Sharing
	Homomorphism of SSS

	System Setting and Adversary Model
	Blockchain Network and Cryptographic Keys
	Assumptions

	Loamit
	Transaction and Block
	Construction of Loamit

	Performance Evaluation
	Prototype System Setting
	Processing Time of Cryptographic Schemes
	Generate Transactions
	Verify transactions
	Blockchain Performance Evaluation

	Conclusion

