
Designing Efficient Dyadic Operations
for Cryptographic Applications

Gustavo Banegas1, Paulo S. L. M. Barreto2, Edoardo Persichetti3 and Paolo Santini4

1Technische Universiteit Eindhoven, the Netherlands
2Institute of Technology, University of Washington at Tacoma, USA

3Department of Mathematical Sciences, Florida Atlantic University, USA
4Università Politecnica delle Marche, Ancona, Italy

Abstract

Cryptographic primitives from coding theory are some of the most promising candidates for
NIST’s Post-Quantum Cryptography Standardization process. In this paper, we introduce a
variety of techniques to improve operations on dyadic matrices, a particular type of symmetric
matrices that appear in the automorphism group of certain linear codes. Besides the independent
interest, these techniques find an immediate application in practice. In fact, one of the candidates
for the Key Exchange functionality, called DAGS, makes use of quasi-dyadic matrices to provide
compact keys for the scheme.

Keywords: post-quantum cryptography, code-based cryptography, dyadic matrices.

1 Introduction

Post-Quantum Cryptography is the area of research that investigates cryptographic primitives that
are deemed secure against attackers equipped with quantum technology. These include schemes
based on a variety of mathematical problems, such as finding short vectors in a lattice, or decoding
random linear codes. The latter is known as Code-based Cryptography and it is relies more or less
directly on the Syndrome Decoding Problem [4], which shows no vulnerabilities to quantum attacks.
The first code-based scheme was introduced by McEliece in 1978 [10] and has resisted cryptanalysis,
in its original form, for nearly 40 years.

McEliece’s cryptosystem has often been ignored in favor of schemes based on number theory prob-
lems (such as RSA or El Gamal), mainly due to the size of its public key, which was deemed too
large for practical use (especially at the time). However, Shor’s algorithm [13] shows that, once
quantum computers of an appropriate size are available, the cryptosystems currently in use will
become obsolete. It is therefore important to offer a credible alternative to current cryptography,
and, with this in mind, NIST has recently launched a call for papers to standardize the public-key
primitives of the future [1].

Among the code-based candidates for NIST’s call, DAGS [3] is a Key Encapsulation Mechanism
(KEM) that uses Quasi-Dyadic (QD) matrices to considerably reduce the size of the public key,

1



following a McEliece-like approach. The proposal builds on a line of work initiated by Misoczki and
Barreto [11] and subsequently developed by Persichetti in [6, 12].

Our Contribution. We analyze two separate aspects of dyadic operations. First, we present
three different algorithms for that are aimed specifically at computing multiplication of dyadic
matrices. These are, respectively, a “standard" approach that makes use of dyadic signatures, a spe-
cialized Karatsuba-like algorithm, and a procedure based on the Fast Walsh-Hadamard Transform
(FWHT) [7], also called dyadic convolution. We analyze the performance of all three methods and
report our timings.
As a second contribution, we describe a procedure that applies the LUP decomposition [5] to the
dyadic case. The method effectively factors every quasi-dyadic matrix into a product of two trian-
gular matrices and a permutation matrix. This leads to the possibility of a very efficient algorithm
for computing the inverse of a matrix, which is particularly useful in code-based cryptography, for
instance for computing the systematic form of a parity-check (or generator) matrix. According to
our measurements, this improved inversion procedure is extremely fast, and provides a very large
speedup during DAGS Key Generation.

Organization of the Paper. This paper is organized as follows. We start with some preliminary
definitions in Section 2. We then present our main contributions: the various multiplication tech-
niques are described in Section 4 and the improved inversion algorithm is presented in Section 3.
We conclude by showing the results obtained when applying our techniques to DAGS; this is done
in Section 5.

2 Preliminaries

We introduce dyadic matrices and describe some of their general properties.

Definition 2.1 Given a ring R and a vector h = (h0, h1, · · · , hn−1) ∈ Rn, with n = 2r for some
r ∈ N, the dyadic matrix ∆(h) ∈ Rn×n is the symmetric matrix with components ∆ij = hi⊕j where
⊕ stands for bitwise exclusive-or. Such a matrix is said to have order r. The sequence h is called
signature of the matrix ∆(h), and corresponds to its first row. The set of dyadic n × n matrices
over R is denoted ∆ (Rn).

One can alternatively characterize a dyadic matrix recursively: any 1×1 matrix is dyadic of order 0,
and any dyadic matrix M of order r > 0 has the form

M =

(
A B
B A

)
(1)

where A and B are two dyadic matrices of order r − 1. In other words, ∆ (Rn) = ∆
(
∆
(
Rn/2

))
.

Definition 2.2 A dyadic permutation is a dyadic matrix Πi ∈ ∆({0, 1}n) characterized by the
signature πi = (δij | j = 0, . . . , n− 1), where δij is the Kronecker delta (hence πi corresponds to the
i-th row or column of the identity matrix).

2



A dyadic permutation is clearly an involution, i.e. (Πi)2 = I. The i-th row, or equivalently the i-th
column, of the dyadic matrix defined by a signature h can be written as ∆(h)i = hΠi.

A dyadic matrix can be efficiently represented by its signature; in particular, all the operations
between dyadic matrices can be referred only to the corresponding signatures. Indeed, for any two
length-n vectors a,b ∈ R, we have:

∆(a) + ∆(b) = ∆(a + b) (2)

which means that, given two dyadic matrices A and B, with respective signatures a and b, their
sum is the dyadic matrix described by the signature a + b.

In an analogous way, the multiplication between dyadic matrices can be done by considering only the
corresponding signatures; we will discuss efficient ways for computing multiplications in Section 3.
Moreover, it is easy to see that the inverse of a dyadic matrix is also a dyadic matrix; this can
be easily computed using Sylvester-Hadamard matrices (see Section 3.2).We will expand on this in
Section 4.

Finally, we introduce a relaxed notion of dyadicity, which will be useful throughout the paper.

Definition 2.3 A quasi-dyadic matrix is a (possibly non-dyadic) block matrix whose elements are
dyadic submatrices, i.e. an element of ∆ (Rn)d1×d2.

3 Multiplication of Dyadic Matrices

In this section we consider different methods for computing the multiplication between two dyadic
matrices. In fact, we have just mentioned how some matrix operations, like the sum or the inversion,
can be efficiently performed in the dyadic case just by considering the signatures. Multiplication can
be strongly improved with similar methods, which exploit the particular structure of such matrices.
In particular, we analyze three different algorithms and provide estimations for their complexities;
we then compare the performance of the various algorithms.
For ease of notation, we will refer to the two n × n matrices that we want to multiply simply as
A and B, with a = [a0, a1, · · · , an−1] and b = [b0, b1, · · · , bn−1] being the respective signatures.
Maintaining the same notation, the product matrix C = AB, which is also dyadic, will have
signature c = [c0, c1, · · · , cn−1].
In particular, we focus on the special case of quasi-dyadic matrices with elements belonging to a
field F of characteristic 2.

3.1 Standard Multiplication

The first algorithm we analyze is described in Algorithm 1; we refer to it as the standard multipli-
cation. The element of C in position (i, j) is obtained as the multiplication between the i-th row of
A and the j-th column of B. Since dyadic matrices are symmetric, this is equivalent to the inner
product between the i-th row of A and the j-th one of B. The signature c (i.e., the first row of C)
is obtained by inner products involving only a (i.e., the first row of A). Thus, we can just construct
the rows of B, by permutations of the elements in b, and then compute the inner products.

3



Algorithm 1 Standard multiplication of dyadic matrices
Input: r ∈ N, n = 2r and a,b ∈ Fn.
Output: c ∈ Fn such that ∆(c) = ∆(a)∆(b).
1: c← vector of length n, initialized with null elements.
2: c0 ← a0 · b0
3: for i← 1 to n− 1 do
4: c0 ← c0 + aibi
5: i(b) ← binary representation of i, using n bits.
6: for {j = 0, 1, · · · , n− 1} do
7: j(b) ← binary representation of j, using n bits.
8: π(b) ← i(b) ⊕ j(b)
9: π ← conversion of π(b) into an integer.

10: ci ← ci + aibπ
11: end for
12: end for
13: return c

The complexity of the algorithm is due to two different types of operations:

1. In order to construct the rows of B, we need the indexes of the corresponding permutations.
Each index is computed as the modulo 2 sum of two binary vectors of length r, so can be
obtained with a complexity of r binary operations. Thus, considering that we need to repeat
this operation for 2r − 1 rows (for the first one, no permutation is needed), the complexity of
this procedure can be estimated as r · 2r · (2r − 1).

2. Each element of c is obtained as the inner product between two vectors of 2r elements, as-
suming values in F. This operation requires 2r multiplication and 2r − 1 sums in F. If we
denote as Cmult and Csum the costs of, respectively, a multiplication and a sum in F, the to-
tal number of binary operations needed to compute 2r inner products can be estimated as
22r · Cmult + (22r − 2r) · Csum.

The complexity of a standard multiplication between two dyadic signatures can be estimated as:

Cstd = r ·
(
22r − 2r

)
+ 22r · Cmult + (22r − 2r) · Csum (3)

3.2 Dyadic Convolution

Definition 3.1 The dyadic convolution of two vectors a,b ∈ R, denoted by a Mb, is the unique
vector of R such that ∆(a Mb) = ∆(a)∆(b).

Of particular interest to us is the case where Rn is actually a field F. Dyadic matrices over F form a
commutative subring ∆(Fn) ⊂ Fn×n, and this property gives rise to efficient arithmetic algorithms
to compute the dyadic convolution. In particular, we here consider the fast Walsh-Hadamard
transform (FWHT), which is well known [7] but seldom found in a cryptographic context. We
describe it here for ease of reference. We firstly recall the FWHT for the case of a field F such that
char(F) 6= 2, and then describe how this technique can be generalized to consider also the case of
char(F) = 2 (which, again, is the one we are interested in).

4



Definition 3.2 Let F be a field with char(F) 6= 2. The Sylvester-Hadamard matrix Hr ∈ Fn is
recursively defined as

H0 =
[

1
]
,

Hr =

[
Hr−1 Hr−1
Hr−1 −Hr−1

]
, r > 0.

One can show by straightforward induction that H2
r = 2rIr and hence H−1r = 2−rHr, which can

also be expressed recursively as

H−10 =
[

1
]
,

H−1r =
1

2

[
H−1r−1 H−1r−1
H−1r−1 −H−1r−1

]
, r > 0.

Lemma 3.1 Let F be a field with char(F) 6= 2. If M ∈ Fn×n is dyadic, then H−1r MHr is diagonal.

Proof The lemma clearly holds for r = 0. Now let r > 0, and write

M =

[
A B
B A

]
where A and B are dyadic. It follows that

H−1r MHr =
1

2

[
H−1r−1 H−1r−1
H−1r−1 −H−1r−1

] [
A B
B A

] [
Hr−1 Hr−1
Hr−1 −Hr−1

]
=

[
H−1r−1M+Hr−1 O

O H−1r−1M−Hr−1

]
,

and since both M+ = A + B and M− = A−B are dyadic, H−1r−1M+Hr−1 and H−1r−1M−Hr−1 are
diagonal by induction, as is thus also H−1r MHr. �

Lemma 3.1 establishes that Sylvester-Hadamard matrices diagonalize all dyadic matrices. In par-
ticular, the factors in a product of dyadic matrices are thus simultaneously diagonalized, suggest-
ing an efficient way to carry out the matrix multiplication, namely, computing H−1r (MN)Hr =
(H−1r MHr)(H

−1
r rHr) given the diagonal forms H−1r MHr and H−1r rHr of two dyadic matrices M

and N requires only n multiplications of the diagonal elements.

In fact, it is not necessary to compute H−1r MHr in full to obtain the diagonal form of M, as
indicated by the following result:

Lemma 3.2 Let F be a field with char(F) 6= 2. The diagonal form of a dyadic matrix M ∈ Fn×n is
the first line of MHr. In other words, H−1r ∆(h)Hr = diag(hHr).

Proof The lemma clearly holds for r = 0. Now let r > 0, and with the notation of Lemma 3.1, the
diagonal of H−1r MHr is the concatenation of the diagonals of H−1r−1M+Hr−1 and H−1r−1M−Hr−1.
Similarly, since

MHr =

[
A B
B A

] [
Hr−1 Hr−1
Hr−1 −Hr−1

]
=

[
M+Hr−1 M−Hr−1
M+Hr−1 −M−Hr−1

]
,

5



the first line of MHr is the concatenation of the first lines of M+Hr−1 and M−Hr−1, which by
induction are the diagonals of H−1r−1M+Hr−1 and H−1r−1M−Hr−1 respectively, yielding the claimed
property. �

Corollary 3.2.1 Computing c such that ∆(a)∆(b) = ∆(c) involves only three multiplications of
vectors by Sylvester-Hadamard matrices.

Proof By Lemma 3.2, diag(aHr) diag(bHr) = (H−1r ∆(a)Hr)(H
−1
r ∆(b)Hr) = H−1r ∆(a)∆(b)Hr =

H−1r ∆(c)Hr = diag(cHr). Now simply retrieve c from z = cHr as c = zH−1r = 2−rzHr. �

The structure of Sylvester-Hadamard matrices leads to an efficient algorithm to compute aHr for
a ∈ Fn, which is known as the fast Walsh-Hadamard transform. Let [a0,a1] be the two halves of a.
Thus

aHr = [a0,a1]

[
Hr−1 Hr−1
Hr−1 −Hr−1

]
= [(a0 + a1)Hr−1, (a0 − a1)Hr−1].

This recursive algorithm, which can be easily written in purely sequential fashion (Algorithm 2), has
complexity Θ(n log n), specifically, rn additions or subtractions in F. It is therefore somewhat more
efficient than the fast Fourier transform, which involves multiplications by n-th roots of unity, when
they are available at all (otherwise working in extension fields is unavoidable, and more expensive).

Algorithm 2 The fast Walsh-Hadamard transform (FWHT)

Input: r ∈ N, n = 2r and a ∈ Fn with char(F) 6= 2.
Output: aHr.
1: v ← 1
2: for j ← 1 to n do
3: w ← v
4: v ← 2v
5: for i← 0 to n− 1 by v do
6: for l← 0 to w − 1 do
7: s← ai+l
8: q ← ai+l+w
9: ai+l ← s+ q

10: ai+l+w ← s− q
11: end for
12: end for
13: end for
14: return a

The product of two dyadic matrices ∆(a) and ∆(b), or equivalently the dyadic convolution a Mb,
can thus be efficiently computed as described in Algorithm 3. The total cost is 3rn additions or
subtractions and 2n multiplications (half of these by the constant 2−r = 1/n) in F, with an overall
complexity Θ(n log n). Notice that this is also the complexity of computing det ∆(a).
The fast Walsh-Hadamard transform itself is not immediately possible on fields of characteristic 2,
since it depends on Sylvester-Hadamard matrices which must contain a primitive square root of

6



Algorithm 3 Dyadic convolution via the FWHT
Input: r ∈ N, n = 2r and a,b ∈ Fn with char(F) 6= 2.
Output: a Mb ∈ Fn such that ∆(a)∆(b) = ∆(a Mb).
1: c← vector of length n, initialized with null elements.
2: c̃← vector of length n, initialized with null elements.
3: Compute ã← aHr via Algorithm 2. . expansion 1→ r + 1
4: Compute b̃← bHr via Algorithm 2. . expansion 1→ r + 1
5: for j ← 0 to n− 1 do
6: c̃j ← ãj b̃j . expansion r + 1→ 2r + 1
7: end for
8: Compute c← c̃Hr via Algorithm 2. . expansion 2r + 1→ 3r + 1
9: c← 2−rc

10: return c

unity. Yet the FWHT algorithm can be lifted to characteristic 0, namely, from F2 = Z/2Z to Z,
or more generally from F2N = (Z/2Z)[x]/P (x) (for some irreducible P (x) of degree N) to Z[x].
Algorithm 3 can then be applied, and its output mapped back to the relevant binary field by
modular reduction. This incurs a space expansion by a logarithmic factor, though. Each bit from
F2 is mapped to intermediate values that can occupy as much as 3r + 1 bits; correspondingly, each
element from F2N is mapped to intermediate values that can occupy as much as (3r+1)N bits. Thus
the component-wise multiplication in Algorithm 3 becomes more complicated to implement for large
N . However, the method remains very efficient for the binary case as long as each expanded integer
component fits a computer word. For a typical word size of 32 bits and each binary component
being expanded by a factor of 3r+ 1, this means that blocks as large as 1024× 1024 can be tackled
efficiently. On more restricted platforms where the maximum available word size is 16 bits, dyadic
blocks of size 32× 32 can still be handled with relative ease.

3.3 Karatsuba Multiplication

In this section we propose a method which is inspired by Karatsuba’s algorithm for the multiplication
of two integers [9]. Let us denote by a0 and a1, respectively, the first and second halves of a, i.e.:

a0 =
[
a0, a1, · · · , an

2
−1

]
a1 =

[
an

2
, an

2
+1, · · · , an−1

]
.

(4)

The same notation is used for b0 and b1 and c0 and c1, corresponding to the halves of B and C.
Some straightforward computations show that the following relations hold:

c0 = a0b0 + a1b1

c1 = (a0 + a1) (b0 + b1) + c0
(5)

The iterative application of equation (5) allows to compute multiplications between dyadic matrices
of any size. Let us denote as C(2z)

mul and C(2z)
sum the complexities of a multiplication and a sum between

7



two signatures of length 2z. For the sum of two dyadic signatures of size 2z we have:

C(2z)
sum = 2z · Csum, (6)

where Csum again denotes the complexity of a sum in the finite field.
The complexity of this algorithm can thus be estimated as:

CKar = 3 · C(2r−1)
mul + 4 · C(2r−1)

sum =

= 3 · C(2r−1)
mul + 4 · 2r−1 · Csum =

= 3 ·
[
3 · C(2r−2)

mul + 4 · C(2r−2)
sum

]
+ 4 · 2r−1 · Csum =

= 3
[
3 · C(2r−2)

mul + 4 · 2r−2 · Csum

]
+ 4 · 2r−1 · Csum =

= 32 · C(2r−2)
mul + 4 ·

[
3 · 2r−2 + 2r−1

]
Csum =

= 33 · C(2r−3)
mul + 4 ·

[
32 · 2r−3 + 3 · 2r−2 + 2r−1

]
Csum =

= · · · =

= 3r · Cmul + 4 ·

 r∑
j=1

3j−12r−j

 · Csum =

= 3r · Cmul +
4

3
· 2r ·

 r∑
j=1

(
3

2

)j · Csum (7)

Taking into account the well known sum of a geometric series, we have:

r∑
j=1

(
3

2

)j
= −1 +

r∑
j=0

(
3

2

)j
=

= −1 +
1− (32)r+1

1− 3
2

=
3r+1

2r
− 3. (8)

Considering this result, equation (7) leads to:

CKar = 3r · Cmul + 4 · [3r − 2r] · Csum (9)

4 Efficient Inversion of Dyadic and Quasi-Dyadic Matrices

In this section we propose an efficient algorithm for computing the inverse of quasi-dyadic matrices.
The algorithm in principle is targeted to matrices that are not fully dyadic (even though, obviously,
they have to be square). This is because, while it is of course possible to apply our procedure to
fully dyadic matrices, these can in general be inverted much more easily, as we will see next.

To begin, remember that by definition of a quasi-dyadic matrix (Definition 2.3) we mean an element
of ∆ (Rn)d1×d2 .

8



4.1 Dyadic Matrices

The inverse of a dyadic matrix (i.e. d1 = d2 = 1) can be efficiently computed, using only the
signature, as described by the following Lemma.

Lemma 4.1 Let n = 2r for r ∈ N and let ∆(a) ∈ Rn×n be a dyadic matrix with signature a. Then
the inverse ∆(a)−1 is the dyadic matrix ∆(b), for b = 1

2r b̃Hr, where b̃ is the vector such that
diag(b̃) = [diag (aHr)]

−1.

Proof We have ∆(b)∆(a) = In = ∆([1, 0, · · · , 0]). The diagonal form of In corresponds to the
first row of the product InHr, and so it is equal to the first row of Hr, that is the length-n vector
made of all ones. According to Corollary 3.2.1, we can write:

diag(b) diag(a) = diag([1, 1, · · · , 1]).

We then define aHr = [λ0, λ1, · · · , λn−1], and obtain:

diag(b) = diag([1, 1, · · · , 1]) diag−1(a) = diag([λ−10 , λ−11 , · · · , λ−1n−1]).

Because of Lemma 3.2, we finally have:

b = diag−1(a)H−1r = 1
2r diag−1(a)Hr. �

As we mentioned before, the above Lemma yields a very simple way for computing the inverse of a
dyadic matrix: given a signature a, we just need to compute its diagonalized form as aHr, compute
the reciprocals of its elements and put it in a vector b̃. Finally, the inverse of ∆(a) can be obtained
as 1

2r b̃Hr. This property also leads to a very simple way to check the singularity of ∆(a): if its
diagonalized form contains some null elements, then it is singular.

We now focus on the case of dyadic matrices over a field F with characteristic 2. One can show
by induction that in such a case a dyadic matrix ∆(a) of dimension n satisfies ∆(a)2 = (

∑
i ai)

2I,
and hence its inverse, when it exists, is ∆(a)−1 = (

∑
i ai)

−2∆(a), which can be computed in O(n)
steps since it is entirely determined by its first row. It is equally clear that det ∆(a) = (

∑
i ai)

n,
which can be computed with the same complexity (notice that raising to the power of n = 2r only
involves r squarings). Basically, verifying whether a dyadic matrix has full rank or not can be easily
done by checking whether the sum of the elements of the signature equals 0.

4.2 Quasi-Dyadic Matrices

Consider a quasi-dyadic matrix M. Since the matrix has to be square, we have d1 = d2 = d, and the
matrix has dimension dn×dn. Such a matrix can be compactly represented just by the signatures of
the dyadic blocks. To simplify notation, we can denote the signature of the dyadic-block in position
(i, j) as m̂i,j , and store all such vectors in a matrix M̂ ∈ Rd×dn:

M̂ =


m̂0,0 m̂0,1 · · · m̂0,d−1
m̂1,0 m̂1,1 · · · m̂1,d−1
...

...
. . .

...
m̂d−1,0 m̂d−1,1 · · · m̂d−1,d−1

 . (10)

9



We focus again on the special case of quasi-dyadic matrices over a field F with characteristic 2.

The LUP decomposition is a method which factorizes a matrix M as LUP, where L and U are
lower triangular and upper triangular matrices, respectively, and P is a permutation.
Exploiting this factorization, the inverse of M can thus be expressed as:

M−1 = P−1U−1L−1. (11)

The advantage of this method is that the inverses appearing in (11) can be easily computed, because
of their particular structures. In fact, the inverse of an upper (lower) triangular matrix is obtained
via a simple backward (forward) substitution procedure, while the inverse of P is its transpose.

In in Algorithm 4 we describe how the LUP decomposition can be efficiently applied to any square
quasi-dyadic matrix.

Algorithm 4 LUP Decomposition of a Quasi-Dyadic Matrix

Input: d, r ∈ N, n = 2r and M̂ ∈ Fd×dn with char(F) = 2.
Output: M̂ ∈ Fd×dn, P̂ ∈ Nd.
1: P̂← [0, 1, · · · , d− 1]
2: u← 0
3: for j ← 0 to d− 1 do
4: Update u, M̂ and P̂ via Algorithm 5. . Pivoting of the signatures in the j-th column
5: if u = 0 then
6: return u . M̂ is singular
7: end if
8: for i← j + 1 to d do
9: m̂i,j ← m̂i,jm̂

−1
j,j

10: end for
11: for i← j + 1 to d− 1 do
12: for l← j + 1 to d− 1 do
13: m̂i,l ← m̂i,l + m̂i,jm̂j,l

14: end for
15: end for
16: end for
17: return M̂, P̂

Our proposed procedure consists in using a block decomposition, which works directly on the signa-
tures, in order to exploit the simple and efficient algebra of dyadic matrices. It can be easily shown
that, for a quasi-dyadic matrix, its factors L, U and P are in quasi-dyadic form as well: as we have
done for the matrix M, we refer to their compact representations as L̂, Û and P̂, respectively.

The algorithm takes as input a matrix M̂, as in (10), and computes its LUP factorization; outputs
of the algorithm are the modified matrix M̂, having as elements the ones of its factors L̂ and Û,
and the permutation P̂. As in (10), we denote as m̂i,j the signature in position (i, j) in the output
matrix M̂. The matrices L̂ and Û can then be expressed as:

10



L̂ =


1̂ 0̂ 0̂ · · · 0̂

m̂1,0 1̂ 0̂ · · · 0̂

m̂2,0 m̂2,1 1̂ · · · 0̂
...

...
...

. . .
...

m̂d−1,0 m̂d−1,1 m̂d−1,2 · · · 1̂

 , Û =


m̂0,0 m̂0,1 m̂0,2 · · · m̂0,d−1

0̂ m̂1,1 m̂1,2 · · · m̂1,d−1
0̂ 0̂ m̂2,2 · · · m̂2,d−1
...

...
...

. . .
...

0̂ 0̂ 0̂ · · · m̂d−1,d−1

 (12)

where 1̂ and 0̂ denote, respectively, the signature of the identity matrix and the one of the null
matrix (i.e. the length-k vectors [1, 0, · · · , 0] and [0, 0, · · · , 0]).

The matrix P̂ is represented through a length-d vector [p0, p1, · · · , pd−1], containing a permutation
of the integers [0, 1, · · · , d − 1]; the rows of M̂ get permuted according to the elements of P̂. In
particular, the elements of P̂ are obtained through a block pivoting procedure, which is described
in Algorithm 5.

Algorithm 5 Block pivoting

Input: d, j, r ∈ N, n = 2r, P̂ ∈ Nn and M̂ ∈ Fd×dn with char(F) = 2, .
Output: u ∈ N.
1: u← 0
2: i← j
3: while i ≤ d− 1 do
4: w ← sum(m̂i,j) . Sum of the elements in m̂i,j

5: if w = 0 then
6: z ← pj
7: pj ← pi
8: pi ← z
9: for l← 0 to d− 1 do

10: z ← m̂j,l

11: m̂j,l ← m̂i,l

12: m̂i,l ← z
13: i← i+ 1
14: end for
15: else
16: i← d
17: u← 1
18: end if
19: end while
20: return u

This function takes as input M̂, P̂ and an integer j, and searches for a pivot (i.e., a non singular
signature) in the j-th column of M̂, starting from m̂j,j , and places it in position (j, j). As the
procedure goes on, every time a singular signature is tested, the rows of M̂ get permuted; the
elements of P̂ are accordingly modified. If the j-th column contains all singular blocks, this means
that the matrix M̂ is singular; in such a case, this event is notified by setting u = 0.

We point out that, for the matrices we are considering, we expect Algorithm 4 to be particularly
efficient. First of all, as we have already said, this is due to the possibility of efficiently performing

11



operations involving dyadic matrices; in addition, the dyadic structure should also speed-up the
pivoting procedure. In fact, we can consider a signature in M̂ as a collection of k random elements
picked from GF (2N ): thus, their sum can be assumed to be a random variable with uniform
distribution among the elements of the field GF (2N ). So, the probability of it being equal to 0,
which corresponds to the probability of the corresponding signature to be singular, equals 2−m.
This probability gets lower as m increases: this fact means that the expected number of operations
performed by Algorithm 5 should be particularly low. Basically, most of the times the function will
just compute the sum of the elements in m̂j,j and verify whether it is null or not.

Once the factorization of M̂ has been obtained, we just need to perform the computation of M−1

through (11). Since the inverse of a triangular matrix maintains the original triangular structure,
the computation of the inverses L̂−1 and Û−1 can be efficiently performed. A possible way for
computing these matrices is to store the elements of both matrices in just one output matrix T̂.
We do this in Algorithm 6.

Algorithm 6 Computation of T̂

Input: d, r ∈ N, n = 2r and M̂ ∈ Fd×dn with char(F) = 2.
Output: T̂ ∈ Fd×dn.
1: T̂← Îd
2: for j ← 0 to d− 1 do
3: for i← j + 1 to d− 1 do
4: for l← j to i− 1 do
5: t̂i,j ← t̂i,j + m̂i,kt̂k,j
6: end for
7: end for
8: for i← j to d− 1 do
9: for l← j to i− 1 do

10: t̂j,i ← t̂j,i + m̂k,it̂j,k
11: end for
12: t̂j,i ← t̂j,im̂

−1
i,i

13: end for
14: end for
15: return T̂

The matrix Îd is the compact representation of a dn × dn identity matrix, and so is composed of
signatures δi,j 1̂, where δi,j denotes the Kronecker delta.

If we denote as t̂i,j the signature in position (i, j), we have:

L̂−1 =


1̂ 0̂ 0̂ · · · 0̂

t̂1,0 1̂ 0̂ · · · 0̂

t̂2,0 t̂2,1 1̂ · · · 0̂
...

...
...

. . .
...

t̂d−1,0 t̂d−1,1 t̂d−1,2 · · · 1̂

 , Û−1 =


t̂0,0 t̂0,1 t̂0,2 · · · t̂0,d−1
0̂ t̂1,1 t̂1,2 · · · t̂1,d−1
0̂ 0̂ t̂2,2 · · · t̂2,d−1
...

...
...

. . .
...

0̂ 0̂ 0̂ · · · t̂d−1,d−1

 . (13)

12



5 Performance Analysis: Application to DAGS

In this section we provide the results of the application of our techniques to DAGS. For complete-
ness, we have included a specification of the three DAGS algorithms in Appendix A, but for our
purpose, DAGS is essentially the McEliece cryptosystem, converted to a KEM via a standard trans-
formation [8]. In particular, the Key Generation algorithm is the same as the QD-GS McEliece
version described in [12]. In this algorithm, a key role is played by the systematization (i.e. reduced
row echelon form) of a quasi-dyadic rectangular matrix, the result of which will in fact be the public
key for the scheme. The cost of computing said systematic matrix dwarfs everything else in key
generation: according to a static analysis, this takes over 98% of the total cost of key generation.
Therefore, a fast procedure to compute the systematic form will have a substantial impact on the
overall performance of the algorithm.

Implementation Details. We developed a code in “C” to implement our procedures. In all cases,
we use no optimizations apart from the optimization from the GCC compiler (“-O3”). The GCC ver-
sion used was 7.3.1 20180406, the code was compiled for the processor Intel(R) Core(TM) i5-5300U
CPU @ 2.30GHz with 16GB of memory and operating system Arch linux version 2018.05.01 with
Kernel 4.16.5. We ran 100 times each piece of code and computed the average of all measurements;
to obtain the number of cycles, we used the file “cpucycles.h" from supercop1.

Fast Multiplication. To compare our methods, we fix a dyadic order r and measure the cost of
a multiplication of two matrices of size n = 2r. Relevant dyadic orders for DAGS are for instance
r = 4 and r = 5. We do this over different fields to highlight the difference in performance when
changing fields: we tested F25 and F26 which are the fields currently used by DAGS.

Table 1: Cost of Multiplication between Dyadic Matrices

Standard Karatsuba Dyadic Convolution

F25
r = 4 4, 833 2, 194 3, 899
r = 5 21, 285 5, 909 12, 045

F26
r = 4 5, 833 2, 194 4, 899
r = 5 23, 231 6, 223 13, 568

Efficient Inversion. We report here the results of the improved inversion procedure (Algo-
rithms 4, 5 and 6). We compared our procedure with the equivalent portion of the DAGS im-
plementation that we extrapolated from the publicly available source code [2]. In particular, we
measured the piece of code that begins with the creation of the Cauchy matrix and ends with the
generation of the systematic matrix. Table 2 shows the comparison, measured in cpu cycles.

Table 2: Comparison of Inversion Methods

DAGS Implementation LUP Inversion LUP + Karatsuba
DAGS 1 1, 318, 973, 209 321, 771 108, 117

DAGS 3 2, 211, 076, 311 557, 822 198, 199

DAGS 5 17, 925, 330, 712 654, 713 431, 890

1https://bench.cr.yp.to/supercop.html

13



References

[1] https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-
standardization.

[2] https://git.dags-project.org/dags/dags.

[3] G. Banegas, P. S. L. M. Barreto, B. O. Boidje, P. Cayrel, G. N. Dione, K. Gaj, C. T. Gueye,
R. Haeussler, J. B. Klamti, O. Ndiaye, D. T. Nguyen, E. Persichetti, and J. E. Ricardini,
“DAGS: key encapsulation using dyadic GS codes,” IACR Cryptology ePrint Archive, vol.
2017, p. 1037, 2017. [Online]. Available: http://eprint.iacr.org/2017/1037

[4] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent intractability of certain
coding problems (corresp.),” Information Theory, IEEE Transactions on, vol. 24, no. 3, pp.
384 – 386, may 1978.

[5] J. R. Bunch and J. E. Hopcroft, “Triangular factorization and inversion by fast matrix multi-
plication,” Mathematics of Computation, vol. 28, no. 125, pp. 231–236, 1974.

[6] P. Cayrel, G. Hoffmann, and E. Persichetti, “Efficient implementation of a cca2-secure variant
of mceliece using generalized srivastava codes,” in Public Key Cryptography - PKC 2012 - 15th
International Conference on Practice and Theory in Public Key Cryptography, Darmstadt,
Germany, May 21-23, 2012. Proceedings, ser. Lecture Notes in Computer Science, M. Fischlin,
J. A. Buchmann, and M. Manulis, Eds., vol. 7293. Springer, 2012, pp. 138–155. [Online].
Available: https://doi.org/10.1007/978-3-642-30057-8_9

[7] M. N. Gulamhusein, “Simple matrix-theory proof of the discrete dyadic convolution theorem,”
Electronics Letters, vol. 9, no. 10, pp. 238–239, 1973.

[8] D. Hofheinz, K. Hövelmanns, and E. Kiltz, “A modular analysis of the Fujisaki-Okamoto trans-
formation,” Cryptology ePrint Archive, Report 2017/604, 2017, http://eprint.iacr.org/2017/
604.

[9] A. Karatsuba and Y. Ofman, Multiplication of Multidigit Numbers by Automata, 01 1963.

[10] R. J. McEliece, “A public-key cryptosystem based on algebraic coding theory,” Deep Space
Network Progress Report, vol. 44, pp. 114–116, Jan. 1978.

[11] R. Misoczki and P. S. L. M. Barreto, “Compact mceliece keys from goppa codes,” in Selected
Areas in Cryptography, 2009, pp. 376–392.

[12] E. Persichetti, “Compact mceliece keys based on quasi-dyadic srivastava codes,” Journal of
Mathematical Cryptology, vol. 6, no. 2, pp. 149–169, 2012.

[13] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer,” SIAM Journal on Computing, vol. 26, no. 5, pp. 1484–1509, 1997.

14



A DAGS Algorithms

We briefly describe the three algorithms that define DAGS. Generalized Srivastava codes are defined
by parameters s and t, where in our case log s is the dyadic order; the codes in use have length
n = n0s and dimension k = k0s where n0 and k0 are the number of dyadic blocks. Other parameters
are the cardinality of the base field q and the degree of the field extension m. In addition, we have
k = k′ + k′′, where k′ is arbitrary and set to be “small”.

The key generation process uses the following fundamental equation

1

hi⊕j
=

1

hi
+

1

hj
+

1

h0
(14)

which guarantees we can build a dyadic matrix, with signature h = (h0, h1, . . . , hn−1), which is also
a Cauchy matrix, i.e. a matrix C(u,v) with components Cij = 1

ui−vj . In [11] it is proved that we
can use the fundamental equation to choose a support and polynomial for a Goppa code such that
this dyadic Cauchy matrix is a parity-check matrix for the code.

Key Generation

1. Generate dyadic signature h according to the fundamental equation.

2. Build the vectors (u,v) that define the Cauchy matrix (again using the equation).

3. Form Cauchy matrix Ĥ1 = C(u,v).

4. Build Ĥi, i = 2, . . . t, by raising each element of Ĥ1 to the power of i.

5. Superimpose blocks Ĥi in ascending order to form matrix Ĥ.

6. Generate scaling vector z by sampling elements zi in Fqm with zis+j = zis for i = 0, . . . , n0−1,
j = 0, . . . , s− 1.

7. Set yj =
zj

s−1∏
i=0

(ui − vj)t
for j = 0, . . . , n− 1 and y = (y0, . . . , yn−1).

8. Form H = Ĥ ·Diag(z).

9. Project H onto Fq using the co-trace function: call this Hbase.

10. Write Hbase in systematic form (A | In−k).

11. The public key is the generator matrix G = (Ik | AT ).

12. The private key is the pair (v,y).

15



Note that all matrices involved in key generation are quasi-dyadic (with blocks of size s×s), namely
Ĥ,H,Hbase and its systematic form, and the final matrix G which is the public key. Step 10 is the
systematization process which is impacted by our improved inversion algorithm.

The encapsulation and decapsulation algorithms make use of three hash functions G : Fk′q → Fkq ,
H : Fk′q → Fk′q and K : {0, 1}∗ → {0, 1}`, where ` is the desired length of the key to be shared.

Encapsulation

1. Choose m
$← Fk′q .

2. Compute r = G(m) and d = H(m).

3. Parse r as (ρ ‖ σ) then set µ = (ρ ‖m).

4. Generate error vector e of length n and weight w from σ.

5. Compute c = µG+ e.

6. Compute k = K(m).

7. Output ciphertext (c,d); the encapsulated key is k.

The decapsulation algorithm is essentially a run of the decoding algorithm to decode the noisy
codeword received as part of the ciphertext, plus a number of integrity checks.

Decapsulation

1. Recover parity-check matrix H ′ in alternant form from private key.

2. Use H ′ to decode c and obtain codeword µ′G and error e′.

3. Output ⊥ if decoding fails or wt(e′) 6= w

4. Recover µ′ and parse it as (ρ′ ‖m′).

5. Compute r′ = G(m′) and d′ = H(m′).

6. Parse r′ as (ρ′′ ‖ σ′).

7. Generate error vector e′′ of length n and weight w from σ′.

8. If e′ 6= e′′ ∨ ρ′ 6= ρ′′ ∨ d 6= d′ output ⊥.

9. Else compute k = K(m′).

10. The decapsulated key is k.

16


