
Mitigating the One-Use Restriction in Attribute-Based Encryption

Lucas Kowalczyk ∗ Jiahui Liu† Tal Malkin‡ Kailash Meiyappan§

Abstract

We present a key-policy attribute-based encryption scheme that is adaptively secure under
a static assumption and is not directly affected by an attribute “one-use restriction.” Our
construction improves upon the only other such scheme (Takashima ’17) by mitigating its
downside of a ciphertext size that is dependent on the maximum size of any supported attribute
set.

1 Introduction

Attribute-based encryption (ABE) is a type of public key encryption which allows for fine-grained
access control to encrypted data. In Key-Policy ABE, ciphertexts are associated with attributes,
and secret-keys are associated with Boolean access policies that take in a set of attributes and
return True if the key is capable of decrypting ciphertexts associated with that set and return False
otherwise. Security guarantees that (potentially colluding) users without an authorized key should
not be able to learn anything about an encrypted message. (A dual variant called Ciphertext-Policy
ABE swaps the roles of attributes and access policies to be associated with the secret keys and
ciphertexts respectively).

One way to make security proofs for ABE more attainable is to consider restricted notions
of security. For KP-ABE, the notion of selective security requires the adversary to commit to
a target set of attributes for the challenge ciphertext that will be attacked at the start of the
security game. The earliest constructions of ABE using bilinear groups were proven secure in this
model [GPSW06, Wat11].The notion of semi-adaptive security [JW14] requires the adversary to
commit to a target set of attributes, but allows the adversary to see the public parameters first.
These notions are obviously not realistic attack scenarios, so a KP-ABE scheme would ideally
satisfy the notion of adaptive security (full security), where the challenge attribute set can be chosen
adaptively (in response to public parameters and any amount of secret keys received). The first
construction of ABE achieving adaptive security appeared in [LOS+10], employing the dual system
encryption methodology [Wat09] in its security reduction.

Another way to make proving security of ABE schemes easier is to reduce security to parameter-
ized assumptions like q-type assumptions, where the size of the elements included in the assumption’s
challenge grows with some property of the adversary. q-type assumptions were used in the ABE
constructions of [Wat11, LW12] to prove security. However, the security of dynamic assumptions
like q-type assumptions is not well-understood, and the assumptions are often closely related to
the scheme in which they are used. For example, the assumption may include a number of group

∗Columbia University luke@cs.columbia.edu
†Columbia University jl4161@columbia.edu
‡Columbia University tal@cs.columbia.edu
§Columbia University kkm2142@columbia.edu

1

elements that scales with the number of queries made by the adversary in the security proof. Further,
it is known that many q-type assumptions become stronger as q grows [Che06], so we would ideally
like to reduce security of ABE constructions to better understood assumptions of a static size, like
the Decisional Linear Assumption (DLIN) or the Symmetric External Diffie-Hellman Assumption
(SXDH).

A natural class of access policies one would like to be able to support in an ABE construction is
that of general Boolean formulas. Unfortunately, it has proven tremendously difficult to construct
efficient ABE for general Boolean formulas with adaptive security under static assumptions. All
constructions except for [Tak17] suffer from a “one-use restriction.” That is, they only natively
support read-once Boolean formulas, or formulas where attributes are used at most once in inputs.
One way to extend such constructions to support formulas that use attributes more than once
(say, k times) is to use k copies of new “meta-attributes” that stand for each use of the original
attribute, and are handled as a group [LOS+10]. The downside of this approach is that it destroys
the compactness of the construction – for KP-ABE, the size of the ciphertexts no longer depends on
just the attribute set of the ciphertext, but also on the complexity of the formulas that the scheme
supports (namely, the ciphertexts grow linearly with the maximum number of attribute uses in any
formula supported). Ciphertexts associated with n′ attributes in a scheme like [LOS+10] where
policies can reuse attributes at most k times are of size O(n′ · k).

Takashima presented the first KP-ABE scheme (proven adaptively secure from static assump-
tions) with ciphertexts that do not grow directly with the number of attribute uses [Tak17], but
unfortunately, the construction still has a dependence on the set of allowed policies. Specifically,
ciphertexts are of size O(n+ r), where n is the maximum size of any supported attribute set and r
is the maximum number of columns in any policy matrix supported (this is the policy dependency).
For (fan-in 2) Boolean formulas, standard techniques [LW11a] to translate the formula into a policy
matrix result in r being equal to the number of AND gates in the formula. Additionally, this
dependence on n, the maximum size of any supported attribute set rather than only the attribute
set of the relevant ciphetext is undesirable, since one can imagine the size of each ciphertext’s
associated attribute set varying wildly from the worst-case maximum-sized set supported by the
system. In fact, it is unclear whether O(n+ r)-size ciphertexts are ever an asymptotic improvement
over the O(n′ · k)-size ciphertexts of all other known ABE schemes proved adaptively secure under
static assumptions.

1.1 Our Result

In this work, we describe a KP-ABE construction that mitigates one of the two undesirable
dependencies of [Tak17], featuring ciphertexts of size O(n′+ r) instead of O(n+ r) (while remaining
adaptively secure from a static assumption: the Symmetric Diffie-Hellman Assumption (SXDH) and
allowing the reuse of attributes in its monotone span program policies). This significant improvement
allows us to rigorously argue that there exist classes of access policies for which our construction
enjoys an asymptotic improvement over the state of the art. We note that our construction is for
the small-universe setting, where attributes come from a polynomial (in the security parameter)
sized universe that is fixed upon setup, whereas the construction of [Tak17] supports an attribute
universe that may be exponentially large. This allows us to focus on the techniques required to
asymptotically improve the ciphertext size. Our scheme is likely translatable to accommodate a
large attribute universe without sacrificing asymptotic efficiency, but we leave this for future work.

Our construction avoids a dependence on k, the multiplicity of attribute-reuse in supported
policies, but retains the dependence on r, the number of columns in supported policy matrices. We
view reducing this last dependence to achieve truly compact adaptively secure ABE from a static

2

reference |sk| |ct| assumption
[LOS+10] O(|f |) O(n′ · k) DLIN
[OT12] O(|f |) O(n′ · k) DLIN
[CGW15] O(|f |) O(n′ · k) k-LIN
[CGKW18] O(|f |) O(n′ · k) SXDH
[Tak17] O(|f |) O(n+ r) DLIN
Ours O(|f |) O(n′ + r) SXDH

Figure 1: Summary of several KP-ABE schemes proven adaptively secure under static assumptions
for monotone span programs. Here, n′ is the number of attributes associated to the ciphertext, n
is the maximum size of any supported attribute set, r is the maximum number of columns in any
policy matrix, and k is the maximum number of attribute reuses in any policy (except in the name
for the “k-LIN” assumption, which is unrelated and an unfortunate overloading).

assumption as an interesting open problem.

1.2 Comparing Perfomance

Figure 1 contains a comparison of several KP-ABE schemes proven adaptively secure under static
assumptions for monotone span programs.

An obvious question in comparing our construction to the state-of-the-art is: how does r compare
to k? Is n′ + r ever better than n′ · k? It is easy to come up with individual formulas where this is
the case, but it’s not obvious that such a formula can’t always be “compressed” to an equivalent
formula that has less attribute-reuse. In general, circuit/formula minimization questions like this
are difficult to answer.

Fortunately, we can make a simple counting argument to show that indeed there are classes of
functions which cannot be expressed using Boolean formulas with much smaller maximum attribute
reuse than the maximum number of AND gates within the class. To see this, consider some subset
of x attributes in the attribute universe. There are 22x Boolean functions on these attributes, and
we can express each function as a DNF in the naive way as a formula that uses at most O(2x) AND
gates. So, for this class of functions, r = O(2x).

However, counting the number of different Boolean formulas that could attempt to realize these
functions using a maximum k reuses of any attribute shows that at least k = Ω(2x) attribute-reuses
are required to realize all of the functions in this class. In this case, we see our construction enjoys
a multiplicative to additive improvement (from n′ · Ω(2x) to n′ +O(2x)).

1.3 Technical Details

Our construction can be seen as combining the best of both worlds between the construction of
[Tak17], which is the first to not directly depend on the number of attribute-reuses (while adaptively
secure from a static assumption), and the lineage of [GPSW06, LOS+10, KL15, CGKW18], which
enjoys ciphertexts that are independent of the size of the attribute universe (they depend only on
the number of attributes actually associated with the ciphertext).

Specifically, all of these schemes are based on linear secret sharing and are built using bilinear
groups. Given a matrix M representing a monotone span program, linear secret shares of α are
constructed by choosing randomness ri, then computing M · (α, r2, ..., rm) to obtain a vector of
shares ~λ. [GPSW06, LOS+10, KL15, CGKW18] embed these shares into their constructions’ secret
keys, where they are hidden by attribute-randomness that can only be removed using corresponding
elements from a ciphertext. See Figure 2 for an example. A crucial step of the dual-system proof

3

{gλj+aρ(j)yj , gyj}j∈M

Figure 2: Example secret key

[Wat09] of adaptive security occurs when secret shares in the dual “semi-functional” space of a
secret key are changed from sharing 0 to sharing a random element α′ (in [LW12], this is the change
from “nominal semi-functional” to “temporary semi-functional”). This is the step of the proof that
uses the fact that the keys requested by an adversary are not allowed to decrypt the challenge
ciphertext, to argue that there exists different randomness r′i where a sharing of 0 using the ri
randomness looks identically distributed to a sharing of random α′ using the r′i randomness, as
long as the only shares seen are not allowed to reconstruct the secret. Crucially, the alternative
randomness r′i is not defined until the challenge ciphertext is requested (as the challenge ciphertext
defines which shares in the key are allowed to be seen). The constructions in the [LOS+10] lineage
therefore require that the change in the secret shares in their keys be information theoretic (so they
can be implicitly changed upon challenge ciphertext creation). This turns out to be the root of the
one-time attribute use restriction (reusing attributes prevents this information-theoretic argument
from working).

[Tak17] employs a technique of delayed share construction to get around this problem. Specifically,
the construction does not construct a secret sharing {λj} which is embedded in the secret key,

but instead keeps the components that generate λj (vectors ~Mj and (α, r2, ..., rm)) separate until

decryption. The ~Mj portion is embedded in the key and the randomness (α, r2, ..., rm) is stored
in the ciphertext. Decryption computes the dot product of these two components to implicitly
construct λj that function in the same way as before. The advantage of this approach is that the
randomness used in the secret shares is not needed until the challenge ciphertext is requested, so
computational assumptions can be used to side-step the one-time attribute use restriction that
comes with information-theoretic changes.

Like [LOS+10], [Tak17] also masks secret key components, making them only available to
ciphertexts associated with the appropriate attributes. However [Tak17] does this via a somewhat
blunt tool: namely, its secret keys contain a vector ~y which can encode orthogonality relationships
with any subset of the attributes associated with a ciphertext and whose length is as large as the
maximum attribute set supported by the system.

In contrast, the “share encapsulation” in [LOS+10] demonstrated in Figure 2 can be thought of
as using a vector of dimension 2 to perform the same job. (aρ(j)yj , yj) is being used to hide the share
λj and share retrieval will be allowed only give a ciphertext with an “orthogonal” vector: (s,−saρ(j)).
Our construction can be seen as essentially replacing [Tak17]’s vector ~y with constant-dimensioned
vectors like this, resulting in a ciphertext dependent only on the number of attributes associated with
it, just like all previous schemes. Essentially, an information-theoretic “encapsulation” argument
supported by the vector ~y for all shares is replaced with a computational one using a vectors of a
constant size for each attribute. Doing so makes the dual-system hybrid more delicate, as it requires
careful management of rerandomization across the now greatly reduced dimensions. More detail
about how the proof structure handles this is provided in Section 5.2.

1.4 Related Work

Additional work on ABE in the bilinear setting includes various constructions of KP-ABE and
CP-ABE schemes (e.g. [BSW07, OSW07, GJPS08, JW14]), schemes supporting multiple authorities
(e.g. [Cha07, CC09, OT13, LW11a]), and schemes supporting large attribute universes
(e.g. [LW11b, OT12, RW13, Att14, KL15, Att16, BV16, GKW6b, AC17, CGKW18]).

4

The construction of [GVW13] supports circuit access policies rather than monotone span
programs or Boolean formulas, which makes it more expressive than any known bilinear scheme. It
was proven selectively secure under the standard LWE assumption. The construction of [BV16] later
extended this to semi-adaptive security for circuit access policies from LWE. Proving full adaptive
security for a ABE scheme supporting circuits from LWE or an assumption on bilinear maps is an
interesting open problem.

Circuit policies are supported by the construction in [GGH+13] based on multilinear maps.
This scheme is proven selectively secure, under a particular computational hardness assumption
for multilinear groups. The multilinear scheme in [GGHZ14] achieves adaptive security, relying on
computational hardness assumptions in multilinear groups.

2 Preliminaries

We will write a← Zp to denote choosing a uniformly at random from set Zp and will abuse notation
to use j ∈M as a subscript to denote each index j of the rows Mj of matrix M .

2.1 Prime Order Bilinear Groups

We construct our system in prime order asymmetric bilinear groups. We let G denote a group
generator - an algorithm which takes a security parameter λ as input and outputs (p,G,H,GT , e),
where p is a prime, G,H and GT are cyclic groups of order p, and e : G×H → GT is a map with
the following properties:

1. (Bilinear) ∀g ∈ G, h ∈ H, a, b ∈ Zp, e(ga, hb) = e(g, h)ab

2. (Non-degenerate) ∃g ∈ G, h ∈ H such that e(g, h) has order p in GT .

We refer to G,H as the source groups and GT as the target group. We assume that the group
operations in G,H and GT and the map e are computable in polynomial time with respect to λ,
and the group descriptions of G,H and GT include a generator of each group.

2.2 Dual Pairing Vector Spaces

We will employ the concept of dual pairing vector spaces from [OT08, OT09], where we’ll denote
choosing random dual orthogonal bases as: (B,B∗) ← Dual(Znp). Such bases are collections of

linearly independent vectors chosen at random up to orthogonality constraints (~bi ·~b∗i = 1,~bi ·~b∗j = 0
for i 6= j). For example, one can implement Dual(Znp by choosing a random invertible matrix

B, setting B := B which then defines B∗ as B∗ := (B−1)T . Note that the dual basis generation
procedure satisfies the property that, if R is an invertible matrix, then (B,B∗) and (R ·B, (R−1)T ·B∗)
are distributed identically when (B,B∗)← Dual(Znp). We will use this fact in our security proof to
introduce new randomness into free dimensions of the construction as well as to embed computational
assumptions. Finally, we will write g~v to denote the vector of group elements (gv1 , ..., gvn), and will

use the notation: (x1, ..., xn)B to denote gx1
~b1 · ... · gxn~bn .

2.3 Complexity Assumptions

The security of our system will be reduced to the Symmetric External Diffie-Hellman assumption
(SXDH). We use the notation x← S to express that element x is chosen uniformly at random from
the finite set S.

5

Symmetric External Diffie-Hellman Assumption (SXDH) The SXDH problem in G is
stated as follows: given an asymmetric bilinear group (G,H) of prime order p with respective
generators g, h, and given ga, gb and T = gab+r

∗ ∈ G where a, b← Zp and either r∗ = 0 or r ← Zp,
output “yes” if r is a random element of Zp and “no” otherwise. The SXDH problem in H is stated
symmetrically, swapping the role of G and H.

Definition 1. SXDH Assumption in (G,H): no polynomial time algorithm can achieve non-
negligible advantage in deciding the SXDH problem in G or the SXDH problem in H.

2.4 Background for ABE

We now give required background material on Linear Secret Sharing Schemes, the formal definition
of a KP-ABE scheme, and the security definition we will use.

2.4.1 Monotone Span Programs / Linear Secret Sharing Schemes

Our construction uses linear secret-sharing schemes (LSSS) to realize monotone span program access
structures [MW93]. We use the following definition (adapted from [Bei96]). In the context of ABE,
attributes will play the role of parties and will be represented as indexes i ∈ [|U|] for a fixed universe
U .

Definition 2. (Linear Secret-Sharing Schemes (LSSS)) A secret sharing scheme Π over a set of
attributes is called linear (over Zp) if

1. The shares belonging to all attributes form a vector over Zp.

2. There exists an `× n matrix Λ called the share-generating matrix for Π. The matrix Λ has `
rows and n columns. For all j = 1, . . . , `, the jth row of Λ is labeled by an attribute i = ρ(j)
(ρ is a mapping that maintains the relationship between matrix rows and attributes). When
we consider the column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared and
r2, . . . , rn ∈ Zp are randomly chosen, then Λv is the vector of ` shares of the secret s according
to Π. The share (Λv)j = λj belongs to attribute i = ρ(j).

We note the linear reconstruction property: we suppose that Π is an LSSS. We let S denote an
authorized set. Then there is a subset S∗ ⊆ S such that the vector (1, 0, . . . , 0) is in the span of
rows of Λ indexed by S∗, and there exist constants {ωi ∈ Zp}i∈S∗ such that, for any valid shares

{λi} of a secret s according to Π, we have:
∑
i∈S∗

ωiλi = s. These constants {ωi} can be found in

time polynomial in the size of the share-generating matrix Λ [Bei96]. For unauthorized sets, no such
S∗, {ωi} exist.

For any set S of unauthorized shares, since the vector (1, 0, ..., 0) is not in the span of rows
indexed by S, then there is some vector ~w that is orthogonal to all of the rows of Λ indexed by S
but is not orthogonal to (1, 0, ..., 0). By scaling this vector, we can maintain these orthogonality
relationships and force the first coordinate w1 to be 1. Our proof of security will use the existence
of this vector.

2.4.2 KP-ABE Definition

A key-policy attribute-based encryption system consists of four algorithms: Setup, Encrypt, KeyGen,
and Decrypt.

6

Setup(λ,U)→ (PP,MSK) The setup algorithm takes in the security parameter λ and the attribute
universe description U . It outputs the public parameters PP and a master secret key MSK.

Encrypt(PP,m, S) → CT The encryption algorithm takes in the public parameters PP, the
message m, and a set of attributes S. It will output a ciphertext CT. We assume that S is implicitly
included in CT.

KeyGen(MSK,PP,A)→ SK The key generation algorithm takes in the master secret key MSK,
the public parameters PP, and an access structure A over the universe of attributes. It outputs a
private key SK which can be used to decrypt ciphertexts encrypted under a set of attributes which
satisfies A. We assume that A is implicitly included in SK.

Decrypt(PP,CT,SK) → m The decryption algorithm takes in the public parameters PP, a
ciphertext CT encrypted under a set of attributes S, and a private key SK for an access structure A.
If the set of attributes of the ciphertext satisfies the access structure of the private key, it outputs
the message m.

2.4.3 Adaptive Security for KP-ABE Systems

We define adaptive security for KP-ABE Systems in terms of the following game:

Setup The challenger runs the Setup algorithm and gives the public parameters to the attacker.

Phase 1 The attacker queries the challenger for private keys corresponding to access structures.

Challenge The attacker declares two equal length messages M0,M1 and a set of attributes A ⊆ U
where U is the attribute universe such that A does not satisfy the access structure of any of the
keys requested in Phase 1. The challenger flips a random coin β ∈ {0, 1}, encrypts Mβ under S to
yield ciphertext CTβ and gives CTβ to the attacker.

Phase 2 The attacker queries the challenger for private keys corresponding to access structures
that are not satisfied by S.

Guess The attacker outputs a guess β′.

Definition 3. The advantage of an attacker A in this game is defined as AdvKP−ABEA (λ) = Pr[β =
β′]− 1

2 .

Definition 4. A key-policy attribute based encryption scheme is adaptively secure if no polynomial
time algorithm can achieve a non-negligible advantage in the above security game.

3 Construction

Setup(λ,U) → PP,MSK The setup algorithm chooses an asymmetric bilinear group G(λ) →
(p,G,H,GT , e). It then chooses random generators g ∈ G, h ∈ H. For i ∈ [k] where k = |U| it

7

chooses values ai ← Zp. It then generates random dual orthonormal sets:

(D,D∗)← Dual(Z6
p)

(B,B∗)← Dual(Z3(r+1)
p)

(Ai,A∗i)← Dual(Z3
p) for i ∈ [k]

The public parameters PP are:

e(g, h)

(~e1)D∗ , (~e2)D∗

{(~ei)B∗}i∈[r+1]

{(ai, 0, 0)A∗i }i∈[k]

The MSK is:

(~e1)D, (~e2)D

{(~ei)B}i∈r+1

{(1, 0, 0)Ai}i∈[k]

Such a construction is equipped to create keys for access policies which include attributes i ∈ U .

Encrypt(m,S, PP) → CT The encryption algorithm draws α,∆, s, zi ← Zp (for i ∈ [r]) and
forms the ciphertext as:

CTS = (C0, C1, C2, {C3,i}i∈S)

where

C0 := m · e(g, h)α

C1 := (α,−∆,~02,~02)D∗

C2 := (∆, z2, ..., zr, s,~0
r+1,~0r+1)B∗

C3,i := (sai, 0, 0)A∗i

(This implicitly includes S)

KeyGen(MSK,M,PP) → SK The key generation algorithm takes in the public parameters,
master secret key, and LSSS access matrix M . It chooses a random exponent x← Zp. For each row
j (associated with attribute ρ(j)) in the policy matrix M , it chooses exponent yj ← Zp and outputs
the secret key:

SKM = (K1, {K2,j ,K3,j}j∈M)

where:

K1 := (1, x,~02,~02)D

K2,j := (——x ~Mj——, aρ(j)yj ,~0
r+1,~0r+1)B

K3,j := (−yj , 0, 0)Aρ(j)

8

Decrypt(CTS , SKM , PP) → m Given ciphertext CTS = (C0, C1, C2, {C3,i}i∈S) and secret key
SKM = (K1, {K2,j ,K3,j}j∈M), if S satisfies M , then there is a set S∗ of policy row indices such that

j ∈ S∗ =⇒ ρ(j) ∈ S and there exist efficiently computable constants ωj such that
∑
j∈S∗

ωjMj ·~z = ∆

(recall section 2.4.1). The decryption algorithm computes these ωj and then computes:

B =
∏
j∈S∗

e(C2,K2,j)
ωj · e(C3,ρ(j),K3,j)

ωj

D = e(C1,K1)

and finally, computes and outputs:

C0

B ·D
= m

4 Correctness

This scheme satisfies correctness since:

B =
∏
j∈S∗

e(C2,K2,j)
ωj · e(C3,ρ(j),K3,j)

ωj

=
∏
j∈S∗

e

(
(∆, z2, ..., zr, s, ~0r+1,~0r+1)B∗ ,

(——x ~Mj——, aρ(j)yj ,~0r+1,~0r+1)B

)ωj
· e

(
(saρ(j), 0, 0)A∗

ρ(j)
,

(−yj , 0, 0)Aρ(j)

)ωj
=
∏
j∈S∗

e(g, h)xωjλj+sωjaρ(j)yj · e(g, h)−sωjaρ(j)yj

= e(g, h)

x

∑
j∈S∗

ωjλj

= e(g, h)x∆

D = e(C1,K1)

= e

(
(α,−∆,~02,~02)D∗

(1, x, ~02,~02)D

)
= e(g, h)α−x∆

and finally:

C0

B ·D
=

m · e(g, h)α

e(g, h)x∆ · e(g, h)α−x∆

= m

5 Proof of Security

In this section, we will prove our main theorem of security for our construction: Theorem 30. We
first describe a litany of auxiliary ciphertext and secret key distributions that will be used the hybrid
proof of this theorem.

9

5.1 Auxiliary Ciphertext and Secret Key Distributions

The security proof is a dual system hybrid over a sequence of games with different types of keys and
ciphertexts. In these definitions, ~w is the vector described in Section 2.4.1, which is defined relative
to the policy of the ith requested secret key in hybrid games superscripted by i (and is orthogonal
to the rows of M in the ith key which are associated with attributes in the challenge ciphertext,
while having a first coordinate of 1).

Note that we omit the message encapsulation component m · e(g, h)α from each semi-functional
ciphertext description, since it is the same for all variants. Unless specifically mentioned, the
distributions of all elements remain‘ unchanged from the last time they were defined.

Type0 Type 0 keys and ciphertexts are simply the keys and ciphertexts of the regular construction.

CT0 :=

α −∆
0 0
0 0


D∗

∆ z2 . . . zr s
0 0
0 0


B∗


−sai0

0


A∗i


i∈S

SK0 :=

1 x
0 0
0 0


D


xM1,j xM2,j ... xMr,j aρ(j)yj

0 0 0
0 0 0


B

yj0
0


Aρ(j)


j∈M

Type1

CT1 :=

α −∆
0 −∆′

0 −∆′


D∗

∆ z2 . . . zr s
∆′ ~w s′

∆′ ~w s′′


B∗


−sai−s′ai
−s′′ai


A∗i


i∈S

where s′, s′′∆′ ← Zp (and ~w is defined relative to the policy of the ith requested secret key in hybrids
superscripted by i).

SK1 := SK0

Type2

CT2 := CT1

SK2 :=

1 x
0 x′

0 0


D


xM1,j xM2,j ... xMr,j aρ(j)yj
x′M1,j x′M2,j ... x′Mr,j 0

0 0 0


B

yj0
0


Aρ(j)


j∈M

where x′ ← Zp.

Type3,k Keys of Type 3 to Type 11 are also subindexed by k, which runs from 1 to r: which is
the number of rows in the key’s policy matrix. In all types, the K1 component of the secret key
remains the same as in Type 3. The (K2,j ,K3,j) components for j < k are the same as in SK11,k−1.
These components for j > k (up to r) are the same as in SK2. The kth (K2,k,K3,k) components of
the key of Type3,k are described below:

CT3,k := CT2

10

SK3,k :=

 xM1,k xM2,k ... xMr,k aρ(k)yk
x′M1,k + t1 x′M2,k + t2 ... x′Mr,k + tr 0
−t1 −t2 ... −tr 0


B

yk0
0


Aρ(k)

Type4,k

CT4,k := CT2

SK4,k :=

xM1,k xM2,k ... xMr,k aρ(k)yk
0 0 ... 0 0

x′M1,k x′M2,k ... x′Mr,k 0


B

yk0
0


Aρ(k)

Type5,k

CT5,k := CT2

SK5,k :=

xM1,k xM2,k ... xMr,k aρ(k)yk
0 0 ... 0 0

x′M1,k x′M2,k ... x′Mr,k aρ(k)y
′
k


B

yk0
y′k


Aρ(k)

Type6,k

CT6,k :=

α −∆
0 −∆′

0 −∆′


D∗

∆ z2 . . . zr s
∆′ ~w s′

∆′ ~w s′′


B∗

 −sai−s′ai
−s′′ai


A∗i


i 6=ρ(k)∈S

⋃ 
 −sai−s′ai
−s′′ãi


A∗i


i=ρ(k)∈S

Note that the only difference from CT2 is in the vector for attribute i = ρ(k), if it is in the set S.

SK6,k :=

xM1,k xM2,k ... xMr,k aρ(k)yk
0 0 0

x′M1,k x′M2,k ... x′Mr,k ãρ(k)y
′
k


B

yk0
y′k


Aρ(k)

(recall that the (K2,j ,K3,j) components for j 6= k are the same as in Type5,k)

Type7,k

CT7,k := CT6,k

SK7,k :=

 xM1,k xM2,k ... xMr,k aρ(k)yk
0 0 0

x∗M1,k x∗M2,k ... x∗Mr,k ãρ(k)y
′
k


B

yk0
y′k


Aρ(k)

where x∗ ← Zp.

11

Type8,k

CT8,k := CT2

SK8,k :=

 xM1,k xM2,k ... xMr,k aρ(k)yk
0 0 0

x∗M1,k x∗M2,k ... x∗Mr,k aρ(k)y
′
k


B

yk0
y′k


Aρ(k)

Type9,k

CT9,k := CT2

SK9,k :=

 xM1,k xM2,k ... xMr,k aρ(k)yk
0 0 0

x∗M1,k x∗M2,k ... x∗Mr,k 0


B

yk0
0


Aρ(k)

Type10,k

CT10,k := CT2

SK10,k :=

 xM1,k xM2,k ... xMr,k aρ(k)yk
−t1 −t2 ... −tr 0

x∗M1,k + t1 x∗M2,k + t2 ... x∗Mr,k + tr 0


B

yk0
0


Aρ(k)

Type11,k

CT11,k := CT2

SK11,k :=

 xM1,k xM2,k ... xMr,k aρ(k)yk
x∗M1,k x∗M2,k ... x∗Mr,k 0

0 0 0


B

yk0
0


Aρ(k)

Type12

CT12 := CT2

SK12 :=

1 x
0 x′

0 0


D


xM1,j xM2,j ... xMr,j aρ(j)yj

0 0 ... 0 0
0 0 0


B

yj0
0


Aρ(j)


j∈M

Type13

CT13 :=

α −∆
0 −∆′

0 −∆′


D∗

∆ z2 . . . zr s
∆′~e1 s′

∆′~e1 s′′


B∗


 −sai−s′ai
−s′′ai


A∗i


i∈S

SK13 := SK12

12

Type14

CT14 := CT13

SK14 :=

1 x
0 x′

0 0


D


xM1,j xM2,j ... xMr,j aρ(j)yj
x′λj 0 0

0 0 ... 0 0


B

yj0
0


Aρ(j)


j∈M

where λj := ~Mj · (1, z′2, ..., z′r) for z′i ← Zp.

Type15k Type 15 keys and ciphertexts are subindexed by k which runs from attribute 1 to |U|.

CT15k := CT14

SK15k :=

1 x
0 x′

0 0


D


xM1,j xM2,j ... xMr,j aρ(j)yj
x′λj 0 ãρ(j)y

′
j

0 0 ... 0 0


B

yjy′j
0


Aρ(j)


j∈M where ρ(j) ≤ k, ρ(j) 6∈ S

⋃
xM1,j xM2,j ... xMr,j aρ(j)yj
x′λj 0 0

0 0 ... 0 0


B

yj0
0


Aρ(j)


j∈M where ρ(j) > k or ρ(j) ∈ S

Type15/16H
Type 15/16H keys are a halfway point between Type 15|U| and Type 16|U| keys, where

the ãρ(j)yj are changed into freshly random ã′j for each j where ρ(j) 6∈ S by embedding SXDH
challenge.

CT15H = CT16H := CT14

SK15H :=

1 x
0 x′

0 0


D


xM1,j xM2,j ... xMr,j aρ(j)yj
x′λj 0 ã′jy

′
j

0 0 ... 0 0


B

yjy′j
0


Aρ(j)


j∈M where ρ(j) 6∈ S

⋃
xM1,j xM2,j ... xMr,j aρ(j)yj
x′λj 0 0

0 0 ... 0 0


B

yj0
0


Aρ(j)


j∈M where ρ(j) ∈ S

SK16H :=

1 x
0 x′

0 0


D


xM1,j xM2,j ... xMr,j aρ(j)yj
x∗λj 0 ã′jy

′
j

0 0 ... 0 0


B

yjy′j
0


Aρ(j)


j∈M where ρ(j) 6∈ S

⋃
xM1,j xM2,j ... xMr,j aρ(j)yj
x∗λ′j 0 0

0 0 ... 0 0


B

yj0
0


Aρ(j)


j∈M where ρ(j) ∈ S

where x∗ ← Zp, λ′j := ~Mj · (z′1, z′2, ..., z′r) for z′i ← Zp.

13

Type16k Type 16 keys and ciphertexts are also subindexed by k which runs from attribute 1 to
|U|.

CT16k := CT15k

SK16k :=

1 x
0 x′

0 0


D


xM1,j xM2,j ... xMr,j aρ(j)yj
x∗λ′j 0 ãρ(j)y

′
j

0 0 ... 0 0


B

yjy′j
0


Aρ(j)


j∈M where ρ(j) ≤ k, ρ(j) 6∈ S

⋃
xM1,j xM2,j ... xMr,j aρ(j)yj
x∗λj 0 0

0 0 ... 0 0


B

yj0
0


Aρ(j)


j∈M where ρ(j) > k or ρ(j) ∈ S

Type17

CT17 := CT161

SK17 :=

1 x
0 x′

0 0


D


xM1,j xM2,j ... xMr,j aρ(j)yj

0 0 0
0 0 ... 0 0


B

yj0
0


Aρ(j)


j∈M

Type18

CT18 :=

α∗ −∆
0 −∆′

0 −∆′


D∗

∆ z2 . . . zr s
∆′~e1 s′

∆′~e1 s′′


B∗


 −sai−s′ai
−s′′ai


A∗i


i∈S

where α∗ ← Zp.

SK18 := SK17

5.2 Hybrid Structure

Our proof of security will consist of a hybrid sequence of games where the keys and challenge
ciphertext are constructed according to various types. At a high level, the proof follows a typical
dual-system hybrid structure, where the challenge ciphertext is first made “semi-functional,” then
the hybrid continues over the secret keys requested, transforming each key into a “semifunctional”
variant which is useless to the attacker relative to the challenge (semifunctional) ciphertext.

There are two parts to the key hybrid: one that makes semifunctional keys which were requested
before the challenge ciphertext and another that makes semifunctional keys which were requested
after the challenge ciphertext. The high level reason for this difference is that for keys requested
after the challenge ciphertext, the challenge attribute set is already known. This makes it easy
to follow a standard selective security argument to make each key semifunctional (this sequence
captioned “SF-Key After” in Figure 3). The harder part of the hybrid deals with making keys
requested before the challenge ciphertext (and the challenge attribute set) is known. This is where
we use the delayed randomness contained within our ciphertext as well as the fact that we allow the
semifunctional ciphertext distributions to depend on the current key of the hybrid (this sequence

14

captioned “SF-Key Before” in Figure 3). This bifurcated approach to handling secret keys in a
dual-system proof was first employed in [LW12] and later refined by [Att14, Att16]

A key step in our proof (and of [Tak17]) is Lemma 13, where each policy matrix row is isolated
in turn against the ciphertext’s ~w alternative randomness component and their dot product’s
distribution is used to argue that the row can be multiplied by an uncorrelated x∗. In [Tak17], this
argument takes advantage of the inefficient ~y vector, but for us, we need to delicately thread just
enough randomness through the single attribute element ai hiding each row to accomplish the same
feat. We accomplish this in Lemma 12.

Our hybrid starts with Gamereal, the real security game. This has all keys and cipher texts
of type Type0. We then proceed through a sequence of games Gameij , which are indexed by each
requested key i and subhybrid index `. Let Q1 be the number of key queries issued by the adversary
before the challenge ciphertext, and let Q2 be the number of key queries issued by the adversary
after the challenge ciphertext.

Definition 5. In Game`i for i ≤ 12, the first `− 1 keys are of type Type12, the `th key is of type
Typei, all remaining keys are of type Type0, and the ciphertext is of type Typei.

Definition 6. In Game`i for i > 12, the first Q1 keys are of type Type12, the next `− 1 keys are of
type Type17, the next (Q1 + `th) key is of type Typei, all remaining keys are of type Type0, and the
ciphertext is of type Typei.

Figure 3 shows the order of our hybrid games.

Gamereal ⇒ Game11

⇒ Game12
⇒ Game13,1 ⇒ ...⇒ Game111,1
⇒ Game13,2 ⇒ ...⇒ Game111,2
......
⇒ Game13,r ⇒ ...⇒ Game111,r ⇒ Game112
⇒ Game21 ⇒ ...⇒ Game212
......

⇒ Gamei1 ⇒ ...⇒ Gamei12
......

⇒ GameQ1

1 ⇒ ...⇒ GameQ1

12

⇒ Game113
⇒ Game114 ⇒ Game115,1...⇒ Game115,|U| ⇒ Game115,H
⇒ Game116,H ⇒ Game116,|U|...⇒ Game116,1 ⇒ Game117
...

⇒ Gamei14 ⇒ Gamei15,1...⇒ Gamei15,|U| ⇒ Gamei15,H
⇒ Gamei16,H ⇒ Gamei16,|U|...⇒ Gamei16,1 ⇒ Gamei17
...

⇒ GameQ2

14 ⇒ GameQ2

15,1...⇒ GameQ2

15,|U| ⇒ GameQ2

15,H

⇒ GameQ2

16,H ⇒ GameQ2

16,|U|...⇒ GameQ2

16,1 ⇒ GameQ2

17

⇒ GameQ2

18

SF-CT , SF-Keys-Before , SF-Keys-After

Figure 3: Hybrid Game Sequence

15

5.3 Hybrid Indistinguishability Lemmas

The following is a sequence of hybrid indistinguishability lemmas that will be combined at the end
to form our adaptive security theorem.

Lemma 7. For any polynomial time adversary A, there exists a polynomial time B1 such that

|Advreal(A, λ)−Adv1
1(A, λ)| ≤ AdvSXDHG (B1, λ)

Proof. Given g, h, ga, gb and T = gab+r
∗ ∈ G where either r∗ = 0 or is a uniform random element of

Zp, consider the following simulator B1 in the security game:

First, B1 generates orthonormal bases:

(J, J∗)← Dual(Z6
p)

(F,F∗)← Dual(Z3(r+1)
p)

(Ki,K∗i)← Dual(Z3
p) for i ∈ U

The bases (B,B∗) are implicitly defined as:

~b∗i = ~f∗i + a~f∗r+1+i + a~f∗2(r+1)+i for i ∈ [1, r]

~b∗r+1 = ~f∗r+1 + as̃′ ~f∗2(r+1) + as̃′′ ~f∗3(r+1)

~b∗i = ~f∗i for all other i

~b(r+1)+i = ~f(r+1)+i − a~fi for i ∈ [1, r]

~b2(r+1)+i = ~f2(r+1)+i − a~fi for i ∈ [1, r]

~b2(r+1) = ~f2(r+1) − as̃′ ~f(r+1)

~b3(r+1) = ~f3(r+1) − as̃′′ ~f(r+1)

~bi = ~fi for all other i

where s̃′, s̃′′ ← Zp are drawn by B2 (and later used in the challenge ciphertext construction). (D,D∗)
are implicitly defined as:

~d∗2 = ~j∗2 + a~j∗4 + a~j∗6
~d∗i = ~j∗i for all other i

~d4 = ~j4 − a~j2
~d6 = ~j6 − a~j2
~di = ~ji for all other i

16

and (Ai,A∗i) are implicitly defined as:

~a∗i,1 = ~k∗i,1 + as̃′~k∗i,2 + as̃′′~k∗i,3

~a∗i,2 = ~k∗i,2

~a∗i,3 = ~k∗i,3

~ai,1 = ~ki,1

~ai,2 = ~ki,2 − as̃′~ki,1
~ai,3 = ~ki,3 − as̃′′~ki,1

The public parameters are then generated by drawing ai ← Zp for i ∈ U and forming:

e(g, h)

(~e1)D∗ , (~e2)D∗

{(~ei)B∗}i∈[r+1]

{(ai, 0, 0)A∗i }i∈[k]

Note that the terms in the public parameter can be generated since all vectors in the D∗,B∗,A∗i
bases are known directly except for ~d∗2, ~b∗i for i ∈ [r + 1], and all ~ai,1 and B1 can generate d∗2 by

computing g
~j∗2 · (ga)~j∗4 = d∗2, b∗i for i ∈ [r] by computing g

~f∗i · (ga)
~f∗
(r+1)+i · (ga)

~f∗
2(r+1)+i = b∗i , and

a∗i,1 by computing g
~k∗i,1 · (ga)s̃

′~k∗i,2 · (ga)s̃
′′~k∗i,2 = a∗i,1.

Similarly, note that all vectors in D,B,Ai are known explicitly except for ~d4, ~d6, ~b(r+1)+i,~b2(r+1)+i

for i ∈ [r + 1], and ~ai,2,~ai,3 for i ∈ U , but for normal secret keys of Type0, those entries are all 0.
So, B1 is able to generate appropriately distributed secret keys of Type0 for all secret key requests.

For the challenge ciphertext request, let ~w be defined relative to the first requested secret key
(this will be known upon ciphertext generation since this secret key is defined to be the first request
before the challenge ciphertext request). Recall that the first coordinate of ~w is always 1. B1 draws
α, s̃, z̃i ← Zp for i ∈ [r] and constructs:

m · e(g, h)α,

α −(b)
0 −(ab+ r)
0 −(ab+ r)


J∗ (b) (b) + z̃2 . . . (b) + z̃r (b) + s̃

(ab+ r) (ab+ r)w2 + (a)z̃2 . . . (ab+ r)wr + (a)z̃r (ab+ r)s̃′ + (a)s̃′s̃
(ab+ r) (ab+ r)w2 + (a)z̃2 . . . (ab+ r)wr + (a)z̃r (ab+ r)s̃′′ + (a)s̃′′s̃


F∗

 −(b)ai − s̃ai
−(ab+ r)s̃′ai − (a)s̃′s̃ai
−(ab+ r)s̃′′ai − (a)s̃′s̃ai


K∗i


i∈S

which in the right bases, is:

m · e(g, h)α,

α −b
0 −r
0 −r


D∗

 b b+ z̃2 . . . b+ z̃r b+ s̃
r ~w rs̃′

r ~w rs̃′′


B∗


−(b+ s̃)ai
−rs̃′ai
−rs̃′′ai


A∗i


i∈S

17

which is a properly distributed ciphertext of Type0 when r = 0 where ∆ = b, s = b + s̃ and
zi = b+ z̃i, and is a properly distributed ciphertext of Type1 when r ← Zp where ∆ = b,∆′ = r,
s = b+ s̃, s′ = rs̃′, s′′ = rs̃′′, and zi = b+ z̃i.

So, B1 is able to exactly simulate Gamereal and Game1
1 when its SXDH challenge has r = 0 and

r ← Zp respectively. It then follows that for any difference in A’s advantage between the two games,
B1 can use A’s answers to achieve that same advantage in the SXDH game.

Lemma 8. For 1 ≤ ` ≤ Q1, for any polynomial time adversary A, there exists a polynomial time
B2,` such that

|Adv`1(A, λ)−Adv`2(A, λ)| ≤ AdvSXDHG (B2,`, λ)

Proof. Given g, h, ha, hb and T = hab+r
∗ ∈ G where either r∗ = 0 or is a uniform random element

of Zp, consider the following simulator B2,` in the security game:

First, B2,` generates orthonormal bases:

(J, J∗)← Dual(Z6
p)

(F,F∗)← Dual(Z3(r+1)
p)

(Ai,A∗i)← Dual(Z3
p) for i ∈ U

The bases (B,B∗) are implicitly defined as:

~bi = ~fi + a~f(r+1)+i for i ∈ [1, r]

~bi = ~fi for all other i

~b∗(r+1)+i = ~f∗(r+1)+i − a~f
∗
i for i ∈ [1, r]

~b∗i = ~f∗i for all other i

(D,D∗) are implicitly defined as:

~d2 = ~j2 + a~j4

~di = ~ji for all other i

~d∗4 = ~j∗4 − a~j∗2
~d∗i = ~j∗i for all other i

The public parameters are then generated by drawing ai ← Zp for i ∈ U and forming:

e(g, h)

(~e1)D∗ , (~e2)D∗

{(~ei)B∗}i∈[r+1]

{(ai, 0, 0)A∗i }i∈[k]

Note that the terms in the public parameter can be generated since all vectors in the D∗,B∗,A∗i
with nonzero components in the public parameters are known directly.

Similarly, note that all vectors in D,B,Ai are known explicitly except for ~d2 and ~bi for i ∈ [r]

and these can be constructed by taking h
~j2 · (ha)~j4 = d2, and h

~fi · (ha)~f(r+1)+i = bi for i ∈ [r]. So,

18

B2,` is able to generate appropriately distributed secret keys of Type12 for all secret key requests
before the `th key as well as keys of Type0 for requests after the `th request.

For the challenge ciphertext request, let ~w be defined relative to the `th requested secret key
(this will be known upon ciphertext generation since this secret key is defined to be one of the
Q1 requested before the challenge ciphertext). B2,` draws α,∆′, s, s′, s′′, z̃i ← Zp for i ∈ [r] and
constructs:

m · e(g, h)α,

α 0
0 ∆′

0 ∆′


J∗ 0 z̃2 . . . z̃r s

∆′ ∆′w2 . . . ∆′wr s′

∆′ ∆′w2 . . . ∆′wr s′′


F∗

 −sai−s′ai
−s′′ai


A∗i


i∈S

which in the right bases, is:

m · e(g, h)α,

α a∆′

0 ∆′

0 ∆′


D∗

a∆′ a∆′w2 + z̃2 . . . a∆′wr + z̃r s
∆′ ~w s′

∆′ ~w s′′


B∗


−sai−s′ai
−s′′ai


A∗i


i∈S

which is a properly distributed ciphertext of Type1 = Type2 where ∆ = a∆′, and zi = a∆′ + z̃i.
For the `th key request, B2,` draws yj ← Zp for j ∈M and constructs:1 (b)

0 (ab+ r)
0 0


J

 (b)M1,j (b)M2,j ... (b)Mr,j aρ(j)yj
(ab+ r)M1,j (ab+ r)M2,j ... (ab+ r)Mr,j 0

0 0 0


Fyj0

0


Aρ(j)


j∈M

which in the right bases, is:1 b
0 r
0 0


D


bM1,j bM2,j ... bMr,j aρ(j)yj
rM1,j rM2,j ... rMr,j 0

0 0 0


B

yj0
0


Aρ(j)


j∈M

which is a properly distributed secret key of Type1 when r = 0 where x = b and is a properly
distributed secret key of Type2 when r ← Zp where x = b and x′ = r.

So, B2,` is able to exactly simulate Game`1 and Game`2 when its SXDH challenge has r = 0 and
r ← Zp respectively. It then follows that for any difference in A’s advantage between the two games,
B2,` can use A’s answers to achieve that same advantage in the SXDH game.

19

For the connection to the following lemma, note that Game`2 is equivalent to Game`11,0.

Lemma 9. For 1 ≤ ` ≤ Q1, for 1 ≤ k ≤ r, for any polynomial time adversary A, there exists a
polynomial time B3,k,` such that

|Adv`11,k−1(A, λ)−Adv`3,k(A, λ)| ≤ AdvSXDHG (B3,k,`, λ)

Proof. Given g, h, ha, hb and T = hab+r
∗ ∈ G where either r∗ = 0 or is a uniform random element

of Zp, consider the following simulator B3,k,` in the security game:

First, B3,k,` generates orthonormal bases:

(D,D∗)← Dual(Z6
p)

(F,F∗)← Dual(Z3(r+1)
p)

(Ai,A∗i)← Dual(Z3
p) for i ∈ U

The bases (B,B∗) are implicitly defined as:

~br+1 = ~fr+1 +
r∑
i=1

at̃i ~f(r+1)+i

~b(r+1)+i = ~f(r+1)+i + ~f2(r+1)+i for i ∈ [1, r]

~bi = ~fi for all other i

~b∗(r+1)+i = ~f∗(r+1)+i − at̃i ~f
∗
r+1 for i ∈ [1, r]

~b∗2(r+1)+i = ~f∗2(r+1)+i − ~f∗(r+1)+i + at̃i ~f
∗
(r+1) for i ∈ [1, r]

~b∗i = ~f∗i for all other i

where B3,k,` draws t̃i ← Zp.
The public parameters are then generated by drawing ai ← Zp for i ∈ U and forming:

e(g, h)

(~e1)D∗ , (~e2)D∗

{(~ei)B∗}i∈[r+1]

{(ai, 0, 0)A∗i }i∈[k]

Note that the terms in the public parameter can be generated since all vectors in the D∗,B∗,A∗i
with nonzero components in the public parameters are known directly.

Similarly, note that all vectors with nonzero components in Type0 and Type12 secret keys are

known explicitly except for ~br+1 and this can be constructed by taking h
~fr+1 ·

r∏
i=1

(ha)t̃i
~f(r+1)+i = bi

for i ∈ [r]. So, B3,k,` is able to generate appropriately distributed secret keys of Type12 for all secret
key requests before the `th key as well as keys of Type0 for requests after the `th request.

For the challenge ciphertext request, let ~w be defined relative to the `th requested secret key
(this will be known upon ciphertext generation since this secret key is defined to be one of the Q1

20

requested before the challenge ciphertext). B3,k,` draws α,∆,∆′, s, s′, s′′, zi ← Zp for i ∈ [r] and
constructs:

m · e(g, h)α,

α ∆
0 ∆′

0 ∆′


D∗∆ z2 . . . zr s

0 0 . . . 0 s′

∆′ ~w s′′


F∗

 −sai−s′ai
−s′′ai


A∗i


i∈S

which in the right bases, is:

m · e(g, h)α,

α ∆
0 ∆′

0 ∆′


D∗

∆ z2 . . . zr s
∆′ ~w s′

∆′ ~w s′′


B∗


 −sai−s′ai
−s′′ai


A∗i


i∈S

which is a properly distributed ciphertext of Type2 = Type3,k = Type11,k−1.
For the `th key request, B3,k,` draws x, x′, x∗, yj ← Zp for j ∈M and constructs:1 x

0 x′

0 0


J

 xM1,j xM2,j ... xMr,j aρ(j)yj
x∗M1,j + aρ(j)yj t̃1(a) x∗M2,j + aρ(j)yj t̃2(a) ... x∗Mr,j + aρ(j)yj t̃r(a) 0

x∗M1,j x∗M2,j ... x∗Mr,j 0


F

yj0
0


Aρ(j)


j<k∈M

∪
 xM1,j xM2,j ... xMr,j aρ(j)yj
x′M1,j + aρ(j)yj t̃1(a) x′M2,j + aρ(j)yj t̃2(a) ... x′Mr,j + aρ(j)yj t̃r(a) 0

x′M1,j x′M2,j ... x′Mr,j 0


F

yj0
0


Aρ(j)


j>k∈M

∪
 xM1,k xM2,k ... xMr,k aρ(k)(b)

x′M1,k + aρ(k)t̃1(ab+ r) x′M2,k + aρ(k)t̃2(ab+ r) ... x′Mr,k + aρ(k)t̃r(ab+ r) 0

x′M1,k x′M2,k ... x′Mr,k 0


F

(b)
0
0


Aρ(k)


which in the right bases, is: 1 x

0 x′

0 0


D

 xM1,j xM2,j ... xMr,j aρ(j)yj
x∗M1,j x∗M2,j ... x∗Mr,j 0

0 0 0


B

yj0
0


Aρ(j)


j<k∈M

21

∪
xM1,j xM2,j ... xMr,j aρ(j)yj
x′M1,j x′M2,j ... x′Mr,j 0

0 0 0


B

yj0
0


Aρ(j)


j>k∈M

∪
 xM1,k xM2,k ... xMr,k aρ(k)b

x′M1,k + t̃1raρ(k) x′M2,k + t̃2raρ(k) ... x′Mr,k + t̃rraρ(k) 0

−t̃1raρ(k) t̃2raρ(k) ... −t̃rraρ(k) 0


B

b0
0


Aρ(k)


which is a properly distributed secret key of Type11,k−1 when r = 0 where yk = b and is a properly
distributed secret key of Type3,k when r ← Zp where yk = b and ti = t̃iraρ(k).

So, B3,k,` is able to exactly simulate Game`11,k−1 and Game`3,k when its SXDH challenge has
r = 0 and r ← Zp respectively. It then follows that for any difference in A’s advantage between the
two games, B3,k,` can use A’s answers to achieve that same advantage in the SXDH game.

Lemma 10. For 1 ≤ ` ≤ Q1, for 1 ≤ k ≤ r, for any polynomial time adversary A, there exists a
polynomial time B4,k,` such that:

|Adv`3,k(A, λ)−Adv`4,k(A, λ)| ≤ AdvSXDHG (B4,k,`, λ)

Proof. Looking at the K2,k,K3,k components of the Type3,k `th key (the ones containing the ti and
the only things that differ in definition between Game`3,k and Game`4,k): xM1,k xM2,k ... xMr,k aρ(k)yk

x′M1,k + t1 x′M2,k + t2 ... x′Mr,k + tr 0
−t1 −t2 ... −tr 0


B

yk0
0


Aρ(k)

we see that this is identically distributed to: xM1,k xM2,k ... xMr,k aρ(k)yk
−t̃1 −t̃2 ... −t̃r 0

x′M1,k + t̃1 x′M2,k + t̃2 ... x′Mr,k + t̃r 0


B

yk0
0


Aρ(k)

where implicitly t̃i = −xM1,k − ti.
So, the transition from Type3,k key to Type4,k is symmetric to the one from Type11,k−1 to

Type3,k, and by applying the simulation from Lemma 9 accordingly (flipping the embeddings of
the bottom two rows of B,B∗), B4,k,` could use A’s answers to achieve the same advantage in the
SXDH game.

Lemma 11. For 1 ≤ ` ≤ Q1, for 1 ≤ k ≤ r, for any polynomial time adversary A, there exists a
polynomial time B5,k,` such that:

|Adv`4,k(A, λ)−Adv`5,k(A, λ)| ≤ AdvSXDHG (B5,k,`, λ)

Proof. Given g, h, ha, hb and T = hab+r
∗ ∈ G where either r∗ = 0 or is a uniform random element

of Zp, consider the following simulator B5,k,` in the security game:

22

First, B5,k,` generates orthonormal bases:

(D,D∗)← Dual(Z6
p)

(F,F∗)← Dual(Z3(r+1)
p)

(Ki,K∗i)← Dual(Z3
p) for i ∈ U

The bases (B,B∗) are implicitly defined as:

~b(r+1) = ~f(r+1) + a~f3(r+1)

~bi = ~fi for all other i

~b∗3(r+1) = ~f∗3(r+1) − a~f
∗
(r+1)

~b∗i = ~f∗i for all other i

(Ai,A∗i) are implicitly defined as:

~a1,i = ~k1,i + a~k3,i

~a2,i = ~k2,i

~a3,i = ~k3,i

~a∗1,i = ~k∗1,i

~a∗2,i = ~k∗2,i

~a∗3,i = ~k∗3,i − a~k∗1,i

The public parameters are then generated by drawing ai ← Zp for i ∈ U and forming:

e(g, h)

(~e1)D∗ , (~e2)D∗

{(~ei)B∗}i∈[r+1]

{(ai, 0, 0)A∗i }i∈[k]

Note that the terms in the public parameter can be generated since all vectors in the D∗,B∗,A∗i
with nonzero components in the public parameters are known directly.

Similarly, note that all vectors with nonzero components in Type0 and Type12 secret keys are

known explicitly except for ~br+1 and this can be constructed by taking h
~fr+1 ·(ha)~f3(r+1) = b(r+1). So,

B5,k,` is able to generate appropriately distributed secret keys of Type12 for all secret key requests
before the `th key as well as keys of Type0 for requests after the `th request.

For the challenge ciphertext request, let ~w be defined relative to the `th requested secret key
(this will be known upon ciphertext generation since this secret key is defined to be one of the
Q1 requested before the challenge ciphertext). B5,k,` draws α,∆,∆′, s′, s′′, zi ← Zp for i ∈ [r] and
constructs:

m · e(g, h)α,

α ∆
0 ∆′

0 ∆′


D∗

∆ z2 . . . zr 0
∆′ ~w s′

∆′ ~w s′′


F∗


 0
−s′ai
−s′′ai


K∗i


i∈S

23

which in the right bases, is:

m · e(g, h)α,

α ∆
0 ∆′

0 ∆′


D∗

∆ z2 . . . zr as′′

∆′ ~w s′

∆′ ~w s′′


B∗


−as′′ai−s′ai
−s′′ai


A∗i


i∈S

which is a properly distributed ciphertext of Type2 = Type4,k = Type5,k where s = as′′.
For the `th key request, B5,k,` draws x, x′, x∗, yj ← Zp for j ∈M and constructs:1 x

0 x′

0 0


D

 xM1,j xM2,j ... xMr,j aρ(j)yj
x∗M1,j x∗M2,j ... x∗Mr,j 0

0 0 aρ(j)yj(a)


F

 yj
0

yj(a)


Kρ(j)


j<k∈M

∪
xM1,j xM2,j ... xMr,j aρ(j)yj
x′M1,j x′M2,j ... x′Mr,j 0

0 0 aρ(j)yj(a)


F

 yj
0

yj(a)


Kρ(j)


j>k∈M

∪
xM1,k xM2,k ... xMr,k aρ(k)(b)

0 0 ... 0 0
x′M1,k x′M2,k ... x′Mr,k aρ(k)(ab+ r)


F

 (b)
0

(ab+ r)


Kρ(k)


which in the right bases, is: 1 x

0 x′

0 0


D

 xM1,j xM2,j ... xMr,j aρ(j)yj
x∗M1,j x∗M2,j ... x∗Mr,j 0

0 0 0


B

yj0
0


Aρ(j)


j<k∈M

∪
xM1,j xM2,j ... xMr,j aρ(j)yj
x′M1,j x′M2,j ... x′Mr,j 0

0 0 0


B

yj0
0


Aρ(j)


j>k∈M

∪
xM1,k xM2,k ... xMr,k aρ(k)b

0 0 ... 0 0
x′M1,k x′M2,k ... x′Mr,k aρ(k)r


B

b0
r


Aρ(k)


which is a properly distributed secret key of Type4,k when r = 0 where yk = b and is a properly
distributed secret key of Type5,k when r ← Zp where yk = b and y′k = r.

24

So, B5,k,` is able to exactly simulate Game`4,k and Game`5,k when its SXDH challenge has r = 0
and r ← Zp respectively. It then follows that for any difference in A’s advantage between the two
games, B5,k,` can use A’s answers to achieve that same advantage in the SXDH game.

Lemma 12. For 1 ≤ ` ≤ Q1, for 1 ≤ k ≤ r, for any adversary A,

|Adv`5,k(A, λ)−Adv`6,k(A, λ)| = 0

Proof. Given the bases:

(D,D∗)← Dual(Z6
p)

(F,F∗)← Dual(Z3(r+1)
p)

(Ki,K∗i)← Dual(Z3
p) for i ∈ U

Define the bases (B,B∗) as:

~b3(r+1) = ã ~f3(r+1)

~bi = ~fi for all other i

~b∗3(r+1) = ã−1 ~f∗3(r+1)

~b∗i = ~f∗i for all other i

for a random ã← Zp, define (Ai,A∗i) as equal to (Ki,K∗i) for i = ρ(k) and define (Ai,A∗i) as:

~a1,i = ~k1,i

~a2,i = ~k2,i

~a3,i = ã~k3,i

~a∗1,i = ~k∗1,i

~a∗2,i = ~k∗2,i

~a∗3,i = ã−1~k∗3,i

for i 6= ρ(k).
Consider simulating Game`5,k with the (D,D∗), (B,B∗), (Ai,A∗i) bases. We will see that doing

so is equivalent to simulating Game`6,k with the (D,D∗), (F,F∗), (Ki,K∗i) bases. Since both sets of
bases come from the same distribution, then the two games are identical.

The only key-side elements that have a non-zero component in a vector that has been transformed
between the two bases are the K2,k,K3,k components of the (simulated Type5,k) `th key:

xM1,k xM2,k ... xMr,k aρ(k)yk
0 0 ... 0 0

x′M1,k x′M2,k ... x′Mr,k aρ(k)y
′
k


B

yk0
y′k


Aρ(k)



25

which in the (D,D∗), (F,F∗), (Ki,K∗i) looks like:
xM1,k xM2,k ... xMr,k aρ(k)yk

0 0 ... 0 0
x′M1,k x′M2,k ... x′Mr,k aρ(k)ãy

′
k


F

yk0
y′k


Kρ(k)


a properly distributed Type6,k key where ãρ(k) = ãaρ(k).

The only ciphertext-side elements that have a non-zero component in a vector that has been
transformed between the two bases are the C2,k,K3,k components of the (simulated Type5,k) challenge
ciphertext:

m · e(g, h)α,

α ∆
0 ∆′

0 ∆′


D∗

∆ z2 . . . zr s
∆′ ~w s′

∆′ ~w s̃′′


B∗


 −sai−s′ai
−s̃′′ai


A∗i


i∈S

which in the (D,D∗), (F,F∗), (Ki,K∗i) looks like:

m · e(g, h)α,

α ∆
0 ∆′

0 ∆′


D∗

∆ z2 . . . zr s
∆′ ~w s′

∆′ ~w s̃′′ã−1


F∗

 −sai
−s′ai
−s̃′′ã−1ai


K∗i


i 6=ρ(k)∈S

⋃ 
 −sai

−s′ai
−(s̃′′ã−1)(ãai)


K∗i


i=ρ(k)∈S

which is a properly distributed Type6,k challenge ciphertext where s′′ = s̃′′ã−1, ãρ(k) = aρ(k)ã.
These are the only elements that interact with the transformed basis vectors during the simulation,

the transformation results in the same distribution of basis vectors, and we showed the using one
set simulates Game`5,k and using the other simulates Game`6,k, therefore the two games are identical
and no adversary can achieve a difference in advantage between the two.

Lemma 13. For 1 ≤ ` ≤ Q1, for 1 ≤ k ≤ r, for any adversary A,

|Adv`6,k(A, λ)−Adv`7,k(A, λ)| = 0

Proof. This follows from a direct application of Lemma 8 from [Tak17] (which relies on Lemma 3
from [OT10]). Essentially, the lemma says that since the only nonzero elements in the third row of
the (B,B∗) basis are in the single challenge ciphertext and the `th key’s kth components K2,k, then
their distribution is dependent only on their dot product. We reproduce the lemma in Appendix A’s
Lemma 31.

If aρ(k) ∈ S for the challenge ciphertext, then we have that ~w · ~Mk = ~w · x′ ~Mk = 0. So, by

Lemma 31 we can switch x′ ~Mk to x∗ ~Mk in the `th key’s kth component without changing the
distribution, since ~w · x∗ ~Mk = 0.

If aρ(k) 6∈ S for the challenge ciphertext, then we know that ãρk appears only in the `th key’s kth
component. So, we can use the same lemma to argue that its randomness blinds the dot product.
Specifically, we look at the dot product of the previous vectors plus the additional 3(r + 1)th
component, which is equal to: ~w ·x′ ~Mk + s′′ãρ(k), which is uniformly random because of the presence

of ãρ(k). So, again by Lemma 31, we can switch x′ ~Mk to x∗ ~Mk in the `th key’s kth component

without changing the distribution, since the new dot product ~w · x∗ ~Mk + s′′ãρ(k) is also uniformly
randomly distributed.

26

Lemma 14. For 1 ≤ ` ≤ Q1, for 1 ≤ k ≤ r, for any adversary A,

|Adv`7,k(A, λ)−Adv`8,k(A, λ)| = 0

Lemma 15. For 1 ≤ ` ≤ Q1, for 1 ≤ k ≤ r, for any polynomial time adversary A, there exists a
polynomial time B9,k,` such that:

|Adv`8,k(A, λ)−Adv`9,k(A, λ)| ≤ AdvSXDHG (B9,k,`, λ)

Lemma 16. For 1 ≤ ` ≤ Q1, for 1 ≤ k ≤ r, for any polynomial time adversary A, there exists a
polynomial time B10,k,` such that:

|Adv`9,k(A, λ)−Adv`10,k(A, λ)| ≤ AdvSXDHG (B10,k,`, λ)

Lemma 17. For 1 ≤ ` ≤ Q1, for 1 ≤ k ≤ r, for any polynomial time adversary A, there exists a
polynomial time B11,k,` such that:

|Adv`10,k(A, λ)−Adv`11,k(A, λ)| ≤ AdvSXDHG (B11,k,`, λ)

Proof. These proofs follow the same arguments as Lemma 12, Lemma 11, Lemma 10, and Lemma 9
respectively, in reverse, and using x∗ instead of x′ in the `th key’s kth component.

Lemma 18. For 1 ≤ ` ≤ Q1, for any polynomial time adversary A, there exists a polynomial time
B12,` such that:

|Adv`11,r(A, λ)−Adv`12(A, λ)| ≤ AdvSXDHG (B12,`, λ)

Proof. This lemma is almost essentially a reverse of Lemma 8 using x∗ instead of x′, except the
x′ in the D basis of the `th key is not removed. So, we will show that we can fix it so it does not
disappear when the rest of the x∗ components go to 0:

Given g, h, ha, hb and T = hab+r
∗ ∈ G where either r∗ = 0 or is a uniform random element of Zp,

consider the following simulator B12,` in the security game:

First, B12,` generates orthonormal bases:

(J, J∗)← Dual(Z6
p)

(F,F∗)← Dual(Z3(r+1)
p)

(Ai,A∗i)← Dual(Z3
p) for i ∈ U

The bases (B,B∗) are implicitly defined as:

~bi = ~fi + a~f(r+1)+i for i ∈ [1, r]

~bi = ~fi for all other i

~b∗(r+1)+i = ~f∗(r+1)+i − a~f
∗
i for i ∈ [1, r]

~b∗i = ~f∗i for all other i

27

(D,D∗) are implicitly defined as:

~d2 = ~j2 + a~j4

~di = ~ji for all other i

~d∗4 = ~j∗4 − a~j∗2
~d∗i = ~j∗i for all other i

The public parameters are then generated by drawing ai ← Zp for i ∈ U and forming:

e(g, h)

(~e1)D∗ , (~e2)D∗

{(~ei)B∗}i∈[r+1]

{(ai, 0, 0)A∗i }i∈[k]

Note that the terms in the public parameter can be generated since all vectors in the D∗,B∗,A∗i
with nonzero components in the public parameters are known directly.

Similarly, note that all vectors in D,B,Ai are known explicitly except for ~d2 and ~bi for i ∈ [r]

and these can be constructed by taking h
~j2 · (ha)~j4 = d2, and h

~fi · (ha)~f(r+1)+i = bi for i ∈ [r]. So,
B12,` is able to generate appropriately distributed secret keys of Type0 for all secret key requests
before the `th key as well as keys of Type12 for requests after the `th request.

For the challenge ciphertext request, let ~w be defined relative to the `th requested secret key
(this will be known upon ciphertext generation since this secret key is defined to be one of the
Q1 requested before the challenge ciphertext). B12,` draws α,∆′, s, s′, s′′, z̃i ← Zp for i ∈ [r] and
constructs:

m · e(g, h)α,

α 0
0 ∆′

0 ∆′


J∗ 0 z̃2 . . . z̃r s

∆′ ∆′w2 . . . ∆′wr s′

∆′ ∆′w2 . . . ∆′wr s′′


F∗

 −sai−s′ai
−s′′ai


A∗i


i∈S

which in the right bases, is:

m · e(g, h)α,

α a∆′

0 ∆′

0 ∆′


D∗

a∆′ a∆′w2 + z̃2 . . . a∆′wr + z̃r s
∆′ ~w s′

∆′ ~w s′′


B∗


−sai−s′ai
−s′′ai


A∗i


i∈S

which is a properly distributed ciphertext of Type1 = Type2 where ∆ = a∆′, and zi = a∆′ + z̃i.
For the `th key request, B12,` draws x̃′, yj ← Zp for j ∈M and constructs:1 (b)

0 (ab+ r) + x̃′

0 0


J

28



 (b)M1,j (b)M2,j ... (b)Mr,j aρ(j)yj
(ab+ r)M1,j (ab+ r)M2,j ... (ab+ r)Mr,j 0

0 0 0


Fyj0

0


Aρ(j)


j∈M

which in the right bases, is:1 b
0 r + x̃′

0 0


D


bM1,j bM2,j ... bMr,j aρ(j)yj
rM1,j rM2,j ... rMr,j 0

0 0 0


B

yj0
0


Aρ(j)


j∈M

which is a properly distributed secret key of Type11,r when r ← Zp where x = b, x′ = r + x̃′, and
x∗ = r and is a properly distributed secret key of Type12 when r = 0 where x = b, x′ = r + x̃′ = x̃′.

So, B12,` is able to exactly simulate Game`11,r and Game`12 when its SXDH challenge has r ← Zp
and r = 0 respectively. It then follows that for any difference in A’s advantage between the two
games, B12,` can use A’s answers to achieve that same advantage in the SXDH game.

Lemma 19. For 1 ≤ ` < Q1, for any adversaryA,

|Adv`12(A, λ)−Adv`+1
1 (A, λ)| = 0

Proof. The only difference between these two games is that the ~w used in the challenge ciphertext
is switched from being defined relative to the `th requested secret key to the `+ 1th requested key.
We will call the new vector ~v. All secret keys contain zeroes on the opposite side, so this can be
done with a simple change of basis:

Specifically, consider the following sets of bases:

(D,D∗)← Dual(Z6
p)

(F,F∗)← Dual(Z3(r+1)
p)

(Ai,A∗i)← Dual(Z3
p) for i ∈ U

and define the bases (B,B∗) as:

~b∗(r+1)+1 = ~f∗(r+1)+1 +

r∑
i=2

(vi − wi)~f∗(r+1)+i

~b∗i = ~f∗i for all other i

~b(r+1)+i = ~f(r+1)+i − (vi − wi)~f(r+1)+1 for i ∈ [2, r]

~bi = ~fi for all other i

The transformation results in the same distribution of basis vectors between ((D,D∗), (F,F∗), (Ai,A∗i))
and ((D,D∗), (B,B∗), (Ai,A∗i)), and yet using the second set to simulate Game`+1

1 implicitly simulates
Game`12 in the first basis. Therefore, the two games are identical and no adversary can achieve a
difference in advantage between the two.

29

Now we begin the second half of the hybrid: handling keys requested after the challenge
ciphertext. This is a more conventional hybrid reminiscent of the selective security proofs for
static-assumption-based ABE schemes.

Lemma 20. For any adversary A,

|AdvQ1
12 (A, λ)−Adv1

13(A, λ)| = 0

Proof. The only difference between these two games is that the ~w used in the challenge ciphertext is
switched from being defined relative to the Q1th requested secret key (the last before the challenge
ciphertext) to a static standard basis vector: ~e1. All secret keys contain zeroes on the opposite side,
so this can be done with a simple change of basis:

Specifically, consider the following sets of bases:

(D,D∗)← Dual(Z6
p)

(F,F∗)← Dual(Z3(r+1)
p)

(Ai,A∗i)← Dual(Z3
p) for i ∈ U

and define the bases (B,B∗) as:

~b∗(r+1)+1 = ~f∗(r+1)+1 +
r∑
i=2

−wi ~f∗(r+1)+i

~b∗i = ~f∗i for all other i

~b(r+1)+i = ~f(r+1)+i + wi ~f(r+1)+1 for i ∈ [2, r]

~bi = ~fi for all other i

The transformation results in the same distribution of basis vectors between ((D,D∗), (F,F∗), (Ai,A∗i))
and ((D,D∗), (B,B∗), (Ai,A∗i)), and yet using the second set to simulate Game1

13 implicitly simulates

GameQ1
12 in the first basis. Therefore, the two games are identical and no adversary can achieve a

difference in advantage between the two.

For the connection to the previous lemma, note that Game`13 is equivalent to Game`−1
17 .

Lemma 21. For 1 ≤ ` ≤ Q2, for any polynomial time adversary A, there exists a polynomial time
B14,` such that:

|Adv`−1
17 (A, λ)−Adv`14(A, λ)| ≤ AdvSXDHG (B14,`, λ)

Proof. Given g, h, ha, hb and T = hab+r
∗ ∈ G where either r∗ = 0 or is a uniform random element

of Zp, consider the following simulator B14,` in the security game:

First, B14,` generates orthonormal bases:

(J, J∗)← Dual(Z6
p)

(F,F∗)← Dual(Z3(r+1)
p)

(Ai,A∗i)← Dual(Z3
p) for i ∈ U

30

The bases (B,B∗) are implicitly defined as:

~bi = ~fi + az′i
~f(r+1)+1 for i ∈ [1, r]

~bi = ~fi for all other i

~b∗(r+1)+1 = ~f∗(r+1)+1 −
r∑
i=1

az′i
~f∗i

~b∗i = ~f∗i for all other i

for z′1 = 1 and randomly drawn z′i ← Zp for i > 1.
(D,D∗) are implicitly defined as:

~d2 = ~j2 + a~j4

~di = ~ji for all other i

~d∗4 = ~j∗4 − a~j∗2
~d∗i = ~j∗i for all other i

The public parameters are then generated by drawing ai ← Zp for i ∈ U and forming:

e(g, h)

(~e1)D∗ , (~e2)D∗

{(~ei)B∗}i∈[r+1]

{(ai, 0, 0)A∗i }i∈[k]

Note that the terms in the public parameter can be generated since all vectors in the D∗,B∗,A∗i
with nonzero components in the public parameters are known directly.

Similarly, note that all vectors in D,B,Ai are known explicitly except for ~d2 and ~bi for i ∈ [r]

and these can be constructed by taking h
~j2 · (ha)~j4 = d2, and h

~fi · (ha)z̃′i ~f(r+1)+i = bi for i ∈ [r]. So,
B14,` is able to generate appropriately distributed secret keys of Type0 for all secret key requests
after the Q1 + `th key as well as keys of Type12 = Type17 for requests before the Q1 + `th request.

For the challenge ciphertext request, B14,` draws α,∆′, s, s′, s′′, z̃i ← Zp for i ∈ [r] and constructs:

m · e(g, h)α,

α 0
0 ∆′

0 ∆′


J∗ 0 z̃2 . . . z̃r s

∆′ 0 . . . 0 s′

∆′ 0 . . . 0 s′′


F∗

 −sai−s′ai
−s′′ai


A∗i


i∈S

31

which in the right bases, is:

m · e(g, h)α,

α a∆′

0 ∆′

0 ∆′


D∗

a∆′ a∆′z′2 + z̃2 . . . a∆′z′r + z̃r s
∆′~e1 s′

∆′~e1 s′′


B∗


 −sai−s′ai
−s′′ai


A∗i


i∈S

which is a properly distributed ciphertext of Type17 = Type13 = Type14 where ∆ = a∆′, and
zi = a∆′z′i + z̃i.

For the `th key request, B14,` draws yj ← Zp for j ∈M and constructs:1 (b)
0 (ab+ r)
0 0


J


(b)M1,j (b)M2,j ... (b)Mr,j aρ(j)yj

r∑
i=1

(ab+ r)z′iMi,j 0 ... 0 0

0 0 0


Fyj0

0


Aρ(j)


j∈M

which in the right bases, is:

1 b
0 r
0 0


D




bM1,j bM2,j ... bMr,j aρ(j)yj

r
r∑
i=1

z′iMi,j 0 ... 0 0

0 0 0


B

yj0
0


Aρ(j)


j∈M

which is a properly distributed secret key of Type0 when r = 0 where x = b and is a properly

distributed secret key of Type14 when r ← Zp where x = b, x′ = r, and λj =

r∑
i=1

z̃′iMi,j =

~Mj · (1, z′2, ..., z′r).
So, B14,` is able to exactly simulate Game`−1

17 and Game`14 when its SXDH challenge has r = 0
and r ← Zp respectively. It then follows that for any difference in A’s advantage between the two
games, B14,` can use A’s answers to achieve that same advantage in the SXDH game.

For the connection to the previous lemma, note that Game`14 is equivalent to Game`15,0.

Lemma 22. For 1 ≤ ` ≤ Q2, for 1 ≤ k ≤ |U|, for any polynomial time adversary A, there exists a
polynomial time B15,k,` such that:

|Adv`15,k−1(A, λ)−Adv`15,k(A, λ)| ≤ AdvSXDHG (B15,k,`, λ)

Proof. First, note that if k ∈ S for the challenge ciphertext’s attribute set, then Game`15,k−1 is

identical to Game`15,k, in which case the adversary’s difference in advantage is 0. So, we only need
to account for the worse case when k 6∈ S.

In this case, we can use an embedding that is symmetric to that of Lemma 11 to bring in ãjy
′
j

for j where ρ(j) = k. The B15,k,` that performs this simulation can use A’s answers to achieve that
same advantage in the SXDH game.

32

Lemma 23. For 1 ≤ ` ≤ Q2, for any polynomial time adversary A, there exists a polynomial time
B15,H,` such that:

|Adv`15,U (A, λ)−Adv`15,H(A, λ)| ≤ AdvSXDHG (B15,H,`, λ)

Proof. This proof follows a standard selective security argument to embed the SXDH challenge
in exactly the rows of the Q1 + `th key for which ρ(j) 6∈ S, changing the y′j ãρ(j) to y′j ã

′
j (that

is, creating independent randomness ã′j for each j). This can be done since the Q1 + `th key is
requested after the challenge ciphertext, and therefore it is known upon key generation which rows
contain ãρ(j) that don’t need to be replicated on the other side in the challenge ciphertext (and can
therefore serve as an embedding for the SXDH challenge).

Lemma 24. For 1 ≤ ` ≤ Q2, for any adversary A,

|Adv`15,H(A, λ)−Adv`16,H(A, λ)| = 0

Proof. This follows from the standard information-theoretic security of the secret sharing scheme for
λ′. Since the key is unauthorized, we can switch the λ′ from sharing 1 to sharing a random z′ ← Zp
without changing the distribution of shares that aren’t masked by ã′j (and the ã′j information-
theoretically hide the λj that do change – we can “mix” the dimensions that contain the λj and the

ã′jy
′
j via a change of basis to see the hiding property). The resulting shares λ′j := ~Mj · (z′1, z′2, ..., z′r)

for z′i ← Zp have the property that {x′λ′j}j is distributed the same as {x∗λ′j}j .

Lemma 25. For 1 ≤ ` ≤ Q2, for any polynomial time adversary A, there exists a polynomial time
B16,U,` such that:

|Adv`16,H(A, λ)−Adv`16,U (A, λ)| ≤ AdvSXDHG (B16,H,`, λ)

Proof. This proof is symmetric to Lemma 23, where we embed SXDH in the j rows that are not
authorized to make the reverse transformation (while using x∗λ∗ instead of x′λ′ in the `th key).

Lemma 26. For 1 ≤ ` ≤ Q2, for |U| ≥ k ≥ 1, for any polynomial time adversary A, there exists a
polynomial time B16,k−1,` such that:

|Adv`16,k(A, λ)−Adv`16,k−1(A, λ)| ≤ AdvSXDHG (B16,k−1,`, λ)

Proof. This proof is symmetric to Lemma 22, but in reverse (and using x∗λ∗ instead of x′λ′ in the
`th key).

Lemma 27. For 1 ≤ ` ≤ Q2, for any polynomial time adversary A, there exists a polynomial time
B17,` such that:

|Adv`16,0(A, λ)−Adv`17(A, λ)| ≤ AdvSXDHG (B17,`, λ)

Proof. This proof is nearly identical to Lemma 18, except instead of removing the whole row of
x∗ ~Mj , we are just removing a single component of x∗λ∗ (while retaining the x′ in the D basis).

Lemma 28. For any adversary A,

|AdvQ2
17 (A, λ)−AdvQ2

18 (A, λ)| = 0

33

Proof. In both the these games, all keys are semi-functional of Type12 = Type17. The only difference
between these two games the challenge ciphertext is switched to one that completely hides the
message m (the α blinding m is decoupled from the α∗ in the D∗ component). Since all secret keys
are also semi-functional, we can accomplish this with a simple change of basis that takes advantage
of the decoupled x′ in the secret keys:

Specifically, consider the following sets of bases:

(J, J∗)← Dual(Z6
p)

(B,B∗)← Dual(Z3(r+1)
p)

(Ai,A∗i)← Dual(Z3
p) for i ∈ U

and define the bases (D,D∗) as:

~d1 = ~j1 − α̃∗~j4
~di = ~ji for all other i

~d∗4 = ~j∗4 − α̃∗~j∗1
~d∗i = ~j∗i for all other i

The transformation results in the same distribution of basis vectors between ((J, J∗), (B,B∗), (Ai,A∗i))
and ((D,D∗), (B,B∗), (Ai,A∗i)), and yet using the second set to simulate GameQ2

18 implicitly simulates

GameQ2
17 in the first basis (where the x′ in all secret keys absorbs the α̃∗ introduced when using

vector ~j1). Therefore, the two games are identical and no adversary can achieve a difference in
advantage between the two.

Lemma 29. For any adversary A,
AdvQ2

18 (A, λ) = 0

Proof. In this game, the m in the challenge ciphertext is masked by e(g, h)α for a completely
independent α, so its distribution is independent of the game’s challenge β. Therefore, no adversary
can achieve a nonzero advantage in this game.

Theorem 30. Under the SXDH assumption, our KP-ABE construction is adaptively secure against
any polynomial time adversary A.

Proof. Summing up Lemmas 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

34

27, 28, and 29, and using the triangle inequality, we get that for any polynomial time adversary A:

Advreal(A, λ) = |Advreal(A, λ)−AdvQ2
18 (Aλ)|

≤ AdvSXDHG (B1, λ) +

Q1∑
`=1

AdvSXDHG (B2,`, λ)

+

Q1∑
`=1

r∑
k=1

AdvSXDHG (B3,k,`, λ) +

Q1∑
`=1

r∑
k=1

AdvSXDHG (B4,k,`, λ)

+

Q1∑
`=1

r∑
k=1

AdvSXDHG (B5,k,`, λ) +

Q1∑
`=1

r∑
k=1

AdvSXDHG (B9,k,`, λ)

+

Q1∑
`=1

r∑
k=1

AdvSXDHG (B10,k,`, λ) +

Q1∑
`=1

r∑
k=1

AdvSXDHG (B11,k,`, λ)

+

Q1∑
`=1

AdvSXDHG (B12,`, λ) +

Q2∑
`=1

AdvSXDHG (B14,`, λ)

+

Q2∑
`=1

U∑
k=1

AdvSXDHG (B15,k,`, λ) +

Q2∑
`=1

AdvSXDHG (B15,H,`, λ)

+

Q2∑
`=1

AdvSXDHG (B16,H,`, λ) +

Q2∑
`=1

U∑
k=1

AdvSXDHG (B16,k−1,`, λ)

+

Q2∑
`=1

AdvSXDHG (B17,`, λ)

Under the SXDH assumption, each of the Adv quantities is a negligible function of λ, and since
Q1, Q2, r are polynomial functions of lambda, then the sum (bounding Advreal(A, λ)) is also a
negligble function of λ, and therefore our construction is adaptively secure.

6 Acknowledgements

This work was supported in part by The Leona M. & Harry B. Helmsley Charitable Trust; NSF grant
CCF-1423306; and the Defense Advanced Research Project Agency (DARPA) and Army Research
Office (ARO) under Contract W911NF-15-C-0236. The first author is additionally supported in part
by an NSF Graduate Research Fellowship DGE-16-44869. Any opinions, findings and conclusions
or recommendations expressed are those of the authors and do not necessarily reflect the views of
the the Defense Advanced Research Projects Agency, Army Research Office, the National Science
Foundation, or the U.S. Government.

References

[AC17] S. Agrawal and M. Chase. Fame: Fast attribute-based message encryption. In CCS,
2017.

[Att14] N. Attrapadung. Dual system encryption via doubly selective security: Frame- work,
fully secure functional encryption for regular languages, and more. In EUROCRYPT,
page 57577, 2014.

35

[Att16] N. Attrapadung. Dual system encryption framework in prime-order groups via compu-
tational pair encodings. In ASIACRYPT, page 91623, 2016.

[Bei96] A. Beimel. Secure schemes for secret sharing and key distribution. PhD thesis, Israel
Institute of Technology, Technion, Haifa, Israel, 1996.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based
encryption. In Proceedings of the IEEE Symposium on Security and Privacy, pages
321–334, 2007.

[BV16] Z. Brakerski and V. Vaikuntanathan. Circuit-abe from lwe: Unbounded attributes and
semi-adaptive security. In CRYPTO, pages 363–384, 2016.

[CC09] M. Chase and S. S. M. Chow. Improving privacy and security in multi-authority
attribute-based encryption. In Proceedings of the 2009 ACM Conference on Computer
and Communications Security, pages 121–130, 2009.

[CGKW18] J. Chen, J. Gong, L. Kowalczyk, and H. Wee. Unbounded abe via bilinear entropy
expansion, revisited. In EUROCRYPT, pages 503–534, 2018.

[CGW15] J. Chen, R. Gay, and H. Wee. Improved dual system abe in prime-order groups via
predicate encodings. In EUROCRYPT, pages 595–624, 2015.

[Cha07] M. Chase. Multi-authority attribute based encryption. In Theory of Cryptography, 4th
Theory of Cryptography Conference, TCC 2007, Amsterdam, The Netherlands, February
21-24, 2007, Proceedings, pages 515–534, 2007.

[Che06] J. H. Cheon. Security analysis of the strong diffie-hellman problem. In EUROCRYPT,
pages 1–11, 2006.

[GGH+13] S. Garg, C. Gentry, S. Halevi, A. Sahai, and B. Waters. Attribute-based encryption for
circuits from multilinear maps. In CRYPTO, pages 479–499, 2013.

[GGHZ14] S. Garg, C. Gentry, S. Halevi, and M. Zhandry. Fully secure attribute based encryption
from multilinear maps. IACR Cryptology ePrint Archive, 2014:622, 2014.

[GJPS08] V. Goyal, A. Jain, O. Pandey, and A. Sahai. Bounded ciphertext policy attribute-based
encryption. In ICALP, 2008.

[GKW6b] R. Goyal, V. Koppula, and B. Waters. Semi-adaptive security and bundling functionali-
ties made generic and easy. In TCC, pages 361–388, 2016b.

[GPSW06] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute based encryption for fine-
grained access control of encrypted data. In ACM conference on Computer and
Communications Security, pages 89–98, 2006.

[GVW13] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for circuits.
In STOC, pages 545–554, 2013.

[JW14] C. Jie and H. Wee. Semi-adaptive attribute-based encryption and improved delegation
for boolean formula. In SCN, pages 277–297, 2014.

[KL15] L. Kowalczyk and A. B. Lewko. Bilinear entropy expansion from the decisional linear
assumption. In CRYPTO, pages 524–541, 2015.

36

[LOS+10] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure functional
encryption: Attribute-based encryption and (hierarchical) inner product encryption. In
EUROCRYPT, pages 62–91, 2010.

[LW11a] A. Lewko and B. Waters. Decentralizing attribute-based encryption. In EUROCRYPT,
pages 568–588, 2011.

[LW11b] A. Lewko and B. Waters. Unbounded hibe and attribute-based encryption. In EURO-
CRYPT, pages 547–567, 2011.

[LW12] A. B. Lewko and B. Waters. New proof methods for attribute-based encryption:
Achieving full security through selective techniques. In CRYPTO, pages 180–198, 2012.

[MW93] M.Karchmer and A. Wigderson. On span programs. In CCC, pages 102–111, 1993.

[OSW07] R. Ostrovksy, A. Sahai, and B. Waters. Attribute based encryption with non-monotonic
access structures. In ACM conference on Computer and Communications Security,
pages 195–203, 2007.

[OT08] T. Okamoto and K. Takashima. Homomorphic encryption and signatures from vector
decomposition. In Pairing, pages 57–74, 2008.

[OT09] T. Okamoto and K. Takashima. Hierarchical predicate encryption for inner-products.
In ASIACRYPT, pages 214–231, 2009.

[OT10] T. Okamoto and K. Takashima. Fully secure functional encryption with general relations
from the decisional linear assumption. In CRYPTO, pages 191–208, 2010.

[OT12] T. Okamoto and K. Takashima. Fully secure unbounded inner-product and attribute-
based encryption. In ASIACRYPT, pages 349–366, 2012.

[OT13] T. Okamoto and K. Takashima. Decentralized attribute-based signatures. In PKC,
pages 125–142, 2013.

[RW13] Y. Rouselakis and B. Waters. Practical constructions and new proof methods for
large universe attribute-based encryption. In 2013 ACM Conference on Computer and
Communications Security, pages 463–474, 2013.

[Tak17] K. Takashima. New proof techniques for dlin-based adaptively secure attribute-based
encryption. In ACISP, pages 85–105, 2017.

[Wat09] B. Waters. Dual system encryption: realizing fully secure ibe and hibe under simple
assumptions. In CRYPTO, pages 619–636, 2009.

[Wat11] B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and
provably secure realization. In PKC, pages 53–70, 2011.

37

A Adaptation of Inner Product Argument

We will now reproduce an adaptation of Lemma 8 from [Tak17]:

Lemma 31. Given nonzero ~x1, ~y1, ~x2, ~y2 ∈ Zr+1
p such that 〈~x1, ~y1〉 = 〈~x1, ~y1〉, after drawing

(B,B∗)← Dual(Z3(r+1)
p), the following two distributions are identical:(

(~0,~0, ~x1)B, (~0,~0, ~y1)B∗ , {bi,b∗i }i∈[1,2(r+1)]

)
∼
(

(~0,~0, ~x2)B, (~0,~0, ~y2)B∗ , {bi,b∗i }i∈[1,2(r+1)]

)
Proof. First, we proceed in two cases: when the dot product k is zero, and when it is nonzero.

If 〈~x1, ~y1〉 = 〈~x1, ~y1〉 = k is nonzero, then consider the invertible matrix R1 formed as follows:
the first row of R1 is ~y1, and the remaining rows of R1 are (any) n− 1 linearly independent vectors
in the orthogonal space of ~x1 (note that the first row is independent of these vectors since ~y1 has
nonzero projection on to ~x1 and so R1 is full rank and invertible).

Note that this matrix satisfies the following properties:

R1~x1 =


k
0
...
0

 , (R−1
1)T~y1 =


1
0
...
0


Therefore there is also an invertible R2 such that:

R2~x2 =


k
0
...
0

 , (R−1
2)T~y2 =


1
0
...
0


In the second case, say 〈~x1, ~y1〉 = 〈~x1, ~y1〉 = 0. Then then consider the invertible matrix R1

formed as follows: the first row of R1 is 1
〈~x1,~x1〉~x1, the second row of R1 is ~y1, and the remaining

rows of R1 are (any) n− 2 linearly independent vectors in the orthogonal space of ~x1, ~y1.
Note that this matrix is full rank and satisfies the following properties:

R1~x1 =


1
0
0
...
0

 , (R−1
1)T~y1 =


0
1
0
...
0


Therefore there is also an invertible R2 such that:

R2~x2 =


1
0
0
...
0

 , (R−1
2)T~y2 =


0
1
0
...
0


In both cases, the matrix R−1

2 R1 is invertible and satisfies:

R−1
2 R1~x1 = ~x2, ((R−1

2 R1)−1)T~y1 = ~y2

38

.
Now, recall from Section 2.2 that the distributions of (B,B∗) and (R ·B, (R−1)T ·B∗) where R is

an invertible matrix and (B,B∗)← Dual(Z3(r+1)
p) are identical.

Finally, let R be the matrix:

R :=

I 0 0
0 I 0

0 0 R−1
2 R1


(where each block is of dimension (r + 1)).

Then using (B,B∗) to construct
(

(~0,~0, ~x1)B, (~0,~0, ~y1)B∗ , {bi,b∗i }i∈[1,2(r+1)]

)
yields the left side

in the equation of the lemma, yet using the identically distributed (R · B, (R−1)T · B∗) basis results
in the right side. Therefore, the two distributions are identical.

39

	Introduction
	Our Result
	Comparing Perfomance
	Technical Details
	Related Work

	Preliminaries
	Prime Order Bilinear Groups
	Dual Pairing Vector Spaces
	Complexity Assumptions
	Background for ABE
	Monotone Span Programs / Linear Secret Sharing Schemes
	KP-ABE Definition
	Adaptive Security for KP-ABE Systems

	Construction
	Correctness
	Proof of Security
	Auxiliary Ciphertext and Secret Key Distributions
	Hybrid Structure
	Hybrid Indistinguishability Lemmas

	Acknowledgement
	Adaptation of Inner Product Argument

