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Abstract. Security protocols using public-key cryptography often requires large number
of costly modular exponentiations (MEs). With the proliferation of resource-constrained
(mobile) devices and advancements in cloud computing, delegation of such expensive com-
putations to powerful server providers has gained lots of attention. In this paper, we ad-
dress the problem of verifiably secure delegation of MEs using two servers, where at most
one of which is assumed to be malicious (the OMTUP-model). We first show verifiabil-
ity issues of two recent schemes: We show that a scheme from IndoCrypt 2016 does not
offer full verifiability, and that a scheme for n simultaneous MEs from AsiaCCS 2016 is
verifiable only with a probability 0.5909 instead of the author’s claim with a probabil-
ity 0.9955 for n = 10. Then, we propose the first non-interactive fully verifiable secure
delegation scheme by hiding the modulus via Chinese Remainder Theorem (CRT). Our
scheme improves also the computational efficiency of the previous schemes considerably.
Hence, we provide a lightweight delegation enabling weak clients to securely and verifiably
delegate MEs without any expensive local computation (neither online nor offline). The
proposed scheme is highly useful for devices having (a) only ultra-lightweight memory,
and (b) limited computational power (e.g. sensor nodes, RFID tags).

Keywords: Verifiable and secure delegation; modular exponentiations; cloud security; applied
cryptography; lightweight cryptography

1 Introduction

Recent advances in mobile computing, internet of things (IoT), and cloud computing makes
delegating heavy computational tasks from computationally weak units, devices, or components
to a powerful third party servers (also programs and applications) feasible and viable. This
enables weak mobile clients with limited memory and computational capabilities (e.g. sensor
nodes, smart cards and RFID tags) to be able to utilize several applications of these technolo-
gies, which otherwise is difficult and often impossible because of underlying resource-intensive
operations and consumption of considerable amount of energy.
Unlike fully homomorphic encryption, secure delegation of expensive cryptographic operations
(like MEs modulo a prime number p) is the most practical option along with its little computa-
tional costs and applications for critical security applications. However, delegating MEs of the
form ua mod p to untrusted servers while ensuring the desired security and privacy properties
is highly challenging; i.e. either u or a, or even both (in most privacy enhancing applications),
contain sensitive informations, thence required to be properly protected from untrusted servers.
Beside these challenges, ensuring the verifiability of the delegated computation is very impor-
tant. As also pointed out in [13,18], failure in the verification of a delegated computation has



severe consequences especially if the delegated MEs are the core parts of authentication or sig-
nature schemes.
Related Work. After the introduction of wallets with observers by Chaum and Pedersen
[8], Hohenberger and Lysyanskaya [12] provided the first secure delegation scheme for group
exponentiations (GEs) with a verifiability probability 1/2 using two servers, where at most
one of them is assumed to be malicious (the OMTUP-model). They also gave the first formal
simulation-based security notions for the delegation of GEs in the presence of malicious pow-
erful servers. In ESORICS 2012, Chen et al. [9] improved both the verifiability probability (to
2/3) and the computational overhead of [12]. A secure delegation scheme for two simultaneous
GEs with a verifiability probability 1/2 is also introduced in [9].
In ESORICS 2014, for the first time Wang et al. [20] proposes a delegation scheme for GEs us-
ing a single untrusted server with a verifiability probability 1/2. This scheme involves an online
group exponentiation of a small exponent by the delegator; the choice of such a small exponent
is subsequently shown to be insecure by Chevalier et al. [10] in ESORICS 2016. Furthermore,
it is also shown in [10] essentially that a secure non-interactive (i.e. single-round) delegation
with a single untrusted server requires at least an online computation of a GE even without
any verifiability if the modulus p is known to the server. Kiraz and Uzunkol [13] introduce the
first two-round secure delegation scheme for GEs using a single untrusted server having an
adjustable verifiability probability requiring however a huge number of queries to the server.
They also provide a delegation scheme for n simultaneous GEs with an adjustable verifiability
probability. Cavallo et al. [6] propose subsequently another delegation scheme with a verifiability
probability 1/2 again by using a single untrusted server under the assumption that pairs of the
form (u, ux) are granted at the precomputation for variable base elements u. However, realizing
this assumption is difficult (mostly impossible) for resource-constrained devices. In AsiaCCS
2016, Ren et al.[18] proposed the first fully verifiable (with a verifiability probability 1) secure
delegation scheme for GEs in the OMTUP-model at the expense of an additional round of com-
munication. They also provide a two-round secure delegation scheme for n ∈ Z>1 simultaneous
GEs which is claimed to have a verifiability probability 1− 1

2n(n+1) .

Kuppusamy and Rangasamy use in INDOCRYPT 2016 [14] for the first time the special ring
structure of Zp with the aim of eliminating the second round of communication and providing full
verifiability simultaneously. They propose a non-interactive efficient secure delegation scheme
for MEs using Chinese Remainder Theorem (CRT) in the OMTUP-model which is claimed to
satisfy full-verifiability under the intractability of the factorization problem. This approach is
also used very recently by Zhou et al. [21] together with disguising the modulus p itself, also
assuming the intractability of the factorization problem. They proposed an efficient delegation
scheme with an adjustable verifiability probability using a single untrusted server. However, the
scheme in [21] does not achieve the desired security properties.
Our Contribution. This paper has the following major goals:

1. We analyze two delegation schemes recently proposed at INDOCRYPT 2016 [14] and at
AsiaCCS 2016 [18]:

(a) We show that the scheme in [14] is unfortunately totally unverifiable, i.e. a malicious
server can always cheat the delegator without being noticed, instead of the author’s
claim of satisfying the full verifiability.

(b) We show that the scheme for n simultaneous MEs in [18] does not achieve the claimed
verifiability guarantees; instead of having the verifiability probability 1− 1

2n(n+1) , it only

has the verifiability probability at most 1− n−1
2(n+1) . For instance, it offers a verifiability

probability at most ≈ 0.5909 instead of the author’s claim in [18] offering a verifiability
probability ≈ 0.9955 for n = 10.



2. We propose the first non-interactive fully verifiable secure delegation scheme HideP for MEs
in the OMTUP-model by disguising the prime number p via CRT. HideP is not only com-
putationally much more efficient than the previous schemes but requires also no interactive
round, whence substantially reduces the communication overhead. In particular, hiding p
enables the delegator to achieve both non-interactivity and full verifiability at the same
time efficiently.
Note that the delegator of MEs hides the prime modulus p from the servers, and not from
a party intended to be communicated (i.e. a weak device (delegator) does not hide p with
whom it wants to run a cryptographic protocol). In other words, it solely hides p from the
third-party servers to which the computation of MEs is delegated.

3. We apply HideP to speed-up blinded Nyberg-Rueppel signature scheme [17].

We refer the readers to Appendix which provide a delegated preprocessing technique Rand. It
eliminates the large memory requirement and reduces substantially the computational cost of
the precomputation step. The overall delegation mechanism (i.e. HideP together with Rand)
offers a complete solution for delegating the expensive MEs with full verifiability and security,
whence distinguish our mechanism as a highly usable secure delegation primitive for resource-
constrained devices.

2 Preliminaries & Security Model

In this section, we first revisit the definitions and the basic notations related to the delegation
of MEs. We then give a formal security model by adapting the previous security models of
Hohenberger and Lysyanskaya [12] and Cavallo et al. [6]. Lastly, an overview for the requirements
of the delegation of a ME3 is given.

2.1 Preliminaries

We denote by Zm the quotient ring Z/mZ for a natural number m ∈ N with m > 1. Similarly,
Z∗m denotes the multiplicative group of Zm.
Let σ be a global security parameter given in a unary representation (e.g. 1σ). Let further p and
q be prime numbers with q | (p− 1) of lengths σ1 and σ2, respectively. The values σ1 and σ2 are
calculated at the setup of a cryptographic protocol on the input of σ. Let G =< g > denote the
multiplicative subgroup of Z∗p of order q with a fixed generator g ∈ G.
The process of running a probabilistic algorithm A, which accepts x1, x2, . . . as inputs, and pro-
duces an output y, is denoted by y ← A(x1, x2, . . .). Let (zA, zB , tr)← (A(x1, x2, . . .), B(y1, y2, . . .))
denote the process of running an interactive protocol between an algorithm A and an algorithm
B, where A accepts x1, x2, . . ., and B accepts y1, y2, . . . as inputs (possibly together with some
random coins) to produce the final output zA and zB , respectively. We use the expression tr to
represent the sequence of messages exchanged by A and B during protocol execution. By abuse
of notation, the expression y ← x also denotes assigning the value of x to a variable y.
Delegation Mechanism & Protocol Definition. We assume that a delegation mechanism
consists of two types of parties called as the client (or delegator) C (trusted but resource-
constrained part) and servers U (potentially untrusted but powerful part), where U can consist
of one or more parties. Hence, the scenario raises if C is willing to delegate (or outsource) the
computation of certain functions to U . For a given σ, let F : Dom(F)→ CoDom(F) be a function,
where F’s domain is denoted by Dom(F) and F’s co-domain is denoted by CoDom(F). desc(F)
denotes the description of F. We have two cases for desc(F):

3 In this paper, we introduce a special delegation scheme by working with a subgroup G of the group
Z∗p of prime order q.



1. desc(F) is known to both C and U , or
2. desc(F) is known to C, and another description desc(F′) is given to U such that the function

F can only be obtained from F′ if a trapdoor information τ is given. By abuse of notation,
we sometimes write τ(F) = F′.

From now on, we concentrate on the second case since we propose a delegation scheme in this
scenario. A client-server protocol for the delegated computation of F is defined as a multiparty
communication protocol between C and U and denoted by (C(1σ, desc(F), x, τ),U(1σ, desc(F′))),
where the input x and the trapdoor τ are known only by C. A delegated computation of the
value y = F(x), denoted by

(yC , yS , tr)← (C(1σ, desc(F), x, τ),U(1σ, desc(F′))),

which is an execution of the above client-server protocol using independently chosen random
bits for C and U . At the end of this execution, C learns yC = y, U learns yU ; and tr is the
sequence of messages exchanged by A and B. Note that the execution may happen sequentially
or concurrently. In the case of the delegation of MEs, the aim is to always have yU = ∅.

Factorization Problem We prove some security properties of the proposed scheme later by using
the intractability of the factorization problem4: Given a composite integer n, where n is a product
of two distinct primes p and q, the factorization problem asks to compute p or q. The formal
definition is as follows:

Definition 1. (Factorization Problem) Let σ be a security parameter given in unary represen-
tation. Let further A be a probabilistic polynomial-time algorithm. Let further the primes p and
q, p 6= q, are obtained by running a modulus generation algorithm PrimeGen on the input of σ
with n = pq. Run A with the input n. The adversary A wins the experiment if it outputs either
p or q. We define the advantage of A as

AdvFactA (σ) = Prob [x = p or x = q : (n, p, q)← PrimeGen(1σ), x← A(n)] .

2.2 Security Model

Hohenberger and Lysyanskaya provided first formal simulation-based security notions for secure
and verifiable delegation of cryptographic computations in the presence of malicious powerful
servers [12]. Different security assumptions for delegation of MEs can be summarized according
to [12] as follows:

– One-Untrusted Program (OUP): There exists a single malicious program U performing the
delegated MEs.

– One-Malicious version of a Two-Untrusted Program (OMTUP): There exist two untrusted
programs U1 and U2 performing the delegated MEs but only one of them behaves maliciously.

– Two-Untrusted Program (TUP): There exist two untrusted programs U1 and U2 performing
the delegated MEs and both of them may simultaneously behave maliciously, but they do
not maliciously collude.

Cavallo et al. [6] gave a formal definition for delegation schemes by relaxing the security def-
initions first given in [12]. Although the simulation-based security definitions [12] intuitively
include (whatever can be efficiently computed about secret values with the protocol’s view can

4 We assume here that the prime numbers p and q are chosen suitably that the factorization of n = pq
is intractable.



also be efficiently computed without this view [10]) the most direct way of guaranteeing the
desired secrecy and verifiability, its formalization is unfortunately highly complex and subtle.
Therefore, simpler indistinguishability-based security definitions have been recently used both
in [6] and in [10], which, in particular, include the fact that an untrusted server is unable to
distinguish which inputs the other parties use.
In this section, we adapt the security definitions of [6] for our security requirements to the
OMTUP-model of [12], i.e. the adversary is modeled by a pair of algorithms A = (E ,U ′), where
E denotes the adversarial environment and U ′ = (U ′1,U ′2) is a malicious adversarial software in
place of U = (U1,U2), where exactly one of (U ′1,U ′2) is assumed to be malicious. In the OMTUP-
model we have the fundamental assumption that after interacting with C, any communication
between E and U ′1 or between E and U ′2 pass solely through the delegator C [12].

Completeness. If the parties (C,U1 and U2) executing the scheme follow the scheme specifica-
tions, then C′s output obtained at the end of the execution would be equal to the output obtained
by evaluating the function F on C. The following is the formal definition for completeness:

Definition 2. For the security parameter σ, let (C,U1,U2) be a client-server protocol for the
delegated computation of a function F. We say that (C,U1,U2) satisfies completeness if for any
x in the domain of F, it holds that

Prob[(yC , yS , tr)← (C(1σ, desc(F), x),Ui(1σ, desc(F′)) : yC = F(x)] = 1.

Verifiability. Verifiability means informally that if C follows the protocol, then the malicious
adversary A = (E ,U ′i), i = 1 or i = 2, cannot convince C to obtain some output y′ different
from the actual output y at the end of the protocol. The model let further the adversary
choose C′s trapdoored input τ(F(x)) and take part in exponential/polynomial number of protocol
executions before it attempts to convince C with incorrect output values (corresponding to the
environmental adversary E).

Definition 3. Let (C,U1,U2) be a client-server protocol for the delegated computation of a func-
tion F and U ′ = (U ′1,U ′2) be a malicious adversarial software in place of U = (U1,U2). We say that
(C,U1,U2) satisfies (tv, εv)−verifiability against a malicious adversary if for any A = (E ,U ′i),
either i = 1 or i = 2, running in time tv, it holds that

Prob[out← VerExpF′,A(1σ) : out = 1] ≤ εv,

for small εv, where experiment VerExp is defined as follows:

1. i = 1.

2. (a, τ(F(x1)), aux)← A(1σ, desc(F′))
3. While a 6= attack do

(yi, (a, τ(F(xi+1)), aux), tri)← (C(τ(F(xi))),A(aux))
i← i+ 1

4. τ(F(x))← A(aux)
5. (y′, aux, tri)← (C(τ(F(x))),A(aux))
6. return: 1 if y′ 6=⊥ and y′ 6= F(x)

7. return: 0 if y′ =⊥ or y′ = F(x).

If εv is negligibly small for any algorithm A running in time tv, then (C,U1,U2) is said to satisfy
full verifiability.



Security. Security means informally that if C follows the protocol, then the malicious adversaryA =
(E ,U ′i), i = 1 or i = 2, cannot obtain any information about C′s input x. The model let further
the adversary choose C′s trapdoored input τ(F(x)) and take part in exponential/polynomial
number of protocol executions before it attempts to obtain useful information about C′s input
(corresponding to the environmental adversary E).

Definition 4. Let (C,U1,U2) be a client-server protocol for the delegated computation of a func-
tion F and U ′ = (U ′1,U ′2) be a malicious adversarial software in place of U = (U1,U2). We say
that (C,U1,U2) satisfies (ts, εs)−security against a malicious adversary if for any A = (E ,U ′i),
either i = 1 or i = 2, running in time ts, it holds that

Prob[out← SecExpF′,A(1σ) : out = 1] ≤ εs,

for negligibly small εs for any algorithm A running in time ts, where experiment SecExp is
defined as follows:

1. (a, τ(F(x1)), aux)← A(1σ, desc(F′))
2. While a 6= attack do

(yi, (a, τ(F(xi+1)), aux), ·)← (C(τ(F(xi))),A(aux))
i← i+ 1

3. (τ(F(x0)), τ(F(x1)), aux)← A(aux)
4. b← 0, 1
5. (y′, b′, tr)← (C(τ(F(xb))),A(aux))
6. return: 1 if b = b′

7. return: 0 if b 6= b′.

Remark 1. We emphasize that the above security definition corresponds to the OMTUP-model
of [12]. As in [12], the adversary A corresponds to both E and U ′, and can only interact each
other over C after they once begin interacting with C. The behavior of both parts (E and U ′)
is modeled as a single adversary A by letting the adversary A submit its own inputs to C and
see/take part in multiple executions of (C,U1,U2).

Efficiency Metrics. (C,U1,U2) has efficiency parameters

(tF, tmC , tC , tU1 , tU2 , cc,mc)

where F can be computed using tF(σ) atomic operations, requires tmC (σ) atomic storage for C,
C computes tC(σ) atomic operations, Ui can be run using tUi(σ) atomic operations, C and Ui
exchange a total of at most mc messages of total length at most cc for i = 1, 2. 5

2.3 Steps of a Delegation Scheme

Let p and q be distinct prime numbers. We now give four main steps of a delegation of ua mod p
under the OMTUP-model, where u ∈ G, a ∈ Z∗q and G is a subgroup of Z∗p of order q.

1. Precomputation: Invocation of the subroutine Rand: A preprocessing subroutine Rand
is required to randomize u and a and to generate the trapdoor information τ , see Appendix
for the details.

5 We here only consider the group operations like group multiplications, modular reduction, inversions
and exponentiations as atomic operations, and neglect any lower-order operations such as congruence
testing, equality testing, and modular additions.



2. Randomizing a ∈ Z∗q and u ∈ G. The base u and the exponent a are both randomized
by C by performing only modular multiplications (MMs) in Z∗q and G with the values from
Rand using the trapdoor information τ .

3. Delegation to servers. The randomized elements are queried to the servers U1 and U2 by
using τ . For i = 1, 2, Ui(τ(α), τ(h)) denotes the delegation of hα mod p with α ∈ Z∗q , h ∈ G
using the trapdoor information τ in order to disguise the parameters p, q, whence the
concrete description of G.

4. Verification of the delegated computation. Upon receiving the outputs of U1 and U2,
the validity of the delegated computation is verified by comparing the received data with
some elements from Rand. If the verification fails, an error message ⊥ is returned.

5. Derandomizing outputs and computing ua mod p. If the verification is successful, then
ua mod p is computed by C by performing only MMs.

3 Verifiability Issues in Two Recent Delegation Schemes

In this section, we show two verifiability issues for recently proposed delegation schemes appeared
in INDOCRYPT 2016 [14] and AsiaCCS 2016 [18]. We recall the original schemes briefly before
the attacks to give a self-contained paper and make the attacks easily understandable for readers.

3.1 An Attack on the Verifiability of Kuppusamy and Rangasamy’s Scheme from
INDOCRYPT 2016

Using CRT, Kuppusamy and Rangasamy proposed a highly efficient secure delegation scheme
for MEs in subgroups of Z∗p [14].
The scheme in [14] takes as inputs the base u ∈ G and the exponent a ∈ Z∗q , and outputs the
value ua mod p, where G =< g1 > is a subgroup of Z∗p of prime order q.
Initialization: Set n = pr1r2 for distinct primes r1 6= p and r2 6= p and subgroups G1,G2 of
Z∗r1 and Z∗r2 of distinct prime orders q1 6= q and q2 6= q, respectively. By using a preprocessing
technique described in Appendix, the value (θ, gθ1) ∈ Z∗p × G is computed; and x ∈ Zn is
constructed by CRT with

x ≡ u · gθ1 mod p, x ≡ h mod r1, and x ≡ g2 mod r2.

Masking the value a. C invokes a preprocessing technique to obtain the pairs (α, gα2 ) ∈ Z∗r2×G2

and (β, gβ2 ) ∈ Z∗r2 ×G2. Then, C computes

1. a1 ≡ a− α mod q,
2. a2 ≡ a− β mod q.

Queries to U1. C invokes a preprocessing technique once more to obtain the pair (t, gt1) ∈ Z∗p×G,
and sends the following query to U1 in random order:

1. U1(a1, x, n)←− D11 ≡ xa1 mod n,
2. U1(β, x, n)←− D12 ≡ xβ mod n,
3. U1(−aθ/t, gt1, p)←− D13 ≡ g−aθ1 mod p.

Queries to U2. Similarly, C sends the following query to U2 in random order:

1. U2(a2, x, n)←− D21 ≡ xa2 mod n,
2. U2(−aθ/t, gt1, p)←− D22 ≡ g−aθ1 mod p.



Verification. C verifies

– gβ2
?≡ D12 mod r2,

– D11 · gα2
?≡ D12 ·D21 mod r2,

– D13
?≡ D22 mod p.

Recovering. If the verification step passes successfully, then C computes

ua ≡ D12 ·D13 ·D21 mod p. (1)

If the verification step fails, then C outputs ⊥.
We now show that the scheme is unfortunately totally unverifiable.
Attack: Assume first that the server U1 is malicious and U2 is honest. Since the prime p is
public, U1 can compute r1r2 = n/p, and return the bogus values

Y11 :≡ D11 + r1r2 mod n, and Y12 :≡ D12 + r1r2 mod n. (2)

Now, U1 can successfully distinguish D11 and D12 from D13 with probability 1 since the first
component of D13 is an element of G whereas the first components of D11 and D12 are elements
of Zn. Afterwards, by the choices of the distinct primes p, r1 and r2, and the properties Y12 ≡
D12 mod r2 and Y11 ≡ D11 mod r2, U1 can pass the verification step with Y11 and Y12 instead
of using D11 and D12, respectively. This leads to the bogus final output

Y12 ·D21 ·D13

instead of the actual output ua = D12 ·D13 ·D22 given in Congruence (1).
Similarly, a malicious U2 can successfully distinguish D21 from D22 with probability 1 since the
first component of D22 is an element of G whereas the first component of D21 is an element of
Zn. Then, U2 can act as the untrusted server by computing

Y21 ≡ D21 + r1r2 mod r2. (3)

Afterwards, by the choices of the distinct primes p, r1 and r2 and the property Y21 ≡ D21 mod r2,
U2 can pass the verification step with the bogus value Y21. This results in the output

D12 · Y21 ·D13

instead of ua = D12 ·D13 ·D21 given in Congruence (1). Hence, the scheme in [14] is unfortunately
totally unverifiable and the claim regarding full verifiability [14, Thm. 2, pp. 90] does not hold.

3.2 An Attack on the Verifiability of Ren et al.’s Simultaneous Delegation
Scheme from AsiaCCS 2016

Ren et al. proposed the first fully verifiable two-round secure delegation scheme for GEs to-
gether with a delegation scheme of n simultaneous MEs [18].
The delegation scheme for n simultaneous MEs in [18] takes as inputs the base elements
u1, · · · , un ∈ G and the exponents a1, · · · , an ∈ Z∗q , and outputs ua11 · · ·uann mod p, where p
is a prime number, G =< g > is a subgroup of Z∗p of prime order q.
By using a preprocessing technique described in Appendix, the values

(α, v = gα), (β, µ = gβ), (t1, g
t1), (t2, g

t2) ∈ Z∗q ×G

is computed. Furthermore, two blinding tuples (b, b−1, g−b), (c, c−1, g−c) is also computed at the
precomputation step. Note that since no preprocessing techniques are known, the inverses b−1

and c−1 are required to be computed by C or another (honest) server.



Masking. C splits

ua11 · · ·uann ≡ (vw1)a1 · · · (vwn)an mod p

≡ gα(a1+···an)wa11 · · ·wann mod p

≡ gβgγwa11 · · ·wann mod p

with wi = ui/v and γ = ((
∑n
i=1 ai)α− β) for 1 ≤ i ≤ n.

First Queries C chooses a random i ∈ {1, 2, · · · , n} sends the following queries to U1 in random
order:

1. U1(b/t1, wig
t1)←− D111 ≡ wb/t1i gb mod p,

2. U1(b/t1, (
∏n
j=1,i6=j wj)g

t1)←− D112 ≡ (
∏
j=1,i6=j)

nwj)
b/t1gb mod p,

Similarly, C sends the following queries to U2 in random order:

1. U2(c/t1, wig
t1)←− D211 ≡ wc/t1i gc mod p,

2. U2(c/t1, (
∏n
j=1,i6=j wj)g

t1)←− D212 ≡ (
∏
j=1,i6=j)

nwj)
c/t1gb mod p.

Upon receiving D11i and D21i from U1 and U2, i = 1, 2, C computes

Wb := w
b/t1
i ≡ D111g

−b, (

n∏
j=1,i6=j

wj)
b/t1 ≡ D112g

−b,

Wc := w
c/t1
i ≡ D211g

−c, (

n∏
j=1,i6=j

wj)
c/t1 ≡ D212g

−c.

Second Queries C sends the following queries to U1 in random order:

1. U1(γ/t2, g
t2)←− D12 ≡ gγ mod p,

2. U1(aj − c/t1, wj)←− D13j ≡ w
aj−c/t1
j mod p for 1 ≤ j ≤ n, i 6= j,

3. U1(ait1/c, w
c/t1
i )←− D13i ≡ waii mod p.

Similarly, C sends the following queries to U2 in random order:

1. U2(γ/t2, g
t2)←− D22 ≡ gγ mod p,

2. U2(aj − b/t1, wj)←− D23j ≡ w
aj−b/t1
j mod p for 1 ≤ j ≤ n, i 6= j,

3. U2(ait1/b, w
b/t1
i )←− D23i ≡ waii mod p.

Verification of the Output-Correctness of {U1,U2}. Upon receiving the queries D12, D13i

and D13j from U1, and D22, D23i and D23j from U2 for 1 ≤ j ≤ n, C verifies

1. D12
?≡ D22 mod p,

2. D13i
?≡ D23i mod p,

3. T :≡Wc ·
∏n
j=1D13j

?≡Wb ·
∏n
j=1D23j mod p.



Recovering. If every congruence in the verification step holds, then C believes that the values
have been computed correctly. It outputs

ua11 · · ·uann ≡ gβ ·D12 · T mod p. (4)

If the verification step fails, then C outputs ⊥.
We now show that the author’s claim [18, Thm. 4.2, pp. 298] does not hold.
Attack: Assume without loss of generality that the server U2 is malicious and U1 is honest.
Then, U2 chooses a random θ ∈ G and sends the bogus value

T212 ≡ D212 · θ

instead of D212 after correctly distinguishing D212 from D211 with probability at least 1/2. Then,
C computes

Θ := θ(

n∏
j=1,i6=j

wj)
c/t1 ≡ T212g−c.

In order to pass the verification step with Θ · T instead of T , U2 requires to find an output T23j
with T23j 6∈ {D22, D23i}, i.e. T23j ≡ D23j mod n for some i 6= j, and sends θ · T23j instead of
T23j . Now, since there are n(n+ 1)/2 pairs from the set

D := {D22, D231, · · · , D23n}

we totally have n(n − 1) possibilities for T23j corresponding to a single component of such a
pair. If (Θ1, Θ2) is a pair from the set D. Then,

1. there exists 2 values for T23j which can be detected by C corresponding to the single pair
with (Θ1, Θ2) ≡ (D22, D23i) mod p,

2. there exists n − 1 values of T23j which can be detected by C corresponding to the pairs of
the form (Θ1, Θ2) with T1 = Θ1 ≡ D22 and Θ2 6≡ D23i,

3. there exists n − 1 values of T23j which can be detected by C corresponding to the pairs of
the form (Θ1, Θ2) with T23j = Θ1 ≡ D23i and Θ2 6≡ D12.

Therefore, there exist

n(n+ 1)− 2− (n− 1)− (n− 1) = n(n+ 1)− 2n = n(n− 1)

possible values for T23j with T23j 6∈ {D22, D23i}. Combining with the probability of correctly

guessing the position of D232, the server U2 can cheat C with a probability at least n(n−1)
2n(n+1) =

n−1
2(n+1) . Hence, the scheme is verifiable with a probability at most 1 − n−1

2(n+1) instead of the

author’s claim that the scheme would be verifiable with a probability 1 − 1
2n(n+1) . Thereby it

also leads to a bogus output θua11 · · ·uann .
For example with n = 10 and n = 100, the scheme is verifiable only with probabilities at most
13/22 ≈ 0.5909 and 103/202 ≈ 0.5099 instead of the claims with probabilities 219/220 ≈ 0.9955
and 20199/20200 ≈ 0.9999, respectively. Clearly, the verification probability becomes 1/2 if n
tends to infinity.

4 HideP: A Secure Fully Verifiable One-Round Delegation Scheme
for Modular Exponentiations

In this section, we introduce our secure delegation scheme HideP in the OMTUP-model.
Let G =< g > denote the multiplicative subgroup of Z∗p of prime order q with a fixed generator



g ∈ G. Our scheme HideP uses another prime r 6= p of length σ1 (e.g. p and r are of about the
same size) such that G1 is a subgroup of prime order q1 of length σ2 (e.g. q and q1 are of about
the same size). We set n := p · r and m := q1 · q. Note that HideP uses the prime number p as a
trapdoor information, i.e. p must be kept secret to both U1 and U2.
Throughout the section Ui(α, h) denotes that Ui takes (α, h) ∈ Z∗m ×Z∗n as inputs, and outputs
hα mod n for i = 1, 2, as described in Section (2).

4.1 HideP: A Secure Fully Verifiable One-Round Delegation Scheme

Our aim is to delegate ua mod p with a ∈ Z∗q and u ∈ G.
We now describe our scheme HideP. Public and private parameters of HideP are given as follows:
Public parameter: n,
Private parameters: Prime numbers p, r, q, and q1, description of the subgroup G of Z∗p of
order q, u ∈ G, a ∈ Z∗q ..6
Additionally, the static values

Qr :≡ r · (r−1 mod p) mod n, Qp :≡ p · (p−1 mod r) mod n, (5)

Qq1 :≡ q1 · (q−11 mod q) mod m, Qq :≡ q · (q−1 mod q1) mod m, (6)

and

R :≡ g ·Qr + g1 ·Qp mod n (7)

are calculated at the initialization of HideP.

Precomputation. Using the existing preprocessing technique or a delegated version Rand as
described in Appendix, C first outputs

(Gt ≡ gtQr mod n, Gγt ≡ gγtQr mod n, Hγt ≡ gγt1 Qp mod n),

(Ht1 ≡ g
t1
1 Qp mod n, Ht2 ≡ g

t2
1 Qp mod n, gt1 mod r),

and

(γ−1 mod m, T1 ≡ t1Qq mod m, T2 ≡ t2Qq mod m)

for random elements t1, t2, t ∈ Z∗m with t = t1 + t2.

Masking. The base u is randomized by C with

x1 ≡ u ·Gt +Ht1 mod n, (8)

x2 ≡ uGt +Ht2 mod n, (9)

y ≡ Gγt +Hγt mod n. (10)

6 More precisely, hiding p enables the delegator to achieve the full verifiability in a single round unlike
the fully verifiable scheme in [18] which requires an additional round of communication. The reason
is that it is possible for C to send the randomized base and the exponent by a system of simultaneous
congruences, and recover/verify the actual outputs by performing modular reductions (once modulo
p for recovery, and once modulo r for verification) in a single round. Note that for a given p each
client C is required to use the same prime number r since otherwise p can be found by taking gcd’s
of different moduli.



Note that by CRT we have

x1 ≡ x2 ≡ ugt mod p, y ≡ gγt mod p,

and

x1 ≡ gt11 mod r, x2 ≡ gt21 mod r, y ≡ gγt1 mod r.

Then, the exponent a is first written as the sum of two randomly chosen elements a1, a2 ∈ Z∗m
with a = a1 + a2. Then, the following randomizations are also computed by C

α1 ≡ a1 ·Qq1 + T1 mod m, (11)

α2 ≡ a2 ·Qq1 + T2 mod m, (12)

α3 ≡ −a · γ−1 mod m. (13)

Query to U1. C sends the following queries in random order to U1:

1. U1(α1, x1)←− X1 ≡ xα1
1 mod n,

2. U1(α3, y)←− Y1 ≡ yα3 mod n.

Query to U2. Similarly, C sends the following queries in random order to U2:

1. U2(α2, x2)←− X2 ≡ xα2
2 mod n,

2. U2(α3, y)←− Y2 ≡ yα3 mod n.

Verifying the Correctness of the Outputs of {U1,U2}. Upon receiving the queries X1

and Y1 from U1, and X2 and Y2 from U2, respectively, C verifies

(X1 mod r) · (X2 mod r)
?≡ gt1 (14)

and

Y1
?≡ Y2 mod n. (15)

Recovering ua. If Congruences (14) and (15) hold simultaneously, then C believes that the
values X1, X2, Y1 and Y2 have been computed correctly. It outputs

ua ≡ (X1 mod p) · (X2 mod p) · (Y1 mod p). (16)

If the verification step fails, then C outputs ⊥.

5 Security and Efficiency Analysis

In this section, we give the security analysis of HideP and give a detailed comparison with the
previous schemes.



5.1 Security Analysis

Theorem 1. Let F ′ be given by the exponentiation modulo n = pr, where the trapdoor in-
formation τ is given by the primes p and r, p 6= r. Let further (C,U1,U2) be a one-client,
two-server, one-round delegation protocol implementation of HideP. Let the adversary be given
as A = (U ′, E) in the OMTUP-model (i.e. U ′ = (U ′1,U ′2) and at most one of U ′i is malicious with
i = 1 or i = 2). Then, in the OMTUP-model, the protocol (C,U1,U2) satisfies

1. completeness for HideP,

2. security for the exponent a and the exponentiation ua against any (computationally unre-
stricted) malicious adversary A, i.e. εs = 0, and security for the base u with ts = poly(σ)
and εs = AdvFactA′ (σ),

3. full verifiability for any malicious adversary A, where tv = poly(σ) and εv = AdvFactA (σ), and
verifiability for any computationally unrestricted malicious adversary A with εv = 1/2 + ε,
where ε is negligibly small in σ,

4. efficiency with parameters where (tF, tmC , tC , tU1 , tU2 , cc,mc), where

– F can be computed by performing tF = 1 exponentiation modulo p

– C′s memory requirement is tmC consists of 1 output of the Rand scheme,

– C can be run by expending tC atomic operations consisting of 7 modular multiplications
and 5 modular reductions (2 multiplications modulo p, 1 multiplication modulo r, 3 multi-
plications modulo m, 1 multiplication modulo n, 2 reductions modulo r, and 3 reductions
modulo p),

– Ui, i = 1, 2 computes tUi = 2 exponentiations modulo n for each i = 1, 2,

– C and Ui exchange a total of at most mc = 4 messages of total length cc consisting of 2
elements modulo m and 2 elements modulo n for i = 1, 2.

Proof. We first note that the efficiency results can easily be verified by inspecting the description
of HideP for the efficiency parameters given above. Throughout the rest of the proof we assume
without loss of generality that U1 is a malicious server, i.e. adversary is given as A = (U1, E).

Completeness. We first prove the completeness of the verification step. Since the same base y
and the exponent α3 are delegated to both U1 and U2, the congruence Y1 ≡ Y2 ≡ yα3 holds
by the OMTUP assumption. Furthermore, by the choice of T1 ≡ t1Qq, T2 ≡ t2Qq, we have the
congruences

a1Qq1 + T1 ≡ t1 mod q1, a2Qq1 + T2 ≡ t2 mod q1.

Then, together with the equality t = t1 + t2 the following congruence holds:

(X1 mod r) · (X2 mod r) ≡ (xα1
1 mod r) · (xα2

2 mod r)

≡ gt11 · g
t2
1 mod r

≡ gt1+t21 mod r

≡ gt1 mod r.

Hence, the result follows for the verification step. Then, the result follows by the congruences

a1Qq1 + T1 ≡ a1 mod q, a2Qq1 + T2 ≡ a2 mod q,



the equality a = a1 + a2 and Lagrange’s theorem

(X1 ·X2 mod p) · (Y1 mod r) ≡ (xα1
1 · x

α2
2 mod p) · (yα3 mod p)

≡ (ugt)a1 · (ugt)a2 · g−atγγ
−1

mod p

≡ (ugt)a1+a2 · g−at mod p

≡ (ugt)a · g−at mod p

≡ ua · gat · g−at mod p

≡ ua · gat−at mod p

≡ ua mod p.

Security. We argue that HideP satisfies security under the OMTUP-model due to the following
observations:

1. On a single execution of (C,U1,U2) the input (α, x) in the query sent by C to the adversary
A = (U1, E) does not leak any information about u, a and ua. The reason is that
– u is randomized by multiplying with gt which is random. Hence, the adversary A cannot

obtain any useful information about u even if the factors p, r of n are known,
– a is randomized by a1 and a2 and aγ. Hence A cannot obtain any useful information

about a by obtaining a1 through x1 and aγ mod p even if it knows the factors p, r and
q, q1 of n and m, respectively.

– To obtain useful information about ua, A requires to know x2 which is random and not
known by the OMTUP assumption.

2. Even if the adversary A sees multiple executions of (C,U1,U2) wherein the inputs of C are
adversarially chosen,A cannot obtain any useful information about the exponent a chosen by
C, and the desired exponentiation ua in a new execution since logical divisions of a = a1 +a2
at each execution involve freshly generated random elements. This implies that εs = 0 for
the exponent a and the output ua mod p. Assume that A can break the secrecy of the base
u with a non-negligible probability. In particular, it can obtain useful information about
both elements u · GT and ugt with a non-negligible probability, where GT ≡ gt mod p for
some t. Then, A can obtain gcd((uGT − ugt), n). This gives the factors p and r of n with a
non-negligible probability as u ·GT ≡ ugt mod p holds. This implies that ts = poly(σ) and εs
is at most AdvFactA (σ), i.e. (C,U1,U2) is a secure implementation of HideP if the factorization
problem is intractable .

In particular, these arguments show that (C,U1,U2) provides unconditional security for the
exponent a and the output ua against any (computationally unrestricted) adversary and security
for the base u against any polynomially bounded adversary.

Verifiability. Since Y1 and Y2 both have the same base and exponent elements, U1 cannot cheat
the delegator C by manipulating Y1 by the OMTUP assumption. This means that U1 can only
pass the verification step by manipulating the output X1. Hence, the result εp = 1/2 + ε (where
ε is negligibly small in the security parameter σ) holds for any adversary U1 since U1 needs to
know the correct position of x1 which has at most 1/2. We now show that if there exists an
adversary A that breaks the verifiability property with a non-negligible probability, then A can
be used to effectively solve the factorization problem. Assume now that U1 as a malicious server
passes the verification step with a bogus output Z1 (instead of X1 = xα1

1 ) with a non-negligible
probability. Then, the following congruence must hold for any arbitrary output X2 of the honest
server U2

Z1X2 ≡ X1.X2 ≡ gt1 mod r (17)



with a non-negligible probability. This implies that U1 can decide whether the congruence Z1 ≡
X1 mod r holds with a non-negligible probability. We note that Z1 6≡ 0 mod r as otherwise
Congruence 17 cannot hold with gt1 6≡ 0 mod r. This implies that Z1 −X1 ≡ 0 mod r and that
Z1 6≡ 0 mod r. From the inequality Z1 − X1 < n (when the representatives are considered as
integers), it follows that U1 can compute gcd(Z1 −X1, n) = r with a non-negligible probability.
Hence, U1 can obtain information about both the factors p and r of n with a non-negligible
probability. This implies that tv = poly(σ) and εv is at most AdvFactA (σ). ut

Secret p # MMs # Servers # Rounds # Queries Verifiability

[12] TC’05 no 509 2 1 8 1/2

[9] ESORICS’12 no 307 2 1 6 2/3

[20] ESORICS’14 no 508 1 1 4 1/2
(χ = 264)

[13] IJIS’16 (c = 4) no 200 1 2 60 9/10

[18] AsiaCCS’16 no 512 2 2 6 1

[14] INDOCRYPT’16 no 27 2 1 5 0

[21] IEEE’17(b = 16) yes 69 1 1 4 31/32

HideP yes 24 2 1 4 1

Table 1. Comparison of Computational and Communication Costs for C.

5.2 Comparison

We now compare HideP with the previous delegation schemes for MEs. We denote by MM a
modular multiplication, MI a modular inversion, and MR a modular reduction. Throughout
the comparison we make the following assumptions:

– we regard 1 MM modulo n as ≈ 4 MMs modulo p,
– 1 MM modulo p and 1 MM modulo r cost approximately the same amount of computation,
– 1 MI is at worst 100 times slower than 1 MM (see [13]),
– we regard 1 MR costs approximately 1 MM (e.g. by means of Barret’s or Mongomery’s

modular reduction techniques).

We give the delegator’s computational workload in Table 1 by considering the approximate
number of MMs modulo p. In particular, Table 1 compares computational cost and communi-
cation overhead of HideP with the previous schemes. It shows that HideP has not only the best
computational cost but requires also only a single round with 4 queries (instead of 2 rounds and
6 queries when compared with the only scheme in the literature satisfying full verifiability [18]).

6 Application: Verifiably Delegated Blind Signatures

Blind signatures were introduced by Chaum [7] and allow a user to obtain the signature of
another user in such a way that the signer do not see the actual message to be signed and the
user without having knowledge of the signing key is able to get the message signed with that
key. Blind signatures are useful in privacy preserving protocols. For example, in e-cash scenario,
a bank needs to sign blindly the coins withdrawn by its users. Normally, in blind signature



Fig. 1. CPU time: HideP vs. Computation

CPU cost for ua mod p
p-size Delegation Computing Gain

cost(ms) cost(ms) factor

512-bit 390 843 ≈ 2.16

1024-bit 421 1216 ≈ 2.89

2048-bit 452 3697 ≈ 8.18

3072-bit 515 9684 ≈ 18.80
Table 2. CPU cost: HideP vs. Computation

Experiments were conducted on a laptop with an Intel Core i5 2.6 GHz processor and 4 GB RAM.
Results presented were taken out of 1000 iterations. The comparison is between the CPU time for

HideP’s 24 MMs and local computation of a ME

protocols, both the signer and the verifier have to compute MEs using private and public keys,
respectively. As an example, delegation of MMs in blinded Nyberg-Rueppel signature scheme
[17,2] using HideP is depicted in Fig. 2. It is also evidenced from Fig. 1 that the time taken
by HideP is much smaller than that of directly computing ua mod p, and this gain in CPU
time increases rapidly with the size of the modulus. Hence, HideP becomes more attractive for
resource-constrained scenario such as mobile environment when we go for higher security levels.

7 Conclusion

In this work, we addressed the problem of secure and verifiable delegation of MEs. We observed
that two recent schemes [14,18] do not satisfy the claimed verifiability probabilities. We presented
an efficient non-interactive fully verifiable secure delegation scheme HideP in the OMTUP-model
by disguising the modulus p using CRT. In particular, HideP is the first non-interactive fully
verifiable and the most efficient delegation scheme for modular exponentiations leveraging the
properties of Zp via CRT. As future works, proposing an efficient fully verifiable delegation



Cloud Servers

Signer(gx) Verifier

r = mgaRb (p)

m′ = rb−1 (q)

c = m′x+ k (q) σ = cb+ a (q)

R=gk←HideP(.)

1

ga&Rb←HideP(.)
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R
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m′

4

c
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Fig. 2. Delegating Blinded Nyberg-Rueppel Signature

scheme without any requirement of online or offline computation of MEs by the delegator (or
its impossibility) under the TUP/OUP assumptions could be highly interesting.
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Appendix: The Precomputation Step of HideP

We now propose a fully verifiable delegated precomputation step Rand in the OMTUP-model
in order to improve the overall efficiency of HideP. In other words, Rand can be used in place of
the other preprocessing techniques [5,4,20] to reduce the computational cost of the delegator C.
The reason is that one can remove the requirement of offline computation of MEs by delegating
the preprocessing subroutine of HideP.
We first briefly revisit the existing preprocessing techniques for the delegation of GEs. Then,
we introduce our delegated preprocessing technique Rand. The security and efficiency analysis
is given subsequently. Lastly, we give a comparative analysis of Rand with the previous prepro-
cessing techniques to show its efficiency.

Rand: Precomputation via a Power Generator

Some pseudorandom pairs (k, gk) ∈ Zp × G are required to randomize the base-element u, the
exponent a, or preferably both, by C before delegating the MEs to untrusted servers. Depending
on the available memory capacity of C and the existence of an online trusted server, there are
mainly three different approaches:

1. Performing the computation for arbitrary values of k (either offline by C itself or by an online
trusted third party server) using speed-up techniques like batch exponentiations proposed in
[15],



2. Performing the computation for specially chosen values of k (either offline by C itself or by an
online trusted third party server by e.g. choosing k with low Hamming weight [1], choosing
it as a random Frobenius expansion of low Hamming weight [11] or a random element within
some addition chains [19]),

3. Performing a large amount of precomputation by storing a fixed number of offline elements
(xi, g

xi) which could be computed at the initialization of the system by C or stored to C by
a trusted server (static table). This computation of the pairs (k, gk) ∈ Zp × G performing
MMs from a random subset of the static table yields to outputs (dynamic table) whose
distribution is statistically close to the uniform distribution for carefully chosen parameters
[5,4,20].

We refer to [3] for a detailed discussion about the security of the above preprocessing techniques,
optimal choices for a given amount of memory, and an efficient technique for halving the storage
cost by using pseudo-random functions (PRF).

The Rand Scheme

Our aim is to give another way of generating fresh pseudorandom pairs of the form (k, gk) ∈
Zp×G; we also delegate its computation by Rand to untrusted servers which could be performed
totally independent of the other steps of HideP. Assume that g1 is a fixed generator of G1. C
has a static tuple

(s mod m,h, h1) ∈ Z∗m ×G×G1 (18)

generated at the initialization stage only once. This could be done at the initialization either

1. by the delegator C itself, or

2. by a trusted server (e.g. an HSM or any secure hardware component),

such that s is a random chosen element with

h :≡ gs mod p, h1 :≡ gs1 mod r. (19)

Additionally, the static values

Qr :≡ r · (r−1 mod p) mod n, Qp :≡ p · (p−1 mod r) mod n, (20)

Qq1 :≡ q1 · (q−11 mod q) mod m, Qq :≡ q · (q−1 mod q1) mod m, (21)

and

R :≡ g ·Qr + g1 ·Qp mod n (22)

are also computed and stored only once at the initialization as defined in Section (4).

Remark 2. Note that a similar initialization is also required in the existing preprocessing tech-
niques in order to store the static table [3]. Nevertheless, delegation of the preprocessing subrou-
tine via Rand improves the efficiency of the overall delegation mechanism considerably, especially
when compared with the other preprocessing techniques since generation of blinding pairs (dy-
namic table from a static one) requires each time the computation of a large number of MMs
by the delegator side C whereas Equations (18), (19), (20), (21), (22) are computed only once
at the initialization for the set-up of Rand.



Rand takes no input except the global parameters including the above static values. Rand gen-
erates random values t, γ ∈ Z∗m such that t = t1 + t2 for a randomly chosen t1 ∈ Z∗m, and
outputs

(Gt ≡ gtQr mod n, Gγt ≡ gγtQr mod n, Hγt ≡ gγt1 Qp mod n),

(Ht1 ≡ g
t1
1 Qp mod n, Ht2 ≡ g

t2
1 Qp mod n, gt1 mod r),

and
(γ−1 mod m, T1 ≡ t1Qq mod m, T2 ≡ t2Qq mod m).

Firstly, C computes
α1 ≡ t1 − s mod m, (23)

α2 ≡ t2 − s mod m, (24)

and
β ≡ t · γ − s mod m. (25)

Queries to U1. C sends the following queries to U1 in random order:

1. U1(α1, R)←− T11 ≡ Rα1 mod n,
2. U1(α2, R)←− T12 ≡ Rα2 mod n,
3. U1(β,R)←− T13 ≡ Rβ mod n.

Queries to U2. Similarly, C sends the following queries to U2 in random order:

1. U2(α1, R)←− T21 ≡ Rα1 mod n,
2. U2(α2, R)←− T22 ≡ Rα2 mod n,
3. U2(β,R)←− T23 ≡ Rβ mod n.

Verification of the Output-Correctness of {U1,U2}. Upon receiving the queries T1i from
U1, and T2i from U2 for i = 1, 2, 3, C verifies

T1i
?≡ T2i mod n, 1 ≤ i ≤ 3. (26)

Recovering. If Congruences (26) holds, then C believes that T1i and T2i have been computed
correctly for i = 1, 2, 3. It outputs

(Gt ≡ ((T11 mod p) · h) · ((T12 mod p) · h) ·Qr mod n) , (27)

(Ht1 ≡ ((T11 mod r) · h1) ·Qr mod n) , (28)

(Ht2 ≡ ((T12 mod r) · h1) ·Qr mod n) , (29)(
gt1 ≡ ((T11 mod r)h1) · ((T12 mod r)h1)

)
, (30)

(Gγt ≡ ((T13 mod p) · h) ·Qr mod n) , (31)

(Hγt ≡ ((T13 mod r) · h1) ·Qr mod n) , (32)(
γ−1 mod m, T1 ≡ t1 ·Qq mod m, T2 ≡ t2 ·Qq mod m

)
. (33)

If the verification step fails, then C outputs ⊥.



Remark 3. We refer to the comparison subsection which gives additional arguments explaining
why Rand is more beneficial with respect to the others precomputation techniques. We also
emphasize here however that delegation via Rand can also be done once for many MEs, and
it is totally independent of the online phase since a single independent interaction of C with
the servers via the delegation using Rand is much more efficient than utilizing the existing
precomputation techniques several times at each delegation.

Security and Efficiency Analysis

We now give the security analysis of Rand and give a comparison with the previous preprocessing
techniques.

Theorem 2. Let F ′ be given by the exponentiation modulo n = pr, where the trapdoor informa-
tion τ is given by the primes p and r, p 6= r. Let further (C,U1,U2) be a one-client, two-server,
one-round delegation protocol implementation of Rand. Let the adversary be given as A = (U ′, E)
in the OMTUP-model (i.e. U ′ = (U ′1,U ′2) and at most one of U ′i is malicious with i = 1 or i = 2).
Then, in the OMTUP-model, the protocol (C,U1,U2) satisfies

1. completeness for Rand,

2. security of the outputs for Rand against any (computationally unrestricted) malicious adver-
sary A, i.e. εs = 0

3. full verifiability for Rand against any (computationally unrestricted) malicious adversary A,
i.e. εv = 0

4. efficiency with parameters where (tF, tmC , tC , tU1 , tU2 , cc,mc), where

– F can be computed by performing tF atomic operations consisting of 3 exponentiations
modulo n, 1 inversion modulo m, and 2 multiplications modulo m,

– C′s memory requirement is tmC = 8 group elements (3 elements modulo m, 1 element
modulo p, 1 element modulo r, 3 elements modulo n),

– C runs by computing tC atomic operations consisting of 16 modular multiplications, 6
modular reduction, and 1 modular inversion (3 multiplications modulo p, 4 multiplica-
tions modulo r, 6 multiplications modulo n, 3 multiplications modulo m, 3 reduction
modulo p, 3 reduction modulo r, and 1 inversion modulo m),

– Ui, i = 1, 2 computes tUi atomic operations consisting of 3 exponentiations modulo n for
each i = 1, 2,

– C and Ui exchange a total of at most mc = 4 messages of total length cc which consists
of 3 elements modulo m and 1 element modulo n for i = 1, 2.

Proof. Similar to the proof of Theorem 1, the efficiency results can be verified easily by inspect-
ing the scheme description for the efficiency parameters (tF, tmC , tC , tU1 , tU2 , cc,mc).

Completeness. Since we delegate the computation of the same exponent and the same bases to
both U1 and U2, the verification steps hold trivially. Additionally, the outputs γ−1, T1 and T2
are solely computed by C, whence they are complete. Moreover, it is obvious from CRT and the
choice of R that

R ≡ g mod p, and R ≡ g1 mod r.



Then, the congruences:

Gt ≡ (T11 · h mod p)Qr mod n

≡ (Rα · h mod p)Qr mod n

≡ (gt−s · gs mod p)Qr mod n

≡ (gt−s+s mod p)Qr mod n

≡ (gt mod p)Qr mod n

≡ gtQr mod n,

and

Gγt ≡ (T12 · h mod p)Qr mod n

≡ (Rβ · h mod p)Qr mod n

≡ (gγt−s · gs mod p)Qr mod n

≡ (gγt−s+s mod p)Qr mod n

≡ (gγt mod p)Qr mod n

≡ gγtQr mod n.

hold. Results for Ht1 , Ht2 , Hγt, and gt follow similarly.

Secrecy. On a single execution of (C,U1,U2), the elements α1, α2, β, R in the queries sent by
C to both U1 and U2 do not leak any useful information about t1, t2, γ and the outputs to the
adversary A = (U ′1,U ′2, E) in the OMTUP-model since they are randomized by a secret random
element s. Even if A sees multiple executions of (C,U1,U2), it cannot find any useful information
about the exponent t1, t2, γ chosen by C in a new execution unless it obtains useful information
about s since freshly chosen random elements are used by C at each execution. We note that
there exists no input of C except public parameters, thence nothing can be adversarially chosen
by A in advance. An adversary A can obtain for example the differences of the inputs `(0) and
`(1) in two executions as `(0) − s − (`(1) − s) = `(0) − `(1) for any ` ∈ {t1, t2, γt}. This value
however is a random value due to the randomness of `(0) and `(1) which leaks no information
about s and the outputs as well.
To see this more precisely, we present the following argument that if there exists an adversary
A that breaks the secrecy of the scheme in the OMTUP-model, then A can also be used to solve
the factorization problem effectively:
Assume that an adversary A breaks the secrecy of the scheme and obtains information about g
and g1 with a non-negligible probability. Then, by the scheme description the equivalence R ≡ g1
mod r holds. Now, A can use this knowledge to compute gcd(R − g1, n), which, in particular,
gives the factors p and q of n with a non-negligible probability.
On the other hand, if A is given a factorization oracle, then it can obtain g and g1 with a
non-negligible probability as R ≡ g mod p and R ≡ g1 mod r hold. In this case, the adversary
can obtain `− s both modulo p and modulo r, which are however random for the adversary A
even if the difference `(0) − `(1) modulo p and modulo r is known because of the randomness
of `(0) and `(1) both modulo p and modulo r. Thus, even if the adversary is computationally
unbounded (i.e. capable of factorizing n and find the bases g and g1), the outputs of Rand are
unconditionally secure.

Full Verifiability. Since one of the servers is honest by the OMTUP assumption, the result
trivially follows since only equivalence tests from the outputs of Ui, i = 1, 2, are required to
perform the verification step. ut



Comparison for Delegated Rand

Let Q := log q denote the size of the group G. By the scheme description of Rand, the delegator
C requires ≈ 14 logQ−bits of memory (for storing the static values (s, h, h1), Qp, Qr, Qq, Qq1
and R). Furthermore, Rand requires by Theorem (2)

– 3 MMs modulo p,
– 4 MMs modulo r,
– 6 MMs modulo n,
– 3 MMs modulo m,
– 3 MR’s modulo p,
– 3 MR’s modulo r, and
– 1 MI’s modulo m.

Now, we estimate the overall computational cost of Rand as in Subsection (5.2), i.e. we make
the following assumptions:

– we regard 1 MM modulo n as ≈ 4 MMs modulo p,
– 1 MM modulo p and 1 MM modulo r cost approximately the same amount of computation,
– 1 MI is at worst 100 times slower than 1 MM (see [13]),
– we regard 1 MR costs approximately 1 MM.

Hence, the overall computational cost of the delegator C can be estimated to be at most

≈ 3 + 4 + 4 · 6 + 4 · 3 + 3 + 3 + 100 · 4 · 1 = 449

MMs modulo p, if p, r, q, q1 are about the same size. Table 3 compares memory and computa-

Scheme Storage # MMs Security

Square & Multiply 0 1.5Q Always

BPV [4] `Q k − 1 σ
√
Q < 2−κ

E-BPV [16] `Q 2k + h− 3 σ
√

Q

(h−1)`
< 2−κ

Beunardeau et al. [3] 2h1 · v1 ·Q Q
h1

(1 + 1
v1

)− 3 Always

Rand 14Q 449 Always

Table 3. Comparison of the Preprocessing Techniques with delegated Rand, see [3].

tional requirements of Rand with the previous preprocessing techniques, where ` is the number
of precomputed pairs of the form (xi, g

xi), and h` is the memory capacity of the delegator C.
In particular, it shows that Rand distinguishes from the other preprocessing techniques that
it requires only a linear memory requirement in logQ in contrast to the exponential memory
requirements in logQ in the other preprocessing techniques. For example, in [3] it is shown that
for Q = 3072 (i.e. security level 128−bits) using the most efficient preprocessing technique with
h1 = 9 and v1 = 4, the delegator requires ≈ 780 kb memory whereas Rand scheme requires
only about 5.38 kb memory. Note that the best preprocessing scheme in [3] requires for h1 = 9
and v1 = 4 about ≈ 423 MMs for the computation of a single pair (t, gt). Hence, the com-
putation of the precomputation step of HideP with this preprocessing technique would require
≈ 5 · 423 + 100 · 4 · 1 = 2515 offline computation of MMs (5 pairs and an inversion modulo m),
whereas Rand only requires ≈ 449 MMs. Obviously, if the security level is increased further,
then Rand has considerably less MMs than any other preprocessing techniques. We refer to [3]
for the choice of h1 and v1.
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