
Commit-Chains: Secure, Scalable Off-Chain
Payments

Rami Khalil
Imperial College London

Liquidity Network
rami.khalil@imperial.ac.uk

Pedro Moreno-Sanchez
TU Wien

pedro.sanchez@tuwien.ac.at

Alexei Zamyatin
Imperial College London

alexei.zamyatin17@imperial.ac.uk

Arthur Gervais
Imperial College London

Liquidity Network
arthur@gervais.cc

Guillaume Felley
Liquidity Network

guillaume.felley@liquidity.network

Abstract—Current permissionless blockchains suffer from scal-
ability limitations. To scale without changing the underlying
blockchain, one avenue is to lock funds into blockchain smart-
contracts (collateral) and enact transactions outside, or off-
the blockchain, via accountable peer-to-peer messages. Disputes
among peers are resolved with appropriate collateral redistri-
bution on the blockchain. In this work we lay the foundations
for commit-chains, a novel off-chain scaling solution for existing
blockchains where an untrusted and non-custodial operator
commits the state of its user account balances via constant-sized,
periodic checkpoints. Users dispute operator misbehavior via a
smart contract. The commit-chain paradigm enables for the first
time that off-chain users can receive payments while being offline.
Moreover, locked funds can be managed efficiently at constant
communication costs, alleviating collateral fragmentation.

We instantiate two account-based commit-chain constructions:
NOCUST, based on a cost-effective challenge-response dispute
mechanism; and NOCUST-ZKP, which provides provably correct
operation via zkSNARKs. These constructions offer a trade-off
between correctness, verification, and efficiency while both are
practical and ensure key properties such as balance safety; that
is, no honest user loses coins. We implemented both constructions
on a smart contract enabled blockchain. Our evaluation demon-
strates that NOCUST’s operational costs in terms of computation
and communication scale logarithmically in the number of users
and transactions, and allow very efficient lightweight clients (a
user involved in e.g. 100 daily transactions only needs to store a
constant 46 kb of data, allowing secure payments even on mobile
devices). NOCUST is operational in production since March 2019.

I. INTRODUCTION

Since the beginning of centralized banking in
Mesopotamia [1], financial intermediaries evolved as
middlemen between parties that have surplus capital and
others that desire access to liquid funds. Such financial
intermediaries traditionally operate as custodians, as they
(temporarily) hold the transmitted funds, and therefore are
entrusted with enacting secure transaction policies.

While the emergence of decentralized Proof-of-Work (PoW)
ledgers have portrayed a mechanism of performing finan-
cial transactions without a centralized intermediary, low-
throughput and volatility of transaction fees constraints are
fundamentally hindering the practical use of such ledgers. To

improve transaction throughput, different classes of blockchain
scaling solutions are being pursued. One such class of scaling
solutions focuses on alternative consensus mechanisms [2, 3]
or sharding [4, 5]. They, however, typically introduce different
trust assumptions and are therefore not backwards compatible
with current widely deployed blockchains.
Off-chain scaling (state-of-the-art). In this paper we focus
on 2nd-layer (or off-chain) scaling solutions such as payment
channels and payment channel networks (PCN) [6], which
reduce the load on the blockchain ledger by performing oper-
ations securely off-chain. Numerous contributions address the
performance characteristics of payment channel networks [7–
13]. While PCN improve transaction throughput and enable
decentralized channel topologies, they still leave room for
future work: (i) bootstrapping cost: each channel establishment
requires at least one (expensive and slow) blockchain trans-
action, (ii) user churn: a user must be continuously online
to receive incoming transfers - a drawback over traditional
on-chain payments and (iii) collateral management: funds are
typically bound to channels between two parties, leading to
rigid collateral fragmentation, while transfers that form a path
across multiple channels require fee-contingent routing. PCN’s
decentralisation requires complex routing topologies which
induce setup and maintenance costs.

To alleviate routing challenges, payment channels can be
organized in a star-like topology, with one entity maintaining
many channels, forming a so-called payment channel hub
(PCH) [14]. Given a network of a few PCHs, with long-lived
peering and routing agreements, channel routing complexities
can be reduced. However, PCH inherit the aforementioned
challenges of PCN, namely, bootstrapping cost, user churn and
collateral management. For instance, user churn leads to costly
recovery and refilling of fragmented collateral: O(n) on-chain
transactions for n channels.
Commit-chains (this work). We introduce commit-chains,
a novel 2nd-layer scheme that combines a permissionless
blockchain and a centralized, but untrusted payment provider
to scale off-chain payments. A commit-chain is instantiated
with a (i) non-custodial operator (i.e., users maintain full con-

trol over their funds at all times) who processes cryptocurrency
payments between the system’s users off-chain, and (ii) an
on-chain smart contract which enforces the operator’s correct
behavior. The operator commits the latest state of the user’s
account balances to the smart contract in regular intervals via
constant-sized checkpoints. These checkpoints (i) allow users
to challenge the operator in case of disputes or (ii) enable the
smart contract to verify and enforce correct operation.

While pursuing the same overall goals, commit-chains and
PCNs provide a tradeoff in terms of bootstrapping, user churn,
collateral management and decentralization. First, a user can
join the commit-chain by only exchanging authenticated off-
chain messages with the operator. Second, commit-chain users
can receive payments while being offline and are only re-
quired to surface online once within a checkpoint interval.
Similarly to PCN, commit-chains can provide instant payment
finalization to users at full operator transaction volume col-
lateralization1. Unlike PCNs, commit-chains can additionally
provide delayed payment finalization at no operator trans-
action volume collateralization. Finally, the collateral in a
commit-chain allocated at a checkpoint can be fully reused
in the following checkpoints, and redistributed with a single
on-chain transaction, independent of the number of registered
users. Commit-chains provide these advantages at the cost of
centralization (rely on a single, untrusted operator) and lack of
interoperability (rely on blockchains with support for Turing-
complete smart contracts).
Our contributions. Summarizing, this paper makes the fol-
lowing contributions:
• We introduce commit-chains, a novel scheme for off-

chain payments. We show that commit-chains can be
combined with any smart-contract capable blockchain to
construct fully-fledged account-based payment systems.

• We present two practical commit-chain constructions,
building upon a novel multi-layered Merkelized in-
terval tree: (i) NOCUST, which relies on a low-
cost challenge-response dispute mechanism, and (ii)
NOCUST-ZKP, which achieves provably correct opera-
tion via Zero Knowledge Proofs (recursively composed
zkSNARKs [15–18]). We provide a security analysis for
both constructions.

• We implement and evaluate NOCUST and NOCUST-
ZKP. We show that a commit-chain can scale towards
hundreds of thousands of users, while it costs less than
1.5 USD per month to operate NOCUST, irrespective
of the number of users and transfers enacted. We make
our smart contract code available as open-source on
Github2. We went the last mile and deployed NOCUST in
production, where it serves reliably zero fee transactions
for users since March 24, 2019.

1Collateral is defined as a volume of assets locked by an off-chain
participant (e.g., user or operator) as a security lockup. Users need to lock
up the transaction volume they transmit off-chain. If the operator also fully
collateralizes payments, then 2X collateral is locked up to facilitate payments
worth 1X.

2https://github.com/liquidity-network/nocust-contracts-solidity

Outline. Section II provides the background and reviews re-
lated work, while Section IV provides an overview of commit-
chains. Section V presents the details of NOCUST and Sec-
tion VI of NOCUST-ZKP. Section VII provides the security
analysis, Section VIII evaluates NOCUST and NOCUST-ZKP
in practice, Section IX discusses open challenges and future
work. We conclude the paper in Section X.

II. BACKGROUND AND RELATED WORK

Blockchains allow to build an append-only immutable
ledger that is maintained by a distributed network of
nodes [19]. Permissionless blockchains in particular allow
any party to join/leave the network, write to the underlying
ledger, and participate in consensus. The majority of such
systems [19, 20] rely on a random leader election process
as part of their consensus mechanism. An elected participant
decides on the current state transition: a set of transactions
altering the ledger state, arranged in a so called block. For
example, in Proof-of-Work blockchains, the leader is the first
participant to solve a computationally expensive puzzle [21].

Permissionless blockchains, however, face a significant per-
formance bottleneck: to take effect, a transaction must be
included in a block, which is broadcast to the majority of
participants, who must then agree on its validity. Transactions
are then considered final after a stabilization phase [22–
24] of k blocks, where k is the security parameter of the
underlying system [25, 26]. Adjusting the number of trans-
actions per block or the block generation interval thereby
warrants caution, as bullish parameterization may severely
impact security [25, 27, 28]. As a result, the most widely
used permissionless blockchains, such as Bitcoin [19] and
Ethereum [29], process only up to 10 transactions per second.

Payment channel networks (PCN) enable rapid one-way [30,
31] or bi-directional [6] payments without publishing each
transfer on-chain. Each channel is established between two
parties and follows three phases: (i) an on-chain channel
establishment, (ii) off-chain channel state transition(s) and
(iii) an on-chain dispute/closure. PCN have received attention
from both academia and industry [7–9, 32–34]. Many works
cover privacy enhanced PCN designs [14, 34–39]. The Ful-
gor and Rayo protocols [12] demonstrate tradeoffs between
concurrency and privacy in PCN. Perun [10] reduces com-
munication complexity through virtual channels. Teechan [40]
and Teechain [41] trade the need for a blockchain clock
with a trusted hardware assumption increase efficiency. State
channels [42] extend payment channels to support execution
of arbitrary smart contracts, whereby participants unanimously
agree on state transitions off-chain. A payment-channel hub
(PCH) [10, 14] is an entity that opens many payment channels
with different users in a star-like topology so they can pay
each other with at most one hop via the intermediate operator.
Albeit PCH, PCN and state channel networks undoubtedly
improve the scalability of current blockchains, they all share
room for improvement. First, users are required to be online
to receive payments, hindering utility in certain applications

2

https://github.com/liquidity-network/nocust-contracts-solidity

(e.g., offline/energy saving mobile recipients). Second, boot-
strapping in this paradigm mandates an on-chain transaction
for each channel, which is reasonable for senders (i.e., users
that introduce coins into the off-chain system), but not for
exclusively recipient users. For instance, assume a PCH with
n users, where Alice has n − 1 coins and wants to send 1
coin to every other user. In this scenario, the PCH operator
needs to anticipate and allocate collateral among the other
n− 1 user channels, at a cost of n− 1 on-chain transactions.
We conjecture that it is feasible to have an off-chain system
where this scenario can occur with only a single on-chain
transaction. Finally, current off-chain channel systems handle
the collateral (i.e., coins locked on-chain) sub-optimally. In
our PCH example, assume that the PCH allocates one coin in
each n − 1 receiver channel. In this case, Alice cannot pay
more than one coin to any single receiver, even though her
balance is n−1 coins. The PCH would have to allocate n−1
coins in the channel of each receiver to permit this, requiring
that the PCH locks n · (n− 1) coins to allow only n− 1 coins
to be transacted.

Plasma [43] is an effort by the Ethereum community for
central operators to maintain UTXO based ledgers atop of an
account-based blockchain to enable transfers. The downsides
of this UTXO approach compared to ours include a lack of na-
tive fungible payment support, a lack of instant finality mech-
anisms, and linearly growing data storage and computation
costs with each ledger update. Several informal variants of this
approach, none of which have lead to practical solutions to the
best of our knowledge, surfaced across multiple community
websites3 to attempt to remedy these downsides.

In this state of affairs, the current landscape of off-
chain scalability solutions has room for alternative execution
paradigms that fill the aforementioned gaps.

III. COMMIT-CHAINS: PROBLEM DEFINITION

In this section, we introduce the notion of commit-chains,
where we overview the system model and main functionality,
describe the communication and threat models, and finally
present the security goals.

A. Commit-chain

Actors. A commit-chain is composed of the following actors:
• User. A user owns at least one private key/account in the

blockchain and acts as a participant in the blockchain and
in the commit-chain.

• Operator. The commit-chain operator, who is also
uniquely identifiable with a private/public key pair ac-
count, handles user transactions and commits data to the
blockchain that updates the commit-chain ledger.

• Smart Contract. The smart contract(s) on the blockchain
defines and enforces mechanisms in the commit-
chain protocol. This component, since it lives on the
blockchain, enforces correct execution of operations it

3Compiled at https://www.learnplasma.org/en/

receives. Depending on the blockchain, this component
may provide also privacy guarantees.

Functionality. Commit-chains process transactions off-chain
following a model similar to that of payment channel hubs: a
central entity maintains a service for multiple users. To execute
transactions in a cost-efficient manner, users submit most of
the transactions they would otherwise do in the blockchain to
the operator to amortize their blockchain transaction costs. The
users then only interact with the parent-chain to carry out tasks
that cannot be carried out securely solely through the operator
depending on the use-case, such as potentially moderating
the operator behavior, or making transfers into or out of
the commit-chain. Commit-chains are deployed alongside a
blockchain, referred to as the parent-chain, that can already
establish consensus in the network. The parent-chain exhibits
ledger functionality, containing a global view of user accounts
and transactions. Each account is controlled by a private key.

B. Communication Model

A commit-chain operates under the bounded synchronous
communication setting [44], where the execution of the pro-
tocol happens in discrete rounds (that we refer to as eons
in the rest of this paper). The parties are always aware of
the current round and if a message is sent at round i, then
it is delivered to the recipient at the beginning of round
i + 1. We further assume an upper bound δ on the delay
between transaction broadcast an inclusion in the underlying
blockchain. We remark that these are standard assumptions in
blockchain literature [6, 7, 10, 12].

The operator and users participating in the commit-chain
each have a verification/signing key pair (e.g., key pair from
the parent-chain). Moreover, each user knows the verification
key of the operator. Finally, all users are aware of the smart
contract for the commit-chain. In practice, the operator can
announce its public key and the commit-chain contract on
its website and users can verify it by checking the publicly
available blockchain.

C. Threat Model

We assume that the cryptographic primitives of the
blockchain hosting the smart contract are secure, and that the
adversary cannot corrupt any trusted setup component in the
cryptographic primitives used4. We further assume that adver-
saries are computationally bounded and can corrupt at most
1/3 of the consensus participants of the blockchain (or 33%
of the computational power for blockchains with Nakamoto
consensus [25, 27, 48]). As such, users can always read
and write to the blockchain and an adversary cannot tamper
with the correct execution of the smart contract. However,
we allow an adversary to corrupt the commit chain operator
and an arbitrary number of commit-chain users, as well as
to execute Sybil [49] and Denial-of-Service attacks. Under
these assumptions, commit-chain users must be online at least
once within an eon (unless this requirement is outsourced to

4e.g. zkSNARK setup is done via a secure multiparty computation [45–47].

3

a monitoring service (e.g., a watchtower [50]), or the operator
broadcasts an offline user’s state to the blockchain as in
NOCUST-ZKP).

D. Security Goals

• Safety. Generally, safety means that the system should
not be exploited to mint nonexistent coins or steal from
honest users. Specifically, the system must provide the
following guarantes: (i) the total funds locked into a
commit-chain must correspond 1-1 with the balances of
the registered users; (ii) The adversary cannot debit a
user without the user’s authorization, and must correctly
credit the intended recipient; (iii) User balances must be
correctly updated by the system operations even in the
presence of the adversary.

• Liveness. Essentially, we formulate liveness as the guar-
antee that an honest user will always be able to access
its funds within a bounded amount of time, regardless of
adversary behavior. More explicitly, users must always
be able to: (i) learn the latest confirmed states of their
commit-chain accounts; (ii) withdraw their balances to
their blockchain accounts.

We make several remarks here. First, the above two guar-
antees are only provided as securely as the underlying parent-
chain can also provide them in their own sense. For example,
a parent-chain with a consensus protocol that does not provide
liveness would also affect the guarantees of our commit-chain.
As mentioned in subsection III-C, in this work we assume the
underlying parent-chain is operated by an honest majority.

Second, the safety property largely resembles that of bal-
ance security defined for payment-channel hubs [14, 35] and
payment-channel networks [12, 13]. However, balance security
in payment-channels does not cover offline transfer delivery,
which is crucial for commit-chains and thus covered by our
safety definition.

Third, since a commit-chain operator manages the balance
of many users on their behalf (even when some of them
might be offline), achieving liveness is crucial to commit-
chains. A similar property has not been defined for payment-
channel hubs/networks since users actively participate in each
operation that updates their account.

Finally, it is important to note that safety and liveness only
disqualify the operator from being a trusted custodian of its
users’ funds. These guarantees need to be provided by the
system to an honest participant regardless of the behavior of
the operator or any other participant (cf. proofs in Section VII).
However, the operator can still selectively censor users from
performing transfers in the commit-chain, and leave them no
option but to withdraw their funds back into their blockchain
accounts.

IV. SOLUTION OVERVIEW

Our objective is to increase the transaction throughput by
safely offloading payments from the parent-chain to a commit-
chain. Users register with an operator without publishing
messages in the parent-chain. Transfers are sent through the

operator, who periodically commits to the latest state of user
balances on the smart contract. Transfers are considered final
once the corresponding commitments stabilize in the parent-
chain, i.e., received k confirmations5. Users come online to
retain custody of their account balances once per checkpoint
interval.

A. High-Level Operation

Figure 1 presents an overview of our systems’ lifecycles.
Register. A user registers with the operator via an off-chain

message, receiving a new account identifier in the commit-
chain. Afterwards, the user can solicit payments from other
users in the commit-chain.

Deposit. Users lock the desired amount of coins in the smart
contract. Then they can send them off-chain to any other user
registered in the commit-chain or always claim them back.
Recipients do not need to perform any deposits.

Transfer. Users authorize the operator to debit their accounts,
and credit the recipients. The recipient can then immediately
transfer these funds to other commit-chain users or withdraw
them after finalization.

Withdraw/Exit. Users submit off-chain requests to the op-
erator, who queues withdrawals in the smart contract within
the following checkpoint. Alternatively, users can initiate full
forced exits via the smart contract, closing their commit-
chain accounts and refunding all their balances.

Checkpoint. At the end of each eon, the operator commits the
latest state of all user accounts to the smart contract. 6 User
operations are then only finalized once the corresponding
state changes are reflected in an on-chain checkpoint and
passed a dispute period.

Challenge. If an operator misbehaves in any way, users pub-
lish challenges on the smart contract, which secures user
funds and penalizes the operator in case of fraud. 7

Recover. If the operator is penalized, the smart contract forces
the commit-chain into recovery mode. The smart contract no
longer accepts checkpoints, halting the commit-chains. Users
can then recover their funds, at their earliest convenience,
from the last valid checkpoint via on-chain transactions. 8

B. Design Roadmap: NOCUST and NOCUST-ZKP

NOCUST: In Section V our first construction follows a simple
but cost-effective approach. Checkpoints represent the root
(hash) of our novel multi-layered Merkelized interval tree

5Note: in challenge-based schemes e.g. NOCUST, an additional dispute
period is introduced.

6Each checkpoint requires an on-chain transaction and thus clearly imposes
a burden on the blockchain that does not exist with payment channels.
The periodicity of checkpoints must be thus carefully adjusted as a system
parameter and the size of each checkpoint must be minimized. This is a
tradeoff of commit-chains in lieu of improving bootstrapping costs, user churn
and collateral fragmentation.

7The operator is given time to reply to a challenge by publishing on-chain
a proof of correct operation.

8Both challenge and recover operations are crucial to eliminate the trust
of the commit-chain operator and ensure the safety for users. Thus, commit-
chains do not trade off the crucial aspect of security with respect to payment
channels.

4

Fig. 1: Overview of the main NOCUST commit-chain sub-protocols: Register, Deposit, Transfer, Withdraw, Exit, Checkpoint,
Challenge and Recover. Solid orange lines represent on-chain transactions. Blue dotted lines denote off-chain messages/actions.
The operator handles transfers between users and commits the state of all accounts to the smart contract once per eon. Users
come online once per eon and, in case of disputes, challenge the operator via the smart contract, recovering funds in case of
failure. Protocol steps correspond to descriptions in Section V-E.

introduced in this paper (Section V-B), which aggregates
the state of all user accounts and their balances. In case a
checkpoint containing invalid account changes is published
at the end of an eon, or none at all, users must challenge
the operator via the smart contract. The operator in turn must
produce a proof of adherence to the protocol. Thereby, users
can only challenge the most recent checkpoint, and must come
online once per eon to ensure the safety and liveness of their
funds. Our novel commitment data-structure facilitates this
process securely and efficiently.
NOCUST-ZKP: In Section VI our second construction miti-
gates safety and liveness risks by requiring the operator to con-
struct a non-interactive Zero Knowledge Proof (NIZKP) [16,
51], proving to the smart contract that all updates to user
accounts are correct and have been signed by users. We present
constraint systems that can be utilized through recursive
composition of zkSNARKS [17, 18], allowing incremental
computation of proofs, while maintaining constant verification
time and cost (Section VIII). As a result, the operator can
no longer submit an inconsistent checkpoint or withhold user
state data. Users still come online once per eon to check the
freshness of their account and balance, i.e., verify that the
operator has included all relevant transactions and not gone
offline. This approach improves security guarantees at the cost
of zero-knowledge proof generation and potential additional
data submission to the smart contract, but still offers zero-gas
fees on commit-chain transfers to honest parties.

V. NOCUST: A PRACTICAL COMMIT-CHAIN

A. The Commit-Chain Data Scheme

The commit-chain ledger is divided into: (i) local, in-
formation stored locally at the operator about balances or

transfers performed through the operator; and (ii) global,
information stored at the blockchain and globally available to
all participants that covers balances or operations done through
the smart contract. We note that naturally, different parties may
have different views of local information whereas they must
have the same view of global information, as we trust the
blockchain for availability and integrity.
Local Information. The operator stores the following in the
local ledger for every user i at every eon e:

allotmenti(e): The allotted balance.
receivedi(e): The total received.

senti(e): The total sent.
positioni(e): The offset of the last outgoing transfer.

txOuti(e): Outgoing commit-chain transfers.
txIni(e): Incoming commit-chain transfers.

collateral i(e): The instant finality collateral.
Global Information. The contract stores the following in the
global ledger for every user i at every eon e:

depositedi(e): The total deposited in e.
withdrawni(e): The total requested for withdrawal in e.

exiti(e): A flag for whether an exit was requested.
extrai(e): The extra insurance collateral for eon e.
troot(e): The state commitment of eon e.

Additionally the smart contract can store the challenges
posted by users until the operator responds.

The initially allotted balance of a user in the current eon
is calculated from all the data of the previous eon as the
sum of: (i) the user’s initially allotted balance, (ii) the amount
deposited, (iii) the amount received in the commit-chain (iv)
minus the amount requested for withdrawal, and (v) minus the

5

amount sent in the commit-chain.

B. Merkleized Interval Tree-Structure

To provably account for the balances and additional collat-
eral of each user at each eon, we design a novel Merklelized
interval tree. The nodes in this Merkle tree [52] are aug-
mented with continuous intervals so that the smart contract
can efficiently verify the correct and exclusive allotment of
funds by the operator. A node tn(e) whose contents represent
information at eon e is structured as defined in Equation 1.

tn(e) := 〈 offset n(e), informationn(e), allotmentn(e)〉 (1)

allotment is defined as the amount exclusively allotted to the
node, while offset is defined per Equation 2. information is a
cryptographic commitment to the information within this node.
Leaves. A leaf ti(e) is used to represent the commit-chain
account of user i at eon e, whereby allotmenti(e) is equal to
their starting balance in eon e, and offset i(e) corresponds to
the sum of the starting balances of all users ordered before
user i.

offset i(e) =
∑
j<i

allotmentj(e) (2)

Using these two numeric values, a balance can then be rep-
resented as the length of the interval

[
offset , offset +allotment

)
.

We utilize the condition that different intervals do not intersect
each other to secure users’ accounts and transfers in NOCUST.
informationi(e) is the cryptographic hash of the blockchain
address of the user and the commitment of the last state update
the user signed in the previous eon, as defined in Equation 3:

{addressi, update
p
i (e− 1), update

a
i (e− 1)} (3)

where update
p
i (e − 1) and updateai (e − 1) represent the last

passive and authorized state updates, respectively, of the
commit-chain account of the ith user at eon e − 1 , as explained
further in Section V.
Internal Nodes. An internal node tu(e), with a left child tp(e)
and a right child tq(e), is constructed per Eq. 4 and Eq. 5:

allotmentu(e) = allotmentp(e) + allotmentq(e) (4)

offset u(e) = offset p(e) (5)

informationu(e) is a cryptographic commitment to tp(e) and
tq(e) , with offset q(e) as a middle border value.

informationu(e) := {tp(e), offset q(e), tq(e)} (6)

With these definitions, an internal node tu then takes the offset
of its left child tp as its own, and the offset of its right child tq
as a border between the two children. It is important to note
that the middle value of offset q(e) is interchangeable with that
of offset p(e) + allotmentp(e) as they must be equal in correct
intersection-free instances of this interval structure.

Fig. 2: Visualization of a Merkleized interval tree repre-
senting the commit-chain accounts. There are six accounts
with their respective balances (36 total commit-chain coins)
visualized. An account consists of an address, the roots of
the active/authorized and passive trees (and additional data
relevant for implementation). Intermediate nodes are annotated
with balance intervals (cf. Section V-B). Note: only the passive
tree of incoming transactions is annotated with intervals.

C. Monotonic User-State Structure

The information in updatei(e) is divided into an au-
thorized/active portion updateai (e), and a passive portion
update

p
i (e). The authorized portion must be accompanied by a

signature from the user, while the passive portion can be set by
the operator. The authorized portion updateai (e) is structured
as follows:

update
a
i (e) = 〈txOuti(e), senti(e)〉 (7)

txOuti(e) is committed to using an unannotated Merkle tree
where the leaves are the individual commit-chain transfers
authorized by the user during eon e. A commit-chain transfer
is a tuple of the following information:

〈eon, sender, recipient, nonce, amount, offset〉

The passive portion update
p
i (e) is structured as follows:

update
p
i (e) = 〈txIni(e), positioni(e), receivedi(e)〉 (8)

positioni(e) is a numeric offset value specified by the operator
to secure delivered transfers. Like offset values, the position

value is used to ensure that intervals representing transfer
amounts do not intersect. txIni(e) may only contain incom-
ing transfers for the user during e, and the commitment is
constructed using the annotated Merkle tree structure from
Section V-B where, for a leaf, allotment equals the transfer
amount, and information is a commitment to the transfer.

6

D. Proofs Of Exclusive Allotment

We now describe the proofs that are derived from this
annotated merkle-tree structure to efficiently secure NOCUST
balances and transfers. These proofs are extensively utilized
throughout Section V-E. We prove in Appendix B-A that no
valid instance of our annotated merkle trees may contain two
overlapping allotments, and therefore that a fraudulent proof
of exclusive allotment cannot be constructed or be accepted
by an honest verifier such as the smart-contract.
User Balances. For each user, a proof of exclusive balance
allotment is constructed. The main goal of this construct is
to prove that the user exclusively owns an allotment of size
allotmenti(e) within the pool of user funds at the beginning of
an eon. This proof is constructed similar to a regular Merkle
tree membership proof: the proof consists of the hashes of
the siblings of the nodes in the path from the root to the
leaf. However, in addition to the hash, a boundary value Ω is
required for each sibling tn(e) along the path to the root:

Ω(tn(e)) =

{
offset n(e) tn(e) is L. child
offset n(e) + allotmentn(e) tn(e) is R. child

(9)
Verification is similar to validating set membership in a Merkle
tree, but node reconstruction is done per the definitions in
Section V-B using the Ω values. The size of this proof then
grows logarithmically in the number of users. 9

Transfer Delivery. We utilize our exclusive allotment data-
structure to ensure that the operator properly credits the
amounts to offline recipients through making any misbehav-
ior efficiently provable. A proof of transfer membership in
txIni(e) includes the respective Ω values, similar to a balance
proof. The root node allotment is the value of receivedi(e),
which is the total amount received by a participant, while each
leaf’s allotment is the transferred amount.
Account Exits. The operator is required to post a commitment
to an annotated-merkle tree that enables users to exit from the
commit-chain instance with all of their funds. In this structure,
informationi(e) is only comprised of addressi and allotmenti(e).
The latter represents the finalized balance the user can claim.
Insurance Collateral. To guarantee instant transaction finality,
the operator stakes additional collateral that recipients claim
in case of failure to finalize transactions within two eons.
To efficiently manage the allocations of the staked collateral,
the operator commits each eon e to an annotated merkle-tree
that exclusively divides the insurance collateral pool among
the users. All funds in this pool are separated from those
in the user account balance pool. In the collateral structure,
informationi(e) in leaf nodes is only comprised of addressi,
while allotmenti(e) is equal to the allocated collateral.

E. Subprotocols

In this section we describe the sub-protocols in NOCUST.
We utilize the following symbols to refer to participants in the

9For comparison: a classic Merkle membership proof grows also logarith-
mically in the size of the number of elements in the set.

protocols. U: User, O: Operator, S: Sender, R: Recipient, and
C: Contract.

Register:
1) The User submits a signed update of an empty account
{|updateaU (e)|}U to the Operator;

2) The Operator verifies the User’s signature, countersigns
and returns the empty account update {|updateaU (e)|}O to
the user.

After verifying the Operator’s signature, the User can safely
make deposits and solicit payments.
Deposit:

1) The User sends a transaction to the Contract, which adds
the amount to depositedU (e) in its memory.

2) The Operator reads this deposit from the Contract.
3) The Operator updates the user allotment in local and

notifies the User of its commit-chain balance increase.
The User can then transfer these funds or withdraw them.

The user may also later exit with them or challenge that they
were not credited.
Transfer:

1) The Sender creates a new active state update to authorize
the transfer. If the Sender’s positionS(e) is not empty
before enacting a new transfer, then the new active state
update must also move this value into the offset field
of the previous outgoing transfer. The new transfer is
inserted into txOutS(e), and the authorized state update
is sent to the Operator.

2) The Operator validates if the received update is correct
and the Sender has sufficient balance to carry out the
transfer. The Operator then decides on the offset of the
transfer, and copies the offset value into the Sender’s
positionS(e) value. This marks exactly where the trans-
ferred amount was allotted in txInR(e), without this value
being known beforehand by the Sender to safely avoid
race conditions. The Operator responds to the Sender with
its countersignature on updateaS(e)‖positionS(e).

3) The Operator simply notifies the Recipient that a transfer
was received whenever the Recipient comes online.10

The funds can then be transferred or withdrawn by the
Recipient, or its delivery can be disputed.
Withdraw:

1) The User submits its withdrawal request to the Operator.
2) The Operator validates that the user possesses sufficient

balance, and responds with the authorization.
3) The User (or any party) submits the authorization to the

smart contract to initiate the withdrawal.
4) After the current eon e and the next eon e + 1 suc-

cessfully pass without challenges, the User finalizes this
withdrawal request, and the Contract credits the User with
the funds in a parent-chain transaction.

Instant Withdrawal. Additionally, an Operator can immediately
pay out the withdrawal from its own personal funds and

10Or the Sender notifies the Recipient out of band.

7

Register.
1. U → O: {|updatea

U (e)|}U
2. U ← O: {|updatea

U (e)|}O
Deposit.

1. U → C: Transaction(U, C, amount)
2. O ← C: Deposit(e, U, amount)
3. O → U : Balance update

Transfer.
1. S → O: {|updatea

S(e)|}S
2. S ← O: {|updatea

S(e)|}O ,
positionS(e)

3. R← O: Balance update
Withdraw.

1. U → O: {| C, O, U, Expiry, Amount|}U
2. U ← O: {| C, O, U, Expiry, Amount|}O
3. U → C: {| C, O, U, Expiry, Amount|}O
4. U ← C: WithdrawalInitialization(e, U, Amount)
5. U → C: confirmWithdrawal(e + 2)
6. U ← C: Transaction(C, U, Amount)

Exit.
1. U → C: requestExit()
2. O ← C: ExitInitialization(e, U)
3. U → C: Exclusive allotment proof in e + 2
4. U ← C: Transaction(C, U, Amount)

Checkpoint.
1. O → C: troot(e)
2. U ← C: CheckpointSubmission(e, troot(e))

Challenge (State Update).
1. U → C: Accounting data for U in eon e − 1 ,

• Exclusive allotment proof
• updatea

U (e− 1)
2. O ← C: Challenge(e, U)
3. O → C: Accounting data for U in eon e,

• Exclusive allotment proof
• updatea

U (e− 1)

Challenge (Transfer Delivery).
1. U → C: Accounting data for S in eon e,

• Exclusive allotment proof
• updatea

S(e− 1)
• Transfer debit proof

2. O ← C: Challenge(e, S, R, Transfer)
3. O → C: Accounting data for R in eon e,

• Exclusive allotment proof
• updateR(e− 1)
• Transfer credit proof

Recover.
1. U → C: Last confirmed accounting data for U,

• Exclusive allotment proof
• Insurance collateral proof

2. U ← C: Transaction(C, User, Amount)
Audit.

1. U → O: {| e |}U
2. U ← O: Exclusive allotment proof

Transfer delivery proofs

Fig. 3: Communication flow of the NOCUST sub-protocols. Communication with the Contract (C) is visible to all observers
of the blockchain. Users interact only with the Operator in Registration, Transfer and Audit.

replace the intended recipient of the withdrawal finalization
in e + 2 with itself.
Exit:

1) The User submits an exit request to the Contract.
2) The Operator is notified that this User must exit in the

next eon e + 1 . The Operator then moves this User’s
funds from the balance allotment tree to the exit allotment
tree, and provides the User with a proof of exclusive exit
allotment in eon e + 1 .

3) If eon e + 1 passes successfully without challenge. The
User, in possession of its exclusive exit allotment proof,
finalizes its exit in eon e + 2 . In this process the Con-
tract credits the User with the funds in a parent-chain
transaction.

The Exit protocol is a fallback for Users to recover their
funds from the commit-chain if the Operator blocks with-
drawals. If the Operator fails to comply with the request then
it gets punished by a state update challenge from the user.
Checkpoint:

1) The Operator submits the merkleized interval tree-
structure checkpoint to the Contract, which will reject
the checkpoint if the Operator is suspended, or if a
checkpoint has already been submitted for the current eon
e, or if the sizes of the root allotments are inconsistent.

2) Users can then read on the parent-chain that a new
checkpoint had been submitted and audit their proofs
from the Operator.

The Operator needs to respond to User audits with proofs
to avoid being challenged and allow efficient validation of
its operations. The Operator can increase individual collateral
allotments on the blockchain of individual participants during
the current eon e, and submit a complete re-assignment of
all collateral that takes effect starting from e + 2 using a
single constant-sized commitment. The Operator is required
to commit to valid instances of the collateral, account balance
and exit tree commitments within the first epoch of every
eon. Commitments are rejected by the Contract in case of
any outstanding challenges from eon e − 1 .
Challenge (State Update):

1) The User sends to the Contract its accounting data for
the eon e − 1 .

2) The Operator reads that a challenge has been initiated.
3) The Operator responds with the accounting data for eon e

before an epoch passes, and this data has to be consistent
with what the Contract expects. Such that the authorized
update in the response, which is used to construct the
proof of exclusive allotment, is at least as fresh as the
one in the challenge, and the allotment size of the proof
corresponds to the expected amount.

Reading the challenge response allows the User to retain
custody of its account. If the User had requested an exit in
e − 1 , then the response will be the proof of exit allotment
for finalizing its exit.
Challenge (Transfer Delivery):

1) The accounting data used to initiate this challenge is that
of the current eon e, where the exclusive allotment proof,
authorized state update, and outgoing transfer inclusion
proof are validated.

2) The Operator reads that a challenge has been initiated.
3) The Operator responds within an epoch with the corre-

sponding transfer credit proof to avoid being punished by
the Contract.

Senders directly communicate with Recipients to verify the
delivery of transfers before issuing this challenge to avoid
parent-chain costs and only issue challenges that they know
the Operator won’t be able to respond to.
Recover:

1) In case the commit-chain is halted at eon e, the exclusive
allotment trees are reverted to those of eon e − 1 . The
User submits its exclusive allotment proofs from e − 1 ,
and the Contract accepts the request only once if the
commit-chain is indeed suspended.

2) The Contract credits the User with the funds in a parent-
chain transaction.

All unfinalized transactions that were to be committed to
in the reverted eon are then also cancelled, and only a User’s
insurance collateral may be collected instead.
Audit:

8

1) The User simply requests its proofs related to the check-
point of eon e from the Operator.

2) The Operator responds with the requested proofs.
If valid proofs are not provided, such that the updated

balances are inconsistent, an outdated authorized state was
used, or a transfer was not properly delivered, then Users resort
to the challenge operations to retain custody of their accounts
and potentially punish the Operator.

VI. NOCUST-ZKP: PROVABLE SECURITY

NOCUST-ZKP is our second commit-chain construction
which augments NOCUST with provably secure checkpoints.
The crux of this design is requiring the operator to generate
a non-interactive Zero-Knowledge Proof (NIZKP) at every
checkpoint, proving that all user account updates are safe, i.e.,
authorized by the users and executed according to the commit-
chain safety criteria, and live, i.e., the users have received their
proofs of exclusive allotment or can infer them from some
additional data posted in the parent-chain by the operator. The
smart contract then only accepts a checkpoint as valid if the
provided proof is correct. This proof needs to be provided for
the last submitted checkpoint (within one eon) before a new
checkpoint can be submitted.
Proving Methodology. We refer to the publicly available
statement of the NIZKP as the verifier input, and to the private
witness as prover input (i.e., input only known to the prover).
Naively, including all proofs individually with each checkpoint
explicitly, or constructing a constraint system with very large
verifier inputs, would require a significant amount of addi-
tional on-chain storage and computation that would completely
defeat our scalability efforts. In NOCUST-ZKP, instead, we
combine all zero-knowledge proofs into a single one using
recursive composition [15–18], and employ several methods
to minimize the verifier overhead. In a hierarchical recursive
manner, we combine the results from every two related NIZKP
into one parent NIZKP as in [18]. For different procedures,
proof combination requires different validations and steps to
ensure the consistency of the protocol. For example, in some
contexts we validate the merger of two adjacent continuous
intervals, while in other contexts we open the commitments
provided in the verifier inputs of the nested verifiers (cf.
Appendix C). This generic concept enables NOCUST-ZKP’s
flexibility, security and efficiency. The sizes of the verifier input
and prover output from the final combiner remain constant
while encapsulating several sub-proofs. 11

Safety Constraints. We designed our constraint systems to
non-interactively prove the safety of the checkpoint posted by
the operator in zero knowledge. First, we validate that for each
user, the transfers included in txOut are correctly delivered,
such that they have a verifiable exclusive allotment proof in
the intended recipient’s txIn annotated merkle tree. Second,

11Although we’re not aware of a formal security proof in related work that
attests that recursively composed proofs enjoy the same security as standard
proofs, related work has argued that no evidence suggests their security is
weaker [18]. For all intents and purposes, our constraint systems can be simply
combined and flattened to a single monolithic constraint system if necessary.

the complete state update transition applied by the operator is
validated to have correctly calculated each user’s allotment in
the new eon, from all global and local information. Finally, the
user’s signature on the authorized state update that was used
to construct the new checkpoint is validated. This entire proof
is akin to successfully simulating state update and transfer
delivery challenges on the new checkpoint for every single
account and transfer without any inconsistency.

Fig. 4: High-level overview of the Checkpoint and Challenge
sub-protocols in NOCUST-ZKP. The checkpoint is validated
in the zkSNARK. In addition to the constant-sized checkpoint,
the operator broadcasts the state data for offline users.

Liveness Constraints. Liveness is achieved when a user learns
its exclusive allotment proof to access its account balance.
To prove this, the NIZKP must attest that all users achieved
liveness. This then warrants an extension of the audit sub-
protocol to end with the user providing this receipt to the
operator after successful validation. Honest users online within
an eon send the operator a signed proof-receipt, and the
operator includes these receipts in the NIZKP. For users that
don’t provide receipts, the operator broadcasts their state data
〈 address12, state13, allotment14 〉 to guarantee these users’
liveness via the parent-chain, and proves broadcasting this data
in the NIZKP instead of obtaining a receipt (cf. Appendix C-C
and Figure 8). The operator moreover disables the offline
users from further transfers, until they surface back online and
provide receipts. If a user remains offline for more subsequent
eons, the user state data does not need to be broadcast again.
Because broadcasting this data would incur additional parent-
chain transaction costs for the operator, the user and the
operator pre-agree to an amount that will be deducted from
the user account balance to make up for the broadcast cost.
If the user account balance cannot cover this amount, the
data is never broadcast and instead the account is simply
closed with the fee burned in the parent-chain. Moreover, if
the operator broadcasts the user state data at a cost less than
what was agreed upon (e.g. the operator used a small gas
price in Ethereum), the difference is kept by the user. This
broadcast debit is also verified in our constraint systems. The
operator must maintain the freshness of the authorized state

12Replaceable by numeric id if user was registered prior to previous eon.
13Omittable in case user does not care about proving debits.
14A pre-agreed upon value is deducted from the expected amount to

compensate the operator for the data broadcast costs in the blockchain.

9

updates it applies, and periodically commit checkpoints. The
challenges that users can now issue in the smart-contract are
non-interactive simplified versions. The first proves that the
operator had countersigned an authorized state update that is
more fresh than the one applied in the checkpoint. The second
proves that the operator had countersigned a transfer to be
delivered, but never included it in the checkpoint15.
Specification. We present an extended specification detailing
the NIZK constraint systems required to enforce this system in
Appendix C, along with the additional cryptographic accumu-
lators and datastructures required to enable this construction.
Admittedly, even though we design NOCUST-ZKP to min-
imize running costs, this approach still comes at the added
burdens of proof generation, verification and non-constant
sized checkpoints, which are now comprised of merkle roots,
and offline user state data. NOCUST-ZKP raises the bar for
the adversary to carry out withholding attacks or grief the
operator while lowering the dependence on the security of the
parent-chain.

VII. SECURITY ANALYSIS

In this section we analyze the security and prove the provi-
sion of our required guarantees by NOCUST and NOCUST-
ZKP under our stated system, communication and threat
models. As a proof strategy, we argue that an honest participant
or honest operator following the prescribed protocol may not
end in a state where they cannot utilize the smart contract to
enforce the safety or liveness of the commit-chain.

A. Safety

By breaking down our protocol into smaller sub-properties
and proving their security, our analysis demonstrates that an
adversary who attempts to violate the safety guarantees of our
protocols would have to violate the security of at least one of
these sub-properties.
Off-Chain Registration. As fully off-chain channel establish-
ment is not common in 2nd-layer solutions, we start our discus-
sion with why our commit-chains securely provide this feature.
The registration procedure allows a user to learn the operator’s
signature on an initially empty account. This signature and the
account information allow the user to instantiate challenges in
the smart contract, even in case no other operations involving
the user were performed. This guarantees that a participant
would be able to initiate a state update challenge in case it
has not received a proof of its expected allotment in the next
eon e + 1 , and allows the operator to securely federate user
entry. An adversary that attempts to misbehave with a newly
registered account would then be left vulnerable to a state
update challenge by its owner.
Balance Update. The exclusive allotment guarantees of the
proofs from Section V-D prevent an adversary from minting
new funds and creating an exclusive allotment tree with a
root allotment not greater than the total funds locked in the
smart contract. Such an allotment would trigger an immediate

15because another transfer’s exclusive allotment interval intersects with its
interval, or the recipient’s total incoming value does not cover it.

rejection by the smart-contract. Moreover, an adversary who
attempts to seize user funds or break the 1-1 correspondence
between user balances and the funds locked in the smart-
contract would be left vulnerable to a state update challenge
by the affected users. The exclusive allotment(e) of a user
at a given eon e is directly derived from its operations
in the previous eon e − 1 , which are verified by a state
update challenge to protect from any inconsistency in this
information. A correct response to a state update challenge
proves that the user balance was updated correctly according
to the operations in the parent-chain and the commit-chain.

Due to the implicit validation in zero-knowledge by the
smart-contract of all user account data in NOCUST-ZKP, an
adversarial operator is left unable to mint or seize funds.
Transfer Delivery. A participant in possession of its proofs
of exclusive allotment can decide if it needs to challenge
the correct delivery of a transfer. Our communication model
assumes that participants are able to communicate directly.
Without this assumption, and assuming that the operator is
withholding data, the ability of a participant to reason in
advance whether a transfer delivery challenge is justifiable,
before incurring the costs of issuing that challenge in the
blockchain, is hindered.

A recipient of a transfer (t1) can immediately check whether
it knows of a different incoming transfer (t2) in the same
eon where the intervals [offset t1 , offset t1 + t1.amount) and
[offset t2 , offset t2 + t2.amount) intersect, or if offset t1 +
t1.amount > receivedi(e − 1). All it requires is a proof
that the transfer was debited from the sender, along with the
corresponding offset t1 value, either in the form of position(e)
or t1.offset. If there is an inconsistency, then the receiving
participant can infer that a transfer delivery challenge should
be executed as it will not be refutable by the operator. This is
because txIni(e−1) is constructed with its transfers reserving
exclusive allotments for their amounts. An adversarial operator
is then vulnerable to a transfer delivery challenge by an honest
user in two cases. 1) It debits the sender but does not credit
the recipient, or 2) It colludes with the sender to exclude the
transfer from the next checkpoint after notifying the recipient.

NOCUST-ZKP improves the safety of this guarantee, as
all committed transfers are correctly verified to have been
delivered in the zero knowledge proof to the smart-contract,
eliminating the possibility to debit the sender without crediting
the recipient.
Instant Transaction Finality. The halt of the commit-chain
can cause financial damage to a recipient that accepted a non-
finalized transaction. The instant finality mechanism guaran-
tees that a recipient can always claim owed amounts, up to the
coverage of the finality collateral, in case of failure. The smart
contract maintains the insurance collateral pool balance so that
a valid proof of exclusive collateral allotment can always be
used at most once in case the commit-chain instance enters
recovery to claim the amount allotted. A user waiting for its
incoming transfers to be committed and finalized can then
either withdraw its funds from the smart contract starting from
eon e + 2 if the commit-chain instance remains operational, or

10

can withdraw the insurance collateral from the smart contract
if the instance enters recovery during eons e or e + 1 . For a
participant to guarantee itself instant finality on its incoming
amounts, it must only solicit incoming transfers if they do not
lead to a state update that violates either of the following two
constraints16:

receivedi(e − 1 , e) ≤ collateral i(e) + extrai(e− 1, e) (10)

receivedi(e) ≤ collateral i(e+ 1) + extrai(e) (11)

We refer the reader to Appendix B-E for our proof of sound-
ness of this methodology, which prevents an adversary from
breaking the safety of instant finalization.
Double-Spending. In the following we define double-
spending as an attempt by the adversary to perform one of
the following two actions while in control of a participant,
and possibly while colluding with the operator:

1) Spend the same balance more than once in the commit-
chain.

2) Spend its balance in the commit-chain and then withdraw
it onto the blockchain.

An adversary without control of the operator cannot double-
spend in the commit-chain as an honest operator would not
countersign invalid transfers. Similarly, attempted withdrawals
in eon e of funds spent in e − 1 are denied by an hon-
est operator through withholding the signatures required for
initiation. Even with control of the operator, an adversary
may not double-spend in the current eon e and be able to
construct valid exclusive allotment trees in the next eon e + 1 .
Since instances that contain no interval intersections guarantee
exclusive allotments, the allotment sizes must correspond to
the confirmed balances expected by each honest participant
(cf. Appendix B-C for our proof). In case an honest user
receives an invalid (intersecting) proof of exclusive allotment,
then it can initiate an irrefutable state update challenge using
the smart-contract. In NOCUST-ZKP, the smart contract will
reject a checkpoint violating any of the balance conditions.

Thus far, each safety goal presented in Section III-D was
covered by at least one of the above sub-properties, which are
all simultaneously enforceable by an honest user.

B. Liveness

We assume that the underlying parent-chain is secure (e.g.,
there are no blockchain forks) and provides enough band-
width to handle challenges and dispute resolutions (cf. Sec-
tion III-D), as largely assumed in related literature [10, 12]. We
follow the strategy of proving the security of sub-properties of
our protocol to demonstrate the liveness of the overall system.
Data Availability. Honest users must maintain ongoing knowl-
edge about their states to be able to utilize the smart contract
for dispute and account access. This requirement holds regard-
less of how other users or the operator behave. By keeping
track of every authorized updateai (e) and every exclusive

16This implies that a new participant who joins during the current eon does
not have any stake allocated to it upon registration, and thus has no instant
finality guarantees until insurance-collateral is allocated to it.

allotment proof from the operator for previous eons, a user
can open a balance update challenge in case the operator fails
to provide a proof of exclusive allotment for the current eon.
This guarantees that users are always able to learn correct
exclusive allotment proofs, or halt the commit-chain.

In NOCUST, an adversarial operator can take note of which
users went offline and did not acquire their proofs of exclusive
balance allotment in the previous eon. The operator can then
submit a new checkpoint that seizes the balance of the offline
users, knowing that they no longer possess sufficient data to
initiate any challenges. On the other hand, an adversary only
in control of a sizeable portion of users can flood the smart-
contract with unwarranted challenges. To mitigate this Denial-
Of-Service vulnerability, the operator should be selective about
user registrations (e.g. requiring human verification) and the
smart-contract should require that the transaction fees incurred
by the operator to answer a challenge are subsidized by the
users.

NOCUST-ZKP resolves this issue and neither leaves the
operator open to the same griefing vector by adversarial users,
nor allows the operator to withholding user state data, as users
who do not provide receipts may always resort to reading data
from the parent-chain.
Checkpoint Freshness. Honest users should be able to ensure
that the operator does not commit outdated states of their
accounts. Learning the operator’s countersignature on an au-
thorized state update in the current eon allows a user to enforce
that the commit-chain is reverted if a state update is dropped.

In NOCUST, we recall what the smart contract accepts as
a valid response from the operator to a state update challenge.
The updateai (e − 1) in the commitment must be as recent as
that submitted in the challenge by the user, and must bear the
user’s signature. This prevents the operator from attempting to
commit an outdated or forged authorized state, and provides
users with sufficient knowledge to enact any future delivery
challenges. Therefore, if the operator constructs the checkpoint
without the most fresh version of updateai (e−1), then it would
not be able to answer the user’s state update challenge, and
the user can effectively halt the commit-chain.

In NOCUST-ZKP, the state update challenge is reduced
to only handle the freshness of accounts. As both the data
availability and consistency of the update are already guaran-
teed, the state update challenge only becomes a non-interactive
challenge, where the user submits a countersigned updateai (e−
1) that is fresher than the one the operator committed to
in the user’s exclusive allotment proof, immediately halting
the commit-chain. The transfer delivery challenge is further
simplified to allow an honest sender or recipient who learns of
the operator’s countersignature on an authorized state update
to be able to non-interactively prove that the state update was
not committed. Moreover, these two challenges may now be
submitted at any point in time, and not just during the eon at
which they are relevant.
Withdrawal. Users are guaranteed to be able to transfer their
commit-chain balances back to their parent-chain accounts
through withdrawal, exit or recovery. The Withdrawal can be

11

censored by the operator, but Exit and Recovery mechanisms
are guaranteed to progress by the smart-contract.

Analysing the exit protocol, we see that the operator cannot
stop the user from initiating the exit request. If the operator
does not move the user data from the balance allotment tree
to the exit allotment tree, and provide the relevant proof to the
user, it can be halted by a state update challenge, or have its
next checkpoint rejected in NOCUST-ZKP.

In case of halt, the user can then simply utilize the recov-
ery protocol, using the proofs of exclusive allotment that it
already knows to retrieve its confirmed commit-chain balance,
unclaimed deposits, unfinalized withdrawals, and any pending
insurance collateral.

VIII. IMPLEMENTATION AND EVALUATION

We implement NOCUST (1 894 LOC) and NOCUST-ZKP
(2 782 LOC) in Solidity 0.4.24 and release the smart-contract
code as open source17. We implement the operator code in
Python 3.6 (6 937 LOC) and the NIZK proof generation
(18 864 LOC) in C++11 (gcc 7.4 compiler). We also develop
a JavaScript wallet (9 281 LOC) for users.

In the following, we evaluate NOCUST and NOCUST-ZKP
in terms of real-world practicality and light-client usability.
For our measurements, we deploy the smart contracts on a
local Ethereum blockchain using the Parity 2.5.1 client18. We
assume a gas price of 5 Gwei and an Ether price of 150 USD
(as per 13 September 2019). We also deploy NOCUST on the
Ethereum mainnet and process real-world payments.
Operation costs. We registered a large number of addresses
in exponential steps to measure gas costs (cf. Figure 5).
We repeatedly chose 10 random users to make 20 random
transactions, and then commit a checkpoint. Table I shows the
base gas costs and complexity of all blockchain operations.
Contract Storage: A deposit adds 160 bytes, a withdrawal 192
bytes. A checkpoint to 68 bytes and hash of all blockchain
operations amounts to 32 bytes. User Storage: Users store at
least the data for the current and previous eons, including the
account state (529 bytes) and all signed commit-chain transfers
(312 bytes/transfer). The exclusive allotment proof sizes grow
logarithmically, 1280 bytes for 1M users, 1920 bytes for 1B
users, allowing efficient lightweight clients. Operator Storage:
User accounts (529 bytes/tx) and signed transfers in the current
and previous eons (312 bytes/tx). Transaction Throughput:
We benchmark a single-threaded prototype implementation.
Remote clients initiate transactions with a network latency of
19ms to the operator (16GB RAM, 4 virtual cores, SSD).
We measured a throughput of 28 transactions per second,
with a countersignature latency (avg. over 100 transactions)
of 435ms±257.8ms.
zkSNARK Evaluation. Table II shows the complexities and
experimental computing times of our libsnark implementation,
built to verify commitments containing up to 4 billion users.

17https://github.com/liquidity-network/nocust-contracts-solidity
18https://github.com/paritytech/parity-ethereum

101 102 103 104 105

Number of users

100000

150000

200000

250000

300000

350000

G
as

co
st

Withdrawal

Initiate state challenge

Answer state challenge

0.10

0.15

0.20

0.25

G
as

co
st

in
U
S
D

Fig. 5: Costs in Ethereum gas and USD for challenges and
exits depending on the number of users in the commit-chain.
Costs increase with each additional height of the Merkle trees,
remaining below 0.3 USD with 100000 addresses.

NOCUST Operation Paid by Gas USD Complexity

Checkpoint Operator 96 073 0.07 O(1)
Deposit User 64 720 0.05 O(1)
Exit User 169 238 0.13 O(logn)
Initiate State Challenge User 281 786 0.21 O(logn)
Answer State Challenge Operator 80 769 0.06 O(logn)
Initiate delivery Challenge User 225 642 0.17 O(logn + log v)
Answer delivery Challenge Operator 68 152 0.05 O(logn + log v)

ZK Checkpoint Operator 523 618 0.39 O(1)
+ Offline User State User 160 to 3 876 0.003 O(f)

TABLE I: Blockchain costs for a NOCUST commit-chain with
10 users. The cost complexity depends on: n, the number of
commit-chain users. v, the number of transfers in the eon of
the challenged user. f the number of offline users.

Verification times are all ≤ 0.01s, practical for smart con-
tracts. The operator can parallelize checkpoint proof(constant-
size 2690 bits) generation. Figure 6 shows proving times
depending on the fraction of users collaborating (ignoring
network latencies) with the operator. Given e.g. one billion
users, 25 transfers per eon per user, generating a checkpoint
proof requires about 6 hours with only 3% of all users’
computational power.

Our measured zkSNARK[53] verification cost on the
Ethereum mainnet at the time of writing is 523 618 gas (0.39
USD). Moreover, depending on the state of users, between 0
and 58 bytes of data is broadcast, costing 680 to 3 876 gas, for
each offline user within the last eon. At the time of writing,
the planned upgrade to the Ethereum network19 should reduce
the verification costs to around 100 000 gas20 and the cost per
offline user to be between 160 and 912 gas21.

In Table II (cf. Appendix), we observe that the NIZK
proof sizes range from 128 to 187 bytes. With the task of
generating the checkpoint proof designed as a hierarchical tree
of subtasks, where each node represents a proof, and edges
represent dependencies, the storage required for storing the

19Istanbul: https://eth.wiki/en/roadmap/istanbul
20https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1108.md
21https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2028.md

12

https://github.com/liquidity-network/nocust-contracts-solidity
https://github.com/paritytech/parity-ethereum
https://eth.wiki/en/roadmap/istanbul
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1108.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2028.md

0 1 2 3 4 5
% Percentage of Participants Generating Proofs

0

2

4

6

8

10

12

14

16

18
C
h
ec
kp

oi
nt

P
ro
vi
n
g
T
im

e
(H

ou
rs
) Outgoing Tx Per User

0

2

5

10

15

25

Fig. 6: Estimated time required to create a checkpoint con-
sistency proof with a fraction of users generating proofs in
parallel. We assume one user runs one CPU.

output (proof) of a task is then ≤ 187 bytes per task22.
The proof generation time must be taken into consideration

when deciding the length of an eon, such that the operator is
granted a sufficient amount of time to prove the consistency
of a checkpoint. From Figure 6, we can observe that with a
5% proving power it would take about 2 hours to generate
a consistency proof. While this is a considerable amount of
time, it is shorter than our 36 hour eon. To accommodate a
shorter eon, more computational power should be invested.
Instant Finality Collateral Costs. No stake is required
to provide transaction finality within two eons. For instant
finality, only the incoming transactions of a user within two
eons need collateralization.

With a 24-hour eon, the operator can stake e.g. 2M USD to
provide instant transaction finality towards its users, at e.g.
n = 100k users, each receiving at most 10 USD. If the
operator halves the eon duration to 12 hours, it can still provide
the same instant transaction finality volume within 24 hours
while halving the required stake to 1M USD. Shortening the
eon, however, also reduces the maximum transaction amount
that a user can instantly receive within an eon. Following the
previous example, in a 12-hour eon, a user can accept instantly
at most 5 USD in a 12-hour period.
Live Deployment. We deployed an instance of NOCUST on
the Ethereum mainnet23 on 24 March 2019. The deployment
costs amounted to 3.9M gas (11.14 USD). Since then, we
count over 37 244 registered user accounts and observed 15
577 off-chain payments. At the time of writing, the total
amount of deposited funds into the smart contract accounts for
7.312 ETH (about 1300 USD). We set a 36 hour eon interval
to allow for sufficient time to manually intervene if necessary.

IX. DISCUSSION

Centralization. A shortcoming of our commit-chains, and
PCH designs, is that the operator becomes a central point of
failure. Some possible countermeasures to this issue could be

22The operator can drop the results of tasks whose dependents completed
23NOCUST smart contract address on Ethereum mainnet:

0x83aFD697144408C344ce2271Ce16F33A74b3d98b

as follows. Watchtowers [50, 54, 55] can act as mirrors of all
the data in a checkpoint, and the operator could possibly be
required to provide the signatures of multiple watch towers
on the checkpoint before the smart contract can accept it. One
other possible strategy to explore would be to require that users
retrieve the data of several other users and not just their own.
Users could be offered an incentive to recover other users’
accounts, such as a fee paid per recovery from the balance
of that account. We leave an extensive analysis of how to
build incentive compatible redundancy mechanisms as an open
avenue for future work.
Multiple Commit-Chains. We have presented a protocol for
users only within the same commit-chain to transfer funds
among each other. A protocol to perform cross-commit-chain
payments without users having to migrate funds could reduce
the disincentive for users to join small hubs, promoting more
decentralization in the network, and amortizing costs even
further. To this end, well known cross-chain communication
protocols [56–58] can be adopted, but an extensive specifica-
tion is outside the scope of our work.
Privacy. The commit-chain operator learns all data in the
commit-chain, while users learn some information about other
users through commit-chain and parent-chain operations. A
possible direction for future work would be to design a scheme
to minimize information leakage, possibly hiding transaction
details from the operator, and possibly minimizing the infor-
mation leakage that occurs in the smart-contract.
Eon Duration. In NOCUST the fixed eon length sets the
lower and upper bounds on when a checkpoint can be sub-
mitted. While this permits disputes and reduces user online
presence, it would be useful to make it dynamic. An interesting
mechanism to design would be a securely adaptive upper-
bound for submission based on blockchain congestion, or how
much activity occurred in the commit-chain. More concrete
strategies for how to determine the best eon time for certain
use cases would be an interesting future work.
NIZK Costs. Proving costs must be taken into consider-
ation by the operator when deciding the fees to place on
the transactions, which would raise the minimum value that
is cost effective to transfer using NOCUST-ZKP compared
to NOCUST. We have chosen to evaluate NOCUST-ZKP
using zkSNARKS in this work. An interesting avenue of
future work would be to explore the efficacy of utilizing
other non-interactive proving systems such as Bulletproofs or
zkSTARKS. While the proof sizes for these other systems are,
to the best of our knowledge as of today, not as small as those
of zkSNARKS, we leave exploring whether other advantages
may offset the difference in the cost of verification in the
blockchain for future work.

X. CONCLUSION

Off the chain transactions have emerged as a promising
scalability solution for blockchains. In this work, we lay the
foundations for a novel paradigm for off-chain transactions:
commit-chains, whereby non-custodial operators that can se-
curely facilitate payments among users without participating

13

in a consensus algorithm (as in side-chains) and without
forcing users to remain always online to receive payments (as
in payment channels). Additionally, commit-chains eliminate
blockchain costs for user-onboarding, amortizing user regis-
tration costs. The collateral management cost complexity for
instant finality of commit-chains is O(1), instead of O(n) as
in payment channels.

We instantiate two account-based commit-chain construc-
tions: NOCUST, and NOCUST-ZKP. Their security guar-
antees rely on a practical challenge-response protocol and
proactive asserts via zkSNARKs. Our evaluation demonstrates
that commit-chains can accommodate hundreds of thousands
of users while enabling efficient, lightweight clients with only
tens of kilobytes of data storage requirements.

XI. ACKNOWLEDGEMENTS

This work is partially funded by the Imperial College
London President’s PhD Scholarship.

REFERENCES

[1] Jimuta Naik. Beginning of the early banking industry
in mesopotamia civilization from 8th century bce. 2014.
https://ssrn.com/abstract=2377309.

[2] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas
Gailly, Ismail Khoffi, Linus Gasser, and Bryan Ford.
Enhancing bitcoin security and performance with strong
consistency via collective signing. In 25th {USENIX} Se-
curity Symposium ({USENIX} Security 16), pages 279–
296, 2016.

[3] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient
consensus in the permissionless model. In 31st Interna-
tional Symposium on Distributed Computing, DISC 2017,
October 16-20, 2017, Vienna, Austria, pages 39:1–39:16,
2017.

[4] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal
Baweja, Seth Gilbert, and Prateek Saxena. A secure
sharding protocol for open blockchains. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 17–30. ACM, 2016.

[5] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus
Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. Om-
niledger: A secure, scale-out, decentralized ledger via
sharding. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 583–598. IEEE, 2018.

[6] Joseph Poon and Thaddeus Dryja. The bitcoin light-
ning network: Scalable off-chain instant payments, 2015.
https://lightning.network.

[7] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and
Patrick McCorry. Sprites: Payment channels that go
faster than lightning. In Financial Cryptography and
Data Security, 2019.

[8] Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei
Ostrovskiy, and Olaoluwa Osuntokun. Flare: An
approach to routing in lightning network. 2016.
https://bitfury.com/content/downloads/whitepaper

flare an approach to routing in lightning
network 7 7 2016.pdf.

[9] Rami Khalil and Arthur Gervais. Revive: Rebalancing
off-blockchain payment networks. Proceedings of the
2017 ACM SIGSAC Conference on Computer and Com-
munications Security, 2017.

[10] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and
Daniel Malinowski. Perun: Virtual payment channels
over cryptographic currencies. In Security and Privacy
(SP), 2019 IEEE Symposium on. IEEE, 2019.

[11] Matthew Green and Ian Miers. Bolt: Anonymous pay-
ment channels for decentralized currencies. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 473–489. ACM,
2017.

[12] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate,
Matteo Maffei, and Srivatsan Ravi. Concurrency and
privacy with payment-channel networks. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 455–471. ACM, 2017.

[13] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schnei-
dewind, Aniket Kate, and Matteo Maffei. Anonymous
multi-hop locks for blockchain scalability and interop-
erability. In Network and Distributed System Security
Symposium (NDSS), 2019.

[14] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi,
Alessandra Scafuro, and Sharon Goldberg. Tumblebit:
An untrusted bitcoin-compatible anonymous payment
hub. Proceedings of NDSS 2017, 2017.

[15] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge
proofs of identity. Journal of cryptology, 1(2):77–94,
1988.

[16] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran
Tromer. From extractable collision resistance to succinct
non-interactive arguments of knowledge, and back again.
In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, pages 326–349. ACM,
2012.

[17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran
Tromer. Recursive composition and bootstrapping for
snarks and proof-carrying data. In Proceedings of the
forty-fifth annual ACM symposium on Theory of comput-
ing, pages 111–120. ACM, 2013.

[18] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and
Madars Virza. Scalable zero knowledge via cycles of
elliptic curves. Algorithmica, 79(4):1102–1160, 2017.

[19] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. 2008.

[20] Gavin Wood. Ethereum: A secure decentralised gener-
alised transaction ledger. Ethereum Project Yellow Paper,
2014.

[21] Cynthia Dwork and Moni Naor. Pricing via processing
or combatting junk mail. In Annual International Cryp-
tology Conference, pages 139–147. Springer, 1992.

[22] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J
Fischer, and René Peralta. Computation in networks

14

https://ssrn.com/abstract=2377309
https://lightning. network
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf

of passively mobile finite-state sensors. Distributed
computing, 18(4):235–253, 2006.

[23] Marko Vukolic. Eventually returning to strong consis-
tency. IEEE Data Eng. Bull., 39(1):39–44, 2016.

[24] Nicholas Stifter, Aljosha Judmayer, Philipp Schindler,
Alexei Zamyatin, and Edgar Weippl. Agreement with
satoshi–on the formalization of nakamoto consensus.
2018.

[25] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios
Glykantzis, Hubert Ritzdorf, and Srdjan Capkun. On the
security and performance of proof of work blockchains.
In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 3–16.
ACM, 2016.

[26] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The
bitcoin backbone protocol: Analysis and applications.
In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 281–
310. Springer, 2015.

[27] Ittay Eyal and Emin Gün Sirer. Majority is not enough:
Bitcoin mining is vulnerable. In Financial Cryptography
and Data Security, pages 436–454. Springer, 2014.

[28] Christian Decker and Roger Wattenhofer. Information
propagation in the bitcoin network. In IEEE P2P 2013
Proceedings, pages 1–10. IEEE, 2013.

[29] Vitalik Buterin. Ethereum: A next-generation smart
contract and decentralized application platform. URL
https://github. com/ethereum/wiki/wiki/% 5BEnglish%
5D-White-Paper, 2014.

[30] Mike Hearn. Micro-payment channels implementation
now in bitcoinj, 2013. Available at: https://bitcointalk.
org/index.php?topic=244656.0.

[31] Christian Decker and Roger Wattenhofer. A fast and scal-
able payment network with bitcoin duplex micropayment
channels. In Symposium on Self-Stabilizing Systems,
pages 3–18. Springer, 2015.

[32] Conrad Burchert, Christian Decker, and Roger Watten-
hofer. Scalable funding of bitcoin micropayment channel
networks. Royal Society open science, 5(8):180089,
2018.

[33] Christian Decker, Rusty Russell, and Olaoluwa Osun-
tokun. eltoo: A simple layer2 protocol for bitcoin. White
paper: https://blockstream. com/eltoo. pdf, 2018.

[34] Ethan Heilman, Sebastien Lipmann, and Sharon Gold-
berg. The arwen trading protocols.

[35] Matthew Green and Ian Miers. Bolt: Anonymous pay-
ment channels for decentralized currencies. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 473–489. ACM,
2017.

[36] The inevitability of privacy in lightning networks.
https://www.kristovatlas.com/the-inevitability-of-
privacy-in-lightning-networks/.

[37] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and
Ian Goldberg. Settling payments fast and private: Ef-
ficient decentralized routing for path-based transactions.

In 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018, 2018.

[38] Christoph Egger, Pedro Moreno-Sanchez, and Matteo
Maffei. Atomic multi-channel updates with constant
collateral in bitcoin-compatible payment-channel net-
works. Cryptology ePrint Archive, Report 2019/583,
2019. https://eprint.iacr.org/2019/583.

[39] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei.
A2l: Anonymous atomic locks for scalability and inter-
operability in payment channel hubs. Cryptology ePrint
Archive, Report 2019/589, 2019. https://eprint.iacr.org/
2019/589.

[40] Joshua Lind, Ittay Eyal, Peter Pietzuch, and Emin Gün
Sirer. Teechan: Payment channels using trusted execution
environments. arXiv preprint arXiv:1612.07766, 2016.

[41] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert,
Peter R. Pietzuch, and Emin Gün Sirer. Teechain:
Reducing storage costs on the blockchain with offline
payment channels. In Proceedings of the 11th ACM
International Systems and Storage Conference, SYSTOR
2018, HAIFA, Israel, June 04-07, 2018, page 125, 2018.

[42] Stefan Dziembowski, Sebastian Faust, and Kristina
Hostáková. General state channel networks. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 949–966. ACM,
2018.

[43] Joseph Poon and Vitalik Buterin. Plasma: Scalable
autonomous smart contracts. White paper, 2017.

[44] Hagit Attiya and Jennifer Welch. Distributed comput-
ing: fundamentals, simulations, and advanced topics,
volume 19. John Wiley & Sons, 2004.

[45] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green,
Eran Tromer, and Madars Virza. Secure sampling of
public parameters for succinct zero knowledge proofs. In
2015 IEEE Symposium on Security and Privacy, pages
287–304. IEEE, 2015.

[46] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable
multiparty computation for zk-snark parameters in the
random beacon model. Technical report, Cryptology
ePrint Archive, Report 2017/1050, 2017.

[47] Sean Bowe, Ariel Gabizon, and Matthew D Green. A
multi-party protocol for constructing the public param-
eters of the pinocchio zk-snark. In International Con-
ference on Financial Cryptography and Data Security,
pages 64–77. Springer, 2018.

[48] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zo-
har. Optimal selfish mining strategies in bitcoin. In
International Conference on Financial Cryptography and
Data Security, pages 515–532. Springer, 2016.

[49] John R Douceur. The sybil attack. In International work-
shop on peer-to-peer systems, pages 251–260. Springer,
2002.

[50] Patrick McCorry, Surya Bakshi, Iddo Bentov, Andrew
Miller, and Sarah Meiklejohn. Pisa: Arbitration outsourc-
ing for state channels. IACR Cryptology ePrint Archive,

15

https://bitcointalk.org/index.php?topic=244656.0
https://bitcointalk.org/index.php?topic=244656.0
https://eprint.iacr.org/2019/583
https://eprint.iacr.org/2019/589
https://eprint.iacr.org/2019/589

2018:582, 2018.
[51] Manuel Blum, Paul Feldman, and Silvio Micali. Non-

interactive zero-knowledge and its applications. In Pro-
ceedings of the twentieth annual ACM symposium on
Theory of computing, pages 103–112. ACM, 1988.

[52] Ralph C. Merkle. A Digital Signature Based on a Con-
ventional Encryption Function, pages 369–378. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1988.

[53] Jens Groth. On the size of pairing-based non-interactive
arguments. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
pages 305–326. Springer, 2016.

[54] Georgia Avarikioti, Felix Laufenberg, Jakub Sliwinski,
Yuyi Wang, and Roger Wattenhofer. Towards se-
cure and efficient payment channels. arXiv preprint
arXiv:1811.12740, 2018.

[55] Georgia Avarikioti, Eleftherios Kokoris Kogias, and
Roger Wattenhofer. Brick: Asynchronous state channels.
arXiv preprint arXiv:1905.11360, 2019.

[56] Maurice Herlihy. Atomic cross-chain swaps. In Pro-
ceedings of the 2018 ACM Symposium on Principles of
Distributed Computing, pages 245–254. ACM, 2018.

[57] Aggelos Kiayias and Dionysis Zindros. Proof-of-work
sidechains. In International Conference on Financial
Cryptography and Data Security. Springer, 2018.

[58] Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis
Panayiotou, Arthur Gervais, and William Knottenbelt.
Xclaim: Trustless, interoperable, cryptocurrency-backed
assets. IEEE Security and Privacy. IEEE, 2019.

[59] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Foundations
of Computer Science, 2001. Proceedings. 42nd IEEE
Symposium on, pages 136–145. IEEE, 2001.

[60] Ran Canetti. Universally composable signature, certi-
fication, and authentication. In 17th IEEE Computer
Security Foundations Workshop, (CSFW-17 2004), 28-30
June 2004, Pacific Grove, CA, USA, page 219, 2004.

[61] Ran Canetti and Marc Fischlin. Universally composable
commitments. In Advances in Cryptology - CRYPTO
2001, 21st Annual International Cryptology Conference,
Santa Barbara, California, USA, August 19-23, 2001,
Proceedings, pages 19–40, 2001.

[62] Ahmed E. Kosba, Zhichao Zhao, Andrew Miller,
Yi Qian, T.-H. Hubert Chan, Charalampos Papamanthou,
Rafael Pass, Abhi Shelat, and Elaine Shi. How to
use snarks in universally composable protocols. IACR
Cryptology ePrint Archive, 2015:1093, 2015.

[63] Merkle mountain ranges, 2019. https://github.com/
opentimestamps/opentimestamps-server/blob/master/
doc/merkle-mountain-range.md.

APPENDIX A
FURTHER DISCUSSION AND FUTURE WORK

In this section, we briefly discuss some important points
about NOCUST that can be considered for future work.

A. Security Analysis in the Universal Composability (UC)
framework

The UC framework [59] facilitates the analysis of the
security for novel and complex cryptographic protocols. As
this work presents a full-fledged system that relies on fairly
studied, standard cryptographic operations used independently
of each other, we have not analyzed the security of NOCUST
in the UC framework. However, we envision that the security
of NOCUST can also be seamlessly analyzed in the UC frame-
work, constituting thus an interesting future work direction.

In a nutshell, the security in the UC framework requires to
show that, in the presence of an environment that establishes
the inputs for parties, an adversary that controls the set of
corrupted parties cannot distinguish whether it is executing an
instance of the ideal world functionalities or an instance of
the protocol. For that, one should show that the view (i.e., the
set of input and output messages) of the adversary in both
scenarios is indistinguishable.

A bare bone proof sketch may look as follows. The ideal
and real world are differentiated by the cryptographic op-
erations and we note that NOCUST relies on three crypto-
graphic schemes: (i) a digital signature scheme instantiated
with ECDSA; (ii) a non-interactive zero-knowledge (NIZK)
scheme instantiated with zk-SNARKS; and (iii) cryptographic
accumulators instantiated with our novel Merkleized interval
tree (which one can see as a version of a Merkle tree tailored
to represent the data required in NOCUST).

In such setting, one could define the following hybrid
scenarios:
• H0: real world protocol as defined for NOCUST.
• H1: H0 where, additionally, digital signatures are

replaced by their corresponding ideal functionality
FSIG [60].

• H2: H1 where, additionally, the cryptographic accumu-
lator is replaced by the coresponding ideal functionality
FCOM [61].

• H3:H2 where, additionally, the NIZK scheme is replaced
by FNIZK [62].

One could argue then that H0 ≈ H1 assuming that ECDSA
is a secure digital signature scheme. Similarly, one could argue
that H1 ≈ H2 and H2 ≈ H3. Thus H0 ≈ H3, showing that
real world (H0) and ideal world (H3) are indistinguishable.
We remark, nevertheless, that a detailed security analysis in
the UC framework constitutes an interesting future work.

B. Transfer method selection strategy
NOCUST significantly reduces the best case scenario cost

of its committed payments. However, the finality guarantees
offered by this scheme may not be the best choice for large-
value transactions, or others, willing to pay the costs of
blockchain transactions. Moreover, with future advances in
blockchain transaction throughput, it will become cheaper to
utilize the blockchain for payments rather than a commit-
chain. The future may also bear other blockchain constructs
significantly different from state of the art payment-channels
and commit-chains.

16

https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md

This motivates us to conclude that participants wishing to
transact using a blockchain would have to make a decision
on the best strategy or method to receive their payments or
assets. A dynamic method for concluding the best transfer
strategy while considering different parameters, such as the
current blockchain transaction fees, the transaction volume,
or the finality requirements, would certainly be an interesting
avenue to explore.

For example, if a machine wishes to perform towards
another machine a series of nano-value transactions whose
values are less than those of blockchain transfer fees at the
time, it could conclude NOCUST to be the most viable option
to utilize depending on the operator fee schedule.

APPENDIX B
PROOFS

A. Exclusive Allotment

We proceed to prove that no valid instance of our annotated
merkle tree may be used to construct an exclusive allotment
proof that permits a non-exclusive allotment by contradiction.
Assume a valid tree instance, and without loss of generality
let tx and ty be two successively neighboring nodes (y > x)
that have overlapping allotments, where offset y < offset x +
allotmentx.

Let tu be their least common ancestor with tp and tq as
its direct children such that tp is an ancestor of tx, and tq of
ty . Without loss of generality, assume tp and tq are correctly
reconstructible from the exclusive allotment proofs of tx and
ty respectively.

Given the proof of tx, constructing tu on the path up
to troot will be performed with knowledge of offset p and
allotmentp (from reconstructing tp) and the boundary value
and commitment of tq supplied in the proof.

Ω(tu, tq) = offset q + allotmentq (12)

Recall the definition in Section V-B. As offset q is interchange-
able with offset p + allotmentp, reconstructing tu will need to
be performed as follows due to the lack of presence of offset q

in the proof by substitution in equation 6 as follows:

informationu = {tp, offset p + allotmentp, tq} (13)

Given the correctness of the sub-tree of tp in isolation, it
follows that offset p + allotmentp = offset x + allotmentx, and
therefore, assuming offset q was used in the original commit-
ment to the considered exclusive allotment tree instance, the
reconstructed tu will not match, and the remaining trail of
reconstructed nodes from the proof of tx 24 will lead to a
t
′

root 6= troot, violating the assumption that the considered
instance is a valid tree and that the proof is acceptable �

B. Balance Custody

We proceed to prove how an honest participant in NOCUST
can protect its funds through modelling the state of a partici-
pant’s custody as a finite state machine whereby the participant

24A symmetric argument can be made for the proof of ty

may always reach a custodian state. A participant is considered
a non-custodian in eon e if e − 1 had passed successfully (the
commit-chain did not enter recovery) without the participant
learning valid proofs of exclusive allotment that exclusively
account for its confirmed balance, assuming the participant
joined the commit-chain prior to e − 1 .

s0start

e − 1

s1

s2 e

no checkpoint committed

checkpoint committed

excl. allot. proof revealed

balance update challenged

challenge answeredchallenge unanswered

Fig. 7: Finite state automaton capturing the custodian state
of an honest participant during an eon e. Given the operator’s
commitment to exclusive allotment trees, an honest participant
always knows a valid proof of exclusive balance allotment
either from a cooperative or through the smart contract.
Terminal states denote which eon’s balance the participant is
given custody of.

It’s straightforward to infer from the automaton in Figure 7
that a participant may always reach a state of custody from
s1 given that the operator commits to the exclusive allotment
trees within the first epoch. 25 Recall that if the operator does
not commit to this data within the first epoch, the commit-
chain instance is halted, and therefore the participant retains
custody of the previous allotment which it may claim through
the smart contract’s recovery. This may also happen if the
operator ignores the participant’s challenge.�

C. Double-Spend Futility

Let the participant and the operator be under the control of
the adversary such that the running balance of the participant
during eon e is double-spent towards a set of other participants
whereby allotmenti(e + 1) < 0 holds by the end of e. The
adversary must construct a valid exclusive balance allotment
tree for e + 1 to commit the transfers in e and successfully
double-spend, while avoiding the halt of the commit-chain by
an honest participant.

With Equation 14 in mind, if the adversary were double-
spending in the commit-chain by not updating senti(e),
then

∑
j receivedj(e) − sentj(e) > 0 would follow, and

allotmentroot(e + 1) <
∑

j allotmentj(e + 1) would lead to
a challenge in e+ 1 by the affected honest participant whose
allotment is incorrect, foiling as well any concurrent double-
spend in the commit-chain.

Moreover, if the adversary were double-spending
in the commit-chain and updating senti(e) such

25For simplicity we omit states and transitions whereby a user does not
receive a valid exclusive allotment proof from the operator and chooses to not
resort to the smart contract to demand its broadcast within the next epoch, as
this behavior does not describe an honest user.

17

Procedure Constraints Variables V Inputs Generation (s) Proving (s) Recurrence
S W C S W C S W C S W C S W C S

Merkle Membership 81k 19k - 81k 19k - 5 5 - 2.2 0.7 - 1.3 0.8 - |T |
Exclusive Allotment 178k 29k - 178k 29k - 8 8 - 3.9 1.1 - 2.9 1.1 - |T | + |P|
Transfer Inclusion 47k - - 47k - - 7 - - 1.8 - - 1.8 - - |T |
Transfer Delivery 84k 19k 56k 84k 19k 56k 5 5 5 2.1 0.8 1.5 2.7 1.1 1.9 |T |
Deposit/Withdrawal 58k - - 58k - - 5 - - 2.3 - - 2.6 - - |P|
Exit Notification 38k - - 38k - - 4 - - 1.6 - - 1.9 - - |P|
Chain Accumulator 92k 25k - 97k 25k - 6 6 - 2.3 1.1 - 2.9 1.4 - |P|
Account Integrity 106k 35k 92k 121k 35k 96k 12 12 5 2.7 1.5 2.4 3.2 1.8 2.9 |P|
MNT → BN Wrapper 7.4M - - 7.6M - - 1 - - 140.0 - - 63.8 - - 1

TABLE II: zkSNARKs implemented in libsnark. Wrapper circuits convert the generated snark from one verifiable in the MNT6
curve to one verifiable in the MNT4 curve. Combiner circuits merge two proofs into one. The MNT → BN Wrapper is
implemented using long-integer arithmetic to provide efficient verification using pre-compiled Ethereum contracts. zkSNARKs
proving and generation times expressed in seconds. Measured on an Intel i9-9980HK 5.00GHz CPU, and 2x 32GB 2667 MT/s
DDR4 RAM. Measured verification times were ≤ 0.01s.

∑
j

allotmentj(e+ 1) =
∑
j

allotmentj(e) + receivedj(e) + depositedj(e)− withdrawnj(e)− sentj(e)

=
∑
j

allotmentj(e) +
∑
j

depositedj(e)− withdrawnj(e) +
∑
j

receivedj(e)− sentj(e)

= allotmentroot(e+ 1) +
∑
j

receivedj(e)− sentj(e)

(14)

that
∑

j receivedj(e) − sentj(e) = 0, and/or double-
spending through withdrawals to the blockchain, then an
allotmentroot(e+1) would be rejected by the smart contract.�

D. Provable Integrity

We proceed to prove how an honest operator in NO-
CUST can maintain functionality under a subset of malicious
participants, and how a dishonest operator that attempts to
compromise transfers will lead to the commit-chain instance
being stopped through a proof by case analysis. An operator is
defined as maintaining provable integrity during eon e so long
as it is able to close any challenge using the smart contract.
• Given no interactions between the operator and a par-

ticipant during e, an honest operator may create ex-
clusive allotment trees with allotmenti(e + 1) equal to
allotmenti(e) + receivedi(e) and no updateai (e) applied.

• Once a participant requests an exit, an honest operator can
construct the tree of exclusive exit allotment and retain
all information necessary to close any balance update
challenge.

• The operator can justifiably authorize a participant to
initiate a partial withdrawal using the smart contract as
long as it does not allow the participant to request to
overdraw its funds.

• Given an updateai (e) signed by the sender, an honest op-
erator may discard or enact the transfer, or commit to its
delivery by revealing its countersignature on updateai (e)
and then must enforce its delivery in the tree of exclusive
allotment. The operator retains sufficient information to
respond to any challenge.

Moreover, a dishonest server which tries to debit a par-
ticipant without authorization, or without crediting the corre-
sponding recipient in case of a transfer, or one that provides
partial withdrawal authorizations that overspend a participant’s
balance, may not find itself in a state of provable integrity in
e+ 1.
• Given no interactions between the operator and a par-

ticipant during e, the operator cannot construct a valid
exclusive allotment tree containing an updateai (e) signed
by the participant. As the operator cannot forge the
participant’s signature, it cannot respond to a balance
update challenge.

• If the operator authorizes a participant to initiate a partial
withdrawal using the smart contract that overdraws its
funds, it will not be able to satisfy the exclusive allotment
constraint for all users in e + 1 .

• Given an updateai (e) signed by a sender, the operator can-
not construct a valid exclusive allotment tree where the
delivered transfer does not reserve an exclusive allotment
in txInj . A transfer delivery challenge by a custodian
sender/recipient will not be closeable by the operator.

• Once the operator delivers a countersigned updateai (e) to
the sender, it may not back out of enforcing the transfer,
as the operator will not be able to close a balance update
challenge if it includes an outdated state that does not
include the transfer in the exclusive allotment tree.�

E. Instant Transaction Finality

We proceed to prove prove how a participant enacting
transfers in a commit-chain instance is guaranteed to be

18

able to finalize receipt of incoming amounts up to a known
total amount, regardless of the adversary’s behavior while
controlling the operator and/or all other participants.

The proof that a participant observing the constraints in
Equation 10 and Equation 11 has guaranteed finality of receipt
on countesigned incoming transfers is straightforward.
• If the commit-chain instance fails during eon e, then the

participant can recover an amount equal to the R.H.S of
Equation 10.

• If the commit-chain instance fails during eon e + 1 , then
the participant can recover an amount equal to the R.H.S
of Equation 11.

• Otherwise, the transfer has been in included in the tree
of exclusive allotment, and its amount can be withdrawn
in e + 2 .

extrai(e − 1) and extrai(e) are accounted for by the smart
contract, while collateral i(e) and collateral i(e+1) committed
to by the operator and learned by the participant before eon
e commences, or assumed to be zero. The exclusivity of the
collateral amounts are guaranteed through validation of the
proofs of exclusive collateral allotment (ref. B-A)

Moreover, the operator cannot withdraw staked collateral
such the total amount, allotmentroot, promised in the tree
of exclusive insurance collateral allotment, is unavailable in
the smart contract for recovery, which means the recoverable
amount from a proof is always available in eon e. �

APPENDIX C
NOCUST-ZKP: EXTENDED SPECIFICATION

Throughout this specification, we denote a proof of a
NIZKP as Π.

A. Consistency Verifications

Transfer Delivery Consistency. We show how to guarantee
that every transfer debited from a participant was correctly
credited to the intended recipient. Algorithm 3 (cf. Appendix)
ensures that a single transfer delivery is enforced in an
exclusive balance allotment tree. To verify that a larger set
of transfers is entirely enforced, we compose a series of
verifiers that combine two proofs by verifying that both proofs
validate the same exclusive allotment tree root in their public
statements, and that the public statement of this combiner
includes the same allotment tree root and a hash of the two
verified transaction merkle-subtrees. Consequently, the public
statement of the top combiner will contain the merkle root of
the set of transfers whose enforcement is being proven for a
single user26.
State Update Consistency. Algorithm 4 (cf. Appendix) sim-
ilarly enforces the correct balance update and consistency of
a single participant’s account. It validates that the exclusive
balance allotment in the new checkpoint is correctly calculated
using the exclusive balance allotment of the previous check-
point, and the amounts deposited, withdrawn, and transferred

26The definition leaves no room for sets whose size is not a perfect power
of two, but we forgo discussing obvious remedies to this nuisance, such as
using filler values.

in the previous eon. Moreover, it validates that the authorized
state update updateai committed in the balance tree is signed by
the participant if the update is non-empty for this eon. Lastly,
it verifies that all transfers under txOuti are correctly delivered
using an embedded transfer delivery combiner verifier as pre-
viously described. Proofs from this system can then combined
to reach a single top-level proof for an entire tree of exclusive
balance allotment. The details of this combiner are left as an
exercise to the reader, bearing in mind that the combination
verifier must merge continuous intervals.
Non-collaborative Exit Consistency. Algorithm 5 (cf. Ap-
pendix) can be combined similar to Algorithm 4 to verify the
integrity of a exclusive exit allotment tree commitment.

B. Bi-Modal Ledger For zkSNARKS

The motivation for this extended specification is to provide
specifications for the three global ledger verifiers: VD, VW ,
and VE , that are required in Algorithms 4 and 5 without wor-
rying about the storage introspection details of the underlying
blockchain. For every eon e, the global ledger is amended with
the following:
An accumulator of the smart contract operations performed
during eon e.
The accumulator is structured as a set of Merkle Mountain

Ranges [63] that are built up as deposits, withdrawals and exits
are performed using the smart contract during the current eon
e. To enable this structure to be usable, the smart contract
will need to keep track of the current set of roots for the
current eon accumulator, and append a new element for every
deposit made to the deposit accumulator, withdrawal initialized
to the withdrawal accumulator and exit requested to the exit
accumulator. Each element should be a commitment of the
details of the operation made:

〈operation, address, amount〉

The operator then re-organizes two of these three accumu-
lators into Merkle tree structures for deposits and withdrawals.
Designed to group fragmented amounts of deposit and with-
drawal operations according to the participant, these trees are
built up as Merkleized Interval Trees akin to the exclusive
balance allotment tree structure from Section V-B, and are
referred to as operation consolidators.

The following definitions are used for the leaves of the
deposit, and similarly for withdrawal, accumulator along with
that of Equation 2:

allotmenti(e) = accumulatedi(e) (15)

informationi(e) = {addressi, fragmentedi(e)} (16)

fragmented is defined as another annotated Merkle tree which
contains all the operations in the accumulator as leaves for
one participant. Meaning that each leaf in a consolidator
contains a commitment to the root of the subtree fragmented,
and the allotment size of the consolidator leaf is the allotment
size of the root of the fragment subtree. The allotment size

19

then of the leaves of the fragment subtree are the individual
amounts of the operations, and the information within them
are commitments to their respective details.

The global ledger in the smart contract is further amended to
then store commitments to the roots of the consolidators. The
smart contract is then extended to accept the submission of
these commitments only when they are correctly constructed,
the allotment of the root of the consolidators is equal to the
total amount of the operation, and the consolidator leaves obey
the following constraints:

∀pi, pj ∈ consolidator : i < j → addressi < addressj

op ∈ accumulator ↔ ∃i : op ∈ consolidatori.fragmented

The conditions on the allotment of the two deposit and
withdrawal consolidator roots are easy to validate in the
smart contract, but verifying the correct construction of the
underlying data and the validity of the above two constraints
will require the usage of the same zkSNARK combination
scheme previously described in Section VI.

Algorithm 1: verifySingleDepositOperationInclusion
Verifier Input :

• Deposit accumulator root
• Deposit consolidator root
• offset , information, allotment

Prover Input :
• Proof of inclusion of operation in accumulator
• Proof of exclusive allotment of deposit in fragment tree
• Proof of exclusive allotment of fragment tree root in

consolidator
• deposit

verify proof of inclusion of operation in accumulator leads to
accumulator root

verify proof of exclusive allotment of deposit in the fragment
tree leads to the fragment tree root

verify proof of exclusive allotment of the fragment tree root
leads to the consoildator root

verify offset , information, allotment are equal to deposit
information

The combiner for the procedure defined in Algorithm 1,
denoted as VDI , is left as an exercise to the reader, noting
that it will have to be instantiated twice to prove both sides of
the bi-implication in the second constraint. The verifiers and
their combiners for proving the consistency of the withdrawal
consolidator with respect to its accumulator will be symmetric
to those of deposits.

The combiner for the procedure defined in Algorithm 2 is
left as an exercise to the reader, noting that the combiner
should enforce the ordering constraint on leaf addresses. Our
sought after VD then becomes a procedure for retrieving the
allotment of a participant from the deposit consolidator, an-
other exercise for the reader. The verifiers and their combiners
for proving the consistency of withdrawal consolidators with
respect to their accumulators will be symmetric to those of
deposits, along with VW .

The full specification of VE then becomes an exercise for
the reader, where the exit consolidator contains no subtrees

Algorithm 2: verifyConsolidatedDepositAllotment
Verifier Input :

• Deposit accumulator root
• Deposit consolidator root
• offset i(e), informationi(e), allotmenti(e)

Prover Input :
• Proof of exclusive allotment of consolidated deposits in

consolidator
• Proof of inclusion of all participant operations in consolidator
• ZKP: πDI

verify VπDI
DI (accumulator root, consolidator

root, offset i(e), informationi(e), allotmenti(e)) returns 1
verify that the proof of exclusive allotment leads to the

expected consolidator root

and is easily verifiable and a participant’s exit entry is easily
retrievable.

Algorithm 3: verifySingleTransferDelivery
Verifier Input :

• Exclusive allotment tree root
• transfer hash

Prover Input :
• Proof of recipient exclusive balance allotment
• Recipient state update
• Proof of transfer inclusion in recipient state
• transfer

verify recipient’s exclusive balance allotment proof leads to the
expected tree root

verify that the recipient state update is the one in the proof of
exclusive balance allotment

verify the proof of inclusion of the transfer in the recipient’s
state update

verify hash(transfer) is equal to transfer hash

Algorithm 4 requires the pre-establishment of four verifi-
cation procedures: VD, VW , and VE , are plug-in subroutines
which return deposit and withdrawal request values, along with
the exit request flag from the global ledger. These first three
procedures must be implemented to verifiably provide global
storage values from the blockchain to the calling procedure.
Lastly, VT is defined to be the top-level instance of the transfer
delivery proof combiner defined in the previous paragraph.
Enabling the verification then of an entire exclusive balance
commitment is accomplished through combining proofs to
output the reconstructed parent node of two verified neighbors,
along with its offset and allotment.

C. Liveness Verifications

Algorithm 6 presents a recursively composeable procedure
to verify that the entire set of user accounts has its data
available either with the users themselves, or in the addi-
tional data broadcast on-chain by the operator. Combining
this procedure to produce a single top-level proof will then
entail recomposing the exclusive allotment tree verified, and
composing a merkle tree of broadcast data, along with its
running hash. The merkle tree root of the broadcast data will
permit clients to construct proofs of exclusive allotment, while

20

Algorithm 4: verifyAccountIntegrity
Verifier Input :

• last tree root
• new tree root
• offset i(e), informationi(e), allotmenti(e)

Prover Input :
• Proof of exclusive balance allotment in last tree
• Proof of exclusive balance allotment in new tree
• Participant’s updatei(e− 1)
• ZKPs: πD , πW , πE , πT

verify Proof of exclusive balance allotment in last tree leads to
the last tree root

Proof of exclusive balance allotment in new tree leads to the
new tree root

Verify that updatei(e− 1) is the state update applied in the
proof of exclusive balance allotment for the new tree

verify that updatei(e− 1) is signed by the participant if the
update is not empty

deposited ← VπD
D (deposit accumulator, participant)

requested ← VπW
W (withdrawal accumulator, participant)

exit ← VπE
E (exit accumulator, participant)

verify the allotmenti(e) update and exit status
verify result of VπT

T (new tree root) is equal to txOuti(e)
verify that (offset i(e), informationi(e), allotmenti(e)) are

equal to the leaf values of the exclusive balance allotment
proof in the new tree

Algorithm 5: verifyExitIntegrity
Verifier Input :

• Previous balance allotment tree root
• Current exit allotment tree root
• offset i(e), informationi(e), allotmenti(e)

Prover Input :
• Proof of exclusive balance allotment in previous tree
• Proof of exclusive exit allotment in current tree
• Participant’s updatei(e− 1)
• ZKPs: πD , πW , πE ,πT

exit requested ← VπE
E (exit accumulator, participant)

assert exit requested is true
verify proof of exclusive balance allotment leads to previous

balance tree root
verify proof of exclusive exit allotment leads to current exit tree

root
verify that the proof of exit allotment applies updatei(e− 1)
verify that updatei(e− 1) is signed by the participant if it is

not empty
deposited ← VπD

D (deposit accumulator, participant)
requested ← VπW

W (withdrawal accumulator, participant)
verify that the exit allotment amount corresponds to the

expected final balance of the participant
verify that (offset i(e), informationi(e), allotmenti(e)) are

equal to the leaf values of the exclusive exit allotment proof

the running hash of the broadcast data will permit the top-
level NIZKP verifier to only validate a single input instead of
processing the entire dataset as verifier input.

Algorithm 6: verifyDataAvailability
Verifier Input :

• Current checkpoint
• offset i(e), informationi(e), allotmenti(e)
• previous running hash
• next running hash

Prover Input :
• Proof of exclusive allotment in current checkpoint
• Receipt by user on troot(e)
• Signature by user on broadcast costs

verify proof of exclusive allotment
verify signature by user on broadcast costs
verify receipt if it is not empty
assert next running hash is equal to previous running hash if

receipt is not empty
assert next running hash appends broadcast data to previous

running hash if receipt is empty and balance is sufficient for
broadcast costs

21

Fig. 8: Comparison between NOCUST and NOCUST-ZKP. Users in NOCUST must come online every eon, regardless whether
they received a transaction and verify their account balance representation in the checkpoint. Users in NOCUST-ZKP can safely
remain offline if they have not received any transactions.

22

	Introduction
	Background and Related Work
	Commit-Chains: Problem Definition
	Commit-chain
	Communication Model
	Threat Model
	Security Goals

	Solution Overview
	High-Level Operation
	Design Roadmap: NOCUST and NOCUST-ZKP

	NOCUST: A Practical Commit-Chain
	The Commit-Chain Data Scheme
	Merkleized Interval Tree-Structure
	Monotonic User-State Structure
	Proofs Of Exclusive Allotment
	Subprotocols

	NOCUST-ZKP: Provable Security
	Security Analysis
	Safety
	Liveness

	Implementation and Evaluation
	Discussion
	Conclusion
	Acknowledgements
	Appendix A: Further Discussion and Future Work
	Security Analysis in the Universal Composability (UC) framework
	Transfer method selection strategy

	Appendix B: Proofs
	Exclusive Allotment
	Balance Custody
	Double-Spend Futility
	Provable Integrity
	Instant Transaction Finality

	Appendix C: NOCUST-ZKP: Extended Specification
	Consistency Verifications
	Bi-Modal Ledger For zkSNARKS
	Liveness Verifications

