
Membership Privacy for Fully Dynamic Group Signatures
(Full Version)

Michael Backes1,3, Lucjan Hanzlik2,3, and Jonas Schneider (�)2,3

1 CISPA Helmholtz Center i.G.,
backes@cispa.saarland

2 CISPA, Saarland University,
{hanzlik, jonas.schneider}@cispa.saarland

3 Saarland Informatics Campus

Abstract. Group signatures present a trade-off between the traditional goals of digital sig-
natures and the signer’s desire for privacy, allowing for the creation of unforgeable signatures
in the name of a group which reveal nothing about the actual signer’s identity beyond their
group membership. Considering the desired properties formally opens up a possibility space of
different security goals under various assumptions on trust placed in the designated entities of
any scheme. Many models differ in their consideration of the variability of group membership
as well, yet a formal treatment of the privacy of group membership status is lacking in all
models, thus far.
We address this issue, starting from the vantage point of the comprehensive model due to
Bootle et al. (ACNS’16), who prove that any scheme secure in their model is also secure in
the previous models. Their model allows for fully dynamic management of group membership
by segmenting the scheme’s lifetime into epochs during which group membership is static but
between which users may join or leave the group.
We extend the model of Bootle et al. by introducing formal notions of membership privacy. We
then propose an efficient generic construction for a fully dynamic group signature scheme with
membership privacy that is based on signatures with flexible public key (SFPK) and signatures
on equivalence classes (SPS-EQ). We instantiate the construction using a SFPK scheme based
on the bilinear decisional Diffie-Hellman assumption and SPS-EQ scheme by Fuchsbauer and
Gay (PKC’18). The resulting scheme provides shorter signatures than existing schemes from
standard assumption, while at the same time achieving stronger security guarantees.

1 Introduction

The concept of group signatures was first introduced by Chaum and van Heyst in [21]. It considers
a group of signers, over seen by a group manager who decides group membership. Informally, the
idea is that a group member may issue a signature on behalf of the entire group. The signature is
publicly verifiable, yet it is infeasible to determine which member of the group has created it. Chaum
and van Heyst require also that a group signature may be opened by a relevant authority, so that
the identity of the actual signer becomes known in case of abuse.

The first formal security model and a construction of group signatures from general assumptions
were introduced by Bellare, Micciancio and Warinschi (BMW) in [8]. In this model, group members
are fixed during a one-time group setup phase and receive honestly generated signing keys from the
group manager, who is also responsible for the opening of signatures.

The idea of group signatures was further extended by Bellare, Shi, Zhang (BSZ) in [9] and by
Kiayias, Yung (KY) in [34, 35]. These new models allow dynamic enrollment of group members
after the initial setup is finished and replace the monolithic group manager by separate issuing

and opening authorities. The main differences between the BSZ and KY models are related to the
interactive user enrollment and the opening soundness property. In particular, in the BSZ model
after a successful enrollment of a user the issuer publishes the final state of the procedure, whereas in
the KY model the entire communication transcript is published. In contrast to the BSZ model, the
KY model opening authority does not have to prove that the opening has been executed honestly.
Because of this, schemes in the KY model require additional trust in the opening authority since
it could potentially maliciously point to a user who did not create the signature. This property is
called opening soundness and has been studied by Sakai et al. in [40].

Bootle et al. [15] introduced fully-dynamic group signatures. These new results additionally
address revocation, opening soundness and maliciously generated keys. The model allows group
members to dynamically join and leave the group. To properly model this feature, the definition
introduces an additional public epoch information that is published by the manager.

The authors show that any scheme secure in their model is also secure in all previous ones, which
proves that this is the state-of-the-art model for group signatures.

Related Work. The generic constructions from [8] and [9] established a design paradigm, which
is sometimes called the sign-and-encrypt-and-prove paradigm (SEP). It is used in a number of
constructions and may be informally described as follows: a signature consists of an encryption under
the opener’s public key of both a signature of the message under the member’s signing key and the
member’s identity, as well as a non-interactive zero-knowledge proof that the identity contained in
the encryption is valid and is indeed that of the signer of the message. The identity of the group
member is typically a signature issued by the group manager. Thus, relying on the unforgeability
of this signature, such a group signature scheme achieves non-frameability and traceability. Beside
this design paradigm and generic construction, which are also based on this paradigm, Abdalla and
Warinschi proved in [2] that group signatures are actually equivalent to IND-CPA secure encryption
schemes.

In [10], Bichsel et al. identify the SEP design paradigm as a source of inefficiency in group
signatures. Then they propose a new approach based on re-randomizable signature schemes and
provide an efficient construction without encryption secure in the random oracle model. In our
paper we follow that idea, however we do not rely on the random oracle model to prove security of
our scheme. By now many group signature schemes were designed for both the static and dynamic
case in the random oracle model which utilize the RSA cryptosystem [4], [41], [19], [33], discrete
logarithm setting [5], [26], and bilinear setting [11], [20].

One of the first standard model constructions was introduced by Ateniese et al. [3]. The scheme is
highly efficient, it utilizes bilinear maps and the signature consists only of 8 group elements. However,
the scheme does not provide full-anonymity in sense of the definition in the BMW model [8]. In
particular, the adversary is not allowed to see the private keys of honest users.

Boyen and Waters [17, 18] proposed standard model schemes that use composite order bilinear
groups, but in contrast to [3] allows key exposure attacks. However, the adversary cannot see any
openings of signatures. This restricted version of full-anonymity is also called CPA-anonymity.

The introduction of the Groth-Sahai (GS) proof system [30] allowed for the design of new and
efficient group signature schemes in the standard model. Groth [29] was the first to introduce a
standard model group signature with a constant size public key and signatures, which preserve the
full-anonymity property. The security of the scheme relies on a q-type assumption. The GS proof
system was also used by Libert et al. [37, 36], who designed standard model group signatures with
revocation capabilities.

2

At Crypto’15 Libert, Peters and Yung [38] introduced two efficient group signature schemes that
rely on simple assumptions. The first scheme is secure in the static BMW model [8]. On the other
hand, the second construction is less efficient, but secure in the dynamic security model from [35].

Bootle et al. [16] propose a generic construction of group signatures from accountable ring sig-
natures. They instantiate it using a scheme based on a sigma protocol in the random oracle model.
Later, Bootle et al. [15] show that this construction is a fully dynamic group signature scheme. The
idea is to include the description of the ring as part of the epoch information. This way only users
in the ring are member of the group in the current epoch. Security follows directly from the security
of accountable ring signatures.

Derler and Slamanig proposed a generic construction for dynamic group signatures based on
structure preserving signatures on equivalence classes (SPS-EQ) [23]. SPS-EQ define a relation R
that induces a partition on the message space. By signing one representative of a partition, the
signer in fact signs the whole partition. Then, without knowledge of the secret key we can transform
the signature to a different representative of the partition. Their group signatures make use of
signatures of knowledge (as part of the group signature) and non-interactive zero-knowledge proof
systems (in the issuing procedure and to ensure opening soundness). The authors present an efficient
instantiation in the random oracle model. The main disadvantage of their construction is that there
currently exists no standard model instantiation.

Recently, Backes et al. [6] introduced a new cryptographic primitive called signatures with flexible
public key. The idea is similar to SPS-EQ, but instead of partitioning the message space in this case
the partition is on the public key space. In other words, signers can randomize their public key and
secret key to a different representative of the same equivalence class and create a signature that is
valid under the new public key. Whether public keys are in the same relation can only be checked
using a trapdoor. This primitive also allows third parties to randomize the public key of the signer
and introduces a recovery algorithm for the signer to compute the corresponding secret key. The
authors also show how to combine their primitive with SPS-EQ to construct static group signatures,
which are secure in the BMW model [8].

Group signatures can also be constructed from lattice-based assumptions [39] or symmetric prim-
itives [12]. The former is the only scheme secure under lattice-based assumptions for which the sig-
nature size does not depend on the number of group members. Unfortunately, it is only secure in the
partially dynamic model [9] and in the random oracle model. The latter scheme is also instantiated
in the random oracle model.

Contribution. In this paper we revisit the fully-dynamic group signature framework by Bootle et
al. [15]. We notice that the epoch information published e.g. with each change in the group (joining
or leaving of a member) may leak the identities of members. In particular, this problem is visible for
the scheme proposed in [16], where the epoch information contains the description of a ring of active
members. It is easy to see that since this epoch information is required to verify a signature, the list
of active members of the group is known. This can be an issue when group signatures are used in an
access control system for resources. An adversary can distinguish the members of the group, which
have access to a particular resource and perform targeted attacks e.g. phishing or DoS. We stress
that group membership information is implicitly considered public in most security models.

Therefore we propose an extension to the existing model that ensures a feature which we call
membership privacy. We model it using two new security experiments. The first one considers the
privacy of users joining the group and second one of users leaving the group. In both cases the
adversary is outside the system but can corrupt a subset of users. His task is to distinguish which of
two users left or joined the group. These basic definitions protect against the attack described above.
Note that in this case we consider both managers to be honest. It is obvious that the group manager

3

always knows the identities of members. The tracing authority can, by definition, determine the
identity of group members who have created a signature. Hence we cannot membership information
for a given epoch from the tracing manager unless the user effectively does not participate in the
epoch.

The second contribution of this paper is a generic construction of fully-dynamic group signatures
which achieve membership privacy. We build upon ideas from [16], [23] and [6], and extend them
to ensure security in this stronger model. Each epoch the group manager uses a fresh instance of
SPS-EQ to certify the public keys of members. However, instead of using the original public keys
in the epoch information, the group manager first randomizes the public key and encrypts the
randomization using the signer’s public key for an encryption scheme. Members can decrypt the
randomization and use the SPS-EQ signature from the epoch information. Additionally, the signer
creates a proof of knowledge of a unique representative of the equivalence class and the randomness
used by the signer. This unique representative can be extracted by the tracing authority and used
to identify the signer because the unique representative is also used as the signer’s global public key.
Membership privacy is ensured because the group manager randomizes the published public key list.

Lastly we show how to efficiently instantiate our construction under standard assumptions with-
out relying on the random oracle model. The resulting scheme has shorter signature than state-of-
the-art schemes [38, 30] that are secure in the same setting but only allow for partially-dynamic
groups.

To achieve this efficient instantiation we introduce a new signatures with flexible public key
scheme that is secure under the bilinear decisional Diffie-Hellman assumption and the decisional
Diffie-Hellman assumption in G1. We also revisit the definitions introduced by Backes et al [6]. We
propose a notion called canonical representative. Informally, we define a unique representative for
every equivalence class. This new feature finds application in our group signature construction. Our
scheme has shorter public keys than the schemes from [6] i.e. 2 group elements in G1, which allows
us to more efficiently instantiate our group signature construction.

The results presented in this paper can be summarized as follows.

1. We identify a privacy issue in the fully-dynamic group signatures definition by Bootle et al. [15].
2. We extend the existing definition to ensure membership privacy (protecting the identities of

group members).
3. We propose a generic construction of fully-dynamic group signatures with membership privacy

that uses signatures with flexible public key and signatures on equivalence classes as building
blocks.

4. We introduce an efficient signature with flexible public key scheme that is secure under standard
assumptions and refine the definitions proposed by Backes et al. In particular, we identity a
natural notion called canonical representative, which was not discussed in the original paper [6].

5. We use this scheme and the SPS-EQ by Fuchsbauer and Gay [25] to efficiently instantiate our
group signature construction. The resulting scheme has a shorter signature size than state-of-
the-art schemes with comparable assumption but which are secure in weaker models.

6. We discuss the efficiency of our instantiation and compare them with state-of-the-art schemes
in a similar setting.

2 Preliminaries

Definition 1 (Bilinear map). Let us consider cyclic groups G1, G2, GT of prime order p. Let
g1, g2 be generators of respectively G1 and G2. We call e : G1 ×G2 → GT a bilinear map (pairing)
if it is efficiently computable and the following holds:

4

Bilinearity: ∀(S, T) ∈ G1 ×G2, ∀a, b ∈ Zp, we have e(Sa, T b) = e(S, T)
a·b

,
Non-degeneracy: e(g1, g2) 6= 1 is a generator of group GT ,

Depending on the choice of groups we say that map e is of type 1 if G1 = G2, of type 2 if
G1 6= G2 and there exists an efficiently computable isomorphism ψ : G2 → G1, of type 3 if no such
isomorphism ψ is known.

Definition 2 (Bilinear-group generator). A bilinear-group generator is a deterministic polynomial-
time algorithm BGGen that on input a security parameter 1λ returns a bilinear group BG = (p,G1,G2,
GT , e, g1, g2) such that G1 = 〈g1〉, G2 = 〈g2〉 and GT are groups of order p and e : G1 × G2 → GT
is a bilinear map.

2.1 Assumptions

Definition 3 (Decisional Diffie-Hellman Assumption in Gi). Given BG and elements (gai , g
b
i , g

z
i)∈ G3

i

it is hard for all PPT adversaries A to decide whether z = a · b mod p or z ←$ Z∗p. We will use

Advddh
A (λ) to denote the advantage of the adversary in solving this problem.

If the problem instance were given in both groups, i.e. (ga1 , g
b
1, g

z
1 , g

a
2 , g

b
2, g

z
2) then the pairing

would allow to efficiently check e(ga1 , g
b
2) = e(gz1 , g2), solving the problem. An analogous problem,

which is assumed difficult even in the presence of a pairing is given by adding values gc1, g
c
2 to the

challenge and asking whether z = a · b · c mod p. This was noted by Boneh and Franklin [13] who
defined a similar problem called Weil decisional Diffie-Hellman problem in the type 1 setting. In
their later work [14] it was renamed to bilinear decisional Diffie-Hellman assumption. We restate it
for type 3 pairings as follows:

Definition 4 (Bilinear Decisional Diffie-Hellman Assumption). Given BG and elements
(ga1 , g

b
1, g

c
1, g

z
1 , g

a
2 , g

b
2, g

c
2, g

z
2) ∈ G4

1×G4
2 it is hard for all PPT adversaries A to decide whether z = a·b·c

mod p or z ←$ Z∗p. We will use Advbddh
A (λ) to denote the advantage of the adversary in solving this

problem.

Definition 5 (Collision-Resistance). We call a function H : {0, 1}∗ → Z∗p collision-resistant if it
is hard for all PPT adversaries A to output two distinct message m1,m2 for which H(m1) = H(m2)
We will use AdvcollA (λ) to denote the advantage of the adversary in finding a collision for this hash
function.

2.2 Programmable Hash Functions

We now recall the definition of programmable hash functions introduced by Hofheinz and Kiltz [32].
In order to do so, we first define a group hash function for group G and output length ` = `(λ). A
group hash function consists of two polynomial time algorithms PHF.Gen and PHF.Eval. For a security
parameter λ, the generation algorithm KPHF ←$ PHF.Gen(1λ) outputs a key. This key can be used in
the deterministic algorithm PHF.Eval to evaluate the hash function via y ∈ G←$ PHF.Eval(KPHF, X),

where X ∈ {0, 1}`.

Definition 6. A group hash function is an (m,n, γ, δ)-programmable hash function if there are
polynomial time algorithms PHF.TrapGen and PHF.TrapEval such that:

– For any g, h ∈ G the trapdoor algorithm (K ′PHF, td) ←$ PHF.TrapGen(1λ, g, h) outputs a key K ′

and trapdoor td. Moreover, for every X ∈ {0, 1}` we have (aX , bX)←$ PHF.TrapEval(td,X), such
that PHF.Eval(K ′PHF, X) = gaXhbX .

5

– For all g, h ∈ G and for (K ′PHF, td)←$ PHF.TrapGen(1λ, g, h) and KPHF ←$ PHF.Gen(1λ), the keys
KPHF and K ′PHF are statistically γ-close.

– For all g, h ∈ G and all possible keys K ′PHF from the range of PHF.TrapGen(1λ, g, h), for all

X1, . . . , Xm, Z1, . . . , Zn ∈ {0, 1}` such that Xi 6= Zj for any i, j and for the corresponding
(aXi , bXi)←$ PHF.TrapEval(td,Xi) and (aZi , bZi)←$ PHF.TrapEval(td, Zi) we have

Pr[aX1 = · · · = aXm = 0 ∧ aZ1 = · · · = aZn 6= 0] ≥ δ,

where the probability is over the trapdoor td that was produced along with key K ′PHF.

Hofheinz and Kiltz show that the function introduced by Waters [42] is a programmable hash

function. For a key KPHF = (h0, . . . , h`) ∈ G`+1 and message X = (x1, . . . , x`) ∈ {0, 1}` the function

is computed as h0 ·
∏`
i=1 h

xi
i . In particular, they prove that for any fixed q = q(λ) it is a (1, q, 0, 1/8 ·

(`+ 1) · q)-programmable hash function.

2.3 Signatures on Equivalence Classes

We now recall the notion of signatures on equivalence classes introduced by Hanser and Slamanig
[31]. The signing algorithm of the primitive SPS.Sign(skSPS,M) defines an equivalence relation R
that induces a partition on the message space. A signer can simply sign one representative of the class
to create a signature for the whole class. The signature can then be changed without the knowledge
of the secret key to a different representative using the SPS.ChgRep(pkSPS,M, σSPS, r) algorithm.

Existing instantiations work in the bilinear group setting and allow to sign messages from the
space (G∗i)`, for ` > 1. The partition on the message space in those schemes is induced by the
relation Rexp: given two messages M = (M1, . . . ,M`) and M ′ = (M ′1, . . . ,M

′
`), we say that M and

M ′ are from the same equivalence class (denoted by [M]R) if there exists a scalar r ∈ Z∗p, such that
∀i∈[`](Mi)

r = M ′i . The original paper defines two properties of SPS-EQ namely unforgeability under
chosen-message attacks and class-hiding. Fuchsbauer and Gay [25] recently introduced a weaker
version of unforgeability called unforgeability under chosen-open-message attacks, which restricts
the adversaries’ signing queries to messages where it knows all exponents.

Definition 7 (Signing Oracles). A signing oracle is an OSPS(skSPS, ·) (resp. Oop(skSPS, ·)) ora-
cle, which accepts messages (M1, . . . ,M`) ∈ (G∗i)` (resp. vectors (e1, . . . , e`) ∈ (Z∗p)`) and returns

signature under skSPS on those messages (resp. on messages (ge11 , . . . , g
e`
1) ∈ (G∗i)`).

Definition 8 (EUF-CMA (resp. EUF-CoMA)). A SPS-EQ scheme
(SPS.BGGen,SPS.KGen,SPS.Sign,SPS.ChgRep,SPS.Verify,SPS.VKey) on (G∗i)` is called existentially
unforgeable under chosen message attacks (resp. adaptive chosen-open-message attacks), if for all
PPT algorithms A having access to an open signing oracle OSPS(skSPS, ·) (resp. Oop(skSPS, ·)) the
following adversary’s advantage (with templates T1, T2 defined below) is negligible in the security
parameter λ:

Adv`,T1

SPS-EQ,A(λ) = Pr

[
BG←SPS.BGGen(λ);

(skSPS,pkSPS)←
$ SPS.KGen(BG,`);

(M∗,σ∗SPS)←
$ AOT2 (skSPS,·)(pkSPS)

: ∀M∈Q. [M∗]R 6=[M]R ∧
SPS.Verify(pkSPS,M

∗,σ∗SPS)=1

]
,

where Q is the set of messages signed by the signing oracle OT2
and for T1 = euf-cma we have

T2 = SPS, and for T1 = euf-coma we have T2 = op.

6

A stronger notion of class hiding, called perfect adaptation of signatures, was proposed by Fuchs-
bauer et al. in [25]. Informally, this definition states that signatures received by changing the rep-
resentative of the class and new signatures for the representative are identically distributed. In our
schemes we will only use this stronger notion.

Definition 9 (Perfect Adaption of Signatures). A SPS-EQ scheme on (G∗i)` perfectly adapts
signatures if for all (skSPS, pkSPS,M, σ, r), where
SPS.VKey(skSPS, pkSPS) = 1, M ∈ (G∗1)`, r ∈ Z∗p and SPS.Verify(pkSPS,M, σ) = 1, the distribution of

((M)r,SPS.Sign(skSPS,M
r)) and SPS.ChgRep(pkSPS,M, σ, r)

are identical.

2.4 Non-Interactive Proof Systems

In this paper we make use of non-interactive proof systems. Although we define the proof system for
arbitrarily languages, in our schemes we use the efficient Groth-Sahai (GS) proof system for pairing
product equations [30].

Let R be an efficiently computable binary relation, where for (x,w) ∈ R we call x a statement
and w a witness. Moreover, we will denote by LR the language consisting of statements in R, i.e.
LR = {x|∃w : (x,w) ∈ R}.

Definition 10 (Non-Interactive Proof System). A non-interactive proof system Π consists of
the following three algorithms:

Π.Setup(1λ): on input security parameter 1λ, this algorithm outputs a common reference string ρ.
Π.Prove(ρ, x, w): on input common reference string ρ, statement x and witness w, this algorithm

outputs a proof π.
Π.Verify(ρ, x, π): on input common reference string ρ, statement x and proof π, this algorithm out-

puts either accept(1) or reject(0).

Some proof systems do not need a common reference string. In such a case, we omit the first argument
to Π.Prove and Π.Verify.

Definition 11 (Soundness). A proof system Π is called sound, if for all PPT algorithms A the
following probability, denoted by AdvsoundΠ,A (λ), is negligible in the security parameter 1λ:

Pr[ρ←$ Π.Setup(1λ); (x, π)←$ A(ρ) : Π.Verify(ρ, x, π) = accept ∧ x 6∈ LR].

where the probability is taken over the randomness used by Π.Setup and the adversary A. We say
that the proof system is perfectly sound if AdvsoundΠ,A (λ) = 0.

Definition 12 (Perfect Knowledge Extraction). A proof system Π is called an argument of
knowledge for R, if there exists a knowledge extractor E = (Π.ExtGen, Π.Extract) such that for all
algorithms A

Adve1
Π,A(λ) := |Pr[ρ←$ Π.Setup(1λ) : A(ρ) = 1]− Pr[(ρ, τ)←$ Π.ExtGen(1λ) : A(ρ) = 1]|

is negligible in λ and

Adve2
Π,A(λ) := Pr[(ρ, τ)←$ Π.ExtGen(1λ); (x, π)←$ A(ρ, τ);w ←$ Π.Extract(ρ, τ, x, π) :

Π.Verify(ρ, x, π) = accept ∧ (x,w) 6∈ R]

is negligible in 1λ. If Adve2
Π,A(λ) = 0, we say that Π is a perfect proof of knowledge.

7

Definition 13 (Witness Indistinguishability (WI)). A proof system Π is witness indistin-
guishable, if for all PPT algorithms A we have that the advantage AdvwiΠ,A(λ) computed as:

|Pr[ρ←$ Π.Setup(1λ); (x,w0, w1)←$ A(1λ, ρ);π ←$ Π.Prove(ρ, x, w0) : A(π) = 1]−
Pr[ρ←$ Π.Setup(1λ); (x,w0, w1)←$ A(1λ, ρ);π ←$ Π.Prove(ρ, x, w1) : A(π) = 1]|,

where (x,w0), (x,w1) ∈ R, is at most negligible in λ. We say that the proof system if perfectly witness
indistinguishable if AdvwiΠ,A(λ) = 0.

Definition 14 (Zero-Knowledge). A proof system Π is called zero-knowledge, if there exists a
PPT simulator S = (SimGen,Sim) such that for all PPT algorithms A the following probability,
denoted by AdvzkΠ,A(λ), is negligible in the security parameter 1λ:

|Pr[ρ←$ Π.Setup(1λ) : AΠ.Prove(ρ,·,·)(ρ) = 1]−
Pr[(ρ, τ)←$ SimGen(1λ) : AS(ρ,τ,·,·)(ρ) = 1]|,

where τ is a trapdoor information, oracle call S(ρ, τ, x, w) returns the output of Sim(ρ, τ, x) for
(x,w) ∈ R and both oracles output ⊥ if (x,w) 6∈ R.

We briefly recall the framework of pairing product equations that is used for the languages of the
Groth-Sahai proof system [30]. For constants Ai ∈ G1, Bi ∈ G2, tT ∈ GT , γij ∈ Zp which are either
publicly known or part of the statement, and witnesses Xi ∈ G1, Yi ∈ G2 given as commitments, we
give proofs that:

n∏
i=1

e(Ai, Yi) ·
m∏
i=1

e(Xi, Bi) ·
m∏
j=1

n∏
i=1

e(Xi, Yi)
γij = tT .

The system (ΠPPE.Setup, ΠPPE.Prove, ΠPPE.Verify, ΠPPE.ExtGen, ΠPPE.Extract) has several instan-
tiations based on different assumptions. In this paper we only consider the instantiation based on
the decisional Diffie-Hellman assumption given by Ghadafi, Smart and Warinschi [28].

2.5 Digital Signatures and Public Key Encryption

In our group signature construction we also make use of standard digital signatures and public key
encryption schemes. We use (DS.KeyGen,DS.Sign,DS.Verify) to denote the algorithms that make
up the scheme DS and Adveuf−cma

A,DS (λ) to denote the adversaries advantage against the existential
unforgeability under chosen message attacks of the signature scheme.

A public key encryption scheme PKE consists of three algorithms (PKE.KeyGen,PKE.Enc,PKE.Dec).
We use the standard notion of indistinguishability of ciphertexts under chosen message attacks
(IND− CPA) as well as the notion of key privacy under chosen message attacks (IK− CPA), which
informally requires that it is infeasible for an attacker to determine which key was used to create a
given ciphertext even if with access to both encryption keys. A full formal definition of this property
can be found in [7]. An example of a scheme which achieves key privacy is the El Gamal encryption
scheme [27].

3 Fully Dynamic Group Signatures

We recall the framework of definitions for fully dynamic group signatures established in [15].

8

Definition 15. A fully dynamic group signature scheme GS is a defined by the following set of
efficient algorithms

GS.Setup(1λ): On input a security parameter, the setup algorithm outputs public parameters param
and initializes the user registration table reg.

〈GS.KGenM(param),GS.KGenT (param)〉: Given the public parameters param the group manager M
and tracing manager T jointly execute a key generation protocol.
– The private output of the group manager is a secret manager key msk, its public output a

manager public key mpk and the initial group information info.
– The private output of the tracing manager is a secret tracing key tsk and a tracing manager

public key tpk.
The public outputs together are referred to as the group public key gpk := (param,mpk, tpk).

GS.UKGen(1λ): On input the public parameters, the user key generation algorithm outputs a pair of
user secret and user public key (usk[uid],upk[uid]), bound to a fresh user id uid.

〈GS.Join(infoτcurrent , gpk, uid,usk[uid]),GS.Issue(infoτcurrent ,msk, uid,upk[uid])〉: A user who has ex-
ecuted GS.UKGen, obtaining a user id uid and key pair (usk[uid],upk[uid]) may, given the group
public key and information regarding the current epoch infoτcurrent engage the group manager in
a join-issue procedure to become a member of the group. If successful, the output of the GS.Issue
algorithm is user registration information which is stored in reg[uid] the user secret key gsk[uid]
is updated with the output of GS.Join.

GS.UpdateGroup(gpk,msk, infoτcurrent ,S, reg): The group manager may advance the current epoch
τcurrent to the next epoch τnew, at the same time revoking membership of a subset S of the set of
active group members. If any uid ∈ S is not assigned to an active member of the group, i.e. was
not assigned in a run of the join-issue procedure, the algorithm aborts. The outputs is the new
group information infoτnew and a possibly updated registration table reg. If the group information
does not change, the algorithm outputs ⊥.

GS.Sig(gpk,gsk[uid], infoτ ,m): Given their group signing key, current group information and the
group public key, a user may sign a message, producing a signature Σ. If the user-ID uid is
not assigned to an active group member in the current epoch τcurrent, the algorithm outputs ⊥
instead.

GS.Vf(gpk, infoτ ,m,Σ): If the given signature Σ is valid for message m in epoch τ , verification
outputs accept, otherwise reject.

GS.Trace(gpk, tsk, infoτ , reg,m,Σ): Given a signature, message, group information for epoch τ and
a registration table, the tracing manager may output a pair (uid, π) where uid > 0 identifies the
user-ID of the group member who produced the signature and π is a proof of this fact. If tracing is
not successful the algorithm will output a pair (0, π) indicating the failure via the special user-ID
0, which is not assigned to any regular user.

GS.Judge(gpk, uid, infoτ , πTrace,upk[uid],m,Σ): Given a signature for epoch τ , the corresponding
group information and a tracing output (uid, π), anyone in possession of the group public key
can deterministically judge the validity of π w.r.t. to the statement, that Σ was created using
gsk[uid], in which case the algorithm outputs accept, otherwise reject.

3.1 Security of Fully Dynamic Group Signatures

In the framework of [15], a fully dynamic group signature scheme is secure if it achieves correctness,
anonymity, non-frameability, traceability, and tracing soundness.

Informally, these properties ensure the following guarantees:

Anonymity given a signature, it is infeasible, without a secret trapdoor information, to distinguish
which signer created the signatures.

9

Traceability it is infeasible to produce a signature for which the opening procedure fails. In other
words, even a coalition of group members and the opening authority should not be able to
produce a signature which would open to an identity not generated in the setup phase or an
identity that was not active in the epoch for which the signature was created.

Non-Frameability — any coalition of group members, the issuing authority and the opening
authority cannot produce a signature which opens to an identity of an honest user from outside
the coalition.

Tracing Soundness — this requirement ensures that even if all parties in the group collude, they
cannot produce a valid signature that traces to two different members.

They are formally defined as a set of adversarial experiments relative to a number of oracles, which
give the adversary an interface to the scheme:

AddU: To add an honest user to the group.

CrptU: To impersonate (corrupt) a user before joining the group.

SndToM: To communicate in the user role with an honest issuing authority.

SndToU: To communicate as an issuing authority with an honest user.

ReadReg: To read the registration table.

ModifyReg: To modify the registration table.

RevealU: To reveal an honest user’s secret keys.

Sign: To obtain a group signature on behalf of an honest user.

Trace: To obtain a tracing proof on a signature.

UpdateGroup: To remove users from the group via the group update procedure.

Chall: To receive a challenge signature in the anonymity game.

Security Experiments We have informally described the security notions of [15] and will now
recall their formal definitions.

CorrectnessAGS(1λ)

param←$ GS.Setup(1
λ

);H := ∅

(msk,mpk, info, tsk, tpk)←$ 〈GS.KGenM(param),GS.KGenT (param)〉
gpk := (param,mpk, tpk)

(uid,m, τ)←$ AAddU,ReadReg,UpdateGroup
(gpk, info)

if uid 6∈ H or gsk[uid] = ⊥ or infoτ = ⊥
or GS.IsActive(infoτ , reg, uid) = 0

then return 0

Σ ←$ GS.Sig(gpk, gsk[uid], infoτ ,m)

if GS.Vf(gpk, infoτ ,m,Σ) = reject

then return 1

(uid∗, π)←$ GS.Trace(gpk, tsk, infoτ , reg,m,Σ)

if uid 6= uid∗ then return 1

if GS.Judge(gpk, uid, infoτ , π,upk[uid],m,Σ) = 0

then return 0 else return 1

AnonymityAb,GS(1λ)

param←$ GS.Setup(1
λ

);H, C,B,Q,Q∗ := ∅

(state,msk,mpk, info)←$ A〈·,GS.KGenT (param)〉
(init : param)

if ⊥ ← GS.KGenT (param) or A’s output invalid

then return 0

(tsk, tpk)← GS.KGenT (param); gpk := (param,mpk, tpk)

d←$ AAddU,CrptU,SndToU,RevealU,Trace,ModifyReg,Challb (play : state, gpk)

return d

10

Non− FrameAGS(1λ)

param←$ GS.Setup(1
λ

);H, C,B,Q := ∅

(state, info,msk,mpk, tsk, tpk)←$ A(init : param)

if msk = ⊥ or mpk = ⊥
then return 0

gpk := (param,mpk, tpk)

(m,Σ, uid, π, infoτ)←$ A
{CrptU, Sign,
SndToU,RevealU,
ModifyReg

}
(play : state, gpk)

if GS.Vf(gpk, infoτ ,m,Σ) = 0

or GS.Judge(gpk, uid, infoτ , π,upk[uid],m,Σ) = 0

then return 0

if uid ∈ H \ B and (uid,m,Σ, τ) 6∈ Q
then return 1 else return 0

TraceabilityAGS(1λ)

param←$ GS.Setup(1
λ

);H, C,B,Q := ∅

(state, tsk, tpk)←$ A〈GS.KGenM(param),·〉
(init : param)

if ⊥ ← GS.KGenM(param) or A’s output invalid

then return 0

(msk,mpk, info)← GS.KGenM(param); gpk := (param,mpk, tpk)

(m,Σ, τ)←$ A}} (play :, state, gpk, info)

if GS.Vf(gpk, infoτ ,m,Σ) = reject

then return 0

(uid, π)←$ GS.Trace(gpk, tsk, infoτ , reg,m,Σ)

if GS.IsActive(infoτ , reg, uid) = 0 or uid = 0

or GS.Judge(gpk, uid, infoτ , π,upk[uid],m,Σ) = 0

thenreturn 1else return 0

Oracle Definitions. We formally describe the oracles given to the adversary in the above exper-
iments. Changes introduced for compatibility with our Join− Privacy and Leave− Privacy experi-
ments are highlighted .

Trace(m,Σ, infoτ)

if GS.Vf(gpk, infoτ ,m,Σ) = reject or (m,Σ, τ) ∈ Q∗

then return (⊥,⊥)

return GS.Trace(gpk, tsk, infoτ , reg,m,Σ)

UpdateGroup(S)

if H∗ ∩ S 6= ∅ then return ⊥

return GS.UpdateGroup(gpk,msk, infoτcurrent ,S, reg)

CrptU(uid, pk)

if uid ∈ H ∪ C ∪H∗ then return ⊥

C := C ∪ {uid}
upk[uid] := pk

return accept

ReadReg(uid)

return reg[uid]

ModifyReg(uid, val)

reg[uid] := val

RevealU(uid)

if uid 6∈ H \ (C ∪ B)

or uid ∈ H∗

then return ⊥
B := B ∪ {uid}
return (usk[uid], gsk[uid])

Challb(infoτ , uid0, uid1,m)

if {uid0, uid1} ∩ H 6= {uid0, uid1}
or ∃b ∈ {0, 1} s.t. gsk[uidb] = ⊥
or GS.IsActive(infoτ , reg, uidb) = 0

then return ⊥

Σ ←$ GS.Sig(gpk, gsk[uidb], infoτ ,m)

Q∗ := Q∗ ∪ (m,Σ, τ)

return Σ

11

AddU(uid)

if uid ∈ H ∪ C then return ⊥

(usk[uid],upk[uid])←$ GS.UKGen(1
λ

)

H := H∪ {uid}

gsk[uid] := ⊥; decuidGS.Issue := cont

stateuidGS.Join := (τcurrent, gpk, uid,usk[uid])

stateuidGS.Issue := (τcurrent,msk, uid,upk[uid])

while decuidGS.Join = cont and decuidGS.Issue = cont do

(stateuidGS.Issue,MGS.Join, dec
uid
GS.Issue)←

$ GS.Issue(stateuidGS.Issue,MGS.Issue)

(stateuidGS.Join,MGS.Issue, dec
uid
GS.Join)←

$ GS.Join(stateuidGS.Join,MGS.Join)

if decuidGS.Issue = accept then reg[uid] := stateuidGS.Issue

if decuidGS.Join = accept then gsk[uid] := stateuidGS.Join

return (infoτcurrent ,upk[uid])

SndToU(uid,Min)

if uid ∈ C ∪ B then return ⊥
if uid 6∈ H then

H := H∪ {uid}

(usk[uid],upk[uid])←$ GS.UKGen(1
λ

)

gsk[uid] := ⊥;Min := ⊥

if decuidGS.Join 6= cont then return ⊥

if stateuidGS.Join = ⊥ then stateuidGS.Join := (τcurrent, gpk, uid,usk[uid])

(stateuidGS.Join,Mout, dec
uid
GS.Join ←

$ GS.Join(stateuidGS.Join,Min))

if decuidGS.Join = accept then gsk[uid] := stateuidGS.Join

return (Mout, dec
uid
GS.Join)

SndToM(uid,Min)

if uid 6∈ C or decuidGS.Issue 6= cont

or uid ∈ H∗ then return ⊥

stateuidGS.Issue := (τcurrent,msk, uid,upk[uid])

(stateuidGS.Issue,Mout, dec
uid
GS.Issue)←

$ GS.Issue(stateuidGS.Issue,Min)

if decuidGS.Issue = accept then reg[uid] := stateuidGS.Issue

return (Mout, dec
uid
GS.Issue)

Sign(uid,m, τ)

if uid 6∈ H \H∗ or gsk[uid] = ⊥

or infoτ = ⊥ or GS.IsActive(infoτ , reg, uid) = 0

then return ⊥

Σ ←$ GS.Sig(gpk, gsk[uid], infoτ ,m)

Q := Q ∪ {(uid,m,Σ, τ)}
return Σ

Trace− SoundAGS(1λ)

param←$ GS.Setup(1λ); C := ∅
(state, info,msk,mpk, tsk, tpk)←$ A(init : param)

if msk = ⊥ or mpk = ⊥
then return 0

gpk := (param,mpk, tpk)

(m,Σ,{uidi, πi}2i=1 , infoτ)←$ ACrptU,ModifyReg(play : state, gpk)

if GS.Vf(gpk, infoτ ,m,Σ) = 0

then return 0

if upk[uid1] = upk[uid2] or ∃i ∈ {1, 2} s.t. upk[uidi] = ⊥

or GS.Judge(gpk, uidi, infoτ , πi,upk[uidi],m,Σ) = 0

thenreturn 0 else return 1

Functional Tracing Soundness. The original definition of tracing soundness (as opening sound-
ness in [40]) requires that the attacker produce two valid openings to different user IDs, as opposed
to different public keys. This is motivated by the fact that in the attacker model the whole group
may be corrupted and thus the attacker may give two different users the same key information.
However, it implies that the GS.Vf and GS.Judge algorithms of the schemes in [40] have to check

12

that the group is well-formed, i.e. that every user has a unique key in the registration table. These
checks are costly and unavoidable. In addition it necessitates that the registration table reg must
be public, since otherwise signature verification and opening judgment cannot perform these checks.

Therefore, we propose a relaxation of this property, which we call functional tracing soundness
and which means that even in a fully corrupted group it should not be possible to create two
valid openings for the same signature which indict two different user public keys. We motivate
this by the observation that commonly public keys are the public identities of users and the link
between some informal identity and the identity in the context of the signature scheme is established
through the functional property that the user whose identity belongs to a given public key can create
signatures which verify under that key. As discussed above, non-frameability only makes sense if there
is an entity outside the signature scheme which certifies that certain public keys belong to informal
identities. This entity would not assign the same public key to several different public identities. The
changes to the Tracing Soundness experiment which implement this change are highlighted .

Furthermore, we observe that the fully dynamic group signature scheme based on accountable
ring signatures presented in [15] implicitly uses this definition already (although it is presented
differently, presumably due to a typographic mistake), since its proof of tracing soundness relies
on the tracing soundness of the underlying accountable ring signature scheme. The property for
accountable ring signature schemes requires that the verification keys provided in the two openings
be different. Were this not a requirement assumed in the proof in [15], the given reduction wouldn’t
give valid outputs against tracing soundness of the accountable ring signature scheme and the proof
would be invalid.

We stress that the construction of fully dynamic group signatures presented later in this work
can be made to achieve the identity focused version of opening soundness, albeit at the cost of the
above mentioned group integrity checks and any kind of group membership privacy.

3.2 Leave-Join Privacy for Fully Dynamic Group Signatures

Formal models of dynamic group signatures thus far implicitly assumed that the public is aware who
is a member of the group. Usually, a registration table is published, such that the entries are bound
to public keys of the members. This is in line with one of the main application of group signatures:
authenticating messages with the authority of a known group, certifying that an indeterminate
someone within the group has seen the signed message and taken responsibility on behalf of the
group.

In their seminal work Chaum and van Heyst [21], however, did not specify this as an essential
requirement. In fact, they point out that group signatures can be used for access control, where
knowing members of the group is an obvious privacy leak that could for instance lead to targeted
DoS attacks on the group. Therefore it seems natural that in some applications we want to hide the
identities of active group members.

To address this issue we discuss for the first time membership privacy for group signatures.
Informally, we will say that a group signature scheme has membership privacy if it protect the
identity of users that join or leave the system. This means that we consider a scenario in which some
kind of public identifier about users is known independently of the scheme (e.g. public key) but it
is unknown to a third party who is part of the group. Moreover, we assume that some users can be
corrupted or can collude to infer information about the membership status of other users.

To formally define this notion, we propose a pair of security experiments which are expressed in
the fully dynamic framework put forth by [15]. However, one can easily specify similar experiments
for the partially dynamic models [9, 34, 35]. The first one describes join privacy, since it considers
the case that two non-members are known in one epoch and in the next epoch one of them joins the

13

system and the task is to distinguish who joined the group. The second experiment describes leave
privacy and models the case that there are two known members in one epoch and in the next epoch
one of them leaves the group. Note that this assumes that the adversary knows out of band that the
two users had previously joined the group. In both cases we allow an adversary to corrupt members
of the group but we consider both authorities to be honest: The issuing authority always knows who
is part of the group and the tracing authority can open all signatures to extract the identities of
members. In particular, this implies that the registration table reg may not be public because one
could easily infer current members from it. Fortunately, this seems a fairly natural assumption. This
registration table is not necessary in any of the user centric algorithms and it is easier to keep it
local to the authorities than publishing it online. An exception is the scheme [40] mentioned above,
where the registration table is part of the verification algorithm to ensure that tracing soundness
hold with respect to public user identities rather than in the functional sense we describe.

A different question is whether additionally to the identities of users, we can hide the size of the
group. Unfortunately, since the fully dynamic model in [15] allows joining and leaving the group,
all efficient constructions fail to hide the size of the group. Whitelisting immediately leaks the size
of the group and can only be alleviated using dummy users, which incurs large overhead and fixes
a constant upper bound on the group size. This is even the case for cryptographic accumulators,
where it is required by members to update their witness with every epoch. Thus, some kind of
information that is linear is the number of active/inactive members must be published together with
the accumulator.

We formally define join and leave privacy in terms of the two experiments shown in Figure 1. Note,
that we introduce a new set of challenge users H∗. It is used simultaneously to ensure compatibility
of the oracles defined in [15] (our changes are highlighted) and to manage the challenge oracle
PrivChall without trivially revealing information about the challenge.

The oracle PrivChall allows the adversary to
obtain signatures created by the user which
has joined or has not left in the challenge
epoch, respectively.

PrivChallb,uid0,uid1,τ∗(m, τ)

if τ < τ
∗
then return ⊥

if decinv = true

Σ ←$ GS.Sig(gpk, gsk[uid(1−b)], infoτ ,m)

else

Σ ←$ GS.Sig(gpk, gsk[uidb], infoτ ,m)

Q∗ := Q∗ ∪ (m,Σ, τ)

return Σ

Definition 16. For a group signature scheme GS and a two stage adversary A, we define the ad-
versary’s advantage in the Join− Privacy experiment as

Advjoin−privacyA,GS (λ) := Pr
[
Join− PrivacyAGS(1λ)⇒ 1

]
.

n A group signature scheme GS has join privacy if for all ppt adversaries A, there is a negligible
function negl(λ) such that

Advjoin−privacyA,GS (λ) ≤ 1

2
+ negl(λ) .

Definition 17. For a group signature scheme GS and a two stage adversary A, we define the ad-
versary’s advantage in the Leave− Privacy experiment as

Advleave−privacyA,GS (λ) := Pr
[
Leave− PrivacyAGS(1λ)⇒ 1

]
.

14

Join− PrivacyAGS(1λ)

param←$ GS.Setup(1
λ

)

(msk,mpk, info, tsk, tpk)←$ 〈GS.KGenM(param),GS.KGenT (param)〉
gpk := (param,mpk, tpk)

(state, uid0, uid1)←$ A0

{
AddU,RevealU,CrptU,SndToM,

Sign,Trace,UpdateGroup

}
(gpk, info)

if {uid0, uid1} ∩ C 6= ∅ then return 0

b←$ {0, 1}; (info∗,upk[uidb])←$ AddU(uidb);

(usk[uid1−b],upk[uid1−b])←$ GS.UKGen(1
λ

)

τ
∗

:= τcurrent; H∗ := {uid0, uid1}

d←$ A1

{ AddU,RevealU,Sign,
CrptU,SndToM,UpdateGroup,
Trace,PrivChallb,uid0,uid1,τ∗

}
(state, info∗,upk[uid0],upk[uid1])

return b = d

Leave− PrivacyAGS(1λ)

param←$ GS.Setup(1
λ

)

(msk,mpk, info, tsk, tpk)←$ 〈GS.KGenM(param),GS.KGenT (param)〉
gpk := (param,mpk, tpk)

(state, uid0, uid1)←$ A0

{
AddU,RevealU,

UpdateGroup,Sign,Trace

}
(gpk, info)

if {uid0, uid1} ∩ H \ (C ∪ B) 6= {uid0, uid1} then return 0

b←$ {0, 1};H∗ := {uid0, uid1}; decinv := true ; τ
∗

:= τcurrent

info∗ ←$ GS.UpdateGroup(gpk,msk, infoτ∗ , uidb, reg)

d←$ A1

{
AddU,RevealU,Sign,Trace,

UpdateGroup,PrivChallb,uid0,uid1,τ∗

}
(state, info∗)

return b = d

Fig. 1. Join- and Leave-Privacy experiments.

A group signature scheme GS has join privacy if for all ppt adversaries A, there is a negligible
function negl(λ) such that

Advleave−privacyA,GS (λ) ≤ 1

2
+ negl(λ) .

Remark 1. Note that leave privacy as stated above only seems to ensure privacy, when a single
user leaves the group, however, the GS.UpdateGroup algorithm allows simultaneous membership
revocation for a whole set of users S. However, a simple hybrid argument should suffice to extend
the join privacy property from one revocation to many revocations.

4 Signatures with Flexible Public Key

In this section we first recall the notion of signatures with flexible public key (SFPK) introduced by
Backes et al. [6]. We then extend this primitive by a natural notion called canonical representatives
(or canonical form) and show a weaker anonymity definition that allows us to construct a more
efficient scheme than ones presented in [6]. We use this scheme to efficiently instantiate our group
signature construction presented in Section 5

The basic idea behind signatures with flexible public key is to divide the key space into equiva-
lence classes induced by a relation R. A signer can efficiently generate (sk, pk)←$ SFPK.KeyGen(1λ)
and change her key pair to a different representative of the same class. This can be done using
a random coin r ←$ coin and two algorithms: pk′ ←$ SFPK.ChgPK(pk, r) for the public key and
sk′ ←$ SFPK.ChgSK(sk, r) for the secret key. The randomized secret key can be used to sign a message
Sig←$ SFPK.Sign(sk,m), such that the signature can be verified by running SFPK.Verify(pk′,m,Sig).
The main feature is class-hiding, which ensures that without a trapdoor it is hard to distinguish if
two public keys are related, i.e. in the same equivalence class. However, given the trapdoor one can
run the SFPK.ChkRep(δ, pk′) algorithm to check if pk′ is in relation to the public key for which the
trapdoor was generated using trapdoor key generation algorithm (sk, pk, δ) ←$ SFPK.TKeyGen(1λ).
We will define this scheme in the multi-user setting, i.e. with a setup algorithm SFPK.CRSGen(1λ)
that outputs a common reference string ρ. We only consider a scenario in which this setup has to be
executed by a trusted party in order for the scheme to be unforgeable. Note that this means that

15

the secrets used to generate the ρ can be used to forge signatures. This kind of trapdoor δρ was
not specified in [6], but we will use it in the security proof of our group signature scheme. In other
words, this means there is an alternative signing algorithm SFPK.Sign(δρ, pk,m), which outputs valid
signatures for the relation class [pk]R, without knowledge of the corresponding secret key sk.

Definition 18 (Signature with Flexible Public Key). A signature scheme with flexible public
key SFPK is a set of PPT algorithms such that:

SFPK.CRSGen(1λ) takes as input a security parameters 1λ and outputs a trapdoor δρ and a common
reference string ρ, which is an implicit input for all the algorithms.

SFPK.KeyGen(1λ, ω): takes as input a security parameter 1λ, random coins ω ∈ coin and outputs a
pair (sk, pk) of secret and public keys,

SFPK.TKeyGen(1λ, ω): a trapdoor key generation that takes as input a security parameter 1λ, random
coins ω ∈ coin and outputs a pair (sk, pk) of secret and public keys, and a trapdoor δ.

SFPK.Sign(sk,m): takes as input a message m ∈ {0, 1}∗ and a signing key sk, and outputs a signature
Sig,

SFPK.ChkRep(δ, pk): takes as input a trapdoor δ for some equivalence class [pk′]R and public key
pk, the algorithm outputs 1 if pk ∈ [pk′]R and 0 otherwise,

SFPK.ChgPK(pk, r): on input a representative public key pk of an equivalence class [pk]R and random
coins r, this algorithm returns a different representative pk′, where pk′ ∈ [pk]R.

SFPK.ChgSK(sk, r): on input a secret key sk and random coins r, this algorithm returns an updated
secret key sk′.

SFPK.Verify(pk,m,Sig): takes as input a message m, signature Sig, public verification key pk and
outputs 1 if the signature is valid and 0 otherwise.

Definition 19 (Correctness). We say that a SFPK scheme is correct if for all 1λ ∈ N, all random
coins ω, r ∈ coin the following conditions hold:

1. The output distribution of SFPK.KeyGen and SFPK.TKeyGen is identical.
2. For all key pairs (sk, pk)←$ SFPK.KeyGen(1λ, ω) and all messages m we have SFPK.Verify(pk,m,

SFPK.Sign(sk,m)) = 1 and SFPK.Verify(pk′,m,SFPK.Sign(sk′,m)) = 1, where SFPK.ChgPK(pk, r) =
pk′ and SFPK.ChgSK(sk, r) = sk′.

3. For all (sk, pk, δ) ←$ SFPK.TKeyGen(1λ, ω) and all pk′ we have SFPK.ChkRep(δ, pk′) = 1 if and
only if pk′ ∈ [pk]R.

Definition 20 (Class-hiding). For scheme SFPK with relation R and adversary A we define the
following experiment:

C-HASFPK,R(λ)

ω0, ω1 ←$ coin

(ski, pki)←
$ SFPK.KeyGen(1λ, ωi) for i ∈ {0, 1}

m←$ A(ω0, ω1); b←$ {0, 1}; r ←$ coin

sk′ ←$ SFPK.ChgSK(skb, r); pk
′ ←$ SFPK.ChgPK(pkb, r)

Sig←$ SFPK.Sign(sk′,m)

b̂←$ A(ω0, ω1,m, Sig, pk
′)

return b = b̂

16

An SFPK is class-hiding if for all PPT adversaries A, its advantage in the above experiment is
negligible:

Advc-hA,SFPK(λ) =

∣∣∣∣Pr
[
C-HASFPK,R(λ) = 1

]
− 1

2

∣∣∣∣ = negl(λ) .

Definition 21 (Strong Existential Unforgeability under Flexible Public Key). For scheme
SFPK with relation R and adversary A we define the following experiment:

EUF-CMAASFPK,R(λ)

ω ←$ coin

(sk, pk, δ)←$ SFPK.TKeyGen(1λ, ω);Q := ∅

(pk′,m∗, Sig∗)←$ AO
1(sk,·),O2(sk,·,·)(pk, δ)

return (m∗, Sig∗) 6∈ Q ∧
SFPK.ChkRep(δ, pk′) = 1 ∧
SFPK.Verify(pk′,m∗, Sig∗) = 1

O1(sk,m)

Sig←$ SFPK.Sign(sk,m)

Q := Q ∪{(m,Sig)}
return Sig

O2(sk,m, r)

sk′ ←$ SFPK.ChgSK(sk, r)

Sig←$ SFPK.Sign(sk′,m)

Q := Q ∪{(m, Sig)}
return Sig

A SFPK is existentially unforgeable with flexible public key under chosen message attacks if for all
PPT adversaries A the advantage in the above experiment is negligible:

Advseuf−cma
A,SFPK (λ) = Pr

[
EUF− CMAASFPK(λ) = 1

]
= negl(λ) .

Backes et al. introduced also a optional property called key recovery, which allows a user to
compute a secret key that corresponds to a different representative of the equivalence of the users
public key. A straightforward application of this property is that the SFPK.ChgPK algorithm can
be executed by a third party on the users secret key and the user can compute the corresponding
secret key without the knowledge of the randomization r. More formally.

Definition 22 (Key Recovery Property). A SFPK has recoverable signing keys if there exists an
efficient algorithm SFPK.Recover such that for all security parameters 1λ ∈ N, random coins ω, r and
all (sk, pk, δ)←$ SFPK.TKeyGen(1λ, ω) and pk′ ←$ SFPK.ChgPK(pk, r) we have SFPK.ChgSK(sk, r) =
SFPK.Recover(sk, δ, pk′).

New Definitions. The class-hiding definition introduced by Backes et al. implements the strongest
corruption model, i.e. the adversary is given the random coins used by the signer to generate her
public key and is still not able to distinguish whether a randomized public key is from the same
equivalence class as the signer’s public key. As shown in [6], this strong definition allows to construct
ring signatures but requires a technique called invertible sampling introduced by Damg̊ard and
Nielsen [22]. In many cases we do not require such a strong corruption model and assume that those
random coins are destroyed after the user/signer generates her secret key. This slightly weaker model
is for example used in the security of group signatures.

On the other hand, the original definition only allows the adversary to see the randomized public
key pk′ after it specifies the message m in the first phase. This does not model scenarios, where the
signer uses the same representative for multiple messages. An easy approach to allow the adversary
for adaptive signature queries is to give it a signing oracle. We address these issues by introducing
adaptive class-hiding with key corruption.

17

Definition 23 (Adaptive Class-hiding with Key Corruption). For scheme SFPK with relation
R and adversary A we define the following experiment:

adaptC-HASFPK,R(λ)

ω0, ω1 ←$ coin

(ski, pki)←
$ SFPK.KeyGen(1λ, ωi) for i ∈ {0, 1}

b←$ {0, 1}; r ←$ coin

sk′ ←$ SFPK.ChgSK(skb, r); pk
′ ←$ SFPK.ChgPK(pkb, r)

b̂←$ ASFPK.Sign(sk′,·)((sk0, pk0), (sk1, pk1), pk′)

return b = b̂

A SFPK is adaptively class-hiding with key corruption if for all PPT adversaries A, its advantage
in the above experiment is negligible:

Advadaptc-hA,SFPK(λ) =

∣∣∣∣Pr
[
adaptC-HASFPK,R(λ) = 1

]
− 1

2

∣∣∣∣ = negl(λ) .

In some applications it might be required that every equivalence class has a unique representative
that can act as a description of the class. For example let the public keys be of the form pk = (ga1 , g

x
1)

and let the classes be induced by the relation Rexp. Since g1 is publicly known, we can define

pk′ = (g1, g
x·a−1

1) as this unique representative. We will call pk′ a canonical representative. The
canonical representative can be scheme specific but using a publicly known element (in this case g1)
to fix the first element of the public key allows to fix the structure of the representatives over all
equivalence classes. Later, we will assume that if a scheme has canonical representatives, there is an
efficient algorithm IsCanonical which on input a public key will return 1 if and only if the public key
is canonical.

We further define the following useful property between signatures on equivalence classes and
signatures with flexible public keys.

Definition 24 (SPS-EQ/SFPK Compatibility). An SPS-EQ scheme and an SFPK scheme are
compatible if the message space of the former is the same as the key space of the latter and they
share the same equivalence relation.

4.1 Our Signatures with Flexible Public Key

In this section we propose our signatures with flexible public key. We propose a scheme that is closely
related to the ones proposed in [6]. However, security relies on the bilinear decisional Diffie-Hellman
assumption instead of the decisional linear assumption. This allows us to decrease the size of the
public key by 1 group element in G1, i.e. from 3 to 2. Unlike the schemes in [6], this scheme only has
adaptive class-hiding with key corruption but this is still sufficient for group signatures construction.

In our scheme we assume that both the SFPK.KeyGen and SFPK.TKeyGen output a public key
that is the canonical representative of its equivalence class. Further we assume that every user
has access to a collision resistant hash function H, which we express by including it in the output
of SFPK.CRSGen. The SFPK.ChgPK and SFPK.ChgSK algorithms work by drawing uniformly at
random an exponent r ∈ Zp and raising every component of the public key, or respectively the
secret key to the power of r. More details can be found in Scheme 2.

18

SFPK.CRSGen(1λ)

BG←$ BGGen(λ); y, z ←$ Z∗p
KPHF ←$ PHF.Gen(1

λ
)

Y1 ← g
y
1 ; Y2 ← g

y
2 ; ĝ ← g

z
1

return (ρ := (BG, Y1, Y2, KPHF, ĝ,H),

δρ := (y, z))

SFPK.ChkRep(δSFPK, pkSFPK)

pkSFPK = (pk1, pk2); τSFPK = (τ)

if e(pk1, τ) = e(pk2, g2)

return 1 else 0

SFPK.KeyGen(1λ)

x←$ Z∗p
return (pkSFPK := (g1, g

x
1),

skSFPK := (Y
x
1 , pkSFPK))

SFPK.TKeyGen(1λ)

x←$ Z∗p
return (pkSFPK := (g1, g

x
1),

skSFPK := (Y
x
1 , pkSFPK),

τSFPK := (g
x
2))

SFPK.Sign(sk,m)

skSFPK = (Z, pkSFPK);

r, s←$ Z∗p; Sig2SFPK ← g
r
1 ; Sig3SFPK ← g

r
2

h← H(m||Sig2SFPK||Sig
3
SFPK||pkSFPK)

M ← g
h
1 · ĝ

s

return (Z · (PHF.Eval(KPHF,M))
r
, g
r
1 , g

r
2 , s)

SFPK.Verify(pkSFPK,m, SigSFPK)

pkSFPK = (·, X); SigSFPK = (Sig1SFPK, Sig
2
SFPK, Sig

3
SFPK, s)

h← H(m||Sig2SFPK||Sig
3
SFPK||pkSFPK);M ← g

h
1 · ĝ

s

if e(Sig2SFPK, g2) = e(g1, Sig
3
SFPK) and

e(Sig1SFPK, g2) = e(X,Y2) · e(PHF.Eval(KPHF,M), Sig3SFPK)

return 1 else 0

Fig. 2. Our Flexible Signatures.

Theorem 1 (Unforgeability). Scheme 2 is strongly existential unforgeable under flexible pub-
lic key in the common reference string model, assuming the bilinear decisional Diffie-Hellman as-
sumption holds (which implies that the discrete logarithm assumption holds) and that PHF is a
(1, poly(λ))-programmable hash function and H is collision-resistant.

Proof. Let (Sig∗SFPK,m
∗, pk∗SFPK) be the forgery returned by an adversary A, where Sig∗SFPK =

(Sig∗1,Sig
∗
2,Sig

∗
3, s
∗). We distinguish three types of strategies and will use A1, A2, A3 to denote

the corresponding adversaries:

Type 1 We call the adversary a type 1 adversary if there exists a public key pkSFPK and signature
SigSFPK = (Sig1,Sig2,Sig3, s) on messagem generated by oracleO1 orO2, where H(m∗||Sig∗2||Sig

∗
3||pk

∗
SFPK) =

H(m||Sig2||Sig3||pkSFPK).

Type 2 We call the adversary a type 2 adversary if there exists a public key pkSFPK and signature
SigSFPK = (Sig1,Sig2,Sig3, s) on message m generated by oracle O1 or O2, where

e∗ = H(m∗||Sig∗2||Sig
∗
3||pk

∗
SFPK) 6= H(m||Sig2||Sig3||pkSFPK) = e

but M∗ = ge
∗

1 · ĝs
∗

= ge1 · ĝs = M .

Type 3 We call the adversary a type 3 adversary in all other cases. In particular, we ensure that
M∗ is distinct from all M ’s used in the oracles O1 and O2.

Type 1 It is easy to see that the adversary broke the collision-resistance of function H and we can
build a reduction R that uses A1 to break collision-resistance of function H by simulating the system
and returning

(m∗||Sig∗2||Sig
∗
3||pk

∗
SFPK,m||Sig2||Sig3||pkSFPK)

as a valid collision.

19

Type 2 In this case we show that a type 2 can be used to break the discrete logarithm assumption.
We can apply the same reasoning as for Pedersen commitments, i.e. the reduction can set ĝ as the
element for which we want to compute the discrete logarithm in respect to g1. The reduction can
then simply simulate the whole system for A2 and output (e− e∗)/(s∗ − s).

Type 3 Let (BG, ga1 , g
a
2 , g

b
1, g

b
2, g

c
1, g

c
2, g

d
1 , g

d
2) be an instance of the bilinear decisional Diffie-Hellman

problem. We will show that we can use any efficient adversary A3 can be used to break the above
problem instance. To do so, we will build a reduction algorithm R that uses A3 in a black box
manner, i.e. it plays the role of the challenger in the unforgeability experiment.

First R prepares the common reference string ρ by setting Y1 = ga1 , Y2 = ga2 , ĝ = gz1 , for some
z ←$ Z∗p and executes the trapdoor generation algorithm (KPHF, τPHF) ←$ PHF.TrapGen(1λ, ga1 , g1).
Note that δρ is not publicly known, so R does not have to know the exponent a but still knows z.

Next R prepares the public key pkSFPK and the trapdoor τSFPK. For this it uses the values gb1 and
gb2 from the problem instance. It sets pkSFPK = (g1, g

b
1) and τSFPK = (gb2).

To answer A’s signing queries for message m and randomness t1 (which is equal to 1 for oracle
O1), the reduction R follows the following steps:

– it chooses random values t2 ←$ Z∗p,
– it computes M = ge

′

1 · ĝs
′

for some e′, s′ ←$ Z∗p.
– it computes (am, bm)←$ PHF.TrapEval(τPHF,M) and aborts if am = 0,
– it computes pk′SFPK ←$ SFPK.ChgPK(pkSFPK, t1),
– it computes:

Sig2
SFPK = (gb1)−a

−1
m ·t1 · gt21 ,

Sig3
SFPK = (gb2)−a

−1
m ·t1 · gt22 ,

Sig1
SFPK = (ga1)t2 · ((gb1)(−a−1

m ·t1) · gt21))bm ,

e = H(m||Sig2
SFPK,Sig

3
SFPK, pk

′
SFPK),

s = ((e′ − e) + s′ · z)/z,

– set the signature SigSFPK = (Sig1
SFPK,Sig

2
SFPK,Sig

3
SFPK, s).

It is easy to see that this is a valid signature. Note that the a valid signature is of the form
(ga·b·t11 · ((ga1)am · gbm1)r, gr1, g

r
2, s). In this case, the reduction has set r = −a−1

m · b · t1 + t2 and this
means that the ga·b·t11 cancels out and the reduction does not need to compute ga·b1 . Note that this
only works because am 6= 0. Otherwise, this would not work.

It follows that for the forgery (pk∗SFPK,m
∗,Sig∗SFPK, s

∗) ofA we require that (am∗ , bm∗)←$ PHF.TrapEval(τPHF,M
∗)

and aM∗ = 0, where M∗ = ge
∗

1 ĝs
∗

and e∗ = H(m∗||Sig2
SFPK||Sig

3
SFPK||pk

∗
SFPK). In such a case, the

reduction works as follows:

– parses Sig∗SFPK as (Sig1
SFPK,Sig

2
SFPK,Sig

3
SFPK, s

∗),
– computes

ga·b·t
∗

1 = Sig1
SFPK · (Sig

2
SFPK)−bm∗ =

(
ga·b·t

∗

1 · ((ga1)am∗ · gbm∗1)r
∗
)
· (gr

∗

1)−bm∗

– parses pk∗SFPK and since for a valid forgery we have pk∗SFPK ∈ [pkSFPK]R, we have pk∗SFPK =
(gt
∗

1 , (g
b
1)t
∗
) and R can use gt

∗

1 ,

20

– outputs 1 iff
e(ga·b·t

∗

1 , gc2) = e(gt
∗

1 , g
d
2).

It is easy to see that the probability that R successfully solves the bilinear decisional Diffie-
Hellman problem depends on the advantage of A and the probability that R’s simulation succeeds.
Since the programmable hash function PHF is (1, poly(λ))-programmable and because this is a type
3 adversary, we conclude that this probability is non-negligible. Note that since in this case we use
A3, M∗ is distinct from all M ’s used in O1 and O2, which is not the case for type 1 and type 2
adversaries.

Theorem 2 (Adaptive Class-Hiding with Key Corruption). Scheme 2 is adaptively class-
hiding with key corruption in the common reference string model, assuming the decisional Diffie-
Hellman assumption holds.

Proof. In this proof we will use the game based approach. We start with GAME0 which is the
original class-hiding experiment and let S0 be an event that the experiment evaluates to 1, i.e. the
adversary wins. We will use Si to denote the event that the adversary wins the class-hiding experi-
ment in GAMEi.

Let pkSFPK = (A,B) be the public key given to the adversary, pk0 = (A0, B0) = (g1, g
x0
1) and

pk1 = (A0, B1) = (g1, g
x1
1) be the public keys that are returned by SFPK.KeyGen, sk0 = (Y x0

1 , pk0)

and sk1 = (Y x1
1 , pk1) the corresponding secret keys given to the adversary and b̂ be the bit chosen

by the challenger.

GAME0: The original class-hiding game.

GAME1: In this game we do not use the SFPK.ChgSK algorithm to compute skSFPK and pkSFPK but
compute them as pkSFPK = (Q,Qxb̂), and skSFPK = ((Qxb̂)y, pkSFPK), where Y1 = gy1 is part of the
common reference string ρ generated by the challenger. In other words, instead of using the exponent
r to randomize the public key and secret key, we use a group element Q to do it.

Since the distribution of the keys does not change, it follows that Pr[S1] = Pr[S0]. Note that the
oracle can still use skSFPK to compute valid signatures.

GAME1: In this game instead of computing pkSFPK = (Q,Qxb̂) as in GAME1, we sample B′ ←$ G1

and set pkSFPK = (Q,B′).

We will show that this transition only lowers the adversaries advantage by a negligible fraction.
This can be show by construction using a reduction R that uses an adversary A that can distinguish
between those two games to break the decisional Diffie-Hellman assumption in G1.

Let (gα1 , g
β
1 , g

γ
1) be an instance of this problem in G1.R samples r0, r1 ←$ Z∗p and sets B0 = (gα1)r0 ,

B1 = (gα1)r1 . Note that in such a case, we also have to set sk0 = ((B0)y, pk0) and sk1 = ((B1)y, pk1).

Additionally, the reduction uses Q = gβ1 and the public key pkSFPK = (Q, (gγ1)rb̂). Note that the
reduction can use the secret key skSFPK = (((gγ1)rb̂)y, pkSFPK) to generate signatures and answer
signing queries.

Now γ = α·β then pkSFPK has the same distribution as in GAME1 and otherwise as in GAME2.
Thus, it follows that |Pr[S2]− Pr[S1]| ≤ AdvddhA (λ).

21

We will now show that we have Pr[S2] = 1
2 . This follow from the fact that we have pkSFPK =

(Q,B′) and signatures of the form SigSFPK = ((B′)y ·(PHF.Eval(KPHF,m))r, gr1, g
r
2, s) for some r ∈ Z∗p

and Q,B′, which are independent from the bit b̂. Thus, we have Advadaptc-hA,SFPK(λ) = Pr[S0] ≤ AdvddhA (λ).

5 Our Group Signatures

In this section we formalize the group signature proposed in the introduction. We present the algo-
rithms related to key generation and group management in Figure 3 and the algorithms related to
signature creation, verification, tracing and judgment in Figure 4.

To securely instantiate our scheme we require the following components:

– a digital signature scheme DS which is existentially unforgeable under chosen message attacks,
– a structure-preserving signature scheme on equivalence classes SPS-EQ with message space of

dimension ` = 2 which is existentially unforgeable under chosen message attacks and perfectly
adapts signatures,

– a compatible signature scheme with flexible public keys SFPK which has canonical represen-
tatives, is strongly existentially unforgeable under chosen message attacks and has adaptive
class-hiding with key corruption,

– a public key encryption scheme PKE which is IND− CPA secure and has key-privacy under
chosen message attacks,

– a proof system ΠPPE for pairing product equations which is a witness-indistinguishable proof of
knowledge,

– a second proof system ΠGS.Judge which is zero-knowledge.

GS.Setup(1λ)

(ρSFPK, ·)←$ SFPK.CRSGen(1
λ

)

BG = (p,G1,G2,GT , e, g1, g2)←$ SPS.BGGen(1
λ

)

ρJ ←$
ΠGS.Judge.Setup(1

λ
); K2 ←$ G2; τ := 0

return param := (1
λ
,BG, ρSFPK, ρJ , K2)

GS.KGenM(param)

(skDS, pkDS)←
$ DS.KeyGen(1

λ
)

(skSPS, pkSPS)←
$ SPS.KGen(BG, 2)

info := (pkSPS,DS.Sign(skDS, pkSPS), ∅)
return (msk := (skDS, skSPS),

mpk := pkDS, info)

GS.KGenT (param)

ω ←$ coin;

(ρΠ , τΠ)← ΠPPE.ExtGen(1
λ

;ω)

return (tsk := (τΠ , ω),

tpk := ρΠ)

GS.Issue(infoτcurrent ,msk, uid,upk[uid])

msk = (skDS, skSPS),upk[uid] = (pkSFPK, pkEnc)

infoτcurrent [uid] = (pkSPS, σDS,Active)

if ¬IsCanonical(pkSFPK) then return ⊥

k ←$ coin; c←$ PKE.Enc(pkEnc, k);

σSPS ←$ SPS.Sign(SFPK.ChgPK(pkSFPK, k), skSPS)

Active′ := Active ∪ {(c, σSPS)}

infoτcurrent [uid] := (pkSPS, σDS,Active
′
)

reg[uid] := upk[uid]

GS.UpdateGroup(gpk,msk, infoτcurrent ,S, reg)

msk = (skDS, skSPS)

(sk′SPS, pk
′
SPS)←

$ SPS.KGen(BG, 2)

msk := (skDS, sk
′
SPS)

infoτcurrent = (·, ·,Active); A := {i| user i is active}
foreach i ∈ A \ S

reg[uid] = (pkiSFPK, pk
i
Enc)

k ←$ coin; c←$ Enc(pkiEnc, k);

σSPS ←$ SPS.Sign(SFPK.ChgPK(pkiSFPK, k), skSPS)

Active′ := Active′ ∪ (c, σSPS)

return infoτnew = (pk′SPS,DS.Sign(skDS, pk
′
SPS),Active

′
)

GS.UKGen(1λ)

(skSFPK, pkSFPK)←$ SFPK.KeyGen(1
λ

)

(skEnc, pkEnc)←
$ PKE.KeyGen(1

λ
)

return (usk[uid] := (skSFPK, skEnc),

upk[uid] := (pkSFPK, pkEnc))

Fig. 3. Algorithms related to key generation and group management.

22

GS.Sig(gpk,gsk[uid], infoτ ,m)

infoτcurrent = (pkSPS, ·,Active)

gsk[uid] = (skSFPK, skEnc); gpk[uid] = (pkSFPK, pkEnc)

if ¬∃ (c, σSPS) ∈ Active s. t.

k ← PKE.Dec(c, skEnc) and

SPS.Verify(SFPK.ChgPK(pkSFPK, k), σSPS, pkSPS) = 1

then return ⊥

r ←$ coin; pk′SFPK ←
$ SFPK.ChgPK(pkSFPK, r); sk′SFPK ←

$ SFPK.ChgSK(skSFPK, r)

σ
′
SPS ←

$ SPS.ChgRep(pkSFPK, σSPS, r · k−1
, pkSPS)

ΠSFPK ←$
ΠPPE.Prove(ρΠ , xSign, w = (pkSFPK, r, 1G1

, 1G2
)) for xSign:

∃ (pkSFPK, r, w1, w2) s. t.

SFPK.ChgPK(pkSFPK, r) = pk′SFPK ∧ IsCanonical(pkSFPK)

∨ e(w1,K2) = e(w2, g2)

SigSFPK ←
$ SFPK.Sign(sk′SFPK,m||τcurrent||pk

′
SFPK||σ

′
SPS||ΠSFPK)

return Σ := (pk′SFPK, σ
′
SPS, ΠSFPK, SigSFPK)

GS.Vf(gpk, infoτ ,m,Σ)

infoτ = (pkSPS, σDS, ·); mpk = pkDS

Σ = (pkSFPK, σSPS, ΠSFPK, SigSFPK)

// xSign is the same statement as in GS.Sig

if DS.Verify(pkDS, pkSPS, σDS) = 0 or

ΠPPE.Verify(ρΠ , xSign, ΠSFPK) = 0 or

SPS.Verify(pkSPS, pkSFPK, σSPS) = 0

then return 0

return SFPK.Verify(pkSFPK,m||τ ||pkSFPK||σSPS||ΠSFPK, SigSFPK)

GS.Trace(gpk, tsk, infoτ , reg,m,Σ)

Σ = (pkSFPK, σSPS, ΠSFPK, SigSFPK); tsk = (τΠ , ω)

(pkSFPK, r, ·, ·)←
$
ΠPPE.Extract(τΠ , ΠSFPK)

if ¬∃uid s. t. reg[uid] = (pkSFPK, ·)

then return ⊥

π ←$
ΠGS.Judge.Prove(ρJ , xTrace, w = (τΠ , ω)) for xTrace:

∃ (τΠ , ω) s. t.

(pkSFPK, ·, ·, ·)←
$ ΠPPE.Extract(τΠ , ΠSFPK) ∧

(ρΠ , τΠ)← ΠPPE.ExtGen(1λ;ω)

return (uid, π)

GS.Judge(gpk, uid, infoτ , πTrace,upk[uid],m,Σ)

if GS.Vf(gpk, infoτ ,m,Σ) = 0

then return 0

Σ = (·, ·, ΠSFPK, ·); upk[uid] = (pkSFPK, ·)
// Statement xTrace as in GS.Trace

return ΠGS.Judge.Verify(ρJ , x, π)

Fig. 4. Algorithms related to creating and processing signatures.

Theorem 3 (Traceability). Our group signature construction is traceable if the decisional Diffie-
Hellman assumption holds in G2, the SPS-EQ signature scheme is existential unforgeable under
chosen-message attacks, the SFPK scheme is existential unforgeable and the digital signature scheme
used by the Issuer is existential unforgeable under chosen-message attacks.

Proof. We will use the game base approach. Let us denote by Si the event that the adversary
wins the traceability experiment in GAMEi. Let (m∗, Σ∗ = (pk∗SFPK, σ

∗
SPS, Π

∗
SFPK,Sig

∗
SFPK), info∗τ =

(pk∗SPS, σ
∗
DS,Active

∗)) be the forgery outputted by the adversary. Moreover, let u be the maximum
number of oracle queries to UpdateGroup made by the adversary and n the number of queries to the
AddU oracle.

23

GAME0: The original experiment.

GAME1: We abort in the case that VerifyDS(pkDS, pk
∗
SPS, σ

∗
DS) = accept but the signature σ∗DS was

not created by the UpdateGroup oracle. Informally, we exclude the case that the adversary creates a
custom SPS-EQ public key and uses it to create his own epoch information.

It is easy to see that this change only decreases the adversary’s advantage by a negligible fraction.
In particular, we can simply use any adversary A to break the existential unforgeability of the digital
signature scheme used by the Issuer. Thus, it follows that |Pr[S1]− Pr[S0]| ≤ Adveuf−cma

A,DS (λ).

GAME2: We abort in case the witness extracted by the tracing authority from Π∗SFPK is (·, ·, w1, w2)
such that w1 6= 1G1

and w2 6= 1G1
.

Again, this change only decreases the adversary’s advantage by a negligible fraction. We will
show that we can use A to break the decisional Diffie-Hellman assumption in G2. Let (gα2 , g

β
2 , g

γ
2)

be an instance of this problem. We set K2 = gα2 . Since we always have that e(w1,K2) = e(w2, g2),
which follows from the fact that the tracing authority can extract such a witness and this implies
that w2 = (w1)α. Thus, we can return e(w2, g

β
2) = e(w1, g

γ
2).

We have shown that |Pr[S2]− Pr[S1]| ≤ AdvddhA (λ).

GAME3: Choose u∗ ←$ {1, . . . , u} and abort if info∗τ is not the output of the u∗-th call to the
UpdateGroup oracle.

Because of the changes made by the previous game we know that the adversary can only use
epoch information outputted by this oracle. Thus, we have Pr[S2] = u · Pr[S3].

GAME4: We abort in case GS.Trace(gpk, tsk, info∗τ , reg,m
∗, Σ∗) = ⊥ but

GS.Vf(gpk, info∗τ ,m
∗, Σ∗) = accept. Informally, we exclude the case that the adversary creates a

new user from outside the group, i.e. a new SPS-EQ signature.

We will show that any adversary A returns a forgery for which we abort, can be used to break
the existential unforgeability of the SPS-EQ signature scheme. The reduction R algorithm on input
of the public key pkSPS performs as follows. It first sets infou∗ = (pkSPS,SignDS(skDS, pkSPS),Active).
For every active user i is this epoch, Active contains a tuple (Enc(pkiEnc, ki), σ

i
SPS), where σiSPS is a

signature generated for R by the signing oracle on input SFPK.ChgPK(pkiSFPK, ki). It then runs the
system for A according to description.

After some interactions, the adversary returns (m∗, Σ∗ = (pk∗SFPK, σ
∗
SPS, Π

∗
SFPK,Sig

∗
SFPK), info∗τ =

(pk∗SPS, σ
∗
DS,Active

∗)). Note that because of the changes in the previous games, we know that pk∗SPS =
pkSPS, i.e. the forgery is created for a epoch that uses our challenged SPS-EQ public key to certify
members. Finally, the reduction R returns (pk∗SFPK, σ

∗
SPS) as a valid forgery. It is easy to see that this

is a valid solution. Note that since opening failed, this means that the trusted authority extracted
witness w = (pkSFPK, r

∗, 1G1 , 1G2) and pkSFPK is not a public key of any honest user. Moreover, since
pkSFPK is canonical representative of [pk∗SFPK]R it follows that this is in fact a valid forgery.

We conclude that |Pr[S4]− Pr[S3]| ≤ Adv`,euf-cma
SPS-EQ,A(λ).

24

Finally, we will show hat any adversary A that has non-negligible advantage in winning trace-
ability experiment in GAME4 can be used by a reduction algorithm R to break the existential
unforgeability of the SFPK scheme for a public key pkSFPK.

The reduction simulator works as follows. It generates all values according to description but
for i ←$ [n] the reduction answers the i-th queries of the adversary to AddU by setting upk[] =
(pkSFPK, pkEnc) for some (skEnc, pkEnc) ←$ KeyGenEnc(1

λ). The reduction aborts if at some point the
adversary asks for the group secret key of this member.

To answer signing queries Sign(i,m, τ) for this member, the reduction parses infoτ = (pkSPS, ·,Active).
Then it returns ⊥ if for all tuples (E, σSPS) in Active the decryption k ←$ Dec(E, skEnc) fails.R chooses
random coins r ←$ coin, randomizes the flexible public key pk′SFPK ←$ SFPK.ChgPK(pkSFPK, r) and
the signature σ′SPS ←$ SPS.ChgRep(pkSPS, pkSFPK, σSPS, r · k−1). It then creates a proof ΠSFPK for the
statement:

x = { ∃pkSFPK,r,w1,w2 SFPK.ChgPK(pkSFPK, r) = pk′SFPK ∧
pkSFPK is a canonical representative ∨
e(w1,K2) = e(w2, g2) }

using witness w = (pkSFPK, r, 1G1
, 1G2

). It then uses its own signing oracleO2((m||τ ||pk′SFPK||σ′SPS||ΠSFPK), r),
receiving signature SigSFPK. Finally, it outputs Σ = (pk′SFPK, σ

′
SPS, ΠSFPK,SigSFPK). Note that since

values required to perform the above computations are known to R, it can efficiently compute valid
group signatures for this member.

Finally, A outputs a valid group signature (m∗, Σ∗ = (pk∗SFPK, σ
∗
SPS, Π

∗
SFPK,Sig

∗
SFPK), info∗τ =

(pk∗SPS, σ
∗
DS,Active

∗)) and the reduction algorithm outputs ((m∗||τ∗||pk∗SFPK||σ∗SPS||Π∗SFPK),Sig∗SFPK)
as a valid SFPK forgery. Note that this is only true if pk∗SFPK and pkSFPK are in the same equiva-
lence class. By the changes made in the previous games we know that pk∗SFPK is in a relation with
a public key of an honest user and with probability 1/n we guessed the correct member for which
Trace(m∗, Σ∗, info∗τ) = i and we have set his public key to pkSFPK. Note that also in such a case
we do not have to worry about a corruption query for this member, since the forgery must be for
non-corrupted users. We conclude that since m∗ was never queried previously, the reduction also
never used the prefix m∗ in its oracle queries.

In the end we have:

Pr[S0] ≤ u ·
(
n · Adveuf−cma

A,SFPK (λ) + Adv`,euf-cma
SPS-EQ,A(λ)

)
+ Adveuf−cma

A,DS (λ) + AdvddhA (λ).

Theorem 4 (Anonymity). Our group signature construction is anonymous if the decisional
Diffie-Hellman assumption holds in G2, the SPS-EQ signature scheme perfectly adapts signatures,
the SFPK scheme is adaptively class-hiding with key corruption and strongly existential unforgeable,
the proof system used by signers is witness-indistinguishable and the proof system used by the tracing
authority is zero-knowledge.

Proof. We will use the game base approach. Let us denote by Si the event that the adversary wins
the anonymity experiment in GAMEi. Moreover, let n be the number of queries to the AddU oracle
made by the adversary and let (info∗τ , uid

∗
1, uid

∗
2,m

∗) be the query made to the Challb oracle, which
outputs Σ∗ = (pk∗SFPK, σ

∗
SPS, Π

∗
SFPK,Sig

∗
SFPK).

GAME0: The original experiment.

25

GAME1: We abort in case the witness extracted inside the Trace oracle (by the GS.Trace algorithm)
is (·, ·, w1, w2) such that w1 6= 1G1

and w2 6= 1G1
.

This change only decreases the adversary’s advantage by a negligible fraction. We will show that
we can use A to break the decisional Diffie-Hellman assumption in G2. Let (gα2 , g

β
2 , g

γ
2) be an instance

of this problem. We set K2 = gα2 . Since we always have that e(w1,K2) = e(w2, g2), which follows
from the fact that the tracing authority can extract such a witness and implies that w2 = (w1)α.

Thus, we can return e(w2, g
β
2) = e(w1, g

γ
2).

We have shown that |Pr[S1]− Pr[S0]| ≤ AdvddhA (λ).

GAME2: We now simulate the proof generated in GS.Trace by the tracing authority.

Obviously, we only lower the advantage of the adversary by a negligible fraction because of the
zero-knowledge property of this proof. Thus, we have |Pr[S2]− Pr[S1]| ≤ AdvzkA,ΠGS.Judge

(λ).

GAME3: We now replace the way the proof Π∗SFPK is computed. Instead of using witness w =
(pkSFPK, r, 1G1 , 1G2), where pk∗SFPK = SFPK.ChgPK(pkSFPK, pk) we use the witness w = (·, ·, w1, w

k
1)

for some w1 ←$ G1, k such that K2 = gk2 and K2 is part of param.

Note that until now we did not exclude the case that the adversary somehow randomizes the
challenged signature Σ∗ and queries it to the Trace oracle. This could be e.g. possible if the used
SFPK signatures would not be strongly existential unforgeable. Thus, we have to show that we can
still execute the Trace oracle as in an original execution. Fortunately, Π∗SFPK is the only proof in the
system with this trapdoor witness (all other cases were excluded in GAME1) and if we extract this
value in the Trace oracle, we can return the correct identity. Note that in GAME2 we simulate the
proof created by the tracing authority, so we can create a valid proof without the correct values. It
follow that by witness-indistinguishability we have that |Pr[S3]− Pr[S2]| ≤ AdvwiA,ΠPPE

(λ).

GAME4: We now change the way we compute σ∗SPS . Instead of using the SPS.ChgRep algorithm to
change representation of an old signature, we compute the SPS-EQ signature directly on pk∗SFPK.

Since the SPS-EQ signature scheme perfectly adapts signatures, we have Pr[S4] = Pr[S3]

GAME5: Given the experiments bit b, we choose index i←$ [n] and abort if uidb does not correspond
to the user created in the i-th query of the adversary to AddU.

We have Pr[S4] = n · Pr[S5].

GAME6: Let pkSFPK be the SFPK public key of the user chosen in the previous game. We now
instead of using pkSFPK to create pk∗SFPK, we use a fresh key generated using KeyGenSFPK.

We will now show that any adversary A that can distinguish those games, can be used to brake
the weak class-hiding of the SFPK scheme. We will show how to build a reduction R that does
this. Let (sk0

SFPK, pk
0
SFPK), (sk1

SFPK, pk
1
SFPK) and pk′SFPK be the inputs given to R by the challenger in

the adaptive class-hiding experiment. The reduction then sets pk0
SFPK as the i-th honest user SFPK

public key. All other key material for those users is constructed as described in the scheme. Now in
order to answer the query (info∗τ , uid

∗
1, uid

∗
2,m

∗) to the Challb oracle, the reduction:

26

– sets pk∗SFPK = pk′SFPK,
– computes σ∗SPS as in GAME4,
– computes Π∗SFPK as in GAME3,
– asks its signing oracle for Sig∗SFPK under message m∗||τ∗||pk∗SFPK||σ∗SPS||Π∗SFPK,

and returns Σ∗ = (pk∗SFPK, σ
∗
SPS, Π

∗
SFPK,Sig

∗
SFPK). Note that since it knows sk0

SFPK and sk1
SFPK it can

easily answer all corruption queries made by A. In the end A outputs a bit b, which is also returned
by R.

It follow that we have |Pr[S6]− Pr[S5]| ≤ Advadaptc-hA,SFPK(λ).

We now argue that the only way the adversary A can break anonymity is by somehow creating
a randomization Σ′ = (pk′SFPK, σ

′
SPS, Π

′
SFPK,Sig

′
SFPK) of the signature Σ∗ = (pk∗SFPK, σ

∗
SPS, Π

∗
SFPK,

Sig∗SFPK) and use Σ′ in a query to the Trace oracle. Since in GAME6 we changed the public key
pk∗SFPK to a random one, this is the only part of the simulation, where the adversary can notice
something. Thus, for this to work the adversary must use a valid signature Sig′SFPK for pk′SFPK ∈
[pk∗SFPK]R. We distinguish two cases: Sig′SFPK = Sig∗SFPK and Sig′SFPK 6= Sig∗SFPK. If Sig′SFPK = Sig∗SFPK
this means that pk′SFPK = pk∗SFPK and either σ′SPS 6= σ∗SPS or Π ′SFPK 6= Π∗SFPK. Since pk∗SFPK is set to
random public key in GAME6 we can use an adversary that creates such a signature Σ′ to break
strong existential unforgeability of the SFPK scheme. In case Sig′SFPK 6= Sig∗SFPK, we notice that in
order for the adversary to see that this is a simulation the public key pk′SFPK must be in relation to
pk∗SFPK. Thus, we can again use the adversary to break the strong existential unforgeability of the
SFPK scheme, even if σ′SPS = σ∗SPS, Π ′SFPK = Π∗SFPK and pk′SFPK = pk∗SFPK.

In other words, the only way the adversary can randomize the challenged signature is by random-
izing the SFPK signature because the other values are signed. However, since the scheme is strongly
unforgeable the adversary has negligible chances to do so. It follows that Pr[S6] = Advseuf−cma

A,SFPK (λ).

In the end we have:

Pr[S0] ≤n ·
(
Advadaptc-hA,SFPK(λ) + Advseuf−cma

A,SFPK (λ)
)

+ AdvwiA,ΠPPE
(λ) + AdvddhA (λ)+

AdvzkA,ΠGS.Judge
(λ).

Theorem 5 (Non-frameability). Our group signature construction is non-frameable if the SFPK
scheme is existential unforgeable and the proof system used by the tracing authority is sound.

Proof. We again use the game base approach. Let us denote by Si the event that the adversary wins
the anonymity experiment in GAMEi. Moreover, let n be the number of queries to the CrptU oracle
made by the adversary and let (m∗, Σ∗, uid∗, π∗Trace, info

∗
τ) be the output of the adversary A.

GAME0: The original experiment.

GAME1: Let Σ∗ = (pk∗SFPK, σ
∗
SPS, Π

∗
SFPK,Sig

∗
SFPK). We extract the witness w′ = (pk′SFPK, r

′, 1G1
, 1G2

)
from Π∗SFPK using the tracing authorities secret key tsk = (τΠ). We abort if pk′SFPK 6= upk[uid∗] but
the GS.Judge(gpk, uid∗, info∗τ , π

∗
Trace,upk[uid∗],m∗, Σ∗) outputs accept.

We will show that this lowers the adversaries advantage only by a negligible fraction. In particular,
this means that π∗Trace is a valid proof for the statement:

x = { ∃τΠ ,ω (pk∗SFPK, ·, ·, ·)←$ Extract(τΠ , Π
∗
SFPK)

(ρΠ , τΠ)← ExtGenPPE(1λ;ω) }.

27

However, since we know that pk′SFPK 6= upk[uid∗] it follows that π∗Trace is a proof that breaks the
soundness property of the proof used by the tracing authority. We have shown that |Pr[S1]−Pr[S0]| ≤
AdvsoundA,ΠGS.Judge

(λ).

It is easy to see that Pr[S1] = n · Pr[S2].

We will now show that any adversary A that breaks the non-frameability of the scheme can be
used to break the existential unforgeability of the SFPK scheme. To do so, we construct a reduction
R that plays the role of the adversary in the existential unforgeability experiment. Let pkSFPK be the
public key given to R. The reduction sets upk[j] = pkSFPK, where j is the identifier from GAME2.
To answer the queries to the Sign oracle for uid = j, the reduction reduction outputs group signature
Σ′ = (pk′SFPK, σ

′
SPS, Π

′
SFPK,Sig

′
SFPK). To do so, the reduction can choose the randomization r freely

and randomize the public key pkSFPK by running pk′SFPK ←$ SFPK.ChgPK(pkSFPK, r). It can also
randomize the SPS-EQ signature to receive σ′SPS and compute the proof Π ′SFPK. Finally, it uses its
own signing oracle O2 to compute the SFPK signature Sig′SFPK.

In the end, the adversary returns a group signature Σ∗ = (pk∗SFPK, σ
∗
SPS, Π

∗
SFPK,Sig

∗
SFPK) under

message m∗ and for epoch info∗τ , for which we know (by GAME2) that pk∗SFPK is from the same
relation as the public key pkSFPK from the existential unforgeability experiment. Since this is a valid
forgery, it follows that (uid∗,m∗, Σ∗, τ∗) 6∈ Q and that ((m∗||τ∗||pk∗SFPK||σ∗SPS||Π∗SFPK),Sig∗SFPK) is a
valid forgery against the SFPK scheme.

We conclude that Pr[S0] = n · Adveuf−cma
A,SFPK (λ) + AdvsoundA,ΠGS.Judge

(λ).

Theorem 6 (Functional Tracing Soundness). Our group signature scheme has functional trac-
ing soundness if the underlying SFPK scheme has canonical representatives, the proof system used
by the Judge is sound and the proof system used by the signers is a proof of knowledge.

Proof. Let A be an adversary against the tracing soundness of our scheme. We show how to construct
a reduction B against the soundness of ΠGS.Judge.

Given the CRS ρGS.Judge, the reduction generates the remaining parameters according to GS.Setup
and forwards them to the adversary. At some point the adversary will output the group and tracing
manager’s key material and the initial group information (info,msk,mpk, tsk = (τPPE, ω), tpk = ρPPE).
Let us further denote by (m,Σ, {uidi, πi}2i=1, infoτ) the adversary’s final output. We will assume that
upk[uid1] and upk[uid2] are both defined and not equal.

Assume that
GS.Judge(gpk, uidi, infoτ , πi,upk[uidi],m,Σ) = 1

for both i = 1 and i = 2, i.e. we have in particular

Verify(ρGS.Judge, xTrace, πi) = 1

for both i.
We now consider the following cases:

Case I: The tracing manager’s secret key is not properly generated, i.e. we have (τ ′, ρ′)← ExtGen(1λ;ω)
for (τ ′, ρ′) 6= (τPPE, ρPPE). The reduction can check this, since the adversary provides the ω as
part of the tracing manager’s secret key. In this case, either of the two proofs πi breaks the
soundness of ΠGS.Judge.

Case II: The tracing manager’s secret key is properly generated. In this case, the reduction uses the
extraction trapdoor to obtain the witness used for the proof ΠSFPK contained in the signature.
There are two possibilities:

28

1. The extraction does not produce a valid witness. We bound this case by the advantage of A
against the extractor.

2. The extraction is successful, yielding a valid witness (pkSFPK, r, w1, w2). Since the witness is
valid, pkSFPK is the unique canonical representative of the key that created the signature.
Since the keys upk[uid1] and upk[uid2] are different, at most one of them can be equal to
the extracted pkSFPK. The reduction thus returns (xTrace, πi) such that upk[uidi] 6= pkSFPK
again breaking the soundness of ΠGS.Judge.

Theorem 7 (Join Privacy). Our group signature scheme has private joins if the encryption
scheme used by the signers is IND− CPA secure and has IK− CPA key privacy and the SFPK scheme
is adaptively class hiding with key corruption.

Proof. We consider a series of games. In the following let uidb be the challenge user who is inserted
into the group and let gpk[uidb] = (pkSFPK, pkEnc) be their public key and gsk[uidb] = (skSFPK, skEnc)
be their secret key. Let Si denote the event that the adversary wins in GAMEi.

GAME0 Is the original join privacy game, hence Pr[S0] = Advjoin−privacyGS,A (λ).

GAME1 We modify how the challenge group information is created. For this we generate a fresh pub-
lic key encryption key pair (sk, pk)←$ PKE.KeyGen(1λ). After the challenge user uidb is added using
AddU, we replace his entry (c = PKE.Enc(pkb, k), σSPS) in the epoch information with (PKE.Enc(pk, k), σSPS),
i.e. we replace the encryption key of the randomness to a fresh key. It is easy to see that, since the
encryption scheme has key privacy we have Pr[S1] ≤ Pr[S0] + Advik−cpaPKE,A(λ).

GAME2 In this game we further modify the ciphertext in the challenge user’s part of info∗ by en-
crypting the value 0 instead of the randomness used to change the SFPK key signed in σSPS. Because
the encryption scheme is IND− CPA secure it holds that Pr[S2] ≤ Pr[S1] + Advind−cpaPKE,A (λ).

GAME3 Instead of changing the representative of user uidb’s SFPK public key, we generate a fresh
public key and change its representative. The signature in info∗ will now be on this fresh represe-
natative. We will also use this fresh key to sign in the queries made to PrivChall. We observe that
Pr[S3] ≤ Pr[S2] + Advadaptc-hSFPK,A(λ). Further, we have Pr[S3] = 1

2 , since the updated epoch information
and the signatures received from the challenge signing oracle are completely independent of the
challenge users.

Putting it all together we thus have

Advjoin−privacyGS,A (λ) ≤ Advik−cpaPKE,A(λ) + Advind−cpaA (λ) + Advadaptc-hSFPK,A(λ).

Theorem 8 (Leave Privacy). Our group signature scheme has leave privacy if the encryption
scheme used by the signers is IND− CPA secure and has IK− CPA key privacy and the SFPK scheme
is adaptively class hiding with key corruption.

Proof. This proof follows similar steps as the proof for join privacy. We consider a series of games,
where in the first game b is fixed to 0 and in the last game, b is fixed to 1. Let Si denote the event
that A’s final output in GAMEi is 0.

GAME0 The Leave− Privacy game, where bit b is fixed to 0.

29

GAME1 We change the public key used to encrypt the epoch data for user uid0 using the public
key of user uid1. We have

|Pr[S0]− Pr[S1]| ≤ Advik−cpaA,PKE(λ).

GAME2 We now change the randomness encrypted in this ciphertext to the randomness for user
uid1. Because of IND− CPA security of the encryption scheme we have

|Pr[S1]− Pr[S2]| ≤ Advind−cpaA,PKE (λ).

GAME3 We change the SFPK public key to the public key of uid1, also changing the signatures in
PrivChall to this secret key. The game is now the same as the Leave− Privacy game with the bit fixed
to 1. Because of adaptive class hiding we have

|Pr[S2]− Pr[S3]| ≤ Advadaptc-hA,SFPK(λ).

5.1 Efficient Instantiation and Discussion

In this subsection we show how to efficiently instantiate our group signature construction. Our main
objective is to minimize the signature size of our scheme while using only building blocks that are
secure under standard assumptions and without random oracles.

We first take a look at a signature itself, which is composed of an SFPK public key pk′SFPK, an
SFPK signature SigSFPK, an SPS-EQ signature σ′SPS and proof ΠSFPK. To instantiate SFPK signatures
we use scheme 2, which means that pk′SFPK is 2 elements in G1 and SigSFPK is 2 elements in G1, 1 in
G2 and 1 in Z∗p. As mentioned in the introduction and similar to the static group signature in [6], we
will instantiate the SPS-EQ with the scheme from [25]. This means that the SPS-EQ signature takes
10 elements in G1 and 4 elements in G2. Note that both building blocks are secure under standard
assumptions.

To properly calculate the signature size, we have to instantiate the proof system ΠPPE. Recall,
that this is a proof for the statement:

∃ (pkSFPK, r, w1, w2) s. t.

SFPK.ChgPK(pkSFPK, r) = pk′SFPK ∧ IsCanonical(pkSFPK) ∨ e(w1,K2) = e(w2, g2).

Taking into account that we will use Scheme 2, this statement can be simplified in a way that the
scheme and the security proofs still work. Let pk′SFPK = (pk′1, pk

′
2) and pkSFPK = (pk1, pk2), we can

then express this proof by the pairing product equations: e(w1,K2) = e(w2, g2) and e(pk′1, g
r−1

2) =
e(g1, g2) · e(w1, g2). It is easy to see that the witness (r, w1, w2) = (0, (g1)−1, (K1)−1) is a trapdoor
witness that can be used in the security proof to create a valid proof for an arbitrary pk′SFPK. The
canonical representative pkSFPK is only used by the tracing authority to open signatures. However, by

extracting the witness R = gr
−1

2 it can still do this because if pk′2 = gx·r1 , then e(pk′2, R) = e(gx1 , g2) is
a static value that is common for all public keys in relation with pk′SFPK. Since the tracing authority
has access to the registration table that contains public keys in canonical form of active members,
we conclude that it can still correctly open signatures. This also does not influence any of the proofs.

Instantiating those equations using the fine-tuned Groth-Sahai proofs presented in [24] (assum-
ing decisional Diffie-Hellman), the proof size is 10 elements in G1 and 8 elements in G2. This is
constituted by: 1) two group elements in G2 for the first equation, which is linear, 2) four elements

30

in G1 and G2 for the second equation, 3) six elements in G1 for the three witnesses in G1, 4) two
elements in G2 for the witness r. Overall the group signature is composed of 28 elements in G1,
15 in G2 and 1 in Z∗p. We provide a comparison with existing group signature schemes in Figure 5.
Note that we do not include schemes from lattices in our comparison, because the only constant-size
scheme was proposed by Ling et al. [39] and as argued by the authors the size is impractical.

It remains to show how to instantiate the digital signature scheme DS, the public key encryption
scheme PKE and the proof system ΠGS.Judge. The first two building blocks are standard and can
easily instantiated in the standard model from simple assumptions. In case of PKE we can use the El
Gamal encryption scheme, which is key-private. Finally, the system ΠGS.Judge can also be instantiated
using Groth-Sahai proofs for pairing product equations [24]. Note that this basically means that the
tracing authority has to prove correct decryption of an El-Gamal ciphertext and that its public key
was generated using a DDH tuple, which can easily be expressed as pairing product equations.

Scheme
Signature size∗

[bits]
Membership Assumptions

Libert-Peters-Yung [38] 8 448 static standard

Boyen-Waters [18]‡ 6 656 static q-type
Boneh-Boyen-Shacham [11] 2 304 static q-type

Bichsel et al. [10] 1 280 partially dynamic† interactive
Groth [29] 13 056 partially dynamic q-type
Libert-Peters-Yung [38] 14 848 partially dynamic standard
Bootle et al. [15] O(logN) fully dynamic standard
Ours with [25] 13 056 fully dynamic + membership hiding standard

? At a 256-bit (resp. 512-bit) representation of Zq,G1 (resp. G2) for Type 3 pairings and at a 3072-bit factoring and DL

modulus with 256-bit key
† The scheme defines additionally a join↔issue procedure
‡ Adapted from type 1 to type 3 pairings as in [38]

Fig. 5. Comparison of Group Signature Schemes for N Active Members

31

References

[1] Michel Abdalla and Ricardo Dahab, eds. Public-Key Cryptography - PKC 2018 - 21st IACR
International Conference on Practice and Theory of Public-Key Cryptography, Rio de Janeiro,
Brazil, March 25-29, 2018, Proceedings, Part II. Vol. 10770. Lecture Notes in Computer Sci-
ence. Springer, 2018. url: https://doi.org/10.1007/978-3-319-76581-5.

[2] Michel Abdalla and Bogdan Warinschi. “On the Minimal Assumptions of Group Signature
Schemes”. In: Information and Communications Security, 6th International Conference, ICICS
2004, Malaga, Spain, October 27-29, 2004, Proceedings. 2004. url: https://doi.org/10.
1007/978-3-540-30191-2_1.

[3] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros. Practical
Group Signatures without Random Oracles. Cryptology ePrint Archive, Report 2005/385. 2005.

[4] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. “A Practical and Provably
Secure Coalition-Resistant Group Signature Scheme”. In: Advances in Cryptology - CRYPTO
2000, 20th Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 20-24, 2000, Proceedings. 2000. url: https://doi.org/10.1007/3-540-44598-6_16.

[5] Giuseppe Ateniese and Breno de Medeiros. “Efficient Group Signatures without Trapdoors”.
In: Advances in Cryptology - ASIACRYPT 2003, 9th International Conference on the Theory
and Application of Cryptology and Information Security, Taipei, Taiwan, November 30 - De-
cember 4, 2003, Proceedings. 2003. url: https://doi.org/10.1007/978-3-540-40061-5_15.

[6] Michael Backes, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schneider. Signatures with Flex-
ible Public Key: A Unified Approach to Privacy-Preserving Signatures (Full Version). Cryp-
tology ePrint Archive, Report 2018/191. https://eprint.iacr.org/2018/191. 2018.

[7] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. “Key-Privacy in
Public-Key Encryption”. In: Advances in Cryptology - ASIACRYPT 2001, 7th International
Conference on the Theory and Application of Cryptology and Information Security, Gold Coast,
Australia, December 9-13, 2001, Proceedings. 2001. url: https://doi.org/10.1007/3-540-
45682-1_33.

[8] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. “Foundations of Group Signatures:
Formal Definitions, Simplified Requirements, and a Construction Based on General Assump-
tions”. In: Advances in Cryptology - EUROCRYPT 2003, International Conference on the
Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003, Pro-
ceedings. 2003. url: https://doi.org/10.1007/3-540-39200-9_38.

[9] Mihir Bellare, Haixia Shi, and Chong Zhang. “Foundations of Group Signatures: The Case of
Dynamic Groups”. In: Topics in Cryptology - CT-RSA 2005, The Cryptographers’ Track at
the RSA Conference 2005, San Francisco, CA, USA, February 14-18, 2005, Proceedings. 2005.
url: https://doi.org/10.1007/978-3-540-30574-3_11.

[10] Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P. Smart, and Bogdan Warinschi. “Get
Shorty via Group Signatures without Encryption”. In: Security and Cryptography for Networks,
7th International Conference, SCN 2010, Amalfi, Italy, September 13-15, 2010. Proceedings.
2010. url: https://doi.org/10.1007/978-3-642-15317-4_24.

[11] Dan Boneh, Xavier Boyen, and Hovav Shacham. “Short Group Signatures”. In: Advances in
Cryptology - CRYPTO 2004, 24th Annual International CryptologyConference, Santa Barbara,
California, USA, August 15-19, 2004, Proceedings. 2004. url: https://doi.org/10.1007/
978-3-540-28628-8_3.

[12] Dan Boneh, Saba Eskandarian, and Ben Fisch. Post-Quantum EPID Group Signatures from
Symmetric Primitives. Cryptology ePrint Archive, Report 2018/261. https://eprint.iacr.
org/2018/261. 2018.

32

https://doi.org/10.1007/978-3-319-76581-5
https://doi.org/10.1007/978-3-540-30191-2_1
https://doi.org/10.1007/978-3-540-30191-2_1
https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/978-3-540-40061-5_15
https://eprint.iacr.org/2018/191
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-642-15317-4_24
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://eprint.iacr.org/2018/261
https://eprint.iacr.org/2018/261

[13] Dan Boneh and Matthew K. Franklin. “Identity-Based Encryption from the Weil Pairing”. In:
Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference,
Santa Barbara, California, USA, August 19-23, 2001, Proceedings. 2001. url: https://doi.
org/10.1007/3-540-44647-8_13.

[14] Dan Boneh and Matthew K. Franklin. “Identity-Based Encryption from the Weil Pairing”. In:
SIAM J. Comput. 32.3 (2003). url: https://doi.org/10.1137/S0097539701398521.

[15] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, and Jens Groth. “Foun-
dations of Fully Dynamic Group Signatures”. In: Applied Cryptography and Network Security
- 14th International Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings.
2016. url: https://doi.org/10.1007/978-3-319-39555-5_7.

[16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and Christophe
Petit. “Short Accountable Ring Signatures Based on DDH”. In: Computer Security - ESORICS
2015 - 20th European Symposium on Research in Computer Security, Vienna, Austria, Septem-
ber 21-25, 2015, Proceedings, Part I. 2015. url: https://doi.org/10.1007/978-3-319-
24174-6_13.

[17] Xavier Boyen and Brent Waters. “Compact Group Signatures Without Random Oracles”. In:
Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June
1, 2006, Proceedings. 2006. url: https://doi.org/10.1007/11761679_26.

[18] Xavier Boyen and Brent Waters. “Full-Domain Subgroup Hiding and Constant-Size Group Sig-
natures”. In: Public Key Cryptography - PKC 2007, 10th International Conference on Practice
and Theory in Public-Key Cryptography, Beijing, China, April 16-20, 2007, Proceedings. 2007.
url: https://doi.org/10.1007/978-3-540-71677-8_1.

[19] Jan Camenisch and Jens Groth. “Group Signatures: Better Efficiency and New Theoretical
Aspects”. In: Security in Communication Networks, 4th International Conference, SCN 2004,
Amalfi, Italy, September 8-10, 2004, Revised Selected Papers. 2004. url: https://doi.org/
10.1007/978-3-540-30598-9_9.

[20] Jan Camenisch and Anna Lysyanskaya. “Signature Schemes and Anonymous Credentials from
Bilinear Maps”. In: Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryp-
tologyConference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings. 2004.
url: https://doi.org/10.1007/978-3-540-28628-8_4.

[21] David Chaum and Eugène Van Heyst. “Group Signatures”. In: EUROCRYPT’91. Ed. by
Donald W. Davies. Vol. 547. LNCS. Springer, Heidelberg, 1991.

[22] Ivan Damg̊ard and Jesper Buus Nielsen. “Improved Non-committing Encryption Schemes
Based on a General Complexity Assumption”. In: CRYPTO 2000. 2000. url: https://doi.
org/10.1007/3-540-44598-6_27.

[23] David Derler and Daniel Slamanig. Fully-Anonymous Short Dynamic Group Signatures With-
out Encryption. Cryptology ePrint Archive, Report 2016/154. 2016.

[24] Alex Escala and Jens Groth. “Fine-Tuning Groth-Sahai Proofs”. In: Public-Key Cryptography
- PKC 2014 - 17th International Conference on Practice and Theory in Public-Key Cryp-
tography, Buenos Aires, Argentina, March 26-28, 2014. Proceedings. Ed. by Hugo Krawczyk.
Vol. 8383. Lecture Notes in Computer Science. Springer, 2014. url: https://doi.org/10.
1007/978-3-642-54631-0_36.

[25] Georg Fuchsbauer and Romain Gay. “Weakly Secure Equivalence-Class Signatures from Stan-
dard Assumptions”. In: Public-Key Cryptography - PKC 2018 - 21st IACR International Con-
ference on Practice and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March
25-29, 2018, Proceedings, Part II. Ed. by Michel Abdalla and Ricardo Dahab. Vol. 10770.

33

https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1137/S0097539701398521
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/11761679_26
https://doi.org/10.1007/978-3-540-71677-8_1
https://doi.org/10.1007/978-3-540-30598-9_9
https://doi.org/10.1007/978-3-540-30598-9_9
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/3-540-44598-6_27
https://doi.org/10.1007/3-540-44598-6_27
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36

Lecture Notes in Computer Science. Springer, 2018. url: https://doi.org/10.1007/978-
3-319-76581-5_6.

[26] Jun Furukawa and Shoko Yonezawa. “Group Signatures with Separate and Distributed Au-
thorities”. In: Security in Communication Networks, 4th International Conference, SCN 2004,
Amalfi, Italy, September 8-10, 2004, Revised Selected Papers. 2004. url: https://doi.org/
10.1007/978-3-540-30598-9_6.

[27] Taher El Gamal. “A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms”. In: Advances in Cryptology, Proceedings of CRYPTO ’84, Santa Barbara, Cal-
ifornia, USA, August 19-22, 1984, Proceedings. 1984. url: https://doi.org/10.1007/3-
540-39568-7_2.

[28] Essam Ghadafi, Nigel P. Smart, and Bogdan Warinschi. “Groth-Sahai Proofs Revisited”. In:
Public Key Cryptography - PKC 2010, 13th International Conference on Practice and Theory
in Public Key Cryptography, Paris, France, May 26-28, 2010. Proceedings. 2010. url: https:
//doi.org/10.1007/978-3-642-13013-7_11.

[29] Jens Groth. “Fully Anonymous Group Signatures Without Random Oracles”. In: Advances in
Cryptology - ASIACRYPT 2007, 13th International Conference on the Theory and Application
of Cryptology and Information Security, Kuching, Malaysia, December 2-6, 2007, Proceedings.
2007. url: https://doi.org/10.1007/978-3-540-76900-2_10.

[30] Jens Groth and Amit Sahai. “Efficient Non-interactive Proof Systems for Bilinear Groups”.
In: EUROCRYPT 2008. 2008. url: https://doi.org/10.1007/978-3-540-78967-3_24.

[31] Christian Hanser and Daniel Slamanig. “Structure-Preserving Signatures on Equivalence Classes
and Their Application to Anonymous Credentials”. In: Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I. 2014.
url: https://doi.org/10.1007/978-3-662-45611-8_26.

[32] Dennis Hofheinz and Eike Kiltz. “Programmable Hash Functions and Their Applications”. In:
Advances in Cryptology - CRYPTO 2008, 28th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2008. Proceedings. 2008. url: https://doi.org/
10.1007/978-3-540-85174-5_2.

[33] Aggelos Kiayias and Moti Yung. “Efficient Secure Group Signatures with Dynamic Joins and
Keeping Anonymity Against Group Managers”. In: Progress in Cryptology - Mycrypt 2005,
First International Conference on Cryptology in Malaysia, Kuala Lumpur, Malaysia, Septem-
ber 28-30, 2005, Proceedings. 2005. url: https://doi.org/10.1007/11554868_11.

[34] Aggelos Kiayias and Moti Yung. “Group Signatures with Efficient Concurrent Join”. In: Ad-
vances in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005,
Proceedings. 2005. url: https://doi.org/10.1007/11426639_12.

[35] Aggelos Kiayias and Moti Yung. “Secure scalable group signature with dynamic joins and
separable authorities”. In: IJSN 1.1/2 (2006). url: https://doi.org/10.1504/IJSN.2006.
010821.

[36] Benôıt Libert, Thomas Peters, and Moti Yung. “Group Signatures with Almost-for-Free Revo-
cation”. In: Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2012. Proceedings. 2012. url: https://doi.org/
10.1007/978-3-642-32009-5_34.

[37] Benôıt Libert, Thomas Peters, and Moti Yung. “Scalable Group Signatures with Revocation”.
In: Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012.
Proceedings. 2012. url: https://doi.org/10.1007/978-3-642-29011-4_36.

34

https://doi.org/10.1007/978-3-319-76581-5_6
https://doi.org/10.1007/978-3-319-76581-5_6
https://doi.org/10.1007/978-3-540-30598-9_6
https://doi.org/10.1007/978-3-540-30598-9_6
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-642-13013-7_11
https://doi.org/10.1007/978-3-642-13013-7_11
https://doi.org/10.1007/978-3-540-76900-2_10
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-662-45611-8_26
https://doi.org/10.1007/978-3-540-85174-5_2
https://doi.org/10.1007/978-3-540-85174-5_2
https://doi.org/10.1007/11554868_11
https://doi.org/10.1007/11426639_12
https://doi.org/10.1504/IJSN.2006.010821
https://doi.org/10.1504/IJSN.2006.010821
https://doi.org/10.1007/978-3-642-32009-5_34
https://doi.org/10.1007/978-3-642-32009-5_34
https://doi.org/10.1007/978-3-642-29011-4_36

[38] Benôıt Libert, Thomas Peters, and Moti Yung. “Short Group Signatures via Structure-Preserving
Signatures: Standard Model Security from Simple Assumptions”. In: Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part II. 2015. url: https://doi.org/10.1007/978-3-662-48000-7_15.

[39] San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. “Constant-Size Group Signatures
from Lattices”. In: Public-Key Cryptography - PKC 2018 - 21st IACR International Conference
on Practice and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March 25-29,
2018, Proceedings, Part II. Ed. by Michel Abdalla and Ricardo Dahab. Vol. 10770. Lecture
Notes in Computer Science. Springer, 2018. url: https://doi.org/10.1007/978-3-319-
76581-5_3.

[40] Yusuke Sakai, Jacob C. N. Schuldt, Keita Emura, Goichiro Hanaoka, and Kazuo Ohta. “On
the Security of Dynamic Group Signatures: Preventing Signature Hijacking”. In: Public Key
Cryptography - PKC 2012 - 15th International Conference on Practice and Theory in Public
Key Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings. 2012. url: https:
//doi.org/10.1007/978-3-642-30057-8_42.

[41] Gene Tsudik and Shouhuai Xu. “Accumulating Composites and Improved Group Signing”. In:
Advances in Cryptology - ASIACRYPT 2003, 9th International Conference on the Theory and
Application of Cryptology and Information Security, Taipei, Taiwan, November 30 - December
4, 2003, Proceedings. 2003. url: https://doi.org/10.1007/978-3-540-40061-5_16.

[42] Brent Waters. “Efficient Identity-Based Encryption Without Random Oracles”. In: Advances
in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings.
2005. url: https://doi.org/10.1007/11426639_7.

35

https://doi.org/10.1007/978-3-662-48000-7_15
https://doi.org/10.1007/978-3-319-76581-5_3
https://doi.org/10.1007/978-3-319-76581-5_3
https://doi.org/10.1007/978-3-642-30057-8_42
https://doi.org/10.1007/978-3-642-30057-8_42
https://doi.org/10.1007/978-3-540-40061-5_16
https://doi.org/10.1007/11426639_7

	Membership Privacy for Fully Dynamic Group Signatures

