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Abstract In cloud computing, delegated computing raises the security
issue of guaranteeing data authenticity during a remote computation. Ex-
isting solutions do not simultaneously provide fast correctness verification,
strong security properties, and information-theoretic confidentiality. We
introduce a novel approach, in the form of function-dependent commit-
ments, that combines these strengths. We also provide an instantiation of
function-dependent commitments for linear functions that is uncondition-
ally, i.e. information-theoretically, hiding and relies on standard hardness
assumptions. This powerful construction can for instance be used to build
verifiable computing schemes providing information-theoretic confidenti-
ality. As an example, we introduce a verifiable multi-party computation
scheme for shared data providing public verifiability and unconditional
privacy towards the servers and parties verifying the correctness of the
result. Our scheme can be used to perform verifiable computations on
secret shares while requiring only a single party to compute the audit data
for verification. Furthermore, our verification procedure is asymptotically
even more efficient than performing operations locally on the shared
data. Thus, our solution improves the state of the art for authenticated
computing, verifiable computing and multi-party computation.
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1 Introduction

Today, it is common practice to outsource time-consuming computations to the
cloud. Such infrastructures attractively offer cost savings and dynamic computing
resource allocation. In such a situation, it is desirable to be able to verify the
outsourced computation. The verification must be efficient, by which we mean
that the verification procedure is significantly faster than verified computation
itself. Otherwise, the verifier could as well carry out the computation by himself,
negating the advantage of outsourcing.

Often, not only the data owner is interested in the correctness of a computation;
but also third parties, like insurance companies in the case of medical data. For
such third party verifiers, another desired property for verification procedures is
? This article is based on an earlier article which will appear in the proceedings of
ISC2018.
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proof of origin: evidence linking the result of the outsourced computation to their
input. This additional guarantee is required because proofs of correct computation
usually do not explicitly include input values. It is especially important if the
verifier of the correctness proof is a third party who does not trust the cloud
provider to provide the correct input to the computation. Together, these two
pieces of evidence guarantee that the output received by the provider was indeed
correctly computed from the initially provided input.

In addition, there are scenarios in which computations are performed over
sensitive data. For instance, a cloud server may collect health data of individuals
and compute their averages. So the challenge arises to design efficient verifica-
tion procedures for outsourced computing that are privacy-preserving. Growing
amounts of data are sensitive enough to require long-term protection. Electronic
health records, voting records, or tax data require protection periods exceeding
the lifetime of an individual. Over such a long time, complexity-based confidenti-
ality protection is unsuitable because algorithmic progress is unpredictable. In
contrast, information-theoretic confidentiality protection is not threatened by
algorithmic progress and supports long-term security.

Two categories of solutions simultaneously address verifiability, proof of origin,
and confidentiality:

– Homomorphic authenticators [1], which sometimes allow for efficient verifica-
tion, keeping the computational effort of the verifier low. They do, however,
not provide information-theoretic privacy, i.e. they are not long-term secure.
Schemes like the one presented in [11] offer context hiding security, i.e. au-
thenticators to the output of a computation do not leak information about
the input. In this work, we consider a privacy notion which is even stronger
than context hiding. In our case, no information is leaked; in particular, not
even about the output.

– Homomorphic commitments [6, 25, 27] can be used for auditing. Authenti-
city is typically achieved by using a secure bulletin board [16]. In partic-
ular, Pedersen commitments [25] provide long-term security: they achieve
information-theoretic privacy for the input values to arbitrary linear func-
tions. Homomorphic commitments however, feature computationally costly
correctness verification.

For a more detailed comparison to related work, see Sec. 5.

1.1 Contributions

In this paper, we solve the problem of providing efficient verification and proof of
origin with information-theoretic privacy for linear functions. To achieve this, we
introduce a novel generic construction that combines information-theoretic privacy
with strong unforgeability and fast verification. We call this construction function-
dependent commitments (FDCs). In addition to this main contribution, we provide
a concrete, unconditionally hiding instantiation of FDCs for linear functions
using pairings, demonstrating that our generic construction can be realized in the
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standard model. In terms of hardness assumptions, only a variant of the Diffie–
Hellman problem [11] is required. Our instantiation achieves succinctness and
efficient verification. Finally, we showcase a verifiable multi-party computation
scheme based on the concrete instantiation. This scheme makes it possible to verify
whether the reconstructed result has been computed correctly by computing
additional audit data on a single storage server. Previous proposals require
all storage servers to perform computations to check correctness. Our scheme
provides unconditional input-output privacy towards the servers and parties
verifying computational correctness.

1.2 Outline

The remainder of this paper is organized as follows. We first introduce our
framework for FDC schemes (Sec. 2). We then present a concrete instantiation
of an FDC using pairings, and prove its properties (Sec. 3). A sketch of how this
instantiation can be used to build a verifiable computing scheme for shared data
is presented next (Sec. 4). Finally, we compare our contribution with related
work (Sec. 5) and conclude (Sec. 6).

2 Function-Dependent Commitments

In this section, we present our novel FDC scheme and define its relevant properties.
We define the classical properties of commitments, binding and hiding, in the
context of FDCs. Furthermore we provide definitions for evaluation correctness
and unforgeability. In terms of performance properties, we consider succinctness
and amortized efficiency.

Like in the case of homomorphic commitments or authenticators, a function-
dependent commitment can be used to derive new commitments by its homo-
morphic properties. It is necessary that the homomorphic property cannot be
abused to create forgeries. In the context of homomorphic authenticators, the
notions of labeled and multi-labeled programs (see e.g. [4]) are introduced to
provide meaningful security definitions.

Evaluating a function can be modeled as performing a program on a set of
labeled inputs that belong to a given dataset. On a high level, a message is
uniquely identified by two identifiers: one input identifier τ , and one dataset
identifier ∆. One can think of a dataset as an array of message, and of the input
identifiers as pointers to specific positions within this array.

This enables a precise description of homomorphic properties. For authen-
ticators, it is usually required that only authenticators created under the same
dataset identifier are used for homomorphic evaluation. We now formally describe
labeled and multi-labeled programs, in the vein of Backes et al [4].

A labeled program P consists of a tuple (f, τ1, . . . , τk), where f :Mk →M is a
function with k inputs and τi ∈ χ is a label for the i-th input of f from some set χ.
Given a set of labeled programs P1, . . . ,Pt and a function g :Mt →M, they can
be composed by evaluating g over the labeled programs, i.e. P∗ = g(P1, . . . ,Pt).
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The identity program with label τ is given by Iτ = (fid, τ), where fid :M→M
is the identity function. Program P = (f, τ1, . . . , τk) can be expressed as the
composition of k identity programs P = f(Iτ1 , . . . , Iτk).

A multi-labeled program P∆ is a pair (P, ∆) of the labeled program P and a
dataset identifier ∆. Given a set of t multi-labeled programs with the same data
set identifier∆, i.e. (P1, ∆), . . . , (Pt, ∆), and a function g :Mt →M, a composed
multi-label program P∗∆ can be computed, consisting of the pair (P∗, ∆), where
P∗ = g(P1, . . . ,Pt). Analogously to the identity program for labeled programs,
we refer to a multi-labeled identity program by I(∆,τ) = ((fid, τ), ∆).

Using the formalism of multi-labeled programs, we now define FDCs.

Definition 1. A FDC scheme is a tuple of algorithms (Setup, KeyGen, Public-
Commit, PrivateCommit, FunctionCommit, Eval, FunctionVerify, PublicDecommit):

Setup(1λ) takes the security parameter λ and outputs public parameters pp. We
implicitly assume that every algorithm uses these public parameters, leaving
them out of the notation.

KeyGen(1λ) takes the security parameter λ as input and outputs a secret-public
key pair (sk, pk).

PublicCommit(m, r) takes as input a message m and randomness r and outputs
commitment C.

PrivateCommit(sk,m, r,∆, τ) takes as input the secret key sk, a message m,
randomness r, a dataset ∆, and an identifier τ and outputs an authenticator
A for the tuple (m, r,∆, τ).

FunctionCommit(pk,P) takes as input the public key pk and a labeled program
P and outputs a function commitment F to P.

Eval(P∆,A1, . . . ,An) takes as input a multi-labeled program P∆ = ((f, τ1, . . . ,
τn),∆) and a set of authenticators A1, . . . ,An, where Ai is an authenticator
for (mi, ri,∆, τi), for i = 1, . . . , n. It computes an authenticator A∗ to the tuple
(f(m1, . . . ,mn), f(r1, . . . , rn),∆, (τ1, . . . , τn)) using A1, . . . ,An and outputs A∗.

FunctionVerify(pk,A,C,F) takes as input a public key pk, a FDC containing an
authenticator A and a commitment C, as well as a function commitment F.
It outputs either 1 (accept) or 0 (reject).

PublicDecommit(m, r,C) takes as input message m, randomness r, and commit-
ment C. It outputs either 1 (accept) or 0 (reject).

FunctionVerify only verifies whether the pair (C,A) is a correct FDC to F
while PublicDecommit allows to check that C opens to a specific pair of opening
values (m, r).

2.1 Properties of Function-Dependent Commitments

As for classical commitments we want our schemes to be binding (see e.g. [30]).
That is, after committing to a message, it should be infeasible to open the
commitment to a different message. For a formal definition we refer to Appendix
B.
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Another important notion, targeting privacy, is the hiding property. Com-
mitments are intended to not leak information about the messages they contain.
This is not to be confused with the context hiding property, where homomorphic
authenticators to the output of a computation do not leak information about the
inputs to the computation. They do however leak information about the output.

Definition 2 (Hiding). A FDC is called computationally hiding if the sets of
commitments {PublicCommit(m, r) | r $← R} and {PublicCommit(m′, r′) | r′ $← R}
as well as {PrivateCommit(sk,m, r,∆, τ) | r $← R} and {PrivateCommit(sk,m′,
r′,∆, τ) | r′ $← R} have distributions that are indistinguishable for any probabilistic
polynomial-time (PPT) adversary A for all m 6= m′ ∈M.
A FDC is called unconditionally hiding if these sets have the same distribution
respectively for all m 6= m′ ∈M.

An obvious requirement for an FDC is to be correct, i.e. if messages are authen-
ticated properly and evaluation is performed honestly, the resulting commitment
should be verified. This is formalized in the following definition.

Definition 3 (Evaluation Correctness). A FDC achieves evaluation cor-
rectness if for any set of messages, m1, . . . ,mn ⊂ M, any set of randomness
r1, . . . , rn ⊂ R, any set of identifiers τ1, . . . , τn ⊂ χ, and any multi-labeled pro-
gram P∆ = ((f, τ1, . . . , τn),∆) we have FunctionVerify(pk,A,C,F) = 1, where
Ai = PrivateCommit(sk,mi, ri,∆, τi) for i ∈ [n], A = Eval(P∆,A1, . . . ,An),
C = PublicCommit(f(m1, . . . ,mn), f(r1, . . . , rn)), and F = FunctionCommit(pk,P).

For the security notion of FDCs, we first provide a definition for well defined
programs and forgeries on these programs. Then, we introduce an experiment the
attacker can run in order to generate a successful forgery and present a definition
for unforgeability based on this experiment.

Definition 4 (Well Defined Program). A labeled program P = (f, τ1, . . . , τn)
is well defined with respect to a list L∆ if one of the two following cases holds:

1. There are messages m1, . . . ,mn such that (τi,mi) ∈ L∆ ∀ i = 1, . . . , n.
2. There is an i ∈ {1, . . . , n} such that (τi, ·) /∈ L∆ and f({mj}(τj ,mj)∈L∆ ∪
{m̃k}(τk,·)/∈L∆) does not depend on the choice of m̃k ∈M.

Definition 5 (Forgery). A forgery is a tuple (P∆,C,A) such that

FunctionVerify(pk,A,C,FunctionCommit(pk,P∆)) = 1

holds and one of the following conditions is met:

Type 1: The list L∆ was not initialized during the game, i.e. no message was
ever committed under the data set identifier ∆.

Type 2: P∆ is well defined with respect to list L∆ and
C 6= PublicCommit(f({mj}(τj ,mj)∈L∆), f({rj}(τj ,rj)∈L∆)), i.e. C is not the cor-
rect commitment to the output of the computation.
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Type 3: P∆ is not well defined with respect to L∆.

This definition of forgeries is consistent with existing definitions, e.g. [11]. It is
an immediate corollary of [18, Theorem 5.1] that if P contains a linear function,
then any adversary who outputs a Type 3 forgery can be converted into one
that outputs a Type 2 forgery. To define unforgeability, we first describe the
experiment EXPUF−CMA

A,Com (λ) between an adversary A and a challenger C.

EXPUF−CMA
A,Com (λ) :

Setup C calls pp $← Setup(1λ) and gives pp to A.
Key Generation C calls (pk, sk) $← KeyGen(1λ) and gives pk to A.
Queries A adaptively submits queries for (∆, τ,m, r) where ∆ is a dataset, τ is

an identifier, m is a message, and r is a random value. C proceeds as follows:
– If (∆, τ,m, r) is the first query with dataset identifier ∆, it initializes an

empty list L∆ = ∅ for ∆.
– If L∆ does not contain a tuple (τ, ·, ·), i.e. A never queried (∆, τ, ·, ·),
C calls A ← PrivateCommit(sk,m, r,∆, τ), updates the list L∆ = L∆ ∪
(τ,m, r), and gives A to A.

– If (τ,m, r) ∈ L∆, then C returns the same authenticator A as before.
– If L∆ already contains a tuple (τ,m′, r′) for (m, r) 6= (m′, r′), C returns ⊥.

Forgery A outputs a tuple (P∆,m, r,A).

EXPUF−CMA
A,Com (λ) outputs 1 if the tuple returned by A is a forgery as defined

before in Def. 5.

Definition 6 (Unforgeability). A FDC is unforgeable if for any PPT ad-
versary A we have

Pr[EXPUF−CMA
A,Com (λ) = 1] = negl(λ),

where negl(λ) denotes any function negligible in the security parameter λ.

Regarding performance, we consider additional properties. Succinctness spe-
cifies a limit on the size of the FDCs, thus keeping the required bandwidth low,
when using FDCs to verify the correctness of an outsourced computation.

Definition 7 (Succinctness). A FDC is succinct if, for a fixed security para-
meter λ, the size of the authenticators depends at most logarithmically on the
dataset size n.

Amortized efficiency specifies a bound on the computational effort required
to perform verifications.

Definition 8 (Amortized Efficiency). Let P∆ = ((f, τ1, . . . , τn),∆) be a
multi-labeled program, m1, . . . ,mn ⊂M a set of messages, r1, . . . , rn ⊂ R a set
of randomness, and t(n) be the time required to compute f(m1, . . . ,mn). A FDC
achieves amortized efficiency if for given authenticator A and function commit-
ment F the time required to compute FunctionVerify(pk,A,PublicCommit(m, r),F)
is t′ = o(t(n)).
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Analogous definitions for amortized efficiency haven been given in [4], [11], [14],
and [31]. The usual one-time pre-computation is captured by our algorithm
FunctionCommit. In the case of reuse of the same function over multiple datasets,
this property enables an improvement in terms of runtime.

3 A Pairing-Based FDC Instantiation

In this section, we present an instantiation of a FDC scheme based on pairings.
Our construction uses asymmetric bilinear groups. It can be use to verify the
correct evaluation of linear functions. In the following, we analyze our scheme with
regard to their hiding and binding property, as well as correctness, unforgeability,
succinctness and amortized efficiency.

Definition 9. Let G be a generator of cyclic groups of order p and let G $←
G(1λ). We say the Discrete Logarithm assumption (DL) holds in G if there
exists no PPT adversary A that, given (g, ga) for a random generator g ∈ G
and random a ∈ Zp, can output a with more than negligible probability, i.e. if
Pr[a← A(g, ga) | g $← G, a $← Zp] = negl(λ).

Definition 10 (Asymmetric bilinear groups [8]). An asymmetric bilinear
group is a tuple bgp = (p,G1,G2,GT , g1, g2, e), such that:

– G1,G2, and GT are cyclic groups of prime order p,
– g1 ∈ G1 and g2 ∈ G2 are generators for their respective groups,
– the DL assumption holds in G1,G2, and GT ,
– e : G1 × G2 → GT is bilinear, i.e. e

(
g1
a, g2

b
)

= e (g1, g2)ab holds for all
a, b ∈ Z,

– e is non-degenerate, i.e. e (g1, g2) 6= 1, and
– e is efficiently computable.

We write gt = e (g1, g2).

The security of our pairing-based instantiation relies on a hardness assumption
previously introduced by Catalano et al. [11], the Flexible Diffie-Hellman Inversion
(FDHI) problem. It was shown by these authors that the FDHI holds in the
generic group model.

Definition 11 ([11]). Let G be a generator of asymmetric bilinear groups and
let bgp = (p,G1,G2,GT , g1, g2, e)

$← G(1λ). We say the Flexible Diffie–Hellman
Inversion (FDHI) assumption holds in bgp if for every PPT adversary A

Pr[W ∈ G1\{1G1} ∧W ′ = W
1
z : (W,W ′)← A(g1, g2, g

z
2 , g

v
2 , g

z
v
1 , g

r
1, g

r
v
1 ) |

z, r, v
$← Fp] = negl(λ).
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3.1 Construction

We are now ready to describe the algorithms making up our FDC. We use a
signature scheme Σ = (SigKeyGen,Sign,SigVerify) and a pseudorandom function
F : K × {0, 1}∗ → Fp. For a set of possibly different messages m1, . . . ,mn, we
denote by mi the i-th message. Since our messages are vectors, i.e. m ∈ FTp , we
write m[j] to indicate the j-th entry of message vector m. Therefore mi[j] denotes
the j-th entry of the i-th message. Given a linear function f, its i-th coefficient is
denoted by fi, i.e. f(m1, . . . ,mn) =

∑n
i=1 fimi.

Setup takes as input the security parameter λ. It defines the parameters n, T ∈ N.
Then, it first chooses a bilinear map bgp= (p,G1,G2,GT , g1, g2, e) with
e (g1, g2) = gt. Afterwards, it chooses a0, . . . , aT ∈ Fp uniformly at random.
It checks whether aj 6= ai for all j 6= i. If it fails it chooses a new aj . Then,
for all j = 0, . . . , T it computes Hj = g

aj
1 . It outputs the public parameters

pp = (n, T, bgp, H0, . . . HT ).
KeyGen takes as input the security parameter λ, and the public parameters

pp. Then it chooses y ∈ Fp uniformly at random and computes Y = gy2 .
Additionally it chooses b1, . . . bn ∈ Fp uniformly at random and checks
whether bi 6= bj for all i 6= j. If it fails it chooses a new bi. Then, for all
i = 1, . . . , n it computes Ĥi = gbi1 and ĥi = gbit . Then, the algorithm chooses
random seeds K,K ′ ∈ K for a pseudorandom function F : K × {0, 1}∗ → Fp.
Finally, it generates keys for the signature scheme by calling (skSig, pkSig)←
SigKeyGen(1λ) and outputs public key pk = (pkSig, Y, ĥ1, . . . , ĥn) and secret
key sk = (skSig, y, Ĥ1, . . . , Ĥn,K,K

′).
PublicCommit takes as input the public parameters pp, a message m ∈ FTp , and

randomness r ∈ Fp. It computes C = H r
0 ·
∏T
j=1 H

m[j]
j , where m[j] is the j-th

entry of message vector m ∈ FTp , and outputs commitment C.
PrivateCommit takes as input the secret key sk, a message m ∈ FTp , randomness

r ∈ Fp, a dataset ∆ ∈ {0, 1}∗, and an identifier τ ∈ [n]. It first computes
z = FK(∆) with the pseudorandom function F and calculates Z = gz2 . Then,
it binds Z to the dataset identifier ∆ by signing their concatenation, i.e.
σ∆ = Sign(skSig,∆ | Z). Then, it computes u = FK′(∆ | τ), U = gu1 , and
V = (U ·Ĥτ ·Hyr

0 ·
∏T
j=1 H

ym[j]
j ) 1

z . It returns authenticator A = (σ∆, Z, U, V ).
FunctionCommit takes as input the public key pk and a labeled program P =

(f, τ1, . . . , τn). It computes F =
∏n
i=1 ĥ

fi
i , where fi denotes the i-th coefficient

of f, and outputs function commitment F.
Eval takes as input a linear function f and authenticators A1, . . . ,An where

Ai = (σ∆,i, Zi, Ui, Vi). It sets σ∆ = σ∆,1, Z = Z1 and computes U =
∏n
i=1 U

fi
i

and V =
∏n
i=1 V

fi
i and outputs authenticator A = (σ∆, Z, U, V ).

FunctionVerify takes as input the public key pk, an authenticator A = (σ∆, Z, U,
V ), a commitment C, and a function commitment F. It checks whether
SigVerify(pkSig, σ∆,∆ | Z) = 1 holds. If not it outputs 0, otherwise it checks
whether e (V,Z) = e (U, g2)·F·e (C, Y ) holds. If it does, it outputs 1; otherwise
it outputs 0.
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PublicDecommit takes as input the public parameters pp, a message m ∈ FTp , ran-
domness r ∈ Fp, and a commitment C. It outputs 1 if C = PublicCommit(pp,
m, r) and 0 otherwise.

Our construction can also be used to provide authenticity in the form of
unconditionally hiding authenticators, similarly to signatures. First, algorithm
KeyGen is called. To authenticate a message m, the owner of the corresponding
secret key sk generates a random value r and computes an authenticator A with
algorithm PrivateCommit. The authenticator A serves as a signature for m. To
verify the authenticity of m, the verifier first requests m and r from the data
owner. It next computes commitment C by calling PublicCommit with m, r, and
the public key pk. Then, it uses pk and algorithm FunctionCommit to generate a
function commitment Fid to the identity function of m. Finally, it calls algorithm
FunctionVerify to check whether the triple C,A,Fid is valid.

3.2 Properties

In the following, we first prove that our concrete scheme is indeed correct in the
sense of Def. 3. We then prove that it satisfies the classical commitment properties
— binding and hiding. With respect to efficiency, we next show succinctness and
amortized efficiency. Finally, we reduce the security of our scheme to the hardness
of the FDHI assumption.

Theorem 1. Our construction is a correct FDC (Def. 3).

Proof. Let m1, . . . ,mn ∈ FTp be a set of messages, r1, . . . , rn ∈ Fp a set of
randomness, τ1, . . . , τn ∈ χ set of identifiers, and P∆ = ((f, τ1, . . . , τn),∆) a
linear multi-labeled program. We set m = f(m1, . . . ,mn), r = f(r1, . . . , rn), Ai =
(σ∆,i, Zi, Ui, Vi) ← PrivateCommit(sk,mi, ri,∆, τi), for i = 1, . . . , n, as well as
F← FunctionCommit(pk,P∆) and C← PublicCommit(m, r).
Let A = (σ∆, Z, U, V )← Eval(P∆,PrivateCommit(sk,m1, r1,∆, τ1), . . . ,
PrivateCommit(sk,mn, rn,∆, τn)). By construction, we have σ∆ = σ∆,1 which is
correctly verified as long as the underlying signature scheme is correct. Fur-
thermore, consider (fid, τi) the identity function on the i-th input and let
Fi ← FunctionCommit(pk, ((fid, τi),∆)) = Fi = ĥi. Since zi = FK(∆) and
Zi = gzi2 we have Zi = Z, ∀ i ∈ [n] and therefore e (Vi, Zi) = e (Vi, Z)
= e

(
(Ui · Ĥτi ·H

yri
0 ·

∏T
j=1 H

ymi[j]
j ) 1

z , Z
)

= e
(
Ui · Ĥτi ·H

yri
0 ·

∏T
j=1 H

ymi[j]
j , g2

)
= e (Ui, g2) · e

(
Ĥτi , g2

)
· e
(
Hyri

0 ·
∏T
j=1 H

ymi[j]
j , g2

)
= e (Ui, g2) · ĥτi · e

(
H ri

0 ·
∏T
j=1 H

mi[j]
j , gy2

)
.

Hence e (V,Z) = e
(∏n

i=1 V
fi
i , Z

)
= e

(
(
∏n
i=1 U

fi
i · Ĥ fi

τi ·H
yrifi
0 ·

∏T
j=1 H

fi·ymi[j]
j ) 1

z , Z
)

= e
(∏n

i=1 U
fi
i , g2

)
· (
∏n
i=1 ĥ

fi
τi) · e

(
H

∑n

i=1
fi·ri

0 · (
∏T
j=1 H

∑n

i=1
fi·mi[j]

j ), gy2
)
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= e (U, g2) · F · e
(
H r

0 ·
∏T
j=1 H

m[j]
j , Y

)
= e (U, g2) · F · e (C, Y )

This shows the correctness of our scheme.

Theorem 2. Our construction is a binding FDC scheme as long as the discrete
logarithm problem in G1 is hard.

Proof. Assume we have access to an oracle O(·) that on input pk outputs (m, r) 6=
(m′, r′) such that PublicCommit(m, r) = PublicCommit(m′, r′). Given g1 ∈ G1 from
bgp we show how to use O(·) to solve the discrete logarithm problem in G1, i.e.
computing x for g′1 = gx1 , where g′1 ∈ G1. During the generation of public key
pk in KeyGen, we choose random α0, . . . , αT ∈ F∗p and compute H0 = g′1

α0 and
Hi = gαi1 for i = 1, . . . , T .

Afterwards, we query O(pk), and receive (m, r) 6= (m′, r′). If r = r′ we
submit a new query. Otherwise we have H0

r ·
∏T
j=1 Hj

mj = H0
r′ ·
∏T
j=1 Hj

m′j

⇔ g′1
α0r ·

∏T
j=1 g

αjmj
1 = g′1

α0r′ ·
∏T
j=1 g

αjm′j
1 ⇔ g

x·α0(r−r′)+
∑T

j=1
αj(mj−m′j)

1 = g0
1

⇔ x · α0(r − r′) +
∑T
j=1 αj(mj −m′j) = 0 ⇔ x = 1

α0(r−r′)
∑T
j=1 αj(m′j −mj)

and found the discrete logarithm gx1 = g′1. The binding property of algorithm
FunctionCommit can be proven completely analogously.

Theorem 3. Our construction is an unconditionally hiding FDC (Def. 2).

Proof. If r $← Fp is chosen uniformly at random then {H r
0 | r $← Fp} is uniformly

distributed over G1. Therefore the set {H r
0 ·
∏T
j=1 H

m[j]
j | r $← Fp} is uniformly

distributed over G1. So {PublicCommit(m, r) | r ∈ Fp} and {PublicCommit(m′, r′) |
r′ ∈ Fp} have the same distribution ∀m,m′ ∈ FTp . The output of PrivateCommit is
an authenticator A = (σ∆, Z, U, V ). By construction σ∆, Z, U are all independent

of m. Considering the V component, we have V =
(
U · Ĥτ · (H r

0 ·
∏T
j=1 H

m[j]
j )y

) 1
z .

This is uniformly distributed over G1 if and only if the set {H r
0 ·
∏T
j=1 H

m[j]
j | r $←

Fp} is. As we have shown this to be true {PrivateCommit(sk,m, r,∆, τ) | r ∈ Fp}
and {PrivateCommit(sk,m′, r′,∆, τ) | r′ ∈ Fp} have the same distribution for all
m,m′ ∈ FTp .

Theorem 4. Our construction is succinct (Def. 7).

Proof. The number of elements contained in an authenticator PrivateCommit is
constant and does therefore not depend on n, the size of the dataset.

Theorem 5. Our construction achieves amortized efficiency (Def. 8).

Proof. PublicCommit is independent of n. FunctionVerify consists of a signature
verification, two pairing evaluations, and two group operations. Thus their com-
bined running time is independent of n whereas an evaluation of f is ≥ O(n).
Therefore, our construction achieves amortized efficiency for suitably large n.
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Theorem 6. Our construction is an unforgeable FDC scheme (Def. 6) if Σ is
an unforgeable signature scheme, F is a pseudorandom function and the FDHI
assumption (see Def. 11) holds in bgp.

Proof. This proof follows the structure of [11, Theorem 8]. A major difference is
that, in our security reduction, the actual outcome of the computation function f
is never required. In particular [12, Lemmata 5 and 7], knowledge of the forged
outcome of the computation is a crucial part of the security reductions that
prove indistinguishability between games. We present a new indistinguishability
reduction that only uses group elements.

To prove Theorem 6, we define a series of games with the adversary A and
we show that the adversary A wins, i.e. the game outputs 1, only with negligible
probability. Following the notation of [11], we write Gi(A) to denote that a run
of game i with adversary A returns 1. We use flag values badi, initially set to
false. If at the end of the game any of these flags is set to true, the game simply
outputs 0. Let Badi denote the event that badi is set to true during game i.

Due to Theorem 5.1 in [18], any adversary who outputs a Type 3 forgery (see
Def. 5) can be converted into one that outputs a Type 2 forgery. Therefore we
only have to deal with Type 1 and Type 2 forgeries.

Game 1 is the security experiment EXPUF−CMA
A,Com (λ) between an adversary A

and a challenger C, where A only outputs Type 1 or Type 2 forgeries.
Game 2 is defined as Game 1, except for the following change. Whenever A

returns a forgery (P∗∆∗ ,m∗, r∗,A∗) with A∗ = (σ∗∆, Z∗, U∗, V ∗) and Z∗ has
not been generated by the challenger during the queries, then Game 2 sets
bad2 = true. It is worth noticing that after this change the game never outputs
1 if A returns a Type 1 forgery.

Game 3 is defined as Game 2, except that the pseudorandom function F is
replaced by a random function R : {0, 1}∗ → Fp.

Game 4 is defined as Game 3, except for the following change. At the beginning
C chooses µ ∈ [Q] uniformly at random, with Q = poly(λ) the number of
queries made by A during the game. Let ∆1, . . . ,∆Q be all the datasets
queried by A. Then if in the forgery ∆∗ 6= ∆µ, set bad4 = true.

Game 5 is defined as Game 4, except for the following change. At the beginning,
C chooses zµ ∈ Fp at random and computes Zµ = g

zµ
2 . It uses Zµ whenever

queried for dataset ∆µ. It chooses bi, si ∈ Fp uniformly at random for
i = 1, . . . n and sets Ĥi = g

bi+zµsi
1 as well as ĥi = g

bi+zµsi
t . If k = µ,

simulator S sets the component Uτ = g
−bτ−a0yr−

∑T

j=1
ajym[j]

1 .
Game 6 is defined as Game 5, except for the following change. The challenger

runs an additional check. It computes m̂ = P(m1, . . . ,mn), r̂ = P(r1, . . . , rn),
as well as Â = Eval(P∗∆∗ ,A1, . . . ,An), i.e. it runs an honest computation over
the messages, randomness and authenticators in dataset ∆µ. If

FunctionVerify(pk,A∗, C∗,FunctionCommit(pk,P∗∆∗)) = 1

and U∗ = Û , then C sets bad6 = true.
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Game 7 is defined as Game 6, except for the following change. During a query
for (∆µ, τ,m, r), the challenger sets Uτ = g−bτ1 .

– Any noticeable difference between Games 1 and 2 can be reduced to producing
a forgery for the signature scheme. If Bad2 occurs, then A produced a valid
signature σ∗∆∗ for (∆∗ | Z∗) despite never having queried a signature on any
(∆∗ | ·). This is a forgery on the signature scheme.

– Under the assumption that F is pseudorandom, Games 2 and 3 are computa-
tionally indistinguishable.

– By definition, Pr[G3(A)] = Q · Pr[G4(A)].
– Pr[G4(A)] = Pr[G5(A)], since the public keys are perfectly indistinguishable.
– Clearly, |Pr[G5(A)]−Pr[G6(A)]| ≤ Pr[Bad6]. This occurs only with negligible

probability if the FDHI assumption holds. For a proof of this statement, we
refer to Lemma 1 in the Appendix.

– Since the bi were chosen uniformly at random, Game 7 is perfectly indistin-
guishable from Game 6. After these modifications, Game 7 can only output 1
if A produces a forgery (P∗∆∗ ,m∗, r∗,A∗) with A∗ = (σ∗∆, Z∗, U∗, V ∗) s.t.

FunctionVerify(pk,A∗,PublicCommit(m̂, r̂),FunctionCommit(pk,P∗∆∗)) = 1

and (m̂, r̂) 6= (m∗, r∗), Û 6= U∗, and V̂ 6= V ∗. This only occurs with negligible
probability if the FDHI assumption holds. For a corresponding proof, we
refer to Lemma 2 in the Appendix.

4 Verifiable Computing on Shared Data from our FDC

We now show how to build a verifiable multi-party computation scheme for
linear functions using our pairing-based FDC construction from Sec. 3. A trivial
solution would be to use a linearly homomorphic authenticator on each set of
shares, running the homomorphic evaluation multiple times in parallel. Our
construction only requires a single evaluation over the authenticators. We first
recall the algorithms making up a verifiable computing scheme. We then briefly
list relevant properties, and then present our construction. Finally, we sketch
proofs for the properties of our verifiable computing scheme, notably input and
output privacy.

Definition 12 (Verifiable Computing Scheme). A Verifiable Computing
Scheme VC is a tuple of the following PPT algorithms ([19]):

VKeyGen(1λ, f) : The probabilistic key generation algorithm takes a security
parameter λ and the description of a function f . It generates a secret key
sk, a corresponding verification key vk, and a public evaluation key ek (that
encodes the target function f) and returns all these keys.

ProbGen(sk, x) : The problem generation algorithm takes a secret key sk and data
x. It outputs a decoding value ρx and a public value σx which encodes x.

Compute(ek, σx) : The computation algorithm takes the evaluation key ek and the
encoded input σx. It outputs an encoded version σy of the function’s output
y = f(x).
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Verify(vk, ρx, σy) : The verification algorithm obtains a verification key vk and
the decoding value ρx. It converts the encoded output σy into the output of
the function y. If y = f(x) holds, it returns y or outputs ⊥ indicating that
σy does not represent a valid output of f on x.

Relevant properties for verifiable computing schemes are correctness, pub-
licly verifiability, and security. For formal definitions, see [17]. Further privacy
properties are input privacy w.r.t. the servers, output privacy w.r.t. the servers,
input privacy w.r.t. the verifier, and output privacy w.r.t. the verifier (see [17]).
These computationally secure versions can naturally be extended to information-
theoretically secure versions; for more details we refer to Appendix C.

4.1 Construction

Our instantiation of a FDC can be used to build a verifiable computing scheme
for shared data supporting linear functions. Secure multi-party computation
performed on shared data is realized using a secret sharing scheme, e.g. Shamir
secret sharing [30], which we briefly describe. To share a secret m ∈ Fp, the
client chooses random a1, . . . , at−1 ∈ Fp and computes the polynomial P (x) =
m + a1x+ . . .+ at−1x

t−1. By evaluating P (j) for j = 1, . . . , k it creates k shares
which are given to k shareholders. Since a polynomial of degree t− 1 is uniquely
determined by t points (j, P (j)) one can recover the secret by requesting t shares.
At the same time, even a computationally unbounded adversary cannot learn
anything about m from t − 1 shares or less (see [30]). Shamir secret sharing
is linearly homomorphic, i.e. αP (j) + βP ′(j) = (αP + βP ′)(j) for any two
polynomials P, P ′ ∈ Fp[x] and constants α, β ∈ Fp. Linear functions can thus be
evaluated locally on the shares.

Verifiable computing for shared data can be performed as follows. For VKeyGen,
the client runs Setup,Gen, and FunctionCommit of our construction (see Sec. 3).
In our construction, the verification key consists of the public key and the
function commitment, i.e. vk = (pk,F) and the evaluation key ek is just the
multi-labeled program P∆. Assume the client outsourced its secret data to a
distributed storage system, i.e. it computed for each secret mi a polynomial Pi(x)
and sent φj(mi) = Pi(j) to shareholder j. To allow the shareholders to perform
operations on this data, for each secret mi for i = 1, . . . , n it first chooses a
random value ri and sends a corresponding share φ′j(ri) = P ′i (j) to shareholder j.

For ProbGen, the secret key sk is used by the client to run PrivateCommit of
our construction computing a public value σmi in form of an authenticator Ai for
the pair (mi, ri). Then, the client sends this value to a dedicated shareholder. The
authenticators are unconditionally hiding, i.e. they reveal no information about
secrets mi nor randomness ri even to a computationally unbounded attacker. The
share Pi(j) and the authenticator Ai is in our construction the encoding required
by ProbGen with no decoding value needed.

For Compute, a distinct principal (or the client) gives program P∆ = ((f, τ1,
. . . , τn),∆) to the shareholders. Since a majority of storage servers is assumed
to be honest (this is a common assumption), privacy-violating functions can
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be denied. Each shareholder j performs program P∆ by evaluating f on its
shares, i.e. it computes shares φj(m) = f(φj(m1), . . . , φj(mn)) and φ′j(r) =
f(φ′j(r1), . . . , φ′j(rn)). Furthermore, the dedicated shareholder computes an au-
thenticator for the result by performing Eval of our construction on A1, . . . ,An.
The shareholders then use their shares to reconstruct [30] the claimed outcome of
the function evaluation m and r, and call PublicCommit with m and r to obtain a
corresponding commitment C. These commitments are linearly homomorphic,
and the shareholders can construct C by reconstructing m and r in the exponent.

For Verify, anyone can run FunctionVerify with C, A, and F as input, in order
to prove that C is a commitment to the correct solution. If output privacy is not
desired, m and r can be made public; this allows checking that these are opening
values to C by calling PublicDecommit of our construction.

4.2 Properties

Theorem 7. The verifiable computing scheme for shared data presented above
provides correctness, public verifiability, security, input privacy w.r.t. the servers,
output privacy w.r.t the servers, input privacy w.r.t. the verifier, and output
privacy w.r.t. the verifier.

Proof. These properties mainly follow from the properties of our FDC:

Correctness follows directly from the evaluation correctness of FDCs.
Public verifiability follows from the construction of algorithm Gen of FDCs.

The output of this algorithm are two keys, a secret key to generate the
authenticators and a public key to generate commitments to messages and
functions.

Security follows from the unforgeability of our FDC.
Input privacy w.r.t. the servers follows from using multi-party computation,

where each shareholder independently computes the function on its shares.
Our scheme offers input privacy against an adversary actively corrupting
at most t− 1 shareholders, while unforgeability holds even if the adversary
can actively corrupt all shareholders. We prove privacy w.r.t. the servers by
showing that a simulator S can simulate the protocol without needing to
know any input values. Assume that sj(m) = (sj(m[1]), . . . sj(m[T ])) and the
simulator S stores each xj , where Hj = g

xj
1 . Then, the simulator chooses ri ∈

Fp uniformly at random for i = 1, . . . , n and gives PrivateCommit(sk, 0, ri,∆,
τ), sj(0), sj(ri) to the adversaryA for i = 1, . . . , n, j = 1, . . . , t−1. Afterwards,
A outputs A∗ and t− 1 shares of the result (m̂, r̂). S can produce shares that
reconstruct to m̂ and use its knowledge of each xj to find an opening (m̂, r̂)
such that PublicCommit(m̂, r̂) satisfies
FunctionVerify(pk,Eval(P∆,PrivatCommit(sk,m1, r1,∆, τ1), . . . ,
PrivatCommit(sk,mn, rn,∆, τn)), PublicCommit(m̂, r̂),
FunctionCommit(pk,P∆)) = 1.

Output privacy w.r.t. the servers follows directly from the input privacy
w.r.t. the servers and the unconditional hiding property of the public com-
mitments.
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Input privacy w.r.t. the verifier is derived as follows. We show that a sim-
ulator S given access to the secret key sk, a message m̂, and randomness r̂
can compute the authenticator Â = (σ∆, Z, Û , V̂ ) to the outcome (m̂, r̂) of
a computation P∆ = ((f, τ1, . . . , τn),∆) without needing to know any valid
input values. It first computes z = FK(∆) with the pseudorandom function
F and calculates Z = gz2 . Then, it binds Z to the dataset identifier ∆ by
concatenating both and signing it, i.e. σ∆ = Sign(skSig,∆ | Z). Then, it
computes ui = FK′(∆ | i), and Ui = gui1 for i = 1, . . . , n. Afterwards it
computes Û =

∏n
i=1 U

fi
i . It sets V̂ = (Û ·

∏n
i=1 Ĥ

fi
i ·H

y
0 r̂ ·

∏T
j=1 H

ym̂[j]
j ) 1

z . It
returns authenticator Â = (σ∆, Z, Û , V̂ ). By construction, this is the authen-
ticator created by Eval for any authenticators to valid input values (mj , rj).
Therefore an authenticator created by Eval hides the input values perfectly,
i.e. even against a computationally unbounded adversary.

Output privacy w.r.t. the verifier follows directly from the input privacy
w.r.t. the verifier and the unconditional hiding property of the public com-
mitments.

5 Related Work

Commitments: Commitment schemes are a convenient tool to add verifiability
to various processes, such as secret sharing [25], multi-party computation [6], or
e-voting [22]. The most well-known and widely used commitment schemes used to
provide verifiability are Pedersen’s commitments [25]. However, this work presents
the first function-dependent commitment scheme. Unlike previous commitment
schemes, our solution provides succinctness and amortized efficiency. Furthermore,
function-dependent commitments support messages stored in datasets and thus
enables a much more expressive notion of public verifiability and more rigorous
definition of forgery. Besides, a secure bulletin board is not required for our
solution. In [21], the notion of functional commitments is introduced. Their notion
of function bindingness, however, is strictly weaker than our notion of adaptive
unforgeability. The instantiation proposed supports linear functions on field
elements, i.e. vectors of length 1, while we support vectors of arbitrary polynomial
length. Furthermore, notions such as amortized efficiency and succinctness are not
considered. In commitment based audit schemes authenticity is typically achieved
by using a secure bulletin board [16], for which finding secure instantiations has
been challenging so far.

Homomorphic authenticators: Homomorphic authenticators have been proposed
both in the secret key setting, as homomorphic MACs (e.g. [1,4,10,31]), and in the
public key setting as homomorphic signatures (e.g. [2, 11, 13, 14, 26]). In contrast,
our approach additionally considers information-theoretic privacy. Most existing
constructions do not consider output privacy. In [26] a solution is proposed in
the random oracle model for computational output privacy. Our construction is
the first to achieve this in an information-theoretic sense.
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Catalano–Fiore–Nizzardo homomorphic signature scheme [11]: Both our FDC
and the homomorphic signature scheme presented in [11] are based on the FDHI
assumption, and indeed our FDC builds on this homomorphic signature scheme.
The Catalano–Fiore–Nizzardo construction is context hiding, i.e. signatures to
the output of a function do not leak information about the inputs to the function
beyond knowledge of the output to a third party verifier. By contrast, our FDC
achieves an even stronger privacy property: information-theoretic input–output
privacy with respect to both verifiers and servers. A freshly signed signature in the
case of [11] still reveals information about the message to an adversary corrupting
a server. Our unconditionally hiding FDC, however, does not. Furthermore, our
verification algorithm FunctionVerify only requires a commitment to the output
of a computation, enabling output privacy, while verification in [11] requires the
output itself. This called for a novel strategy in our security reduction.

Functional cryptography: Functional dependencies in general were, until now,
only available for primitives required to be either hiding, i.e. functional encryp-
tion, or binding, i.e. functional signatures. Our notion of FDCs is both binding
and (depending on the instantiation, even unconditionally) hiding. Functional
encryption and functional signatures have been used to build verifiable computing
schemes. However, the functional-encryption-based solution proposed by Parno et
al. [24] does not provide privacy nor public verifiability. The solution by Barbosa
and Farshim [5] makes use of additional primitives, such as predicate encryption
schemes for general predicates for which no efficient construction is available.
Furthermore, this solution only provides computational input privacy with respect
to the verifier. For functional signatures, only one verifiable computing scheme
has been proposed by Boyle et al. [9]; it does not provide any privacy.

Verifiable computation: There are many more verifiable computing schemes using
proof- and argument-based systems, or based on fully homomorphic encryption.
However, there are only few approaches that address public verifiability and
input privacy. There are also argument-based verifiable computing schemes
available that provide public verifiability and statistical input privacy towards
the verifier [3, 7, 15, 23, 29]. All of these are based on strong, so called non-
falsifiable assumptions [20]. However, these verifiable computing schemes are not
tailored to perform computations on secret shares. Schoenmakers and Veeningen
show [28] how to achieve this, but they demand that every shareholder performs
computations in order to allow for verification and thereby produces a significant
overhead. Our verifiable computing scheme for shared data allows to process secret
shares while only one storage server has to compute the audit data. Furthermore,
since our solution only makes use of FDC and signatures we are able to provide
a concrete instantiation of this approach using our FDC construction. The
resulting scheme provides public verifiability, unconditional input privacy towards
the servers and the verifier, and relies on standard assumptions.

Multi-party computation: Regarding multi-party computation, only two schemes
enable a publicly verifiable audit trail. They have been proposed by Baum et
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al. [6] and Schabhüser et al. [27]. Unlike our approach, they achieve public verifi-
ability for arbitrary arithmetic circuits. However, our approach is the first with
amortized efficiency. The client incurs setup costs, but setup is only performed
once. Afterwards, multiple functions can be evaluated and verified. The verifica-
tion process itself is more efficient than performing the operations locally for a
suitably large number of inputs n.

6 Conclusion

In this paper, we introduced a novel approach to guarantee data authenticity
in delegated computing settings. Our function-depend commitments enable fast
correctness verification, proof of origin, and information-theoretic input-output
privacy. We also provided a concrete instantiation of this generic construction for
linear functions. Using this instantiation, we introduced a verifiable computing
scheme for shared data with unconditional privacy both towards the server and
the verifier. Furthermore, this scheme only requires a single party to perform the
computationally more costly computation of the authenticators. Our instantiation
does not require revealing a computation’s outcome, but merely a commitment
to it, thus also satisfying information-theoretic output privacy.

Future Work Our FDC instantiation adds verifiability and authenticity to applic-
ations while maintaining privacy — even unconditionally. We intend to further
analyse this impact of FDCs on applications processing sensitive data. To this
end, we plan to examine the composability of FDCs and investigate black-box
constructions of FDC-based verifiable multi-party computation schemes.
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A Proving Pairing-Based FDC Unforgeability

Lemma 1. Assume there exists a PPT adversary A for whom Bad6 occurs with
non-negligible probability during Game 6 as described in Theorem 6. Then there
exists a PPT simulator S who can solve the FDHI problem (see Def. 11) with
non-negligible probability.

Proof. Assume we have a PPT adversary A that can produce the result Bad6
during Game 6. We show how a simulator S can use this to break the FDHI
assumption. Given (g1, g2, g

z
2 , g

v
2 , g

z
v
1 , g

u
1 , g

u
v
1 ), simulator S simulates Game 6.

Setup Simulator S chooses aj ∈ Fp uniformly at random for j = 0, . . . , T and
sets Hj = g

aj
1 . It gives the public parameters pp = (T, n, bgp, H0, . . . HT ) to

A.
KeyGen Simulator S chooses an index µ ∈ {1, . . . , Q} uniformly at random.

During key generation, it chooses bi, si ∈ Fp uniformly at random for all
i = 1, . . . , n. It sets ĥi = gbit ·e (g1, g

z
2)si corresponding to Ĥi = gbi+zsi1 (which

S can not compute). It chooses y ∈ Fp uniformly at random and sets Y = gy2 .
It gives the public key pk = (pkSig, Y, ĥ1, . . . , ĥn) to A.

Queries Let k be a counter for the number of datasets queried by A (initially,
it sets k = 1). For every new queried dataset ∆, simulator S creates a list
T∆ of tuples (τ,m, r), which collects all the label/message/randomness tuples
queried by the adversary on ∆ and the respectively generated authenticators.
Moreover, whenever the k-th new dataset ∆k is queried, S does the following:
If k = µ, it samples a random ξµ ∈ Fp, sets Zµ = (gz2)ξµ and stores ξµ. If
k 6= µ, it samples a random ξk ∈ Fp and sets Zk = (gv2)ξk and stores ξk. Since
all Zk are randomly distributed in G2 they have the same distribution as in
Game 6. Given a query (∆, τ,m, r) with ∆ = ∆k, simulator S first computes
σ∆k = Sign(skSig,∆k | Zk).
If k 6= µ, it samples ρτ ∈ Fp uniformly at random and computes Uτ =

g−bτ1 · (gu1 )ρτ · g
−a0yr−

∑T

j=1
ajym[j]

1 , Vτ =
(

(g
z
v
1 )sτ · (g

u
v
1 )ρτ

) 1
ξk , and gives A =
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(σ∆k ,Zk,Uτ ,Vτ ) to A. We have

e (Vτ , Zk) = e

((
(g

z
v
1 )sτ · (g

u
v
1 )ρτ

) 1
ξk , Zk

)
= e

(
((gz1)sτ · (gu1 )ρτ )

1
vξk , Zk

)
=

e

(
((gz1)sτ · gbτ1 · g

−bτ
1 · g

−a0yr−
∑T

j=1
ajym[j]

1 · g
a0yr+

∑T

j=1
ajym[j]

1 · (gu1 )ρτ )
1
zk , Zk

)

= ĥτ · e (Uτ , g2) · e

ga0r
1

T∏
j=1

g
ajm[j]
1 , gy2


= ĥτ · e (Uτ , g2) · e (PublicCommit(m, r), Y ) .

Thus this output is indistinguishable from the challenger’s output during
Game 6.
If k = µ, simulator S sets Uτ = g

−bτ−a0yr−
∑T

j=1
ajym[j]

1 , computes Vτ =
(gsτ1 )

1
ξµ and gives A = (σ∆µ ,Zµ,Uτ ,Vτ ) to A . We have

e (Vτ , Zµ) = e
(

(gsτ1 )
1
ξµ , Zµ

)
= e

(
(gzsτ1 )

1
zξµ , Zµ

)
= e

(
(gzsτ1 )

1
zµ , Zµ

)
= e

(
(gzsτ1 · g

bτ−bτ+a0yr+
∑T

j=1
ajym[j]−a0yr−

∑T

j=1
ajym[j]

1 )
1
zµ , Zµ

)

= e

(
gzsτ1 · g

bτ−bτ+a0yr+
∑T

j=1
ajym[j]−a0yr−

∑T

j=1
ajym[j]

1 , g2

)
= gzsτt ·g

−bτ
t ·gbτt ·g

ya0r+
∑T

j=1
yajm[j]

t = ĥτ ·e (Uτ , g2)·e (PublicCommit(m, r), Y ).
Thus this output is indistinguishable from the challenger’s output during
Game 6.

Forgery Let (P∗∆∗ , C∗,A∗) with A∗ = (σ∗∆, Z∗, U∗, V ∗) be the forgery returned
by A. S follows Game 6 to compute Û , V̂ , Ĉ = PublicCommit(m̂, r̂). If Bad6
occurs, we have e (V ∗, Zµ) = FunctionCommit(pk,P∗∆∗) · e (U∗, g2) · e (C∗, Y )
and e

(
V̂ , Zµ

)
= FunctionCommit(pk,P∗∆∗) · e

(
Û , g2

)
· e
(
Ĉ, Y

)
Dividing

those equations and using the fact that Û = U∗ we obtain V ∗

V̂
= (C

∗

Ĉ
)
y
zξµ

or equivalently (V
∗

V̂
)ξµ = (C

∗

Ĉ
)
y
z and therefore W = (C

∗

Ĉ
)y and W ′ = (V

∗

V̂
)ξµ

are a solution to the FDHI problem. By the definition of unforgeability, we
have W 6= 1.

Lemma 2. Assume there exists a PPT adversary A who wins Game 7 with
non-negligible probability. Then there exists a PPT simulator S who can solve
the FDHI problem (see Def. 11) with non-negligible probability.
Proof. Assume we have a PPT adversary A that wins Game 7. We show how a
simulator S can use this to solve the FDHI problem.

Given (g1, g2, g
z
2 , g

v
2 , g

z
v
1 , g

u
1 , g

r
u
1 ), simulator S simulates Game 7.

Setup Simulator S chooses aj ∈ Fp uniformly at random for j = 0, . . . , T and
sets Hj = g

aj
1 . It gives the public parameters pp = (T, n, bgp, H0, . . . HT ) to

A.
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KeyGen Simulator S chooses an index µ ∈ {1, . . . , Q} uniformly at random.
During key generation, it chooses bi, si ∈ Fp uniformly at random for all
i = 1, . . . , n. It sets ĥi = gbit · e (g1, g

z
2)si corresponding to Ĥi = gbi+zsi1

(which S can not compute). It sets Y = gz2 . It gives the public key pk =
(pkSig, Y, ĥ1, . . . , ĥn) to A.

Setup S chooses an index µ ∈ {1, . . . , Q} uniformly at random. During key
generation, it chooses bi, si ∈ Fp uniformly at random for all i = 1, . . . , n. It
sets ĥi = gbit · e (g1, g

z
2)si corresponding to Ĥi = gbi+zsi1 (which S can not

compute). It chooses aj ∈ Fp uniformly at random for j = 0, . . . , T and sets
hj = e (g1, g

z
2)aj corresponding to Hj = g

ajz
1 (which S can not compute). It

gives the public key pk = (bgp, pkSig, H0 . . . HT , Ĥ1, . . . , Ĥn) to A.
Queries Let k be a counter for the number of datasets queried by A (initially,

it sets k = 1). For every new queried dataset ∆, simulator S creates a list
T∆ of tuples (τ,m, r), which collects all label/message/randomness tuples
queried by the adversary on ∆ and the respectively generated authenticators.
Moreover, whenever the k-th new dataset ∆k is queried, S does the following.
If k = µ, it samples a random ξµ ∈ Fp, sets Zµ = (gz2)ξµ and stores ξµ. If
k 6= µ, it samples a random ξk ∈ Fp and sets Zk = (gv2)ξk and stores ξk. Since
all Zk are randomly distributed in G2, they have the same distribution as in
Game 7. Given a query (∆, τ,m, r) with ∆ = ∆k, simulator S first computes
σ∆k = Sign(skSig,∆k | Zk).
If k 6= µ it samples ρτ ∈ Fp uniformly at random and computes Uτ =

g−bτ1 · (gu1 )ρτ , Vτ =
(

(g
z
v
1 )sτ · (g

u
v
1 )ρτ · (g

z
v
1 )a0r+

∑T

j=1
ajm[j]

) 1
ξk

and gives A =

(σ∆k ,Zk,Uτ ,Vτ ) to A. We have

e (Vτ , Zk) = e

((
(g

z
v
1 )sτ · (g

u
v
1 )ρτ · (g

z
v
1 )a0r+

∑T

j=1
ajm[j]

) 1
ξk

, Zk

)

= e

((
(gz1)sτ · (gu1 )ρτ · (gz1)a0r+

∑T

j=1
ajm[j]

) 1
vξk

, Zk

)

= e

((
(g

z
v
1 )sτ · gbτ1 · g

−bτ
1 · (g

u
v
1 )ρτ · (g

z
v
1 )a0r+

∑T

j=1
ajm[j]

) 1
zk

, Zk

)
= ĥτ ·e (Uτ , g2)·ga0zr

t

∏T
j=1 g

ajzm[j]
t = ĥτ ·e (Uτ , g2)·e (PublicCommit(m, r), Y ).

Thus this output is indistinguishable from the challenger’s output during
Game 7.

If k = µ, simulator S sets Uτ = g−bτ1 , Vτ = (gsτ1 · g
a0r+

∑T

j=1
ajm[j]

1 )
1
ξµ and

gives A = (σ∆µ ,Zµ,Uτ ,Vτ ) to A . We have

e (Vτ , Zµ) = e

(gsτ1 · g
a0r+

∑T

j=1
ajm[j]

1

) 1
ξµ

, Zµ


= e

(gzsτ+za0r+
∑T

j=1
zajm[j]

1

) 1
zξµ

, Zµ
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= e

(gzsτ1 · g−bτ1 · gbτ1 · g
za0r+

∑T

j=1
zajm[j]

1

) 1
zµ

, Zµ


= e

(
gzsτ1 · g−bτ1 · gbτ1 · g

za0r+
∑T

j=1
zajm[j]

1 , g2

)

= gzsτt ·g−bτt ·gbτt ·g
za0r+

∑T

j=1
zajm[j]

t = ĥτ ·e (Uτ , g2)·e
(
g
a0r+

∑T

j=1
ajm[j]

1 , gz2

)
= ĥτ · e (Uτ , g2) · e (PublicCommit(m, r), Y ) and thus this output is indistin-
guishable from the challenger’s output during Game 7.

Forgery Let (P∗∆∗ ,m∗, r∗,A∗) with A∗ = (σ∗∆, Z∗, U∗, V ∗) be the forgery re-
turned by A. S follows Game 7 to compute Û , V̂ , m̂, r̂. If Game 7 outputs 1, we
have e (V ∗, Zµ) = FunctionCommit(pk,P∗∆∗) · e (U∗, g2) · e (C∗, Y ), as well as
e
(
V̂ , Zµ

)
= FunctionCommit(pk,P∗∆∗) · e

(
Û , g2

)
· e
(
Ĉ, Y

)
. Dividing those

equations yields V ∗

V̂
=
(
U∗

Û
· (C

∗

Ĉ
)z
) 1
zξµ = (U

∗

Û
)

1
zξµ · (C

∗

Ĉ
)

1
ξµ . Thus S can com-

puteW = U∗

Û
,W ′ = (V

∗

V̂
)ξµ ·C

∗

Ĉ
. We have (W ′)z = (V

∗

V̂
)zξµ ·(C

∗

Ĉ
)z = U∗

Û
= W

and thus (W,W ′) is a solution to the FDHI problem. Our simulation has the
same distribution as a real execution of Game 7.

B Formally Defining Bindingness

For a formal definition, we first define two experiments EXPBindMA,Com (λ) and
EXPBindFA,Com(λ) between an adversary A and a challenger C.

Definition 13 (Bindingness experiments).

EXPBindM
A,Com(λ) :

C runs pk← KeyGen(1λ) and gives pk to A.
A outputs the pairs (m, r) and (m′, r′), with (m, r) 6= (m′, r′).
If PublicCommit(m′, r′) = PublicCommit(m, r) output 1, else return 0.

EXPBindF
A,Com(λ) :

C runs pk← KeyGen(1λ) and gives pk to A.
A outputs P∆ = ((f, τ1, . . . , τn),∆) and P ′∆ = ((f′, τ1, . . . , τn),∆), with f 6= f ′.
If FunctionCommit(pk,P ′∆) = FunctionCommit(pk,P∆) output 1, else return 0.

Using these experiments, we can now define bindingness.

Definition 14 (Bindingness).
Using the formalism of Def. 13, a FDC is called binding if for any PPT

adversary A,

Pr[EXPBindM
A,Com(λ) = 1] = negl(λ) ∧ Pr[EXPBindF

A,Com(λ) = 1] = negl(λ).
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Experiment EXPIn−PrivacyServer
A [VC, f, λ, t]

(sk, vk, ek)← KeyGen(f, 1λ)
(x0, x1)← AO

ProbGen(vk,·)
(ek)

(σ0, ρ0)← ProbGen(sk, x0)
(σ1, ρ1)← ProbGen(sk, x1)
b

$← {0, 1}
B ← A with B ⊂ {1, . . . , n} and |B| = t− 1
b∗ ← AO

ProbGen(vk,·)
(ek, x0, x1, {(σyb,j , ρxb,j}j∈B)

if b∗ = b then
return 1

else
return 0

end if

C Formalizing Unconditional Privacy for Verifiable MPC

Verifiable computing can guarantee the integrity of a computation. Beyond that,
a desirable property is to protect the secrecy of the client’s inputs towards
the server and when using a publicly verifiable scheme also towards the veri-
fiers. To formally define input privacy w.r.t the server we define experiment
EXPIn−PrivacyServer

A , during which the adversary controls t− 1 shareholders. We use
the oracle OProbGen(sk,x) which calls ProbGen(sk, x) to obtain (σx, ρx) and only
returns the public part σx.

In this experiment, the adversary first receives the public verification key for
the scheme. Then, it selects two inputs x0, x1 and is given the encoding of one
of the two inputs chosen at random. The adversary then must determine which
input has been encoded. During this process, the adversary may request the
encoding of any input of its choice. We define an adversaries A’s advantage as

AdvIn−PrivacyVerifier
A (VC, f, λ) =

∣∣∣Pr
[
EXPIn−PrivacyVerifier

A [VC, f, λ] = 1
]
− 1

2

∣∣∣ .
Definition 15 (Input privacy w.r.t. the server). A verifiable computing
scheme VC provides unconditional input privacy if any computationally unbounded
adversary A has AdvIn−PrivacyServer

A (VC, f, λ, t) = 0.

We give an analogous definition for output privacy. To formally define output
privacy w.r.t the server, we define experiment EXPOut−PrivacyServer

A , during which
the adversary controls t− 1 shareholders. We use the oracle OProbGen(sk,x) which
calls ProbGen(sk, x) to obtain (σx, ρx) and only returns the public part σx.

In this experiment, the adversary first receives the public evaluation key
for the scheme. Then, it selects two inputs x0, x1. It is given the results of the
computation y0 = f(x0), y1 = f(x1) and is given the encoding of one of the two
inputs chosen at random. The adversary corrupts t− 1 shareholders and receives
their share of the encoding and then must determine which encoded output has
been computed. During this process, the adversary may request the encoding of
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Experiment EXPOut−PrivacyServer
A [VC, f, λ, t]

(sk, vk, ek)← KeyGen(f, 1λ)
(x0, x1)← AO

ProbGen(sk,·)
(ek)

(σx0 , ρx0 )← ProbGen(sk, x0)
(σx1 , ρx1 )← ProbGen(sk, x1)
σy0 ← Compute(ek, σx0 )
σy1 ← Compute(ek, σx1 )
b

$← {0, 1}
B ← A with B ⊂ {1, . . . , n} and |B| = t− 1
b∗ ← AO

ProbGen(sk,·)
(ek, x0, x1, y0, y1, {(σyb,j , ρxb,j}j∈B)

if b∗ = b then
return 1

else
return 0

end if

Experiment EXPIn−PrivacyVerifier
A [VC, f, λ]

(sk, vk, ek)← KeyGen(f, 1λ)
(x0, x1)← AO

ProbGen(vk,·)
(ek)

(σ0, ρ0)← ProbGen(sk, x0)
(σ1, ρ1)← ProbGen(sk, x1)
b

$← {0, 1}
b∗ ← AO

ProbGen(vk,·)
(ek, x0, x1, σb, ρb)

if b∗ = b then
return 1

else
return 0

end if

any input of its choice. We define an adversaries A’s advantage as

AdvOut−PrivacyServer
A (VC, f, λ, t) =

∣∣∣∣Pr
[
EXPOut−PrivacyServer

A [VC, f, λ, t] = 1
]
− 1

2

∣∣∣∣
Definition 16 (Output privacy w.r.t. the server). A verifiable comput-
ing scheme VC provides unconditional output privacy if any computationally
unbounded adversary A has AdvOut−PrivacyServer

A (VC, f, λ, t) = 0.

If we have a publicly verifiable computing scheme a third party verifier might
try to learn about the input data from the publicly available verification data.
To formally define input privacy w.r.t. a third party verifier we use experiment
EXPIn−PrivacyVerifier

A .
In this experiment, the adversary first receives the public verification key for

the scheme. Then, it selects two inputs x0, x1 and is given the encoding of one
of the two inputs chosen at random. The adversary then must determine which
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Experiment EXPout−PrivacyVerifier
A [VC, f, λ]

(sk, vk, ek)← KeyGen(f, 1λ)
(x0, x1)← AO

ProbGen(vk,·)
(ek)

(σx0 , ρx0 )← ProbGen(sk, x0)
(σx1 , ρx1 )← ProbGen(sk, x1)
σy0 ← Compute(ek, σx0 )
σy1 ← Compute(ek, σx1 )
b

$← {0, 1}
b∗ ← AO

ProbGen(vk,·)
(ek, x0, x1, y0, y1σyb , ρyb)

if b∗ = b then
return 1

else
return 0

end if

input has been encoded. During this process, the adversary may request the
encoding of any input of its choice. We define an adversaries A’s advantage as

AdvIn−PrivacyVerifier
A (VC, f, λ) =

∣∣∣∣Pr
[
EXPPrivacyVerifier

A [VC, f, λ] = 1
]
− 1

2

∣∣∣∣ .
Definition 17 (Input privacy w.r.t. the verifier). A verifiable computing
scheme VC provides unconditional input privacy if for any computationally un-
bounded adversary A, AdvIn−PrivacyVerifier

A (VC, f, λ) = 0.

For a publicly verifiable computing scheme, it is interesting to show correctness
of a computation without revealing its outcome. A third party verifier might try
to learn about the output data from the publicly available verification data. To
formally define output privacy w.r.t a third party verifier, we define experiment
EXPout−PrivacyVerifier

A .
In this experiment, the adversary first receives the public verification key

for the scheme. Then, it selects two inputs x0, x1. It is given the results y0 =
f(x0), y1 = f(x1) and is given the encoding of one of the two outputs chosen
at random. The adversary then must determine which input has been encoded.
During this process, the adversary may request the encoding of any input of its
choice. We define an adversaries A’s advantage as

AdvOut−PrivacyVerifier
A (VC, f, λ) =

∣∣∣∣Pr
[
EXPOut−PrivacyVerifier

A [VC, f, λ] = 1
]
− 1

2

∣∣∣∣ .
Definition 18 (Output privacy w.r.t. the verifier). A verifiable computing
scheme VC provides unconditional output privacy if for any computationally
unbounded adversary A, AdvOut−PrivacyVerifier

A (VC, f, λ) = 0.
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