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Abstract. At Indocrypt 2016, Ashur et al. showed that linear hulls
are sometimes formed in a single round of a cipher (exemplifying on
Simon ciphers) and showed that the success rate of an attack may be
influenced by the quality of the estimation of one-round correlations.
This paper improves the understanding regarding one-round linear hulls
and trails, being dedicated to the study of one-round linear hulls of the
DES cipher, more exactly of its f -function. It shows that, in the case of
DES, the existence of one-round hulls is related to the number of active
Sboxes and its correlation depends on a fixed set of key bits. All the
ideas presented in this paper are followed by examples and are verified
experimentally.

1 Introduction

Together with differential cryptanalysis, linear cryptanalysis is one of the most
powerful techniques used in the security evaluation of a block cipher. It was
introduced in early 1990 by Mitsuru Matsui in [1], who applied the technique to
the DES cipher. The technique became intensively studied, its formalism being
extended in [2], [3] and [4]. The attack has been generalised in many subsequent
works such as [6], [8].

In general, the idea behind linear cryptanalysis is to find a linear approxima-
tion between a set of plaintext bits and ciphertext bits that holds with probabil-
ity different from 0.5. Estimating the quality of a linear approximation, usually
measured by its bias or correlation, is one of the most important problems in
linear cryptanalysis, being directly related to the success rate of a linear attack.

The idea introduced by Matsui was to construct a linear approximation for
n rounds of a block cipher by concatenating n one-round linear approxima-
tions. The estimation of the correlation of a linear trail is computed using the
Pilling-Up Lemma, by multiplying the correlations of each one-round linear ap-
proximation.

1.1 Related work

During the last three decades, many papers tried to find ways to obtain a better
estimation of the correlation of a linear approximation.

In [4] was first observed that, in some cases, there are more than one linear
trail involving the same plaintext and ciphertext bits. The set of all such linear



trails, with a fixed set of input and output bits, is called a linear hull. The
correlation of a hull is the sum of the linear trails correlations, so the correlation
of one trail may be different than the correlation of the hull containing it. In
practice, when using an attack based on linear cryptanalysis, the correlation of
a linear hull is used, so the success rate of the attack is closely related to the
quality of the hull correlation.

In [7] the authors show that the linear hull effect may sometimes appear at
a micro-level, inside a single round of a cipher. They also show that overlooking
this phenomenon may lead to wrong estimations of the linear correlation, offering
examples and experiments on round-reduced versions of ciphers of the Simon
family.

1.2 Our contribution

In this paper we extend the study regarding one-round linear hulls introduced
in [7]. In the first part of the paper we recall some definitions and terminology
of linear cryptanalysis. In the second part we present an analysis, similar to the
one described in [7], but applied to the DES cipher. We prove the existence of
the linear hull effect on the f -function. We also prove the connection between
the number of active Sboxes, the existence and the number of linear trails in one-
round linear hulls. Finally we present a simple and illustrative example of a hull
containing 4 linear trails, and the manner in which its correlation is computed.

2 Notations

In this section we recall some terminology regarding linear cryptanalysis and we
introduce the notations that will be used in this paper.

2.1 Masks and approximations

Let a be a hexadecimal value smaller than 2n and let atx =
∑n−1
i=0 aixi, where

ai and xi represent the ith bit of a and x, respectively. We will call a the mask
of x. Given the fact that applying a mask to a number represents, in essence, a
selection of bits of x, in this paper we will also use the description of a mask as
a set of positions:

ā = {i1, i2, ..., iv} ⇔

{
aj = 1,∀j ∈ {i1, i2, ..., iu}
aj = 0,∀j /∈ {i1, i2, ..., iu}

Let Rk(x) = y denote the round function of a cipher, where k denotes the key.
The explicit function will always be clear from context. A linear approximation
for Rk is the tuple (iM, oM, kM), where iM represents the input mask, oM the
output mask, and kM the key mask. Let p be the probability that the equation
iM tx ⊕ oM ty ⊕ kM tk = 0 holds. The correlation of the linear approximation



(iM, oM, kM) is defined as corr(iM, oM, kM) = 2p− 1. In general, both p and
corr(iM, oM, kM) are key-dependent.

A pair (iM, oM) is called connectable if and only if oM can be obtained from
iM using the rules of propagation of linear trails introduced in [2, 3]. The pair
(iM, oM) is non-connectable otherwise. In this paper only connectable pairs are
used.

2.2 Linear hulls and trails for more rounds

A linear trail for r rounds represents a concatenation of linear approximations
such that the output mask of the round i equals the input mask of round
i + 1. Hence, a linear trail may be represented as an (r + 1)-length vector
(m1,m2, ...mr+1), where (mi,mi+1) represents the input and output masks at
round i, respectively. The correlation of the linear trail is computed by multi-
plying the correlation of all single-round linear approximations:

corr(m1, ...mr+1) =

r∏
i=1

corr(mi,mi+1)

A linear hull covering r rounds is a tuple (α, β) and represents the set of all
linear trails such as m1 = α and mr+1 = β, i.e., the input and output masks
are the same, but that intermediate masks may be different. The correlation of
a linear hull is computed by adding the correlations of all linear trails:

corr(α, β) =
∑

m1=α,mr+1=β

corr(m1, ...mr+1)

2.3 DES’ round function

DES is a block cipher developed by IBM in the early 1970s. It was standardized
by the National Bureau of Standards (later NIST) in 1977. The plaintext and
the key are 64-bit blocks, even though only 56 out of 64 key-bits are actually
used by the algorithm. DES has a Feistel structure where the round function
uses a non-linear function f . The overall structure of DES consists of an initial
permutation, 16 enciphering rounds and a final permutation.

The input of the round function is a 48-bit round key (denoted by k) and
two 32-bit intermediate cipherwords (denoted by x and y).

The round function of DES is given by:

Rk(x, y) = (y ⊕ f(x, k), x).

The f -function consists of four functions:

1. The expansion function: the 32-bit input x is expanded to 48-bit out-
put, using the expansion permutation described in Table 1; one may notice
the fact that, after applying this layer, 16 out of 32 input bits appear twice.



We denote the expansion function by E;

Table 1. The expansion function E. We see that 16 out of the 48 bits
appear twice.

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

2. Key addition: the output of the expansion function is XORed with
the 48-bit round key;

3. The substitution layer : the output of the key addition is divided into
eight 6-bit blocks. Each of these blocks is given as input to a different 6-to-4
Sbox, resulting in eight 4-bit outputs. The first two Sboxes used in DES are
described in Table 2, while the remaining six Sboxes are described in [10].

The Sboxes of DES are applied as follows: for the input x0x1x2x3x4x5,
the output after applying the ith Sbox is the value found at the intersection
of the row x0x5 and the column x1x2x3x4 of the table of Si. We denote the
substitution layer by S.

4. The permutation layer : a fixed 32-bit to 32-bit permutation is applied
to the result of the substitution layer; the permutation, denoted by P, is
described in [10].

Table 2. DES’ Sboxes

S1

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2

0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

3 One round hulls in DES

In this section we prove the existence of one-round hulls in DES, which might
impact the computation of the correlation on multiple rounds of the cipher.



3.1 One round hulls and trails in DES

In order to describe the behavior of linear trails through one round of DES, it
is sufficient to analyze the f -function. This will be the focus of this section.

The permutation layer represents a bijective function so the behavior of a
mask through this layer is given by: oM = P (iM), i.e., the bits of the output
mask are a shuffle of input mask’s bits. The permutation layer does not influence
the number of linear trails in the one-round hull, nor the value of the correlations.
For simplicity, in the following two subsections, we will ignore the permutation
layer.

We use the notation (R, kM,A,B,C) to describe a linear trail of the f -
function in DES, where the input mask is iM = R = (ri)i∈{1,..8} and the output
mask is oM = C = (ci)i∈{1,..8}. We denote by A = (ai)i∈{1,..8} the output of the
expansion layer. We denote by B = (bi)i∈{1,..8} and C = (ci)i∈{1,..8} the input
and the output masks of the substitution layer, respectively. kM = (ki)i∈{1,..8}
represents the key mask. Note that in the remaining of this paper, ri, ai, bi and
ki are represented as sets of position values, depending on the input mask R
and the key mask respectively, while ci’s are represented as 4-bit decimal values,
being nonlinear functions of R’s bits.

Figure 1 depicts the propagation of linear masks through the f -function of
DES.

P

E

S1 S2 S3 S4 S5 S6 S7 S8

b1 b2 b3 b4 b5 b6 b7 b8

c1 c2 c3 c4 c5 c6 c7 c8

r1, r2, r3, r4, r5, r6, r7, r8 k1, k2, k3, k4, k5, k6, k7, k8

P (c1...c8)

a1, a2, a3, a4, a5, a6, a7, a8

Fig. 1. A linear trail through the f -function of DES



We now study the behavior of linear trails through the f -function of DES,
using the rules of propagation of linear trails introduced in [1–3]. The rule of
propagation regarding the XOR operation (used in the key addition layer) im-
plies the following constraint:

ai = ki = bi,∀i ∈ {1, ...8}.

The rule of propagation of linear masks through the Sboxes is given by the linear
approximation tables (LATs) of each Sbox, described in [1, 2].

For the expansion layer we use the rule for linear propagation over the branch
operation, as follows:

IfR has an active bit inM0 = {2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31},
i.e., those bits that appear only once after the expansion layer, the corresponding
bit in A is an active bit.

If a bit of M0 is not active in R then the corresponding bit in A is not an
active bit.

Example If r1 = {2}, then a1 = {2}.
IfR has an active bit inM1 = {1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32},

i.e., those bits that appear twice after the expansion layer, only one of the cor-
responding bits in A is an active bit.

If a bit of M1 is not active in R, then either none of the corresponding bits
in A are active bits or both of the corresponding bits in A are active bits.

Example If r1 = {4}, then
• a1 = {4}, a2 = ∅, or
• a1 = ∅, a2 = {4}, or
• a1 = {4, 5}, a2 = {5}, or
• a1 = {5}, a2 = {4, 5}.

Definition If bi, ci 6= ∅, then Si is called an active Sbox.

Lemma 1. Let (R,C) be a fixed pair of input and output masks and let
s denote the number of pairs of active adjacent Sboxes. Then the maximum
number of linear trails contained in the hull (R,C) is 22s.

Let ⊕ be defined as an operation between two sets by:

A⊕B = (A ∪B) \ (A ∩B)

Let S1 and S2 be active Sboxes, i.e., b1 6= ∅ and b2 6= ∅. After applying the
expansion layer, one may easily notice the fact that any two adjacent Sboxes
share two input bits; in the case of S1 and S2 the shared bits are the ones in
positions 4 and 5 from R. Given the fact that b1⊕ b2 is constant then four linear
trails can be defined such that the input masks of the Sbox layer are:

• (b1, b2)
• (b1 ⊕ {4}, b2 ⊕ {4})
• (b1 ⊕ {5}, b2 ⊕ {5})
• (b1 ⊕ {4, 5}, b2 ⊕ {4, 5})



Figure 2 depicts a linear hull that contains exactly 4 linear trails. Note that,
even though ai and ki appear to be different, their corresponding bit locations
are the same.

P

E

S1 S2 S3 S4 S5 S6 S7 S8

{1, 2} {5, 7} ∅ ∅ ∅ ∅ ∅ ∅

0101 1010 0000 0000 0000 0000 0000 0000

{1, 2, 5, 7} {2, 3}, {8, 10}, ∅, ∅, ∅, ∅, ∅, ∅

P (c1...c8)

{1, 2}, {5, 7}, ∅, ∅, ∅, ∅, ∅, ∅

P

E

S1 S2 S3 S4 S5 S6 S7 S8

{1, 2, 5} {7} ∅ ∅ ∅ ∅ ∅ ∅

0101 1010 0000 0000 0000 0000 0000 0000

{1, 2, 5, 7} {2, 3, 6}, {10}, ∅, ∅, ∅, ∅, ∅, ∅

P (c1...c8)

{1, 2, 5}, {7}, ∅, ∅, ∅, ∅, ∅, ∅

P

E

S1 S2 S3 S4 S5 S6 S7 S8

{1, 2, 4}{4, 5, 7} ∅ ∅ ∅ ∅ ∅ ∅

0101 1010 0000 0000 0000 0000 0000 0000

{1, 2, 5, 7} {2, 3, 5}, {7, 8, 10}, ∅, ∅, ∅, ∅, ∅, ∅

P (c1...c8)

{1, 2, 4}, {4, 5, 7}, ∅, ∅, ∅, ∅, ∅, ∅

P

E

S1 S2 S3 S4 S5 S6 S7 S8

{1, 2, 4, 5}{4, 7} ∅ ∅ ∅ ∅ ∅ ∅

0101 1010 0000 0000 0000 0000 0000 0000

{1, 2, 5, 7} {2, 3, 5, 6}, {7, 10}, ∅, ∅, ∅, ∅, ∅, ∅

P (c1...c8)

{1, 2, 4, 5}, {4, 7}, ∅, ∅, ∅, ∅, ∅, ∅

Fig. 2. Four trails of a one-round hull through DES f -function

3.2 Correlations of one-round hulls

We now want to compute the correlations of the trails in Figure 2. The general
rule regarding the correlation computation through a composed function is to
assume that all the functions act independently and multiply the correlation of
each function [9]. The correlation of the linear layers (the expansion layer and
the permutation layer) is corr = 1. Note that, for the key addition layer, the



correlation is either corr = 1 or corr = −1, depending on the actual value of the
round key bits.

In the case of the substitution layer, the correlation is usually computed
by multiplying the correlation of each active Sbox - usually extracted from the
Sbox’s LAT.

Given the fact that bi = ki,∀i ∈ {1, ..8}, for every linear trail in the
hull, and given the fact that bi are different for every trail, the correlations of
different trails are influenced by different key bits. The correlation of each linear
trail described in Figure 2, up to a sign, together with the corresponding key
bits can be found in Table 4.

Table 4. Correlations of linear trails described in Figure 2

Trails S input masks S output masks Key masks Correlation

Trail 1
b1 = {1, 2} c1 = 0101 k1 = {2, 3} corr = 0.1875
b2 = {5, 7} c2 = 1010 k2 = {8, 10} corr = 0.0625

Trail 2
b1 = {1, 2, 5} c1 = 0101 k1 = {2, 3, 6} corr = −0.1875
b2 = {7} c2 = 1010 k2 = {10} corr = −0.0625

Trail 3
b1 = {1, 2, 4} c1 = 0101 k1 = {2, 3, 5} corr = −0.0625
b2 = {4, 5, 7} c2 = 1010 k2 = {7, 8, 10} corr = 0.1875

Trail 4
b1 = {1, 2, 4, 5} c1 = 0101 k1 = {2, 3, 5, 6} corr = 0.0625
b2 = {4, 7} c2 = 1010 k2 = {7, 10} corr = −0.1875

We will now show that the correlation of the hull depends on the actual
values of the round key. One may get some information regarding the round
key just by looking at the value of the hull’s correlation. From Table 4 one may
notice the fact that there are 7 key bits that influence the value of the hull’s
correlation: k[2], k[3], k[5], k[6], k[7], k[8] and k[10]. Three of these values, more
precisely k[2], k[3] and k[10] influence all the trails’ correlation. We will denote
their XOR sum by l. Notice the fact that the remaining 4 key bits are exactly
the ones that are applied to the two plaintext bits that are shared among S1

and S2.
The correlation of the hull is computed by adding the correlation of all the

linear trails contained in it:

corrhull = corrTrail1 + corrTrail2 + corrTrail3 + corrTrail4

Let c = 0.1875 · 0.0625. According to Table 4, the correlation of each trail is:

corrTrail1 = c · (−1)k[2]⊕k[3]⊕k[8]⊕k[10]

corrTrail2 = c · (−1)k[2]⊕k[3]⊕k[6]⊕k[10]

corrTrail3 = −c · (−1)k[2]⊕k[3]⊕k[5]⊕k[7]⊕k[8]⊕k[10]

corrTrail4 = −c · (−1)k[2]⊕k[3]⊕k[5]⊕k[6]⊕k[7]⊕k[10]



Taking into account the fact that c and (−1)k[2]⊕k[3]⊕k[10] = (−1)l are com-
mon to all the trails’ correlation formulas, the correlation of the hull can be
computed as:

corrhull = c · (−1)l · [(−1)k[8] + (−1)k[6] − (−1)k[5]⊕k[7]⊕k[8] − (−1)k[5]⊕k[6]⊕k[7]]

Table 5 considers all possible values of k[5], k[6], k[7], k[8] and the correspond-
ing correlation values of the hull. Note that the value of l will only influence the
sign of the correlation.

Table 5. Key-dependent correlation values for the Figure 2 hull

k[5] k[6] k[7] k[8] corr
0 0 0 0 0
0 0 0 1 0
0 0 1 0 4 · c · (−1)l

0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 −4 · c · (−1)l

k[5] k[6] k[1] k[2] corr
1 0 0 0 4 · c · (−1)l

1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 −4 · c · (−1)l

1 1 1 0 0
1 1 1 1 0

From the table above results the condition of the key that leads to zero-
correlation one-round hull for DES:

1. corrhull = 0 ⇐⇒
{
k[5] = k[7] or
k[5] 6= k[7] and k[6] 6= k[8]

2. corrhull 6= 0 ⇐⇒ k[5] 6= k[7] and k[6] = k[8]

3.3 Key recovery based on the correlation

Looking the other way around, if the correlation of this hull is different from
zero, one knows two equalities of the key bits:

k[5] = k[7]⊕ 1
and

k[6] = k[8].

Our experiments confirm that the only key bits that influence the absolute
value of the correlation are the ones applied on the plaintext bits shared between
S1 and S2.

Depending on the input and output masks, the percentage of keys that lead
to zero-correlation hulls are: 0%, 25%, 50% or 75% - the percentage depends on
the number of linear trails in a hull and on the correlations resulting from the
Sboxes’ LAT.



4 Conclusion

In this paper we extended the knowledge regarding the subject of one-round
linear hulls, analyzing this phenomenon on the DES cipher. We proved the fact
that the f -function of DES exhibits one-round linear hulls. We also studied the
connections between the properties of input and output masks and the existence,
the size or the correlation values of one-round linear hulls.

The work described in this paper can be extended in different manners. For
example, it will be interesting to identify other block ciphers that exhibit zero-
correlation one-round linear hulls and to describe the properties of the round
function that led to it. It also remains to be investigated how the properties
described in this paper may be extended to more rounds of DES. Future research
should also revisit the linear attacks on DES, attacks in which only one trail
correlation is used in order to estimate the hull’s correlation.
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