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Abstract

We advance the study of secure stream-based channels (Fischlin et al., CRYPTO ’15) by considering
the multiplexing of many data streams over a single channel, an essential feature of real world protocols
such as TLS. Our treatment adopts the definitional perspective of Rogaway and Stegers (CSF ’09),
which offers an elegant way to reason about what standardizing documents actually provide: a partial
specification of a protocol that admits a collection of compliant, fully realized implementations. We
formalize partially specified channels as the component algorithms of two parties communicating over a
channel. Each algorithm has an oracle that provides specification details; the algorithms abstract the
things that must be explicitly specified, while the oracle abstracts the things that need not be. Our
security notions, which capture a variety of privacy and integrity goals, allow the adversary to respond
to these oracle queries; security relative to these notions implies that the channel withstands attacks
in the presence of worst-case (i.e., adversarial) realizations of the specification details. We apply this
framework to a formal treatment of the TLS 1.3 record and, in doing so, show that its security hinges
crucially upon details left unspecified by the standard.

1 Introduction

As protocols such as TLS [32], SSH [37], IPSec [23], and QUIC [21] have evolved, so have the formal tools used
to analyze them. Often it is the protocol standards themselves, rather than fully realized implementations,
that inspire and guide mathematical abstractions of these protocols, but their complexity makes the task of
developing these abstractions quite challenging and prone to missing subtle attacks. Much of this complexity
stems from the fact that protocols are only partially specified. The TLS 1.3 standard [30], whose record
layer mechanism is the subject of this paper, contains numerous “SHOULDs”, “SHOULD NOTs” and
“MAYs.” Each of these provides a guideline, but not a rule (those are “MUSTs” and “MUST NOTs”), for
compliant realizations of the standard. In addition, and like other protocol standards, TLS 1.3 leaves many
implementation details unspecified. Thus, the standard actually describes a collection of implementations
that share a core set of behaviors.

Standards are not more explicit and prescriptive for good reason. To be broadly adopted, they need to
be flexible in the face of a variety of deployment concerns, such as backwards compatibility, interoperability
with other protocols, and limitations of existing infrastructure. They also need to balance performance
with security and account for competing (and often conflicting) interests of stakeholders. But this need for
flexibility presents an important challenge to provable security: namely, deciding which of the standard’s
guidelines and unspecified implementation details are relevant to security, and so should be captured in the
model.

The implications of these modeling choices are often clear only after an attack is found, leading to what
Degabriele et al. [16] call the model-attack-remodel cycle. A prominent example is the case of padding-oracle
attacks. The MAC-then-encode-then-encrypt construction, used to provide authenticated encryption in
many early secure channel protocols, is provably secure [28], but only in a model in which decryption does not
surface distinguishable errors. Yet compliant implementations of these protocols did make visible the cause



of decryption failures (in particular, whether the encoding was invalid or the MAC was incorrect), leading
to plaintext-recovery attacks [36, 17, 27]. The research community reacted by incorporating distinguishable
errors into updated models [14, 19], but left more subtle attack vectors unaddressed [3], leading in turn to
more sophisticated models [22, 6]. This reactive evolution of the adversarial model is to be expected. But
since standards only partially specify the protocol, it is hard to anticipate where vulnerabilities might arise
in implementations.

This work explores a definitional viewpoint that may help us to be more proactive, by making explicit in
the security model which parts of the protocol are fully specified, and which are not. Concretely, our goal
is to establish the security of the TLS 1.3 record layer [32], which (partially) specifies how plaintext and
ciphertext data are formatted, encrypted, and transmitted from sender to receiver. To this end, we formalize
a new primitive that we call a partially specified channel.

Modeling the TLS 1.3 record layer. The starting point of our model is the stream-based channel
abstraction, introduced by Fischlin et al. [19] (hereafter FGMP). The FGMP syntax for stream-based chan-
nels accurately captures the interfaces exposed by real secure-channel implementations in that it treats the
sender- and receiver-side inputs and outputs as streams of fragments, as opposed to atomic messages. (It
also admits distinguishable error messages.) We augment their syntax in order to account for multiplexing
of many data streams over the same channel, as this is an essential feature of many secure channel protocols,
including TLS 1.3. And although this protocol is our focus, we expect our syntax should be applicable to
the authenticated encryption mechanism in other protocols, such as SSH, IPSec, QUIC, and DTLS [31].

We extend the FGMP notions of privacy and integrity to this setting. There are two main flavors of
privacy: the first, PRIV-S, is analogous to indistinguishibility under chosen-plaintext attack, since the ad-
versary only controls the sender’s inputs; in the second, PRIV-SR, we also allow the adversary to mount
chosen-ciphertext fragment attacks. With each of these, we consider different “degrees” of privacy corre-
sponding to various security goals considered in prior works [28, 19, 18]. For integrity, we formalize two
notions: integrity of ciphertext streams (INT-CS) and plaintext streams (INT-PS). Following FGMP, we
show how to achieve PRIV-SR security from a scheme that is both PRIV-S and INT-CS secure; just as
with FGMP, we will need an additional property called status simulatability (SIM-STAT). Our notions are
applicable to settings in which reliable transport (e.g., via TCP) is expected, and failure of the underlying
transport mechanism to deliver stream fragments in order is deemed an attack (as in TLS and SSH).

A number of implementation details that are not specified by TLS 1.3 are relevant in the adversarial
model of FGMP. For example, there are explicit rules that govern the manner in which plaintext fragments
are buffered and coalesced into atomic plaintext records, but the specification leaves many design choices
up to the implementation. In order to establish the security of the record layer in this setting, we first need
to determine how to reason about these missing pieces. To do so, we apply the partially specified protocol
approach of Rogaway and Stegers [33] (RS) to the study of secure channels. Loosely speaking, a partially
specified channel (PSC) consists of named algorithms for the sender and receiver operations that each take
a specification details (SD) oracle. The algorithms form the cryptographic core of the secure channel, and
hence the part that must be realized precisely; everything that is not explicitly part of the cryptographic core
is handled by the oracle. Crucially, in our security notions, it is the adversary itself who will service calls to
the SD-oracle. Thus, a proof of security for a particular PSC implies that all details swept into the SD-oracle
are irrelevant with respect to these definitions; they can be implemented to behave in an adversarial manner,
without concern.

Our results. We found this definitional viewpoint to be a useful tool for determining which pieces of
the record layer specification are security critical and which are not. In particular, our formal treatment of
the record layer uncovers two subtle and security-critical matters. First, the degree of privacy the record
layer can provably provide depends intrinsically on the unspecified details (Theorem 2). The record layer
is used to multiplex distinct plaintext streams over the same channel; thus, each record has a content type
that associates the content to its stream. The content type is encrypted along with the content, permitting
implementations that, at least in principle, hide both the content and its type. This is laudable, but the
specification admits implementations that leak the content type entirely. Roughly speaking, this leakage
occurs because the boundaries between records depend on the content types of each record. In general, we
can conclude only that the record layer ensures privacy of the contents of each of the data streams. (We
make this point precise in Section 5.)
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Second, following FGMP, our notion of ciphertext-stream integrity implies that the receiver only consumes
the stream produced by the sender. Records written to the channel are delimited by strings called record
headers, whose values are specified by the standard. These bits are not authenticated, and the standard
does not require the receiver to check that their values are correct; thus, the record layer cannot achieve
our strong notion of ciphertext-stream integrity. But intuitively, the value of these bits should not impact
security. Our framework provides a clean way to reconcile this intuition with our model: we show that the
value of these bits are indeed irrelevant if and only if they are authenticated (Theorem 3).

Our analysis applies to draft 23 [32], which was current at the time of writing. We shared our findings
with the IETF working group responsible for standardizing TLS 1.3 and the specification was updated so
that the record header is authenticated. This change appears in the final version of the standard [30].

Roadmap of the paper. The next section motivates our analytical framework, putting it in context with
prior work on secure channels and partially specified protocols. Section 3 outlines additional related work
on TLS. In Section 4 we formulate our syntax and adversarial model, and define our notions of privacy
(Section 4.2) and integrity (Section 4.3). Section 5 presents our formal treatment of the record layer and
discusses some limitations of our model with respect to TLS. We conclude in Section 6 with directions for
future work.

1.1 Revision history

Note the following changes from the proceedings version of this paper [29].

1. 2020/04/03. Revise the record layer specification (Figure 7; cf. [29, Figure 4]) and the statement of
Theorem 4. The original proof of Theorem 4 contained an error in the transition from game 3 to
game 4. To patch it, minor changes to the specification are needed to ensure the receiver can correctly
compute the record boundaries whenever the channel is in-sync. It is also necessary to restrict the
adversary so that he receiver computes these deterministically and independently of the adversary’s
state.1 This amount to assuming that the record boundaries can be computed from the sequence of
records written to the channel. This is true of the record layer, of course, so these changes do not
change our claims for the TLS 1.3 standard as it is.

2. 2020/04/03. Weaken INT security (Figure 6; cf. [29, Figure 4]) by requiring Enc-queries to have
distinct nonces and update Theorem 3 (cf. [29, Theorom 5.2]) and Theorem 4 (cf. [29, Theorom 5.3])
accordingly. The previous notion is stronger than usual (cf. nAE [26]) and therefore excludes common
instantiations of the AEAD scheme. For example, AES-GCM is known to be vulnerable to ciphertext
integrity attacks when nonces are allowed to repeat [15]. Fortunately, it is straight-forward to patch
the proofs to account for the weaker assumption.

2 PSCs in relation to prior work

Our framework weds two existing approaches to analyzing real-world cryptography. First, we extend secure
stream-based channels to consider multiplexing of plaintext streams over the same channel. This addresses
a problem left open by FGMP [20] and permits, for the first time, the analysis of TLS in this setting.
The second approach is the partially specified protocol framework of RS, which we use to reason about the
standard itself.

Stream-based secure channels. We summarize important landmarks in the development of the theory
of secure channels. In 2000, Bellare and Namprempre [8] provided foundations for the study of probabilistic
authenticated encryption (AE) schemes used in SSL/TLS, IPSec and SSH. Shortly thereafter, Rogaway [34]
embellished authenticated encryption to take associated data (AEAD), moving the primitive closer to prac-
tice. Yet it was already understood that an AEAD scheme and its attendant notions of privacy and integrity
do not suffice for building secure channels. In 2002, Bellare, Kohno, and Namprempre (BKN) [7] formalized
stateful AE in order to account for replay and out-of-order delivery attacks, as well as to model and analyze

1In fact, Rogaway and Stegers ultimately made a similar restriction in their analysis of the NSL2 protocol (cf. [33, Section 5]).
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SSH. Their model regards ciphertexts as atomic, but ciphertexts written to the channel may be (and rou-
tinely are) fragmented as they traverse the network, which leaves these protocols susceptible to attacks [2].
Likewise, the APIs for real secure channels regard the input plaintext as a stream, meaning that a single
logical plaintext may be presented as a sequence of fragments, too. It took another ten years for the model
to be significantly extended, by Boldyreva et al. [13], to address ciphertext fragmentation and attacks that
exploit it. Finally, in 2015 by FGMP formalized stream-based secure channels that address plaintext frag-
mentation, with updates provided in 2016 by Albrecht et al. [1]. As FGMP point out [20], these works help
shed formal light on truncation [35] and cookie-cutter [12] attacks. (However, as we discuss in Section 5.3,
their work is somewhat limited with regard to these.)

Although theory has advanced significantly, it still falls short of capturing an important feature that real
protocols provide: a means of multiplexing a number of data streams over the same channel. The TLS 1.3
record layer, for example, handles streams for three distinct sub-protocols: handshake, alert, and application-
data. Explicitly modeling the multiplexing of these streams is necessary for a rigorous analysis of TLS, since
each of these sub-protocols has side-effects on the sender and receiver state and, hence, implications for the
security provided by the channel.

Whereas FGMP regard the plaintext stream as a sequence of message fragments M1,M2, . . . , we will
consider streams of the form (M1, sc1), (M2, sc2), . . . where sci denotes the stream context of its associated
message fragment. The stream context is metadata that allows for differentiation of fragments into logical
streams, each associated to a higher-level application, protocol, etc. Following prior work, our syntax models
a unidirectional channel between a sender and receiver. We decompose the sender into two randomized,
stateful algorithms: the stream multiplexer (Mux ), and the channel writer (Write ). Correspondingly, we
decompose the receiver into the channel reader (Read ), and the stream demultiplexer (Demux ). One might
think it cleaner to regard the sender and receiver as atomic processes, as the aforementioned works do. We
break with this syntax in order to precisely capture multiplexing of streams, and to separate this functionality
from the cryptographic operations that turn plaintext strings into ciphertexts. (More on this in Section 4.2.)

Partially specified protocols. In their treatment of the SSH protocol, BKN introduce a paradigm they
call Encode-then-Encrypt-and-MAC, which cleanly abstracts many of the details of the SSH specification.
In particular, they treat the details of encoding as a generic transform and give a sufficient condition on
this transform for the security of the overall protocol. Of course, this idea—and more generally, the Encode-
then-Encipher paradigm [9]—is applicable to the problem of analyzing TLS 1.3. But our consideration of
stream-based channels makes our adversary considerably stronger than that considered by BKN. It stands
to reason, then, that there are details of the protocol and implementation that are relevant to the stronger
model, but not the weaker one. (In particular, we must at least account for processing of plaintext- and
ciphertext-stream fragments.) How shall we go about uncovering what these security-critical matters are?

There are many ways to appraoch this problem. The approach of RS, which we adopt here, is simply to
formalize what a standard is: a partial specification (the things that are mandated and explicitly described)
plus additional specification details (everything else). RS apply this approach to authentication protocols,
in particular the Needham-Schroeder-Lowe protocol. We apply it to secure channels. The component
algorithms of a PSC, Mux , Write , Read , and Demux , formalize the core functionalities of the sender and
receiver that must be fully specified; the rest of the specification details (SD) are formalized via an oracle
given to each of the algorithms. The functionality of this SD oracle is left unspecified, and in our security
games, queries made to the oracle are serviced by the adversary. This is clearly a very strong attack model: in
addition to influencing the behavior of the algorithms via their inputs, the adversary is allowed to participate
in portions of their computation. The actual strength of the model depends on what quantities are exposed
to the SD, and how the SD return values are used within the algorithms. At one extreme, an empty (or
otherwise trivial) SD yields a traditional kind of attack model; at the other, if secret state (e.g., the key) is
passed to the SD, then no security is possible. In this way, our model can provide principled guidance to the
standard-writing process by surfacing choices that are relevant to security.

This definitional framework admits another interpretation, one that is likely of interest in other settings:
it lets us reason about security in the presence of implementation errors. One can view each algorithm as
being partitioned into operations whose implementation is assumed to be correct, and those that are not.
From this perspective, our attack model captures a kind of worst-case (i.e., adversarial) implementation of
those operations. This is interesting because if one proves that a particular PSC construction is secure, it
makes clear which things must be implemented correctly and deserve the extra scrutiny of formal verification
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(a la [18]), and which things do not need such hard guarantees.

3 Related work

We have already mentioned the line of papers that our work extends [8, 7, 14, 19, 1]; this section points out
important related efforts.

The miTLS project. From the standpoint of scope, the work most closely related to ours is the recent
paper by Delignat-Lavaud et al. [18] (DLFK+). It provides a formal analysis of the TLS 1.3 record layer
(draft 18) “as is”, but their approach is fundamentally different from our own. The paper is the latest from
miTLS (mitls.org), a project whose goal is to formally verify the security of TLS as is, without omitting
any details. The strategy is to implement the record layer in a programming language that is amenable to
formal analysis (F∗), express their security goals as games in the same language, and find a formal proof
that the scheme’s security (in a sense they define) reduces to standard computational assumptions (also
expressed in F∗). This methodology amounts to a formalization of code-based game-playing techniques now
common in cryptography [10]. Our work is technically different from theirs on a couple fronts. First,
our analysis applies to a set of compliant implementations (corresponding to different realizations of the
specification details), whereas their work applies only to their implementation. Our notions are also more
flexible: we capture the goal of hiding the message length as one of many possible privacy goals, whereas
this property is mandatory in their security notion. Second, our adversarial model is stronger in that it
permits fragmentation of the plaintext and ciphertext streams; neither capability is considered by DLFK+.
We elaborate on this and other points about their setting in Appendix B.

We do not mean to diminish the work of DLFK+ in pointing out these short comings. On the contrary,
the value of their contribution (and of the miTLS project overall) is hard to overstate. They provide a
reference implementation of the record layer in which we have a high degree of confidence, both in terms
of security and, crucially, correctness. Practitioners are paying attention [32, Section 12.2], and using this
reference will ultimately facilitate the development of secure production code. As such, we view our work as
complimentary to DLFK+.

Other analyses of the record layer. In an analysis of TLS 1.2, a paper by Paterson, Ristenpart,
and Shrimpton [28] put forward a notion of stateful, length-hiding AE that admits schemes with associated
padding (to hide the plaintext length) and variable-length MACs, both features of TLS 1.2. Their formalism
necessarily elides a number of details of the protocol. Badertscher et al. [5] characterized the TLS 1.3 record
layer (draft 08) as an augmented secure channel (ASC), which allows for sending a message with two parts:
the first being private, and both parts being authenticated. Bellare and Tackmann analyze the multi-user
security of the TLS 1.3 record layer [11]. They shed light on the following problem: if the same message is
encrypted in a number of sessions, then what information does this leak about the sessions? A popular TLS
endpoint might serve billions of client a day. Many of these flows are identical (such as the initial GET);
thus, an adversary who observes these identical flows can try to guess the key used for one of the clients.
Its odds are improved by the sheer number of clients encrypting an identical message. This attack vector
lead the designers of TLS 1.3 to “randomize” the IV used for generating the nonce; Bellare and Tackmann
analyze the exact security of this approach in the multi-user setting.

4 Partially specified channels

In this section we formalize PSCs and their attendant security notions. We begin with some notation and
conventions.

Notation. Let |X| denote the length of a string X ∈ {0, 1}∗ and let |X| denote the length of vector X.
We denote the i-th bit of string X by Xi or X[i], and the i-th element of vector X by Xi or X[i]. Let
{0, 1}∗∗ = ({0, 1}∗)∗. We define X ‖Y to be the concatenation of strings X and Y ; let cat : {0, 1}∗∗ → {0, 1}∗
denote the map X 7→X1 ‖ · · · ‖Xm, where |X| = m. Let X[i:j] denote the substring Xi ‖ · · · ‖Xj of X. If
i 6∈ [1..j] or j 6∈ [i..|X|], then define X[i:j] = ε. Let X[i:] = X[i:|X|] and X[:j] = X[1:j]. We write X � Y if
X is a prefix of Y (i.e., (∃T ∈ {0, 1}∗)X ‖T = Y ). Let X %Y denote “remainder” of X after removing the
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prefix Y , e.g., 1011 % 10 = 11. (If Y 6� X, then define X %Y = ε.) Let 〈i〉n denote an invertible encoding
of integer 0 ≤ i ≤ 2n − 1 as an n-bit string.

Algorithms may have access to one or more oracles, written as superscripts (e.g., AO). The runtime of an
algorithm includes the time required to evaluate its oracle queries. If an algorithm A is deterministic, then
we write y ← A(x) to denote executing A on input of x and assigning its output to y; if A is randomized
or stateful, then we write y ←← A(x). If X is a set, then we write x ←← X to denote sampling x randomly
from X according to some distribution; if X is finite and the distribution is unspecified, then it is uniform.
If n ∈ N \ {0}, then let [n] = {x ∈ N : 1 ≤ x ≤ n}.
Pseudocode. Our pseudocode follows the conventions of RS with a few minor differences. (Refer to [33, Sec-
tion 2].) our pseudocode is statically typed. Available types are bool (called boolean in RS, an element of
{0, 1}), int (integer in RS, an element of Z), str (string in RS, an element of {0, 1}∗), and struct (record in
RS). New types may be defined recursively from these: for example, type struct {str name, int age} person
declares a data structure with two fields, the first a str and the second an int. Variables may be declared
with the word declare, e.g. declare person Alice. Variables need not be explicitly declared, in which
case their type must be inferable from their initialization (i.e., the first use of the variable in an assignment
statement). There are also associative arrays that map arbitrary quantities to values of a specific type.
For example, declare strX[ ] declares an associative array X. We let X[k] and Xk denote the value in X
associated with k. We will find it useful to explicitly define the “type” of a procedure (i.e., algorithm) by
its interface. For instance, the type A(strX, str Y ) 7→ (int i, int j) indicates that A takes as input a pair
of strings and outputs a pair of integers. Multiple variables of the same type may be compactly declared,
e.g., as declare strX,Y, int z rather than declare strX, str Y , int z. We also use this convention when
defining procedure interfaces, e.g., A(strX,Y ) 7→ (int i, j).

If a variable of one type is set to a value of another type, then the variable takes the value �, read
“undefined”. Uninitialized variables implicitly have the value �. The symbol � is interpreted as 0 (i.e., false)
in a boolean expression, as 0 in an expression involving integers, and as ε in an expression involving strings.
We introduce the distinguished symbol ⊥, read “invalid”, which can be assigned to any variable regardless of
type. Unlike �, its interpretation in an expression is undefined, except that (X = ⊥) should evaluate to true
just in case variable X was previously set to ⊥. We remark that ⊥ has the usual semantics in cryptographic
pseudocode; the symbol � is useful for specifying protocols compactly.

A value of any type may be assigned to an anonymous variable ∗, e.g., ∗ ← x, but the value of ∗ is
undefined in an expression. We let 〈x1, . . . , xm〉 denote an invertible encoding of arbitrary values x1, . . . , xm
as a string. Decoding is written as 〈x1, . . . , xm〉 ← X and works like this (slightly deviating from [33, Section
2]): if there exist x′1, . . . x

′
m′ such that X = 〈x′1, . . . , x′m′ 〉, m′ = m, and each x′i has the same type as xi,

then set xi ← x′i for each i ∈ [m]. Otherwise, set xi ← � for each i ∈ [m].
Finally, it is customary in cryptographic pseudocode to pass all variables by value; for technical reasons,

which will become apparent later on, we also permit variables to be passed by reference. Specifically, variables
passed to procedures may be embellished with the keyword var. If the variable appears on the left hand
side of an assignment statement, then this immediately changes the value of the variable; when used in an
expression, the variable is treated as its value. A procedure’s interface makes explicit which inputs must be
passed by reference. For example, in a procedure A(int x,var int y) 7→ int z, variable x is passed by value,
while y is passed by reference.2

4.1 Syntax

Formally, a PSC is a 5-tuple of randomized algorithms CH = (Init ,Mux ,Write ,Read ,Demux ). All but the
first expect access to an oracle, which we generically write as O in the following definitions:

• Init ( ) 7→ (str Mu,Wr ,Re,De). The initialization algorithm models key agreement and initialization of
the sender state (Mu,Wr) and receiver state (Re,De).

• MuxO(strM, sc,var str Mu) 7→ (strX,H,α). The multiplexing algorithm takes as input a plaintext
fragment M , stream context sc, state Mu, and returns a channel fragment X, its context H, and some
auxiliary output α.

2The keyword var as used by RS serves a similar purpose, but is semantically different. In their setting, a variable embellished
with var has copy-in-copy-out semantics, which means its value is only changed when the procedure goes out of scope.
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Sender

M

sc

Mux X

H

α

Write

Receiver

Read Y

H

α

Demux

C

γ

M

sc

γ

A1 A2

Send

Recv

Mux

Write

Read

Demux

SD

Figure 1: left: illustration of our syntax. Right: illustration of the execution model (who may call whom).

• WriteO(strX,H,α,var str Wr) 7→ (str C, γ). On input of a channel fragment X, context H, and
auxiliary information α, and state Wr , the channel writing algorithm produces a ciphertext fragment C
and status information γ.

• ReadO(str C,var str Re) 7→ (str Y,H, α). On input of a ciphertext fragment C and state Re, the
channel reading algorithm returns a ciphertext fragment Y , its context H, and auxiliary output α.

• DemuxO(str Y,H, α,var str De) 7→ (strM, sc, γ). The demultiplexing algorithm takes a ciphertext
fragment Y with channel context H, auxiliary information α, and state De, and returns a plaintext
fragment M with stream context sc, along with status information γ.

The oracle O provides the specification details and may be invoked any number of times by the caller during
its execution. The SD-oracle may have its own state and coins; to be clear, the oracle and its caller do not
have joint state, and their coins are independent. We require that each of these procedures halts, regardless
of coin tosses or SD-oracle responses, in a bounded number of steps that depends only on the length of its
inputs.

Our convention will be that SD-oracle queries are of the form 〈caller, instruction, x1, . . . , xm〉, where caller
and instruction may be thought of as strings. When it is necessary to specify an SD-oracle query, we will
endeavor to make them suggestive of the intended semantics under correct operation. (See Figure 7 for
examples.) SD-oracle responses are also always strings, but we do not define conventions for them.

Status messages and auxiliary outputs.All algorithms may produce some auxiliary information along
with its outputs. This allows Mux and Read to convey state (denoted α) to Write and Demux (resp.), and
allows Write and Demux to surface status information (denoted γ) to applications. (See Figure 1 for an
illustration.) Among other things, this models distinguishable decryption errors [14], an attack vector that
has heavily influenced the development of secure channels [36, 17, 27, 3]. (FGMP model distinguishable
errors, too.) Our consideration of information leakage via auxiliary output is inspired by a paper by Barwell,
Page, and Stam [6]. Their subtle AE setting models decryption leakage in a manner general enough to
capture error indistinguishibility [14, 19], as well as other settings for authenticated encryption [4, 22].

Correctness.Conventionally, one would define a correctness condition as part of the syntax for this new
primitive. Following RS, however, we will not explicitly define correctness of PSCs, as our aim will be to
achieve security even for channels that are not correct: in particular, when the SD is realized by an adversary.
We elaborate on the consequences of this choice in Appendix A, but note that this means we will not be
able to assume correctness in our security proofs.

4.2 Privacy

We recast the privacy notions of FGMP to address the multiplexing of plaintext streams and expose the
specification details. Our PRIV-SR notion gives the adversary access to a pair of oracles. The Send oracle
allows the adversary to provide the sender with arbitrary message fragments and stream contexts, where
streams are distinguished by their context sc. Analogously, the Recv oracle allows the adversary to deliver
arbitrary ciphertext fragments to the receiver. We define a PRIV-S notion from this game by removing the
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Exppriv-sr
CH,`,b(A)

1 declare str S,Env , bool sync
2 (Mu,Wr ,Re,De)←← Init ( )
3 sync ← 1
4 b′ ←← A1

Send,Recv (var Env)
5 return b′

Send(M0, sc0,M1, sc1)

6 L0 ← leak (`,M0, sc0)
7 L1 ← leak (`,M1, sc1)
8 if L0 6= L1 then return (⊥,⊥)
9 (X,H,α)←← Mux SD(Mb, scb,var Mu)

10 (C, γ)←←WriteSD(X,H,α,var Wr)
11 S ← S ‖C
12 return (C, γ)

Recv(C)

13 (Y,H, α)←← Read SD(C,var Re)
14 (M, sc, γ)←← Demux SD(Y,H, α,var De)
15 if sync and Y � S then
16 S ← S%Y ; M, sc ← ⊥
17 else sync ← 0
18 return (M, sc, γ)

SD(I)

19 O ←← A2(I,var Env); return O

leak (`,M, sc)
20 switch (`)
21 case lensc: return 〈|M |, sc〉
22 case len: return 〈|M |, |sc|〉
23 case none: return ε

Figure 2: The PRIV-SR notion of security for a partially-specified channel CH. The PRIV-SR notion is parameterized
by the permitted leakage ` ∈ {lensc, len, none}.

Recv oracle. In both notions, whenever a query to Send or Recv induces an SD-oracle call, that call is
serviced by the adversary.

Following prior work [7, 13, 19] we keep track of whether the channel is in-sync at any given moment dur-
ing the adversary’s attack. Loosely, the channel is said to be in-sync if the stream of ciphertext “consumed”
by the receiver, so far, is a prefix of the stream of ciphertext output by the sender. In order to avoid trivial
distinguishing attacks in the PRIV-SR game, it is necessary to suppress the message fragments output by
the receiver while the channel is in-sync.

Channel synchronization. We say the channel is in-sync as long as the ciphertext fragments Y output
by Read —which models receiver-side buffering and defragmentation—remains a prefix of the ciphertext
stream transmitted by the sender. In this way, the sequence of Y ’s output by the reader constitute the
ciphertext stream “consumed” by the receiver (i.e., by Demux ) so far. This restricts the behavior of the
sender-side code in a way not seen in FGMP, but the restriction appears to be minor; a natural division
of labor is to have Read buffer the ciphertext stream and output ciphertexts that are ready to decrypt;
the job of Demux , then, is to decrypt and process the message stream. This cleanly separates the tasks
of “buffering” and “consuming” the ciphertext. The alternative would be to leave the receiver operations
atomic, as FGMP have done; but this choice leads to complex security notions, as it requires handling
synchronicity for a number of different cases (e.g., [20, Definition 4.1]).

The adversary.Our execution model for security games is adopted from the RS framework, but we will be
a bit more precise in our formulation. The adversary queries oracles provided by the security experiment,
which in turn may invoke the adversary for fulfilling SD queries. To ensure that each oracle query completes
before the next query is issued, the adversary may not issue a query while another query is pending. In
effect, the adversary may not use its oracles for computing its responses to SD queries.

We formalize this idea as follows. An adversary is a pair of stateful, randomized algorithms with interfaces
A1(var str Env) 7→ bool and A2(str I,var str Env) 7→ strO. Most games in this paper begin by declaring
a variable Env of type str, which is used to share state between A1 and A2. These games also define an
oracle SD that, on input of a string I, executes O ←← A2(I,var Env) and returns O. When A1 makes a
query to Send or Recv and a PSC algorithm is invoked, the PSC algorithm is given oracle access to SD
for making SD queries. Algorithm A2 may change the value of Env as a side effect, allowing it to convey
information to A1; algorithm A1 may also convey information to A2 by modifying the value of Env .

In the remainder, we will often denote the pair (A1,A2) by A for convenience. We require that each
of these algorithms halt, regardless of coin tosses or oracle responses, in a bounded number of steps that
depends only on the length of their inputs. By convention, the adversary’s runtime includes the time needed
to evaluate its queries. An adversary is called t-time if both A1 and A2 halt in at most t time steps. We
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silently extend this execution model and these conventions to all subsequent security experiments in this
paper.

The PRIV-SR and PRIV-S notions.Refer to the PRIV-SR experiment defined in Figure 2. For a given
PSC CH and challenge bit b, the experiment compactly encapsulates three different notions of privacy, each
associated to a permitted leakage parameter ` ∈ {lensc, len, none}. When ` = lensc, only message-stream
privacy is captured; when ` = len the notion captures privacy of both the message streams and their context;
finally, ` = none adds length-hiding to the list.3

Let A = (A1,A2). The game begins by initializing the adversary state Env , sender state (Mu,Wr),
and receiver state (Re,De). Algorithm A1 is then executed with access to two oracles. The first, Send,
takes as input a 4-tuple of strings (M0, sc0,M1, sc1). It first checks that the values of leak (`,M0, sc0) and
leak (`,M1, sc1) are equal; if not, it returns an indication of invalidity of the query. It then executes Mux and
Write , with SD as the SD oracle, and returns the output (C, γ) to A1. (Recall that A2 may update Env as
a side effect of the SD queries made by Mux and Write .) String C is appended to S, which keeps track of
the sender ciphertext stream. The second oracle, Recv, takes as input a ciphertext fragment C and invokes
(Y,H, α) ←← Read SD(C,var Re), then (M, sc, γ) ←← Demux SD(Y,H, α,var De). If the channel is in-sync
and Y is a prefix of the sender stream S, then the oracle “consumes” Y from the stream and suppresses
the output of M and sc by setting M, sc ← ⊥. (This is necessary because (M, sc) corresponds to an input
to Send and might trivially leak b, depending on the permitted leakage `.) Otherwise, the oracle declares
the channel to be out-of-sync and outputs (M, sc, γ) without suppressing M and sc. After the adversary
interacts with its oracles, it outputs a bit b′, the outcome of the game. We define the advantage A in
attacking CH in the PRIV-SR(`) sense as

Advpriv-sr
CH,` (A) = 2 Pr

b

[
Exppriv-sr

CH,`,b(A) = b
]
− 1 ,

where the probability is over the coins of the game, A1, A2, and the choice of b (implicitly sampled as
b ←← {0, 1}). In this experiment, we track the following adversarial resources: the time-complexity t of the
adversary (that is, the maximum runtime of either A1 or A2), the number of Send queries q1 and the total
length in bits of the inputs of each query µ1, and the number of Recv queries q2 and their total bitlength µ2.
We define the maximum advantage of any adversary with these resources as Advpriv-sr

CH,` (t, q1, q2, µ1, µ2).
A chosen-plaintext (fragment) attack version of PRIV-SR is obtained simply by removing the Recv from

the experiment; we refer to this game as PRIV-S and define the PRIV-S advantage of A in the same way;
as there is no Recv oracle, we drop q2, µ2 from the adversarial resources.

4.3 Integrity

Following FGMP, we consider integrity of both the ciphertext stream (INT-CS) and the plaintext streams
(INT-PS). The first formalizes the conservative goal that the channel (i.e., the ciphertext stream) should
remain in-sync, just as discussed in Section 4.2. The second formalizes a weaker property, namely that the
plaintext streams carried by the channel should remain in-sync.

The INT-CS notion.Refer to the INT-CS experiment defined in Figure 3. It begins just as in the PRIV-
SR game. The Send oracle is similar to the PRIV-SR game, except A1’s queries consist of pairs (M, sc)
instead of a 4-tuple. We keep track of whether the channel is in-sync in the exact same manner. If ever the
out-of-sync Recv oracle outputs a valid message fragment and context, then the game sets a flag win ← 1;
the outcome of the game is the value of win after A1 halts. Define the advantage of A in attacking CH
in the INT-CS sense as Advint-cs

CH (A) = Pr
[
Expint-cs

CH (A) = 1
]
, where the probability is over the coins of

the experiment and of the adversary. We define the function Advint-cs
CH (t, q1, q2, µ1, µ2) as the maximum

advantage of any adversary running in time t, making at most q1 queries to Send and q2 queries to Recv,
and the total bit-length of its queries to Send (resp. Recv) does not exceed µ1 (resp. µ2) bits.

The INT-PS notion.Integrity of the plaintext streams is defined via the INT-PS game in Figure 3. This
game is a bit different than the others in that we do not keep track of whether the ciphertext stream is in-sync;
rather, we are concerned with the input and output plaintext streams. For each stream context sc ∈ {0, 1}∗

3There are other parameters that may be of practical interest. For example, DLFK+ deal with whether the fragment encodes
the end-of-stream [18, Definition 8].
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Expint-cs
CH (A)

1 declare str Env , S,bool sync,win
2 (Mu,Wr ,Re,De)←← Init ( )
3 sync ← 1; ASend,Recv

1 (var Env)
4 return win

Send(M, sc)

5 (X,H,α)←← Mux SD(M, sc,var Mu)
6 (C, γ)←←WriteSD(X,H,α,var Wr)
7 S ← S ‖C
8 return (C, γ)

Recv(C)

9 (Y,H, α)←← Read SD(C,var Re)
10 (M, sc, γ)←← Demux SD(Y,H, α,var De)
11 if sync and Y � S then S ← S%Y
12 else sync ← 0
13 win ← win ∨ (M 6= ⊥ ∧ sc 6= ⊥)
14 return (M, sc, γ)

SD(I)

15 O ←← A2(I,var Env); return O

Expint-ps
CH (A)

16 declare str Env , S[ ], strR[ ],bool win
17 (Mu,Wr ,Re,De)←← Init ( )
18 ASend,Recv

1 (var Env)
19 return win

Send(M, sc)

20 (X,H,α)←← Mux SD(M, sc,var Mu)
21 (C, γ)←←WriteSD(X,H,α,var Wr)
22 Ssc ← Ssc ‖M
23 return (C, γ)

Recv(C)

24 (Y,H, α)←← Read SD(C,var Re)
25 (M, sc, γ)←← Demux SD(Y,H, α,var De)
26 if M 6= ⊥ and sc 6= ⊥ then
27 Rsc ← Rsc ‖M
28 if Rsc 6� Ssc then win ← 1
29 return (M, sc, γ)

SD(I)

30 O ←← A2(I,var Env); return O

Figure 3: left: game for defining ciphertext-stream integrity (INT-CS) for partially specified channel CH. Right:
game for defining plaintext-stream integrity (INT-PS) of CH. Let A = (A1,A2).

queried by the adversary, we keep track of the corresponding input stream Ssc . (That is, Ssc = cat(M),
where M is the sequence of message fragments pertaining to sc asked of Send.) For each sc 6= ⊥ output
by Recv, we keep track of the corresponding output stream Rsc . (That is, Rsc = cat(M), where M is the
sequence of valid message fragments pertaining to sc output by Recv.) The adversary wins if at any point
in the game, it holds that Rsc 6� Ssc for some sc ∈ {0, 1}∗. Define the advantage of A in attacking CH in

the INT-PS sense as Advint-ps
CH (A) = Pr

[
Expint-ps

CH (A) = 1
]
, where the probability is over the coins of the

experiment and of the adversary.

INT-CS 6⇒ INT-PS for PSCs. Traditional results for AE schemes establish an intuitive relationship
between integrity of ciphertexts and plaintexts: that the former is strictly stronger than the latter. See
Bellare and Namprempre [8, Theorem 3.1] in the case of stateless and randomized AE, and FGMP [20,
Appendix C] for stream-based channels. It is perhaps counter-intuitive, then, that INT-CS does not imply
INT-PS in our setting. The reason for this is that we do not require that PSCs be operationally correct in
the security games; indeed, the correctness of the scheme is used in a crucial way in those proofs. We cannot
formalize correctness for PSCs without restricting the SD-oracle in some way, and doing so would reduce
the generality of our results. Nevertheless, in Appendix A, we give a natural definition of correctness for
fully specified channels—like PSCs, but with a fully realized SD-oracle—that extends FGMP’s correctness
condition to the multiplexed setting. With this definition we show something a bit stronger than usual: that
INT-CS implies INT-PS if and only if the SD-oracle is realized correctly.

4.4 Receiver-status simulatability and a generic composition

If a PSC is INT-CS secure, then an efficient attacker can do nothing but deliver the honestly produced
ciphertext stream in the correct order. Thus it is intuitive that any PSC that is both PRIV-S secure and
INT-CS secure will also be PRIV-SR secure, because, in effect, the Recv in the PRIV-SR game is useless.
This is almost true; the wrinkle is that the Recv oracle returns status information in addition to the
message fragment and stream context. As in the FGMP setting, our syntax does not restrict the receiver (in
particular, the demultiplexer) to return just one status message. Moreover, the status message may depend
on the receiver state (of which a PRIV-S adversary would be ignorant), or be influenced by the adversarially
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Expsim-stat
CH,S,b (A)

1 declare str Env , S
2 (Mu,Wr ,Re,De)←← Init ( )
3 b′ ←← ASend,Recv

1 (var Env)
4 return b′

Send(M, sc)

5 (X,H,α)←← Mux SD(M, sc,var Mu)
6 (C, γ)←←WriteSD(X,H,α,var Wr)
7 S ← S ‖C
8 return (C, γ)

Recv(C)

9 if b = 1 then
10 (Y,H, α)←← Read SD(C,var Re)
11 (∗, ∗, γ)←← Demux SD(Y,H, α,var De)
12 else γ ←← SSD(C, S)
13 return γ

SD(I)

14 O ←← A2(I,var Env); return O

Figure 4: the SIM-STAT game for partially specified channel CH.

controlled SD. In this section, we give a notion of security we call receiver-status simulatablity (SIM-STAT)
and show that it, PRIV-S, and INT-CS imply PRIV-SR.

The SIM-STAT notion.The notion naturally captures what the adversary learns from the receiver’s state
by observing the status messages it outputs. It is inspired by the ideas put forward in the subtle AE setting [6]
and naturally generalizes a notion of FGMP. The SIM-STAT game (defined in Figure 4) is a simulation-based
game in which the adversary is asked to distinguish the status information output by the real receiver from
those output by a simulator S. The simulator is given the ciphertext stream S produced by the sender, as
well as the input fragment C, and so it can tell if the channel is in-sync, but it is not given the receiver state.
Informally, security demands that for every efficient adversary, there is an efficient simulator such that the
adversary cannot distinguish real status messages from fake ones with non-negligible probability.

The game is associated to adversary A = (A1,A2), a challenge bit b, and a receiver-status simulator S.
On input of C, if b = 1, then oracle Recv executes the usual receiver code and outputs γ; otherwise, the
oracle executes S on input of (C, S), where S is the sender stream (recorded by Send), and with oracle
access to SD for servicing SD requests. When S halts and outputs a string γ, the oracle outputs γ. We
define the advantage of A in attacking CH with simulator S in the SIM-STAT sense as

Advsim-stat
CH,S (A) = 2 Pr

b

[
Expsim-stat

CH,S,b (A) = 1
]
− 1 .

Define the maximum advantage of any t-time adversary with resources (q1, q2, µ1, µ2) in winning the game
instantiated with simulator S as Advsim-stat

CH,S (t, q1, q2, µ1, µ2). We require that S halts, regardless of its current
state, internal coin tosses, and the result of its SD requests, in a bounded number of time steps. Its runtime
also accounts for the time needed to evaluate its oracle queries; thus, its runtime depends on the time A
takes to compute its SD responses.

PRIV-S ∧ INT-CS ∧ SIM-STAT⇒ PRIV-SR.We prove that for any `, security in the sense of PRIV-S(`),
INT-CS, and SIM-STAT suffice for PRIV-SR(`).

Theorem 1. Let ` ∈ {lensc, len, none} and let CH be a PSC. For every t, s, q1, q2, µ1, µ2 ∈ N and s-time
simulator S it holds that

Advpriv-sr
CH,` (t, r) ≤Advpriv-s

CH,` (t+O(q1 + sq2), q1, µ1)

2Advint-cs
CH (t̃, r) + 2Advsim-stat

CH,S (t̃, r) ,

where t̃ = t+O(q1 + q2) and r = (q1, q2, µ2, µ2).

This is analogous to, but much more general than [20, Theorem 4.5]. It also confirms a conjecture of
FGMP; see [20, Remark 4.6]. The idea of the proof is to construct a PRIV-S adversary B from a given
PRIV-SR adversary A and simulator S that simulates A’s Recv queries using S. What we show is that
INT-CS and SIM-STAT (with respect to S) security suffice for this reduction to work and to obtain the
bound.

11



G1(A) G2(A)

1 declare str Env , S, bool sync, win, b
2 (Mu,Wr ,Re,De)←← Init ( )
3 b←← {0, 1}; sync ← 1
4 b′ ←← ASend,Recv

1 (var Env)
5 return (b = b′)

Send(M0, sc0,M1, sc1)

6 L0 ← leak (`,M0, sc0)
7 L1 ← leak (`,M1, sc1)
8 if L0 6= L1 then return (⊥,⊥)
9 (X,H,α)←← Mux SD(Mb, scb,var Mu)

10 (C, γ)←←WriteSD(X,H,α,var Wr)
11 S ← S ‖C ; return (C, γ)

Recv(C)

12 (Y,H, α)←← Read SD(C,var Re)
13 (M, sc, γ)←← Demux SD(Y,H, α,var De)
14 if sync and Y � S then
15 S ← S%Y ; M, sc ← ⊥
16 else sync ← 0
17 win ← win ∨ (M 6= ⊥ ∧ sc 6= ⊥)

18 if win then M, sc ← ⊥
19 return (M, sc, γ)

G3(A)

20 declare str S, bool b
21 (Mu,Wr ,Re,De)←← Init ( )
22 b←← {0, 1}
23 b′ ←← ASend,Recv

1 (var Env)
24 return (b = b′)

Send(M0, sc0,M1, sc1)

25 L0 ← leak (`,M0, sc0)
26 L1 ← leak (`,M1, sc1)
27 if L0 6= L1 then return (⊥,⊥)
28 (X,H,α)←← Mux SD(Mb, scb,var Mu)
29 (C, γ)←←WriteSD(X,H,α,var Wr)
30 S ← S ‖C ; return (C, γ)

Recv(C)

31 M, sc ← ⊥; γ ←← SSD(S,C)
32 return (M, sc, γ)

Figure 5: games G1, G2, and G3 for proof of Theorem 1.

Proof of Theorem 1. Fix t, s, q1, q2, µ1, µ2 ∈ N and let r = (q1, q2, µ1, µ2). Let A = (A1,A2) be a t-time
PRIV-SR adversary with resources r and let S be an s-time simulator. We exhibit an INT-CS adversary B =
(B1,B2), a SIM-STAT adversary C = (C1, C2), and a PRIV-S adversary D = (D1,D2) such that

Advpriv-sr
CH,` (A) ≤ 2Advint-cs

CH (B) + 2Advsim-stat
CH,S (C) + Advpriv-s

CH,` (D) ,

where B and C run in time t+O(q1 + q2) and each uses query resources r, and D runs in time t+O(q1 +sq2)
and uses resources (q1, µ1).

The proof is by a game-playing argument; refer to games G1,G2, and G3 defined in Figure 5. (Note
that the SD oracle is not explicitly defined in these games; it has the same definition as in the PRIV-SR
game.) Game G1 is the PRIV-SR notion embellished with a book-keeping flag win, whose value is set on
line 5:17. However, the value of win does not affect the distribution of oracle outputs (or the game) in any

way. So for any A and a uniform random b ∈ {0, 1}, the random variables G1(A) = 1 and Exppriv-sr
CH,`,b(A) = b

are identically and independently distributed.
Game G2, which includes the boxed instruction at line 5:18, is identical to game G1 until the flag win

gets set. By the Fundamental Lemma of Game Playing [10], we have

Pr
b

[
Exppriv-sr

CH,`,b(A) = b
]
≤Pr

[
G2(A) = 1

]
+

Pr
[
G2(A) sets win

]
.

(1)

Next, define B Send,Recv
1 (var Env) as follows. It samples a bit b, then executes b′ ←← ASend′,Recv′

1 (var Env).
On input of (M0, sc0,M1, sc1), oracle Send′ checks that leak (`,M0, sc0) equals leak (`,M1, sc1). If not, it
outputs (⊥,⊥); otherwise, it asks (C, γ)←← Send(Mb, scb) and outputs (C, γ). On input of C, oracle Recv′

asks (M, sc, γ)←← Recv(C) and outputs (M, sc, γ). Finally, when A1 halts, algorithm B1 halts. Next, define
algorithm B2(I,var Env) by executing O ←← A2(I,var Env) and returning O. It is clear by the definition
of the INT-CS game that if A sets win in its game, then B also sets win in its game. Hence, for any A,

Pr
[
G2(A) sets win

]
≤ Pr

[
Expint-cs

CH (B) sets win
]

= Advint-cs
CH (B) .

(2)

12



Observe that in game G2 the Recv oracle always returns (⊥,⊥, γ), i.e., M and sc are always set to
⊥. Thus, if the status message γ were predictable without knowing the reader or demultiplexer states (Re
and De resp.), then game G2 could be simulated by a PRIV-CPA adversary, because the Recv oracle in G2

would be simulatable.
With this observation, we create game G3 from G2 by replacing the entire Recv code with the statement

“M, sc ← ⊥; γ ←← SSD(S,C)”, where S is the given simulator for the SIM-STAT security experiment. We
also remove the win and sync flags, as they are no longer relevant. The definition of game G3 leads
us to define algorithm C Send,Recv

1 (var Env) as follows. It samples a bit b ←← {0, 1} and executes b′ ←←
ASend′,Recv′

1 (var Env). Queries to Send′ are answered just as they were in the definition of B1 above. On
input of C, oracle Recv′ asks γ ←← Recv(C) and outputs (⊥,⊥, γ). Finally, when A1 halts and outputs b′,
algorithm C1 halts and outputs (b = b′). Define C2 just as we defined B1 above. Then for any A, S,
and d ∈ {0, 1},

Pr
[
G3−d(A) = 1

]
= Pr

[
Expsim-stat

CH,S,d (C) = 1
]

(3)

and so
Pr

[
G2(A) = 1

]
=

(
Pr

[
G2(A) = 1

]
− Pr

[
G3(A) = 1

])
+ Pr

[
G3(A) = 1

]
= Advsim-stat

CH,S (C) + Pr
[
G3(A) = 1

]
.

(4)

Lastly, we define D Send
1 (var Env) as follows. Initialize str S and execute b′ ←← ASend′,Recv′

1 (var Env).
On input of (M0, sc0,M1, sc1), Send′ asks (C, γ) ←← Send(M0, sc0,M1, sc1), computes S ← S ‖C, and
outputs (C, γ). On input of C, oracle Recv′ executes γ ←← SSD(C, S) and outputs (⊥,⊥, γ). Finally,
when A1 outputs b′, halt and output b′. Next, define D2 just as we defined C2 and B2 above. From the
definition of G3, it is clear that for any A,

Pr
[
G3(A) = 1

]
= Pr

b

[
Exppriv-s

CH,`,b(D) = b
]
. (5)

Summarizing, we have that for every adversary A and simulator S, there exist adversaries B, C, and D such
that

Advpriv-sr
CH,` (A) = 2

(
Pr
b

[
Exppriv-sr

CH,`,b(A) = b
])
− 1

≤ 2
(

Pr
[
G2(A) = 1

]
+ Advint-cs

CH (B)
)
− 1

≤ 2
(
Advsim-stat

CH,S (C) + Pr
[
G3(A) = 1

]
+ Advint-cs

CH (B)
)
− 1

= 2Advsim-stat
CH,S (C) + Advpriv-s

CH,` (D) + 2Advint-cs
CH (B) .

(6)

The claimed bound follows. To complete the proof, we note that B and C use query resources r and D
uses query resource (q1, µ1). Since simulating each query requires O(1) time, adversaries B and C run in
time t+O(q1 + q2), and D runs in time t+O(q1 + sq2).

Remark. We emphasize that, although we have used SIM-STAT to prove a generic composition result, the
notion is not merely a technical one. The intuition it captures is important: distinguishable error messages
have been exploited repeatedly [36, 17, 27, 3] to attack AE-powered secure-channel protocols. As a result,
there has been a considerable push in the cryptographic community to make addressing this subtlety a first
class consideration [14, 22, 6].

5 The TLS 1.3 record layer

Our study of partially specified channels owes much to a desire to analyze the TLS 1.3 record layer, in
particular without eliding its optional features and unspecified details. So, we begin this section with an
overview of some of its salient features, and a discussion of certain design choices that may have implications
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when the record layer is viewed through the lens of our security notions. This is followed (in Section 5.2)
by a decomposition of the record layer into its component building blocks. Then we show how to securely
compose these into a PSC that nearly formalizes the specification; we propose a small change to the standard
that significantly improves flexibility of the scheme.

Note about the draft. This analysis pertains to draft 23 [32], current at the time of writing. Note that
the change to the record layer we suggest here will be adopted in the final version of the protocol [30].

5.1 Overview

TLS can be viewed as three client-server protocols executing concurrently: the handshake protocol handles
(re-)initialization of the channel; the record protocol is used to exchange application data between the
client and the server; and the alert protocol is used to close the channel. The record layer refers to the
mechanism used to protect flows between client and server in each sub-protocol. Each of these flows is
authenticated and encrypted as soon as the client and server have exchanged key material. (Usually the only
unprotected messages are the initial client hello and part of the server hello.) Intuitively, each of these flows
constitutes a logical data stream, and the record layer is a means of multiplexing these streams over a single
communications channel (e.g., a TCP connection). Among the record layer’s many design criteria is the need
to maximize flexibility for implementations. This means, somewhat paradoxically, that the specification does
not fully specify every aspect of the construction. Rather, the record-layer specification [32, Section 5] defines
some core functionalities that must be implemented and provides a set of parameters for compliant, fully
realized schemes.

Content types. Each stream has an associated content type. Available types are handshake, application
data, alert, and change ciphersuite spec (CCS); additional content types may be added subject to certain
guidelines [32, Section 11]. If the client or server receives a message of unknown content type, it must send
an unexpected message alert to its peer and terminate the connection. The CCS type is only available for
compatibility with systems accustomed to processing records for TLS 1.2 and earlier. Usually a CCS message
must be treated as an unexpected message, but under specific conditions, it must simply be dropped.

Records. Plaintext records encode the content type, the stream fragment, the length of the fragment
(which may not exceed 214 bytes), and an additional field called legacy record version, whose value is fixed
by the specification. (It is only present for backwards compatibility.) All flows, including unprotected ones
(the initial handshake message and CCS messages) are formatted in this manner. The streams of data are
transformed into a sequence of records; stream fragments of the same content type may be coalesced into a
single record, but the record boundaries are subject to the following rules [32, Section 5.1]:

• Handshake, no interleaving: if two records correspond to a single handshake message, then they must
be adjacent in the sequence of records.

• Handshake, no spanning a key change: if two records correspond to a single handshake message, then
they both must precede the next key change (defined in Section 5.1). If this condition is violated, then
the second record must be treated as an unexpected message.

• Handshake and alert, no zero-length messages: only application data records may have zero length.

• One alert per record: alert messages must not be fragmented across records, and a record containing an
alert message must contain only that message.

Additional content types must stipulate appropriate rules for record boundaries.
Records are optionally padded and then protected using an AEAD scheme [32, Sections 5.2–5.4]. First,

the record R is encoded as a string X = R. fragment ‖ 〈R.type 〉8 ‖ (〈0〉8)
p

for some p ∈ N such that the
length of the ciphertext is less than 214 + 256 bytes. The padded record X is encrypted with associated
data ε (the empty string) and with a nonce N that we will define in a moment. The protected record is
defined as

type struct { int opaque type, legacy record version, length,
str encrypted record } TLSCiphertext
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where opaque type has a fixed value (23), legacy record version has a fixed value (771, or 0x0303 in hexadec-
imal), and length is the length of encrypted record in bytes. The nonce N is computed from a sequence
number seqn and an initialization vector IV [32, Section 5.3]; both the key K and IV are derived from a
shared secret [32, Sections 7.1–7.2] using an extract-and-expand key-derivation scheme [24]. The length of
the IV is determined from the permitted nonce lengths of the AEAD scheme.4 The nonce N is computed
as IV ⊕ 〈seqn 〉|IV |, where 0 ≤ seqn ≤ 264 − 1. Note that the client and server each uses a different key and
IV for sending messages to the other; thus, each constitutes a unidirectional channel.

Usage limits, key changes, and protocol-level side-effects. The spec mandates that the key
be changed prior to the sequence number reaching its limit of 264 − 1 in order to prevent nonce reuse. It
also recommends that implementations keep track of how many bytes of plaintext have been encrypted and
decrypted with a single key and to change the key before the “safety limit” of the underlying AEAD scheme
has been reached.

As mentioned above, upon receipt of a message of unknown type, the receiver should send its peer an
unexpected message alert message. The alert stream is generally used to notify the recipient that the peer
is tearing down its connection and will no longer write to the channel. There are closure alerts and error
alerts [32, Section 6]. Both signal the tear down of the writer state, but they provide different feedback.
The unexpected message alert is an example of the latter. Error alerts are also used to indicate things like
the ciphertext is inauthentic, or the record is malformed. An example of the former is close notify, which
indicates that the receiver should not expect any more data from the peer, but that no error occurred.

The key and IV change during the normal course of the protocol. An update is always a side effect of the
handshake protocol. During transmission of application data, an update is signaled by a particular handshake
message described in [32, Section 4.6.3], which informs the receiver that the sender has reinitialized its state
and so must do so as well. The key change re-initializes the state of the sender and receiver with a fresh key
and IV (derived from the shared secret), and the sequence number is set to 0 [32, Section 5.3]. Therefore, no
sender or receiver state (that is, no state that pertains to the record layer) is held over after re-initialization
of the channel.

Observations about the standard. The standard defines some core functionalities, but leaves many design
choices up to the implementer; our analysis aims to establish what security the record layer provides given
this level of flexibility. Our approach is shaped by two questions. First, which fully specified components
can be altered without impacting security? Second, which unspecified or partially specified components are
security critical? We begin with a couple of observations.

Record boundaries may leak the content type. The content type of each record is encrypted along
with the fragment. The intent, presumably, is to hide both the content and its type, but the record boundary
rules stipulated by the standard make hiding the type unachievable in general. Consider the one alert per
record rule, for example. The implementation is allowed to coalesce fragments of the same type, but a record
containing an alert must contain only that alert. Thus, the length of each record output by the sender may
(depending on the implementation) leak whether the record pertains to an alert or to application data. Of
course, the standard does permit implementations that hide the content type of each record, but this is quite
different from mandating this property. The take away is that encrypting the content type does not imply its
indistinguishibility, since the record boundaries depend on it.

Associated data is unauthenticated. One aspect of the scheme that is precisely defined is the for-
mat of the ciphertext transmitted on the wire. Each begins with a header composed of opaque type,
legacy record version, and length. The values of the first two fields are fixed by the spec, and the last
field is crucial for correct operation, since it informs the receiver of how many bytes to read next. What
should the receiver do if the header is different than specified? Changing the length field bits should result
in the next ciphertext either being too short or too long, and so would be deemed inauthentic with over-
whelming probability. If opaque type or legacy record version is mangled, then it should be safe to proceed
since this does not affect the inputs to decryption. However, doing so would be deemed an attack in our
ciphertext-integrity setting; changing these bits means the stream is out-of-sync, but since they are not au-
thenticated (encryption uses ε for associated data), the receiver would successfully decrypt. In fact, checking
the opaque type and legacy record version fields is left optional by the spec: implementations MAY check

4The scheme must specify limits for valid nonce lengths per RFC 5116 [25]. The maximum must be at least 8 bytes.
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Exppriv
AE,b(A) Expint

AE(A)

1 X ,Q ← ∅; K ←← K
2 res ←← AEnc res ← 0; AEnc,Dec

3 return res

Enc(N,A,M)

4 if N ∈ X return ⊥
5 C ← EncN,AK (M)

6 if b = 0 then C ←← {0, 1}λ(|M|)

7 Q ← Q∪ {(N,A,C)}; X ← X ∪ {N}
8 return C

Dec(N,A,C)

9 M ← DecN,AK (C)
10 if M 6= ⊥ and (N,A,C) 6∈ Q then res ← 1
11 return M

Expmpriv-s
M,`,b (A) Expsim-mstat

M,S,b (A)

12 Env ← ε; (mx , dx )←← Init ( )

13 b′ ←← AMux
1 (var Env)

14 b′ ←← ADemux
1 (var Env)

15 return b′

Mux(M0, sc0,M1, sc1)

16 L0 ← leak (`,M0, sc0)
17 L1 ← leak (`,M1, sc1)
18 if L0 6= L1 then return (⊥,⊥)
19 (X, γ)←← Mux SD(Mb, scb,var mx )
20 return (|X|, γ)

Demux(X)

21 if b = 1 then (∗, ∗, γ)←← Demux SD(X,var dx )
22 else γ ←← SA(|X|)
23 return γ

SD(I)

24 O ←← A2(I,var Env); return O

Figure 6: left: security games PRIV and INT for AEAD scheme AE = (Enc ,Dec , λ) with key space K. Right:
security games mPRIV-S and SIM-mSTAT for partially specified stream multiplexerM = (Init ,Mux ,Demux ). The
former has an associated permitted leakage parameter ` ∈ {lensc, len, none}; procedure leak is as defined in Figure 2.

these fields are correct and abort the connection if not [32, Section 5.2]. This presents us with a dilemma:
if we leave this choice up to the specification details, then there is a trivial INT-CS attack, and so in order
to salvage security, we need to lift this “MAY” to a “MUST”.

This dilemma points to something rather strange about the record layer’s design: something that ought
not be security critical—in particular, the value of the delimiter bits—is security critical. Indeed, this
observation motivates our partially specified viewpoint. To formalize the idea that the value of the delimeter
bits should not impact security, we simply let the specification details choose these bits itself. This is safe
as long as the bits are authenticated and do not depend on sensitive values. We will formalize this idea in
our PSC in Section 5.3.

Remark. An alternative conclusion is that this vulnerability is only an artifact of our strong adversarial
model; mangling the delimiter bits should not affect the inputs to decryption, and so does not constitute a
“real attack” on privacy or integrity in an intuitive sense. To this point we offer a warning: this intuition
is correct only if down-stream handling of the plaintext is independent of the contents of these fields. Since
such behavior is beyond the scope of the TLS standard (and even our security model), these legacy fields
constitute an attack surface for implementations. The risk is not inconsiderable, as it is difficult to predict
how systems will evolve to make use of TLS, and of these bits in particular. Indeed, they owe their very
existence to the need to maintain compatibility with older systems.

5.2 The building blocks

In this section we formalize the core components of the record layer; our aim is to sweep all but these
building blocks into the specification details. The first primitive, called a stream multiplexer, captures the
non-cryptographic functionality of the underlying channel. It transforms the data streams into a sequence
of channel fragments (i.e. records) such that for each stream context (i.e. content type), the output on
the receiver side is a prefix of the input on the sender side. TLS offers a great deal of flexibility with
respect to the stream multiplexer’s operation; the flip side is that design choices here impact security of
the overall construction. (Recall the discussion of record boundaries in Section 5.1.) Thus, it will be useful
to consider stream multiplexers that are only partially specified. The remaining primitives are a scheme
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for authenticated encryption with associated data and a method of generating nonces. These are the core
cryptographic functionalities and must be implemented correctly; as such, we will require these to be fully
specified.

Stream multiplexers. First, a partially specified stream-multiplexer is a triple M = (Init ,Mux ,Demux )
defined as follows.

• Init ( ) 7→ (str mx , dx ). Generates the initial state of the stream multiplexer (used by the sender) and
demultiplexer (used by the receiver).

• MuxO(strM, sc,var str mx ) 7→ (strX, γ). Takes as input a plaintext fragment M , its stream con-
text sc, and the current state mx , and returns a channel fragment X and a status message γ.

• DemuxO(strX,var str dx ) 7→ (strM, sc, γ). Takes a channel fragment X and the current state dx and
returns a plaintext fragment M , its stream context sc, and the status γ.

The specification details are provided by the oracle O. Our intention is to capture only non-cryptographic
functionalities with stream multiplexers. (Of course, M may, in principal, use some sort of cryptographic
primitive, or even output encrypted records.) In order to facilitate a rigorous analysis of how design choices
here impact security of the channel overall, we formulate two security properties for partially specified
multiplexers. Both are defined in Figure 6.

The mPRIV-S notion. The first captures an adversary’s ability to discern information about the inputs
to Mux given (information about) its outputs. Like the PRIV-S game (Section 4.2), the mPRIV-S game is
parameterized by the permitted leakage `, one of lensc, len, or none (see Figure 2), and a challenge bit b. We
again formalize the adversary as a pair of algorithms (A1,A2). The first, A1, is given an oracle Mux with
the same interface as Send in the PRIV-S game. The oracle invokes procedure Mux on inputs (Mb, scb)
(and with oracle access to SD for handling SD requests, which in turn invokes A2), and the adversary is
asked to guess b based on the outcome of its queries. Where the games differ, however, is in the information
available to the adversary. Rather than return (X, γ) directly, the oracle returns γ and only the length of X.
This captures a much weaker property than usual indistinguishibility: rather than insisting (X, γ) not leak
anything beyond L = leak (`,M, sc), we insist only that (|X|, γ) not leak anything beyond L. Define the
advantage of A = (A1,A2) in attacking M in the mPRIV-S(`) sense as

Advmpriv-s
M,` (A) = 2 Pr

b

[
Expmpriv-s

M,`,b (A) = b
]
− 1 .

Let Advmpriv-s
M,` (t, q, µ) denote the maximum advantage of any t-time adversary making at most q queries

to Mux with total bit-length at most µ.

The SIM-mSTAT notion. The second notion captures simulatability of the status message output
by Demux . It is associated with a simulator S and a bit b. After initialization, the adversary is given
access to an oracle Demux. On input of X, if b = 1, then the oracle executes procedure Demux on input X
and returns the status message; otherwise it executes the simulator S on input |X| and with access to SD for
servicing SD requests. Define the advantage of A in attackingM in the SIM-mSTAT sense with simulator S
as

Advsim-mstat
M,S (A) = 2 Pr

b

[
Expsim-mstat

M,S,b (A) = b
]
− 1 .

Let Advsim-mstat
M,S (t, q, µ) denote the maximum advantage of any t-time adversary making q queries to Demux

with total bit-length at most µ.

AEAD schemes. We describe the syntax for authenticated encryption with associated data as prescribed
by the spec [25]. An AEAD scheme is a triple AE = (Enc ,Dec , λ). The last element is a function λ : Z→ Z
which describes the ciphertext length as a function of the plaintext length; we insist that λ is a bijection.
Algorithms Enc and Dec are both deterministic and have the following interfaces:

• Enc(strK,N,A,M) 7→ str C. Maps a key K, nonce N , associated data A, and plaintext M to a
ciphertext C such that if C 6= ⊥, then |C| = λ(|M |) ≥ |M |.

• Dec(strK,N,A,C) 7→ strM . Maps K, N , A, and C to M such that if M 6= ⊥, then λ−1(|C|) = |M |.
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We may denote the execution of Enc on (K,N,A,M) by EncN,A
K (M). (Similarly for Dec .) We respec-

tively define the key, nonce, associated-data, and message space as the sets K,N ,A,M ⊆ {0, 1}∗ for
which Enc(K,N,A,M) 6= ⊥ if and only if (K,N,A,M) ∈ K × N × A × M; correctness requires that
Dec(K,K,N,A,Enc(K,N,A,M)) = M for every such (K,N,A,M). (This condition implies that AE is
both correct and tidy in the sense of Namprempre, Rogaway, and Shrimpton [26].)

We will use standard notions of indistinguishibility under chosen-plaintext attack (PRIV) and integrity of
ciphertexts (INT) as defined in Figure 6. As usual, the indistinguishibility game requires that the adversary
not repeat a nonce. The adversary for the PRIV and INT games is simply a randomized algorithm A( ) 7→
bool . that expects access to one or more oracles. To distinguish it from other adversaries in this paper, we
will refer to it as an AEAD adversary. Define the PRIV advantage of adversary A in attacking AE as

Advpriv
AE (A) = 2 Pr

b

[
Exppriv

AE,b(A) = b
]
− 1

and let Advpriv
AE (t, q, µ) denote the maximum advantage of any t-time adversary making at most q queries

with total bit-length µ. Define the INT advantage of adversary A in attacking AE as

Advint
AE(A) = Pr

[
Expint

AE(A) = 1
]

and let Advint
AE(t, q1, q2, µ1, µ2) be the maximum advantage of any t-time adversary making at most q1

(resp. q2) queries to Enc (resp. Dec) with total bit-length at most µ1 (resp. µ2).

Nonce generators. Finally, a nonce generator is a pair of algorithmsN = (Init ,Next ), the first randomized
and the second deterministic.

• Init ( ) 7→ str ng . Initializes the state of the generator.

• Next (var str ng) 7→ strN . Computes the next nonce N given the current state ng and updates the
state.

We associate to N and an integer t ∈ N a procedure Coll , which first executes ng ←← Init ( ), then computes
Ni ← Next (var ng) for each i ∈ [t]. Finally, if for every 1 ≤ i < j ≤ t it holds that Ni 6= Nj , then the
procedure outputs 0; otherwise it outputs 1. Define collN (t) = Pr

[
CollN (t) = 1

]
.

5.3 The partially specified record layer

We are now ready to formalize the record layer specification. Refer to the PSC TLS[M,AE ,N ] defined
in Figure 7. It differs from the standard (draft 23) in one small, but security-critical way: the standard
mandates that the AEAD scheme be invoked with ε as the AD, whereas in our scheme, the string A—the
record header—is used as AD. To fully comply with the spec, one would replace A with ε on lines 7:21
and 7:39. However, this leads to a trivial ciphertext stream integrity attack: suppose the sender outputs
Y = A ‖Y ′. Then the adversary can deliver A∗ ‖Y ′ to the receiver for some A∗ 6= A where |A∗| = |A|. If Y
is consumed by the receiver, then the channel will be deemed out of sync, but the output of the receiver
will be unaffected. We note that this attack is not an artificat of our security model. The strength of our
model—and hence the possibility of this attack—is inherited from the stream-based channel setting; if one
were to directly extend FGMP’s syntax and security notions so that they encompass multiplexing, then the
record layer woul have the same problem.

The procedure Mux invokes M (7:14) in order to compute the next channel fragment (i.e. record). It
is designed to never operate on 0-length records (7:15); if the first input X to Write is undefined (i.e.,
X = ε), then it outputs a 0-length ciphertext fragment (7:20). The data on the wire is A ‖Y ′, where Y ′ is
the ciphertext and A is a string chosen by the SD (7:19).

Defragmentation of the ciphertext is performed by Read and is also left largely up to the SD: first, the
ciphertext fragment is appended to a buffer buf , then the SD is invoked to decide how much of the buffer
to dequeue next. The oracle is given the contents of the buffer and outputs an integer c. It also sets a
flag drop. If Y = buf [:c] 6= � ∧ ¬drop holds, then the next nonce is computed and output along with Y .
Otherwise the reader outputs Y = � and N = �. (Note that the drop flag permits the rules for handling CCS
messages; such a message will never be produced by the sender, but it may be transmitted to the receiver.)
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//The sender state.
1 type struct { str ng ,mx }Muxer
2 type struct { strK }Writer

//The receiver state.
3 type struct { str ng , buf }Reader
4 type struct {
5 strK, dx , bool sync
6 }Demuxer

Init ( )

7 declare Muxer Mu, Writer Wr
8 declare Reader Re, Demuxer De
9 (Mu.mx ,De.dx )←←M.Init ( )

10 Mu.ng ←← N .Init ( ); Re.ng ← Mu.ng
11 Wr .K ←← K; De.K ←Wr .K
12 De.sync ← 1
13 return

(
Mu,Wr ,Re,De

)
MuxO(M, sc,varMuxer Mu)

14 (X,α)←←M.MuxO(M, sc,var Mu.mx )
15 if X = � then return (�, �, α)
16 N ← N .Next (var Mu.ng)
17 return (X,N,α)

WriteO(X,N,α,varWriter Wr)

18 declare strA, γ
19 〈A, γ〉 ←← O(〈write, ready, |X|, α〉)
20 if X = � then return (�, γ)
21 Y ′ ← AE .Enc(Wr .K,N,A,X)
22 if Y ′ = ⊥ or O(〈parse, A ‖Y ′〉) 6= 〈|A|+|Y |, |A|〉 then
23 γ ←← O(〈write, invalid ptxt〉)
24 return (�, γ)
25 return (A ‖Y ′, γ)

ReadO(C,var Reader Re)

26 declare str α, int c, bool drop
27 Re.buf ← Re.buf ‖C; 〈c, 〉 ← O(〈parse,Re.buf 〉)
28 〈drop, α〉 ←← O(〈read, drop,Re.buf 〉)
29 Y ← Re.buf [:c]; Re.buf ← Re.buf %Y
30 if Y = � or drop then return (�, �, α)
31 N ← N .Next (var Re.ng)
32 return (Y,N, α)

DemuxO(Y,N, α,var Demuxer De)

33 declare strX, γ, int a
34 γ ←← O(〈demux, ready, |Y |, α〉)
35 if (Y = � and γ 6= �) or ¬De.sync
36 then return (⊥,⊥, γ)
37 else if Y 6= � then
38 〈 , a〉 ← O(〈parse, Y 〉); A← Y [:a]; Y ′ ← Y %A
39 X ← AE .Dec(De.K,N,A, Y ′)
40 if X = ⊥ then
41 De.sync ← 0
42 γ ←← O(〈demux, invalid ctxt〉)
43 return (⊥,⊥, γ)
44 (M, sc, γ)←←M.DemuxO(X,var De.dx )
45 return (M, sc, γ)

Figure 7: partially specified channel TLS[M,AE ,N ] = (Init ,Mux ,Write ,Read ,Demux ) composed of a partially
specified stream multiplexer M, an AEAD scheme AE with key space K, and a nonce generator N .

Presumably, Y is equal to A ‖Y ′, where Y ′ is a ciphertext and A is a string chosen by the SD. On input
of Y , the SD is invoked to determine the length of A (7:34). If Y 6= �, then string Y ′ is decrypted (using A
as associated data) and the resulting channel fragment X (i.e. record) is input to the stream demultiplexer.

If Demux ever encounters an invalid ciphertext, then thereafter it never outputs a valid fragment (7:34
and 7:40–42). It uses a flag sync to track this. If the receiver is in-sync and Y is 0-length, then Demux may
poll the stream demultiplexer to see if a message fragment is available for outputting. (That is, line 7:43
may be invoked on X = ε.) Usage limits are enforced by the SD (7:19 and 7:34).

Our construction captures all protocol-level side effects in the record layer specification [32] with the
exception of any sender or receiver state carried over after re-initialization of the channel. Indeed, our
security model does not encompass re-initialization, since the game is defined for an already initialized
channel. We made this choice because the record layer was designed so that no state is carried across key
changes. (See the discussion Section 5.1.)

Security. Let CH = TLS[M,AE ,N ] be as defined in Figure 7. Our first step is to show that PRIV of AE
and mPRIV-S of M imply PRIV-S for CH:

Theorem 2. Let ` ∈ {lensc, len, none}. For every t, q, µ ∈ N and t̃ = t+O(q) it holds that

Advpriv-s
CH,` (t, q, µ) ≤ Advmpriv-s

M,` (t̃, q, µ) + 2Advpriv
AE (t̃, q, µ) + 2 collN (q) .
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G1(A)

1 declare bool coll
2 Env ← ε; (Mu,Wr ,Re,De)←← Init ( )
3 X ← ∅; coll ← 0
4 b←← {0, 1}; b′ ←← ASend

1 (var Env)
5 return (b = b′)

Send(M0, sc0,M1, sc1)

6 L0 ← leak (`,M0, sc0); L1 ← leak (`,M1, sc1)
7 if L0 6= L1 then return (⊥,⊥)
8 (X,N, γ)←← Mux SD(Mb, scb,var Mu)
9 (C, γ)←←WriteSD(X,N,α,var Wr)

10 return (C, γ)

WriteSD(X,N,α,var Wr) G1 G2

11 declare strA, γ
12 〈A, γ〉 ←← SD(〈write, ready, |X|, α〉)
13 if X = � then return (�, γ)
14 Y ′ ← AE .Enc(Wr .K,N,A,X)

15 if N ∈ X then coll ← 1 ; Y ′ ← ⊥
16 X ← X ∪ {N}
17 if Y ′ = ⊥ or SD(〈parse, A ‖Y ′〉) 6= 〈|A|+|Y |, |A|〉
18 γ ←← SD(〈write, invalid ptxt〉)
19 return (�, γ)
20 return (A ‖Y ′, γ)

WriteSD(X,N,α,var Wr) G2 G3

21 declare strA, γ
22 〈A, γ〉 ←← SD(〈write, ready, |X|, α〉)
23 if X = � then return (�, γ)

24 Y ′ ← AE .Enc(Wr .K,N,A,X)

25 Y ′ ←← {0, 1}λ(|X|)

26 if N ∈ X then coll ← 1; Y ′ ← ⊥
27 X ← X ∪ {N}
28 if Y ′ = ⊥ or SD(〈parse, A ‖Y ′〉) 6= 〈|A|+|Y |, |A|〉
29 γ ←← SD(〈write, invalid ptxt〉)
30 return (�, γ)
31 return (A ‖Y ′, γ)

Figure 8: Bottom: games G1, G2, and G3 for the proof of Theorem 2.

Proof. Fix t, q, µ ∈ N and let A = (A1,A2) be a t-time, PRIV-S adversary with query resources (q, µ).

We exhibit an mPRIV-S adversary B = (B1,B2) and a PRIV adversary C such that Advpriv-s
CH,` (A) ≤

Advmpriv-s
M,` (B) + 2Advpriv

AE (C) + 2 collN (q), where each runs in time t + O(q) and and uses the same query
resources.

Let λ denote the ciphertext-length function associated with AE . Refer to game G1 defined in Figure 8.
(Just as in the proof of Theorem 1, we have not explicitly defined the SD oracle; refer to Figure 2 for
its definition.) One can easily check that for any A and a uniformly chosen b, the events G1(A) = 1

and Exppriv-s
CH,`,b(A) = b are identically distributed. In game G2, the implementation of procedure Write is

modified so that its output differs from game G1 if the flag coll gets set (8:15). By the Fundamental Lemma
of Game Playing [10],

Pr
[
G1(A) = 1

]
≤ Pr

[
G2(A) = 1

]
+ Pr

[
CollN (q) = 1

]
. (7)

In G2, if a nonce N input to procedure Write is ever repeated, then the output Y ′ of the invocation of
AE .Enc gets set to ⊥ (8:15). Hence, the semantics of Y ′ is the same as the output of Enc(N,A,X) in the
PRIV game for b = 1. In game G3, the invocation of AE .Enc is replaced with uniformly-chosen, λ(|X|)-bit
string.

Adversary CEnc simulates A in game G2 as follows. It first initializes the adversary and multiplexer state
by setting Env ← ε and (Mu, ∗, ∗, ∗)←← Init ( ), then samples a bit b. It then executes b′ ←← ASend′

1 (var Env),
where Send′ is defined like Send, except the invocation of AE .Enc(Wr .K,N,A,X) (8:14) is replaced
with Enc(N,A,X). (When Write calls SD, it invokes A2 as usual.) When A1 halts, adversary C halts and
outputs (b = b′). By construction, we have that

Pr
[
Exppriv

AE,d(C) = d
]

= Pr
[
G3−d(A) = 1

]
(8)

for each d ∈ {0, 1}, which implies, by a standard conditioning argument, that

Pr
[
G2(A) = 1

]
≤ Pr

[
G3(A) = 1

]
+ Advpriv

AE (C) . (9)

Finally, adversary B is defined in Figure 9. It simulates A in a game G6, which we define in a moment.
In the remainder, we will show that

Pr
b

[
Expmpriv-s

M,`,b (B) = b
]

= Pr
[
G3(A) = 1

]
. (10)
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The remaining transitions do not alter the semantics of the game; they serve only to clarify the reduction.
Refer to game G4 (Figure 9). The difference between it and G3 is that invocation of procedure Mux has
been replaced with its definition. In game G5, returning (⊥,⊥) in case M = ⊥ or sc = ⊥ (9:10) is deferred
until after invokingM.Mux (9:14). In game G6, the string 1|X| is passed to Write instead of X (9:25). But
the output of Write does not depend on X; it only depends on |X|, N , α, and its current state Wr . (This is
due to our revision in game G3.) Hence, these games are identically distributed. Now, the definition of B’s
simulated Send′ oracle is obtained by first replacing lines 9:19–21 with an invocation of its own oracle Mux.
Then each instance of string X is replaced with integer x, the first of the outputs of Mux. It is easy to
check that A’s view is the same in the simulation as it is in game G6, which yields equation (14).

Putting together equations (7)–(10) and our observation about game G1 yields the final bound. To
complete the proof, we observe that B and C each runs in time t + O(q) (performing a constant amount
amount of computation for each of A1’s queries) and makes at most q queries to its oracle, and the total
length of the inputs does not exceed µ.

Next, integrity of the ciphertext stream follows easily from the ciphertext integrity of AE :

Theorem 3. For every t, q1, q2, µ1, µ2 ∈ N it holds that

Advint-cs
CH (t, r) ≤ Advint

AE(t+O(q1 + q2), r) + collN (q1) ,

where r = (q1, q2, µ1, µ2),

Proof. Fix t, q1, q2, µ1, µ2 ∈ N. LetA = (A1,A2) be a t-time INT-CS adversary using resources (q1, q2, µ1, µ2).
We exhibit an INT adversary B such that Advint-cs

CH (A) ≤ Advint
AE(B) and B runs in time t+O(q1 + q2) and

uses the same query resources as A.
Refer to games G1 and G2 defined in Figure 9. (As usual, oracle SD is left implicitly defined.) The

first is a modified version of the INT-CS game with adversary A and the partially specified channel CH.
The changes preserve the semantics of the game and are only meant to clarify our argument. First, we have
renamed some variables: in particular, sync has been renamed to sync1, win to win1, and De.sync to sync2.
Second, we rearranged the logic used to check if the channel is in sync so that sync1 gets set before invoking
procedure Demux (9:13). Third, the game declares an array str T [ ] used by procedure Write to associate a
given plaintext X to its ciphertext Y ′, as well as the nonce N and associated data A used to encrypt it (9:21).
Before invoking AE .Dec , the Demux procedure checks if the inputs are stored in T (9:31). Fourth, we added
a flag win2 (9:34). Finally, we declare two strings: S∗, used to track the whole sender-ciphertext stream (and
not just the undelivered part); and Y ∗, used to track the ciphertext stream consumed by the Recv oracle,
i.e. Y ∗ = cat(Y ) where Y i is the fragment output by Read in the i-th Recv query. One can easily check
that the random variables G1(A) = 1 and Expint-cs

CH (A) = 1 are identically distributed.
Game G2 is identical to G1 until the flag win2 gets set, at which point the revised game sets X to ⊥.

This ensures that the next branch (9:35) is taken if T [N,A, Y ′] 6= � (9:32). Next, we show there exists an
INT adversary B such that

Pr
[
G1(A) = 1

]
≤ Pr

[
G2(A) = 1

]
+ Advint

AE(B) + collN (q1) , (11)

Adversary BEnc,Dec simulates A in game G1. Its definition is precisely the pseudocode in Figure 9, except
line (9:20) is replaced by “Y ′ ← Enc(N,A,X)”, and lines (9:34–35) are replaced with “X ← Dec(N,A, Y ′)”.
(Note that B runs in time t + O(q1 + q2), makes as many queries to its oracles as A1 does, and the
queries have the same bit length.) By definition of the INT game, we have that Pr

[
Expint

AE(B) sets res
]

=

Pr
[
G1(A) sets win2

]
. Conditioning on the probability of a nonce collision and applying the Fundamental

Lemma of Game Playing [10] yields equation (11).
Consider the probability that G2(A) sets win1 ← 1. We begin with a few definitions. Let Win(f)

denote the event that when ASend,Recv halts, the variable win1 has the value f ∈ {0, 1}. (Note that Win(1)
and G2(A) = 1 are the same event.) We write Unsync1(i) to denote the event that sync1 ← 0 is set during
A1’s i-th query to Recv, and this is the first such query. (Note that if Unsync1(i) holds, then sync1 = 0 for
every subsequent query.) We define Unsync2(i) in kind.

A couple of observations. First, if Win(1) holds, then Unsync1(i) holds for some 1 ≤ i ≤ q2. (Flag win1

can only be set on line 9:15; reaching this point implies that sync1 = 0.) Second, if Unsync2(j) holds for
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Send(M0, sc0,M1, sc1) G3 G4

1 L0 ← leak (`,M0, sc0); L1 ← leak (`,M1, sc1)
2 if L0 6= L1 then return (⊥,⊥)

3 (X,N,α)←← Mux SD(Mb, scb,var Mu)

4 (X,α)←←M.Mux SD(Mb, scb,var Mu.st)
5 if X = � then N ← �
6 else N ← N .Next (var Mu.ng)

7 (C, γ)←←WriteSD(X,N,α,var Wr)
8 return (C, γ)

Send(M0, sc0,M1, sc1) G4 G5

9 L0 ← leak (`,M0, sc0); L1 ← leak (`,M1, sc1)

10 if L0 6= L1 then return (⊥,⊥)
11 (X,α)←←M.Mux SD(Mb, scb,var Mu.st)

12 if L0 6= L1 then (X,α)← (⊥,⊥)
13 else (X,α)←←M.Mux SD(M, sc,var mu)
14 if X = ⊥ and α = ⊥ then return (⊥,⊥)

15 if X = � then N ← �
16 else N ← N .Next (var Mu.ng)
17 (C, γ)←←WriteSD(X,N,α,var Wr)
18 return (C, γ)

Send(M0, sc0,M1, sc1) G5 G6

19 L0 ← leak (`,M0, sc0); L1 ← leak (`,M1, sc1)
20 if L0 6= L1 then (X,α)← (⊥,⊥)
21 else (X,α)←←M.Mux SD(M, sc,var mu)
22 if X = ⊥ and α = ⊥ then return (⊥,⊥)
23 if X = � then N ← �
24 else N ← N .Next (var Mu.ng)

25 (C, γ)←←WriteSD( X 1|X| , N, α,var Wr)
26 return (C, γ)

BMux
1 (var Env):

27 (∗,Wr , ∗, ∗)←← Init ( )

28 b′ ←← ASend′
1 (var Env); return b′

B2(I,var Env) //Handle SD request.

29 O ←← A2(I,var Env); return O

Send′(M0, sc0,M1, sc1)

30 (x, α)←←Mux(M0, sc0,M1, sc1)
31 if x = ⊥ and α = ⊥ then return (⊥,⊥)
32 if x = 0 then N ← �
33 else N ← N .Next (var Mu.ng)
34 (C, γ)←←WriteSD(1x, N, α,var Wr)
35 return (C, γ)

G1(A) G2(A)

1 declare str Env , S, S∗, Y ∗, T [ ],bool sync[ ],win[ ]
2 (Mu,Wr ,Re,De)←← Init ( )
3 sync1, sync2 ← 1
4 ASend,Recv

1 (var Env)
5 return win1

Send(M, sc)

6 (X,N,α)←← Mux SD(M, sc,var Mu)
7 (C, γ)←←WriteSD(X,N,α,var Wr)
8 S ← S ‖C; S∗ ← S∗ ‖C
9 return (C, γ)

Recv(C)

10 (Y,N, α)←← Read SD(C,var Re)
11 if sync1 and Y � S then
12 Y ∗ ← Y ∗ ‖Y ; S ← S%Y
13 else sync1 ← 0
14 (M, sc, γ)←← Demux SD(Y,N, α,var De)
15 if ¬sync1 then win1 ← win1 ∨ (M 6= ⊥ ∧ sc 6= ⊥)
16 return (M, sc, γ)

WriteSD(X,N,α,var Wr)
17 declare strA, γ
18 〈A, γ〉 ←← SD(〈write, ready, |X|, α〉)
19 if X = � then return (�, γ)
20 Y ′ ← AE .Enc(Wr .K,N,A,X)
21 T [N,A, Y ′]← X
22 if Y ′ = ⊥ or SD(〈parse, A ‖Y ′〉) 6= 〈|A|+|Y |, |A|〉
23 γ ←← SD(〈write, invalid ptxt〉)
24 return (�, γ)
25 return (A ‖Y ′, γ)

Demux SD(Y,N, α,var De)
26 declare strX, γ, int a
27 γ ←← SD(〈demux, ready, |Y |, α〉)
28 if (Y = � and γ 6= �) or ¬sync2 then
29 return (⊥,⊥, γ)
30 else if Y 6= � then
31 〈 , a〉 ← SD(〈parse, Y 〉); A← Y [:a]; Y ′ ← Y %A
32 if T [N,A, Y ′] 6= � then X ← T [N,A, Y ′]
33 else
34 X ← AE .Dec(De.K,N,A, Y ′)

35 if X 6= ⊥ then win2 ← 1 ; X ← ⊥
36 if X = ⊥ then
37 sync2 ← 0; γ ←← SD(〈demux, invalid ctxt〉)
38 return (⊥,⊥, γ)
39 (M, sc, γ)←←M.Demux SD(X,var De.dx )
40 return (M, sc, γ)

Figure 9: top: games G4, G5, and G6 and adversary B for proof of Theorem 2. Note that procedure Write ( ) in the
definition of B is as defined in games G3–G6. Bottom: games for proof of Theorem 3.
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some 1 ≤ j ≤ q2, then for every j ≤ q ≤ q2, the output of the q-th Recv query is (M, sc, γ), where M = ⊥
and sc = ⊥. (This is made clear by lines 9:27 and 9:36.) Hence, no query following (and including) the q-th
sets win1 ← 1.

We now show that if Unsync1(i) holds, then so does Unsync2(i). Suppose that the i-th query to Recv
is the first to set sync1 ← 0, and let C denote the input to the oracle. The i-th query setting sync1 ← 0
implies that Read SD(C,var Re) output a triple of strings (Y,N, α) such that Y 6� S (9:10–11). We examine
the possible values of sync2 after the next execution of Demux (9:14). If sync2 = 0 prior to execution of
line 9:14, then we are done; so suppose that sync2 = 1. Y 6� S implies that Y 6= ε, so the branch at line
9:30 is taken. If T [N,Y [:a], Y [a + 1:]] = � holds for every a ∈ N, then the branch on line 9:33 will get
taken and sync2 will get set to 0. Suppose to the contrary that T [N,Y [:a], Y [a + 1:]] 6= � for some a ∈ N.
By definition of Write , this means that Y is a substring of S∗, i.e. there exists some string P such that
P ‖Y � S∗. Because the i-th is the first query to set sync1 ← 0, it must be the case that P = Y ∗. But
S = S∗%Y ∗ (9:12), so Y � S, a contradiction. Therefore, Unsync1(i) implies Unsync2(i).

Suppose that Win(1) holds. This implies Unsync1(i) holds for some 1 ≤ i ≤ q2, which in turn implies
Unsync2(i) holds (as we just saw). But this means that no query following (and including) the i-th sets
win1 ← 1, so Win(1) cannot hold. We conclude that Pr

[
G2(A) = 1

]
= 0.

Finally, a similar argument allows us to reduce the SIM-STAT security of CH to the SIM-mSTAT security
of M. However, we will need to restrict the behavior of the adversary so that the SD oracle computes the
record boundaries deterministically and independently of the adversary’s state. By construction (see 7:22,
27, and 38), this ensures that the receiver computes the correct record boundaries whenever the channel is
in-sync.

Theorem 4. Let A = (A1,A2) be a t-time SIM-STAT-adversary that makes q1 Send-queries and q2
Recv-queries. Let T be an s-time SIM-mSTAT-simulator. Suppose there is a function rec for which
A2(〈parse, Y 〉,var Env) outputs rec(Y ) for all strings Y,Env and rec(Y ) = rec(buf ) for all strings Y � buf .
There exists a t̃-time SIM-mSTAT-adversary B, t̃-time INT-adversary C, and (t + O(s))-time SIM-STAT-
simulator S such that

Advsim-stat
CH,S (A) ≤ Advsim-mstat

M,T (B) + Advint
AE(C) + collN (q1) ,

where t̃ = t+O(q1 + q2) and B and C have the same query resources as A.

The proof begins with the same argument used in Theorem 3, which lets us transition into a setting in which
Recv queries are evaluated without invoking AE .Dec . This allows us to construct a SIM-mSTAT adver-
sary B and a SIM-STAT simulator S such that for every SIM-mSTAT simulator T , we simulate SIM-STAT
adversary A in its game with S. Our restrictions on A2 ensures that the simulator has enough information
to accurately simulate the status of the channel.

Proof of Theorem 4. Let λ denote the ciphertext-length function associated with AE . (Recall that λ is a
bijection by definition.) let S be the simulator in Figure 10. Just as in the proof of Theorem 3, we begin
with a game Gb

1 (Figure 11) instrumented to clarify the reduction. (As usual, oracle SD is not explicitly
defined.) By the same argument yielding equation (11), there exists an INT adversary C such that

Pr
[
Expsim-stat

CH,S,1 (A) = 1
]
≤ Pr

[
G1

1(A,S) = 1
]

+ Advint
AE(C) + collN (q1) . (12)

Moreover, adversary C runs in time t+O(q1 + q2) and makes as many queries to its oracles as A does.
Now consider game Gb

2 (Figure 11). This changes the condition on line (11:32) so that X gets set on
the next line if T [N,A, Y ′] is defined and x = λ−1(|Y | − a) > 0. But the former condition implies the latter
(by definition of λ and Write ), so this change has no affect on the outcome of the game. Next, game Gb

3

replaces the invocation of M.Demux (11:51) on input of X with execution of the simulator T on input of
x = |X|. (The simplification on lines 11:45–48 are the result of no longer needing the variable X and do not
impact the outcome.) Next, we exhibit adversary B such that

Pr
[
Expsim-mstat

M,T ,d (B) = 1
]

= Pr
[
G1

3−d(A,S) = 1
]

(13)

for every d ∈ {0, 1}. Adversary B simulates A in game G1
2. It is defined by the pseudocode used to define

the game, except line 11:51 is replaced with “M, sc ← ⊥; γ ←← Demux(X)”. Algorithm B2 is defined by
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Initialization of S:

1 declare str buf , bool sync[ ]
2 sync1 ← 1

SSD on input (C, S):

3 (Y,N, α)←← Read SD(C)
4 if sync1 and Y � S then S ← S%Y
5 else sync1 ← 0
6 (M, sc, γ)←← Demux SD(Y,N, α)
7 return γ

Read SD(C)

8 declare str α, int c, bool drop
9 buf ← buf ‖C; 〈c, 〉 ← SD(〈parse,Re.buf 〉)

10 〈drop, α〉 ←← SD(〈read, drop, buf 〉)
11 Y ← buf [:c]; buf ← buf %Y
12 if Y = � or drop then return (�,⊥, α)
13 return (Y,⊥, α)

Demux SD(Y,N, α)

14 declare str γ, int x, a
15 γ ←← SD(〈demux, ad len, Y, α〉)
16 if (Y = � and γ 6= �) or ¬sync1 then
17 return (⊥,⊥, γ)
18 else if Y 6= � then
19 〈 , a〉 ← SD(〈parse, Y 〉)
20 x← λ−1(|Y | − a)
21 if x ≤ 0 or ¬sync1 then
22 sync1 ← 0
23 γ ←← SD(〈demux, invalid ctxt〉)
24 return (⊥,⊥, γ)
25 M, sc ← ⊥; γ ←← T SD(x)
26 return (M, sc, γ)

Figure 10: SIM-STAT simulator S for proof of Theorem 4.

forwarding its input to A2: on input of I, it executes O ←← A2(I,var Env) and returns O. When A1 halts
and outputs b′, algorithm B1 halts and outputs b′. Then B runs in time t+O(q1 + q2) and makes at most q2
queries.

Now consider the revisions in game Gb
4. The first change is to replace sync2 with sync1 on line 11:56 and

11:61. The second is to change the condition on line 11:60 so that the branch is taken if x < 0 or ¬sync1

(rather than T [N,A, Y ′] being undefined). Because the record boundaries are computed deterministically
(i.e., via rec), and the sender ensures the record boundaries are computed correctly (7:22), it can be shown
that T [N,A, Y ′] = � holds on line 60 precisely when sync1 = 0. Hence, Pr

[
G1

3(A,S) = 1
]
≤ Pr

[
G1

4(A,S) =

1
]
. Summarizing, and observing that the events Expsim-stat

CH,S,0 (A) = 1 and G0
4(A,S) = 1 are identically

distributed,
Pr

[
Expsim-stat

CH,S,1 (A) = 1
]
≤Pr

[
G1

4(A,S) = 1
]

+ Advsim-mstat
M,T (B) + Advint

AE(C)
Advsim-stat

CH,S (A) ≤Pr
[
G1

4(A,S) = 1
]

− Pr
[
Expsim-stat

CH,S,0 (A) = 1
]

+ Advsim-mstat
M,T (B) + Advint

AE(C)

(14)

and so
Advsim-stat

CH,S (A) ≤Pr
b

[
Gb

4(A,S) = b
]
− 1/2

+ Advsim-mstat
M,T (B) + Advint

AE(C) ,
(15)

where equation 15 follows from conditioning on the value of b. But by definition of S, games G1
4 and G0

4

are equivalent. Hence, adversary A’s view in the game is independent of the challenge bit, so the first term
is 1/2.

Finally, note that the runtime of the simulator S is linear in the total bit length of A1’s Recv queries
and incurs a cost of O(s) (the runtime of T ) for each query. Hence, each execution of S runs in t + O(s)
time. (The t factor comes from using A2 to handle SD requests.)

Limitations of our analysis. The stream multiplexer,M, is responsible for record fragmentation, encoding
(including the content type), and padding. It is also responsible for the length and order of records. As
discussed in Section 5.1, all of these details matter for security; as we have just seen, the mPRIV-S and
SIM-mSTAT notions make clear what properties M must possess in order for the record layer to be secure
in the PRIV-SR sense.
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Gb
1(A,S) Gb

2(A,S)

1 declare str Env , S, T [ ], bool b, sync[ ]
2 (Mu,Wr ,Re,De)←← Init ( )
3 b, sync1, sync2 ← 1
4 b′ ←← ASend,Recv

1 (var Env)
5 return b′

Send(M, sc)

6 (X,N,α)←← Mux SD(M, sc,var Mu)
7 (C, γ)←←WriteSD(X,N,α,var Wr)
8 S ← S ‖C
9 return (C, γ)

Recv(C)

10 if b = 1 then
11 (Y,N, α)←← Read SD(C,var Re)
12 if sync1 and Y � S then S ← S%Y
13 else sync1 ← 0
14 (∗, ∗, γ)←← Demux SD(Y,N, α,var De)
15 else γ ←← SSD(C, S)
16 return γ

WriteSD(X,N,α,var Wr)
17 declare strA, γ
18 〈A, γ〉 ←← SD(〈write, ready, |X|, α〉)
19 if X = � then return (�, γ)
20 Y ′ ← AE .Enc(Wr .K,N,A,X)
21 T [N,A, Y ′]← X
22 if Y ′ = ⊥ or SD(〈parse, A ‖Y ′〉) 6= 〈|A|+|Y |, |A|〉 then
23 γ ←← SD(〈write, invalid ptxt〉)
24 return (�, γ)
25 return (A ‖Y ′, γ)

Demux SD(Y,N, α,var De)
26 declare strX, γ, int x, a

27 γ ←← SD(〈demux, ready, |Y |, α〉)
28 if (Y = � and γ 6= �) or ¬sync2 then
29 return (⊥,⊥, γ)
30 else if Y 6= � then 〈 , a〉 ← SD(〈parse, Y 〉)
31 x← λ−1(|Y | − a); A← Y [:a]; Y ′ ← Y %A

32 if x > 0 and T [N,A, Y ′] 6= � then
33 X ← T [N,A, Y ′]
34 else
35 sync2 ← 0; γ ←← SD(〈demux, invalid ctxt〉)
36 return (⊥,⊥, γ)
37 (M, sc, γ)←←M.Demux SD(X,var De.dx )
38 return (M, sc, γ)

Demux SD(Y,N, α,var De) Gb
2 Gb

3

39 declare str X, γ, int x, a

40 γ ←← SD(〈demux, ready, |Y |, α〉)
41 if (Y = � and γ 6= �) or ¬sync2 then
42 return (⊥,⊥, γ)
43 else if Y 6= � then 〈 , a〉 ← SD(〈parse, Y 〉)
44 x← λ−1(|Y | − a); A← Y [:a]; Y ′ ← Y %A

45 if x ≥ 0 and T [N,A, Y ′] 6= � then
46 X ← T [N,A, Y ′]
47 else

48 if x ≤ 0 or T [N,A, Y ′] = � then
49 sync2 ← 0; γ ←← SD(〈demux, invalid ctxt〉)
50 return (⊥,⊥, γ)

51 (M, sc, γ)←←M.Demux SD(X,var De.dx )

52 M, sc ← ⊥; γ ←← T SD(x)

53 return (M, sc, γ)

Demux SD(Y,N, α,var De) Gb
3 Gb

4

54 declare str γ, int x, a
55 γ ←← SD(〈demux, ready, |Y |, α〉)
56 if (Y = � and γ 6= �) or ¬sync2 ¬sync1 then

57 return (⊥,⊥, γ)
58 else if Y 6= � then 〈 , a〉 ← SD(〈parse, Y 〉)
59 x← λ−1(|Y | − a) ; A← Y [:a]; Y ′ ← Y %A

60 if x ≤ 0 or T [N,A, Y ′] = � ¬sync1 then

61 sync2 ← 0 sync1 ← 0

62 γ ←← SD(〈demux, invalid ctxt〉)
63 return (⊥,⊥, γ)
64 M, sc ← ⊥; γ ←← T SD(x)
65 return (M, sc, γ)

Figure 11: Games for proof of Theorem 5.
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We emphasize, however, that PRIV-SR security says nothing about whether a particular implementation
of the record layer is operationally correct. (For example, whether CH properly handles streams depends on
how M encodes the content type.) All it says is that whether the record layer is correct is irrelevant for
PRIV-SR security. But in the absence of a proof of correctness, attacks in the INT-PS sense are possible,
including important real-world attacks such as truncation attacks [35]. In Appendix A, we show how to
achieve plaintext-stream integrity (INT-PS) for this scheme. Loosely, what we show is that if we restrict
the adversary such that its SD-query responses ensure correct operation of the channel, then security in the
INT-CS sense implies INT-PS. (This reflects a result of FGMP.) Thus, security for CH follows from the INT
security of AE via Theorem 3. An interesting question is whether correctness ofM, along with INT security
of AE , suffices for INT-PS of CH. We leave this for future work.

The subject of this paper is the mechanism by which data streams are protected in TLS 1.3. Our model
permits the study of the security of data transmitted between key changes. (See the discussion in Section 5.1.)
This is valid, since under appropriate assumptions about the underlying key-derivation function used in TLS,
the record-layer state is effectively independent between key changes. However, one limitation of our model
is that we cannot say anything about the security of the concatenation of data sent across key changes. In
particular, consider the concatenation of the application-data stream sent in the early-data phase and in the
post-handshake phase. Early data is replayable, since the adversary can send this data to any number of
valid recipients in possession of a pre-shared key shared with the client. Our model cannot account for such
replay attacks. This also limits our ability to study truncation attacks [35], since these may involve data
sent across key changes. Finally, we note that since we have analyzed TLS 1.3 in isolation, our results say
nothing about the record layer specifications in TLS 1.2, 1.1, 1.0, SSL 3, and so on.

6 Conclusion

Despite these limitations, the preceding analysis offers good news about TLS 1.3. We regarded the record
layer as a multiplexed, stream-based channel, a setting which accurately models secure channels as they
are used in practice. We formalized it as a partially specified channel, allowing us to encapsulate in one
scheme (see Figure 7) the myriad implementations that its standardizing document admits. We confirm its
privacy and integrity in our strong adversarial model, but with two important caveats: first, whether the
record layer hides the length, content, or type of input streams depends crucially on details left unspecified
by the standard. Nevertheless, our results—specifically, Theorems 2 and 4—provide guidance on how to
develop implementations that achieve a target security goal. Concretely, this goal is a property of the
stream multiplexer used to construct the channel. The second caveat is that draft 23 of the record layer
does not achieve security in the sense of ciphertext-stream integrity; we suggested a simple change to the
standard so that it provably does (Theorem 3), which was adopted in the final version.

Our partial specification of the record layer is simple and flexible; our hope is that this paradigm will help
shape the standard-writing process. Thinking formally about what the protocol must get right and what it
may get wrong provides principled guidance in its development. Although the partially specified protocol
framework is not the only way to reason about how unspecified or under-specified matters affect security,
we found it to be a useful tool for discovering what these security-critical matters are in the first place. This
paper leaves open a number of directions for future work. Our notions of security apply to settings in which
an out-of-order packet is regarded as an attack (e.g., TLS and SSH); our framework can be applied to other
notions of security appropriate for settings in which packet loss is expected (e.g., DTLS and IPSec). Beyond
channels, we hope to see the Rogaway-Stegers framework applied more broadly. e.g., to the TLS handshake.
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Read ′O(C,var Re)
1 declare bool b
2 (Y,H, α)←← ReadO(C,var Re)
3 〈c〉 ←← O(〈read, output 1〉)
4 return (Y,H ‖ c, α)

Demux ′O(X,H ′, α,var De)
5 `← |H ′|; H ← H ′[1:`− 1]; c← H ′`
6 (M, sc, γ)←← DemuxO(Y,H, α,var De)
7 if c = 1 then return (M, sc, γ)
8 F ←← O(〈demux, frag,M 〉)
9 ϕ←← O(〈demux, ctx, sc〉)

10 return (F,ϕ, γ)

Figure 12: Procedures Read ′ and Demux ′.

[35] Smyth, B., Pironti, A.: Truncating TLS connections to violate beliefs in web applications. In: Presented
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A Fully specified channels

Conspicuously absent from our treatment in Section 4 is a correctness condition for PSCs. Indeed, it is
undesirable to require correctness in our setting; we want our results to hold up even when the SD is realized
by the adversary. But this choice is not without consequences, since we cannot assume correctness in proofs
of security, as is so often done in cryptography [8, 20]. In particular, contrary to prior settings, it is not
the case that ciphertext-stream integrity implies plaintext-stream integrity for PSCs. We show this with a
counter example, then show how to restrict the SD in order to recover the classic result.

INT-CS 6⇒ INT-PS for PSCs. Let CH = (Init ,Mux ,Write ,Read ,Demux ) be a PSC. We define from
this a new PSC CH′ = (Init ,Mux ,Write ,Read ′,Demux ′), where Read ′ and Demux ′ are given in Figure 12.
Whatever were the SD associated to PSC CH, we add to this a new reader specification detail that on input
〈read, output 1〉 returns a bit c. Under any correct realization of CH′ this bit must be 1. The Read ′ algorithm
runs (Y,H, α)←← ReadO(C,var Re) and outputs (Y,H ‖ c, α). Likewise, we add two new demultiplexer SD
hooks: first, one that inputs 〈demux, frag,M 〉, where M is a string or ⊥, and returns a string F ; second, one
that inputs 〈demux, ctx, sc〉, where sc is a string or ⊥, and returns a string ϕ. The Demux ′ algorithm, on
input (X,H ′, α,var De) parses H ′ into H and the extra bit, and executes DemuxO(Y,H, α,var De). If the
extra bit is 1, then Demux ′ returns whatever Demux did. Otherwise, the output fragment M is replaced
with F and the stream context sc gets replaced with ϕ.

It is easy to show that for every A, there exists A′ such that Advint-cs
CH (A) = Advint-cs

CH′ (A′). Consider
the following INT-PS attack: choose any string C and ask it of Recv. On SD request 〈read, output 1〉, the
attacker responds with 〈0〉. On SD request 〈demux, frag,M 〉 for some M ∈ {0, 1}∗ ∪ {⊥}, if M 6= ⊥, then
choose any string F 6� M and output it; otherwise, choose any string F 6= ε and output it. On SD request
〈demux, ctx, sc〉 for some sc ∈ {0, 1}∗ ∪ {⊥}, if sc 6= ⊥, then output ϕ = sc; otherwise, choose any string ϕ
and output it. Then Sϕ = � by definition, and the adversary ensures that Rϕ 6= �. Clearly Rϕ 6� Sϕ, and
the adversary wins with probability 1. ♦

The attack just described exploits the fact that the adversary controls the SD. Note, too, that the
adversarial handling of the SD does not result in a correct realization of CH′. This raises the question of
whether or not there is a separation when the PSC is correctly realized.

A partially specified channel is transformed into a fully specified channel (FSC) by instantiating the SD
oracle. Given a PSC CH, we define an FSC as a triple (CH,S,R), where S(str I,var str Env) 7→ strO
and R(str I,var str Env) 7→ strO are randomized algorithms that instantiate the SD oracle for the sender
(Mux ,Write ) and receiver (Read ,Demux ), respectively. We may define correctness FSCs as follows:
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Gets (M , s, sc) //M , s ∈ {0, 1}∗∗

1 M ′ ← ε
2 for i← 1 to |s| do
3 if si = sc then M ′ ←M ′ ‖M i

4 return M ′

Corr (C′,M , s)

5 declare Env [ ]
6 (Mu,Wr ,Re,De)←← Init
7 C ←← Sends (M , s,Mu,Wr)
8 (Y ′,M ′, s′)←← Recvs (C′,Re,De)
9 return (C,Y ′,M ′, s′)

Sends (M , s,Mu,Wr) //M , s ∈ {0, 1}∗∗

10 for i← 1 to |s| do
11 (X,H,α)←← Mux SD [S,0](M i, si,var Mu)
12 (Ci, ∗)←←Write SD [S,0](X,H,α,var Wr)
13 return C

Recvs (C′,Re,De)

14 for i← 1 to |C′| do
15 (Y ′i, H, α)←← Read SD [R,1](C′i,var Re)
16 (M ′

i, s
′
i, ∗)←← Demux SD [R,1](Y ′i, H, α,var De)

17 return (Y ′,M ′, s′)

SD [O, p](I)

18 O ←← O(I,var Envp); return O

G(A)

1 declare str Env , R[ ], S[ ], T
2 declare bool sync,win[ ]
3 (Mu,Wr ,Re,De)←← Init ( )
4 sync ← 1; ASend,Recv

1 (var Env)
5 return win1

Send(M, sc)

6 (X,H,α)←← Mux SD(M, sc,var Mu)
7 (C, γ)←←WriteSD(X,H,α,var Wr)
8 T ← T ‖C; Ssc ← Ssc ‖M
9 return (C, γ)

Recv(C)

10 (Y,H, α)←← Read SD(C,var Re)
11 (M, sc, γ)←← Demux SD(Y,H, α,var De)
12 if sync and Y � T then T ← T %Y
13 else sync ← 0
14 if M 6= ⊥ ∧ sc 6= ⊥ then
15 Rsc ← Rsc ‖M
16 if Rsc 6� Ssc then win2 ← 1
17 if ¬sync then win1 ← 1
18 return (M, sc, γ)

SD(I)

19 O ←← A2(I,var Env); return O

Figure 13: top: procedures for defining correctness of FSC (CH,S,R). Bottom: a game for proving Theorem 5.

Definition 1. Refer to procedures Gets and Corr defined in Figure 13. We say that FSC (CH,S,R) is
correct if for every C ′,M , s ∈ {0, 1}∗∗ such that |M | = |s| and sc ∈ {0, 1}∗, it holds that

Pr
[
(C,Y ′,M ′, s′)←← Corr (C ′,M , s) :

cat(Y ′) � cat(C)⇒ Gets (M ′, s′, sc) � Gets (M , s, sc)
]

= 1 .

We say that PSC CH has a correct realization if there exists a pair (S,R) such that the FSC (CH,S,R) is
correct. ♦

The definition says that each plaintext stream output by the receiver must be a prefix of the corresponding
stream input to the sender, as long as the ciphertext stream consumed by the receiver is a prefix of the
ciphertext stream produced by the sender. This naturally generalizes the correctness condition of FGMP for
single stream-based channels [20, Definition 3.1].

INT-CS ⇒ INT-PS for correct FSCs. We show that if the SD are handled by A in a manner that
yields a correct FSC, then the traditional relationship holds.

Theorem 5. For every A = (A1,A2), if (CH,A2,A2) is a correct FSC, then Advint-ps
CH (A) ≤ Advint-cs

CH (A).

Proof. Consider the game G defined in Figure 13. It combines the game logic of INT-CS and INT-PS
so that flag win1 has the semantics as the win flag of the INT-CS game and win2 has the semantics of
the win flag in the INT-PS game. Then by definition, Advint-cs

CH (A) = Pr
[
G(A) sets sets win1

]
and

Advint-ps
CH (A) = Pr

[
G(A) sets sets win2

]
. To prove the claim, it suffices to show that if G(A) sets win2,

then it also sets win1. A sufficient condition is that if at any point in the game, if Rsc 6� Ssc for some sc, then
¬sync holds. Suppose that sync holds. Then satisfying Definition 1 implies that Rsc � Ssc for every sc.

Corollary 1. For every A = (A1,A2), Advint-ps
CH (A) ≤ Advint-cs

CH (A) if and only if (CH,A2,A2) is correct.
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Expstae
Π,b (A)

1 declare strE[ ], stateD[ ]
2 π ←← Gen ( ) // Sets π.seqn = 0.
3 b′ ←← AEnc,Dec,GenD

4 return b′

Enc(strH,M)

5 if b = 1 then C ← Enc(var π,H,M)
6 else
7 c← cipherlen (|M |); C ←← {0, 1}c
8 π.seqn ← π.seqn + 1
9 E[π. seqn − 1, H,C]←M

10 return C

GenD(int d)

11 if D[d] 6= ⊥ then return ⊥
12 D[d]←← GenD (π) // Sets D[d].seqn = 0.

Dec(int d, strH,C)

13 if D[d] 6= ⊥ then return ⊥
14 if b = 1 then M ← Dec(varD[d], H,C)
15 else
16 M ← E[D[d].seqn, H,C ]
17 if M 6= ⊥ then
18 D[d].seqn ← D[d].seqn + 1
19 return M

Explhse
Π,b (A)

20 declare strE[ ], stateD[ ]
21 π ←← Gen ( ) // Sets π.seqn = 0.
22 b′ ←← AEnc,Dec,GenD

23 return b′

Enc(int `, str F ) //What if ` < |F |?
24 R0 ← 0`; R1 ← finalize (R0)
25 if b = 1 then V ← Enc(var π, `, F )
26 else V ← Enc(var π, `, Rfinal (F ))
27 E[π. seqn − 1, V ]← F
28 return V

GenD(int d)

29 if D[d] 6= ⊥ then return ⊥
30 D[d]←← GenD (π) // Sets D[d].seqn = 0.

Dec(int d, str V )

31 if D[d] 6= ⊥ then return ⊥
32 if b = 1 then F ← Dec(varD[d], V )
33 else
34 if closed (D[d]) then return ⊥
35 F ← E[D[d].seqn, V ]
36 if F 6= ⊥ then D[d].seqn ← D[d].seqn + 1
37 if F 6= ⊥ and final (F ) then close (varD[d])
38 return F

Figure 14: Left: StAE security of stateful AE scheme Π = (Gen ,GenD ,Enc ,Dec , cipherlen ). Type state is
implicitly defined as a struct with int seqn being one of its attributes; otherwise state is defined by the scheme.
Right: Lhse security of content-hiding, stateful AE scheme Π = (Gen ,GenD ,Enc ,Dec ,final ,finalize , closed , close ).

B The notions of Delignat-Lavaud et al.

In this appendix we discuss the security notions of DLFK+ [18] for stateful authenticated encryption. These
notions were devised in order to formalize the security properties of their F∗ implementation of the TLS 1.3
record layer (draft 18).

Change of notation. For the purpose of presenting their notions, it will be convenient to change a
convention used in the rest of this paper. In this appendix, uninitialized variables (or elements of an
associative array) now implicitly have the value ⊥ instead of �.

The StAE notion. Figure 14 defines the DLFK+’s security notion for stateful, authenticated encryption.
It is largely an extension of AEAD security to stateful schemes that use a sequence number to generate
nonces, but it incorporates an additional feature designed to cope with a real-world problem. We elaborate
below.

Multiple receivers. The Gen procedure generates a secret (modeling the outcome of the handshake)
and outputs the state of the encrypting party. The decrypting party’s state is initialized via the GenD
procedure, which takes as input the encrypting party’s state. The security game models a setting in which
there is one encryptor and any number of decryptors. This is intended to cope with the fact that “[i]n
practice, it is difficult to prevent multiple honest servers from decrypting and processing the same 0-RTT
encryption stream” [18, Section 6]. In order to reduce latency of the connection, TLS 1.3 allows clients to
send early application data using a shared secret derived from a prior session before the new key exchange
is finished. This so-called 0-RTT data is piggy-backed on the client’s first handshake flow, thus reducing
the time to wait before application data can start flowing the other direction. In fact, web servers usually
balance their load across multiple front-end servers. In order to support 0-RTT data, it is necessary that
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each of these servers share the state needed to resume the old session. As a result, it is possible for an
adversary to replay 0-RTT data to more than one front-end server. This motivates DLFK+’s consideration
of multiple receivers.

The possibility of multiple decrypting parties appears to be a non-trivial extension of the usual security
model, and something that our setting does not capture. Follow-on work should verify that our construction
remains secure when the model is augmented in this fashion. Intuitively, this gives the adversary additional
power in the sense that there are now multiple ciphertext streams that may go out of sync; we conjecture
this would degrade the privacy and integrity bounds by no more than a factor of the number of channels.

StAE does not support ciphertext fragmentation. Consider the following attack. First, choose some
H,M ∈ {0, 1}∗ such that cipherlen (|M |) > 1 and ask C ← Enc(H,M). Next, ask M1 ← Dec(1, H,C[1])
followed by M2 ← Dec(1, H,C[2:]). If b = 0, then M1 = M2 = ⊥. Suppose that b = 1. If the scheme does
support fragmentation, then the correctness condition on the scheme [13, Definition 3.2] would imply that
M2 6= ⊥. Therefore, for a scheme to be deemed secure in the StAE sense, it must not support fragmentation.

The Lhse notion. DLFK+ define a stronger notion that captures three additional goals. First and foremost,
this notion incorporates length hiding, which obscures the length of the message fragments. Second, the
content type is encoded by the fragment itself, and hence is kept private. Third, the syntax is extended so
that the sender may signal the end-of-stream to the receiver; security demands that, upon receipt of this
signal, the peer close the channel.

A content-hiding, stateful AE scheme is composed of eight algorithms. The first four — Gen , GenD ,
Enc , and Dec — are much the same as before, except that (1) encryption takes as input an int ` that specifies
the length of the padded fragment, and (2) the associated data is dropped from encryption and decryption.
The remaining algorithms are used to signal closure of the channel. Algorithm final (str) 7→ bool tests if a
fragment encodes the end-of-stream, i.e., is the final fragment, and algorithm finalize (str) 7→ str encodes
its input as the final fragment. Algorithm closed (state) 7→ bool tests if the peer’s state indicates that the
channel has been closed, and close (var state) closes the channel.

We highlight the important differences between Lhse and StAE security. (Refer to Figure 14.) Line
14:24 defines two strings. The first, R0, is the all-zero string of the specified length (`), and R1 is the
finalized version of that string. If b = 1 (the “real” world), then the Enc encrypts the input F ; if b = 0 (the
“simulated” world), it encrypts one of R0 and R1, depending on whether the F is a final fragment, i.e., if
final (F ) = 1 holds. The simulated decryption oracle is defined so that if it receives a ciphertext output by
the encryption oracle corresponding to a final fragment, then it closes the stream (14:37). This mandates
that Dec call close on the state upon receipt of a final fragment.

None of the three additional properties captured by Lhse are mandated by the TLS 1.3 specification [32].
Since draft 09, the content type has been moved from the associated data to the scope of the plaintext being
encrypted. This might signal that the authors of the spec intend that the content type not be discernible
from the ciphertext stream, but since the record boundaries depend on the content type, this is not true of
every implementation (see the discussion in Section 5.1). (Though it is certainly true of DLFK+’s.) Next,
length hiding MAY be used to mitigate traffic analysis attacks, but this too is not mandatory. Finally,
the document does not mandate the end-of-stream semantics as defined in the Lhse game; certainly the
application might make good use of such a functionality (as suggested by DLFK+, see [18, Section 7]),
but specification is silent on the subject. Nevertheless, the end-of-stream semantics could be captured as a
permitted leakage parameter in our PRIV-SR notion (see Section 4.2).

Record layer security. Finally, DLFK+ define a game for modeling the security provided by the overall
record-layer protocol. In addition to the content-hiding properties of Lhse, they allow the adversary to
re-initialize the channel at will, modeling the key changes that occur during the normal execution of the
protocol. For their implementation of the record layer, they are able to show that Lhse of the underlying
stateful AE scheme implies record layer security, losing only a hybrid term in the reduction [18, Theorem
4]. Roughly speaking, they show that permitting qi key changes is equivalent to executing the Lhse game qi
times. This follows easily from the observation that no state is carried over after re-initializing the channel.
Thus, the ability to re-initialize the channel does not really give the adversary more power, at least with
respect to the record layer.
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