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Abstract—The Internet of Things (IoT) technology has ex-
panded widely across the world, promising new data manage-
ment opportunities for industries, companies and individuals in
different sectors, such as health services or transport logistics.
This trend relies on connecting devices/things to collect, exchange
and store data. The exponentially increasing number of IoT
devices, their origin diversity, their limited capabilities in terms
of resources, as well as the ever-increasing amount of data, raise
new challenges for security and privacy protection, precluding
traditional access control solutions to be integrated to this
new environment. In this paper, we propose a reliable server-
aided policy-based access control mechanism, named CHARIOT,
that enables an IoT platform to verify credentials of different
devices requesting access (read/write) to the data stored within it.
CHARIOT permits IoT devices to authenticate themselves to the
platform without compromising their privacy by using attribute-
based signatures. Our solution also allows secure delegation of
costly computational operations to a cloud server, hence relieving
the workload at IoT devices’ side.

Index Terms—Access Control, Cloud Computing, Internet of
Things

I. INTRODUCTION

The Internet of Things (IoT) has been developed to enable
the interconnection between various devices, such as mo-
bile phones, sensors and actuators, that collect and transmit
data at large-scale. This technology has been integrated to
multiple and diversified environments such as environmental
production, health services and traffic monitoring. With the
explosion of the amount of data exchanges between these
devices and their large number, the need for security and
privacy countermeasures becomes crucial. Several studies [1]–
[3] report on different vulnerabilities of the technology.

While many platforms are available for the IoT, access
control issues are often overlooked. Various attacks exist
against such platforms; for example, vulnerabilities in ToyTalk
products were discovered among which the majority originated
from the lack of security at the platform level whereby an
adversary was easily able to log-in to the platform at any
time1. Preventing unauthorized access to the platform and
consequently to the data stored in there becomes extremely
challenging due to the nature of IoT devices. The latter, that
are often simple and resource-constrained, cannot perform any
costly computational operations. Since platforms are usually

1https://motherboard.vice.com/en us/article/more-security-vulnerabilities-
found-in-hello-barbie-toys-servers

installed at untrusted third parties, such as data centers and
cloud servers, such parties must not obtain any information
about the identity of IoT devices and the data that is being
collected or accessed.

Traditional credential-based access control systems do not
suit this environment as such resource-limited devices are
often not able to generate credentials or signatures to satisfy
the access control policy defined for an IoT platform. We
hence aim to develop a server-aided access control solution,
named CHARIOT, which ensures the privacy of the devices’
identity and of the data towards the platform. CHARIOT
relies on the use of attribute-based signatures to ensure the
proper authentication of devices, by defining an access control
policy for the data stored at the IoT platform. Furthermore,
CHARIOT enables an IoT device to delegate most of the
access control operations to a more powerful third party such
as a cloud server, and only perform minor operations at its side
in order to optimize the use of its resources. The outsourced
computation of the credentials is based on a simple secret
sharing of the signing key between the cloud server and the
IoT device. Once the cloud server has executed the main part
of the generation of the signature, the IoT device performs
very few additional operations to finalize it and sends the
resulting signature to the platform. CHARIOT ensures that
no information about the devices’ attributes in the credentials
is leaked to the platform nor to the cloud server.

In the following section, we detail the problem raised by
designing an access control protocol suitable to the IoT envi-
ronment. In Section I-B, we highlight the main features of our
cloud server-assisted access control protocol for IoT. Section
II describes the proposed solution CHARIOT and analyzes its
security. In Section III, we evaluate the performance of our
solution and recall the existing work. We finally conclude the
paper in Section IV.

A. Problem Statement

As already introduced, serious issues on security have been
encountered because of giving access to sensitive information
to unauthorized parties in the IoT context [1]–[3]. Access
control systems appear to be the essential strategy to overcome
these threats. Nevertheless, traditional access control solutions
relying on public-key infrastructures fall short for this technol-



ogy mainly because of the very limited computing resources
of IoT devices in terms of memory, CPU, storage and battery.

A suitable technique allowing the secure authentication of
devices to the platform is Attribute-Based Signature (ABS) [4].
Informally speaking, an ABS protocol in the IoT environment
ensures that given an access policy, whenever a device signs a
message using its attributes, if the attributes satisfy this access
policy, then this signature is valid and the device successfully
authenticates and accesses the platform. Additionally, ABS
ensures that these attributes remain hidden in the signature,
and thus the device’s identity remains private. Indeed, during
the verification phase, the platform cannot discover any infor-
mation except that the access control policy is satisfied.

However, current ABS solutions [5], [6] suffer from the
computational burden of the signature generation. Since the
signature computation involves multiple modular exponentia-
tions and their number increases linearly with the policy’s size,
the existing tools are not yet suitable to the IoT environment.

B. Idea

Most of the existing ABS solutions are very costly in terms
of computation and storage: the generation of the signature
and its size depend on the number of attributes in the signing
policies. In the context of an IoT environment, a typical access
control policy may contain numerous attributes because of the
large number of IoT devices and their heterogeneity. Herranz
et al. [6] present a Threshold ABS scheme with compact
signatures whereby their size does not depend on the number
of attributes in the policies. While the solution is suitable
for the IoT technology, the computational cost still remains
significant: the number of modular exponentiations is linear
with the number of attributes and therefore cannot be afforded
by resource-constrained IoT devices.

We propose to improve the computational cost of the above
solution at the device’s side by delegating most of the signature
generation to a powerful cloud server. Similarly to [7], the
signing key is secretly shared between the cloud server and
the IoT device, ensuring a secure delegation of the signature
computation. The cloud server computes a partial signature
using an outsourcing key, and sends it to the IoT device.
The latter finalizes the signature by performing additional
lightweight operations using its private key, and forwards it
to the platform. The signature is accepted by the platform if
the device’s attributes, embedded into the signature, satisfy the
access control policy.

Yet, the ABS solution in [6] incurs extra computational and
storage overhead since the signature generation is fixed to an
upper bound due to the use of dummy attributes. Following a
technique introduced in [8], we modify the original ABS in
[6] by removing the presence of dummy attributes. We hence
obtain a more efficient Threshold ABS scheme with constant-
size signatures and no dummy attributes whereby the most
computationally-intensive operations are securely delegated to
a cloud server. The proposed solution guarantees privacy of
participating IoT devices against the platform and cloud server.

Fig. 1. CHARIOT protocol overview
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II. CHARIOT

A. Environment

We define an Outsourced Threshold Attribute-Based Sig-
nature protocol as follows. The first two algorithms, Setup
and Keygen, are run to initialize the protocol. The Setup
algorithm is run to generate the public parameters accessible to
all participating parties, and a master secret key forwarded to
an off-line trusted attribute authority. The Keygen algorithm is
run by the trusted attribute authority to create the outsourcing
key for the cloud server and the private key for the IoT device,
regarding the access attributes of this device.

The following algorithms, Request, Signout, Sign and
Verify, are the core algorithms to enable secure authentication
of the IoT device towards the platform. First, the IoT device
runs Request to hash the access policy for the cloud server
using a Keyed-Hash Message Authentication Code (HMAC).
The access policy is defined by the platform and made
accessible to the device, but should remain hidden from
the cloud server’s view. Then, the cloud server, given this
hashed access policy, creates the outsourced signature using
its outsourcing key. It forwards the outsourced signature to
the IoT device. From there, the device finalizes the signature
generation by using its private key and choosing the message.
It forwards the final signature to the IoT platform. The latter
executes Verify to check the validity of the device’s signature
and thus its right for access.

Figure 1 illustrates the CHARIOT protocol where a trusted
attribute authority, an IoT platform, a cloud server and an IoT
device participate. More details on the components (keys and
signatures) are given in the next section.

B. Preliminaries

Notations. Let Y be a finite set. The notation y ∈R Y stands
for y is a random variable uniformly chosen from Y .



Let g ∈ G and ~v = (v1, v2, v3)> where vi ∈ G
for i ∈ [1, 3]. We denote E(g,~v) the pairing-based vec-
tor (e(g, v1), e(g, v2), e(g, v3))> where e(g, vi) ∈ GT for
i ∈ [1, 3]. In addition, we let the multiplication between two
column vectors be (v1, v2, v3)> · (v′1, v′2, v′3)> = (v1 · v′1, v2 ·
v′2, v3 · v′3)> where v′i ∈ G for i ∈ [1, 3].

Let X be an attribute set, at be an attribute in X , τ be an
injective encoding such that all τ(at) are pairwise-distinct, and
γ be an element in Zp. We denote FX(γ) =

∏
at∈X(γ+τ(at))

the polynomial of degree |X| for attributes at ∈ X .

Bilinear Pairings. Let G and GT be two cyclic multiplicative
groups of prime order p. Let e be an efficiently computable
mapping e : G×G→ GT such that:

• e(ga, hb) = e(g, h)ab for any g, h ∈ G and a, b ∈ Zp,
• e(g, h) 6= 1GT whenever g, h 6= 1G.

We call e an admissible pairing. Moreover, e is symmetric:
for all g, h ∈ G, e(g, h) = e(h, g).

DLIN Assumption [6]. The Decisional LINear problem
related to the group G is defined as follows. Let g be a
generator of G and γ be an unknown exponent in Zp. Given
an integer n ∈ N and the values g, {gγi}i∈[1,2n]\{n+1} in G,
the aim is to compute gγ

n+1

.

(q,n,s,t)-aMSE-CDH Assumption [6], [8]. The Augmented
Multi-Sequence of Exponents Computational Diffie-Hellman
problem related to the group pair (G,GT ) is defined as
follows. Let g0, h0 be two generators of G. Let f(x), g(x)
be two co-prime polynomials defined as f(x) =

∏q
i=1(x +

xi) and g(x) =
∏s
i=1(x + x′i) where xi, x′i are given. Given

q, n, s, t, f(x), g(x) and the following values in G:

g0, h0, {gαγ
i

0 }i∈[0,q+n], g
αf(γ)γs−t

0 , {gβγ
i

0 }i∈[0,q+t],

{gωγ
i

0 }i∈[0,q+t], {hαγ
i

0 }i∈[0,2n], h
αg(γ)γn

0 ,

{hβγ
i

0 }i∈[0,n+t−2], {hωγ
i

0 }i∈[0,n+t]

where α, β, γ, ω are unknown exponents of Zp, the aim is to
compute e(g0, h0)αβf(γ)γn+s−1

.

C. Building Blocks

Similarly to Herranz et al. [6], our ABS scheme relies
on two main features, namely the Attribute-Based Encryption
(ABE) scheme with constant-size ciphertexts proposed by [9]
and the Groth-Sahai proof systems for bilinear groups [10].

The ABE scheme in [9] is designed for the threshold case,
where users are authorized to decrypt if they have at least
t attributes matching the ones from an attribute universe,
for some threshold t chosen by the party who encrypts the
message. Such scheme relies on expressing a polynomial as
the product of irreducible factors of degree 1 with coefficients
equal to the attributes from either the user’s set or the universe.
Fraction of such polynomials can thus be simplified when t
attributes among the user’s set and the universe match.

Herranz et al. [6] design their Threshold ABS scheme by
enabling the signer to implicitly prove that it can decrypt a
ciphertext generated as in the ABE scheme [9]. To do so,
the signer generates a Groth-Sahai proof [10] in which the
message and access policy are binded using a technique from
[11]. Informally, by hashing the to-be-signed message using
Waters’ techniques [12] and embedding it into the Groth-Sahai
Common Reference String (CRS), the technique in [11] allows
signatures of knowledge.

In addition, we modify the ABS scheme presented in [6]
by enabling the outsourcing of the signature generation to a
cloud server. Similarly to Chen et al. [7], we let the cloud
server and the IoT device hold shares of a secret element
chosen by the trusted attribute authority, and use them to
generate the signature such that the combination of the two
shares recover the secret.

Groth-Sahai Proofs. Groth-Sahai proofs [10] are used to
construct signatures in our protocol. Based on the DLIN
assumption and symmetric pairings, they guarantee unforge-
ability and privacy of signatures. Let g1, g2, g ∈ G and vectors

~g1 = (g1, 1, g)>, ~g2 = (1, g2, g)>, ~g3 ∈ G3

be defined in the CRS used in Groth-Sahai proof systems. Let
r, s, t ∈ Zp and

~C = (1, 1, X)> · (~g1)r · (~g2)s · (~g3)t

where X ∈ G is the element to commit. Let ξ1, ξ2 ∈ Z∗p
be randomly chosen such that ~g3 = (~g1)ξ1 · (~g2)ξ2 . Let the
elements of

~C = (gr+ξ1t1 , gs+ξ2t2 , X · gr+s+t(ξ1+ξ2))>

be the resulting commitments. As mentioned in [6], [10], the
elements of ~C are ciphertexts from the Boneh-Boyen-Shacham
encryption scheme [13] that can be decrypted using logg(g1)
and logg(g2).

Let ~g3 = (~g1)ξ1 · (~g2)ξ2 · (1, 1, g−1)>. Hence, ~g1, ~g2, ~g3 are
linearly independent vectors and ~C is a perfectly hiding com-
mitment. Thus, proofs are perfectly witness indistinguishable.

The committed group elements are proved to satisfy some
relations when there are one commitment per variable and
one proof element (made of a constant number of group
elements) per relation. In the context of pairing-based systems,
let tT be constant in GT , Ai be constant in G, Bi ∈ G and
ai,j ∈ Zp, for i, j ∈ [1, k]. The pairing-product equations are∏k
i=1 e(Ai, Bi) ·

∏k
i=1

∏k
j=1 e(Bi, Bj)

ai,j = tT .
In addition, Non-Interactive Zero-Knowledge (NZIK)

proofs are available with pairing-product relations. Let
Si, Ti, for i ∈ [1, k′] and k′ ∈ N be constant values and
tT =

∏k1

i=1 e(Si, Ti) be a target element. These extra
variables incur additional costs. A trapdoor makes possible to
simulate the proofs without knowing the witnesses, such that
witness indistinguishability is satisfied by the CRS set. In
CHARIOT, we use pairing-product linear equations, meaning
that ai,j = 0 for i, j ∈ [1, k], containing three group elements.



Threshold ABS. Let ΩS = Ω∩S where Ω is the attribute set
of the signer and S is the attribute set included in the signing
policy Γ = (t, S), where |S| = s and t is the threshold. Let τ
be an injective encoding such that for all attributes at in ΩS ,
the values τ(at) are pairwise distinct.

Let r be the randomness in the cloud server’s outsourcing
key and γ be part of the master secret key held by the
trusted attribute authority. The cloud server receives the tuple
{g

r
γ+τ(at) , τ(at)}at∈Ω in its outsourcing key. The outsourced

signature generation requires the cloud server to pick the
components g

r
γ+τ(at) and τ(at) for at ∈ ΩS ⊆ Ω and to

compute g
r∏

at∈ΩS
(γ+τ(at)) ∈ G given these components. This

is done using the algorithm Aggregate [14].
Let xi = τ(at) for all at ∈ ΩS where |ΩS | = t. Given

νi = g
r

γ+xi and xi for i ∈ [1, t], for any (j, l) such that
1 ≤ j < l ≤ t,

Lj,l = ν

1∏j
i=1

(γ+xi)

l = (g
r

(γ+xl) )
1∏j

i=1
(γ+xi) .

The Aggregate algorithm consists in computing sequentially
Lj,l for j ∈ [1, t − 1] and l ∈ [j + 1, t] using the induction
Lj,l = (Lj−1,j/Lj−1,l)

1
xl−xj and setting L0,l = νl for

l ∈ [1, t]. The algorithm finally outputs Lt = Lt−1,t.

The Threshold ABS scheme in [6] uses polynomial fractions
to enable the pairing-based verification process. Informally,
attributes at the denominator will cancel out if and only if
the signer has t attributes matching the ones in the access
policy. The algorithm Aggregate [14] enables to compute
the denominator of these polynomial fractions by obtaining
g

r
FΩS

(γ) ∈ G, while the numerator is calculated given the
public parameters and the attributes in S.

Let the polynomial F(S∪Dn+t−1−s)\ΩS (γ) from [6] be de-
fined as follows:

F(S∪Dn+t−1−s)\ΩS (γ)

=

∏
at∈S(γ + τ(at))

∏
at∈Dn+t−1−s

(γ + τ(at))∏
at∈ΩS

(γ + τ(at))

=
∏

at∈(S∪Dn+t−1−s)\ΩS

(γ + τ(at))

The set Dn+t−1−s corresponds to the set of dummy attributes.
When ΩS = Ω∩S has exactly t elements, then the degree of
the polynomial F(S∪Dn+t−1−s)\ΩS (γ) is s+(n+t−1−s)−t =
n−1. Let ai be the coefficients of the polynomial. We re-write
as:

F(S∪Dn+t−1−s)\ΩS (γ) =

n−1∑
i=0

γiai =

n−1∑
i=1

γiai + a0

where a0 =
∏
at∈(S∪Dn+t−1−s)\ΩS τ(at). The private key

contains the components hrγ
i

for i ∈ [0, n − 2], and thus
the element h

1
γ r(F(S∪Dn+t−1−s)\ΩS (γ)−a0) = hr

∑n−1
i=1 γi−1ai =∏n−1

i=1 (hrγ
i−1

)ai =
∏n−2
j=0 (hrγ

j

)aj+1 is computable. How-
ever, if |ΩS | < t, then the polynomial F(S∪Dn+t−1−s)\ΩS (γ)
has degree strictly greater than n − 1. Thus, the element

h
1
γ r(F(S∪Dn+t−1−s)\ΩS (γ)−a0) is not computable since the com-

ponents hrγ
i

for i > n− 2 are missing in the private key.
Yet, the use of dummy attributes to enable the correctness

of the polynomial setting brings extra storage and computa-
tional costs. Similarly to [8], we modify the Herranz et al.’s
polynomial setting in a such way that dummy attributes are no
longer required. Let the polynomial FS\ΩS (γ) in CHARIOT
be defined as follows:

FS\ΩS (γ) =

∏
at∈S(γ + τ(at))∏
at∈ΩS

(γ + τ(at))
=

∏
at∈S\ΩS

(γ + τ(at))

When ΩS = Ω∩S has exactly t elements, then the degree of
the polynomial FS\ΩS (γ) is s − t. Let bi be the elements of
the polynomial. We re-write as:

FS\ΩS (γ) =

s−t∑
i=0

γibi = γs−tbs−t +

s−t−1∑
i=0

γibi

where bs−t = 1. Given the index i ∈ [0, s− t−1], we observe
that (i+n−s+ t) ∈ [n−s+ t, n−1] such that n−s+ t > 0.
In addition, γn−s+tr(FS\ΩS (γ) − γs−t) = γn−s+tr(γs−t +∑s−t−1
i=0 γibi − γs−t) = γn−s+tr(

∑s−t−1
i=0 γibi) =

r(
∑s−t−1
i=0 γi+n−s+tbi). The private key contains the

components hrγ
i

for i ∈ [1, n − 1], and thus the element
hγ

n−s+tr(FS\ΩS (γ)−γs−t) =
∏s−t−1
i=0 (hrγ

i+n−s+t
)bi is

computable. However, if |ΩS | < t, then the polynomial
FS\ΩS (γ) has degree strictly greater than s − t. Thus, the
element hγ

n−s+tr(FS\ΩS (γ)−γs−t) =
∏s−t−1
i=0 (hrγ

i+n−s+t
)bi

is not computable since components hrγ
i

for i > n − 1 are
missing in the private key.

Outsourced Signature Generation. The off-line trusted at-
tribute authority generates two keys regarding the set of the
device’s attributes by picking at random β1 ∈R Zp and
using its master secret key embedding β ∈ Zp. The first
key is an outsourcing key embedding β2 = β + β1, that is
forwarded to the cloud server. The second key is a private key
embedding β1, that is kept secret by the IoT device. The cloud
server computes an outsourced signature using its outsourcing
key, and thus β2, and the current signing policy. Then, the
device finalizes the signing process by choosing the message
and using its private key, and thus β1. The exponent β2 is
canceled out and the final signature contains β = β2 − β1.
The verification is hence possible since it requires the public
parameters, whose components embed β, and the signature of
the signing device. The device’s signature is finally checked
by a verifier: the signature is valid for the chosen message
if device’s attributes embedded in the signature satisfy the
signing policy.

However, in [7], the cloud server must know the attributes of
the signer (included in the outsourcing key) and the attributes
of the signing policy when generating outsourced signatures.
In addition, only outsider attackers are considered and do
not enclose the cloud server when proving attribute privacy
guarantee in [7]. Contrary, we suggest that the cloud server
should be considered as untrusted and thus not have any



information about the attributes of the devices and of the
signing policies. We use an HMAC τ such that inputs at are
warranted to be authentic and have not been modified. We
assume that τ sends an attribute at ∈ P onto an element
τ(at) ∈ Z∗p such that all values τ(at) are different, and hides
the attributes from the cloud server’s view. The HMAC τ is
shared among the attribute authority and the device, and used
for generating the outsourcing key (such that all the device’s
attributes are hashed using HMAC) and the HMAC-hashed
signing policy for the cloud server respectively. Hence, the
latter computes the outsourced signature such that it does not
learn anything from the attributes unless whether t attributes
match between the signing policy and the device’s attribute
set.

D. Overview

In this section, we give a sight of our protocol in which
three main phases occur. The first one enables to set up
the protocol and to generate the public parameters and key
material. The second phase lets a device ask for access
to the IoT platform by outsourcing the computation of its
request to a cloud server. The platform verifies the request
and access rights of the device, and gives authorization for
access accordingly.

Protocol Setup. First, a setup algorithm is run once to initiate
the CHARIOT protocol. It generates the public parameters
made available to all the participating parties, along with
the master secret key given to the off-line trusted attribute
authority. Then, the latter creates an outsourcing key delivered
to the cloud server, a unique private key forwarded to the
IoT device and a secret key given to the IoT platform. The
outsourcing key embeds the attributes of the device in their
HMAC-hashed form while the private key is calculated in
order to enable the device to complete its access requests to
the platform. Informally, the outsourcing key and the device’s
private key contain shares of a secret enabling to apply the
outsourced signature generation technique.

Access Request. When the device wants to access the IoT
platform, it first asks the cloud server for some assistance.
Given the outsourcing key and the current (HMAC-hashed)
policy, the cloud server generates an outsourced request, under
the form of a signature, and forwards it to the device. The latter
modifies it into its final request by using its private key and
by choosing a personal message. It finally sends its request to
the platform.

Outsourced and final signatures are constructed as in the
threshold case, based on polynomial fractions defined over
the attributes of the device and of the access policy. By
doing so, if the device holds less attributes than a certain
threshold, the signature verification will fail and the device
will not have access to the platform. Contrary to [6], the
signature generation does not require the use of dummy
attributes into polynomials to reach correctness of the
verification process. Moreover, signatures embed Groth-Sahai

proof systems allowing the device to implicitly prove that it
can decrypt a ciphertext corresponding to the ABE scheme [9].

Access Verification. Once receiving an access request from
the IoT device, the platform checks the validity of the corre-
sponding signature using the public parameters, the current
policy and the chosen message. If the result is positive,
meaning that the device has the required attributes satisfying
the policy, then it is authorized for access.

The verification phase works thanks to the correctness of the
ABE scheme [9] and to the perfect completeness, soundness
and composable zero-knowledge of the Groth-Sahai proofs.

E. Construction

The CHARIOT construction is made of six algorithms run
among a trusted attribute authority, an IoT platform, a cloud
server and an IoT device:

• Setup(λ,P, n) → (params,msk). On inputs the security
parameter λ, an attribute universe P and an integer n that is
an upper bound on the size of threshold policies, the algo-
rithm outputs the public parameters params (which contain
(λ,P, n)) and the master secret key msk (for the trusted
attribute authority) as follows:

The algorithm first chooses two cyclic groups G,GT of
prime order p > 2λ with an efficiently computable bilinear
map e : G × G → GT . Let g, h be two generators of G
and H : {0, 1}∗ → {0, 1}k be a collision-resistant hash
function for some k. Let τ be a HMAC that, given a key
K, sends an attribute at ∈ P onto an element τ(K, at) ∈ Z∗p
such that all output values are different. The algorithm then
picks α, β, γ ∈R Z∗p and computes u = gβ , vi = g

α

γi

and hi = hαγ
i

for i ∈ [0, n]. It generates the Groth-Sahai
CRS by first choosing two generators g1, g2 of G. Then, it
defines the vectors ~g1 = (g1, 1, g)> and ~g2 = (1, g2, g)>. For
i ∈ [0, k], it picks ξi,1, ξi,2 ∈R Zp and defines the vector
~g3,i = (~g1)ξi,1 · (~g2)ξi,2 = (g

ξi,1
1 , g

ξi,2
2 , gξi,1+ξi,2)>. Exponents

{ξi,1, ξi,2}i∈[0,k] can then be discarded since they are no longer
needed.

Finally, the algorithm sets the public parameters params =
(λ,P, n, p,G,GT , e, g, h, u, {vi}i∈[0,n]{hi}i∈[0,n], ~g1, ~g2,
{~g3,i}i∈[0,k], H, τ) and the master secret key msk = (α, β, γ).

• KeyGen(params,msk,Ω)→ (oskΩ, skΩ, skPT ). On inputs
the public parameters params, the master secret key msk, an
attribute set Ω ⊂ P , the trusted attribute authority outputs the
outsourcing key oskΩ (for the cloud server), the private key
skΩ (for the IoT device) and the secret key skPT (for the IoT
platform) as follows:

Let K be a random key to be shared between the device
and the platform, that will be used to hash the attributes. Let
Ω ⊂ P be an attribute set. The authority picks β1 ∈R Z∗p and
sets β2 = β + β1. It then chooses r ∈R Z∗p and computes
g

r
γ+τ(K,at) for at ∈ Ω, hrγ

i

for i ∈ [1, n− 1], h(r−β2)γn , gβ1

and hβ1γ
n

.



The authority sets the outsourcing key oskΩ =
({g

r
γ+τ(K,at) , τ(K, at)}at∈Ω, {hrγ

i}i∈[1,n−1], h
(r−β2)γn , gβ1)

for the cloud server, the private key skΩ = (hβ1γ
n

,K) for the
IoT device and the secret key skPT = K for the IoT platform.

• Request(Γ, skΩ)→ Γ̃. On inputs a threshold signing policy
Γ = (t, S) where the set S ⊂ P has |S| = s ≤ n attributes
and 1 ≤ t ≤ s and the private key skΩ, the IoT device
hashes each attribute at ∈ S with τ resulting into τ(K, at),
and creates the HMAC-hashed set S̃ containing the values
τ(K, at) for all at ∈ S. It sets the HMAC-hashed threshold
signing policy Γ̃ = (t, S̃) and forwards it to the cloud server.

• Signout(params, oskΩ, Γ̃) → σ′. On inputs the public
parameters params, the outsourcing key oskΩ and an HMAC-
hashed threshold signing policy Γ̃ = (t, S̃) where S̃ is the
HMAC-hashed set of S ⊂ P and 1 ≤ t ≤ s ≤ n, the cloud
server outputs an outsourced signature σ′ as follows:

The cloud server returns 1 if |Ω ∩ S| < t; otherwise, it
finds a subset ΩS ⊂ Ω ∩ S such that |ΩS | = t. The cloud
server works on the HMAC-hashed sets to verify the number
of attributes contained in the intersection, since it should not
get any information about the attributes in Ω and S except
that there are at least t matching attributes.

For all at ∈ ΩS , the cloud server then runs
the algorithm Aggregate({g

r
γ+τ(K,at) , τ(K, at)}at∈ΩS ) =

g
r∏

at∈ΩS
(γ+τ(K,at)) = g

r
FΩS

(γ) = T1. Let the polynomial
FS\ΩS (γ) be as FS\ΩS (γ) =

∏
at∈S\ΩS (γ + τ(K, at)) =∑s−t

i=0 γ
ibi such that bs−t = 1. Then, it computes T ′2 =

h(r−β2)γn ·
∏s−t−1
i=0 (hrγ

i+n−s+t
)bi that is possible given the

public parameters params and the outsourcing key oskΩ. The
obtained values T1 and T ′2 should satisfy the equality:

e(T ′2, v
−1
n−s+t) · e(T1, h

αFS(γ)) = e(u · gβ1 , hs−t)

Then, it picks r1, s1, r2, s2 ∈R Zp and computes ~C ′T1
=

(1, 1, T1)>·(~g1)r1 ·(~g2)s1 and ~C ′T2
= (1, 1, T ′2)>·(~g1)r2 ·(~g2)s2 .

Let θ ∈ G with commitment ~C ′θ = (1, 1, θ)> ·(~g1)rθ ·(~g2)sθ for
rθ, sθ ∈R Zp, which takes θ = hs−t and proves the following:

e(T1, HS) = e(u · gβ1 , θ) · e(T ′2, vn−s+t) (1)
e(g, θ) = e(g, hs−t) (2)

where HS = hαFS(γ) = hα
∏
at∈S(γ+τ(K,at)). Equations 1 and

2 are called proofs ~π′1 and ~π′2 respectively, and are given by
~π′1 = (Hr1

S · (ugβ1)−rθ ·v−r2n−s+t, H
s1
S · (ugβ1)−sθ ·v−s2n−s+t, 1)>

and ~π′2 = (grθ , gsθ , 1)>. It also computes gβ1rθ and gβ1sθ .
Finally, the cloud server sets the outsourced signature

σ′ = (~C ′T1
, ~C ′T2

, ~C ′θ, ~π
′
1, ~π
′
2, T

′
2, HS , g

β1rθ , gβ1sθ ) and
forwards it to the IoT device.

• Sign(params, skΩ,M, σ′) → σ. On inputs the public
parameters params, the private key skΩ, a message M and
an outsourced signature σ′, the IoT device outputs a signature
σ as follows:

Given T ′2 from the outsourced signature σ′ and hβ1γ
n

from the private key skΩ, the IoT device computes T2 =

T ′2 · hβ1γ
n

= h(r−β2)γn ·
∏s−t−1
i=0 (hrγ

i+n−s+t
)bi · hβ1γ

n

=

h(r−β)γn ·
∏s−t−1
i=0 (hrγ

i+n−s+t
)bi . The obtained values T1 and

T2 should satisfy the equality:

e(T2, v
−1
n−s+t) · e(T1, h

αFS(γ)) = e(u, hs−t) (3)

Thereafter, it computes M = m1 · · ·mk = H(M) ∈ {0, 1}k.
It uses M to form a message-specific Groth-Sahai CRS
gM = (~g1, ~g2, ~g3,M ). More specifically, for all i ∈ [0, k], ~g3,i

is parsed as (gX,i, gY,i, gZ,i)
> and the device sets ~g3,M =

(gX,0 ·
∏k
i=1 g

mi
X,i, gY,0 ·

∏k
i=1 g

mi
Y,i, gZ,0 ·

∏k
i=1 g

mi
Z,i)
>. The

device then generates the Groth-Sahai commitments to the
values T1 and T2 using gM. It picks t1, t2 ∈R Zp and
computes:

~CT1
= ~C ′T1

· (~g3,M )t1

= (1, 1, T1)> · (~g1)r1 · (~g2)s1 · (~g3,M )t1

~CT2
= ~C ′T2

· (1, 1, hβ1γ
n

)> · (~g3,M )t2

= (1, 1, T2)> · (~g1)r2 · (~g2)s2 · (~g3,M )t2

Then, it generates the NZIK proof that the pair of committed
variables (T1, T2) satisfies the pairing-product in Equation 3.
To do so, let the commitment ~Cθ = ~C ′θ ·(~g3,M )tθ = (1, 1, θ)> ·
(~g1)rθ · (~g2)sθ · (~g3,M )tθ for tθ ∈R Zp, which takes θ = hs−t
and proves the following:

e(T1, HS) = e(u, θ) · e(T2, vn−s+t) (4)
e(g, θ) = e(g, hs−t) (5)

where HS = hαFS(γ). Equations 4 and 5 are called proofs ~π1

and ~π2 respectively, and are given by:

~π1 = ~π′1 · (g−β1rθ , g−β1sθ , Ht1
S · u

−tθ · v−t2n−s+t)
>

= (Hr1
S · u

−rθ · v−r2n−s+t, H
s1
S · u

−sθ · v−s2n−s+t,

Ht1
S · u

−tθ · v−t2n−s+t)
>

~π2 = ~π′2 · (1, 1, gtθ )> = (grθ , gsθ , gtθ )>

Finally, the IoT device sets the signature σ =
(~CT1

, ~CT2
, ~Cθ, ~π1, ~π2) and sends it to the IoT platform.

• Verify(params, skPT ,M, σ,Γ) → 0/1. On inputs the
public parameters params, the secret key skPT , a message
M, a signature σ, a threshold policy Γ = (t, S), the IoT
platform outputs 0 if the signature is valid and 1 otherwise.

The IoT platform computes M = m1 · · ·mk =
H(M), forms the vector ~g3,M = (gX,0 ·

∏k
i=1 g

mi
X,i, gY,0 ·∏k

i=1 g
mi
Y,i, gZ,0 ·

∏k
i=1 g

mi
Z,i)
>, and sets HS = hαFS(γ) =

hα
∏
at∈S(γ+τ(K,at)) where K = skPT . Let ~πj =

(πj,1, πj,2, πj,3)> for j ∈ {1, 2}. It returns 0 if and only if:

E(HS , ~CT1) = E(u, ~Cθ) · E(vn−s+t, ~CT2) · E(π1,1, ~g1)

·E(π1,2, ~g2) · E(π1,3, ~g3,M )

E(g, ~Cθ) = E(g, (1, 1, hs−t)) · E(π2,1, ~g1)

·E(π2,2, ~g2) · E(π2,3, ~g3,M )



Correctness. For any λ ∈ N, any integer n, any
universe P , any public parameters and master secret
key (params,msk) ← Setup(λ,P, n), any set
Ω ⊂ P , any threshold policy Γ = (t, S) where
1 ≤ t ≤ |S| ≤ n, and any message M, it is
required that Verify(params, skPT ,M,Sign(params,
skΩ,M,Signout(params, oskΩ, Request(Γ, skΩ))),Γ) = 0
whenever (oskΩ, skΩ, skPT ) ← KeyGen(params,msk,Ω)
and |Ω∩S| ≥ t. The correctness is demonstrated based on the
one for Groth-Sahai proofs [10]. We verify the correctness of
Equation 3:

e(T2, v
−1
n−s+t) · e(T1, h

αFS(γ))

= e(h(r−β)γn ·
s−t−1∏
i=0

(hrγ
i+n−s+t

)bi , g
−α

γn−s+t )

·e(g
r

FΩS
(γ) , hαFS(γ))

= e(h(r−β)γn ·
s−t−1∏
i=0

((hrγ
i

)γ
n−s+t

)bi , g
−α

γn−s+t )

·e(g, h)αrFS\ΩS (γ)

= e(h(r−β)γs−t ·
s−t−1∏
i=0

(hrγ
i

)bi , g−α)

·e(g, h)αrFS\ΩS (γ)

= e(hrγ
s−t
· h(−β)γs−t ·

s−t−1∏
i=0

(hrγ
i

)bi , g−α)

·e(g, h)αrFS\ΩS (γ)

= e(h(−β)γs−t ·
s−t∏
i=0

(hrγ
i

)bi , g−α)

·e(g, h)αrFS\ΩS (γ)[where bs−t = 1]

= e(g, h)αβγ
s−t
· e(g, h)−αrFS\ΩS (γ)

·e(g, h)αrFS\ΩS (γ)

= e(g, h)αβγ
s−t

= e(u, hs−t)

F. Security Analysis

Unforgeability. The CHARIOT protocol can be proven
selective-policy and adaptive-message unforgeable under
chosen-message attacks assuming that H is a collision-
resistant hash function, the DLIN problem holds in G and
the (q, n, s∗, t∗)-aMSE-CDH problem holds in (G,GT ). The
adversary A (group of colluding parties that put their out-
sourcing/private keys together) selects the signing policy Γ∗ =
(t∗, S∗) that it wishes to attack at the beginning of the game,
while the messageM∗ linked to an eventually forged signature
is not chosen in advance. A can query for valid signatures on
messages and signing policies of its choice. We give a sketch
of the proof and let the reader refer to [6], [8], [15] for more
details.

Let ~g1, ~g2, {~g3,i}i∈[1,k] be a modified distribution of the
vectors that are inputs for the Groth-Sahai CRS generation.

Let an integer ν ∈R [0, k], exponents ξi,1, ξi,2 ∈R Zp and
integers ρi ∈R [0, 2qS − 1] be randomly chosen for i ∈ [0, k]
where qS is the number of signature queries. Then, let a, b
be picked at random in Zp, g1 = ga, g2 = gb, and ~g1 =
(g1, 1, g)> and ~g2 = (1, g2, g)>. Let ~g3,0 = (~g1)ξ0,1 · (~g2)ξ0,2 ·
((1, 1, g)>)ν·2qS−ρ0 and ~g3,i = (~g1)ξi,1 ·(~g2)ξi,2 ·((1, 1, g)>)ρi

for i ∈ [1, k]. In the way that the tuple (~g1, ~g2, {~g3,i}i∈[1,k])
is calculated, a successful adversary A against unforgeability
will successfully help: i) either an algorithm to find collisions
on the hash function H; ii) or an algorithm to solve the DLIN
problem; iii) or a challenger B interacting with A to solve the
(q, n, s∗, t∗)-aMSE-CDH problem.

For the item iii), let q be the cardinality of the attribute
universe P , n be the upper bound on the size of threshold
policies, s∗ be the cardinality of the target attribute set S∗

and t∗ be the target threshold value.
Initialization: B specifies the universe P of attributes while A
chooses the signing policy Γ∗ = (t∗, S∗).
Setup: B receives the elements from the aMSE-CDH assump-
tion such that it encodes each attribute from P with either the
polynomial f(x) for at /∈ S∗ or g(x) for at ∈ S∗.
Outsourcing Key and Private Key Queries: The exponent
r is calculated with a random exponent r′ ∈R Zp and
the polynomial FΩS∗ (γ) where ΩS∗ = S∗ ∩ Ω is known.
x + τ(ati)|f(x)FΩS∗ (x) since ati is either in Ω \ ΩS∗ or
in ΩS∗

Signature Queries: B computes M = H(M) = m1 · · ·mk,
evaluates the functions:

• J(M) = ν · 2qS + ρ0 +
∑k
i=1 ρi ·mi,

• K1(M) = ξ0,1 +
∑k
i=1 ξi,1 ·mi and

• K2(M) = ξ0,2 +
∑k
i=1 ξi,2 ·mi,

and sets ~g3,M = (~g1)K1(M) · (~g2)K2(M) · ((1, 1, g)>)−J(M).
If J(M) = 0, then B aborts; otherwise, it generates σ by
simulating NZIK proofs.
Forgery: A outputs (M∗, σ∗ = (~C∗T1

, ~C∗T2
, ~C∗θ , ~π

∗
1 , ~π
∗
2),Γ∗).

B then evaluates J(M∗),K1(M∗),K2(M∗) for
M∗ = H(M∗) = m∗1 · · ·m∗k. If there is a signature
query on M such that M 6= M∗ and H(M) = H(M∗),
then B aborts. This breaks the resistance against collisions
of the hash function H . If J(M∗) 6= 0, then B aborts.
gM∗ = (~g1, ~g2, ~g3,M∗) is a perfectly sound Groth-Sahai CRS.
When J(M∗) = 0, the NIZK proofs must be valid regarding
gM∗ . Hence, gM∗ , ~C

∗
T1
, ~C∗T2

are extractable Groth-Sahai
commitments. Therefore, B obtains T1 and T2, and finds a
solution for the aMSE-CDH problem.

Privacy. The CHARIOT protocol can be proven computation-
ally private assuming that the DLIN problem holds in G and
τ is a collision-resistant HMAC, ensuring that the only leaked
information is that attributes satisfy the signing policy. We
give a sketch of the proof and let the reader refer to [6] for
more details. Let the adversary A (IoT platform, cloud server)
wish to break the privacy of the CHARIOT construction by
interacting with a challenger B that tries to solve the DLIN
problem.



Game0 is defined as the real privacy game given in [6]. When
Setup is run, B chooses the vectors ~g1, ~g2, {~g3,i}i∈[0,k] such
that ~g3,i is linearly dependent on ~g1 and ~g2, for i ∈ [0, k].
Game1 is similar to Game0, except that ~g3,i is linearly inde-
pendent of ~g1 and ~g2, for i ∈ [0, k].
The modification between the two games is indistinguish-
able if the DLIN problem is hard to solve [10]. In Game1,
~CT1

, ~CT2
, ~π1 could possibly leak information about the se-

lected attributes, but commitments and proofs are perfectly
hiding since they reveal no information about the committed
values T1 and T2. Hence, attributes’ privacy is preserved
in Game1. Moreover, the outsourcing key does not leak
anything about the attributes of the IoT device except that
a certain number of them satisfy the signing policy. Indeed,
the HMAC τ ensure that, given the key K secretly shared
between the device and the IoT platform, at ∈ P is sent
onto τ(K, at) ∈ Z∗p such that all output values are different.
The function τ protects the attributes for data integrity and
authenticity, and securely hides the attributes from the cloud
server’s view.

III. PERFORMANCE ANALYSIS

A. Performance Comparison

We compare the computational and storage costs between
our CHARIOT scheme and the original Threshold ABS
scheme [6]. In the following tables, ”ExpG”, ”MultG” and
”PairGT ” denote exponentiation and multiplication in G and
pairing operation in GT respectively. Let ”n.a.” mean ”non
available”. Let n be the upper bound on the size of the policies
and k be the parameter used for the Groth-Sahai proofs. Let
Ω be the device’s attribute set, S be the signing attribute set
such that s = |S|, t be the threshold value and ΩS = Ω ∩ S
such that |ΩS | = t.

TABLE I
COMPUTATIONAL COST

Threshold ABS [6] CHARIOT
MultG ExpG MultG ExpG

Setup - 2n+ 3k + 5 - 2n+ 3k + 6
KeyGen - |Ω|+ n - n+ |Ω|+ 2
Signout n.a. n.a. s− t+ 17 2s+ t2 − t+ 32
Sign d+ s d+ 2s 3k + 5 3k + 4

−t+ 17 +t2 − t+ 32
+3k + 5 +3k + 4

Verify 3k s+ 3k + 1 3k s+ 3k + 1

In Table I, let d be the number of dummy attributes such
that d = n + t − 1 − s ≤ n − 1 as in [6]. The sign −
means no computation of the given operation. Using dummy
attributes in [6] increases the number of multiplications and
exponentiations in G during the signature generation. By re-
moving dummy attributes, up to n−1 modular multiplications
and exponentiations are cut for the CHARIOT signing phase.
Then, in CHARIOT, the computations done by a device are
limited to the Groth-Sahai proofs’ ones; all other calculations
are delegated to the cloud server. Therefore, with the assistance

TABLE II
CHARIOT STORAGE COST

params msk oskΩ skΩ σ
−d− 1 +1 +|Ω|+ n+ 3 −|Ω| − n+ 2 =

of a cloud server, the device is relieved from most of the
signing computations.

In Table II, only the storage difference in CHARIOT com-
pared to the ABS scheme in [6] is taken into account: an
element +1 (resp. an element −1) in one cell means that there
is one extra element (resp. there is one less element) in the
CHARIOT protocol compared to Herranz et al.’s protocol. The
sign = in a given column denotes that storage is identical in the
two protocols regarding the component linked to this column.
The number d of dummy attributes is equal to n − 1 as in
[6]. Hence, in [6], a set of n − 1 dummy attributes should
be stored in params in order to let the device generate its
signature, while in CHARIOT, such storage cost is saved. An
extra secret element is required in msk in CHARIOT to enable
the outsourcing of signing computations. The outsourcing key
oskΩ in CHARIOT is mainly the private key skΩ in [6]. The
device in CHARIOT simply receives an extra element from
the shared secret and the key for the HMAC τ as its private
key skΩ. Signatures are of equal size in Herranz et al.’s ABS
[6] and CHARIOT schemes, and independent of the number
of attributes.

B. Performance Benchmarking

We evaluate the performance of our CHARIOT protocol
by calculating the timings of each algorithm. We implement
CHARIOT in Charm [16] based on Python language. We
set two different configurations, one for the trusted attribute
authority, the cloud server and the IoT platform, and another
one for the IoT device. We assume that the attribute authority,
the cloud server and the platform have similar noticeable
resources, while the device has much less resources than these
three parties. The experiments are tested:
• Configuration 1 (for the attribute authority, cloud server

and platform): on a processor Intel Core i5-2500 CPU
@3.30GHz ×4 with RAM 16GiB and OS Linux Ubuntu
14.04 LTS;

• Configuration 2 (for the device): on a processor Genuine
Intel(R) U2300 CPU @1.20GHz with RAM 2GiB and
OS Linux Ubuntu 17.10.

Policies are supposed to contain up to 30 attributes regarding
real scenarios [17], [18]. Hence, we choose an upper bound
n equal to 30, a policy set S with s = 15 attributes, a
threshold t equal to 13 and a device’s attribute set Ω with 20
attributes. The parameter k is chosen regarding the bit-size of
the hashed message. Since the message to be signed is public,
the hash function does not require to be cryptographic but
rather collision-resistant. We also suppose that the dictionary
of messages picked by IoT devices is of finite and moderated
size. Therefore, we evaluate k with the values 10, 20 and 40



in order to avoid collisions with high probability. The given
timings are an average from 10 rounds of the CHARIOT
protocol.

TABLE III
TIMINGS IN MILLISECONDS

k = 10 k = 20 k = 40
Configuration 1 Setup 143.77 190.67 284.54
(attribute authority, KeyGen 76.19 75.47 75.17
cloud server Signout 265.07 272.69 271.55
and platform) Verify 65.66 108.93 194.12
Configuration 2 Request 0.16 0.16 0.17
(device) Sign 182.55 322.01 601.6

In Table III, the setup phase is costly but should be executed
only once. It largely depends on the upper bound n on the size
of threshold policies and on the parameter k used for Groth-
Sahai proofs. The key generation phase is also performed only
once by the trusted attribute authority, and is relatively fast
since it only relies on n that should not exceed 30 in an IoT
environment.

By outsourcing the signature generation to a cloud server,
we speed up by three times the computational timing. Indeed,
the cloud server approximately needs 270 milliseconds to run
the algorithm Signout while the device would require 870
milliseconds to do the same (when setting Configuration 2
as for the device). We recall that the algorithm Signout does
not depend on the parameter k, and thus does not variate with
it. Most of the signature generation is thus done by the cloud
server running the algorithm Signout. The finalization of the
signature generation is accomplished by the device by running
the algorithm Sign and remains less than 870 milliseconds (re-
sulting from running the algorithm Signout with Configuration
2). However, timings for signature finalization and verification
increase with the parameter k as these two phases largely rely
on such parameter. Hence, k should not exceed 40 in order to
keep the advantage of outsourcing the signature generation to
a cloud server.

In the CHARIOT protocol, the parameter k refers to the
bit-size of the hashed message. This parameter k should
be selected such that collisions are highly avoided. If the
dictionary of messages to be signed is really small, then
k = 10 is optimal. Otherwise, if the dictionary is slightly
bigger, then k = 20 is still a reasonable choice. In addition,
signature finalization and verification take similar timings to
be performed since they are composed of the same kinds of
computations. The difference comes from the constant number
(equal to 27) of pairing operations carried out when checking
the validity of the signature. Because of the number of pairing
computations required for verification, the Groth-Sahai proof
systems appear to be inefficient. Blazy et al. [19] propose a
significant reduction of the cost of Groth-Sahai proof systems
by using batch verification techniques. The authors improve
the verification cost up to four times the number of pairings
per proof verification. We can integrate their batch verification
techniques into the CHARIOT protocol to improve the timings
of the verification phase.

C. Related Work

ABS. Maji et al. [20] explicitly introduce the notion of ABS
and suggest several schemes with very expressive signing
policies. The most practical one is only proven secure in the
generic model, while the one with security in the standard
model is not efficient since the signatures have size linear
in the number of group elements in the security parameter.
Okamoto et Takashima [21] propose an ABS construction
where the size of the signatures grows linearly in the size
of the span program, which is greater than the number of
selected attributes in the signing policies. Other works on
ABS are given in [5], [22], [23]. Subsequently, Okamoto
and Takashima [24] present a fully secure ABS scheme
that supports general non-monotone policies. More recently,
Herranz et al. [6] suggest an ABS construction with threshold
policies and constant-size signatures, which requires the
presence of dummy attributes following the technique from
Dynamic Threshold Public-Key Encryption [14].

Outsourcing Computations. Several papers deal with the
problem of securely outsourcing expensive computations such
as matrix multiplications and quadrature computations, edit
distance computations, linear algebraic computations and lin-
ear programming computations [25]–[29]. Nevertheless, the
aforementioned schemes are not suitable to alleviate the
computational burdens that signers meet when generating
signatures. Server-aided signature schemes [30]–[32] aim to
decrease the computational cost due to exponentiation cal-
culations by outsourcing the latter to a server. Nevertheless,
these schemes are not suitable for access control management
based on credentials. Mediated cryptographic protocols [33]–
[35] require a partially trusted on-line server and provide
efficient revocation but cannot be used to extend ABS into an
outsourced ABS. More recently, Chen et al. [7] present two
outsourced ABS schemes. While the first solution achieves a
constant number of exponentiation calculations at the signer’s
side, the size of the signature remains linear in the number of
selected attributes. The second solution obtains constant-size
signatures; however, the number of exponentiations depends
on the number of dummy attributes in addition to the number
of selected attributes. Yet, the cloud server must know the
attributes of the signers and of the signing policies in plain in
order to proceed, compromising privacy.

IV. CONCLUSION

In this paper, we propose a new protocol for server-aided
access control in IoT, called CHARIOT. The protocol’s fea-
tures comprise cloud server assistance, constant-size signa-
ture and no dummy attributes. By outsourcing most of the
calculations to a cloud server for the signature generation,
we manage to relieve the computational and communication
costs at the IoT device’s side. By removing the presence of
dummy attributes in the protocol, we achieve to obtain a more
efficient and practical ABS scheme compared to existing ones.
Moreover, our protocol guarantees privacy and secure identity
management of the involved parties. These contributions make



our scheme suitable for securely authorizing devices with
constrained resources to access an IoT platform.
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