
Context Hiding Multi-Key Linearly
Homomorphic Authenticators

Lucas Schabhüser, Denis Butin, and Johannes Buchmann

Technische Universität Darmstadt, Germany
{lschabhueser,dbutin,buchmann}@cdc.informatik.tu-darmstadt.de

Abstract. Demanding computations are increasingly outsourced to
cloud platforms. For such outsourced computations, the efficient verifia-
bility of results is a crucial requirement. When sensitive data is involved,
the verification of a computation should preserve the privacy of the input
values: it should be context hiding. Context hiding verifiability is enabled
by existing homomorphic authenticator schemes. However, until now,
no context hiding homomorphic authenticator scheme supports multiple
independent clients, e.g. multiple keys. Multi-key support is necessary for
datasets involving input authenticated by different clients, e.g. multiple
hospitals in e-health scenarios. In this paper, we propose the first perfectly
context hiding, publicly verifiable multi-key homomorphic authenticator
scheme supporting linear functions. Our scheme is provably unforgeable in
the standard model, and succinct. Verification time depends only linearly
on the number of clients, in an amortized sense.

Keywords: Delegated Computation · Homomorphic Authenticators ·
Context Hiding

1 Introduction

Today, it is common practice to outsource time-consuming computations to the
cloud. In such a situation, it is desirable to be able to verify the outsourced
computation. The verification must be efficient, by which we mean that the
verification procedure is significantly faster than the verified computation itself.
Otherwise, the verifier could as well carry out the computation by himself,
negating the advantage of outsourcing. In addition, there are scenarios in which
the verification is required to provide input privacy, i.e. the verification does not
reveal anything about the input to the computation. For instance, a cloud service
may collect health data of individuals and compute statistics on them. These
statistical evaluations are then given to third parties, such as insurance companies.
While these third parties must be able to learn the statistical outcome, for privacy
reasons, they must not learn the individual health data. Furthermore, many
interesting statistics involve multiple identities; for instance, computing on health
data across datasets provided by multiple hospitals. Keeping identities separate
instead of merging all data supports fine-grained authenticity. Furthermore, using
different keys instead of copies of a shared key avoids a single point of failure.

2 Context Hiding Multi-Key Homomorphic Authenticators

With multiple keys, the loss of a single key does not result in a total security loss,
in contrast with the shared key approach.

Homomorphic Authenticators. In practice, the efficient verifiability of out-
sourced computation can be realised using homomorphic authenticators. The
general idea of homomorphic authenticators is the following. Before delegating
inputs to a function, the input values are authenticated. The homomorphic
property allows the server to compute an authenticator to the output of a given
function from the authenticators to the inputs to said function. In the public
key setting, homomorphic authenticators are called homomorphic signatures.
In the private key setting, they are called homomorphic MACs. Input privacy
for homomorphic authenticators has been formalized in the form of the context
hiding property.

State of the Art. Using such authenticators, there are solutions for efficient
context hiding verifiability for the case of a single client, and for the equivalent case
of multiple clients sharing a single secret key [4,8,22]. However, no context hiding
solution for multiple clients with different keys exists. Fiore et al. [14] already
presented multi-key homomorphic authenticators. However, their constructions
are not context hiding. Hence the challenge arises to design efficient and context
hiding verification procedures for outsourced computing that support multiple
clients.

1.1 Contribution Overview

In this paper, we present the first publicly verifiable homomorphic authentica-
tor scheme providing efficient and context hiding verification in the setting of
multiple clients (allowing for multiple keys). We construct a multi-key linearly
homomorphic signature scheme, and thus focus on the public key setting. We
first define the context hiding property in the multi-key case. We then describe
our main contribution, a new publicly verifiable multi-key linearly homomorphic
authenticator scheme. Our scheme allows to generate an authenticator on the
function value of a linear function from authenticators on the input values of
various identities without knowledge of the authentication key. Furthermore, our
scheme is perfectly context hiding, i.e. the authenticator to the output value
does not leak any information about the input values. Using our multi-key
homomorphic authenticator scheme, the verification procedure for outsourced
computations of linear functions can be implemented as follows. The various
clients each upload data, signed under their personal private key, to the cloud.
The cloud server computes the result of the given function over these data. It
also generates an authenticator to this result from the signatures on the inputs.
The verifier uses this authenticator to check for correctness of the computation,
by using the verification keys associated to the clients providing input to the
computation. Regarding performance, verification time depends only on the
number of identities involved (in an amortized sense).

Context Hiding Multi-Key Homomorphic Authenticators 3

Context Hiding Security for Multiple Clients. On a high level, we first
define the context hiding property in the multi-key setting. Intuitively, this
property provides some measure of input privacy, i.e. an authenticator to the
output of a computation does not leak information about the input to the
computation. In the multi-key setting, the question who exactly is meant to be
prevented from learning about the input values becomes relevant. In particular,
we differentiate between an external adversary — one that has not corrupted any
of the identities involved in a computation — and an internal adversary, who has
this additional knowledge. Thus we capture the two slightly different notions of
keeping the input values private with respect to some outside party (externally
context hiding), versus keeping the input values confidential with respect to an
identity that also provided inputs to the computation (internally context hiding).

Our Construction. Then, we provide a concrete instantiation of a publicly ver-
ifiable multi-key linearly homomorphic authenticator scheme, i.e. a homomorphic
signature scheme with these properties. Our authenticator size is O(k), where k is
the number of identities involved in the computation, thus achieving succinctness.
A homomorphically derived authenticator consists of both components associated
to an identity id and global elements. In order to prevent the elements associated
to id from leaking information about the inputs provided by id, the authenticators
are randomized, and the global elements are used to deal with the randomiza-
tion in order to preserve the homomorphic property. Our verification procedure
naturally splits into two parts, only one of which involves the actual outcome
of the computation. The other part only depends on the public verification key
vk and the function to be evaluated, and can thus be precomputed. This allows
for amortized efficient verification, i.e. after an expensive function-dependent
one-time precomputation, all subsequent verifications occur in constant time.

Proving Unforgeability. A significant part of this paper is the security re-
duction used to prove our scheme’s unforgeability. In Sec. 4, we present a series
of games, followed by several lemmata considering the difference between the
games. Most games only differ if a forgery of a specific type is produced by the
adversary, i.e. a special case of a forgery, where one or several of the components
are correct. We bound the probability of these events and can show that such
forgeries imply solving the Discrete Logarithm, the Decisional Diffie–Hellman and
the Flexible Diffie–Hellman Inversion problem (introduced by Catalano, Fiore
and Nizzardo at CRYPTO 2015 [9]), respectively. Our security reduction is per-
formed in the standard model. Our scheme does not use Fiore et al.’s lattice-based
construction [14] and thus features a different structure. Consequently, our proof
strategy is also novel. As is common in homomorphic authenticator schemes,
we use identifiers or labels. They uniquely identify the position of an input in
a dataset. There are elements in the public verification key associated to these
labels. When simulating (some of) these security games, the simulator does not
have access to the secret signing key and thus cannot run the algorithm Auth. By
embedding a trapdoor into the elements associated to labels in the verification

4 Context Hiding Multi-Key Homomorphic Authenticators

key the simulator can perfectly simulate authenticators when presented with a
Flexible Diffie–Hellman Inversion instance (and thus not knowing the secret key).

1.2 Outline

We recall relevant definitions for homomorphic authenticator schemes in Sec. 2
and define the context hiding property in the multi-key setting. In Sec. 3, we
present our publicly verifiable multi-key homomorphic authenticator scheme for
linear functions. We then address its properties, notably correctness and context
hiding. In Sec. 4, we provide a security reduction for our scheme. Next, in Sec. 5,
we compare our contribution to existing work on homomorphic authenticators
and verifiable computation. Finally, in Sec. 6, we summarize our results and give
an outlook to future work and open problems.

2 Formalising Multi-Key Homomorphic Authenticators

In this section, we provide the necessary background for homomorphic authenti-
cators and their properties. We recall the definitions for correctness and unforge-
ability, ass well as efficiency properties in the form of succinctness and efficient
verification. Then we present our generalization of the context hiding property to
the multi-key setting. Finally we state the computational assumptions on which
the security of our scheme is based.

To accurately describe both correct and legitimate operations for homomor-
phic authenticators, we use multi-labeled programs similarly to Backes, Fiore,
and Reischuk [5]. The basic idea is to append a function by several identifiers,
in our case input identifiers and dataset identifiers. Input identifiers label in
which order the input values are to be used and dataset identifiers determine
which authenticators can be homomorphically combined. The idea is that only
authenticators created under the same dataset identifier can be combined. We
now give formal definitions.

A labeled program P consists of a tuple (f, τ1, . . . , τn), where f :Mn →M is
a function with n inputs and τi ∈ T is a label for the ith input of f from some
set T . Given a set of labeled programs P1, . . . ,PN and a function g :MN →M,
they can be composed by evaluating g over the labeled programs, i.e. P∗ =
g(P1, . . . ,PN). The identity program with label τ is given by Iτ = (fid, τ), where
fid :M→M is the identity function. The program P = (f, τ1, . . . , τn) can be
expressed as the composition of n identity programs P = f(Iτ1 , . . . , Iτn).

A multi-labeled program P∆ is a pair (P, ∆) of the labeled program P and a
dataset identifier∆. Given a set of k multi-labeled programs with the same dataset
identifier ∆, i.e. (P1, ∆), . . . , (PN , ∆), and a function g :MN →M, a composed
multi-labeled program P∗∆ can be computed, consisting of the pair (P∗, ∆), where
P∗ = g(P1, . . . ,PN). Analogously to the identity program for labeled programs,
we refer to a multi-labeled identity program by I(τ,∆) = ((fid, τ), ∆).

In particular, we use labeled programs to identify the different clients. Our
multi-key homomorphic authenticators allow the verification of linear functions

Context Hiding Multi-Key Homomorphic Authenticators 5

evaluated over data signed by different keys. Following the convention of [14],
we assume every client has an identity id in some identity space ID, and that
public keys can be linked to an identity id. This can, for instance, be achieved by
a public-key infrastructure (PKI). In order to identify which inputs (labeled by
τ) were authenticated by id, our messages are assigned with a label l← (id, τ),
where id is a client’s identity and τ is an input identifier. Following convention,
messages are grouped within datasets ∆ and homomorphic evaluation is only
supported over the same dataset.

Definition 1 (Multi-Key Homomorphic Authenticator ([14]). A multi-
key homomorphic authenticator scheme MKHAuth is a tuple of the following
probabilistic polynomial time (PPT) algorithms:

Setup(1λ) : On input a security parameter λ, the algorithm returns a set of public
parameter pp, consisting of (at least) the description of a tag space T , an
identity space ID, a message spaceM, and a set of admissible functions F .
Given T and ID the label space of the scheme is defined as L = ID× T . The
public parameters pp will implicitly be inputs to all following algorithms even
if not explicitly specified.

KeyGen(pp) : On input the public parameters pp, the algorithm returns a key
triple (sk, ek, vk), where sk is the secret key authentication key, ek is a public
evaluation key, and vk is a verification key that can be either private or public.

Auth(sk, ∆, l,m) : On input a secret key sk, a dataset identifier ∆, a label l =
(id, τ), and a message m, the algorithm returns an authenticator σ.

Eval(f, {(σi,EKSi)}i∈[n]) : On input a function f : Mn → M and a set {(σi,
EKSi)}i∈[n] of evaluation keys, the algorithm returns an authenticator σ.

Ver(P∆, {vkid}id∈P ,m, σ) : On input a multi-labeled program P∆, a set of verifica-
tion key {vkid}id∈P , corresponding to the identities id involved in the program
P, a message m ∈M, and an authenticator σ , the algorithm returns either
1(accept), or 0(reject).

If the class F of admitted functions is the set of linear functions, we call
MKHAuth a multi-key linearly homomorphic authenticator. If vk is private, we
call MKHAuth a multi-key homomorphic MAC, while for a public vk we call it a
multi-key homomorphic signature.

We now define properties relevant for the analysis of multi-key homomor-
phic authenticator schemes: authentication correctness, evaluation correctness,
succinctness, unforgeability, efficient verification and context hiding.

Correctness naturally comes in two forms. We require both authenticators
created directly with a secret signing key as well as those derived by the homo-
morphic property to verify correctly.

Definition 2 (Authentication Correctness). A multi-key homomorphic au-
thenticator scheme (Setup,KeyGen,Auth,Eval,Ver) satisfies authentication cor-
rectness if, for any security parameter λ, any public parameters pp← Setup(1λ),
any key triple (sk, ek, vk) ← KeyGen(pp), any label l = (id, τ) ∈ L, any dataset
identifier ∆ ∈ {0, 1}∗, any message m ∈ M, and any authenticator σ ←

6 Context Hiding Multi-Key Homomorphic Authenticators

Auth(sk, ∆, l,m) we have Ver(I(l,∆), vk,m, σ) = 1, where Il,∆ is the multi-labeled
identity program.

Definition 3 (Evaluation Correctness). A multi-key homomorphic authenti-
cator scheme (Setup,KeyGen,Auth,Eval,Ver) satisfies authentication correctness
if, for any security parameter λ, any public parameters pp← Setup(1λ), any set of
key triples {(skid, ekid, vkid)}id∈ĨD, with (skid, ekid, vkid) $← KeyGen(pp) for all id ∈
˜ID, for some subset ˜ID ⊂ ID, for any dataset identifier ∆ ∈ {0, 1}∗, and any set
of program/message/authenticator triples {(Pi,mi, σi)}i∈[N], such that Ver(Pi,∆,
{vkid}id∈Pi ,mi, σi) = 1 the following holds: Let m∗ = g(m1, . . . ,mN),P∗ =
g(P1, . . . ,PN), and σ∗ = Eval(g, {(σi,EKSi)}i∈[N]) where EKSi = {ekid}id∈Pi .
Then Ver(P∗∆, {vkid}id∈P∗ ,m

∗, σ∗) = 1 holds.

We now consider two properties impacting the practicality of homomorphic
authenticator schemes. Succinctness on a high level guarantees that bandwidth
requirements for deploying such a scheme are low. Efficient verification allows for
low computational effort on behalf of the verifier.

Definition 4 (Succinctness [14]). A multi-key homomorphic authenticator
scheme (Setup,KeyGen,Auth,Eval,Ver) is said to be succinct if the size of ev-
ery authenticator depends only logarithmically on the size of a dataset. How-
ever, we allow authenticators to depend on the number of keys involved in
the computation. More formally, let pp ← Setup(1λ), P = (f, l1, . . . , ln), with
li = (idi, τi), {(skid, ekid, vkid)← KeyGen(pp)}id∈P , and σi ← Auth(skidi , ∆, li,mi)
for all i ∈ [n]. A multi-key homomorphic authenticator is said to be suc-
cinct if there exists a fixed polynomial p such that |σ| = p(λ, k, logn), where
σ = Eval(f, {σi, ekidi}i∈[n]) and k = |{id ∈ P}|.

We explicitly allow the size of the authenticators to depend on the number of
identities k = |{id ∈ P}| involved in the computation.

Like Libert and Yung [21], we call a key concise if its size is independent of
the input size n.

Definition 5 (Efficient Verification [9]). A multi-key homomorphic authen-
ticator scheme for multi-labeled programs allows for efficient verification if there
exist two additional algorithms (VerPrep,EffVer) such that:

VerPrep(P, {vkid}id∈P) : Given a labeled program P = (f, l1, . . . , ln), and a set of
verification keys {vkid}id∈P this algorithm generates a concise verification key
vkP . This does not depend on a dataset identifier ∆.

EffVer(vkP , ∆,m, σ): Given a concise verification key vkP , a dataset ∆, a mes-
sage m, and an authenticator σ, it outputs 1 or 0.

The above algorithms are required to satisfy the following two properties:

Correctness: Let {(skid, ekid, vkid)}id∈ID be a set of honestly generated keys and
(P∆,m, σ) be a tuple such that, Ver(P∆, {vkid}id∈P ,m, σ) = 1. Then, for
every vkP

$← VerPrep(P, {vkid}id∈P), Pr[EffVer(vkP , ∆,m, σ) = 0] = negl(λ),
where negl(λ) denotes any function negligible in the security parameter λ.

Context Hiding Multi-Key Homomorphic Authenticators 7

Amortized Efficiency: Let P be a program, let m1, . . . ,mn be valid input
values and let t(n) be the time required to compute P(m1, . . . ,mn) with
output m. Then, for any vkP

$← VerPrep(P, {vkid}id∈P), and any ∆ ∈ {0, 1}∗
the time required to compute EffVer(vkP , ∆,m, σ) is t′ = o(t(n)), where
σi ← Auth(skidi , ∆, li,mi) for i ∈ [n], and σ ← Eval(f, {(σi,EKSi)}i∈[n]).

Here, efficiency is used in an amortized sense. There is a function-dependent
pre-processing phase, so that the cost of verification amortizes over multiple
datasets.

For the notion of unforgeability of a multi-key homomorphic authenticator
scheme (Setup,KeyGen,Auth,Eval,Ver), we define the following experiment be-
tween an adversary A and a challenger C. During the experiment, the adversary
A can adaptively query the challenger C for authenticators on messages of his
choice under labels of his choice. He can also make verification queries and corrupt
clients. Intuitively, the homomorphic property allows anyone (with access to the
evaluation keys) to derive new authenticators. This can be checked by the use of
the corresponding program in the verification algorithm. An adversary should
however not be able to derive authenticators beyond that. Preventing forgeries
on programs involving inputs of corrupted clients is impossible in many cases
(e.g. for any linear function), as knowledge of the secret key allows the creation
of arbitrarily many authenticators under any multi-label (l,∆). However, this
security definition captures that knowledge of one client’s secret key does not
allow any forgeries on a computation not involving this corrupted client.

Definition 6 (HomUF− CMAA,MKHAuth(λ)).

Setup: C runs Setup(1λ) to obtain the public parameters pp that are sent to A.
Authentication Queries: A can adaptively submit queries of the form (∆, l,m)

where ∆ is a dataset identifier, l = (id, τ) ∈ L is a label, and m ∈ M is a
message of its choice. C answers as follows:
If (∆, l,m) is the first query for the dataset ∆, C initializes an empty list
L∆ = ∅ and proceeds as follows.

If (∆, l,m) is the first query with identity id, C generates keys (skid, ekid, vkid)
$← KeyGen(pp) (that are implicitly assigned to identity id), gives (ekid, vkid)
to A and proceeds as follows.

If (∆, l,m) is such that (l,m) /∈ L∆, C computes σl ← Auth(skid, ∆, l,m)
(C has already generated keys for the identity id), returns σl to A and
updates the list L∆ ← L∆ ∪ (l,m).

If (∆, l,m) is such that (l, ·) ∈ L∆ (which means that the adversary had
already made a query (∆, l,m′) for the identity id), then C ignores the
query.

Verification Queries: A is also given access to a verification oracle. Namely
the adversary can submit a query (P∆,m, σ) and C replies with the output of
Ver(P∆, {vkid}id∈P ,m, σ).

Corruption Queries: The adversary A has access to a corruption oracle. At
the beginning of the experiment, the challenger C initializes an empty list

8 Context Hiding Multi-Key Homomorphic Authenticators

Lcorr = ∅ of corrupted identities. During the game A can adaptively query
identities id ∈ ID. If id /∈ Lcorr then C replies with the triple (skid, ekid, vkid)
(that is generated using KeyGen if not done before) and updates the list
Lcorr ← Lcorr ∪ id. If id ∈ Lcorr, then C replies with the triple (skid, ekid, vkid)
assigned to id before.

Forgery: In the end, A outputs a tuple (P∗∆∗ ,m∗, σ∗). The experiment outputs
1 if the tuple returned by A is a forgery as defined below (see Def. 7), and 0
otherwise.

This describes the case of publicly verifiable multi-key homomorphic authenti-
cators. For multi-key homomorphic MACs, the verification keys vki are not given
to the adversary A during the security experiment.

Definition 7 (Forgery [14]). Consider a run of HomUF− CMAA,MKHAuth(λ)
where (P∗∆∗ ,m∗, σ∗) is the tuple returned by the adversary in the end of the exper-
iment, with P∗ = (f∗, l∗1, . . . , l∗n). This is a forgery if Ver(P∗∆∗ , {vkid}id∈P∗ ,m

∗,
σ∗) = 1, id /∈ Lcorr (i.e. no identity involved in P∗ is corrupted, and at least one
of the following properties is satisfied:

Type 1: The list L∆∗ was not initialized during the security experiment, i.e. no
message was ever committed under the dataset identifier ∆∗.

Type 2: P∗∆∗ is well defined with respect to list L∆∗ and m∗ is not the correct
output of the computation, i.e. m∗ 6= f∗(m1, . . . , mn)

Type 3: P∗∆∗ is not well defined with respect to L∆∗ (see Def. 8).

Definition 8 (Well Defined Program). A labeled program P = (f, l1, . . . , ln)
is well defined with respect to a list L ⊂ L×M if one of the two following cases
holds: First, there are messagesm1, . . . ,mn such that (li,mi) ∈ L ∀i ∈ [n]. Second,
there is an i ∈ {1, . . . , n} such that (li, ·) /∈ L and f({mj}(lj ,mj)∈L∪{m′k}(lk,·)/∈L)
is constant over all possible choices of m′k ∈M.

If f is a linear function, the labeled program P = (f, l1, . . . , ln), with
f(m1, . . . ,mn) =

∑n
i=1 fimi fulfills the second condition if and only if fk = 0 for

all (lk, ·) /∈ L.

Definition 9 (Unforgeability). A multi-key homomorphic authenticator scheme
MKHAuth is unforgeable if for any PPT adversary A we have

Pr[HomUF− CMAA,MKHAuth(λ) = 1] = negl(λ).

Additionally, we will use the following statement:

Lemma 1. Let MKHAuth = (Setup,KeyGen,Auth,Eval,Ver) be a multi-key lin-
early homomorphic authenticator scheme over a message space M ⊂ Rt for
some ring R and integer t. If MKHAuth is secure against Type 2 forgeries, then
MKHAuth is also secure against Type 3 forgeries.

Proof. This is an immediate corollary of a result by Freeman [15, Proposition
2.3].

Context Hiding Multi-Key Homomorphic Authenticators 9

We also consider a relaxation of the unforgeability definition in which the
adversaries ask for corruptions in a non-adaptive way. More precisely, we say
that an adversary A makes non-adaptive corruption queries if for every identity
id asked to the corruption oracle, id was not queried earlier in the game to
the authentication oracle or the verification oracle. For this class of adversaries,
corruption queries are of no help as the adversary can generate keys on its own.
We will use the following lemma:
Lemma 2 ([14, Proposition 1]). MKHAuth is unforgeable against adversaries
that do not make corruption queries if and only if MKHAuth is unforgeable against
adversaries that make non-adaptive corruption queries.

We are now ready to provide our notion of input privacy, in the form of the
context hiding property and adapting this to the multi-key setting.

Our definition for the context hiding property is inspired by Gorbunov et
al.’s definition [18] for the single-key case. However, in our case, the simulator
is explicitly given the circuit for which the authenticator is supposed to verify.
With respect to this difference, our definition is more general. We stress that
the circuit is not hidden in either of these notions. Furthermore, we differentiate
between an external adversary and an internal adversary, that corrupts some of
the various identities involved in a computation, i.e. knows their secret keys and
inputs to a computation. Such an adversary will learn more than the outcome of
the computation, since it knows some of the secret keys. It is however desirable
for any non-corrupted party to achieve context hiding privacy even against other
parties involved in the computation, as far as that is possible. We now formally
define context hiding for both kinds of adversaries.
Definition 10 (Context Hiding). A multi-key homomorphic authenticator
scheme for multi-labeled programs is externally context hiding if there exist two
additional PPT procedures σ̃ ← Hide({vkid}id∈ID,m, σ) and HideVer({vkid}id∈ID,
P∆,m, σ̃) such that:
Correctness: For any pp ← Setup(1λ), (skid, ekid, vkid) ← KeyGen(pp) and

any tuple (P∆,m, σ), such that Ver(P∆, {vkid}id∈P ,m, σ) = 1, and σ̃ ←
Hide({vkid}id∈ID,m, σ), it holds that HideVer({vkid}id∈ID,P∆,m, σ̃) = 1.

Unforgeability: The homomorphic authenticator scheme is unforgeable (see
Def. 9) when replacing the algorithm Ver with HideVer in the security experi-
ment.

Context Hiding Security: There is a simulator Sim such that, for any fixed
(worst-case) choice of {(skid, ekid, vkid)← KeyGen(pp)}id∈P , any multi-labeled
program P∆ = (f, l1, . . . , ln, ∆), messages m1, . . . ,mn, and distinguisher D
there exists a function ε(λ) such that |Pr[D(Hide({vkid}id∈P ,m, σ)) = 1] −
Pr[D(Sim({skid}id∈P ,P∆,m)) = 1]| = ε(λ), where σi ← Auth(skidi , ∆, li,mi),
m← f(m1, . . . ,mn), σ ← Eval(f, {(σi, EKSi)}i∈[n]),and the probabilities are
taken over the randomness of Auth,Hide and Sim.
If ε(λ) = negl(λ), we call the multi-key homomorphic authenticator scheme

statistically externally context hiding. If ε(λ) = 0, we call it perfectly externally
context hiding.

10 Context Hiding Multi-Key Homomorphic Authenticators

If for the context hiding security we even have |Pr[D({skid}id∈ĨD,Hide(vk,m,
σ)) = 1]− Pr[D(Sim({skid}id∈P , I,P∆,m)) = 1]| = ε(λ), where I = ({skid}id∈ĨD,

{(m(τ,id), σ(τ,id))}id∈ĨD), ˜ID ⊂ ID is a set of corrupted identities and the rest is
like before, we call the multi-key homomorphic authenticator scheme (statistically
or perfectly, depending on ε(λ) as above) internally context hiding.

2.1 Computational Assumptions

We recall the computational assumptions on which our schemes are based.

Definition 11. Let G be a generator of cyclic groups of order p and let G $←
G(1λ). We say the Discrete Logarithm assumption (DL) holds in G if there
exists no PPT adversary A that, given (g, ga) for a random generator g ∈ G
and random a ∈ Zp, can output a with more than negligible probability, i.e. if
Pr[a← A(g, ga)|g $← G, a $← Zp] = negl(λ).

Definition 12 (Asymmetric bilinear groups). An asymmetric bilinear
group is a tuple bgp = (p,G1,G2,GT , g1, g2, e), such that:

– G1,G2, and GT are cyclic groups of prime order p,
– g1 ∈ G1 and g2 ∈ G2 are generators for their respective groups,
– the DL assumption holds in G1,G2, and GT ,
– e : G1 × G2 → GT is bilinear, i.e. e(g1

a, g2
b) = e(g1, g2)ab holds for all

a, b ∈ Z,
– e is non-degenerate, i.e. e(g1, g2) 6= 1, and
– e is efficiently computable.

We will write gt = e(g1, g2).

Definition 13. Let G be a generator of asymmetric bilinear groups and let
bgp = (p,G1,G2,GT , g1, g2, e)

$← G(1λ). We say the Decisional Diffie–Hellman
assumption (DDH) holds in G1 if, for every PPT adversary A,

|Pr[A(bgp, gx1 , g
y
1 , g

xy
1)|x, y $← Zp]−Pr[A(bgp, gx1 , g

y
1 , g

z
1)|x, y, z $← Zp]| ≤ negl(λ)

We also use the Flexible Diffie–Hellman Inversion hardness assumption, in-
troduced by Catalano, Fiore and Nizzardo [9]. In the extended version of their
CRYPTO2015 paper [8], they formally investigate the hardness of this assumption
and analyse it in the generic group model.

Definition 14 ([9]). Let G be a generator of asymmetric bilinear groups and
let bgp = (p,G1,G2,GT , g1, g2, e)

$← G(1λ). We say the Flexible Diffie–Hellman
Inversion (FDHI) assumption holds in bgp if, for every PPT adversary A,

Pr[W ∈ G1\{1G1} ∧W ′ = W
1
z : (W,W ′)← A(g1, g2, g

z
2 , g

v
2 , g

z
v
1 , g

r
1, g

r
v
1)|

z, r, v
$← Zp] ≤ negl(λ).

Context Hiding Multi-Key Homomorphic Authenticators 11

3 A Publicly Verifiable Multi-Key Linearly Homomorphic
Authenticator Scheme

In this section, we present our multi-key homomorphic signature scheme, i.e. a
publicly verifiable homomorphic authenticator. It supports linear functions. We
analyse it with respect to its correctness, its succinctness and efficient verifiability.
Finally, we proof that our scheme is indeed perfectly context hiding. Unforgeability
is dealt with in the next section.

3.1 Our Construction

Notation If we have n possibly distinct messages m1, . . . ,mn, we denote by mi

the ith message. Since our messages are vectors, i.e. m ∈ ZTp , we write m[j] to
indicate the jth entry of message vector m for j ∈ [T]. Therefore mi[j] denotes
the jth entry of the ith message. Given a linear function f , its ith coefficient is
denoted by fi, i.e. f(m1, . . . ,mn) =

∑n
i=1 fimi. If we have n possibly distinct

authenticator components, e.g. Λ1, . . . , Λn, we denote by Λi the ith component.
A single authenticator comprises different components, corresponding to different
identities. For authenticator Λ, we denote by Λid the component for identity
id. We denote by Λid,i the component of the ith authenticator corresponding to
identity id. We use a regular signature scheme Sig = (KeyGensig,Signsig,Versig)
as a building block. (sksig, pksig) denotes a secret/public key pair for Sig.

Setup(1λ) : On input a security parameter λ, this algorithm chooses the param-
eters k, n, T ∈ Z, a bilinear group bgp = (p,G1,G2,GT , g1, g2, e)

$← G(1λ),
the message spaceM = ZTp , the tag space T = [n], and the identity space
ID = [k]. Additionally it fixes a pseudorandom function F : K×{0, 1}∗ → Zp.
It chooses H1, . . . HT ∈ G1 uniformly at random. It outputs the public
parameters pp = (k, n, T, bgp, H1, . . . ,HT , F, λ).

KeyGen(pp) : On input the public parameters pp, the algorithm chooses K ∈ K
uniformly at random. It runs (sksig, pksig) ← KeyGensig(1λ). It chooses
x1, . . . , xn, y ∈ Zp uniformly at random. It sets hi = gxit for all i ∈ [n],
as well as Y = gy2 . It sets sk = (K, sksig, x1, . . . xn, y), ek = 0, vk =
(pksig, h1, . . . , hn, Y) and outputs (sk, ek, vk). Each identity performs KeyGen
individually, and hence obtains its own key tuple (skid, ekid, vkid).

Auth(sk, ∆, l,m) : On input a secret key sk, a dataset identifier ∆, a label
l = (id, τ), and a message m, the algorithm computes z = FK(∆), sets
Z = gz2 and binds this parameter to the dataset by signing it, i.e. it
computes σ∆ ← Signsig(sksig, Z||∆). Then it chooses r, s ∈ Zp uniformly
at random and sets R = gr−ys1 , S = g−s2 . It parses l = (τ, id) and com-

putes A =
(
gxτ+r

1 ·
∏T
j=1 H

ym[j]
j

) 1
z and C = gs1 ·

∏T
j=1 H

m[j]
j . It sets Λ =

{(id, σ∆, Z,A,C)} and outputs σ = (Λ,R, S).
Eval(f, {(σi,EKSi)}i∈[n]) : On input an function f : Mn → M and a set
{(σi,EKSi)}i∈[n] of authenticators and evaluation keys (in our construction,

12 Context Hiding Multi-Key Homomorphic Authenticators

no evaluation keys are need, so this set contains only authenticators), the
algorithm parses f = (f1, . . . fn) as a coefficient vector. It parses each σi as
(Λi, Ri, Si) and sets R =

∏n
i=1 R

fi
i , S =

∏n
i=1 S

fi
i . Set LID =

⋃n
i=1{idi}. For

each id ∈ LID it chooses a pair (σ∆,id, Zid) uniformly at random such that
a tuple (id, σ∆,id, Zid, A,C) is contained in one of the Λi. More formally, it
chooses (σ∆,id, Zid) $← {(σ, Z) | ∃ A,C | (id, σ∆, Z,A,C) ∈

⋃n
i=1 Λi}. Then it

computes Aid =
n∏
i=1

idi=id

Afii , Cid =
n∏
i=1

idi=id

Cfii , and sets Λid = {id, σ∆,id, Zid, Aid,

Cid}. Set Λ =
⋃

id∈LID
Λid. It returns σ = (Λ,R, S).

Ver(P∆, {vkid}id∈P ,m, σ) : On input a multi-labeled program P∆, a set of ver-
ification key {vkid}id∈P , corresponding to the identities id involved in the
program P, a message m ∈ M, and an authenticator σ , the algorithm
parses σ = (Λ,R, S). For each id such that (id, σ∆,id, Zid, Aid, Cid) ∈ Λ it
takes pksig,id from vkid and checks whether Versig(pksig,id, Zid||∆,σ∆,id) = 1
holds, i.e. whether there is a valid signature on (Zid||∆). If any check
fails it returns 0. Otherwise it checks whether the following equations
hold:

∏
id∈P e (Aid, Zid) =

∏n
i=1 h

fi
li
·
∏

id∈P e (Cid, Yid) · e (R, g2), as well as
e (g1, S) · e

(∏
id∈P Cid, g2

)
= e

(∏T
j=1 H

m[j]
j , g2

)
. If they do, it outputs 1,

otherwise it outputs 0.

Our authenticators σ consist of several components, so we have σ = (Λ,R, S),
where Λ is a list of elements, each associated to some identity id, i.e. Λ = {(id,
σ∆,id, Zid, Aid, Cid)}id∈P . The R and S components are global. Note, that the
Aid, Cid are randomized in order to provide internal context hidingness and the
global components are used to preserve the homomorphic property.

3.2 Correctness and Efficiency

We now analyse our scheme with respect to its correctness and efficiency. An
obvious requirement for a homomorphic authenticator scheme is to be correct.
Due to the homomorphic property, there are two different types of correctness to
consider (see Def. 2 and Def. 3). The former ensures, that our scheme MKHAuth
can be used as a conventional signature scheme, by verifying it with respect
to the identity program. The latter property ensures a correct homomorphic
evaluation will also be verified as correct.

Theorem 1. The scheme MKHAuth presented in Subsection 3.1 satisfies au-
thentication correctness (see Def. 2), if Sig is a correct signature scheme.

Proof. Take any public parameters pp← Setup(1λ), any key triple (sk, ek, vk)←
KeyGen(pp), any label l = (id, τ) ∈ L, any dataset identifier ∆ ∈ {0, 1}∗,
and any authenticator σ ← Auth(sk, ∆, l,m). Then we have σ = (Λ,R, S)
and Λ = (id, σ∆, Z,A,C). By construction we have σ∆ ← Signsig(sksig, Z||∆)
and if Sig is a correct signature scheme then Versig(pksig,id, Zid||∆,σ∆,id) = 1

Context Hiding Multi-Key Homomorphic Authenticators 13

holds. We have by construction e (A,Z) = e

((
gxτ+r

1 ·
∏T
j=1 H

ym[j]
j

) 1
z

, gz2

)
= e

(
gxτ+r−ys

1 · gys1 ·
∏T
j=1 H

ym[j]
j , g2

)
= gxτ+r−ys

t · e
(
gs1 ·

∏T
j=1 H

m[j]
j , gy2

)
=

hl · e (C, Y) · e (R, g2), and e (g1, S) · e (C, g2) = g−st · gst e
(∏T

j=1 H
m
j [j], g2

)
=

e
(∏T

j=1 H
m[j]
j , g2

)
, and thus Ver(Il,∆, vk,m, σ) = 1 holds.

Theorem 2. The scheme MKHAuth presented in Subsection 3.1 satisfies evalu-
ation correctness (see Def 3), if Sig is a correct signature scheme.

Proof. We have P∗∆ = g(P∗∆,1, . . .P∗∆,N). Since Sig is a correct signature scheme,
Versig(pksig,id, Zid||∆,σ∆,id) = 1 holds for all id ∈ P∗. If Ver(Pi,∆, {vkid}id∈Pi ,mi,
σi) = 1 holds, then in particular

∏
id∈Pi

e (Aid,i, Zid) =
n∏
k=1

h
fi,k
li,k
· e

(∏
id∈Pi

Cid,i, Yid

)
· e (Ri, g2)

holds as well as e (g1, Si) · e
(∏

id∈Pi Cid,i, g2
)

= e
(∏T

j=1 H
mi[j]
j , g2

)
for all i ∈

[N]. Write g as a coefficient vector (c1, . . . cN). Without loss of generality let
{id ∈ Pi} = {id ∈ Pj} for all i, j ∈ [n]. Let fk for k ∈ [n] denote the coefficients
describing P = g(P1, . . . ,PN). Then we have fk =

∑N
i=1 cifi,k. We have

N∏
i=1

(∏
id∈Pi

e (Aid,i, Zid,i)
)ci

=
N∏
i=1

(
n∏
k=1

h
fi,k
li,k
·
∏

id∈Pi

e (Cid,i, Yid) · e (Ri, g2)
)ci

and

∏
id∈P∗

e (A∗id, Z∗id) =
N∏
i=1

(∏
id∈Pi

e (Aid,i, Zid,i)
)ci

=
N∏
i=1

(
n∏
k=1

h
fi,k
li,k
·
∏

id∈Pi

e (Cid,i, Yid) · e (Ri, g2)
)ci

=
n∏
k=1

hfklk ·
∏

id∈P∗
e (C∗id, Y ∗id) · e (R∗, g2)

We also have

e (g1, S
∗) · e (C∗, g2) = e

(
g1,

N∏
i=1

Scii

)
· e

(
N∏
i=1

Ccii , g2

)

=
N∏
i=1

e

 T∏
j=1

H
mi[j]
j , g2

ci

= e

 T∏
j=1

H

∑N

i=1
cimi[j]

j , g2

 = e

 T∏
j=1

H
m∗[j]
j , g2

Thus all checks of Ver pass.

14 Context Hiding Multi-Key Homomorphic Authenticators

We now consider our scheme’s efficiency properties, first with respect to
bandwidth, in the form of succinctness, and then with respect to verification
time.

A trivial solution to constructing a homomorphic signature scheme is to
(conventionally) sign every input, and during Eval to just concatenate all the
signatures along with the corresponding values. Verification then consists of
checking every input value and then redoing the computation. This naive solution
is obviously undesirable in terms of bandwidth, efficiency and does not provide
any privacy guarantees.

Succinctness guarantees that a homomorphically derived signature is still
small, thus keeping bandwidth requirements low. Efficient verification ensures
that the time required to check an authenticator is low. This is achieved by
splitting Ver into two sub-algorithms, one of which can be precomputed, and the
other one EffVer can be faster than natively computing the function itself.

Theorem 3. The scheme MKHAuth presented in Subsection 3.1 is succinct (see
Def. 4).

Proof. An authenticator consists of (at most) k + 1 elements of G1, k elements
of G2, k identities id ∈ ID, and k (conventional) signatures. None of this depends
on the input size n. Therefore MKHAuth is succinct.

Theorem 4. The scheme MKHAuth presented in Subsection 3.1 allows for effi-
cient verification (see Def. 5).

Proof. We describe the algorithms (VerPrep,EffVer):

VerPrep(P, {vkid}id∈P) : On input a labeled program P = (f, l1, . . . , ln), with f
given by its coefficient vector (f1, . . . fn), the algorithm takes (Yid, pksig,id)
from vkid. For label li = (idi, τi) it takes hli from vkidi . It computes hP ←∏n
i=1 h

fi
li

and outputs vkP ← (hP , {(Yid, pksig,id)}id∈P). This is independent
of the input size n.

EffVer(vkP , ∆,m, σ): On input a concise verification key vkP , a dataset ∆, a
message m, and an authenticator σ, the algorithm parses σ = (Λ,R, S).
For each id ∈ P it checks whether Versig(pksig,id, Zid||∆,σ∆,id) = 1 holds.
If not, it outputs 0. Otherwise, it checks whether the following equation
holds:

∏
id∈P e (Aid, Zid) = hP ·

∏
id∈P e (Cid, Yid) ·e (R, g2) as well as e (g1, S) ·

e
(∏

id∈P Cid, g2
)

= e
(∏T

j=1 H
m[j]
j , g2

)
. If they do, it outputs 1, otherwise it

outputs 0.

This obviously satisfies correctness. We can see that the runtime of EffVer is
O(k), and is independent of the input size n. Thus, for n� k, MKHAuth allows
for efficient verification.

3.3 Context Hidingness

We now showcase our scheme’s privacy property. On a high level, we want an
authenticator to the output of a computation not to leak information about the

Context Hiding Multi-Key Homomorphic Authenticators 15

inputs to the computation, which we have formalized in Def. 10. Intuitively, the
outcome of a function (e.g. the average) reveals significantly less information than
the individual inputs to the computation. In our scenario, multiple clients upload
data to a cloud server that performs the computation, and allows for public
verification of the result due to the use of homomorphic authenticators. The
context hiding property ensures that the verifier cannot use the authenticators
provided to him to derive additional information about the inputs, beyond his
knowledge of the output.

Theorem 5. The scheme MKHAuth presented in Subsection 3.1 is perfectly
internally context hiding (see Def. 10) and therefore also externally context
hiding.

Proof. First, in our case, the algorithm Hide is just the identity function. More
precisely, we have Hide({vkid}id∈ID,m, σ) = σ, for all possible verification keys vkid,
messages m and authenticators σ. Thus we have HideVer = Ver, so correctness
and unforgeability hold by Theorem 1, Theorem 2, and Theorem 6.

We show how to construct a simulator Sim that outputs authenticators
perfectly indistinguishable from the ones obtained by running Eval. Consider that
for all linear functions f , we have f(m1, . . . ,mn) =

∑n
i=1 fimi =

∑
i∈I fimi +∑

j∈J fjmj , for each I,J ⊂ [n], with I ∪ J = [n] and I ∩ J = ∅.
S can simulate the corrupted parties perfectly. By the identity shown before,

we can in our case therefore reduce internal context hiding security to external con-
text hiding security. We now show external context hiding security. Parse the sim-
ulator’s input as skid = (Kid,K

′
id, sksig,id, x1,id, . . . xn,id, y), m = (m[1], . . . ,m[T]),

and P∆ = (f, l1, . . . , ln, ∆). With this information, the simulator computes:

Z ′id = gzid
2 where zid ← FKid(∆) σ′∆,id

$← Signsig(sksig,id, Zid||∆)
r′id

$← Zp r′ =
∑
l=(τ,id)∈P clr

′
id

s′id
$← Zp s′ =

∑
id∈P sl

A′id =
(
g

∑
(id,τ)∈P

xτ cτ+r′

1 ·
∏T
j=1 H

ym[j]
j

) 1
zid

id∗ $← ID

C ′id = g
−s′id
1 for all id 6= id∗ C ′id∗ = g

−s′id∗
1 ·

∏T
j=1 H

m[j]
j

R′ = g
r′+
∑

id∈P
yids
′
id

1 S′ = g−s
′

2
Λ′ =

⋃
id∈P{(A′id, Z ′id, σ′∆,id)}

The simulator outputs the authenticator σ′ = (Λ′, R′, S′). We now show that
this simulator allows for perfectly context hiding security. We fix arbitrary key
pairs (skid, pkid), a multi-labeled program P∆, and messages m1, . . . ,mn ∈ ZTp .

Let σ ← (f, {(σi,EKSi)}i∈[n]) and parse it as σ = (Λ,R, S). We look at
each component of the authenticator. We have Zid = FKid(∆) by definition
and therefore also Zid = Z ′id. Yid and Y ′id are both taken from the public keys
and therefore identical. In particular we also have zid = z′id . We have σ∆id =
Signsig(sk′, Zid||∆) by definition and since Z = Z ′ therefore also σ∆ = σ′∆

16 Context Hiding Multi-Key Homomorphic Authenticators

since Signsig is deterministic. These components are identical and therefore
indistinguishable to any distinguisher D.

A′id is a uniformly random (u.r.) element of G1, as r′id is also u.r. Aid is a u.r.
element of G1, as rid =

∑
id∈l clrl is u.r. as a linear combination of u.r. elements.

C ′id is a u.r. element of G1, as s′id is also u.r. Cid is a u.r. element of G1, as
sid =

∑
id∈l clsl is u.r. as a linear combination of u.r. elements. R′is a u.r. element

of G1, as all r′id are also u.r. R is a u.r. element of G1, as r =
∑

id∈P rid is u.r. as
a linear combination of u.r. elements. The A′id, C ′id as well as R′ uniquely define
S′ and Aid, Cid as well as R uniquely define S.

Thus, all simulated elements have the identical distribution as the ones from
the real evaluation. They correspond to a different choice of randomness during
Auth. This holds even if all secret keys skid are known to D. Hence σ and σ′ are
perfectly indistinguishable for any (computationally unbounded) distinguisher D.

4 Unforgeability

In delegated computations, the question of the correctness of the result arises.
Homomorphic authenticators aim at making these computations verifiable, thus
allowing for the detection of incorrect results. It should therefore be infeasibly
for any adversary to produce a authenticator that passes the Ver algorithm, that
has not been produced by honestly performing the Eval algorithm. This has been
formalized in Def. 6.

In this section, we present the security reduction for the unforgeability of our
scheme. To this end, we first describe a sequence of games, allowing us to argue
about different variants of forgeries. We then present a series of lemmata, where
we bound the difference between those games.

Since our authenticators have multiple components, we consider specific types
of forgeries in the various games, i.e. ones where one or multiple components
are indeed correct, and in our final security reduction we consider the generic
case. When simulating the final two games, the issue of providing signatures,
without knowing the correct secret key arises. Here we use the elements hid,i
taken from the public keys associated to the label l = (id, i) and embed an
information theoretically hidden trapdoor into them, which we use to answer
signing queries. Note, that by (conventionally) signing the concatenation (∆||Zid)
we use a similar approach to Fiore et al. [14, Theorem 2]. Not directly using their
more generic approach however yields a lower bound on the adversary’s overall
success probability in the security experiment.

Theorem 6. The scheme MKHAuth presented in Subsection3.1 is unforgeable
(see Def. 9), if Sig is an unforgeable (EU-CMA [17]) signature scheme, F is a
pseudorandom function and G is a bilinear group generator, such that the DL
assumption (see Def. 11), the DDH assumption (see Def. 14) hold.

Proof. We can deal with corruptions via our generic result of Lemma 2. It is
thus sufficient to prove the security against adversaries that make no corruptions.
Recall that any corrupted party provides their key tuples (skid, ekid, vkid) to

Context Hiding Multi-Key Homomorphic Authenticators 17

the adversary, giving the adversary additional knowledge in order for him to
adaptively query messages.

To prove Theorem 6, we define a series of games with the adversary A and
we show that the adversary A wins, i.e. any game outputs 1, only with negligible
probability. Following the notation of [9], we write Gi(A) to denote that a run of
game i with adversary A returns 1. We use flag values badi, initially set to false.
If, at the end of each game, any of these previously defined flags is set to true,
the game simply outputs 0. Let Badi denote the event that badi is set to true
during game i. Using Lemma 1, any adversary who outputs a Type 3 forgery
(see Def. 7) can be converted into one that outputs a Type 2 forgery. Hence we
only have to deal with Type 1 and Type 2 forgeries.

Game 1 is the security experiment HomUF− CMAA,MKHAuth(λ) between an
adversary A and a challenger C, where A makes no corruption queries and
only outputs Type 1 or Type 2 forgeries.

Game 2 is defined as Game 1, except for the following change: Whenever A
returns a forgery (P∗∆∗ ,m∗, σ∗) and the list L∆∗ has not been initialized by
the challenger during the queries, then Game 2 sets bad2 = true. It is worth
noticing that after this change the game never outputs 1 if A returns a Type
1 forgery. In Lemma 3, we show that Bad2 cannot occur if Sig is unforgeable.

Game 3 is defined as Game 2, except that the keyed pseudorandom function
FK is replaced by a random function R : {0, 1}∗ → Zp. In Lemma 4, we show
that these two games are indistinguishable if F is pseudorandom.

Game 4 is defined as Game 3, except for the following changes. It computes
m̂ = f∗(m1, . . . ,mn), as well as σ̂ = Eval(f∗, {(σi,EKSi)}i∈[n]), i.e. it runs an
honest computation over the queried messages and generated authenticators
in dataset ∆∗. The challenger runs an additional check. If

∏T
j=1 H

m∗[j]
j =∏T

j=1 H
m̂[j]
j and m̂ 6= m∗ it sets bad4 = true. We clearly have |Pr[G3(A)]−

Pr[G4(A)]| ≤ Pr[Bad4]. In Lemma 5, we show that any adversary A for which
Bad4 occurs implies a solver for the DL problem.

Game 5 is defined as Game 4, except for the following change. The challenger
runs an additional check. If C∗ = Ĉ and m∗ 6= m̂ it sets bad5 = true, where
C∗ is a component of the forged authenticator σ∗ and Ĉ is a component of
the honest execution of Eval over the queried data set, as defined in Game 4.
We have |Pr[G4(A)]−Pr[G5(A)]| ≤ Pr[Bad5]. In Lemma 6, we show that any
adversary A for which Bad5 occurs implies a solver for the DDH problem.

Game 6 is defined as Game 5, except for the following change. At the beginning
C chooses µ ∈ [Q] uniformly at random, with Q = poly(λ) is the number
of queries made by A during the game. Let ∆1, . . . ,∆Q be all the datasets
queried by A. Then, if in the forgery ∆∗ 6= ∆µ, set bad6 = true. In Lemma 7,
we show that Pr[G5(A)] = Q · Pr[G6(A)].

Game 7 is defined as Game 6, except for the following change. The challenger
runs an additional check. If Ver(P∗∆∗ , {vkid}id∈P∗ ,m

∗, σ∗) = 1 as well as
m̂ 6= m∗ and

∏
id∈P∗ e

(
Âid, Z

∗
id

)
=
∏

id∈P∗ e (A∗id, Z∗id), where Âid, A
∗
id are the

components taken from σ̂ and σ∗ respectively, then C sets bad7 = true. We

18 Context Hiding Multi-Key Homomorphic Authenticators

have |Pr[G6(A)] − Pr[G7(A)]| ≤ Pr[Bad7]. In Lemma 8, we show that any
adversary A for which Bad7 occurs implies a solver for the FDHI problem.

Finally, in Lemma 9, we show that any adversary A that wins Game 7 implies a
solver for the FDHI problem. Together, Lemma 3—9 prove Theorem 6 and we
have Pr[G(A)] ≤ AdvUF−CMA

Sig,F (λ)+AdvPRFF,D (λ)+(1− 1
p) ·AdvDLS (λ)+AdvDDHS (λ)+

2QAdvFDHIS (λ).

Lemma 3. For every PPT adversary A, there exists a PPT forger F such that
|Pr[G1(A)]− Pr[G2(A)]| ≤ AdvUF−CMA

Sig,F (λ).

Proof. Games 1 and 2 only differ if Bad2 occurs, i.e. the list L∆∗ was never
initialized during the security experiment. In case of a successful forgery this
means that there are valid signatures σ∆∗,id for the concatenation (∆∗||Zid).
even though no signature on (∆∗||·) was ever generated by the challenger. This
immediately leads to an existential forgery for the regular signature scheme Sig,
i.e. Pr[Bad2] = |Pr[G1(A)]− Pr[G2(A)]| ≤ AdvUF−CMA

Sig,F (λ).

Lemma 4. For every PPT adversary A running Game 3, there exists a PPT
distinguisher D such that |Pr[G3(A)]− Pr[G2(A)]| ≤ AdvPRFF,D (λ).

Proof. Assume we have a noticeable difference |Pr[G3(A)]−Pr[G2(A)]| ≥ ε. Since
the only difference between these games is the replacement of the pseudorandom
function F by the random function R, this immediately leads to a distinguisher
D that achieves an advantage of ε against the pseudorandomness of F .

Lemma 5. For every PPT adversary A running Game 4, there exists a PPT
simulator S such that Pr[Bad4] = (1− 1

p) · AdvDLS (λ).

Proof. Assume we have a PPT adversary A that can produce a successful forgery
during Game 4. We will show how a simulator S can use this to break the DL
problem in G1. It takes as input (bgp, h1 ∈ G1).

Setup Simulator S chooses aj , bj
$← Zp uniformly at random for i ∈ [T − 1] as

well as a $← Zp uniformly at random and sets Hj = g
aj
1 h

bj
1 for j ∈ [T].

Queries Simulator S can run KeyGen honestly and answer any authentication
queries honestly.

Forgery Let (P∗∆∗ ,m∗, σ∗) be the forgery returned by A. S follows Game 4
to compute m̂, σ̂. For bad4 = true, we have

∏T
j=1 H

m∗[j]
j =

∏T
j=1 H

m̂[j]
j and

m∗ 6= m̂. This is only possible for T > 1. S sets a =
∑T
j=1 aj(m̂[j]−m∗[j]),

b =
∑T
j=1 bj(m∗[j]− m̂[j]). If b = 0, it aborts. Otherwise, it outputs

x = a

b
=
∑T
j=1 aj(m̂[j]−m∗[j])∑T
j=1 bj(m∗[j]− m̂[j])

.

Context Hiding Multi-Key Homomorphic Authenticators 19

Since we have
T∏
j=1

H
m∗[j]
j =

T∏
j=1

H
m̂[j]
j ⇔

T∏
j=1

H
(m∗[j]−m̂[j])
j = 1

⇔
T∏
j=1

(
g
aj
1 h

bj
1

)(m∗[j]−m̂[j])
= 1

⇔ h

∑T

j=1
bj(m∗[j]−m̂[j])

1 = g

∑T

j=1
aj(m̂[j]−m∗[j])

1 ⇔ h1 = gx1

this is a solution to the DL problem. The bj are information-theoretically
hidden from the adversary A, and are thus independent of A’s output. Since
m∗ 6= m̂, there exists a j ∈ [T] such that (m∗[j]− m̂[j]) 6= 0. For any tuple
(b1, . . . , bj−1, bj+1, . . . bT) ∈ ZT−1

p , there exists a unique bj ∈ Zp such that
b =

∑T
j=1 bj(m∗[j]− m̂[j]) = 0. Since all bj are chosen uniformly at random,

the probability that S aborts is therefore pT−1

pT
= 1

p .

Lemma 6. For every PPT adversary A running Game 5, there exists a PPT
simulator S such that Pr[Bad5] = AdvDDHS (λ).

Proof. Assume we have a PPT adversary A that can produce a successful forgery
during Game 5. We will show how a simulator S can use this to break the DDH
problem in G1. It takes as input a tuple (bgp, gx1 , g

y
1 , g

z
1).

Setup Simulator S sets bgp′ = (p,G1,G2,GT , gx1 , g2, e) and chooses cj ∈ Zp
uniformly at random for j = 0, . . . , T and sets Hj = g

cj
1 .

Queries Simulator S can run KeyGen honestly and answer any authentication
queries honestly.

Forgery Let (P∗∆∗ ,m∗, σ∗) be the forgery returned by A. S follows Game 5 to
compute m̂, σ̂. We have

e (gx1 , S∗) · e (C∗, g2) =
T∏
j=1

H
m∗[j]
j = g

∑T

j=1
cjm

∗[j]
1 ,

as well as

e
(
gx1 , Ŝ

)
· e
(
Ĉ, g2

)
=

T∏
j=1

H
m̂[j]
j = g

∑T

j=1
cjm̂[j]

1 .

We set M =
∑T
j=1 cj(m̂[j] − m∗[j]). We now have z = xy if and only if

e (gz1 , g2) = e

(
gy1 ,
(
S∗

Ŝ

) 1
M

)
. Since bad4 = false, we have M 6= 0.

Lemma 7. For every PPT adversary A running Game 6, we have Pr[G5(A)] =
Q · Pr[G6(A)].

20 Context Hiding Multi-Key Homomorphic Authenticators

Proof. First, Pr[G5(A)] = Pr[G6(A) ∧ bad6 = false] = Pr[G6(A) | bad6 = false] ·
Pr[bad6 = false], since Game 6 will always output 0 when Bad6 occurs. Second,
observe that when Bad6 does not occur, i.e. bad6 = false, the challenger guessed
the dataset ∆∗ correctly and the outcome of Game 6 is identical to the outcome
of Game 5. Since µ is chosen uniformly at random and is completely hidden to
A, we have Pr[bad6 = false] = 1

Q and therefore Pr[G6(A)] = 1
Q Pr[G5(A)].

Lemma 8. For every PPT adversary A running Game 7, there exists a PPT
simulator S such that Pr[Bad7] = AdvFDHIS (λ).

Proof. Assume we have a PPT adversary A that can produce a successful forgery
during Game 7 such that bad7 = true. We will show how a simulator S can use
this to break the FDHI assumption. Given (g1, g2, g

z
2 , g

v
2 , g

z
v
1 , g

r
1, g

r
v
1) simulator S

simulates Game 7.

Setup Simulator S chooses cj ∈ Zp uniformly at random for j = 0, . . . , T and
sets Hj = g

cj
1 . It outputs the public parameters pp = (k, n, T, bgp, H1, . . . ,

HT , λ).
Key Generation Simulator S chooses an index µ ∈ [Q] uniformly at random.

During the key generation it chooses al, bl ∈ Zp uniformly at random for
all l ∈ L. It sets hl = galt · e (g1, g

z
2)bl . It honestly runs (sksig, pksig) ←

KeyGensig(1λ), chooses yid uniformly at random, and sets Yid = (gz2)yid for all
id ∈ ID. It gives the public keys ekid = ∅, vkid = (pksig,id, hid,1, . . . , hid,n, Yid)
to A for all id ∈ ID.

Queries Let k be a counter for the number of datasets queried by A. (Initially
it sets k = 1). For every new queried dataset ∆ simulator S creates a list
L∆ of pairs (l,m), which collects all the label/message pairs queried by the
adversary on ∆ and the respectively generated authenticators.
Moreover, whenever the kth new dataset∆k is queried, S does the following: If
k = µ, it samples a random ξid,µ ∈ Zp , for all id ∈ ID sets Zid,µ = (gz2)ξid,µ and
stores ξid,µ. If k 6= µ, it samples a random ξid,k ∈ Zp and sets Zid,k = (gv2)ξid,k

and stores ξid,k. Since all Zid,k are randomly distributed in G2, they have
the same distribution as in Game 7. Given a query (∆, l,m) with ∆ = ∆k,
simulator S first computes σ∆k,id = Sign(sksig,id, (∆k||Zk,id)).
If k 6= µ, it samples ρl, sl ∈ Zp uniformly at random and computes Al =(

(g
z
v
1)bl+yidsl+

∑T

j=1
yidcjm[j] · (g

r
v
1)ρl

) 1
ξid,k

, Rl = g−al1 · (gr1)ρl , Sl = g−sl2 , as

well as Cl = g
sl+
∑T

j=1
cjm[j]

1 .
It sets Λl = (id, σsig,id, Zk,id, Al, Cl) and gives (Λl, Rl, Sl) to A.
We have

e (Al, Zk,id) = e

((g zv1)bl+yidsl+
∑T

j=1
yidcjm[j]

·
(
g
r
v
1

)ρl) 1
ξid,k

, (gv2)ξid,k

= e

(
(gz1)bl+yidsl+

∑T

j=1
yidcjm[j] · (gr1)ρl , g2

)

Context Hiding Multi-Key Homomorphic Authenticators 21

= e
(
gblz+al−al+rρl

1 , g2

)
· e

(
g
sl+
∑T

j=1
cjm[j]

1 , gzyid
2

)
= hl · e (R, g2) · e (C, Yid)

as well as

e (g1, Sl) · e (Cl, g2) = g
−s+s+

∑T

j=1
cjm[j]

t = e

 T∏
j=1

H
m[j]
j , g2

hence this output is indistinguishable from the challenger’s output during
Game 7.

If k = µ, simulator S computes Al =
(

(g
z
v
1)bl+yidsl+

∑T

j=1
yidcjm[j]

) 1
ξid,k

,

Rl = g−al1 , Cl = g
sl+
∑T

j=1
yidcjm[j]

1 , as well as Sl = g−sl2 . It sets Λl =
(id, σsig,id, Zk,id, Al, Cl) and gives (Λl, Rl, Sl) to A.
We have

e (Al, Zk,id) = e

(gbl+yidsl+
∑T

j=1
yidcjm[j]

1

) 1
ξid,k

, (gz2)ξid,k

= e

(
(gz1)bl+yidsl+

∑T

j=1
yidcjm[j]

, g2

)
= e

(
gblz+al−al

1 , g2

)
· e

(
g
sl+
∑T

j=1
cjm[j]

1 , gzyid
2

)
= hl · e (R, g2) · e (C, Yid)

and

e (g1Sl) · e (Cl, g2) = g
−s+s+

∑T

j=1
cjm[j]

t = e

 T∏
j=1

H
m[j]
j , g2

so this output is indistinguishable from the challenger’s output during Game
7.

Forgery Let (P∗∆∗ ,m∗, σ∗) be the forgery returned by A. S follows Game
7 to compute m̂, σ̂. Since (P∗∆∗ ,m∗, σ∗) is a successful forgery, we have∏

id∈P∗ e (A∗id, Zid) =
∏n
i=1 h

f∗i
li
· e (R∗, g2) ·

∏
id∈P∗ e (C∗id, Yid) as well as

∏
id∈P∗

e
(
Âid, Zid

)
=

n∏
i=1

h
f∗i
li
· e
(
R̂, g2

)
·
∏

id∈P∗
e
(
Ĉid, Yid

)
according to Theorem 2. We compute A∗ =

∏
id∈P∗ (A∗id)ξid,µ as well as

Â =
∏

id∈P∗
(
Âid

)ξid,µ
. We note that e (A∗, gz2) =

∏
id∈P∗ e (A∗id, Zid) and

e
(
Â, gz2

)
=
∏

id∈P∗ e
(
Âid, Zid

)
. Since we have bad7 = true, we know that

22 Context Hiding Multi-Key Homomorphic Authenticators

A∗ = Â. We compute C∗ =
∏

id∈P∗ (C∗id)yid as well as Ĉ =
∏

id∈P∗
(
Ĉid

)yid
.

We have e (C∗, g2) =
∏

id∈P∗ e (C∗id, Yid) and e
(
Ĉ, g2

)
=
∏

id∈P∗ e(Ĉid, Yid).

By dividing the equations above and using A∗ = Â, we obtain e
(
Ĉ
C∗ , g

z
2

)
=

e
(
R∗

R̂
, g2

)
. Setting W = Ĉ

C∗ and W ′ = R∗

R̂
, we get a solution (W,W ′) to

the FDHI assumption. Since bad5 = false, we know that C∗ 6= Ĉ and thus
(W,W ′) 6= (1, 1).

Lemma 9. For every PPT adversary A running Game 7, there exists a PPT
simulator S such that Pr[G7(A)] = AdvFDHIS (λ).

Proof. Assume we have a PPT adversary A that can produce a successful forgery
during Game 7. We will show how a simulator S can use this to break the FDHI
problem. Given (g1, g2, g

z
2 , g

v
2 , g

z
v
1 , g

r
1, g

r
v
1) simulator S simulates Game 7.

Setup Simulator S chooses cj ∈ Zp uniformly at random for j = 0, . . . , T and
sets Hj = g

cj
1 . It outputs the public parameters pp = (k, n, T, bgp, H1, . . . ,

HT , λ).
Key Generation Simulator S chooses an index µ ∈ [Q] uniformly at random.

During the key generation, it chooses al, bl ∈ Zp uniformly at random for
all l ∈ L. It sets hl = galt · e (g1, g

z
2)bl . It honestly runs (sksig, pksig) ←

KeyGensig(1λ), chooses yid uniformly at random, and sets Yid = gyid
2 for all

id ∈ ID. Note, that unlike Lemma 8, we do not use the element gz2 taken from
the problem instance to generate the Yid. It gives the public keys ekid = ∅,
vkid = (pksig,id, hid,1, . . . , hid,n, Yid) to A for all id ∈ ID.

Queries Let k be a counter for the number of datasets queried by A (initially,
it sets k = 1). For every new queried dataset ∆ simulator S creates a list
L∆ of pairs (l,m), which collects all the label/message pairs queried by the
adversary on ∆ and the respectively generated authenticators.
Moreover, whenever the kth new dataset∆k is queried, S does the following: If
k = µ, it samples a random ξid,µ ∈ Zp , for all id ∈ ID sets Zid,µ = (gz2)ξid,µ and
stores ξid,µ. If k 6= µ, it samples a random ξid,k ∈ Zp and sets Zid,k = (gv2)ξid,k

and stores ξid,k. Since all Zid,k are randomly distributed in G2, they have
the same distribution as in Game 7. Given a query (∆, l,m) with ∆ = ∆k,
simulator S first computes σ∆k,id = Signsig(sksig,id, (∆k||Zk,id)).
If k 6= µ, it samples ρl, sl ∈ Zp uniformly at random and computes Al =(

(g
z
v
1)bl · (g

r
v
1)ρl

) 1
ξid,k , Rl = g−al−yidsl

1 · (gr1)ρl · g
−
∑T

j=1
yidcjm[j]

1 , Sl = g−sl2 , as

well as Cl = g
sl+
∑T

j=1
cjm[j]

1 . It sets Λl = (id, σsig,id, Zk,id, Al, Cl) and gives
(Λl, Rl, Sl) to A.
We have

e (Al, Zk,id) = e

((
(g

z
v
1)bl · (g

r
v
1)ρl

) 1
ξid,k , (gv2)ξid,k

)
= e

(
gzbl+rρl1 , g2

)

Context Hiding Multi-Key Homomorphic Authenticators 23

= e

(
g
zbl+al−al+

∑T

j=1
yidcjm[j]−

∑T

j=1
yidcjm[j]syidsl−yidsl+rρl

1 , g2

)

= gal+zblt · e

(
g−al1 · (gr1)ρl · g

−yidsl−
∑T

j=1
yidcjm[j]

1 · g
sl+
∑T

j=1
cjm[j]

1 , gY2

)
= hl · e (Rl, g2) · e (Cl, Yid)

and

e (g1, Sl) · e (Cl, g2) = g
−s+s+

∑T

j=1
cjm[j]

t = e

 T∏
j=1

H
m[j]
j , g2

 .

This output is indistinguishable from the challenger’s output during Game 7.

If k = µ, simulator S computes Al =
(
gbl1

) 1
ξid,µ , Cl = g

sl+
∑T

j=1
yidcjm[j]

1 , Rl =

g
−yidsl−al−

∑T

j=1
cjm[j]

1 , as well as Sl = g−sl2 . It sets Λl = (id, σsig,id, Zk,id, Al,
Cl) and gives (Λl, Rl, Sl) to A.
We have

e (Al, Zµ,id) = e

((
gbl1

) 1
ξid,µ , (gz2)ξid,µ

)
= e

(
gzbl1 , g2

)
= e

(
g
zbl+al−al+

∑T

j=1
yidcjm[j]−

∑T

j=1
yidcjm[j]+yidsl−yidsl

1 , g2

)

= gal+zblt · e

(
g
−yidsl−al−

∑T

j=1
yidcjm[j]

1 · g
ylsl+

∑T

j=1
yidcjm[j]

1 , g2

)
= hl · e (Rl, g2) · e (Cid, Yid)

and

e (g1, Sl) · e (Cl, g2) = g
−s+s+

∑T

j=1
cjm[j]

t = e

 T∏
j=1

H
m[j]
j , g2

 .

This output is indistinguishable from the challenger’s output during Game 7.
Forgery Let (P∗∆∗ ,m∗, σ∗) be the forgery returned by A. S follows Game 7 to

compute m̂, σ̂. Since (P∗∆∗ ,m∗, σ∗) is a successful forgery, we have∏
id∈P∗

e (A∗id, Zid) =
n∏
i=1

h
f∗i
li
· e (R∗, g2) ·

∏
id∈P∗

e (C∗id, Yid)

as well as ∏
id∈P∗

e
(
Âid, Zid

)
=

n∏
i=1

h
f∗i
li
· e
(
R̂, g2

)
·
∏

id∈P∗
e
(
Ĉid, Yid

)

24 Context Hiding Multi-Key Homomorphic Authenticators

according to Theorem 2. We compute A∗ =
∏

id∈P∗ (A∗id)ξid,µ as well as

Â =
∏

id∈P∗
(
Âid

)ξid,µ
. We note that e (A∗, gz2) =

∏
id∈P∗ e (A∗id, Zid) and

e
(
Â, gz2

)
=
∏

id∈P∗ e
(
Âid, Zid

)
. Since we have bad7 = false we know that

A∗ 6= Â. We compute C∗ =
∏

id∈P∗ (C∗id)yid as well as Ĉ =
∏

id∈P∗
(
Ĉid

)yid
.

We note that e (C∗, g2) =
∏

id∈P∗ e (C∗id, Yid) and e
(
Ĉ, g2

)
=
∏

id∈P∗ e(Ĉid,

Yid). Dividing the equations above, we obtain e
(
A∗

Â
, gz2

)
= e

(
C∗·R∗
Ĉ·R̂ , g2

)
and

setting W = R∗·C∗
R̂·Ĉ , as well as W ′ = A∗

Â
we have obtained a solution (W,W ′)

to the FDHI assumption. Since we have bad7 = false, we know that A∗ 6= Â
and thus (W,W ′) 6= (1, 1).

5 Related Work

We now review related work on homomorphic authenticators and verifiable
computation, treating the special case of multi-key support separately for both
scheme categories.

Homomorphic Authenticators Homomorphic authenticators have received sub-
stantial attention in previous work, focusing either on the public key setting, in
the form of homomorphic signatures or on the private key setting, in the form of
homomorphic MACs. The notion of homomorphic signatures was originally pro-
posed by Johnson et al. [20]. The first published schemes were homomorphic only
for linear functions (e.g. [2–4,6,7,9,10,16,22]), and found important applications
in network coding and proofs of retrievability. Schemes supporting functions of
higher degree also exist (e.g. [5,11]). The work by Catalano et al. [11] contains the
first mechanism to verify signatures faster than the running time of the verified
function. Gorbunov et al [18] have proposed the first homomorphic signature
scheme that can evaluate arbitrary boolean circuits of bounded polynomial depth
over signed data. However, none of the above schemes support multiple clients
with different keys.

Multi-Key Homomorphic Authenticators Works considering multi-key homomor-
phic authenticators are more directly comparable to our scheme. Agrawal et al. [1]
considered a notion of multi source signatures for network coding, and proposed
a solution for linear functions. Network coding signatures are one application of
homomorphic signatures, where signed data is combined to produce new signed
data. Their solution allows for the usage of different keys in combining signatures,
but differ slightly in their syntax and homomorphic property, as formalized in
our definition of evaluation correctness (see Def. 3). Unlike this work, our scheme
achieves efficient verification and is perfectly context hiding. Fiore et al. [14] have
even constructed multi-key homomorphic authenticators for boolean circuits of
bounded depth. While our scheme only supports linear functions, it allows the
authentication of field elements, while in the case of [14] each single bit is signed

Context Hiding Multi-Key Homomorphic Authenticators 25

individually. Thus our authenticators are significantly smaller. Both their and our
solution achieve fast amortized verification, independently of function complexity.
Their solution, however, is not context hiding.

Verifiable Computation Verifiable computation also aims at detecting incorrect
results in delegated computations. In this setting, a client wants to delegate
the computation of a function f on input x to an untrusted server. If the
server outputs y, the client’s goal is to verify that indeed y = f(x) at a faster
runtime than an evaluation of f . For a detailed overview of this line of research,
we refer to Demirel et al. [13]. Using homomorphic authenticators, clients can
authenticate various (small) pieces of data independently and without storing
previously outsourced data, thus allowing for incremental updates of data. In
contrast, for other verifiable computation schemes, it is necessary to encode
the entire input data before delegation and often such encoding can be used in
a single computation only. Another advantage of homomorphic authenticators
is their natural composition property. The outputs of some computations on
authenticated data are already authenticated, and can be used as input for further
computations.

Multi-Client Verifiable Computation Verifiable computation has also been con-
sidered in the multi-key setting [12,19]. In these schemes the verifier is always
one of the clients providing inputs to the functions, whereas our construction
is publicly verifiable. Existing multi-client verifiable computation schemes also
require a message from the verifier to the server, where it has to provide a certain
encoding of the function f , which is not necessary for our homomorphic authen-
ticators. Furthermore, the communication between the server and the verifier is
at least linear in the total number of inputs of f , whereas in the case of succinct
multi-key homomorphic authenticators the communication between the server
and the verifier is proportional only to the number of clients, and depends only
logarithmically on the total number of inputs. Finally, in multi-client verifiable
computation, an encoding of one input can only be used in a single computation.
Any input to be used in multiple computations has to be uploaded for each com-
putation. In contrast, multi-key homomorphic authenticators allow the one-time
authentication of every input and allow it to be used in an unbounded number
of computations.

6 Conclusions

In this paper, we investigated the problem of constructing a context hiding pub-
licly verifiable multi-key homomorphic authenticator scheme. We first presented
two different definitions of the context hiding property in this setting, thereby
distinguishing between adversaries with inside knowledge of the computation
and purely external adversaries. We present the first scheme that fulfils both
of these requirements. The context hiding property, both against internal and
external adversaries holds in an information theoretic sense, allowing not even

26 Context Hiding Multi-Key Homomorphic Authenticators

computationally unbounded adversary to gain additional knowledge about the
inputs.

Our authenticators are succinct, i.e. their size is independent of the number of
inputs to a computation, thus keeping bandwidth low. Our verification procedure
can be split into two parts, only one of which actually requires the signature
to be verified. The other part can thus be precomputed, allowing for faster
verification time. Regarding performance, verification time depends only on the
number of identities involved (after a one time preprocessing), thus leading to
efficient verification. We furthermore showed how to reduce the security of our
scheme to the discrete logarithm, the decisional Diffie–Hellman and the Flexible
Diffie–Hellman Inversion problems in the standard model.

In the future, we intend to investigate the viability of context hiding multi-key
homomorphic authenticators for functions of higher degree. Another interesting
question is whether authenticators can be constructed, whose size does not even
depend on the number of identities involved.

References
1. Agrawal, S., Boneh, D., Boyen, X., Freeman, D.M.: Preventing Pollution Attacks in

Multi-source Network Coding. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 161–176. Springer (2010)

2. Attrapadung, N., Libert, B.: Homomorphic Network Coding Signatures in the
Standard Model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 17–34. Springer (2011)

3. Attrapadung, N., Libert, B., Peters, T.: Computing on Authenticated Data: New
Privacy Definitions and Constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer (2012)

4. Attrapadung, N., Libert, B., Peters, T.: Efficient Completely Context-Hiding
Quotable and Linearly Homomorphic Signatures. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer (2013)

5. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: Sadeghi, A., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013.
pp. 863–874. ACM (2013)

6. Boneh, D., Freeman, D.M.: Linearly Homomorphic Signatures over Binary Fields
and New Tools for Lattice-Based Signatures. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer (2011)

7. Boneh, D., Freeman, D.M., Katz, J., Waters, B.: Signing a Linear Subspace:
Signature Schemes for Network Coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 68–87. Springer (2009)

8. Catalano, D., Fiore, D., Nizzardo, L.: Programmable Hash Functions go Private:
Constructions and Applications to (Homomorphic) Signatures with Shorter Public
Keys. IACR Cryptology ePrint Archive 2015, 826 (2015)

9. Catalano, D., Fiore, D., Nizzardo, L.: Programmable Hash Functions Go Private:
Constructions and Applications to (Homomorphic) Signatures with Shorter Public
Keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol.
9216, pp. 254–274. Springer (2015)

10. Catalano, D., Fiore, D., Warinschi, B.: Efficient Network Coding Signatures in the
Standard Model. In: Fischlin, M., Buchmann, J.A., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 680–696. Springer (2012)

Context Hiding Multi-Key Homomorphic Authenticators 27

11. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic Signatures with Efficient
Verification for Polynomial Functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 371–389. Springer (2014)

12. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-Client Non-interactive Verifiable
Computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518. Springer
(2013)

13. Demirel, D., Schabhüser, L., Buchmann, J.A.: Privately and Publicly Verifiable
Computing Techniques — A Survey. Springer Briefs in Computer Science, Springer
(2017)

14. Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key Homomorphic Au-
thenticators. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS,
vol. 10032, pp. 499–530 (2016)

15. Freeman, D.M.: Improved Security for Linearly Homomorphic Signatures: A Generic
Framework. In: Fischlin, M., Buchmann, J.A., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 697–714. Springer (2012)

16. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure Network Coding over the
Integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
142–160. Springer (2010)

17. Goldwasser, S., Micali, S., Yao, A.C.: Strong Signature Schemes. In: Johnson, D.S.,
Fagin, R., Fredman, M.L., Harel, D., Karp, R.M., Lynch, N.A., Papadimitriou,
C.H., Rivest, R.L., Ruzzo, W.L., Seiferas, J.I. (eds.) STOC 1983. pp. 431–439. ACM
(1983)

18. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled Fully Homomorphic Signa-
tures from Standard Lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) STOC 2015.
pp. 469–477. ACM (2015)

19. Gordon, S.D., Katz, J., Liu, F., Shi, E., Zhou, H.: Multi-Client Verifiable Computa-
tion with Stronger Security Guarantees. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015 (2). LNCS, vol. 9015, pp. 144–168. Springer (2015)

20. Johnson, R., Molnar, D., Song, D.X., Wagner, D.A.: Homomorphic Signature
Schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer
(2002)

21. Libert, B., Yung, M.: Concise Mercurial Vector Commitments and Independent
Zero-Knowledge Sets with Short Proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 499–517. Springer (2010)

22. Schabhüser, L., Buchmann, J.A., Struck, P.: A Linearly Homomorphic Signature
Scheme from Weaker Assumptions. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol.
10655, pp. 261–279. Springer (2017)

	Context Hiding Multi-Key Linearly Homomorphic Authenticators

