
Simple Verifiable Delay Functions

Krzysztof Pietrzak?

pietrzak@ist.ac.at

IST Austria

Abstract. We construct a verifiable delay function (VDF) by showing
how the Rivest-Shamir-Wagner time-lock puzzle can be made publicly
verifiable.
Concretely, we give a statistically sound public-coin protocol to prove

that a tuple (N, x, T, y) satisfies y = x2
T

(mod N) where the prover
doesn’t know the factorization of N and its running time is dominated

by solving the puzzle, that is, compute x2
T

, which is conjectured to
require T sequential squarings. To get a VDF we make this protocol
non-interactive using the Fiat-Shamir heuristic.
The motivation for this work comes from the Chia blockchain design,
which uses a VDF as a key ingredient. For typical parameters (T ≤
240, N = 2048), our proofs are of size around 10KB, verification cost
around three RSA exponentiations and computing the proof is 8000 times
faster than solving the puzzle even without any parallelism.

1 introduction

1.1 The RSW time-lock puzzle

Rivest, Shamir and Wagner [RSW96] introduced the concept of a time-
lock puzzle, and proposed the following elegant construction

The puzzle is a tuple (N, x, T) where N = p · q is an RSA modulus,
x ∈ Z∗N is random and T ∈ N is a time parameter.

The solution of the puzzle is y = x2
T

mod N . It can be computed mak-
ing two exponentiations by the party who generates the puzzle (and
thus knows the group order φ(N) = (p− 1)(q − 1)) as

e := 2T mod φ(N) , y := xe mod N (1)

but is conjectured to require T sequential squarings if the group order
(or equivalently, the factorization of N) is not known

x→ x2 → x2
2 → x2

3 → . . .→ x2
T

mod N (2)
? Supported by the European Research Council (ERC) consolidator grant 682815 -

TOCNeT. This paper appeared at ITCS 2019 [Pie19] and was posted on eprint on
June 20 2018, this is the eprint version complied on April 30, 2019.

To be more precise, the conjecture here is that T sequential steps are
necessary to compute x2

T
(mod N) even if one can use large parallelism.

As an application, [RSW96] show how to “encrypt to the future”:
sample a puzzle (N, x, T) together with its solution y, then derive a key
ky from y and encrypt a message m into a ciphertext c = ENC(ky,m).
Given (N, x, T) and c one can recover the message m in time required to
compute T squarings sequentially, but (under the above conjecture) not
faster.

1.2 Proofs of sequential work (PoSW)

Proofs of sequential work (PoSW) are closely related to time-lock puzzles.
PoSW were introduced in [MMV13], and informally are proof systems
where on input a random challenge x and time parameter T one can
compute a publicly verifiable proof making T sequential computations,
but it’s hard to come up with an accepting proof in significantly less than
T sequential steps, even given access to massive parallelism.

The PoSW constructed in [MMV13] is not very practical (at least for
large T) as the prover needs not only T time, but also linear in T space to
compute a proof. Recently [CP18] constructed a very simple and practical
PoSW in the random oracle model. They were interested in PoSW as they
serve as a key ingredient in the Chia blockchain design (chia.net).

The main open problem left open in [CP18] was to construct PoSW
that is unique, in the sense that one cannot compute two accepting proofs
on the same challenge. The existing PoSW all allow to generate many ac-
cepting proofs at basically the same cost as honestly computing the proof.
Unfortunately such PoSW cannot be used for the blockchain application
just mentioned, as this would allow for so called grinding attacks. More
precisely, the output of the PoSW is used to compute a challenge for
generating the next block. If the PoSW is not unique, a malicious miner
could compute many proofs, and then pick the one which results in a
challenge that is most favourable for him.

1.3 Verifable delay functions (VDF)

Boneh, Bonneau, Bünz and Fisch [BBBF18] recently introduced the no-
tion of a verifiable delay function (VDF). A VDF can be seen as a re-
laxation of unique PoSW which still suffices for all known applications of
unique PoSW. We refer the reader to [BBBF18] for a thorough discussion
on VDFs including many interesting applications. In a VDF the proof on
challenge (x, T) has two parts (y, π), where y is a deterministic function

of x that needs T sequential time to compute, and π is a proof that y was
correctly computed (the reason this is not necessarily a unique PoSW is
the fact that this π does not need to be unique). It must be possible to
compute π with low parallelism and such that π can be output almost
at the same time as y. In [BBBF18] this is achieved using incrementally
verifiable computation [Val08]. The (very high level) idea is to compute
a hash chain

y = h(h(. . . h(x) . . .))︸ ︷︷ ︸
T times

and at the same time use incrementally verifiable computation to compute
the proof π, so the proof will be ready shortly after y is computed. To
make this generic approach actually practical the h used in [BBBF18]
is a particular algebraic function (a permutation polynomial) which has
the property that one can invert it significantly faster than compute in
forward direction (so instead of verifying the evaluation of h(·), one can
just verify the the much simpler computation of h−1(·)), and also the
proof system used to compute π is tailored so it can exploit the algebraic
structure of h.

1.4 A VDF from RSW

The RSW time-lock puzzle looks like a promising starting point for con-
structing a VDF. The main difficulty one needs to solve is achieving public

verifiability: to efficiently verify y
?
= x2

T
(mod N) one needs the group

order of Z∗N (or equivalently, the factorization of N). But the factorization
cannot be public as otherwise also computing y becomes easy.

One idea to solve this issue is to somehow obfuscate the group order so
it can only be used to efficiently verify if a given solution is correct, but not
to speed up its computation. There currently is no known instantiation
to this approach.

In this work we give a different solution. We construct a protocol
where a prover P can convince a verifier V it computed the correct so-
lution y = x2

T
(mod N) without either party knowing the factorization

(or any other hard to compute function) of N . Our interactive proto-
col is public-coin, but can be made non-interactive – and thus give a
VDF – by the Fiat-Shamir transformation. Here the prover’s messages
are replaced by simply applying a random function to the transcript. The
Fiat-Shamir transformation applied to any constant-round public-coin in-
teractive proof systems results in a sound non-interactive proof system
in the random oracle model. Although our proof is not constant-round,

we can still show that this transformation works, i.e., gives a sound non-
interactive proof system relative to a random function (i.e., in the random
oracle model). In practice the random function is instantiated with an
actual hash-function like SHA256, as then soundness only holds compu-
tationally, such systems are called arguments, not proofs.

Our protocol is inspired by the sumcheck protocol [LFKN90,Sha90].
The key idea of the proof is very simple. Assume P wants to convince
V that a tuple (x, y) satisfies y = x2

T
. For this, P first sends µ = x2

T/2

to V. Now µ = x2
T/2

together with y = µ2
T/2

imply y = x2
T

. The only
thing we have achieved at this point is to reduce the time parameter
from T to T/2 at the cost of having two instead just one statement to
verify. We then show that the verifier can merge those two statements in
a randomized way into a single statement (x′, y′) = (xr · µ, µr · y) that

satisfies y′ = x′2
T/2

if the original statement y = x2
T

was true (and P
sends the correct µ), but is almost certainly wrong (over the choice of
the random exponent r) if the original statement was wrong, no matter
what µ the malicious prover did send. This subprotocol is repeated log(T)
times – each time halving the time parameter T – until T = 1, at which
point V can efficiently verify correctness of the claim itself.

The VDF we get has short proofs and is efficiently verifiable. For typ-
ical parameters (2048 bit modulus and log(T) ≤ 40) a proof is about
10KB large and the cost for verification is around three full exponen-
tiations (for comparison, a standard RSA decryption or RSA signature
computation requires one full exponentiation).

The algebraic setting of our proof systems differs a bit from RSW, as
we’ll discuss in §2. In a nutshell, to prove statistical soundness, we need
to assume that N is the product of two safe primes, i.e., N = p · q where
p′ = (p− 1)/2 and q′ = (q − 1)/2 are prime, as then a random quadratic
residue x ∈ QRN almost certainly is a generator of QRN . We’ll actually
preform all computations in the group of signed quadratic residues QR+

N ,
as unlike for QRN , one can efficiently decide if an element is in QR+

N ,
which will make the protocol slightly simpler and more efficient. Using
QR+

N instead of QRN will also make the proof unique, so our VDF is a
unique PoSW.

1.5 Wesolowski’s VDF

A closely related result to our VDF is a concurrent paper by Wesolowski [Wes18].
A recent survey [BBF18] compares his construction with the one pre-
sented in this paper.

Wesolowski also constructs a VDF by making the RSW time-lock
puzzle publicly verifiable. The prover, who claims y = x2

T
, receives as

challenge a large prime B, and must respond with the proof π = xb
2T

B
c.

To verify this proof one checks πB · x2T mod B ?
= y.1 To get a VDF one

makes this protocol non-interactive using the Fiat-Shamir heuristic, i.e.,
B = hash(y) is computed as a hash of the first message.

To prove soundness (i.e., that it’s hard to come up with a z 6= x2
T

together with a π that passes verification) one needs a computational
hardness assumption which basically states that for any z 6= 1 it is hard
to compute the B’th root of z (i.e. a y s.t. zB = y) in the underlying
group when B is a large random prime (whereas soundness of our proof
is unconditional).

The main advantage of Wesolowski’s construction over ours is that his
proof is just a single group element, and thus about a log(T) factor smaller
than in our VDF, also verification time is about this factor smaller. A
drawback of his construction is that the overhead for computing the proof
π is larger, though it improved significantly in the latest writeup. It’s
currently at O(T/ log(T)) multiplications (our construction just needs
O(
√
T · log(T)). The computation of the proof can be parallelized to some

extent in both constructions.

Another potential advantage (communicated to us by Dan Boneh) of
our proof system is that it can be applied for any underlying endomor-
phism, not just the squaring operation. This could be useful to construct
new VDFs, potentially achieving post-quantum security, though currently
we don’t know of any such instantiations.

In summary, Wesolowski’s proof system has shorter proofs and faster
verification time. Our proof system allows for more efficient computation
of the proof, does not require any computational assumptions and seems
to apply in a more general setting.

Weselowski and the survey [BBF18] also discuss how to instantiate
those proof systems in other groups than Z∗N , including groups that will
not require trusted setup. We’ll discuss this in more detail in §6.1, for now
let us just mention that if instantiated in such groups the proof systems
will rely on a computational assumption (for Wesolowski’s construction,
in addition the root assumption), which basically states that it must be
hard to find group elements of small order.

1 This construction appears in the 2nd version of the eprint paper [Wes18] from July
1st and improves over the construction in the first posting.

1.6 Outline

In §2 we discuss the slightly different algebraic setting used here as com-
pared to [RSW96]. We then present the protocol in §3 and the security
proof in §4. In §5 we define VDFs, and in §6 we discuss how the protocol
is turned into a VDF and discuss several efficiency and security issues.

1.7 Notation

For a set X , x
$← X means x is assigned a random value from X . For a

randomized algorithm alg we denote with x
$← alg that x is assigned the

output of alg on fresh random coins, if alg is deterministic we just write
x← alg.

2 The algebraic setting

The exact algebraic setting for our proof system differs slightly from the
setting of the original RSW time-lock puzzle [RSW96]. First, we require
that N = p · q is the product of safe primes (a prime p is safe if (p− 1)/2
is also prime), and moreover we perform the computation in the group
of signed quadratic residues QR+

N . In an earlier version of this paper we
used “normal” quadratic residues QRN . QR+

N is isomorphic to QRN , but
makes the protocol slightly simpler as unlike for QRN , one can efficiently
decide if an element is in QR+

N . Moreover using QR+
N instead of QRN will

make the proof unique, i.e., it’s hard to come up with any proof other than
the one generated by the honest prover, so we even get a unique PoSW.
As working with QRN instead of QR+

N is more intuitive, in the proof we’ll
assume the proof is over QRN .

As we’ll outline below, if computing x2
T

is hard in the original RSW
setting, it will remain hard in our setting (the other direction is not clear,
it might be that our setting is more secure).

2.1 Signed quadratic residues

For two safe primes p and q, and N := p · q we denote the quadratic

residues with QRN
def
= {z2 mod N : z ∈ Z∗N} , and the signed quadratic

residues [FS00,HK09] are defined as the group

QR+
N

def
= {|x| : x ∈ QRN},

where |x| is the absolute value when representing the elements of Z∗N as
{−(N − 1)/2, . . . , (N − 1)/2}. Since −1 ∈ Z∗N is a quadratic non-residue

with Jacobi symbol +1, the map | · | acts as an (efficiently-computable)
isomorphism2 from QRN to QR+

N , and as a result QR+
N is also a cyclic

group, with the group operation defined as

a ◦ b def
= |a · b mod N |.

However, unlike for QRN , membership in QR+
N can be efficiently tested

since QR+
N = J+

N where JN is the group of elements with Jacobi symbol
+1 and

J+
N

def
= {|x| : x ∈ JN} = JN/{±1}.

In other words, to test whether a given x ∈ Z∗N (represented as {−(N −
1)/2, . . . , (N − 1)/2}) belongs also to QRN+, ensure that x ≥ 0 and that
its Jacobi symbol is +1.

2.2 Using (QR+
N , ◦) instead (Z∗

N , ·)

Recall that the assumption underlying the security of the RSW time-
lock puzzle [RSW96] states that computing x2

T
is hard in (Z∗N , ·). We

note that using (QR+
N , ◦) instead (i.e., when x ∈ QR+

N and squaring is

defined as x2
def
= x ◦ x), as we require for our protocol, will not make this

assumption any weaker. By the two reductions below, we’ll lose at most
a factor 4 · 2 = 8 in advantage.

First, let us observe that using (QRN , ·) instead of (Z∗N , ·) can only
make the problem harder: Because |QRN | = |Z∗N |/4, a random element
in Z∗N also belongs to QRN with probability 1/4. So if one can break
the assumption with probability ε over QRN , we still can break it with
probability ε/4 over Z∗N .

Second, we observe that using (QR+
N , ◦) instead of (QRN , ·) will not

make computing x2
T

significantly easier: Consider any x ∈ QRN and
let y := x2

T
mod N in (QRN , ·), and let x′ = |x| and y′ := x′2

T
in

(QR+
N , ◦), as the groups are isomorphic, y′=|y|, so y = |y′|−1, which

means y ∈ {y′, N − y′}. Although we can’t efficiently decide if y = y′ or
y = N −y′ (as it would contradict the quadratic residuosity assumption),
we can pick one of the two values at random and will get the right one
with probability 1/2. This shows that given an algorithm that finds x2

T

in QR+
N in time t with probability δ , we get an algorithm that computes

x2
T

in QR+
N in basically the same time t and probability δ/2.

2 Note, however, that the inverse of this isomorphism is hard to compute under the
quadratic residuosity assumption.

2.3 On using safe primes

Another difference to the setting of [RSW96] is that we assume that
N = p · q is the product of random safe primes, whereas [RSW96] just
assume random primes. We do this to make sure that QRN (and thus
also QR+

N) contains no sub-group of small order, this property is required
to prove statistical soundness.

It is conjectured that for some constant c, there are c ·2λ/n2 safe λ-bit
primes (cf. [vzGS13]), so a random n bit prime is safe with probability
≈ c/n. Under this assumption, the product of two random n-bit primes
will be the product of two safe primes with probability c2/n2.

3 The protocol

Our protocol, where P convinces V it solved an RSW puzzle, goes as
follows:

– The verifier V and prover P have as common input an RSW puzzle
(N, x, T) and a statistical security parameter λ. Here T ∈ N, N = p ·q
is the product of safe primes and x ∈ QR+

N .

– P solves the puzzle by computing y = x2
T

(making T sequential
squarings in (QR+

N , ◦)), and sends y to V.

– Now P and V iterate the “halving protocol” below. In this subpro-
tocol, on common input (N, x, T, y) the output is either of the form
(N, x′, dT/2e, y′), in which case it is used as input to the next iteration
of the halving subprotocol, or the protocol has stopped with verifier
output in {reject, accept}.

3.1 The halving subprotocol

On common input (N, x, T, y)

1. If T = 1 then V outputs accept if y = x2
T

= x2 and reject otherwise.
If T > 1 go to the next step.

2. The prover P sends µ = x2
T/2

to V.

3. If µ 6∈ QR+
N then V outputs reject, otherwise V samples a random

r
$← Z2λ and sends it to P.

4. If T/2 is even, P and V output

(N, x′, T/2, y′)

where

x′ := xr · µ
(

= xr+2T/2
)

y′ := µr · y
(

= xr·2
T/2+2T

)
(note that if y = x2

T
then y′ = x′2

T/2

). If T/2 is odd, output

(N, x′, (T + 1)/2, y′
2
) .

3.2 Security statement

Theorem 1. If the input (N, x, T) to the protocol satisfies

1. N = p · q is the product of safe primes, i.e., p = 2p′ + 1, q = 2q′ + 1
for primes p′, q′.

2. 〈x〉 = QR+
N .3

3. 2λ ≤ min{p′, q′}

Then for any malicious prover P̃ who sends as first message y anything
else than the solution to the RSW time-lock puzzle, i.e.,

y 6= x2
T

V will finally output accept with probability at most

3 log(T)

2λ
.

4 Security proof

4.1 Usage of QRN instead QR+
N in the proof

We’ll prove Theorem 1 where the signed quadratic residues (QR+
N , ◦) are

replaced with regular quadratic residues (QRN , ·) throughout. This will
make the proof a bit more intuitive as multiplication modulo N as in QRN
is a more familiar and simpler operation than the ◦ operation in QR+

N

(which additionally requires the | · | mapping after each multiplication).
As discussed in §2, those two groups are isomorphic, so the proof for
(QRN , ·) implies the same security for (QR+

N , ◦).
3 That is, x generates QR+

N , the quadratic residues modulo N . For our choice of N

we have |QR+
N | = |QRN | = p′q′, so 〈x〉 def

= {x, x2, . . . , xp
′q′} = QR+

N .

The main reason we don’t use (QRN , ·) in the actual protocol is only
because in step 3. of the halving subprotocol V needs to check if µ ∈ QR+

N ,
which would not be efficient if we used QRN (in an earlier version of the
protocol we did use QRN , and P had to send µ′ s.t. µ′2 = µ, the verifier
would then compute µ := µ′2 can thus could be sure that µ ∈ QRN . As
here P can send any of the 4 roots of µ, this protocol was not unique).

4.2 The language L

It will be convenient to define the language

L = {(N, x, T, y) : y 6= x2
T

mod N and 〈x〉 = QRN}

We’ll establish the following lemma.

Lemma 1. For N,λ as in Thm. 1, and any malicious prover P̃ the fol-
lowing holds. If the input to the halving protocol in §3.1 satisfies

(N, x, T, y) ∈ L

then with probability ≥ 1−3/2λ (over the choice of r) V’s output is either
reject or satisfies

(N, x′, dT/2e, y′) ∈ L

Before we prove the lemma, let’s see how it implies Theorem 1.

Proof (Proof of Theorem 1). In every iteration of the halving protocol
the time parameter decreases from T to dT/2e and it stops once T = 1,
this means we iterate for at most dlog(T)e rounds. By assumption, the
input (N, x, T, y) to the first iteration is in L, and by construction, the
only case where V outputs accept is on an input (N, x, 1, y) where y =

x2
T

= x2 mod N , in particular, this input is not in L.
So, if V outputs accept, there must be one iteration of the halving

protocol where the input is in L but the output is not. By Lemma 1,
for any particular iteration this happens with probability ≤ 3/2λ. By the
union bound, the probability of this happening in any of the dlog(T)e−1
rounds can be upper bounded by 3 log(T)/2λ as claimed.

Proof (Proof of Lemma 1). We just consider the case where T is even,
the odd T case is almost identical.

Assuming the input to the halving protocol satisfies (N, x, T, y) ∈
L, we must bound the probability that V outputs reject or the output
(N, x′, T/2, y′) 6∈ L.

If T = 1 then V outputs reject and we’re done. Otherwise, if P̃ sends
a µ 6∈ QRN in step 2. then V outputs reject in step 3. and we’re done. So
from now we assume µ ∈ QRN . We must bound

Pr
r

[(y′ = x′
2T/2

) ∨ (〈x′〉 6= QRN)] ≤ 3/2λ

using Pr[a ∨ b] = Pr[a ∧ b] + Pr[b] we rewrite this as

Pr
r

[y′ = x′
2T/2 ∧ 〈x′〉 = QRN] + Pr

r
[〈x′〉 6= QRN] ≤ 3/2λ (3)

Eq.(3) follows by the two claims below.

Claim. Prr[〈x′〉 6= QRN] ≤ 2/2λ .

Proof (Proof of Claim). We’ll denote with eµ the unique value in Zp′q′
satisfying xeµ = µ (it’s unique as µ ∈ 〈x〉 = QRN and |QRN | = p′q′).
As x, µ ∈ QRN , also x′ = xr · µ = xr+eµ is in QRN , and 〈x′〉 = QRN
holds if ord(x′) = p′q′, which is the case except if (r + eµ) = 0 mod p′ or
(r + eµ) = 0 mod q′ or equivalently (using that 2λ < min(p′, q′)) if

r ∈ B def
=
{
Z2λ ∩ {(−eµ mod p′), (−eµ mod q′)}

}
. (4)

Clearly |B| ≤ 2 and the claim follows.

Claim. Prr[y
′ = x′2

T/2

mod N ∧ 〈x′〉 = QRN] ≤ 1/2λ .

Proof (Proof of Claim). If y 6∈ QRN , then also y′ = µr · y 6∈ QRN (as

a ∈ QRN , b 6∈ QRN implies a · b 6∈ QRN). As 〈x′〉 = QRN and y′ 6= x′2
T/2

can’t hold simultaneously in this case the probability in the claim is 0.
From now on we consider the case y ∈ QRN . We have

Pr
r

[y′ = x′
2T/2 ∧ 〈x′〉 = QRN] =

Pr
r

[y′ = x′
2T/2 | 〈x′〉 = QRN] · Pr

r
[〈x′〉 = QRN] (5)

For the second factor in (5) we have with B as in (4)

Pr
r

[〈x′〉 = QRN] =
2λ − |B|

2λ
. (6)

Conditioned on 〈x′〉 = QRN the r is uniform in Z2λ \B, so the first factor
in (5) is

Pr
r

[y′ = x′
2T/2 | 〈x′〉 = QRN] = Pr

r∈Z
2λ
\B

[y′ = x′
2T/2

] . (7)

Let ey ∈ Zp′q′ be the unique value such that xey = y. Using 〈x〉 = QRN
in the last step below we can rewirte

y′ = x′
2T/2

mod N ⇐⇒
µry = (xrµ)2

T/2

mod N ⇐⇒
xr·eµ+ey = x(r+eµ)·2

T/2
mod N ⇐⇒

r · eµ + ey = (r + eµ) · 2T/2 mod p′q′

rearranging terms

r(eµ − 2T/2) + ey − eµ2T/2 = 0 mod p′q′ . (8)

If eµ = 2T/2 this becomes

ey − 2T = 0 mod p′q′

which does not hold as by assumption we have y 6= x2
T

. So from now on
we assume eµ 6= 2T/2 mod p′q′. Then for a = eµ− 2T/2 6= 0 mod p′q′ (and
b = ey − eµ2T/2) eq.(8) becomes

r · a = b mod p′q′

which holds for at most one choice of r from its domain Z2λ \ B, thus

Pr
r∈Z

2λ
\B

[y′ = x′
2T/2

] ≤ 1

2λ − |B|

and the claim follows from the above equation and (5)-(7) as

Pr
r

[y′ = x′
2T/2 ∧ 〈x′〉 = QRN] =

Pr
r∈Z

2λ
\B

[y′ = x′
2T/2

] · Pr
r

[〈x′〉 = QRN] ≤ 1

2λ − |B|
· 2λ − |B|

2λ
≤ 1

2λ
.

5 Verifiable delay functions

In this section we define verifiable delay functions (VDF) mostly follow-
ing the definition from [BBBF18]. A VDF is defined by a four-tuple of
algorithms:

VDF.Setup(1λ)→ pp on input a statistical security parameter 1λ outputs
public parameters pp.

VDF.Gen(pp, T)→ (x, T) on input a time parameter T ∈ N, samples an
input x.

VDF.Sol(pp, (x, T))→ (y, π) on input (x, T) outputs (y, π), where π is a
proof that the output y has been correctly computed.

VDF.Ver(pp, (x, T), (y, π))→ {accept/reject} given an input/output tu-
ple (x, T), (y, π) outputs either accept or reject.

The VDF.Setup and VDF.Gen algorithms are probabilistic, VDF.Sol and
VDF.Ver are deterministic. They all run in time poly(log(T), λ).

5.1 The statistical security parameter

λ measures the bit-security we expect from our protocol, i.e., an adversary
of complexity τ should have advantage no more than ≈ τ/2λ in breaking
the scheme. It only makes sense to consider time parameters T that are
much smaller than 2λ (say we require T ≤ 2λ/2) so the sequential running
time of the honest prover is much smaller than what is required to break
the underlying hardness assumptions.

5.2 Efficiency of solving

The VDF.Sol algorithm can compute the output y in T sequential steps
(in this work a “sequential step” is the ◦ operation, which basically is
a multiplication modulo N). Moreover we require that π can be com-
puted with in much fewer than T steps. As we’ll discuss in §6.2, we’ll
achieve O(

√
T log(T)) sequential steps, and less if parallelism is available.

In [BBBF18] the requirement is more relaxed, they compute π in parallel
with y using bounded poly(log(T), λ) parallelism, so the π is available
shortly after y is computed, but overall the computation is much larger
than T . As discussed in the introduction, Wesolowski’s VDF [Wes18] re-
quires O(T/ log(T)) steps to compute π.

5.3 Completeness

The completeness property simply requires that correctly generated proofs
will always accept, that is, for any λ, T

Pr

VDF.Ver(pp, (x, T), (y, π)) = accept
where

pp
$← VDF.Setup(1λ)

(x, T)
$← VDF.Gen(pp, T)

(y, π)← VDF.Sol(pp, (x, T))

 = 1

5.4 Security (sequentiality)

The first security property is sequentiality. For this we consider a two
part adversary A = (A1,A2), where A1 can run a pre-computation and
choose T . Then A2 gets a random challenge for time T together with the
output state of the precomputation, we require that whenever

Pr

VDF.Ver(pp, (x, T), (ỹ, π̃)) = accept
where

pp
$← VDF.Setup(1λ)

(T, state)
$← A1(pp)

(x, T)
$← VDF.Gen(pp, T)

(ỹ, π̃)
$← A2(pp, (x, T), state)

6= negl(λ)

the A2 adversary must use almost the same sequential time T as required
by an honest execution of VDF.Sol(pp, (π, T)), and this even holds if
A is allowed massive parallel computation (say we just bound the total
computation to 2λ/2). This means there’s no possible speedup to compute
the VDF output by using parallelism. Let us stress that by this we mean
any parallelism that goes beyond what can be used to speed up a single
sequential step, which here is a multiplication in Z∗N , and we assume the
honest prover can use such bounded parallelism.

5.5 Security (soundness)

The second security property is soundness, which means that one cannot
come up with an accepting proof π̃ for a wrong statement. Formally, for
an adversary A = (A1,A2) we have (unlike in the previous definition,
here we don’t make any assumption about A2’s sequential running time,
just the total running time of A must be bounded to, say 2λ/2)

Pr

VDF.Ver(pp, (x, T), (ỹ, π̃)) = accept
and ỹ 6= y
where

pp
$← VDF.Setup(1λ)

(T, state)
$← A1(pp)

(x, T)
$← VDF.Gen(pp, T)

(y, π)← VDF.Sol(pp, (x, T))

(ỹ, π̃)
$← A2(pp, (x, T), state)

= negl(λ)

6 A VDF from RSW

In this section we explain the simple transformation of the protocol from
§3 into a VDF and then discuss the efficiency, security and some other
issues of this construction.

To keep things simple we’ll assume that the time parameter T = 2t is
a power of two. The four algorithms from §5 are instantiated as

VDF.Setup(1λ) The statistical security parameter λ defines another se-
curity parameter λRSA specifying the bitlength of an RSA modulus,
where λRSA should be at least as large so that an λRSA bit RSA mod-
ulus offers λ bits of security (e.g. λ = 100 and λRSA = 2048). As
hardness of factoring is subexponential, while the soundness of our
protocol is exponentially small in λ (in the random oracle model), we
can without loss of generality assume that λ ≤ λRSA/2, so point 3. in
the statement of Theorem 1 is satisfied.

The setup algorithm samples two random λRSA/2 bit safe primes p, q
and output as public parameters the single λRSA bit RSA modulus
N := p · q.

VDF.Gen(N,T) samples a random x ∈ QR+
N and outputs (x, T).

VDF.Sol(N, (x, T)) outputs (y, π) where y = x2
T

is the solution of the
RSW time-lock puzzle (but over (QR+

N , ◦) not (Z∗N , ·)) and π = {µi}i∈[t]
is a proof that y has been correctly computed. It is derived by apply-
ing the Fiat-Shamir heuristic to the protocol in §3. Recall that in
this heuristic the public-coin challenges ri ∈ Z2λ of the verifier are
replaced with a hash of the last prover message. Concretely, we fix
a hash function hash : Z × Z4

N → Z2λ , let (x1, y1) := (x, y) and for
i = 1 . . . t let4

4 Note that in the Fiat-Shamir heuristic, we not just hash the first prover message
µi in eq.(9), but also the statement (xi, T/2

i−1, yi) of the halving subprotocol. It
has been observed that this is necessary in a setting like ours, where the prover
has some influence on the statement to be proven [BPW12]. There exists an easy
attack (communicated to us by Benjamin Wesolowski) on uniqueness of the VDF if
the y’s are not included in the hash: for (x, T) = (x1, T1), pick µ1 at random, let

r1 = hash((x, T), µ1), y = (x2
T/2

/µ1)r1µ2T/2

1 , x2 = xr11 µ1, y2 = µr11 y. The above y is

almost certainly wrong, i.e., y 6= x2
T

, but by construction y2 = x2
T/2

2 , so one can
continue with the honest proof.

µi := x2
T/2i

i ∈ QR+
N

ri := hash((xi, T/2
i−1, yi), µi) ∈ Z2λ (9)

xi+1 := xrii ◦ µi
yi+1 := µrii ◦ yi

VDF.Ver(N, (x, T), (y, π)) parses π = {µi}i∈[t] and checks if x, y and all

µi are in QR+
N , if this is not the case output reject. Otherwise set

(x1, y1) := (x, y) and then for i = 1 . . . t compute

ri := hash((xi, T/2
i−1, yi), µi)

xi+1 := xrii ◦ µi (10)

yi+1 := µrii ◦ yi (11)

Finally check whether

yt+1
?
= x2t+1 (12)

and output accept if this holds, otherwise output reject.

6.1 Public parameters for the VDF

For the security of the VDF it’s crucial that a prover does not know the
factorization of the public parameter N , as otherwise he could compute
x2

T
in just two exponentiations as in eq.(1). Thus one either has to rely on

a trusted party, or use multiparty-computation to sampleN . In particular,
it’s possible to sample N securely as long as not all the participants in
the multiparty computation are malicious. Such an “MPC ceremony” has
been done before, e.g. to set up the common random string for Zcash.5

This is in contrast to the random-oracle based PoSW [MMV13,CP18]
which don’t require a setup procedure at all.

To avoid trusted setup, Boneh et al. [BBF18] and Wesolowski [Wes18]
suggested to use class groups of an imaginary quadratic field [BBHM02]
instead of an RSA group. Recall that the statistical soundness of our
proof systems relies on the fact that the underlying group (the quadratic
residues of Z∗N where N is the product of safe primes) has no subgroups
of small order. If the underlying group does have groups of small order,
then computational soundness holds under the assumption that it’s hard
to find elements of small order, which is conjectured to hold for the class
groups mentioned above.

5 https://z.cash/technology/paramgen.html

6.2 Efficiency of the VDF

Cost of verification The cost of running the verification VDF.Ver(N, (x, T =
2t), (y, π)) is dominated by the 2t exponentiations (with λ bit long ex-
ponents) in eq.(10-11). As exponentiation with a random λ bit expo-
nent costs about 1.5λ multiplications,6 the cost of verification is around
3 · λ · t multiplications.7 For concreteness, consider an implementation
where λ = 100, λRSA = 2048 and assume t = 40, this gives a cost of about
3·λ·t = 12000 multiplications, which corresponds to 12000/(2048·1.5) ≈ 4
full exponentiations in Z∗N .

A minor efficiency improvement There’s a simple way to save on
verification time and proof size. Currently, for T = 2t we run the halving

protocol for t rounds, and then in eq.(12) check if yt+1
?
= x2t+1. For any

integer ∆ ≥ 0 we could run the protocol for just t−∆ rounds, but then

the verifier must check if yt+1−∆
?
= x2

2∆

t+1−∆, which requires 2∆ squarings

(more generally, if T is not a power of 2 then the check becomes yt+1−∆
?
=

x2
Tt+1−∆
t+1−∆ mod N where T1 = T, Ti = dTi−1/2e).

If we set, say ∆ = 10, this saves 10 rounds and thus reduces the proof
size by 25% from 40 to 30 elements. The verification time decreases by
around 15% (we save 20 short exponentiations as in eq.(10,11) at the
price of 1024 extra squarings).

Cost of computing the proof Computing the proof (y, π)← VDF.Sol(N, (x, T))

requires one to solve the underlying RSW puzzle y = x2
T

, which is done
by squaring x sequentially T times (the security of the RSW puzzle and
thus also our VDF relies on the assumption that there’s no shortcut to
this computation).

On top of that, for the VDF we also must compute the proof π =

{µi}i∈[t] where µi = x2
T/2i

i . But we still assume that T = 2t is a power of
2.

If näıvely implemented, computing the µi will require T/2 squarings
for µ1, T/4 for µ2 etc., adding up to a total of T ≈ T/2+T/4+T/8 . . .+1

6 Exponentiation is typically done via “square and multiply”, which for a z bit expo-
nent with hamming weight h(z) requires z + h(z) multiplications, or about 1.5 · z
multiplication for a random exponent (where h(z) ≈ z/2).

7 Here multiplication means the ◦ operation, which requires one multiplication modulo
N , followed by the map | · |. As the cost of this map is marginal compared to the
multiplication we just ignore it.

sequential steps. Fortunately we don’t have to compute µ1 = x2
T/2

as we
already did so while computing y = x2

T
by repeated squaring (cf. eq.(2)).

This observation already saves us half the overhead. We can also compute
the remaining µ2, µ3, . . . using stored values, but it becomes increasingly
costly, as we discuss below.

In general, for some s ∈ [t] the prover can compute µ1, . . . , µs using

stored values, and then fully recompute the remaining µs+1 = x2
T/2s+1

s+1 , µs+2, . . . , µt
which will only require T/2s+1 + T/2s+2 . . . < T/2s squarings.

To see how the µi’s can be efficiently computed for small i, for z ∈
QR+

N let z denote z’s log to basis x, i.e., xz = z. We have x1 = 1, y1 = 2T

and

µi := xi · 2T/2
i

xi+1 := ri · xi + µi

yi+1 := ri · µi + yi

How those exponents concretely develop for i = 1 to 3 is illustrated
in Figure 1. For example, we can compute µ3 assuming we stored the
x2

T/8
, x2

T3/8
, x2

T5/8
, x2

T7/8
values as

µ3 = (x2
T/8

)r1·r2 · (x2T5/8
)r2 · (x2T3/8

)r1 · x2T7/8

In general, computing µ1, . . . , µs will require to store 2s values {x2T ·i/2
s

}i∈[2s],
and then compute 2s exponentiations with exponents of bitlength at most
λ·(s−1) (and half that on average). We can’t speed this up by first taking
the exponents modulo the group order p′q′ as it is not know, but if we have
bounded parallelism 2p, p ≤ (s− 2) this can be done in 2s−p ·λ · (s− 1) · 34
sequential steps. Summing up, with sufficient space to store 2s elements
in ZN and 2p ≤ 2s parallelism the proof π can be computed in roughly

2s−p · λ · (s− 1) · 3
4

+ 2t−s sequential steps and 2s · log(N) bits of storage

after y has been computed. For example with a single core p = 0 and
s = t/2− log(t · λ)/2 the number of steps (i.e., ◦ operations) becomes

2t/2−log(t·λ)/2·λ·(s−1)·3
4

+2t/2+log(t·λ)/2 = 2t/2
(
λ(s− 1)√

tλ
· 3

4
+
√
tλ

)
<
√
T ·11

8
·
√

log(T) · λ

For our typical values t = 40, λ = 100 this is ≤ 227, and thus over
240−27 = 213 times faster than computing y, e.g. if computing y takes 1h,
computing π just takes half a second on top. The memory required (to
store intermediate values) is around 2s · logN = 2t/2−log(t·λ)/2 ·1024 ≤ 227

bits, or 8MB.

i x′i µi yi
1 1 2T/2 2T

2 r1 + 2T/2 r1 · 2T/4 + 23T/4 r1 · 2T/2 + 2T

3 r1 · r2 + r2 · 2T/2 + 2T/4 · r1 + 23T/4 r1 · r2 · 2T/8 + r2 · 2T5/8 + r1 · 2T3/8 + 2T7/8 r1 · r2 · 2T/4 + r2 · 23T/4 + r1 · 2T/2 + 2T

...
...

...
...

Fig. 1. Exponents of the the values in the protocol, here z = xz.

6.3 Security of the VDF

Soundness If we model hash as a random oracle, then by Lemma 1
(which is used in the proof of Theorem 1) we are guaranteed that a mali-
cious prover will not find an accepting proof (ỹ, π̃) for a wrong statement

ỹ 6= x2
T

except with exponentially small probability. We can even let
the malicious prover choose the challenge (x, T) for which it must forge
such a proof itself, the only restriction being that x must be a generator
〈x〉 = QR+

N (a random x ∈ QR+
N satisfies this almost certainly, but we

can’t efficiently verify if a given x is such a generator).

The well known Fiat-Shamir heuristic states that replacing the prover’s
queries with the output of a random oracle in a sound public-coin inter-
active proof system results in a sound non-interactive proof system, but
this only applies for protocols with a constant number of rounds.

Even though our protocol has logarithmically many rounds, we can
directly conclude that our non-interactive proof is sound as follows: if
we are given a valid proof for a wrong statement, then, during the ex-
ecution of the verification algorithm for this proof, we must make a
query hash(xi, T/2

i−1, yi, µi) where (N, xi, T/2
i−1, yi) ∈ L (L as defined

in §4) but for the next query made hash(xi+1, T/2
i, yi+1, µi+1) we have

(N, xi+1, T/2
i, yi+1) 6∈ L. By Lemma 1, every random oracle query will

correspond to such a query with probability at most 3/2λ. Thus, by the
union bound, the probability that a malicious prover that makes up to q
queries to hash will find such a query (which as outlined is necessary to
find an accepting proof for a wrong statement) is at most q · 3/2λ.

Sequentiality To break sequentiality means computing y faster than in
T sequential computations. We rely on the same assumption as [RSW96],
which simply states that such a shortcut does not exist. As outlined in
§2, the fact that we work over (QR+

N , ◦) not (ZN , ·) only makes the as-
sumption on which we rely weaker, and the fact that in our case N is the
product of safe primes doesn’t affect the assumption assuming that safe
primes are not too sparse.

References

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable
delay functions. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 757–788. Springer,
Heidelberg, August 2018.

[BBF18] Dan Boneh, Benedikt Bünz, and Ben Fisch. A survey of two verifi-
able delay functions. Cryptology ePrint Archive, Report 2018/712, 2018.
https://eprint.iacr.org/2018/712.

[BBHM02] Ingrid Biehl, Johannes A. Buchmann, Safuat Hamdy, and Andreas Meyer.
A signature scheme based on the intractability of computing roots. Des.
Codes Cryptography, 25(3):223–236, 2002.

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove
yourself: Pitfalls of the Fiat-Shamir heuristic and applications to Helios. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658
of LNCS, pages 626–643. Springer, Heidelberg, December 2012.

[CP18] Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work.
In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part II, volume 10821 of LNCS, pages 451–467. Springer, Heidelberg,
April / May 2018.

[FS00] Roger Fischlin and Claus-Peter Schnorr. Stronger security proofs for RSA
and Rabin bits. Journal of Cryptology, 13(2):221–244, March 2000.

[HK09] Dennis Hofheinz and Eike Kiltz. The group of signed quadratic residues
and applications. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of
LNCS, pages 637–653. Springer, Heidelberg, August 2009.

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Al-
gebraic methods for interactive proof systems. In 31st FOCS, pages 2–10.
IEEE Computer Society Press, October 1990.

[MMV13] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly verifiable
proofs of sequential work. In Robert D. Kleinberg, editor, ITCS 2013, pages
373–388. ACM, January 2013.

[Pie19] Krzysztof Pietrzak. Simple verifiable delay functions. In 10th Innovations
in Theoretical Computer Science Conference, ITCS 2019, January 10-12,
2019, San Diego, California, USA, pages 60:1–60:15, 2019.

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-
release crypto. Technical report, Cambridge, MA, USA, 1996.

[Sha90] Adi Shamir. IP=PSPACE. In 31st FOCS, pages 11–15. IEEE Computer
Society Press, October 1990.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge
imply time/space efficiency. In Ran Canetti, editor, TCC 2008, volume
4948 of LNCS, pages 1–18. Springer, Heidelberg, March 2008.

[vzGS13] Joachim von zur Gathen and Igor E. Shparlinski. Generating safe primes.
J. Mathematical Cryptology, 7(4):333–365, 2013.

[Wes18] Benjamin Wesolowski. Efficient verifiable delay functions. Cryptology
ePrint Archive, Report 2018/623, 2018. https://eprint.iacr.org/2018/623.

