
Efficient Evaluation of Low Degree Multivariate
Polynomials in Ring-LWE Homomorphic

Encryption Schemes

Sergiu Carpov and Oana Stan

CEA, LIST,
Point Courrier 172, 91191 Gif-sur-Yvette Cedex, France

Abstract. Homomorphic encryption schemes allow to perform compu-
tations over encrypted data. In schemes based on RLWE assumption the
plaintext data is a ring polynomial. In many use cases of homomorphic
encryption only the degree-0 coefficient of this polynomial is used to
encrypt data. In this context any computation on encrypted data can
be performed. It is trickier to perform generic computations when more
than one coefficient per ciphertext is used.
In this paper we introduce a method to efficiently evaluate low-degree
multivariate polynomials over encrypted data. The main idea is to encode
several messages in the coefficients of a plaintext space polynomial. Using
ring homomorphism operations and multiplications between ciphertexts,
we compute multivariate monomials up to a given degree. Afterwards,
using ciphertext additions we evaluate the input multivariate polyno-
mial. We perform extensive experimentations of the proposed evaluation
method. As example, evaluating an arbitrary multivariate degree-3 poly-
nomial with 100 variables over Boolean space takes under 13 seconds.

1 Introduction

The widespread of cloud storage and computing services has conducted to a
massive shift towards data and computation outsourcing both for particular users
and businesses. Between the incontestable advantages of using cloud computing,
one can cite the cost reduction in the development and in the maintenance of data
centers, the scalability and elasticity of cloud resources, improved accessibility
(via only an Internet connection) and a guaranteed reliability (with redundancy
and back-up mechanisms).

However, one of the main barriers in the large-scale adoption of cloud based
services for data processing and storage concerns the data privacy, since the
data owners have little or no control on the cloud provider security policies and
practices. One immediate and recommended solution is to encrypt the highly
sensitive data before sending and migrating it to a cloud environment. In this
context one can use Homomorphic Encryption (HE) schemes, which allow to
perform computations directly over encrypted data.

Homomorphic encryption schemes have been known for a long time, with the
first partial constructions dating back to the seventies [23]. In his seminal work



[13], Gentry proposed the first Fully Homomorphic Encryption (FHE) scheme
capable to evaluate an arbitrary number of additions and multiplications over en-
crypted data (allowing, in theory, to execute any computation). From this major
theoretical breakthrough, there was an increased research interest for homomor-
phic encryption. Many fully and somewhat homomorphic encryption schemes
(SHE) have been proposed in literature [5, 12, 26, 20, 10] based on different se-
curity assumptions. Compared to FHE schemes, SHE schemes allow to perform
only a limited number of homomorphic operations and are used as a basis to
construct FHE schemes. In one of the latest survey on homomorphic encryption
[1], FHE schemes are classified into four main families:

– Ideal Lattice based [13]
– Schemes over integers [26]
– Schemes based on the Learning With Error (LWE) or the ring version

(RLWE) problem [6, 5]
– NTRU-like schemes [20]

Using both addition and multiplication over ciphertexts, one can execute arbi-
trary arithmetic circuits, evaluate multivariate polynomials, etc. A typical use
of FHE is to express the function to be computed on encrypted data as a static
control-flow program and execute homomorphically the associated Boolean cir-
cuit [8]. Despite their recent and successive improvements, the main issue about
FHE schemes is the performance (in terms of execution time and memory re-
quirements) and, consequently, the practical applicability.

Contribution

In this work, we focus on the third category of schemes, the ones based on the
RLWE assumption, and we propose a new method for the efficient evaluation of
multivariate polynomials in the homomorphic domain. For this type of schemes
the plaintext and, respectively, the ciphertext space are polynomial ring elements
with coefficients of different size (i.e. being defined over different integer modu-
lus). In many applications using RLWE schemes only the zero degree coefficient
is used to encode useful data.

Several researches were conducted in order to improve the evaluation perfor-
mance of polynomials over encrypted data and take advantage of the plaintext
space polynomial structure. The coefficient packing method, introduced in [22],
allows to pack several messages into a single ciphertext. In a series of papers [28,
27] the authors describe how to evaluate multivariate linear polynomials over
coefficient packed messages. In this work, we further generalize their method to
allow evaluation of low-degree multivariate polynomials. The coefficients of the
evaluated multivariate polynomial can be either in clear or encrypted forms. The
proposed packing and computation methods allow not only to reduce ciphertext
expansion ratio1 but also to perform computations using messages encoded in
the same ciphertext. As shown later, our method reduces the complexity of basic

1 The ratio between ciphertext and plaintext message sizes.



operations performed in homomorphic space, and thus ameliorates the perfor-
mances for different types of computations manipulating private data. As an
example of applications in which using our polynomial evaluation method can
be useful are the machine learning algorithms.

Related works

Several research works found in the literature propose solutions on how to amelio-
rate the efficiency of homomorphic encryption schemes in the context of practical
applications.

In [22] it is introduced the coefficient packing technique for homomorphic
ciphertexts. Besides decreasing ciphertext size this method allows to accelerate
multi-bit additions/multiplications. Roughly speaking, the main idea is to encode
a bit-wise representation of integers into plaintext polynomial coefficients. Under
certain conditions, adding and multiplying such encrypted plaintexts allows to
perform binary addition and respectively binary multiplication of initial integers.
As such, this method is appropriate in computations using a small number of
multiplications (i.e. computing standard deviation). The authors used this tech-
nique to efficiently compute means, variances and inner products (i.e. degree-1
polynomials). The inner product is used in a protocol for making logistic model
predictions over homomorphically encrypted data.

In [28] the authors propose an extension of the data packing technique in-
troduced in [22] and use it to homomorphically compute inner products and
Hamming distances. Hamming distance computation is equivalent to evaluating
a particular degree-2 polynomial or a degree-1 polynomial with encrypted coef-
ficients. As explained earlier, our work is an extension of the approach from [28]
for general polynomials of degree larger than one.

In [9] the authors introduce an “unpacking” technique for coefficient packed
ciphertexts, thus they describe how to obtain several ciphertexts from a single
one in the encrypted domain. No computation methods over packed ciphertext
is proposed.

One of the first approaches aiming to efficiently encode the messages for
HE schemes is the packing method proposed by Smart and Vercauteren in [24,
14]. By using CRT (Chinese Remainder Theorem) on polynomials, one can per-
form SIMD (Single Instructions Multiple Data) operations on encrypted data.
Roughly speaking, the plaintext space is split into several independent “slots”
if the cyclotomic polynomial defining the polynomial ring can be factored. The
multivariate polynomial evaluation method we introduce is complementary to
the batching and can be applied on top of it (i.e. do a polynomial evaluation in
each slot).

For a view on the different applications of these optimization methods for
RLWE-based schemes, we refer to paper [15] where the authors discuss which
machine learning algorithms can be expressed in polynomial form. As said ear-
lier only polynomials can be evaluated using homomorphic encryption. Several
homomorphic implementations of classification algorithms are proposed in [3].



In particular, the authors describe how to perform hyperplane decision (lin-
ear classifier), Naive Bayes and decision trees classification algorithms on HE
encrypted data. In a series of papers [29, 27] the authors discuss different appli-
cations (pattern matching and biometric authentication) of secure inner-product
computation. Different encoding methods for representing fixed-point numbers,
designed for Ring-based SHE schemes, were presented in [2] and [11] along with
their applications to a homomorphic forecasting algorithm and respectively to
an image processing algorithm.

This paper is organized as follows. After a brief introduction of generic op-
erations supported by a RLWE based homomorphic scheme, we describe the
proposed evaluation method for multivariate polynomials in Section 3. Later on
we provide some experimental results in Section 4 followed by an example of a
practical application of our method. Finally, Section 5 concludes the paper and
provides some perspectives on the future work.

2 Homomorphic encryption

2.1 Preliminiaries

Let us first give the basic notation and introduce the RLWE problem. Let A =
Z [X] /f(x) be the ring of polynomials modulo a monic irreducible polynomial
f(x). Usually, one would typically restrict f(x) to be the cyclotomic polynomial
Φm (X), i.e. the minimal polynomial of the primitive m-th root of unity. Let Aq =
A mod q be the set of polynomials modulo Φm (X) with coefficients modulo q.
Thus an element in A is a polynomial of degree d over Zq, with d = ϕ (m)
(Euler’s totient function) in the case of a cyclotomic polynomial modulus.

Using these above notations, we recall a simple definition of the RLWE prob-
lem, first introduced by Lyubashevsky, Peikert and Regev [21].

RLWE problem. For security parameter λ, f(x) is the cyclotomic polynomial
depending on λ, the ring A is defined as before and q is an integer. Let χ(λ) be an
error distribution over A. The decision-RLWE problem is to distinguish between
two distributions: a first distribution obtained by sampling (ai, bi) uniformly
from A2

q and a second distribution made of a polynomial number of samples of
the form (ai, bi = ai ∗ s+ ei) ∈ A2

q, where ai is uniformly random in Aq, ei ← χ
and s← Aq is a uniformly random element. The RLWEd,q,λ assumption is that
the RLWE problem is infeasible.

This problem can be reduced using a quantum algorithm to the shortest
vector problem over ideal lattices and its harness is independent of q (usually
either prime or power of 2). The above RLWE problem easily leads to several
homomorphic encryption schemes, such as BGV [5] or FV [12].

In RLWE based homomorphic encryption scheme ciphertexts and secret keys
are elements from the ring Aq. The plaintext space is the ring of polynomials At
(t� q).

Leveled SHE schemes [5] use a series of integer modulus q0, q1, . . . for cipher-
texts at different moments of an homomorphic evaluation. A modulus switching



technique is used (switch ciphertext from modulus qi to modulus qi+1, qi > qi+1)
to deal with the noise increase. In [4] a notion of scale-invariance for leveled SHE
schemes is introduced. In scale-invariant schemes a single modulus, q, is used for
ciphertexts during the whole homomorphic evaluation.

Usually, the plaintext space is chosen for t = 2 and a single binary message
is encrypted per ciphertext, in the zero-degree coefficient of the polynomial from
A2, allowing to homomorphically evaluate arbitrary Boolean circuits. By using a
larger modulus (t > 2) for the plaintext space it is possible to execute operations
on integers modulo t homomorphically or even on elements from the polynomial
ring At (see next section).

In the so-called batched schemes [14], the plaintext space ring At can be fac-
tored into sub-rings (defined by the factorization of the polynomial Φm (X) mod-
ulo t) such that homomorphic operations apply to each sub-ring independently.
Batching several messages into ciphertext slots allows to execute homomorphic
operations on all messages in parallel at the same time.

To summarize, RLWE based HE schemes allow to execute homomorphic op-
erations (batched or not) over polynomial ring At elements (includes the integer
modulo ring and finite field cases). In the next section, we will present more
formally the basic operations a SHE can execute.

2.2 Homomorphic operations

Beside the typical key generation, encryption and decryption, a homomorphic
encryption scheme is also defined by a set of plaintext operations which can
execute in the encrypted domain. Below, we give a generic list of operations
supported by any public-key RLWE SHE scheme ignoring implementation de-
tails. We limit our description to the non-batched schemes, the results presented
in this paper being also valid for the batched ones.

KeyGen
(
1λ
)

– generate the set of keys: a secret key sk used for encrypting/decrypting
messages, a public key pk used for encrypting messages and an additional
set of evaluation keys evk (for key-switching in homomorphic multiplications
and ring homomorphism operations).

Encpk (m) – encrypts a plaintext message m ∈ At using the public key pk.
Decsk (ct) – decrypts a ciphertext ct using the secret key sk.
Add (ct1, ct2) – outputs a ciphertext which represents the addition of plaintext

messages encrypted by ct1 and ct2:
Decsk (Add (ct1, ct2)) ≡ Decsk (ct1) + Decsk (ct2)

Mult (ct1, ct2, evk) – outputs a ciphertext which represents the multiplication
of plaintext messages encrypted by ct1 and ct2:
Decsk (Mult (ct1, ct2, evk)) ≡ Decsk (ct1) · Decsk (ct2)

Hom (ct, k, evk) – outputs a ciphertext which represents the application of the
ring homomorphism X 7→ Xk over the plaintext message polynomial en-
crypted by ct:
Decsk (Hom (ct, k, evk)) ≡ p

(
X 7→ Xk

)
where p (X) = Decsk (ct)

For some homomorphic encryption scheme instantiations, this homomor-
phism operation can be performed with only a small noise increase.



For simplicity sake, we use addition and multiplication operators for homomor-
phic addition and multiplication of ciphertexts: ct1 + ct2 = Add (ct1, ct2) and
respectively ct1 · ct2 = Mult (ct1, ct2, evk). The ring homomorphism operation
Hom (ct, k, evk) is denoted using φk (ct). Evaluation key evk use is implicit in
operator notation. We recall that all the arithmetic operations are performed
over the plaintext space ring At.

Homomorphic addition and multiplication can be applied to a plaintext and
a ciphertext, e.g. ct1 + m2 means an addition between the ciphertext ct1 and
the plaintext message m2. Such an homomorphic operation shall be denoted as a
plaintext-ciphertext homomorphic operation. The noise increase of a plaintext-
ciphertext operation is lower when compared to the noise increase of this oper-
ation applied onto ciphertexts.

3 Homomorphic evaluation of multivariate polynomials

Let Pn be the space of all the polynomials with n variables, x0, . . . , xn−1. With-
out loss of generality we suppose that the constant term is zero. The subspace
of polynomials of maximal degree d, 1 ≤ d ≤ n, is denoted by Pnd and composed
by polynomials defined as:

P (x0, . . . , xn−1) =
∑

1≤k≤d

∑
0≤e1≤...≤ek<n

ce1,...,ek · xe1 · . . . · xek (1)

In this formulation the monomial terms xe1 · . . . · xek are grouped by their
degree k. The inner sum adds up all the combinations with repetition of k
variables. Variables x0, . . . , xn−1 and coefficients ce1,...,ek belong to a ring. In
this work the plaintext space for homomorphic encryption is used, namely the
ring of integers modulo t.

In what follows we describe some naive methods for multivariate polynomial
evaluation over homomorphically encrypted data and afterwards we introduce
an optimized method for multivariate polynomial evaluation.

Let P (x0, . . . , xn−1) be a polynomial from Pnd which has to be evaluated at an
encrypted point a0, . . . , an−1. The polynomial is evaluated over the integer ring
Zt, with t ≥ 2. In this work we focus on efficient evaluation of polynomials over
homomorphic domain using the lowest possible parameters for the configuration
of the HE scheme.

3.1 Naive methods

A straightforward method is to encrypt each value a0, . . . , an−1 into separate ho-
momorphic ciphertexts. Using homomorphic multiplications/additions one can
compute polynomial representation (1). As mentioned in Section 2, the parame-
ters of HE schemes depend mainly on the degree of monomials and less on their
number (noise increase due to homomorphic additions is much smaller than for
homomorphic multiplications). The lowest HE scheme parameters are obtained



when a tree-like structure is used to compute the monomials of P . Homomor-
phic polynomial evaluation time mainly depends on the number of homomorphic

multiplications. Note that P (x0, . . . , xn−1) can have as many as (n+d)!
n!·d! monomi-

als2. So, in the general case, the number of homomorphic multiplications is not
polynomial, but potentially factorial.

As different monomials share common parts we can minimize the number of
homomorphic multiplications by evaluating them once and reusing them when
needed. Finding the optimal way to do so is a difficult optimization problem and
has been studied from multiple standpoints: common subexpression elimination,
arithmetic circuit optimization, etc. [7, 18, 19]. Larger HE scheme parameters
should be used for the aforementioned methods as the multiplicative depth of
computation increases when compared to direct homomorphic computation of
polynomial terms. In return, the number of homomorphic operations needed for
polynomial evaluation is lower.

Let us now present our method to be applied when the degree of the polyno-
mials to be evaluated homomorphically respects certain condition with regard
to the ciphertext space.

3.2 Optimized method for nd ≤ deg (Φ (X))

In the naive methods presented earlier only a single coefficient (the degree zero
one) of the polynomial (∈ At) to be encrypted in a homomorphic ciphertext is
used. Other coefficients are set to zero and are not used. A better solution will be
to use more than one coefficient of the polynomial. In this section we introduce
an optimized method for polynomial evaluation in which the values a0, . . . , an−1

are packed in the coefficients of a homomorphic plaintext polynomial (2). The
polynomial is further encrypted into the ciphertext ct. This packing technique
was introduced by the authors of [22]. The proposed evaluation method is re-
stricted to cases where relation nd ≤ deg (Φ (X)) is verified (we explain later
why).

Q (X) =
∑

0≤i<n

ai ·Xi (2)

ct = Encpk (Q (X))

First, we describe the proposed polynomial evaluation method applied on
plain data. Afterwards we explain how to perform this evaluation over homo-
morphic encrypted data, i.e. having ciphertext ct as input.

2 The number of combinations with repetitions for k degree monomials is (n+k−1)!
(n−1)!·k! .

Polynomial P has monomials of degree up to d (inclusive). By summing up the

number of degree-k monomials one can obtain the expression (n+d)!
n!·d! .



Polynomial P (x0, . . . , xn−1) evaluation. Let R(k) (X) be a polynomial de-
fined as follows:

R(k) (X) = Q (X) · . . . ·Q
(
Xnk−1

)
, k ≥ 1 (3)

Polynomial R(1) (X) has n non-zero coefficients and R(1) (X) ≡ Q (X). Poly-
nomial R(2) (X) has n2 non-zero coefficients and is given by expression:

R(2) (X) = Q (X) ·Q (Xn)

=

 ∑
0≤i<n

ai ·Xi

 ·
 ∑

0≤j<n

aj ·Xn·j


=

∑
0≤i,j<n

ai · aj ·Xi+n·j

Namely, R(2) (X) coefficients are evaluations of degree-2 monomials xi · xj with
0 ≤ i, j < n, at point a0, . . . , an−1. Equivalently we can see that polynomial
R(k) (X) has nk non-zero coefficients which are evaluations of degree-k monomi-
als:

R(k) (X) =
∑

0≤e1,...,ek<n

ae1 · . . . · aek ·X
∑

1≤i≤k ei·n
k−i

(4)

The l-th degree coefficient of R(k) (X) is ae1 · . . . · aek where (e1, . . . , ek) is the
base-n decomposition of l. The polynomial R(k) (X) contains the products of
all k-element permutations with repetition from the set {a0, . . . , an−1}. As the
multiplication is a commutative operation, the same monomial is found several
times in different coefficients of R(k) (X). The number of “useless” coefficients

(coefficients representing the same monomial) is equal to (nk − (n+k−1)!
k!(n−1)! ), i.e.

the difference between the number of R(k) (X) coefficients (permutations with
repetitions) and the number of possible monomials of degree k (combinations
with repetitions).

When R(k) (X) computation is performed in the ring A relation (5) must be
verified, otherwise monomials will mix (due to modular reduction by Φ (X)). So,
instead of a single monomial per R(k) (X) coefficient we will obtain a sum of
monomials.

nd ≤ deg (Φ (X)) (5)

Having a way to compute monomial values up to degree d, lets now fo-
cus on how to multiply them by the corresponding coefficients of polynomial
P (x0, . . . , xn−1) and compute the inner sum from relation (1).

Let C(k) (X) be a polynomial which packs degree-k monomial coefficients
ce1,...,ek of polynomial P (x0, . . . , xn−1):

C(k) (X) =
∑

0≤e1≤...≤ek<n

ce1,...,ek ·X
N−

∑
1≤i≤k ei·n

k−i

(6)



where N = deg (Φ (X)). When polynomials C(k) (X) and R(k) (X) are multiplied
together, the N -th degree coefficient of the resulting polynomial3 is exactly the
inner sum of equation (1). The product C(k) (X) ·R(k) (X) is thus equal to:XN ·

∑
0≤e1≤...≤ek<n

ce1,...,ek · ae1 · . . . · aek

+ . . . (7)

Other coefficients are also sum of monomial evaluations except that they are
multiplied by “wrong” coefficients of multivariate polynomial P (x0, . . . , xn−1).

Summing up these polynomial products for k = 1, . . . , d we obtain, in the
highest degree coefficient, the evaluation of polynomial P (x0, . . . , xn−1) at point
a0, . . . , an−1:∑

1≤k≤d

C(k) (X) ·R(k) (X) =

XN ·
∑

1≤k≤d

∑
0≤e1≤...≤ek<n

ce1,...,ek · ae1 · . . . · aek︸ ︷︷ ︸
P (a0,...,an−1)

+ . . . (8)

Polynomial P (x0, . . . , xn−1) evaluation over binary plaintext space.
Formulation of Pnd polynomials is simpler when evaluated over the binary ring
Z2 because, for any a ∈ Z2 and p ≥ 1, we have ap ≡ a. Any monomial xl0e1 ·. . .·x

lk
ek

of degree (l0 + . . .+ lk) is equivalent to monomial xe1 · . . . · xek of degree k. It is
easy to see in this case, that polynomial R(k) (X) contains all the monomials of
degree up to k (not only monomials of degree exactly k as previously). Employing
relation (8) is no necessary for binary plaintext space. Polynomial evaluation
can be performed using only R(d) (X) as it contains all the needed monomial
evaluations. On the other hand, a new coefficient packing polynomial should be
used:

C (X) =
∑

1≤k≤d

∑
0≤e1<...<ek<n

ce1,...,ek · Xpk (9)

where
pk = N −

∑
1≤i≤k

ei · nk−i − e1 ·
∑

k≤i≤d−1

ni.

The final evaluation is performed by multiplying the newly introduced coef-
ficient packing polynomial with R(d) (X). As previously, the N -th degree coeffi-
cient of the result is the evaluation P (a0, . . . , an−1).

3 Observe that the term
∑

1≤i≤k ei · n
k−i from the X-th power cancels out when

e1, . . . , ek are equal in (4) and (6).



Polynomial P (x0, . . . , xn−1) homomorphic evaluation. Ciphertext ct

encrypts the polynomial Q (X) in which the values a0, . . . , an−1 are coefficient
packed. Polynomial R(k) (X) can be homomorphically computed using multi-
plication and ring homomorphism operations applied on the packed ciphertext
ct:

Encpk

(
R(k) (X)

)
≡ ct · . . . · φn

k−1

(ct) , 1 ≤ k ≤ d

With homomorphic encryption schemes defined in Section 2 the best way to
compute this expression is to use a tree-shaped structure to perform the multi-
plications. The homomorphic cryptosystem should support a logarithmic (in the
degree d of the polynomial) multiplicative depth. As R(k) (X) computations for
different k share common parts we can further decrease the number of employed
homomorphic multiplications by a logarithmic factor.

Homomorphic multiplication with a plaintext input is used to compute mono-
mials multiplied by respective polynomial P coefficients (i.e. terms C(k) (X) ·
R(k) (X)) and homomorphic additions for the final sum. The decryption of
the obtained ciphertext gives (in the highest degree coefficient) the polynomial
P (x0, . . . , xn−1) evaluated at point a0, . . . , an−1.

For binary plaintext space evaluating polynomial is simpler as only a single
R(d) (X) must be computed. This saves several homomorphic operations. The
multiplicative depth of the HE scheme remains the same.

In Table 1 are shown the complexity values in terms of homomorphic oper-
ations of polynomial evaluations for different kind of operations.

Operations\plaintext space Zt Z2

Hom d− 1 d− 1

Add d− 1 0

Mult
d log2 d

2
d− 1

Mult with plaintext d 1

Table 1. Polynomial evaluation complexity in case of binary (Z2) and general (Zt)
plaintext spaces.

Polynomial evaluation example. Suppose we want to evaluate a polynomial
P (x0, x1, x2) of degree d = 2 with n = 3 variables at a point a0, a1, a2. The
generic formulation of this polynomial is:

P (x0, x1, x2) = c0x0 + c1x1 + c2x2 +
c0,0x

2
0 + c0,1x0x1 + c0,2x0x2 +

c1,1x
2
1 + c1,2x1x2 + c2,2x

2
2



Let Q (X) = a0 +a1 ·X+a2 ·X2 be the polynomial packing values a0, a1, a2.
Polynomials R(k) (X), 1 ≤ k ≤ 2, computed using relation (3) are:

R(1) (X) = a0 + a1X + a2X
2

R(2) (X) = a20 + a0a1X + a0a2X
2 +

a0a1X
3 + a21X

4 + a1a2X
5 +

a0a2X
6 + a1a2X

7 + a22X
8

The coefficients of R(1) (X) and R(2) (X) are evaluations at point a0, a1, a2 of
degree-1 and respectively degree-2 monomials. Polynomials C(1) (X) and C(2) (X)
(relation (6)) pack the coefficients of polynomial P (x0, x1, x2):

C(1) (X) = c0X
N + c1X

N−1 + c2X
N−2

C(2) (X) = c0,0X
N + c0,1X

N−1 + c0,2X
N−2

+ c1,1X
N−4 + c1,2X

N−5

+ c2,2X
N−8

Multiplying together R(k) (X) and C(k) (X), 1 ≤ k ≤ 2, and summing up the
results we obtain in the degree-N coefficient the polynomial P evaluated at point
a0, a1, a2. We note that only 6 out of 9 coefficients of R(2) (X) participate in the
final computation. The other 3 (X3, X6 and X7 coefficients) are the “useless”
coefficients we talked about earlier.

In case of binary plaintext space polynomial P (x0, x1, x2) formulation is
simpler because the square terms disappear:

P (x0, x1, x2) = c0x0 + c1x1 + c2x2 +
c0,1x0x1 + c0,2x0x2 + c1,2x1x2

R(2) (X) and C (X) polynomials found using relations (4) and (9) are:

R(2) (X) = a0 + a0a1X + a0a2X
2 +

a0a1X
3 + a1X

4 + a1a2X
5 +

a0a2X
6 + a1a2X

7 + a2X
8

C (X) = c0X
N + c0,1X

N−1 + c0,2X
N−2

+ c1X
N−4 + c1,2X

N−5

+ c2X
N−8

R(2) (X) contains all the degree-1 monomial evaluations in addition to degree-2
ones. The coefficient packing polynomial C (X) has all polynomial P (x0, x1, x2)
coefficients in the right place. Multiplying these polynomials gives in the N -th
degree coefficient the evaluation P (a0, a1, a2).

4 Experimentations

We have implemented the optimized polynomial evaluation method using the
HELib library [16, 17]. HELib is an open-source library implementing BGV



scheme introduced in [5] together with some utility functions. Cyclotomic poly-
nomials are used in HELib as the irreducible modulus of the plaintext and respec-
tively the ciphertext rings. A workstation with an Intel Xeon E3-1240 (3.50GHz)
processor and 16GB of RAM was used to execute test applications.

Let Φm (X) be the m-th cyclotomic polynomial. The degree of Φm (X) is
given by Euler’s totient function ϕ (m). HELib implements a BGV variant in
which the polynomial rings are of the form A = Z [X] /Φm (X). The native
plaintext space is defined by elements over A2 but other plaintext spaces in
the form Apr with p an arbitrary, small prime (not dividing m and r) are also
possible. The ciphertext space consists of polynomials over Aq where q is an odd
modulus evolving with the homomorphic evaluation. More specifically, there are
L modulus q1 < q2 < · · · < qL where freshly encrypted ciphertexts defined over
qL.

As such, the maximal ciphertext coefficient size is chosen automatically as a
function of the multiplication levels L to support. The security of the obtained
homomorphic encryption scheme (security of the RLWE instance) depends on
the cyclotomic polynomial degree and on the ciphertext coefficient size. Many
other parameters allow to fine tune HELib execution performance. In our exper-
iments we limit ourselves to the selection of the following parameters: plaintext
modulo t, number of multiplication levels L and cyclotomic polynomial order m.

Under certain conditions, polynomial Φm (X) can be factored modulo t (the
modulo for the plaintext coefficients), i.e.

Φm (X) = F1(X) · F2(X) · . . . · Fw(X) mod t.

Each factor Fi(X) have the same degree ϕ(m)
w , where w is the number of factors.

The polynomial evaluation method we propose can be implemented either using
the full polynomial or the polynomials of each slot independently (i.e. in batching
mode). In the later case our method is able to evaluate w different multivariate
polynomials in parallel. The points over which polynomials are evaluated are
also different. The drawback of using batching is that the polynomials which
can be evaluated are smaller, due to relation (5) which should stay valid. In our
experiments we test only the first case, thus the largest possible polynomials are
evaluated.

Table 2 shows the results of our evaluation methods when varying the plain-
text modulo t and the cyclotomic polynomial order m for multivariate polyno-
mials with degree d , 1 ≤ d ≤ 4, in the form defined by relation (1). All the
experiments have been performed with at least 128 bits of security. Column
“m” gives the cyclotomic polynomial order defining the ciphertext space, “deg”
is the degree d of the multivariate polynomial P (x0, . . . , xn−1), “#vars” is the
number of variables n, “L” is the number of multiplication levels the HELib is
configured with, “ct. size” is the ciphertext size in MB and “time” is the eval-
uation time of multivariate polynomial in seconds (i.e. computing expression∑

1≤k≤d C
(k) (X) · R(k) (X)). Obtained evaluation time is an average over 10

executions. Ciphertext ring homomorphism (X → Xt) and ciphertext multipli-
cation are the predominant part of the computation. As expected, the execution



plaintext space size
2 28 216

m deg #vars L ct. size time L ct. size time L ct. size time

10007

1 10006 1 0.025 0.002 3 0.077 0.006 3 0.077 0.006
2 100 3 0.077 0.034 5 0.129 0.069 5 0.129 0.069
3 21 3 0.077 0.079 5 0.129 0.143 7 0.181 0.223
4 10 4 0.077 0.158 5 0.129 0.260 7 0.181 0.403

100003

1 100002 1 0.262 0.019 3 0.783 0.056 3 0.783 0.056
2 316 3 0.783 0.440 5 1.303 0.695 5 1.303 0.699
3 46 3 0.783 1.054 5 1.303 1.444 7 1.822 1.883
4 17 4 0.783 2.097 5 1.303 2.627 7 1.822 3.323

1000003

1 1000002 1 2.984 0.197 3 8.188 0.787 3 8.188 0.784
2 1000 3 8.188 5.157 5 13.354 11.024 5 13.354 10.412
3 100 3 8.188 12.439 5 13.354 22.449 7 18.515 29.281
4 31 4 8.188 24.965 5 13.354 40.858 7 18.515 51.578

Table 2. Results of polynomial evaluation method using HELib.

times for the polynomial evaluation increases with its degree but also with the
parameter m defining the ciphertext space and parameter t, the plaintext mod-
ulus.

Quadratic classifier.

Let us now present a possible application of the polynomial evaluation method
we propose here and compare the results with those obtained in [25].

We investigate the performances of our method in the context of a classifi-
cation algorithm used by a remote service to label the residentials buildings in
a small district based on their energy consumption. A basic Gaussian classifier
can be adapted such that the prediction step is executed on homomorphically
encrypted data. As such, given an encrypted attribute vector x, the purpose is to
predict its class label based on the learning model acquired during the training
step. We focus here only on the labeling step using private data and we suppose
that the model building was realized previously in the clear domain.

In the case of a Gaussian Classifier, each class Cj from the m classes defined
during the training phase is assumed characterized by a Gaussian distribution
with a mean µj and a covariance matrix Σj . The mean of a class Cj is the vector
µj ∈ Rn: µᵀ

j = {µji} with µji the mean for the components i of the examples

vectors x belonging to class Cj (i.e. µji =
∑n

i x(i)

n ). For vectors with n features,
the covariance matrix of a class Cj is a positive semi-definite matrix of size n×n
computed as: Σj = {c(a, b)} with a, b ∈ {1, . . . , n} and c(a, b) the covariance
between the features a and b, measuring their tendency to vary together.

A feature vector x from the training set T is thus classified by measuring a
Mahalanobis distance from x to each of the classes and by selecting the minimal
norm. The main steps of the prediction phase of the Gaussian classification
algorithm are Steps 4-6 from Algorithm 1. The training phase realized on T0,



the set of training vectors x0, has been realized before, resulting in a model with
m classes. After computing the mean and the covariance of each class Cj (Steps
1-3), a class label is predicted for each testing vector x ∈ T .

Algorithm 1 Gaussian classifier - prediction step

Require: T0 = {x0 ∈ Rn}; T = {x ∈ Rn} ; m classes Cj

1: for ∀Cj , j ∈ {1, . . . ,m} do
2: compute µj and Σj using x0
3: end for
4: for x ∈ T do
5: compute dM (x,Cj), ∀j ∈ {1, . . . ,m}
6: C(x)← argmin(dM (x,Cj))
7: end for
Ensure: C(x), ∀x ∈ T

It seems then that the most important step to be performed on homomorphic
encrypted data is the computation of distances between the attribute vector x
and the classes. The Mahanalobis distance from an encrypted vector x to a class
cj is defined as:

d2M (x,Cj) = (x− µj)ᵀΣ−1
j (x− µj).

Note that in the particular case where the features are uncorrelated or of a unidi-
mensional feature vector the Mahalanobis distance is equivalent to the Euclidean
distance.

For their experiments, the authors from [25] consider an additive Paillier
cryptosystem as well as BGV cryptosystem as implemented in HELib library to
classify 40 residential profiles using a feature vector size of 6. For the HELib-
based prototype, they use the batching technique in two different ways. In a
first solution, for a given attribute vector x with n elements, each of the at-
tributes xi, i = 1, . . . , n, is embedded in a different plaintext slot in the form
of an integer modulo 28. This allows to encrypt all the attributes of x in the
same ciphertext. The references, i.e. the means of the classes, are represented
as m vectors of dimension n. As such, for one instance to label, they obtain m
ciphertexts corresponding to the encrypted distances to each class. When such
a ciphertext is decrypted, the sum on the slots for the obtained plaintext gives
the clear distance to the associated class.

In the second solution,they exploit the free plaintexts slots by remarking
that usually the number of slots is much larger than the number of attributes
and, for a single instance x of dimension n to label with regards to m classes,
they replicate it m times and embedded into the slots of a plaintext, by padding
with 0 the remaining space. In this configuration, the means are expressed as a
single array of dimension m× n and all the distances are computed in the same
time using a single ciphertext. Once received and decrypted, one can obtain the
clear distances by making the sum on sub-sets of successive slots. The necessary



condition for the second approach is that the number of slots has to be higher
or equal to m× n.

Even if the number of operations to be executed on homomorphic domain
is reduced through batching (more specifically, for the second approach, one
ciphertext-ciphertext multiplication, two multiplications between a ciphertext
and a plaintext, a sum between two ciphertext and a sum between a ciphertext
and a plaintext), at the end, they have to perform a quite costly operation i.e.
a running sum to recuperate the actual distances by bunches of m slots.

With our approach using multivariate polynomials combined with the batch-
ing, it is possible to ameliorate even more the evaluation times of the distances.
All we need is to evaluate a degree-2 multivariate polynomial with n = 6 vari-
ables (i.e. the degree of the slot defining plaintext space polynomial should be
at least n2), embedded in a number of slots equal to the number of vectors we
want to classify in parallel (in the example, 40 residential energy consumption
therefore at least 40 slots).

Table 3 resumes the results we obtained for two configurations of parameters
in HELib with a security level (column λ) similar to the one determined by
the tests in [25] (and at least 80 bits). The plaintext module 28 is used in the
experiments. As before, m stands for the cyclotomic polynomial order and L is
the number multiplication levels. The overall polynomial which will be encrypted
as a single ciphertext can be dived into “#fact” polynomials, each one of degree
“deg fact”. The total execution time (column “time”) is expressed in seconds
and the ciphertext size in MB (column “ct. size”). The execution times and
ciphertext sizes are a lot smaller than the ones obtained by the authors of [25].
This is partly due to a smaller number of homomorphic operations (no need to
add slots together) and to a smaller multiplications level.

m deg fact #fact L λ time ct. size

2113 44 48 2 173 0.004 0.340

3191 55 58 2 315 0.005 0.514
Table 3. Results for quadratic classifier with HELib.

5 Conclusion

This paper presents a new method to efficiently evaluate low-degree multivari-
ate polynomial over homomorphic encrypted data. With this new technique ap-
plicable to RLWE based homomorphic schemes, one can perform all types of
computation, with the condition to express it using polynomial (of relatively
low-degree) operations. Since all the coefficients of the plaintext space polyno-
mial are used to encode the messages, this method is more efficient than the
usual case in which only the lowest degree of the polynomial is used. Moreover,



as shown by the experiments we conducted, our method is compatible with the
batching technique allowing to perform operations in a SIMD manner.

We have implemented and executed the proposed polynomial evaluation
method using the HELib library. Besides measuring the performance of the
evaluation method within diverse settings, we have tested its performance for a
machine learning application (namely a quadratic classification algorithm).

In future works, we plan to investigate the case when nd > deg(Φ (X)), which
will permit to evaluate higher degree multivariate polynomials. Another research
line, more applicative, is to use the evaluation method on homomorphically
encrypted data for more complex classes of machine learning algorithms.

References

1. Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti. A survey on
homomorphic encryption schemes: Theory and implementation. arXiv preprint
arXiv:1704.03578, 2017.

2. Charlotte Bonte, Carl Bootland, Joppe W Bos, Wouter Castryck, Ilia Iliashenko,
and Frederik Vercauteren. Faster homomorphic function evaluation using non-
integral base encoding. IACR Cryptology ePrint Archive, 2017:333, 2017.

3. Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine
Learning Classification over Encrypted Data. In NDSS. The Internet Society,
2015.

4. Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switching from
Classical GapSVP. In Advances in Cryptology - Crypto 2012, volume 7417 of
Lecture Notes in Computer Science, pages 868–886. Springer, 2012.

5. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully Homo-
morphic Encryption Without Bootstrapping. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, ITCS ’12, pages 309–325, 2012.

6. Zvika Brakerski and Vinod Vaikuntanathan. Fully Homomorphic Encryption from
Ring-LWE and Security for Key Dependent Messages. In CRYPTO, volume 6841
of Lecture Notes in Computer Science, pages 505–524. Springer, 2011.

7. Melvin A. Breuer. Generation of optimal code for expressions via factorization.
Commun. ACM, 12(6):333–340, 1969.

8. Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. Armadillo: A Compilation
Chain for Privacy Preserving Applications. In SCC@ASIACCS, pages 13–19. ACM,
2015.

9. Sergiu Carpov and Renaud Sirdey. Another Compression Method for Homomor-
phic Ciphertexts. In SCC@AsiaCCS, pages 44–50. ACM, 2016.

10. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster
fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. In Ad-
vances in Cryptology–ASIACRYPT 2016: 22nd International Conference on the
Theory and Application of Cryptology and Information Security, Hanoi, Vietnam,
December 4-8, 2016, Proceedings, Part I 22, pages 3–33. Springer, 2016.

11. Anamaria Costache, Nigel P Smart, Srinivas Vivek, and Adrian Waller. Fixed
point arithmetic in she scheme. IACR Cryptology ePrint Archive, 2016:250, 2016.

12. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. IACR Cryptology ePrint Archive, 2012:144, 2012.

13. Craig Gentry et al. Fully homomorphic encryption using ideal lattices. In STOC,
volume 9, pages 169–178, 2009.



14. Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully Homomorphic Encryption
with Polylog Overhead. In Proceedings of the 31st Annual International Conference
on Theory and Applications of Cryptographic Techniques, EUROCRYPT’12, pages
465–482. Springer-Verlag, 2012.

15. Thore Graepel, Kristin E. Lauter, and Michael Naehrig. ML Confidential: Machine
Learning on Encrypted Data. In ICISC, volume 7839 of Lecture Notes in Computer
Science, pages 1–21. Springer, 2012.

16. Shai Halevi and Victor Shoup. Algorithms in HElib. In CRYPTO, volume 8616
of Lecture Notes in Computer Science, pages 554–571, 2014.

17. Shai Halevi and Victor Shoup. Bootstrapping for HElib. In EUROCRYPT, volume
9056 of Lecture Notes in Computer Science, pages 641–670. Springer, 2015.

18. Anup Hosangadi, Farzan Fallah, and Ryan Kastner. Optimizing Polynomial Ex-
pressions by Algebraic Factorization and Common Subexpression Elimination.
IEEE Trans. on CAD of Integrated Circuits and Systems, 25:2012–2022, 2006.

19. Charles E. Leiserson, Liyun Li, Marc Moreno Maza, and Yuzhen Xie. Efficient
Evaluation of Large Polynomials. In ICMS, volume 6327 of Lecture Notes in Com-
puter Science, pages 342–353. Springer, 2010.

20. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multi-
party computation on the cloud via multikey fully homomorphic encryption. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing,
pages 1219–1234. ACM, 2012.

21. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and
Learning with Errors over Rings. In EUROCRYPT, volume 6110 of Lecture Notes
in Computer Science, pages 1–23. Springer, 2010.

22. Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can Homomorphic
Encryption Be Practical? In Proceedings of the 3rd ACM Workshop on Cloud
Computing Security Workshop, CCSW ’11, pages 113–124, 2011.

23. Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and
privacy homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

24. Nigel P Smart and Frederik Vercauteren. Fully homomorphic simd operations.
Designs, codes and cryptography, pages 1–25, 2014.

25. Oana Stan, Mohamed-Haykel Zayani, Renaud Sirdey, Amira Ben Hamida, Alessan-
dro Ferreira Leite, and Malek Mziou-Sallami. A new crypto-classifier service for
energy efficiency in smart cities. IACR Cryptology ePrint Archive, 2017:1212, 2017.

26. Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully
homomorphic encryption over the integers. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 24–43. Springer,
2010.

27. Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and
Takeshi Koshiba. Packed Homomorphic Encryption Based on Ideal Lattices and
Its Application to Biometrics. In CD-ARES Workshops, volume 8128 of Lecture
Notes in Computer Science, pages 55–74. Springer, 2013.

28. Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and
Takeshi Koshiba. Practical Packing Method in Somewhat Homomorphic Encryp-
tion. In DPM/SETOP, volume 8247 of Lecture Notes in Computer Science, pages
34–50, 2013.

29. Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and
Takeshi Koshiba. Secure pattern matching using somewhat homomorphic encryp-
tion. In CCSW, pages 65–76. ACM, 2013.


