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Abstract

The MD transform that underlies the MD and SHA families iterates a compression function
h to get a hash function H. The question we ask is, what property X of h guarantees collision
resistance (CR) of H? The classical answer is that X itself be CR. We show that weaker
conditions X, in particular forms of what we call constrained-CR, suffice. This reduces demands
on compression functions, to the benefit of security, and also, forensically, explains why collision-
finding attacks on compression functions have not, historically, lead to immediate breaks of the
corresponding hash functions. We obtain our results via a definitional framework called RS
security, and a parameterized treatment of MD, that also serve to unify prior work and variants
of the transform.
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1 Introduction

The so-called MD transform [25, 16] iterates a compression function h to get a hash function H. The
question we ask is, what property X of h guarantees collision resistance (CR) of H? The classical
answer is that X itself be CR [25, 16]. We show that weaker conditions X, in particular forms of
what we call constrained-CR, suffice.

The benefit is that if we ask less of compression functions (as we can now do), they are less likely
to disappoint. Put another way, our result lowers the bar for the compression function designer,
and raises it for the compression function attacker. It also explains an historical cryptanalytic
phenomenon, namely that collision-finding attacks on compression functions [17, 31] have not im-
mediately led to breaks of the corresponding hash functions. (Our explanation is that the attacks
on the compression functions did not break constrained collision resistance.) In this (second) light,
our work formalizes existing cryptanalytic intuition.

We obtain our results via a broader treatment that also serves to unify prior work and different
variants of the transform, and to formalize folklore. It involves (1) a definitional framework called
RS security that allows us to formulate both classical and new security goals in a unified way, and
(2) a modular treatment of MD that parameterizes it via a splitting function and a compression
function.

The MD transform was used in the MD series of hash functions (MD4 [28] and MD5 [27]) and
now underlies the most widely used hash functions in practice, namely the SHA series (SHA-1,
SHA-256, SHA-512) [26]. An improved understanding of its security, as we provide, is thus of both
historical and current interest.

MD framework. We formulate MD in a general, parameterized way, as a transform taking (1)
a compression function h : {0, 1}k × ({0, 1}µ × {0, 1}σ) → {0, 1}σ, (2) a splitting function Split :D
→ ({0, 1}µ)∗ and (3) a set S ⊆ {0, 1}σ of starting points (also called initial vectors) to return a
hash function H = MD[h,Split,S] :D → {0, 1}σ. The compression function takes a key k and an
input x = (m, c) consisting of a message block m and chaining variable c, and returns output c′

= hk((m, c)). The domain D is intended to be large, usually the set of all strings of length up to
some big maximum length. The key (k, s) for H consists of a random key k for h and a random
starting point s from S. The splitting function breaks the input M to H(k,s) into a sequence m =
m[1] . . .m[n] of µ-bit blocks. To compute H(k,s)(M), set c[1]← s, iterate the compression function
via

For i = 1, . . . , n do c[i+ 1]← hk((m[i], c[i])),

and return c[n+ 1] as the value of H(k,s)(M).

Characterizing CR preservation. We start by revisiting the classical question of showing that
H is CR assuming h is CR (X=CR). Several works have noted that suffix-freeness of Split is sufficient
for this purpose [18, 19, 1, 5]. (Some of these attribute the result to [25, 16], but neither paper
appears to actually contain such a claim.) For completeness, we give, in our setting, a formal claim
(suffix-freeness of Split plus CR of h implies CR of H, Theorem 5.3) together with the (easy) proof.
We then complement this with a novel result: we show that the sufficient condition of suffix-freeness
on Split is also necessary. We do this by showing that given any Split that is not suffix-free, we can
construct a compression function h and set S such that (1) h is CR but (2) H = MD[h,Split,S] is
not CR. This fully characterizes MD for the (classical) case where the assumption X made on h is
CR.

Unifying variants. Papers, textbooks and standards present variants of the MD transform that
differ in details. We can capture them as special cases, corresponding to different choices of splitting
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function Split and set S of starting points. Together with our above-mentioned characterization,
this unifies prior work.

To elaborate, a basic version of MD, from Merkle [24], MOV [23] and KL [21], corresponds to
the splitting function that pads the message M to a multiple of the block length µ and appends a
block encoding the length of M . Stinson’s [32] version corresponds to the last block encoding the
amount of padding rather than the message length. Damg̊ard’s version [16] starts each block of
the padded message with a 1 bit except the first, which it starts with a 0 bit, and also appends a
block encoding the amount of padding. The SHA functions [26] use yet another variant where the
(padded) message may spill into the last block so that the latter does not encode just the message
length (cf. Fig. 3). In papers and textbooks the starting point s is usually 0σ [24, 16, 23, 21, 32],
but, in the SHA series, s differs across hash functions. (For example, for SHA-256 it is the first 32
bits of the square roots of each of the first 8 primes.) All these MD variants can be captured in
our framework as making particular choices of suffix-free splitting functions Split and (singleton)
spaces S.

CR is not necessary. We would like to show CR of H = MD[h, Split, S] under an assumption
X on the compression function h that is weaker than CR. We first ask, is this even possible? Or,
is CR of h necessary for CR of H? We show in Section 6 that CR of h is not necessary. Given
a suffix-free Split, we build a compression function h and set S such that (1) h is not CR, yet (2)
H = MD[h,Split,S] is CR. This opens the door to proving CR of H under relaxed assumptions on
h.

RS security. But what would these assumptions be? Towards finding and formulating them,
we step back to give a framework to define security goals for h. Security is parameterized by a
relation R and a set S. The game gives the adversary A a random key k for h and a random
point s in S. It returns an object denoted out , and wins if R, given k, s, out , returns true. Its
RS-advantage is the probability that it wins. Classical X=CR is captured by viewing out as a
pair of strings that R checks are a collision under hk , with s not being involved, formally S = {ε}.
A form of pre-image resistance that we will use is captured by having R check that out gives a
pre-image of s ∈ S = {0, 1}σ under hk . We can also capture constrained forms of collision resistance
(ccr), so called because extra requirements are made on the collision, thereby constraining it. In
particular, we define RccrS security. Here winning requires that out contains, not only a collision
(m1, c1), (m2, c2) for hk , but also, for both j = 1, 2, if cj 6= s, a further pre-image of it under hk .
Providing the auxiliary information in addition to a collision makes the adversary’s job harder, so
X=RccrS security is a weaker assumption on h than CR. We can define other relaxations of CR as
well.

CR from CCR. Theorem 6.4 relaxes the CR assumption, made on the compression function h in
Theorem 5.3, to RccrS security. That is, we show that if Split is suffix free and h is RccrS secure,
then hash function H = MD[h,Split,S] is CR secure. The first consequence of this is that the bar
is lowered for the compression function designer (their design only needs to provide RccrS security,
which is easier than providing CR) and raised for the cryptanalyst (their attack needs to violate
RccrS security, which is harder than violating CR). We now discuss another consequence, namely
to (possibly) better understand some cryptanalytic history.

Already in 1996, Dobbertin had found collisions for the compression function md5 of MD5 [17].
This did not, however, yield collisions on MD5 itself. This, to us, was an indication that MD
was “better than advertised:” it was (possibly) able to promote a non-CR compression function
to a CR hash function. Our work is an attempt to capture this intuition formally. Now, it is
true that in this particular case the hope was not realized, meaning MD5 failed to be CR, as
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shown by direct attack [35, 34]. What that tells us is that the compression function md5 is even
weaker than we thought: not only is it not CR, it is not even RccrS. In fact, starting from known
MD5 collisions, our reduction will construct collisions, and accompanying auxiliary information,
to violate RccrS security of md5. The story repeats with SHA-1, where collisions found for the
compression function sha-1 [31] did not immediately yield collisions for SHA-1, but the latter have
now been found [30]. Again, it means sha-1 is not even RccrS. This, in our view, improves our
understanding of compression function security.

Speeding up MD. Suppose the message M = 02µ−1 to be hashed is a bit short of twice the block
length µ. A typical suffix-free encoding (for example that of SHA-256) will pad M and append an
encoding of the length |M |, to result in a 3-block string m, over which the compression function
is iterated. The compression function is thus called 3 times. One might hope for better, just 2
calls. More generally, the savings from dropping one compression function call are significant since
messages in practice are often short. This leads us to ask why not use a minimal splitting scheme,
like just 10∗ pad the message, which in our example results in m = 02µ−11 being 2 blocks long, so
that MD will use only two calls to the compression function. But this splitting function is not suffix-
free, and did we not show that the suffix-freeness assumption on Split is necessary for CR of H? Yes,
but that was when the assumption on h is CR. Hence it is of course also true when the assumption
is RccrS, since that is implied by CR, but in Section 7 we show that mere injectivity of Split (in
particular 10∗ padding of the message) does guarantee CR of H = MD[h,Split,S] under alternative
assumptions on h, specifically that it is both CCR and fixed-point resistant. The assumption seems
quite plausible compared to CR, so the performance gain and simplicity of the splitting could make
this version of MD attractive.

We note that the proceedings version of this paper [10] assumes pre-image resistance of the
compression function instead of the weaker notion of fixed-point resistance. Our new result thus
improves on this version as well as a similar result of Dodis and Puniya [18], which uses full collision
resistance instead of CCR.

In Section 8 we then specify relationships between all of the notions we defined in the RS
security framework. Furthermore, we extend proof techniques of Dodis and Puniya [18] to show
that injectivity of Split can additionally be proven to suffice assuming that H is CCR and satisfies
a notion of output uniformity.

Reduction complexity. As indicated above, many prior works have claimed or proved that CR
of h implies CR of H, either for particular choices of Split or assuming the latter is suffix free. It
is interesting that, with the exception of a work on formal verification [5], not only papers [25, 16,
18, 19, 1, 5], but also textbooks [32, 21, 23], fail to explicitly specify the reduction underlying the
proof. This takes attention away from, and makes it difficult to address, the important question
of the (computational) complexity (efficiency) of the reduction. Whether in showing CR or CCR
of h implies CR of H, we in contrast are interested in the precise complexity of the reduction. We
accordingly give explicit, pseudocode reductions. In the main sections, we give the reductions that
emanate naturally from the proof. Then, in Section 9, we revisit the question of complexity to give
alternative reductions that are more memory-efficient [4].

Discussion and related work. MD-based hash functions are also used for HMAC [8]. If we
contemplate changes in splitting functions, we want to ensure HMAC security is preserved. How-
ever, current analyses of HMAC security [6, 20] show that suffix-free, and even injective, splitting
functions suffice.

Our focus is on MD as a way to achieve collision resistance. Other works have looked at it
for other ends. Use of MD with prefix-free (as opposed to suffix-free) encodings has been shown
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in [9, 7] to preserve PRF security. Its ability to provide indifferentiability from a random oracle is
studied in [19]. More broadly, MD is one of many possible domain extension methods, and some
works [11, 2] consider methods that preserve multiple properties.

2 Notation and conventions

If m is a vector then |m| denotes its length, m[i] denotes its i-th coordinate and m[i..j] denotes the
vector consisting of coordinates i through j of m. For example if m = (010, 11, 10, 111) then |m| =
4, m[2] = 11, m[2..4] = (11, 10, 111). By ε we denote the empty vector, which has length 0. If D is
a set, we say that m is a vector over D if all its components belong to D, and we let D∗ denote the
set of all finite-length vectors over D. If m,y are vectors, their concatenation, denoted m‖y, is the
vector (m[1], . . . ,m[|m|],y[1], . . . ,y[|y|]). For example (01, 11, 1)‖(10, 000) = (01, 11, 1, 10, 000).

A string y is identified with a vector over {0, 1}, so that |y| denotes its length, y[i] denotes its
i-th bit and y[i..j] denotes bits i through j of y. For example if y = 0100 then |y| = 4, y[2] = 1
and y[2..4] = 100. In this case, ε denotes the empty string, {0, 1}∗ is the set of all binary strings,
x‖y denotes the concatenation of strings x, y. For example 010‖11 = 01011. By y we denote the
bitwise complement of string y. (For example if y = 010 then y = 101.)

By N = {0, 1, 2, ...} we denote the set of all non-negative integers. For p ∈ N with p ≥ 2, we let
Zp = {0, 1, . . . , p− 1} denote the set of integers modulo p. If x, n ∈ N satisfy 0 ≤ x < 2n then 〈x〉n
denotes the encoding of x as a binary string of length (exactly) n. For example 〈7〉4 = 0111.

IfX is a finite non-empty set, we let x←$ X denote picking an element ofX uniformly at random
and assigning it to x. Algorithms may be randomized unless otherwise indicated. Running time
and memory usage are worst case. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A
with random coins r on inputs x1, . . . and assigning the output to y. We let y←$ A(x1, . . .) be the
result of picking r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all
possible outputs of A when invoked with inputs x1, . . ..

We use the code based game playing framework of [12]. (See Fig. 1 for an example.) By Pr[G] we
denote the probability of the event that the execution of game G results in the game returning true.
We adopt the convention that the running time of an adversary refers to the worst-case execution
time of the game with the adversary. We adopt the analogous convention for the memory usage.
This means that usually in reductions, adversary time and memory complexity can be roughly
maintained.

3 RS Security framework

Function families. A function family F : F.Keys×F.Inp→ F.Out is a 2-argument function taking
a key fk in the keyspace F.Keys and an input x in the input space F.Inp to return an output F(fk, x)
in the output space F.Out. For fk ∈ F.Keys we let Ffk : F.Inp→ F.Out be defined by Ffk(x) = F(fk, x)
for all x ∈ F.Inp.

RS security. Our definition of security for a function family F is parameterized by a relation
R : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → {true, false} and a set S ⊆ {0, 1}∗. Different choices of the pair
(R,S) allow us to recover classical definitions including collision resistance, and to specify extensions
and variants including constrained collision resistance. The formalism considers game GRS

F (A) of
Fig. 1 associated to R, S, F and adversary A. The latter is given the key fk and a challenge point s
drawn randomly from S, and returns some output denoted out . It wins (the game returns true) if
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Game GRS
F (A)

fk←$ F.Keys ; s←$ S ; out ←$A(fk, s)
Return R(fk, s, out)

R out R(fk, s, out) returns true iff

Rcr (x1, x2) x1 6= x2 and Ffk(x1) = Ffk(x2) Collision resistance
Rpre x Ffk(x) = s Pre-image resistance
Rccr ((m1, c1), (m2, c2), (a1, a2)) Rcr(fk, ε, (m1, c1), (m2, c2)) ∧ (c1 ∈ {s,Ffk(a1)}) ∧ (c2 ∈ {s,Ffk(a2)}) Constrained CR
Rfix m Ffk(m[|m|], . . . (Ffk(m[2],Ffk(m[1], s)))) = s Fixed-point resistance

Figure 1: Top: Game for defining R-security of function family F. Bottom: Some relations we will
use. For Rcr we have s = ε. For Rccr and Rfix, function family F : F.Keys× (F.Bl× F.Out)→ F.Out
is a compression function.

relation R returns true on inputs fk, s, out . The advantage of A relative to R,S, also called its RS
advantage, is defined as AdvRS

F (A) = Pr[GRS
F (A)], the probability that the game returns true.

Collision resistance. Recall that a collision for a function f is a pair of distinct points x1, x2 in
the domain of f such that f(x1) = f(x2). Classical collision resistance of a function family F asks
that it be hard for an adversary A, given fk, to find a collision x1, x2 for the function Ffk . In our
framework, this is RcrSε security, where Sε = {ε} consists of just the empty string and Rcr(fk, s, out)
parses out as a pair, (x0, x1)← out , and returns true iff F(fk, x1) = F(fk, x2) and x1 6= x2, meaning
x1, x2 is a collision for Ffk . We recover familiar notation for collision resistance by letting game
Gcr

F (A) = GRcrSε
F (A) and Advcr

F (A) = AdvRcrSε
F (A).

Pre-image resistance. This is a form of one-wayness where the adversary, given fk and challenge
s, tries to recover a pre-image of s under Ffk . Generalizing [29], our formalization is parameterized
by the set S from which s is drawn, and is obtained via our RS framework, as follows. Let
Rpre(fk, s, out) return true iff Ffk(out) = s, meaning out ∈ F.Inp is a pre-image of s under Ffk . Then
RpreS security captures pre-image resistance for challenges drawn from S. We further discuss this
notion, and its relation to other types of pre-image resistance, in Section ??.

Restricted collision resistance. Restricted collision resistance makes the adversary’s job
harder by asking that the collision x1, x2 satisfy some additional condition that will be specified by
R. We will describe the particular restriction we are interested in later in Section 6.

Fixed-point resistance. Fixed-point resistance is strictly more difficult for an adversary to sat-
isfy than pre-image resistance because it requires that the adversary instead provides a vector of
messages such that when iterated upon through the MD transform under Ffk , it outputs s. We will
describe this in more detail in Section 7.

4 The MD transform

Compression functions. Let h be a family of functions with domain h.Inp = h.Bl × h.Out,
meaning h : h.Keys × (h.Bl × h.Out) → h.Out. A point in the domain is a pair (m, c) where c,
called the chaining variable, is in the range of h, and m, called a message block, is in the space
h.Bl of message blocks. Such an h is called a compression function. For example, the compression
function h = sha256 of SHA256 has sha256.Bl = {0, 1}512 and sha256.Out = {0, 1}256. Its key space
sha256.Keys = {k} is a singleton, where k consists of 64 32-bit strings which are the first 32 bits of
the fractional parts of the cube roots of the first 64 primes [26].

7



H(k,s)(M)

m← Split(M) ; c← s ; n← |m|
For i = 1, . . . , n do c← hk((m[i], c))
Return c

Figure 2: Function family H = MD[h, Split, S] obtained by applying the MD transform to compres-
sion function h, splitting function Split and space S of initial vectors.

Splitting functions. Let Split : Split.Inp → Split.Bl∗ be a function that takes a message M ∈
Split.Inp and returns a vector m = Split(M) over a set Split.Bl. We require that this function is
injective, and there is an inverse Split−1 : Split.Bl∗ → Split.Inp∪{⊥} such that Split−1(m) = M if m
= Split(M) and ⊥ otherwise. We call Split a splitting function. The domain Split.Inp is expected to
be a large set, usually all strings of length up to some very high maximum. In usage, Split.Bl = h.Bl
will be the set of message blocks for a compression function.

The MD transform. Let h : h.Keys × (h.Bl × h.Out) → h.Out be a compression function. Let
Split : Split.Inp → h.Bl∗ be a splitting function whose range Split.Bl∗, as the notation indicates, is
h.Bl∗. Let S ⊆ h.Out be a set of starting points, also called initial vectors. The MD transform
MD[h,Split,S] associates to them the family of functions H that is defined as follows. Let H.Inp =
Split.Inp be the set of messages that are possible inputs to the splitting function. Let H.Out = h.Out.
Let H.Keys = h.Keys×S, so that a key for H is a pair (k, s) consisting of a key k for the compression
function and a particular starting point (initial vector) s ∈ S. Then H is specified in Fig. 2.

Splitting in SHA. Our rendition of MD generalizes prior ones, both from the literature [24, 15, 1]
and from standards [26], all of which can be seen as particular choices of Split and S. We illustrate
by recovering SHA256 as MD[sha256,SplitSha(µ,e), {s}] for choices of the components that we now

specify. The compression function sha256 : {k} × ({0, 1}512 × {0, 1}256)→ {0, 1}256 is of course the
compression function of SHA256 as per [26], with k the 64 ·32 bit key discussed above. The starting
point s, as specified in [26], is a 256-bit string, viewed as 8 32-bit blocks which are the first 32 bits
of the square roots of the first 8 primes. We define SplitSha(µ,e) as the general splitting function
for the SHA function families: SHA1, SHA256, SHA512. It is parameterized by µ, the block length,
and e, the length of the encoding of the message length. These values are shown for each SHA
function in Fig. 4. Specifically for SHA256, µ = 512 and e = 64. To define SplitSha(µ,e), first define

function pad(µ,e) to take as input an integer L, with 0 ≤ L < 2e, and return 1‖0`‖〈L〉e, where 〈L〉e
is an e-bit encoding of L, and ` ≥ 0 is the smallest integer such that L+ e + 1 + ` is a multiple of
µ. Let SplitSha.Inp be the set of all strings of length at most 2e, and let SplitSha.Bl = {0, 1}µ. The
function SplitSha : SplitSha.Inp → SplitSha.Bl∗, on input M , lets L = |M | be the length of M , and
lets X = M‖pad(µ,e)(L). Note that the length of string X is a multiple of µ. Let n ← |X|/µ, and
let m[i] = X[1 + µ(i− 1)..µi] be the µ bit-block consisting of bits 1 + µ(i− 1) through µi of X, for
1 ≤ i ≤ n. Then SplitSha(M) returns m, which is a vector over {0, 1}µ.

5 CR preservation of MD

Here we recall the classical problem of showing collision resistance of the hash function H =
MD[h,Split,S] assuming only collision resistance of the compression function h. As noted in
the introduction, several works have noted that suffix-freeness of Split is sufficient for this pur-
pose [18, 19, 1, 5]. For completeness, we will provide a formal claim together with the (easy) proof
in our setting.
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SplitSha(µ,e)(M)

L← |M |
X ←M‖pad(µ,e)(L) ; n← |X|/µ
For 1 ≤ i ≤ n do

m[i]← X[1 + µ(i− 1)..µi]

Return m

pad(µ,e)(L)

`← (µ− e− 1− L) mod µ

Return 1‖0`‖〈L〉e

Figure 3: SplitSha and pad, the splitting function and padding function, respectively, of the SHA
function families. They are parameterized by µ, the block length, and e, the length of the encoding
of the message length.

Function µ σ e

SHA1 512 160 64

SHA256 512 256 64

SHA512 1024 512 128

Figure 4: Choices of parameters across different hash functions.

We then expand on this knowledge to establish a novel result that the property of being suffix-
free is precisely the property required for this proof; it is a necessary condition in addition to being
sufficient. To demonstrate this, we construct, for any splitting function which is not suffix-free, a
compression function that is collision resistant in isolation, but for which the result of applying the
MD transform is not collision resistant.

Suffix-freeness. Let x, y ∈ D∗ be vectors over a set D. We say that x is a suffix of y, written
y w x, if there exists a vector z ∈ D∗ such that y = z‖x. (The notation y w x is intended to
visualize x being the right-hand side of y.) For example, (10, 11) is a suffix of (00, 11, 10, 11), namely
(00, 11, 10, 11) w (10, 11), by letting z = (00, 11). However, (01, 11) is not a suffix of (00, 11, 10, 11),
namely (00, 11, 10, 11) 6w (01, 11). We say that splitting function Split : Split.Inp → Split.Bl∗ is
suffix-free if for any two distinct messages M1,M2 ∈ Split.Inp we have Split(M1) 6w Split(M2), that
is, Split(M2) is not a suffix of Split(M1).

Suffix-freeness of SplitSha. We discussed above how SHA256 is underlain by a particular split-
ting function that we defined and called SplitSha(µ,e). Here we show that this function is suffix-free
to provide an example of a suffix-free scheme.

Proposition 5.1 The function SplitSha(µ,e) is suffix-free.

Proof: (of Proposition 5.1) Let M1,M2 ∈ SplitSha(µ,e).Inp be distinct. Consider when |M1| 6=
|M2|. Then the last blocks of vectors SplitSha(µ,e)(M1) and SplitSha(µ,e)(M2) are, respectively,
pad(µ,e)(|M1|) and pad(µ,e)(|M2|). But then 〈|M1|〉e 6= 〈|M2|〉e, which implies pad(µ,e)(|M1|) 6=
pad(µ,e)(|M2|) and so neither vector can be a suffix of the other.

We now consider the case when |M1| = |M2|. In this case we have that |SplitSha(µ,e)(M1)| =
|SplitSha(µ,e)(M2)|. Then in order for SplitSha(µ,e)(M1) w SplitSha(µ,e)(M2) or the opposite to hold
it must be that SplitSha(µ,e)(M1) = SplitSha(µ,e)(M2). Notice that SplitSha(µ,e)(M) prepends the
message M to its output. Since M1 6= M2, we have that SplitSha(µ,e)(M1) 6= SplitSha(µ,e)(M2) and
so SplitSha(µ,e)(M1) 6w SplitSha(µ,e)(M2) as required.
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The structure of MD collisions. We now proceed to a simple lemma about the structure of
collisions in the MD transform. This will be used for our proof that the MD transform preserves
collision resistance when the splitting function is suffix-free. This lemma argues the correctness of
an algorithm Bcr to formalize the observation that if M1,M2 form a collision for the MD transform
with a suffix-free splitting function, then by examining the computation of the hash function on
these inputs we can easily find a collision for the underlying compression function.

Lemma 5.2 Let h be a compression function, let Split be a splitting function with Split.Bl = h.Bl
and let S ⊆ h.Out be a set of possible starting points. Let H = MD[h, Split, S] be the hash function
associated to these components via the MD transform of Fig. 2. Let k ∈ h.Keys, s ∈ S. Sup-
pose M1,M2 ∈ Split.Inp are a pair of distinct messages satisfying (1) Split(M1) 6w Split(M2) and
Split(M2) 6w Split(M1) and (2) M1,M2 are a collision for H(k,s). Then, on inputs (k, s),M1,M2,
algorithm Bcr of Fig. 5 returns (x1, c1), (x2, c2) that form a collision for hk.

The algorithm Bcr simply creates vectors of the chaining variables and message blocks used when
computing H(k,s)(M1) and H(k,s)(M2). The it iterates backwards until it finds the first place that
these differ between the two computations. The following proof shows that these will necessarily
be a collision for hk .

Proof: (of Lemma 5.2) From algorithm Bcr, let m1 = Split(M1), m2 = Split(M2), n1 = |m1|,
and n2 = |m2|. First Bcr computes the vectors of chaining variables, c1 and c2 as shown in the
pseudocode. Assume (without loss of generality) that n1 ≥ n2, i.e. that |m1| ≥ |m2|. Since M1,M2

are a collision for H(k,s), we have H(k,s)(M1) = H(k,s)(M2). Because m1 6wm2 and m2 6wm1, there
must exist i ∈ {0, . . . , n2 − 1} such that (m1[n1 − i], c1[n1 − i]) 6= (m2[n2 − i], c2[n2 − i]). Let j
represent the minimal such value. Then it will hold that c1[n1 − j + 1] = c2[n2 − j + 1]. Thus, the
pair (m1[n1 − j], c1[n1 − j]), (m2[n2 − j], c2[n2 − j]) returned by Bcr will form a collision for hk .

Suffix-freeness preserves CR. Finally, we show a reduction from the collision resistance of the
hash function H = MD[h,Split, S] to the collision resistance of the compression function h when
using a suffix-free splitting function Split.

Theorem 5.3 Let h be a compression function, let Split be a suffix-free splitting function with
Split.Bl = h.Bl and let S ⊆ h.Out be a set of possible starting points. Let H = MD[h, Split, S] be the
hash function associated to these components via the MD transform of Fig. 2. Given an adversary
AH, we can build Ah (specified in the proof) using Bcr from Fig. 5. Then

Advcr
H (AH) ≤ Advcr

h (Ah). (1)

The time complexity of Ah is the sum of the time complexities of AH and Bcr. The memory
complexity of Ah is the maximum of the memory complexity of AH and the memory complexity of
Bcr.

In Section 9, we revisit this and other reductions to give alternative reductions that are more
memory-efficient [4].

Proof: (of Theorem 5.3) The adversary Ah is defined as follows.

Adversary Ah(k, ε)

s←$ S ; (M1,M2)← AH((k, s), ε)
Return Bcr((k, s),M1,M2)

10



Algorithm Bcr((k, s),M1,M2)

m1 ← Split(M1) ; m2 ← Split(M2)
n1 ← |m1| ; n2 ← |m2|
c1[1]← s ; c2[1]← s
For i = 1, . . . , n1 do c1[i+ 1]← hk((m1[i], c1[i]))
For i = 1, . . . , n2 do c2[i+ 1]← hk((m2[i], c2[i]))
n← min(n1, n2)
For i = 0, . . . , n− 1 do

(x1, c1)← (m1[n1 − i], c1[n1 − i])
(x2, c2)← (m2[n2 − i], c2[n2 − i])
If (x1, c1) 6= (x2, c2) then return ((x1, c1), (x2, c2))

Return ⊥

Figure 5: Algorithm Bcr for Lemma 5.2 and Theorem 5.3.

It is clear that the time and memory complexity of adversary Ah are as stated in the theorem.
Note the memory is the maximum of AH and Bcr because Ah can re-use the memory of AH when
running Bcr.

Let k ∈ h.Keys, s ∈ S be the values sampled when Ah is executed and M1,M2 ∈ Split.Inp be the
values returned by AH. Suppose they form a collision for H(k,s).

Then we have Split(M1) 6w Split(M2) and Split(M2) 6w Split(M1) because Split is suffix-free, so
they fulfill the conditions of Lemma 5.2 and Bcr is guaranteed to return a collision for hk . As an
immediate result, Equation (1) holds, completing the proof.

Necessity. We can now complete the picture for splitting functions when assuming the compression
function is collision resistant by showing that the suffix-free restriction is precisely the correct
restriction on the splitting function. In particular, we will establish that Split being suffix-free
is a necessary condition for proving that MD[h, Split, S] is secure under the assumption that h is
collision resistant, in addition to a sufficient one.

Given an arbitrary splitting function Split and a pair of inputs M1,M2 such that Split(M1) w
Split(M2), we construct a compression function h which is collision resistant (from another func-
tion which we assume to be collision resistant), but for which the pair M1,M2 is a collision for
MD[h,Split,S] (with high probability over the choice of s ∈ S in the case that S = h.Out).

For simplicity, we will first consider the simpler case when S consists of a single, fixed value s
on which our choice of compression function can depend. For this case, we can directly construct
the compression function so that when chained with the starting value s on the blocks contained
uniquely in Split(M1) but not those in Split(M2), it “loops” back to s. We then extend this technique
to cover the case when S is some larger set from which s is sampled randomly.

It will be convenient to describe our results in terms of the MD transform applied to messages
that have already been split into blocks. For any set Bl we let I : Bl∗ → Bl∗ be the splitting
function which simply outputs its input unchanged. For some compression function h and set S,
let HI = MD[h, I,S]. We will informally say that h loops on (s,u) if HI

(k,s)(u) = s for all k ∈ h.Keys.

The following lemma observes that if h loops on (s,u) and Split(M1) = u‖Split(M2), then the pair
M1,M2 is a collision for MD[h, Split, S].

Lemma 5.4 Let h : h.Keys× (h.Bl× h.Out)→ h.Out be a compression function, Split : Split.Inp→
h.Bl∗ be a splitting function, and S ⊆ h.Out be a set of starting points. Let H = MD[h,Split,S]
be the hash function associated to these components via the MD transform of Fig. 2. Let I be the
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splitting function described above and HI = MD[h, I,S] be the corresponding hash function obtained
via the MD transform. Suppose M1,M2 ∈ Split.Inp are a pair of distinct messages satisfying
Split(M1) w Split(M2). Let u be the vector for which Split(M1) = u‖Split(M2). For any choice of
(k, s) ∈ H.Keys, if HI

(k,s)(u) = s then M1,M2 is a collision for H(k,s).

Proof: (of Lemma 5.4) First note that for any vectors m, y ∈ Bl∗, HI
(k,s)(m‖y) = HI

(k,s′)(y) where

s′ = HI
(k,s)(m). This is a simple observation from the code of the MD transform shown in Fig. 2. The

chaining variable c[|m|+ 1] obtained during the computation of HI
(k,s)(m‖y) would be the output

of HI
(k,s′)(m). The rest of the computation then exactly mirrors HI applied to y with c[|m| + 1]

serving the role of the starting point.

Using this observation, the proof is straightforward. We can rewrite H on input M1 as follows

H(k,s)(M1) = HI
(k,s)(u‖Split(M2))

= HI
(k,s′)(Split(M2))

= H(k,s′)(M2)

where s′ = HI
(k,s)(u). From our assumption, this equals s. Thus H(k,s)(M1) = H(k,s)(M2).

First we will handle the case when the s used for the MD transform is an a priori fixed value.

Proposition 5.5 Let Split be a splitting function and M1,M2 ∈ Split.Inp satisfy Split(M1) w
Split(M2). Let u be the vector for which it holds that Split(M1) = u‖Split(M2). Let b ∈ N and
a = b+ |u|. Let f be a family of functions with f.Inp = Split.Bl× Za and f.Out = Zb. Then we can
build a compression function gu (shown in Fig. 6, with g.Inp = f.Inp and g.Out = Za) such that for
all adversaries A, we have Advcr

gu(A) ≤ Advcr
f (A). Furthermore, letting G = MD[gu, Split, {0}],

we can build an efficient adversary B (shown in Fig. 6) such that

Advcr
G (B) = 1.

The compression function gu above is specifically defined in a contrived way so that it loops on
(0,u) and thus M1,M2 is a collision for the MD transform.

In the above we fixed the starting point s to 0 and the set of chaining variables gu.Out to Za.
This is without loss of generality because the lemma can easily be extended to any reasonable
choice of gu.Out and fixed s ∈ gu.Out by using an efficiently computable and invertible mapping
e(·) : gu.Out→ Z|gu.Out| which satisfies e(s) = 0.

Proof: (of Proposition 5.5) We will first show that any collision for gu is also a collision for f by
proving that if guk ((m, c)) = guk ((m′, c′)) it either holds that (m, c) = (m′, c′) or that fk((m, c)) =
fk((m′, c′)). As such, suppose guk ((m, c)) = guk ((m′, c′)).

Note that the first return statement of gu always outputs a value less than |u| while the second
always outputs a value greater than |u|. We can consider these two cases separately.

Let us first suppose that guk ((m, c)) < |u|. This then means that c+ 1 = c′+ 1 (mod |u|), so c and
c′ must be the same (because the condition of the if statement guarantees that both are less than
|u|). The if statement inside gu must evaluate to true for both pairs, so we have m = u[c + 1] =
u[c′ + 1] = m′ and so (m, c) = (m′, c′).

Now consider the other case, that guk ((m, c)) ≥ |u|. Then this must mean that fk((m, c)) + |u| and
fk((m′, c′)) + |u| are the same and so fk((m, c)) = fk((m′, c′)).
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guk ((m, c))

If (c < |u|) and (m = u[c+ 1]) then

Return c+ 1 mod |u|
Return fk((m, c)) + |u|

Adversary B(k, s)

Return (M1,M2)

huk ((m, c))

(bc, qc, rc)← c

If (bc = 0) and (m = u[rc + 1]) then

Return (0, qc, (rc + 1 mod |u|))
(q, r)← fk((m, c))

Return (1, q, r)

Figure 6: Left: Compression function used in Proposition 5.5. Middle: Adversary used in Propo-
sition 5.5, Theorem 5.6, and Proposition 6.1. Right: Compression function used in Theorem 5.6.

Because any collision for gu is also a collision for f, for any adversary A it must hold that
Advcr

gu(A) ≤ Advcr
f (A).

To prove that B has advantage 1, we will make use of Lemma 5.4 by showing that HI
(k,0)(u) = 0

where HI is defined as in the lemma. Let c be the vector of values that would be obtained in the
computation of HI

(k,0)(u); that is, let c[1] = 0 and c[i+ 1] = guk ((u[i], c[i])) for i = 1, . . . , |u|.

Following the code of gu we can then see that its if statement will always evaluate to true in
this computation and so c[i + 1] = c[i] + 1 (mod |u|) holds for all i. Consequently, c[i] = i for
i = 1, . . . , |u| and then c[|u| + 1] = 0. The latter is the value returned by HI so HI

(k,0)(u) = 0 and

the pair M1,M2 is a collision for H. It follows that the advantage of B is exactly 1.

The lemma above might seem somewhat contrived, because we allowed our compression function
g to depend on the starting point used for the MD transform. This makes it, in some senses, a
weak result and one might naturally wonder if this dependency is necessary for the result. It is
not. At the cost of some added complexity and lost success probability for B, we can extend this
to the case when s is randomly chosen from some set instead of fixed.

Theorem 5.6 Let a ∈ N. Let Split be a splitting function. Suppose Split(M1) w Split(M2) and in
particular Split(M1) = u‖Split(M1). Let f be a family of functions with f.Inp = Split.Bl × (Z2 ×
Za × Z|u|) and f.Out = Za × Z|u|. Now let hu : Split.Bl× (Z2 × Za × Z|u|)→ Z2 × Za × Z|u| be the
compressions function shown in Fig. 6. For all adversaries A, it holds that Advcr

hu(A) ≤ Advcr
f (A).

Furthermore, letting S = hu.Out and H = MD[hu, Split,S], we can build an efficient adversary B
(shown in Fig. 6) satisfying,

Advcr
H (B) ≥ 1/(2|u|).

The compression function hu above is specifically designed so that it loops on s,u for any s of
the form (0, q, 0), giving the desired collision between M1 and M2 with the specified probability
over the random choice of s

Again, this theorem can be extended to cover any reasonable choice of hu.Out. One can first
map hu.Out to Z|hu.Out| analogously to earlier. Then from c ∈ Z|hu.Out| one can obtain the tuple
(bc, qc, rc) via bc ← c mod 2, y ← bc/2c, rc ← y mod |u|, and qc ← by/2c. There are technical
details to be considered regarding the fact that 2 and |u| may not be divisors of |hu.Out| and that
S may not be “nicely” distributed in Z|hu.Out|, but for any reasonable choice of hu.Out and S this
should not be an issue.

For our theorems we have assumed that we were given a pair M1,M2 such that Split(M1) w
Split(M2). It is not difficult to come up with (contrived) splitting functions which are not suffix-
free, but for which we believe it is computationally difficult to find such a pair. We chose our
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formalization that M1 and M2 are a priori known because, for specific, prior splitting functions,
either they were suffix-free, or it was trivially easy to find M1 and M2 violating suffix-freeness.
An alternative way to address this would be to make suffix-freeness a computational condition,
and then say that, given an adversary returning M1 and M2 violating suffix-freeness with high
probability, we build our compression function and adversary. (Of course, one might then ask
about finding the adversary, analogous to keyless collision resistance, but the philosophical position
would at least seem on par with prior ones.)

Proof: (of Theorem 5.6) The basic structure of this proof closely follows that of the proof for
Proposition 5.5. Throughout this proof for a string c we will let bc, qc, rc denote the corresponding
values used by hu on input (m, c) for some c.

To start, we will show that any collision for hu is also a collision for f by proving that if huk ((m, c)) =
huk ((m′, c′)), then it either holds that (m, c) = (m′, c′) or that fk((m, c)) = fk((m′, c′)). As such,
suppose huk ((m, c)) = huk ((m′, c′)).

Note that the first return statement of hu always outputs a tuple whose first element is 1 while the
second always outputs a tuple whose first element is 0. We will consider these two cases separately.
Let y = huk ((m, c)) and y′ = huk ((m′, c′)).

Let us first suppose that y[1] = 0. This means that qc = qc′ and rc + 1 = rc′ + 1 (mod |u|). The
latter implies rc = rc′ , because both are always less than |u|. The if statement in hu must have
evaluated to true on both inputs so we have bc = 0 = bc′ and m = u[rc + 1] = u[rc′ + 1] = m′.
Putting this all together, we have shown that (m, c) = (m′, c′).

Now consider the other case when y[1] = 1. Then we have that fk((m, c)) = fk((m′, c′)).

Because any collision for hu is also a collision for f, for any adversary A it must hold that
Advcr

h (A) ≤ Advcr
f (A).

To prove our statement about the advantage of B we will make use of Lemma 5.4 andlower bound
the probability that HI

(k,s)(u) = s over the random choice of s (where HI is defined as in the lemma).

Suppose s is of the form (0, q, 0) for some q ∈ Za. Let c be the vector of values that would have
been obtained in the computation of HI

(k,s)(u); that is, let c[1] = s and c[i+ 1] = huk ((u[i], c[i])) for

i = 1, . . . , |u|.

Following the code of hu we can see that the if statement will always return true in this computation,
and so c[i] = (0, q, i) for i = 1, . . . , |u| and then c[|u| + 1] = (0, q, 0) = s. The latter is the value
returned by HI so HI

(k,s)(u) = s as desired and the pair M1,M2 is a collision for H.

Then the advantage of B is bounded by the probability that s is of the form (0, q, 0) which is exactly
1/(2|u|).

6 Weakening assumptions on h

In this section we improve on the classic result that the collision resistance of h guarantees that H
will be collision resistant. In particular, we will explore the possibility of weakening the assumption
made of h and provide a natural, less stringent variation of collision resistance from which we are
able to assure the collision resistance of h obtained via the MD transform.

Using a non-CR h. We have shown that the collision resistance of the compression function h
implies the collision resistance of the hash function H obtained by the MD transform. However,
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hs
k((m, c))

If c[1] = s[1] then

Return s[1]‖h′k((m, c[2..|c|]))
Return s

Adversary Ah′(k, ε)

s←$ S ; (M1,M2)← AH((k, s), ε)

((m1, c1), (m2, c2))← Bcr((k, s),M1,M2)

Return ((m1, c1[2..|c1|]), (m2, c2[2..|c2|]))

Figure 7: Left: Compression function hs
k for Proposition 6.1, Proposition 6.2, and Proposition 6.3.

Right: Adversary Ah′ for the proof of Proposition 6.3.

the collision resistance of H may not always rely on h being collision resistant. We will show by
construction that H can be collision resistant even when h is not.

Let b, c ∈ N. Given a compression function h′ : h′.Keys × ({0, 1}b × {0, 1}c) → {0, 1}c and
some s ∈ {0, 1}c+1, we construct the compression function hs : h′.Keys × ({0, 1}b × {0, 1}c+1) →
{0, 1}c+1 shown in Fig. 7. Recall s denotes the bitwise complement of s. Let Split be a suffix-
free splitting function with Split.Bl = h.Bl and define the set of starting points by S = {s}. Let
H = MD[hs,Split,S] be the hash function associated to these components via the MD transform of
Fig. 2. We will think of h′ as being a good collision resistant compression function. Then we will
show that while hs is a poor collision resistant compression function, H nonetheless remains a good
collision resistant hash function.

The idea motivating our construction of hs should be clear. Creating a collision for hs is trivial
by making the if statement evaluate to false. However, when hs is used inside of the MD transform
with s as a starting point, this case will never occur.

Proposition 6.1 Let M1 = (0b, s), M2 = (1b, s), and B be the adversary shown in Fig. 6. Then
Advcr

hs(B) = 1.

Put simply, the above tells us that hs is not collision resistant because B is clearly efficient.

Proof: (of Proposition 6.1) When we compute hs
k(M1), we see that s[1] 6= s[1], so s is returned.

Similarly, s is returned when we compute hs
k(M2). Notice that M1 6= M2 yet hs

k(M1) = hs
k(M2).

Thus, hs is not collision resistant.

The following proposition is a useful stepping stone for showing that H is collision resistant if
h′ is.

Proposition 6.2 Let k ∈ h′.Keys. Then for each excution of hs
k in the computation of Hk, the

output of hs
k is never s.

Proof: (of Proposition 6.2) Fix M ∈ Split.Inp and let m, c be the vectors computed by Hk(M).
Suppose, for a contradiction, that for some i from 1 to |m|, hs

k(m[i], c[i]) = s and let d = s[1]. Note
then the first bit of c[i] must be d because the if statement in hs

k must have evaluated to false.
Essentially the same reasoning implies the first bit of c[i− 1] is d.

We can continue this argument for each i back to 1. However, this contradicts the fact that c[1] = s,
so hs

k never returns s.

Proposition 6.3 Given an adversary AH, let Ah′ be the adversary of Fig. 7. Then

Advcr
H (AH) ≤ Advcr

h′(Ah′). (2)
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The time complexity of Ah is the sum of the time complexities of AH and Bcr. The memory
complexity of Ah is the maximum of the memory complexity of AH and the memory complexity of
Bcr.

Notice that Equation (2) tells us that if h′ is collision resistant, then H is as well. Let AH be a
practical adversary against H. Then Ah′ is also practical because its efficiency is about that of AH.
This means that if h′ is collision resistant, Advcr

h′(Ah′) is low. Equation (2) tells us that Advcr
H (AH)

will be at most Advcr
h′(Ah′), which means H is also collision resistant.

Proof: (of Proposition 6.3) The facts about the time and memory of Ah′ are clear from its pseu-
docode.

Now we claim that if the message pair M1,M2 returned by AH is a collision for H(k,s) then Ah′

will return a collision for h′k . Adversary Ah′ takes input k ∈ h.Keys. It then runs AH on input ε
given key (k, s) to get a pair of messages (M1,M2) in Split.Inp. Then it runs Bcr to obtain a pair of
inputs to h, which we will refer to as (m1, c1) and (m2, c2). It then returns these (after removing
the first bits of c1 and c2).

Suppose M1,M2 is a collision for H(k,s). Since Split is suffix-free, Split(M1) 6w Split(M2) and
Split(M2) 6w Split(M1). Then by Lemma 5.2, we know that Bcr will have returned a collision
for hs

k .

From Proposition 6.2 we also know that hs
k((m1, c1)) 6= s and hs

k((m2, c2)) 6= s. Then it must be
the case that they cause the if statement in hs to evaluate to true and so h′k((m1, c1[2..|c1|])) =
h′k((m2, c2[2..|c2|])). Furthermore, (m1, c1) 6= (m2, c2) and c1[1] = c2[1] = s[1], so (m1, c1[2..|c1|]) 6=
(m2, c2[2..|c2|]) and thus they form a collision for h′k .

Therefore, adversary Ah′ finds a collision in h′k whenever AH find a collision for H(k,s). This justifies
Equation (2), completing the proof.

Defining a new constraint for CR. The previous example established that traditional defi-
nitions of collision resistance with the MD transform do not fully capture the security behind the
construction. Although the compression function h used to construct the hash function H was not
collision resistant, we were still able to prove the collision resistance of H.

An obvious question at this point is whether there is a natural, weaker assumption we could
place on h from which we can still prove H is collision resistant. We answer this in the affirmative
with a new security definition in the RS security framework. For this, we now define a new relation
which is strictly harder for the adversary to satisfy than Rcr, making it a weaker assumption on
h. Despite this, we can still obtain the result that the MD transform is fully collision resistant
under the assumption that h fulfills this weaker security assumption for any suffix-free splitting
function. We call our new security definition constrained collision resistance, or Rccr, and provide
the pseudocode for the relation below. We previously defined Rccr in Fig. 1.

Relation Rccr(k, s, out)

(x1, x2, a1, a2)← out ; (m1, c1)← x1 ; (m2, c2)← x2

coll← Rcr(k, ε, ((m1, c1), (m2, c2)))
valid← ((c1 ∈ {s, hk(a1)}) and (c2 ∈ {s, hk(a2)}))
Return (coll and valid)

This relation makes the adversary’s job harder than for collision resistance by putting further
restrictions of the collisions it is allowed to submit. In particular, it requires that for both chain-
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ing variables in the collision submitted by the adversary, this chaining variable must be s or the
adversary must know a pre-image for it.

Now we proceed to proving that the MD transform gives a collision resistant hash function if
the splitting function is suffix-free and the compression function is constrained-collision resistant.
This result helps provide some theoretical understanding to the observation that collisions in the
compression functions underlying MD-style hash functions tend not to immediately result in the
entire hash function being broken.

Theorem 6.4 Let h be a compression function, let Split be a suffix-free splitting function with
Split.Bl = h.Bl and let S ⊆ h.Out be a set of possible starting points. Let H = MD[h, Split, S] be the
hash function associated to these components via the MD transform of Fig. 2. Given an adversary
AH, let Ah be the adversary of Fig. 8 using algorithm Bccr. Then

Advcr
H (AH) ≤ AdvRccrS

h (Ah). (3)

The time complexity of Ah is the sum of the time complexities of AH and Bccr. The memory
complexity of Ah is the maximum of the memory complexity of AH and the memory complexity of
Bccr.

The algorithm Bccr mentioned above (and defined in Fig. 8) is an extension of Bcr to also return
the values a1, a2 expected by Rccr. We discuss it in more detail in the proof.

Equation (1) tells us that if h is constrained-collision resistant, then H is collision resistant. Let
AH be a practical adversary against H. Then Ah is also practical because its efficiency is about
that of AH. If h is constrained collision resistant, then AdvRccrS

h (Ah) will be low. Equation (3) tells

us that Advcr
H (AH) will be at most AdvRccrS

h (Ah), which means H is collision resistant.

Proof: (of Theorem 6.4) The claimed bounds on the complexity ofAh are clear from its pseudocode.

Adversary Ah takes as input a random (k, s) ∈ h.Keys× S. It runs AH on input ε and key (k, s) to
get a pair of messages (M1,M2) in Split.Inp. Note this exactly matches the input distribution AH

expects to be given. Adversary Ah can then run the algorithm Bccr shown in Fig. 8 with inputs
((k, s),M1,M2) for it to extract a collision and appropriate information about the pre-images of
this collision, if required.

Assume that M1,M2 is a collision for H(k,s). Since Split is suffix-free, Split(M1) 6w Split(M2) and
Split(M2) 6w Split(M1).

We may think of Bccr as a similar algorithm to Bcr, with the added task of finding pre-images
for the chaining variables in its colliding messages. Indeed, Bccr creates the vectors of chaining
variables, c1 and c2, and searches for a collision in the same way as Bcr, returning this message pair
at which it found a collision. Thus, Lemma 5.2 guarantees that the pair (m1, c1), (m2, c2) forms a
collision for hk . We must verify that a1, a2 returned by Bccr additionally satisfies c1 ∈ {s, hk(a1)}
and c2 ∈ {s, hk(a2)}. Let m1, c1, n1 and m2, c2, n2 be the values calculated by Bccr when run by
Ah.

First suppose that Bccr halts in the middle of the execution of its for loop. Then it is clear for the
manner they were created that a1 will be a pre-image for c1 and a2 will be a pre-image for c2.

Now suppose that Bccr does not halt until after the for loop is complete. We will separately analyze
the case that n1 = n2 and the case that n1 6= n2. In the former case the chaining variables c1 and c2

specifying the collision are c1[1] and c2[1], respectively. Since these are both equal to s, Ah does not
need to provide a pre-image for them and we are done. In the latter case the above reasoning tells
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Algorithm Bccr((k, s),M1,M2)

m1 ← Split(M1) ; m2 ← Split(M2)
n1 ← |m1| ; n2 ← |m2|
c1[1]← s ; c2[1]← s
For i = 1, . . . , n1 do c1[i+ 1]← hk((m1[i], c1[i]))
For i = 1, . . . , n2 do c2[i+ 1]← hk((m2[i], c2[i]))
b← argmind(nd)
For i = 0, . . . , nb − 2 do

(m1, c1)← (m1[n1 − i], c1[n1 − i])
(m2, c2)← (m2[n2 − i], c2[n2 − i])
a1 ← (m1[n1 − i− 1], c1[n1 − i− 1])
a2 ← (m2[n2 − i− 1], c2[n2 − i− 1])
If (m1, c1) 6= (m2, c2) then

Return ((m1, c1), (m2, c2), a1, a2)
If n1 = n2 then

(m1, c1)← (m1[1], c1[1]) ; (m2, c2)← (m2[1], c2[1])
a1 ← 1; a2 ← 2
Return ((m1, c1), (m2, c2), a1, a2)

(m1, c1)← (m1[n1 − nb + 1], c1[n1 − nb + 1])
(m2, c2)← (m2[n2 − nb + 1], c2[n2 − nb + 1])
a3−b ← (m3−b[n3−b − nb], c3−b[n3−b − nb])
ab ← a3−b
Return ((m1, c1), (m2, c2), a1, a2)

Adversary Ah(k, s)

(M1,M2)← AH((k, s), ε)
Return Bccr((k, s),M1,M2)

Figure 8: Adversary Ah and algorithm Bccr used for Theorems 6.4 and 7.2.

us that cb = s (because cb corresponds to the shorter vector) and so a pre-image is not required for
it. This will, presumably, not hold for c3−b (which corresponds to the longer vector), so a pre-image
is required for it. As with our earlier analysis we can see that a3−b is a pre-image for c3−b under
hk . Then for compactness Ah arbitrarily returns this pre-image for both messages and we are again
done.

Thus, on any input (k, s), adversary Ah finds a constrained collision in hk when AH finds a collision
in H(k,s). This justifies Equation (3).

A CCR h. With the introduction of RccrS security, one might ask whether this assumption is
necessary for any h to produce an MD transform that is collision resistant. It is, in fact, not
necessary, although it is sufficient. Indeed, the compression function hs

k given in Fig. 7 is itself not
RccrS secure, yet we have shown that it results in a collision resistant MD transform. We prove
this result below. This shows that an assumption on h even weaker than CCR could suffice, and
the benefit of our framework is that one could easily specify such an assumption. However, one has
to make some value judgment about the tradeoff between the assumptions and the result. In the
extreme, the assumption on h could just be that the MD transform on it is RcrS secure, which is
not a useful result. The advantage of RccrS is that it is appropriately balanced: it is meaningfully
weaker than RcrS, yet the implication that the MD transform is RcrS secure is still non-trivial.
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Adversary Bhs(k, s)
Return (M1,M2, a1, a2)

h†k((m, c))

If (m, c) ∈ {(0b, 1‖0c), (1b, 12‖0c−1)} then

Return 1c+1

Return 0‖h′k((m, c))

Adversary Bh′′(k, ε)
(x1, x2, a1, a2)← Ah†(k, ε)

Return (x1, x2)

Figure 9: Adversary Bhs for Proposition 6.5. Compression function h†k and adversary Bh′′ for
Proposition 6.6.

Proposition 6.5 Let M1 = a1 = (0b, s), M2 = a2 = (1b, s), S ⊆ hs.Out, and Bhs be the adversary
shown in Fig. 9. Then AdvRccrS

hs (Bhs) = 1.

Put simply, the above tells us that hs is not constrained collision resistant because Bhs is clearly
efficient.

Proof: (of Proposition 6.5) As shown in the proof of Proposition 6.1, M1 and M2 form a collision
for hs. Notice that for M1 = (0b, s), a preimage for s is simply M1 itself. Similarly M2 is a preimage
for s. We thus let a1 = M1 and a2 = M2. Therefore, hs is not constrained collision resistant.

A natural question that might arise is whether RccrS security is actually strictly weaker than
RcrS. With the revelation that hs

k in Fig. 7 is not RcrS secure, is there any compression function
that is RccrS secure yet is not RcrS secure? We claim that such a compression function does exist
and give an example in Fig. 9.

We again let b, c ∈ N. Given a good collision resistant function h′′ : h′′.Keys × ({0, 1}b ×
{0, 1}c+1) → {0, 1}c, we construct the compression function h† : h′′.Keys × ({0, 1}b × {0, 1}c+1) →
{0, 1}c+1 shown in Fig. 9.

It is clear that h† is not collision resistant, since for the distinct inputs (0b, 1‖0c) and (1b, 12‖0c−1)
it returns 1c+1. Despite this, we now show that h† is instead constrained collision resistant.

Proposition 6.6 Let S ⊆ h†.Out. Given an adversary Ah†, let Bh′′ be the adversary of Fig. 9.
Then AdvRccrS

h†
(Ah†) ≤ Advcr

h′′(Bh′′) and both the time and memory complexity of Bh′′ are about
that of Ah†.

Notice that given bound on the advantage of the adversaries tells us that if h′′ is collision
resistant, then h† is constrained collision resistant. Let Ah† be a practical adversary against h†.
Then Bh′′ is also practical because its efficiency is about that of Ah† . This means that if h′′ is
collision resistant, Advcr

h′′(Bh′′) is low. The bound tells us that AdvRccrS
h†

(Ah†) will be at most

Advcr
h′′(Bh′′), which means h† is constrained collision resistant.

Proof: (of Proposition 6.6) The complexity claims are clear from the pseudocode. We claim
that if the tuple (x1, x2, a1, a2) returned by Ah† is a constrained collision for h† then Bh′′ will
return a collision for h′′k . Adversary Bh′′ takes input k ∈ h.Keys. It then runs Ah† on input the
given key k and ε to get the tuple (x1, x2, a1, a2). Letting (x1, x2) = (m1, c1), (m2, c2) we have
(m1, c1), (m2, c2) ∈ {0, 1}b × {0, 1}c+1 and a1, a2 ∈ {0, 1}c+1. Since Ah† returns a constrained

collision, it must be true that (m1, c1) 6= (m2, c2), h†k((m1, c1)) = h†k((m2, c2)), c1 ∈ {s, h†k(a1)}, and

c2 ∈ {s, h†k(a2)}.

Since h†k will only output strings of all 1s or strings that start with 0, it can never output 1‖0c or
12‖0c−1. Thus, neither string has a pre-image, so (m1, c1), (m2, c2) 6∈ {(0b, 1‖0c), (1b, 12‖0c−1)}. On

input (m1, c1), the if statement in h†k will be false, so h†k will return 0‖h′′k((m1, c1)). Similarly, on
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input (m2, c2), h†k will return 0‖h′′k((m2, c2)). Since h†k((m1, c1)) = h†k((m2, c2)), we can conclude
that h′′k((m1, c1)) = h′′k((m2, c2)), therefore forming a collision for h′′k . Adversary Bh′′ returns this
message pair, so it finds a collision in h′′k whenever Ah† finds a constrained collision for h†. This
justifies the stated advantage bound, completing the proof.

7 A minimal transform

Having to use a suffix-free splitting function necessarily adds some computational overhead to the
computation of the MD hash function over what would have been necessary if we were able to use
a minimal splitting function. For instance, one such splitting function could be padding M with a
single one bit and then with as many zeros as necessary to be of a block size. If the message M
is particularly short, this padding scheme may only require one invocation of h when a suffix-free
padding function would likely have increased the length of M enough to require a second such
invocation.

As such, in some use cases it would be beneficial to use such a minimal splitting function in the
transform. We saw earlier that we cannot hope to use a splitting function which is not suffix-free
assuming only that the underlying compression function is collision resistant, so it may seem that
this efficiency gain would be countered by a loss in provable security.

In this section we show this is not the case, establishing that if the compression function is
constrained collision resistant and is fixed-point resistant (a notion introduced by [18]), then it
suffices for the splitting function to be injective.

It is important to emphasize here that our proof assumes only the constrained collision resistance
of the compression function and, thus, this use of MD may similarly enjoy collision resistance even
after a collision is found in the underlying compression function. We leave it to others to decide
when this gain in efficiency is worth the security tradeoff required in assuming an additional security
property of the hash function.

The main result of this section was inspired by an inquiry from Dodis as to how the analo-
gous result of the proceedings version of this paper [10] (which uses pre-image resistance instead
of fixed-point resistance) compared to some of his results with Puniya [18] (which uses collision
resistance instead of constrained collision resistance). The current result improves on both of these
by using both fixed-point resistance and constrained collision-resistance. In Section 8, we show that
the assumption of fixed-point resistance can be dropped assuming that the compression function
satisfies a notion of uniformity and the set of message blocks is sufficiently large. This, again, is an
improvement on distinct results shown in [10] and [18].

Fixed-point resistance. First we will show how fixed-point resistance is captured in the RS
framework by relation Rfix. Note that our definition generalizes that of Dodis and Puniya slightly
by allowing compression functions to be keyed and allowing the set of starting points, S, to be
arbitrary instead of fixed as S = h.Out. We define a fixed-point witness for starting point s under
fk as a vector of messages m such that, when m is iterated upon through the MD transform under
fk , it outputs s. In other words, fk(m[|m|], . . . (fk(m[2], fk(m[1], s)))) = s.

The relation Rfix requires the adversary to provide a fixed-point witness for s under fk . This
is strictly more difficult to satisfy than Rpre, for which the adversary is required to return the
pre-image of s under fk . We provide the pseudocode for relation Rfix below.
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Relation Rfix(k, s, out)

m← out ; c[1]← s
For i = 1, . . . , |m| do c[i+ 1]← fk((m[i], c[i]))
Return (c[|m|+ 1] = s)

Note if m is a fixed-point witness for s under fk , then (m[|m|], c) is a pre-image for s under
fk where c = fk(m[|m| − 1], . . . (fk(m[2], fk(m[1], s)))). Consequently, it is strictly harder to find a
fixed-point witness for s than a pre-image, making fixed-point resistance a weaker assumption than
pre-image resistance.

Security of the minimal transform. We now proceed with the proof that if the compression
function is constrained collision resistant and is fixed-point resistant, then it suffices for the splitting
function to be injective. It will be convenient to first prove a lemma we will use in our proof. The
lemma establishes that any collision in the MD transform must necessarily give either a collision
in the underlying compression function or a fixed-point witness of s for that compression function.
This builds on Lemma 5.2 to classify MD collisions by additionally considering what happens when
the splitting function is not necessarily suffix-free. This is not a computational statement; it is a
fact about the structure of collisions for the MD transform.

Lemma 7.1 Let h be a compression function, Split be a splitting function with Split.Bl = h.Bl∗,
and S ⊆ h.Out be a set of possible starting points. Let H = MD[h,Split,S]. Let k ∈ h.Keys, s ∈ S
and suppose M1,M2 ∈ Split.Inp form a collision for H(k,s). Then at least one of the following two
conditions holds:

1. On inputs (k, s),M1,M2, the algorithm Bccr shown in Fig. 8 returns ((m1, c1), (m2, c2), a1, a2)
such that (m1, c1), (m2, c2) form a collision for hk and both (c1 ∈ {s, hk(a1)}) and (c2 ∈
{s, hk}) hold.

2. Given (k, s),M1,M2, algorithm Bfix of Fig. 10 returns a fixed-point witness for s under hk.

Proof: (of Lemma 7.1) Let m1 = Split(M1), m2 = Split(M2), n1 = |m1|, and n2 = |m2|, as defined
in algorithms Bccr and Bfix.

As detailed in the proof of Theorem 6.4 and from Lemma 5.2, if m1 6wm2 and m2 6wm1, then the
first condition holds. So suppose without loss of generality that m1 wm2. Note it then must hold
that n1 ≥ n2.

First suppose there exists an i ∈ {0, . . . , n2−1} such that (m1[n1−i], c1[n1−i]) 6= (m2[n2−i], c2[n2−
i]). Let j be the smallest such value. It will then hold that c1[n1 − (j − 1)] = c2[n2 − (j − 1)], so
(m1[n1 − j], c1[n1 − j]) and (m2[n2 − j], c2[n2 − j]) form a collision for hk . During the execution
of Bccr it will then return this collision when i = j in the for loop (or after the for loop in the case
that j = n2 − 1). The same reasoning as in the proof of Theorem 6.4 tells us that the condition
(c1 ∈ {s, hHk(a1)}) and (c2 ∈ {s, hHk}) will hold of the values returned by Bccr.

Now suppose (m1[n1 − i], c1[n1 − i]) = (m2[n2 − i], c2[n2 − i]) for all i ∈ {0, . . . , n2 − 1}. This
implies, in particular, that c1[n1 − (n2 − 1)] = c2[n2 − (n2 − 1)] = s. Note it must then hold that
n1 > n2 (because otherwise we would have m1 = m2 contradicting the fact that M1 6= M2). Hence,
hk((m1[n1−n2], c1[n1−n2])) = s. From this it is immediate that m1[1, .., n] is a fixed-point witness
for s under hk , concluding the proof.

Having established the above lemma we can move on to the main result of this section, that
Split being merely injective (and not necessarily suffix-free) suffices to prove that the MD transform
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Algorithm Bfix((k, s),M1,M2)

m1 ← Split(M1); n1 ← |m1|
m2 ← Split(M2); n2 ← |m2|
b← argmaxd(nd)

n← nb − n3−b

Return mb[1, .., n]

Adversary Ch(k, s)
(M1,M2)←$AH(k, s)

Return Bfix((k, s),M1,M2)

Figure 10: Algorithm Bfix and adversary Ch for Theorem 7.2.

gives collision resistance if h is fixed-point resistant. Mirroring Theorem 6.4, we will in fact show
the result assuming only the weaker notion of constrained collision resistance for the compression
function h.

Theorem 7.2 Let h be a compression function, let Split be an injective splitting function with
Split.Bl = h.Bl∗ and let S ⊆ h.Out be a set of possible starting points. Let H = MD[h, Split, S].
Given an adversary AH, let Ah be the adversary of Fig. 8 and Ch be the adversary of Fig. 10. Then

Advcr
H (AH) ≤ AdvRccrS

h (Ah) + AdvRfixS
h (Ch). (4)

The time complexity of Ah is about that of AH plus that of Bccr. The memory complexity of Ah is
the maximum of that of AH and that of Bccr. The time complexity of Ch is about that of AH plus
that of Bfix. The memory complexity of Ch is the maximum of that of AH and that of Bfix.

Stating that Split is injective is redundant (splitting functions are required to be injective), but
we state this explicitly above to emphasize that injectivity is the only property we assume of Split.
The theorem proceeds fairly easily from Lemma 7.1 because the relevant adversaries simply run
Bccr and Bfix.

Proof: (of Theorem 7.2) Consider the view of adversary AH when run by either Ah, Ch, or in
Gcr

F (AH). In each, it consists of a key k and starting point s, both of which were chosen uniformly
at random from their respective sets. From Lemma 7.1, we know if AH successfully finds a collision
in H for (k, s) it must be the case that one of Ah or Ch will be successful in their respective games
(because they simply run Bccr and Bfix, respectively).

Then we have the following inequality, that establishes the result,

Advcr
H (AH) = Pr[Gcr

F (AH)]

≤ Pr[GRccrS
h (Ah)] + Pr[GRfixS

h (Ch)]

= AdvRccrS
h (Ah) + AdvRfixS

h (Ch).

The claims on the time and memory complexities of the adversaries are clear.

8 Relationships between notions

We showed that the MD transform can be simplified by additionally assuming that the compression
function h satisfies a fixed-point resistance property (and is constrained collision resistant). To help
understand this result we will establish the relationships between all of the security notions we have
considered in the RS security framework for compression functions.
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Figure 11: Relationships between security notions in the RS framework. Edges are labeled with
theorem/proposition numbers. The implications using UNIF additionally require that the input
space of the function be much larger than the output space.

Fig. 11 shows these relations. For a relation Ra and set S we let A[S] denote RaS security. For
collision resistance we omit the set S because it does not affect the security definition. Unif is a
security definition we will introduce momentarily which is not implied by, nor implies any of the
other security notions by itself. An arrow from A[S] to B[S] means that for all choices of S any
A[S]-secure compression function is also B[S]-secure. A crossed out arrow from A[S] to B[S] means
for some choice of S there exists an A[S]-secure compression function which is not B[S]-secure (for
Proposition 8.1 this requires the assumption that collision resistant compression functions exist).

As noted previously, the implications CR → CCR[S] and Pre[S] → Fixed[S] hold trivially from
the respective definitions. Proofs for the other relations shown in Fig. 11 are provided below. The
relations not shown in the graph between the four security notions are all separations which are
implied by the shown relations and transitivity.

Negative results. Beyond the trivial implications mentioned above, none of the security notions
we consider will imply any other.

Pre-image resistance does not suffice to imply collision resistance or even constrained collision
resistance. Consider the hash function g which on any input x returns its key k as output. This
is trivially pre-image resistant but not constrained collision resistant. We formalize this in the
following proposition.

Proposition 8.1 Let g be the compression function which on any input returns its key, g.Keys =
g.Out, and g.Bl is an arbitrary set with at least two distinct elements. Let S ⊆ Out. Then for any

A it holds that Adv
RpreS
g (A) ≤ 1/|Out|. If m1 and m2 are two distinct elements of g.Bl, then the

efficient adversary B defined in the proof satisfies AdvRccrS
g (B) = 1.

Proof: (of Proposition 8.1) The first part of this claim holds because the only way that a pre-
image of the chosen s ∈ S will even exist is if k happens to equal it. This happens with an exact
probability of 1/|Out|.
Let B be the adversary which on input (k, s) simply returns ((m1, s), (m2, s), (ε, ε)). Then the
second part of this claim holds because two distinct elements of g.Inp always form a collision for
gk .

It is also the case that fixed-point resistance is not implied by collision-resistance. The following
proposition establishes the result for a particular S = h.Out and can easily be extended to any rea-
sonable choice of a “large” S. Note that an immediate implication of this result is that constrained
collision resistance also does not imply fixed-point resistance.
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Proposition 8.2 Let a ∈ N. Let h′ be a family of functions with h′.Inp = {0, 1} × {0, 1}a and
h′.Out = {0, 1}a−1. Then there exists a compression function h (defined in the proof) with h.Inp =
h′.Inp, h.Out = {0, 1}a, and h.Keys = h′.Keys such that the following holds. For all adversaries A,
Advcr

h (A) ≤ Advcr
h′(A). Furthermore, letting S = h.Out, we can build an efficient adversary B

(defined in the proof) satisfying, AdvRfixS
h (B) ≥ 1/2.

Proof: (of Proposition 8.2) Let h and B be defined as follows.

hk((m, c))

If ((m, c[1]) = (0, 0)) then

Return c

r ← h′k((m, c))

Return 1||r

Adversary B′h(k, s)
m[1]← 0

Return m

To see that the first claim of the above statement holds, note that no collisions in h are possible
unless the if statement evaluates to false for both inputs of the collision. In this case, a collision
for h is immediately a collision for h′. To see that the second claim holds, observe that for half the
choices of s ∈ S, specifically those whose first bit are 0, the compression function hk returns s when
given input (0, s).

For our final negative result, the following propositon shows that pre-image resistance is not
implied by fixed-point resistance.

Proposition 8.3 Let a ∈ N and S = {0, 1}a. There exists a compression function h : S × ({0} ×
S) → S and efficient adversary A such that Adv

RpreS
h (A) ≥ 1/2. Furthermore, for any adversary

B it holds that AdvRfixS
h (B) ≤ 2−a+1.

Proof: (of Proposition 8.3) Let h and A be defined as follows.

hk((b, c))

If c[1] = 1 then

Return c

Return k

Adversary A(k, s)

Return (0, s)

The given advantage of A holds from the fact that if s[1] = 0, then hk((0, s)) = s. To bound the
advantage of any adversary B, first suppose that k 6∈ {s, s}. If s[1] = 1, then s has no pre-image
under hk and so, therefore, there cannot be a fixed-point witness for s. If s[1] = 0, then the only
pre-image for s is (0, s). However, notice that s has no pre-image because s[1] = 1. Thus, in this
case it is clear that there also does not exist any fixed-point witness for s. The event that k ∈ {s, s}
happens with probability 2−a+1, so for any adversary B it holds that AdvRfixS

h (B) ≤ 2−a+1.

Positive results. In Proposition 8.2 we showed that fixed-point resistance is not, in general,
implied by collision resistance. This implies that the fixed-point resistance assumed for Theorem 7.2
is necessarily a separate assumption than the assumption of constrained collision resistance. There
is, however, an assumption we can make on the structure of the compression function for which fixed-
point resistance will not be a separate assumption. In particular, constrained collision resistance
will imply fixed-point resistance when the image of a random point is indistinguishable from a
random range point. This result extends a result from [18] that fixed-point resistance is implied by
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Game Gunif
f (A)

b←$ {0, 1} ; k←$ f.Keys ; x←$ f.Inp

s0 ← fk(x) ; s1←$ f.Out

b′←$A(k, sb)

Return (b = b′)

Adversary A1(k, s)

x← A(k, s)

If (fk(x) = s) then

Return 1

Return 0

Adversary A2(k, ε)

x1←$ f.Inp

s← fk(x1)

x2 ← A(k, s)

Return (x1, x2)

Figure 12: Left: Game defining uniformity of compression function F. Middle and Right:
adversaries used in proof of Theorem 8.6.

Game G0 ,G1

k←$ f.Keys

bad← false

x1←$ f.Inp

s← fk(x1)

s←$ f.Out

x2←$A(k, s)

If (x1 = x2) then

bad← true

Return (fk(x2) = s)

Game G2

k←$ f.Keys

bad← false

x1←$ f.Inp

s← fk(x1)

x2←$A(k, s)

If (x1 = x2) then

bad← true

Return false

Return (fk(x2) = s)

Figure 13: Games used in proof of Theorem 8.6. Boxed code is only in game G0.

collision resistance and the latter property (which they refer to as output regularity) by replacing
collision resistance with the weaker notion of constrained collision resistance.

We will define the uniformity of a hash function by the game Gunif
f (A) shown in Fig. 12. This

game measures an adversary’s ability to distinguish between the pairs (k, y) and (k, fk(x)) when y
is picked at random from f.Out and x is picked randomly from f.Inp. The advantage of an adversary
is defined by Advunif

f (A) = 2 Pr[Gunif
f (A)]−1. It is important to note that this requires the output

of f to look uniformly random even given k. The most natural way to achieve this property is if for
all k ∈ f.Keys and y ∈ f.Out, the set of pre-images of y under fk has size approximately f.Inp/f.Out.

The following theorem tells us that if f is sufficiently uniform then constrained collision resistance
will imply fixed-point resistance as long as 1/|f.Bl| is small.

Theorem 8.4 Let f be a compression function, S = f.Out, and A be an adversary. Then we can
build adversaries A5 and A6 (shown in Fig. 14) such that,

AdvRfixS
f (A) ≤ 2 ·Advunif

f (A6) + AdvRccrS
f (A5) + 1/|f.Bl|.

Both A5 and A6 have approximately the same time and memory complexities as A.

To prove the result, we use the uniformity of f to switch to a game in which A is trying to find
a fixed-point witness for fk(x1), where x1 is chosen at random, instead of for a random s. We then
again use the uniformity of f to switch to a game in which A is trying to find a fixed-point witness
now for fk((m, c)), where m is chosen at random and c = fk(x) for a randomly chosen x. Then
we consider the standard constrained collision resistance adversary, which chooses s = fk((m, c)),
where m is chosen at random and c = fk(x) for a randomly chosen x. It asks A to produce a
vector that is a fixed-point witness of s, for which it computes the MD transform, after which it
can deduce the constrained collision. Analyzing the success of this adversary requires bounding the
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Adversary A3(k, s)

m←$A(k, s)

c[1]← s

For i = 1, . . . , |m| do

c[i+ 1]← fk((m[i], c[i]))

If (c[|m|+ 1] = s) then

Return 1

Return 0

Adversary A6(k, s)

d←$ {3, 4}
b←$Ad(k, s)
Return b

Adversary A4(k, s)

m←$ f.Bl

x1 ← (m, s)

s← fk(x1)

m←$A(k, s)

c[1]← s

For i = 1, . . . , |m| do

c[i+ 1]← fk((m[i], c[i]))

If (x1 = x2) then

Return 0

If (c[|m|+ 1] = s) then

Return 1

Return 0

Adversary A5(k, ε)

x←$ f.Inp

c← fk(x)

m←$ f.Bl

x1 ← (m, c)

s← fk(x1)

m←$A(k, s)

c[1]← s

For i = 1, . . . , |m| do

c[i+ 1]← fk((m[i], c[i]))

x2 ← (m[|m|], c[|m|])
If (|m| > 1) then

a2 ← (m[|m|−1], c[|m|−1])

Else do

a2 ← x2

Return (x1, x2, (x, a2))

Figure 14: Adversaries used in proof of Theorem 8.4.

probability that the pre-image of s produced in this MD transform computation is not itself (m, c)
because ((m, c), (m, c)) is not a valid collision.

Proof: (of Theorem 8.4) Consider the sequence of games G0, G1, G2, and G3 shown in Fig. 15.
The boxed code is only included in G0, meaning that s will be chosen uniformly at random. Game
G0 is identical to GRfixS

f (A) with f and A hardcoded. In both, A is given a random key k and string
s chosen at random from f.Out. It wins if it correctly returns a fixed-point witness for s under fk .
Thus we have

AdvRfixS
f (A) = Pr[GRfixS

f (A)]

= Pr[G0]

= (Pr[G0]− Pr[G1]) + (Pr[G1]− Pr[G2]) + (Pr[G2]− Pr[G3]) + Pr[G3].

To bound the first difference, note that the first two games differ only in whether s is sampled
uniformly at random or as fk(x1) for a randomly chosen x1. We use a reduction to the uniformity
of f defined by adversary A3 in Fig. 14. Consider the view of A when run by A3 (during the
execution of Gunif

f (A3)). Let bunif denote the bit chosen by the game Gunif
f (A3) and b3 denote the

bit output by A3. When bunif = 1, the view of A is k and s chosen uniformly at random. Then A3

returns b3 = 1 if A returns a fixed-point for s. Similarly, when bunif = 0, A is given k and s = fk(x)
for a uniformly random x. In this case, A3 once again returns b3 = 1 if A returns a fixed-point for
s. Thus we have

Pr[G0]− Pr[G1] = Pr[b3 = 1|bunif = 1]− Pr[b3 = 1|bunif = 0]

= Advunif
f (A3).

such that the latter equality holds by a standard conditioning argument.

Now games G1 and G2 are identical until bad, so the fundamental lemma of game playing [12] says
that Pr[G1]−Pr[G2] ≤ Pr[G1 sets bad]. In particular, the bad flag is set when A happens to choose
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x2 exactly as the pre-image x1 used to define s in G1. This probability is then

Pr[x1 = x2] =
∑
s∗∈S

Pr[x1 = x2 ∧ s = s∗]

=
∑
s∗∈S

Pr[s = s∗] Pr[x1 = x2|s = s∗]

≤
∑
s∗∈S

(|f−1
k (s∗)|/|f.Inp|)(1/|f−1

k (s∗)|)

=
∑
s∗∈S

1/|f.Inp| = |f.Out|/|f.Inp| = 1/|f.Bl|.

Here probabilities are over the random choice of x1 and k in G1 and the coins of A. We use f−1
k (s)

to denote the set of all pre-images of s under fk . The probability that A is given a particular s
is then exactly |f−1

k (s)|/|f.Inp| and the probability that x1 = x2 given that A is given s is at most
1/|f−1

k (s)| because the view of A depends on x1 only via s. Summing over all possible choices of s
and recalling that f.Inp = f.Bl× f.Out we then have that bad is set with probability at most 1/|f.Bl|.
This was independent of the key k, so the probability averaged over all choices of k will be bounded
by the same probability. Hence, Pr[G1 sets bad] ≤ 1/|f.Bl|.
Bounding the difference Pr[G2]−Pr[G3] is similar to that which was shown for the first difference.
In both games the first component of x1 is chosen randomly from f.Bl. The differ in whether the
second component is chosen uniformly at random or as fk(x) for a randomly chosen x. Consider
the adversary A4 shown in Fig. 14. Using analogous analysis to that used for the bound between
games G0 and G1 we get Pr[G2]− Pr[G3] ≤ Advunif

f (A4).

Finally, we argue that the probability A succeeds in G3 is at least the probability that adversary A5

succeeds in GRccrS
f (A5). The former succeeds if, given fk(x1), it produces a fixed-point witness m for

s under fk such that when m is iterated through the MD transform, (m[|m|], c[|m|]) forms a collision
with x1 for fk . Notice also that this allows A5 to win the constrained-collision game, since it can
return the pre-image for each chaining variable of the messages forming the collision. By definition
x is a pre-image for c, the chaining variable of x1. If |m| > 1, then (m[|m|−1], c[|m|−1]) is defined
and is a pre-image for c[|m|] the chaining variable of x2. If |m| = 1, then c[|m|] = c[1] = s so x2 is
itself a pre-image of this whenever it collides with x1. Hence, Pr[G3] ≤ GRccrS

f (A5) = AdvRccrS
f (A5).

Combining the given equation gives the following bound.

AdvRfixS
f (A) ≤ Advunif

f (A3) + Advunif
f (A4) + AdvRccrS

f (A5) + 1/|f.Bl|.

The final bound is obtained by letting A6 be the adversary (shown in Fig. 14) which samples
d←$ {3, 4} and then runs Ad. The stated complexities of the adversaries are apparent from the
code of A3, A4, and A5.

As an immediate corollary of Theorem 7.2 and Theorem 8.4 we have the following result that
if Split is injective, h is constrained collision resistant and uniform and 1/|h.Bl| is small, then the
MD transform achieves full collision resistance.

Corollary 8.5 Let h be a compression function, let Split be a splitting function with Split.Bl = h.Bl∗

and let S = h.Out. Let H = MD[h,Split,S]. Given an adversary AH, we can build adversaries Accr

and Aunif such that

Advcr
H (AH) ≤ 2 ·AdvRccrS

h (Accr) + 2 ·Advunif
h (Aunif) + 1/|h.Bl|. (5)
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Game G0 ,G1

k←$ f.Keys

bad← false

x1←$ f.Inp

s← fk(x1)

s←$ f.Out

m←$A(k, s)

c[1]← s

For i = 1, . . . , |m| do

c[i+ 1]← fk((m[i], c[i]))

x2 ← (m[|m|], c[|m|])
If (x1 = x2) then

bad← true

Return (c[|m|+ 1] = s)

Game G2

k←$ f.Keys

bad← false

x1←$ f.Inp

s← fk(x1)

m←$A(k, s)

c[1]← s

For i = 1, . . . , |m| do

c[i+ 1]← fk((m[i], c[i]))

x2 ← (m[|m|], c[|m|])
If (x1 = x2) then

bad← true

Return false

Return (c[|m|+ 1] = s)

Game G3

k←$ f.Keys

bad← false

x←$ f.Inp

c← fk(x)

m←$ f.Bl

x1 ← (m, c)

s← fk(x1)

m←$A(k, s)

c[1]← s

For i = 1, . . . , |m| do

c[i+ 1]← fk((m[i], c[i]))

x2 ← (m[|m|], c[|m|])
If (x1 = x2) then

bad← true

Return false

Return (c[|m|+ 1] = s)

Figure 15: Games used in proof of Theorem 8.4. Boxed code is only in game G0.

The time complexity of Accr is about that of AH plus the maximum of Bccr and Bfix. The memory
complexity of Accr is the maximum of that of AH, that of Bccr, and that of Bfix. The time complexity
of Aunif is about that of AH plus that of Bfix. The memory complexity of Aunif is the maximum of
that of AH and that of Bfix.

It is also the case that uniformity and collision resistance together suffice to prove pre-image
resistance (assuming |f.Out|/|f.Inp| is small). We omit the proof, because it is essentially a simplied
version of the proof for Theorem 8.4. The interested reader can find a detailed proof in [10].

Theorem 8.6 Let f be a family of functions, S = f.Out, and A be an adversary. Then we can
build adversaries A1 and A2 (shown in Fig. 12) such that,

Adv
RpreS
f (A) ≤ Advunif

f (A1) + Advcr
f (A2) + |f.Out|/|f.Inp|.

Both A1 and A2 have approximately the same time and memory complexities as A.

Prior use of pre-image resistance. The notion of RpreS, defined in Fig. 1, with S = h.Out has
been considered under several different names. In [14], Brown refers to it as both one-wayness and
pre-image resistance and uses it as one of several assumptions on a hash function to prove a digital
signature scheme is secure. BRS [13] refer to it as inversion resistance and analyze the security
of hash functions in an idealized model. In [22], Laccetti and Schmid refer to it as pre-image
resistance and analyze the success probability of a brute force attack. In [33], Stinson refers to it
as the pre-image problem and bounds the advantage of an adversary in the random oracle model
as well as giving reductions between it and some other security notions. Andreeva and Stam [3]
refer to it as range-oriented pre-image finding and relate its security to various other notions of
pre-image resistance. Finally, DRS [19] refer to it as a variant of pre-image resistance and cite [18]
for the definition, though the latter actually considers a weaker notion. The notion of Rpre{z}
(where z ∈ {0, 1}∗ is a fixed string referred to as the zero string) is considered by both [14] and
[33], where it is referred to, respectively, as zero-finder-resistance and the zero pre-image problem.
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9 Reduction complexity

We will now briefly revisit some of our reductions to provide alternative reductions that are more
memory-efficient [4].

Consider, for example, Theorem 5.3. The primary technical component underlying that theorem
is the collision-finding algorithm Bcr which, given as input a collision for the hash function H, finds
a collision for the underlying compression function h. This collision-finding algorithm naturally
emanates from various proofs of the MD transform’s collision resistance which do not explicitly
give an algorithm.[25, 16, 18, 19, 1, 5, 32, 21, 23]. We observe that Bcr is a less memory efficient
algorithm than the algorithm specified by BBBGKSZ in [5].

Recall the algorithm Bcr shown in Fig. 5. It first precomputes the entire vectors m1, m2, c1,
and c2, then processes them backwards to find the collision described in the proof of the lemma.
Its memory complexity is thus the memory required to store the entire precomputed vectors.

However, this reduction can be done in a more memory efficient manner. We present such an
algorithm, called Bmem, in Fig. 5. It scans for the collision in the opposite direction, as compared
to Bcr. By doing so, it avoids the need to precompute the vector c and instead only computes
the individual blocks of c that it needs in a streaming fashion. Furthermore, for most choices
of splitting function considered in practice (e.g. SplitSha), the individual blocks of Split(M) can
be computed independently in a memory-efficient manner which would allow Bmem to use only a
constant amount of memory overhead.

Theorem 9.1 Let h be a compression function, let Split be a suffix-free splitting function with
Split.Bl = h.Bl and let S ⊆ h.Out be a set of possible starting points. Let H = MD[h, Split, S] be the
hash function associated to these components via the MD transform of Fig. 2. Given an adversary
AH, let Amem be the adversary of Fig. 16 using Bmem from the same figure. Then

Advcr
H (AH) ≤ Advcr

h (Amem). (6)

The time complexity of Amem is the sum of the time complexities of AH and Bcr. The memory
complexity of Amem is the maximum of the memory complexity of AH and the memory complexity
of Bmem.

We make no value statement on how likely the improved memory usage of Bmem is to matter in
practice. Our point is simply that it is more memory efficient and that these differences are hidden
by proofs in which the explicit reduction algorithms are not provided.

The proof of the theorem mirrors that of Theorem 5.3, only requiring arguing that Bmem also
correctly returns a collision whenever AH does.

Proof: (of Theorem 9.1) It is clear that the time and memory complexity of adversary Amem are
as stated in the theorem.

Let k ∈ h.Keys, s ∈ S be the values sampled when Amem is executed and M1,M2 ∈ Split.Inp be
the values returned by AH. We have Split(M1) 6w Split(M2) and Split(M2) 6w Split(M1), so if they
form a collision for H(k,s), then they fulfill the conditions of Lemma 5.2 so Bcr would be guaranteed
to return a collision for hk . It is clear from examining the code that if Bcr finds a collision on
any input, then Bmem will find a collision on the same input (though they might output different
collisions). As an immediate result Equation (6) holds, completing the proof.

In Fig. 17 we present an analogous memory efficient algorithm Bmem2 and the corresponding
Amem2 which would obtain the same sorts of memory savings for Theorem 6.4 and Theorem 7.2.
For notational convenience, the presented pseudocode of Bmem2 uses vectors c1 and c2, but we note

29



Algorithm Bmem((k, s),M1,M2)

m1 ← Split(M1) ; m2 ← Split(M2)
n1 ← |m1| ; n2 ← |m2|
n← min(n1, n2)
c1 ← s; c2 ← s
If (n1 > n2) then

For i = 1, . . . , n1 − n2 do c1 ← hk((m1[i], c1))
If (n2 > n1) then

For i = 1, . . . , n2 − n1 do c2 ← hk((m2[i], c2))
For i = 1, . . . , n do
c′1 ← hk((m1[n1 − n+ i], c1))
c′2 ← hk((m2[n2 − n+ i], c2))
If (c′1 = c′2) and (m1[n1−n+ i], c1) 6= (m2[n2−n+ i], c2) then

Return ((m1[n1 − n+ i], c1), (m2[n2 − n+ i], c2))
c1 ← c′1; c2 ← c′2

Return ⊥

Adversary Amem(k, ε)

s←$ S ; (M1,M2)← AH((k, s), ε)
Return Bmem((k, s),M1,M2)

Figure 16: Memory efficient algorithm Bmem and adversary Amem used for Theorem 9.1.

that the computation can easily be performed using constant memory because only two consecutive
chaining variables will need to be stored at a time. Furthermore, we use the convention that out
of bounds accesses to an array are accesses to its first element (this simplifies notation for the case
that the initialization vector is part of the collision).

We note that ACFK [4] make the claim that collision-resistance is not a memory sensitive
problem, saying for example “t-collision-resistance is not memory sensitive for t = 2.” This seems
to imply that there is no reason to worry about memory tightness in our setting because we are
doing a reduction to collision resistance. However, this statement is somewhat deceptive. When
one unpacks this statement, the actual claim they are making is that the best known generic attack
does not require much memory. This tells us nothing about whether there may exist better, not
yet known, generic attacks or whether there exist better non-generic attacks against specific hash
functions for which memory is a dominating factor.

We also observe that, as a community, there is much work to be done in this setting to determine
how the memory usage of an adversary “should” be measured to best capture the reality. For
example, in their work ACFK observe that many reductions in the random oracle model are highly
inefficient in terms of memory complexity. They then show that, in some cases, a PRF can be used
to make reductions more tight. However, the value of these points depends heavily on the fact that
they adopt a convention of the memory used by the underlying game not counting towards the
memory complexity of the adversary. When using our convention that the memory complexity of
the adversary includes the memory used by the game in which it is executed (this way of measuring
of memory complexity is referred to as LocalMem in their work), the value of this observation
disappears. In this setting, the straightforward security reductions typically being done in the
literature would already be memory-tight. By giving our reduction algorithms explicitly, we aim to
make it easy for their memory complexity to be analyzed using whichever convention one desires.
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Algorithm Bmem2((k, s),M1,M2)

m1 ← Split(M1) ; m2 ← Split(M2)
n1 ← |m1| ; n2 ← |m2|
c1[1]← s ; c2[1]← s; n← min(n1, n2)
If (n1 > n2) then

For i = 1, . . . , n1 − n2 do c1[i+ 1]← hk((m1[i], c1[i]))
If (n2 > n1) then

For i = 1, . . . , n2 − n1 do c2[i+ 1]← hk((m2[i], c2[i]))
For i = 1, . . . , n do
m1 ←m1[n1 − n+ i]; c1 ← c1[n1 − n+ i]
m2 ←m2[n2 − n+ i]; c2 ← c2[n2 − n+ i]
c′1 ← hk((m1, c1))
c′2 ← hk((m2, c2))
If (c′1 = c′2) and (m1, c1) 6= (m2, c2) then
a1 ← (m1[n1 − n+ i− 1], c1[n1 − n+ i− 1])
a2 ← (m2[n2 − n+ i− 1], c2[n2 − n+ i− 1])
Return ((m1, c1), (m2, c2), a1, a2)

c1[n1 − n+ i+ 1]← c′1
c2[n2 − n+ i+ 1]← c′2

Return ⊥

Adversary Amem2(k, s)

(M1,M2)← AH((k, s), ε)
Return Bmem2((k, s),M1,M2)

Figure 17: Memory efficient algorithm and adversary to improve Theorems 6.4 and 7.2.

10 Conclusions

This paper revisited the MD transform to unify prior work and variants, improve security guaran-
tees and formalize folklore results. We introduced the RS security framework for hash functions
with which we simultaneously capture several standard notions of security for hash functions and
introduce our new notion of constrained collision resistance. Our new security notion allows us to
understand ways in which an MD hash function can satisfy collision resistance despite collisions
being known for its underlying compression function. In more detail, we have considered a param-
eterized MD transform that constructs a hash function H = MD[h, Split, S] from a compression
function h, splitting function Split, and set S of starting points. We have then comprehensively
investigated what assumptions on h and Split guarantee collision resistance (CR) of H. We have
shown that MD is better than advertised in the sense that conditions on h weaker than CR, for-
malized in our RS framework as constrained collision resistance (RccrS), suffice for H to be CR.
This strengthens guarantees on hash functions and partially explains why, historically, attacks on
compression functions have not immediately translated to attacks on the hash functions. The
consequences are the usual benefits of weakening assumptions, namely that weaker compression
functions are easier to design, harder to break and more likely to last. Furthermore, we have also
shown how to speed up hashing by using very simple Split functions.
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