
Formal Analysis of Vote Privacy using Computationally
Complete Symbolic Attacker

Gergei Bana1, Rohit Chadha2, and Ajay Kumar Eeralla2

1 University of Luxembourg
2 University of Missouri-Columbia, USA

Abstract. We analyze the FOO electronic voting protocol in the provable secu-
rity model using the technique of Computationally Complete Symbolic Attacker
(CCSA). The protocol uses commitments, blind signatures and anonymous chan-
nels to achieve vote privacy. Unlike the Dolev-Yao analyses of the protocol, we
assume neither perfect cryptography nor existence of perfectly anonymous chan-
nels. Our analysis reveals new attacks on vote privacy, including an attack that
arises due to the inadequacy of the blindness property of blind signatures and
not due to a specific implementation of anonymous channels. With additional
assumptions and modifications, we were able to show that the protocol satisfies
vote privacy. Our techniques demonstrate effectiveness of the CCSA technique
for both attack detection and verification.

1 Introduction

The FOO protocol was introduced by Fujioka, Okamoto, and Ohta in [1]. It was one of
the first protocols for large-scale secure electronic voting. The design was supposed to
achieve fairness, eligibility, vote privacy and individual verifiability. Since it’s publica-
tion, it has been the subject of several attempts to formalize and verify its security prop-
erties. The focus of this paper is the formal analysis of vote privacy of FOO, namely,
the property that the votes of honest voters cannot be linked to the voters.

As far as we are aware of, the FOO protocol was the first electronic voting proto-
col that was formally specified and analyzed [2]. In the seminal work of Kremer and
Ryan [2], both the formalization and analysis of the FOO protocol was carried out in
the Dolev-Yao (DY) attacker model using the applied pi-framework [3].

The vote privacy property was the most intricate property analyzed in [2], and Kre-
mer and Ryan were only able to prove vote privacy by hand. Subsequent development
in Dolev-Yao verification allowed the proof to carried out automatically [4, 5]. As the
Dolev-Yao attacker model makes the assumption of perfect cryptography, the ques-
tion of whether the proof carries over in the provable security model (computational
model) remained unansewered. In addition to the assumption of perfect cryptography,
the Dolev-Yao analysis also makes the assumption of existence of anonymous channels.

In this paper, we formally verify vote privacy in the provable security framework,
using symbolic verification techniques. In particular, we use the computationally com-
plete symbolic attacker technique for indistinguishability properties introduced by Bana
and Comon in [6] (a.k.a. CCSA framework). As far as we know, this is the first formal

analysis of FOO protocol in the provable security model. However, we emphasize that
proving vote privacy for FOO is only one aim of this paper. The other is to further de-
velop the library of axioms of the CCSA framework and to demonstrate its effectiveness
in attack detection and verification.

CCSA technique was first introduced by Bana and Comon in [7] for reachability
properties and then for indistinguishability properties in [6]. Since then it has been used
to find new attacks to the Needham-Schroeder-Lowe protocol [8, 9]; to treat algebraic
operations notoriously difficult to reason about in the Dolev-Yao framework, such as
exponentiation along with it the decisional Diffie-Hellmann property and versions of the
Diffie-Hellman key-exchange protocol [10]; to verify unlinkability of RFID protocols
[11]; and to analyze key wrapping API’s [12]. Automated tool is not yet available for
the indistinguishability technique, but work is in progress. In the meantime, we continue
developing the library of axioms, and verifying relatively simple protocols by hand. In
this paper, we add the axioms for security assumptions for trapdoor commitments such
as hiding property and for blind signatures such as the blindness property, which are
necessary for the FOO verification.

FOO protocol assumes two election authorities: administrator and collector. The
protocol proceeds in three phases: In the first phase, voters prepare their ballots in the
form of a trapdoor commitment of their votes and obtain a blind signature on the ballots
from the administrator indicating that they are eligible to vote. In the second, voters
send their ballots to the collector using an anonymous channel who publishes them on
a public bulletin board (BB). In the final phase, each voter verifies the presence of their
ballots on the BB and then sends their trapdoor key along with the entry number of
their commitment on bulletin board to the collector, again via an anonymous channel.
The trapdoor keys are then also added to the bulletin board next to the commitments.
After the votes finish, votes are tallied from BB. The creators of the FOO protocol did
not specify how the anonymous channels are implemented. In our modeling, we model
anonymous channel as a mix-net server [13] which, upon receiving a list of encrypted
messages outputs their plaintexts in lexicographic order after decrypting them.

FOO protocol is designed to provide vote privacy even when the administrator and
collector are corrupt and our analysis of vote privacy assumes this to be the case. As
in [2,14,15], vote privacy is modeled as indistinguishability of two protocol executions:
in one, honest voter A votes for candidate v1 and honest voter B votes for candidate
v2 and in the other, honest voter A votes for candidate v2 and honest voter B votes
for candidate v1. Observe that, as stated above, FOO protocol does not satisfy vote
privacy as the attacker may choose to forward only Alice’s trapdoor key in the final
phase of the protocol to the mix-net server. We argue that privacy of votes can never
be guaranteed for any voting protocol if the attacker allows only one participant to
complete the protocol. Hence, our formalization is carefully crafted to avoid these cases.

Our analysis revealed new attacks on the FOO protocol (See Section 3.2). The first
attack occurs because of an inadequacy of blindness property of blind signatures. Intu-
itively, blindness [16] means that a dishonest signer who engages in two sessions (par-
allel or sequential) with an honest user on messages m0 and m1 cannot detect which
session is for m0 and which session is for m1 if the user successfully outputs signa-
tures in both sessions. The blindness property, however, does allow the possibility that

the attacker can distinguish between the sessions if the user is successful in only one
session. In order to prevent this attack, we have to assume that the identities of the can-
didates are of equal length. This attack does not depend on the implementation of the
anonymous channel. The second attack exploits the fact that encryption scheme used by
the mix-net server may be length-revealing and hence the length of the encrypted mes-
sages to the mix-net server may reveal their senders. In order to prevent this, we have
to assume that the signatures obtained on equal length messages by executing the blind
signature interactive protocol with the same signer must be of equal length. The above
two attacks lie outside the Dolev-Yao model and hence were not detected in previous
works on formal analysis of FOO protocol. A third attack is a Dolev-Yao style replay
attack in which messages from the Voting phase can be replayed in the Opening phase.
This attack can be prevented by introducing phase numbers in the FOO protocol.

With these additional assumptions, we were able to establish vote privacy of the
FOO protocol. The proof of vote privacy rests on the blindness property of the blind
signature, the computational hiding property of the trapdoor commitments and of IND-
CCA2 assumption on the encryptionused in the anonymizing mechanism. The proof of
vote privacy in the Dolev-Yao analysis, in contrast, relies only on the blindness prop-
erty.3 The commitment hiding property of trapdoor commitments does not play a role
in establishing vote privacy in the Dolev-Yao analysis. As Dolev-Yao analysis assumes
anonymous communication as a primitive, IND-CCA2 justifiably does not play a role
in the Dolev-Yao analysis.

Related work. There have been several attempts at formal analysis of FOO protocol
in the Dolev-Yao model (see, for example, [2, 4, 5]). These analyses assume perfectly
anonymous channels. In the computational model, there are several attempts at formal-
izing vote privacy in electronic voting such as in [14, 15, 17, 18]. Please see [18] for a
comparison amongst these definitions. All these definitions apply to single phase vot-
ing protocols. Our definition is adapted to FOO-protocol which has three phases. The
only other work at formally verifying vote privacy for electronic voting that we are
aware of is the mechanized proof of vote privacy for the Helios family of single-phase
protocols given in [19]. The inadequacy of the blindness axiom has also been pointed
out in [20], who show how any blind signature scheme can be combined with trapdoor
commitments to resolve this inadequacy.

2 FOO voting protocol and its computational modeling

We briefly recall the electronic voting protocol FOO introduced by Fujioka, Okamoto,
and Ohta in [1]. We assume that the reader is familiar with the cryptographic prim-
itives of public key encryption, trapdoor commitment schemes and digital signatures
schemes. The FOO protocol also uses blind signature schemes. Informally, a blind sig-
nature scheme is an interactive protocol that allows a party U to obtain the signature
of a party S on a message that is obfuscated by U until S completes the protocol and
U publishes the signed message. We assume as in [21, 22] that the interactive protocol

3 As evidence, we ran AKiSs [5] on a two-phase variant of the FOO protocol without commit-
ments. The variant satisfies the vote privacy property in the Dolev-Yao model.

Authentication :

1 : Vi : computes ci := ξ(vi, ki), a commitment on her vote vi with trapdoor ki, bi := χ(ci, ri),

blinding the ballot ci with blinding key ri, and si := signi(bi), a signature on bi
2 : Vi → A : 〈IDi, bi, si〉
3 : A : verifies the signature si and eligibility (not yet applied for his signature) of Vi
4 : A→ Vi : bsignA(bi), (blind) signature of A on the blinded ballot bi
Voting :

5 : Vi : checks if the received message is A’s blind signature on bi; if the check

passes, Vi unblinds the signature and it is denoted by σA(ci)

6 : Vi 99K C : 〈ci, σA(ci)〉
7 : C : verifies the signature, and adds the received message to Bulletin Board (BB) with label `i
8 : C : after a certain time, C publishes the BB

Opening :

9 : Vi : finds her ballot on the BB and records its label `i
10 : Vi 99K C : 〈li, ki〉
11 : C : opens the commitments at li using the key ki, and appends 〈ki, vi〉 to

〈ci, σA(ci)〉 in the BB, and after a certain time, publishes the new BB

12 : C : checks the validity of the votes, counts them and publishes the result

Fig. 1. FOO Voting Protocol

consists of three phases: blinding by U , (blind) signing by S and unblinding by U . The
primitives are described in detail in Section 2.2.

The FOO protocol has three roles: voters (Vi), administrator (A), and collector (C). It
assumes the existence of anonymous channels. Following Kremer et al [2], we group the
protocol in three phases, Authentication, Voting, and Opening, as described in Figure
1. In the Figure,→ means send, 99K means send via anonymous channel.

2.1 Anonymous Channel

The creators of FOO did not specify how to implement anonymous channels. We now
clarify our modeling of the anonymous channels. We model the anonymous communi-
cation using a mix-net server which, upon receiving a list of messages encrypted with
its public key, checks if they are all different, decrypts each message in the list, outputs
them in lexicographic order. Henceforth, we refer to mix-net server as the mixer. In par-
ticular, in the Voting phase (resp. Opening phase), the voter encrypts 〈ci, σA(ci)〉 (resp.
〈li, ki〉) with the mixerM ’s public key pkM . The mixer waits until a certain time during
which receives the messages from the voters, checks if all messages received until that
time are distinct. If the check succeeds, the mixer decrypts the messages, shuffles the
decrypted messages into lexicographic order and outputs them.

2.2 Computational modeling of the FOO protocol

As usual, we assume that all agents in the protocol execution, the voters, the admin-
istrator, the collector are interactive probabilistic polynomial-time Turing machines.

Furthermore, the network is controlled by an attacker, which is also an interactive prob-
abilistic polynomial-time Turing machine. Each message goes through the attacker, ex-
cept those that are “published”, in which case the message is written directly on each
participant’s work tape synchronously. The Bulletin Board BB is simply a list of tuples.
We further assume that the id’s IDi are the same as the voters’ public keys used for
verifying their digital signatures.

We assume that encryption used in the protocol is indistinguishable against adap-
tive chosen cipher text attack, i.e., satisfies the IND-CCA2 property. The interested
reader is referred to [23]. Digital signatures are used in the protocol to ensure that only
eligible voters vote and do not play a part in establishing vote privacy. We now present
the computational modeling of the commitment and blind digital signature schemes,
and their security properties we assume for the verification.
Trapdoor Commitments. A trapdoor commitment scheme allows one party, say V , to
commit to a value obfuscating the value it committed to until it is revealed by V with the
help of the trapdoor. In general, a commitment scheme satisfies two properties: binding
and hiding. The former property states that the party V cannot change the message
once V committed to it while the latter property says that it should be computationally
infeasible for any other party to retrieve the message from the commitment unless the
V reveals the trapdoor.

Formally, a commitment scheme [23] C is a triple of algorithms (KG, Commit,
Open) such that KG is a PPT algorithm with input 1η , while Commit and Open are
PT algorithms such that there is a polynomial p(·) such that for each security parameter
η and bit-string m of length at most p(η), Commit(m, k) computes the commitment
on messagem for k ← KG(1η), andOpen is a deterministic algorithm such that for all
k ← KG(1η), Open(Commit(m, k),m, k) = true. We assume that the commitment
schemes are length regular. That is if m0 and m1 are messages of equal length then the
commitments of m0 and m1 are of equal length [24, 25].

The computational hiding property is formalized as a game between a (PPT) at-
tacker and a (honest) challenger. Initially, the attacker generates two messages m0 and
m1 of equal length, which it gives to the challenger. The challenger creates commit-
ments, com0 and com1 for m0 and m1 with different (secret) commitment keys and
sets a secret bit b with uniform probability. The challenger then gives the ordered pair
(comb, com1−b) to the attacker who wins if it correctly guesses the value of b. The
commitment scheme is said to satisfy the commitment hiding property [23] if the win-
ning probability of the attacker cannot be non-negligibly different from 1

2 . Please see
Appendix A for the formal definition.
Blind Digital Signatures. Blind signature schemes were introduced by Chaum [21].
They are small interactive protocols between a user and a signer. Informally, a blind
signature scheme is an interactive protocol that allows a party U to obtain the signature
of a party S on a message that is obfuscated by U until S completes the protocol and U
publishes the signed message.

Formally, a blind digital signature scheme [16,22] B is a tuple (Gen, 〈S,U〉 , verif),
a PPT key generation algorithm Gen, an interactive algorithm 〈S,U〉 of the PPT singer
S and the PPT user U , and a PT verification algorithm verif, such that for each security
parameter η: Gen(1η) outputs a public and private key pair (pk, sk), the joint execution

of signer S(pk, sk) and the user U(pk,m) on the message m ∈ {0, 1}η produces an
output σ for the user, and the deterministic algorithm verif(m,σ, pk) outputs a bit.
The algorithm U(pk,m) may fail to produce an output; in which case U is said to
abort and U(pk,m) said to be undefined. In that case, we write U(pk,m) = ⊥. A
blind signature scheme is required to be complete, i.e., for all parameter η the following
holds: for all messages m ∈ {0, 1}η , if (pk, sk) ← Gen(1η) then the joint execution
of S(pk, sk) and U(pk,m) must be defined and the produced output σ should be such
that verif(m,σ, pk) = true.

Blind signatures should also satisfy two security properties, blindness and unforge-
ability. Intuitively, unforgeability says a malicious user who engages in ` sessions with
an honest user should not be able to produce `+1 valid message-signature pairs. In the
FOO protocol, unforgeability is used to make sure only eligible voters vote. It does not
play a role in voting privacy. For this reason, we omit the formalization of unforgeabil-
ity. The interested reader is referred to [16].

The blindness property [16] on the other hand, is useful in establishing privacy of
votes. Intuitively, blindness means that a dishonest signer cannot learn the contents of
the message it signed. The blindness property is formalized as a game between a (PPT)
attacker acting as the signer and a (honest) challenger. Initially, the attacker generates
two messages m0 and m1, which it gives to the challenger. The challenger sets a secret
bit b with uniform probability. The challenger, acting as the user, then engages in two
blind signature sessions with the attacker as the signer; the first is for obtaining signa-
ture on mb and the second is for obtaining signature on m1−b. If the user successfully
completes both sessions and obtains signature σb, σ1−b then it gives the ordered pair
(σ0, σ1) to the attacker. Otherwise, it gives the pair (⊥,⊥) to the attacker. The attacker
wins if it correctly guesses the value of b. Note that it is important that the challenger
gives the pair (σ0, σ1) and not (σb, σ1−b) (otherwise the attacker will win with proba-
bility 1). The blind signature scheme is said to satisfy the blindness property [16] if the
winning probability of the attacker cannot be non-negligibly different from 1

2 . (Please
see Appendix A for the formal definition).

We model the blind signatures using an interactive protocol between the user and the
singer in three steps, blinding, blind signing, and unblinding and involving four algo-
rithms, blind, bsign, accept, and unblind [21,22]. Before the protocol commences, the
signer generates a public key and secret-key pair (pk, sk) and publishes pk. Blinding:
User computes b := blind(m, pk, rb) for a message m, using the signer’s public key
pk, and a random seed rb, and sends b to the signer. Blind signing: The signer computes
ρ := bsign(b, sk, rs) using his own secret key sk and a random seed rs, and sends it
to the user. Unblinding: User checks validity of ρ by running accept(m, pk, rb, ρ). If it
outputs false, the user quits the protocol without any output. If it outputs true, the user
computes σ = unblind(m, pk, rb, ρ).

3 Vote privacy for the FOO protocol

We describe the targeted security notion of the voting, namely, that votes of honest
voters remain secret. The fundamental idea of vote privacy in the literature is that per-
mutation of votes cast by honest voters cannot be detected by the attacker. There are

numerous attempts to formalize this idea into rigorous terms, see for example [2, 18].
A major distinction between the protocols considered in [2, 18] and FOO protocol is
that unlike the single-phase protocols considered therein, the Bulletin Board (BB) is
built incrementally in FOO in different phases. Hence, we have to adapt the definition
of privacy of votes to FOO protocol. We describe our formalization below. We consider
only one session.

3.1 Formalization of Vote Privacy

We assume that the attacker controls the network and we allow the administrator and the
collector to be corrupt. We require that the flipping of votes of two honest voters should
result in computationally indistinguishable runs to any PPT attacker even if he controls
all other voters. Under these assumptions however, there is an obvious unavoidable
attack. SupposeA votes v0 andB votes v1, while in the flipped voting scenario,A votes
v1 and B votes v0. If the attacker allows the ballots of both A and B to be posted in the
Voting phase, but subsequently blocks B’s message in the opening phase, then the two
situations will be distinguishable. This is because in the first scenario only v0 vote will
appear on the BB, while in the second, only v1. Therefore, our formalization requires
that the scenario with the original votes and with the flipped votes be indistinguishable
only when either both voters’ votes appear on the BB or neither does.

Accordingly, we require the following two games to be computationally indistin-
guishable to a PPT attacker. For bit b, let Πb be the following game between the At-
tacker and the Challenger simulating two honest voters of the FOO protocol and the
mixer but aborting when only one of the commitment keys reach the mixer. The at-
tacker simulates the corrupt administrator, the corrupt collector, and at the end has to
guess the value of b:

1. Challenger publishes public keys of A, B, and the mixer, and a list of candidates.
2. Attacker publishes possibly dishonestly generated public keys of other voters, the

administrator, and the collector. It then gives Challenger two valid votes v0 and v1.
3. Challenger creates the ballots of vb for A and v1−b for B.
4. Attacker calls one of A or B to authorize vote with administrator.
5. Challenger prepares the corresponding blinded ballot. It sends the corresponding

identity, the blinded ballot, and the corresponding signature to the attacker.
6. Attacker creates the possibly fake authorization, sends it back to the voter, and calls

for the other voter to carry out the authorization.
7. Challenger prepares the appropriate blinded ballot and sends it to the attacker.
8. Attacker creates and sends again the authorization now for the other voter, and asks

either A or B to proceed with sending the ballot.
9. If the corresponding blind signature was accepted, Challenger unblinds it, and

sends the signed ballot encrypted with the mixer’s public key. Otherwise skips.
10. Attacker makes some computations and sends a message back (which is possibly

the unchanged ciphertext sent in the previous step).
11. If the other ofA orB’s blind signature was accepted, Challenger now unblinds that,

sends the signed ballot encrypted with the mixer’s public key. Otherwise skips.
12. Attacker makes some computations and sends a message back (which is possibly

the unchanged ciphertext sent in the previous step).

13. Attacker also sends the Challenger further possible encrypted signed ballots of the
other, possibly corrupted voters.

14. Challenger waits for all the signed encrypted ballots to arrive. It decrypts the signed
ballots with the secret key of the mixer, and puts them through the shuffle. Gives
the result of the shuffle to the attacker.

15. Attacker creates the bulletin board BB and gives it to the Challenger. Note that the
ballots ofA andB may or may not appear on the BB. Attacker also specifies which
of A or B should move to the next step first.

16. If A (resp. B) was asked to move next, A (resp. B) accepted the blind signature in
phase 2 andA’s (resp.B’s) ballot appears on the bulletin board, then the Challenger
sends A’s (resp. B’s) 〈li, ki〉 to the attacker encrypted with the public key of the
mixer. Otherwise, the challenger skips this step.

17. Attacker makes some computations and sends a message back (which is possibly
the unchanged cipher sent in the previous step).

18. If the other agent accepted the blind signature in phase 2 and its ballot appeared on
the bulletin board, then the Challenger sends the other agent’s 〈li, ki〉 to the attacker
encrypted with the public key of the mixer. Otherwise, it skips this step.

19. Attacker makes some computations and sends a message back (which is possibly
the unchanged cipher sent in the previous step).

20. Attacker may also send other messages of the form 〈li, ki〉 encrypted.
21. Challenger puts the decrypted messages through the shuffle. If only one of A’s or

B’s commitment key appears, the Challenger aborts. If none of them appear or both
of them appear, the Challenger gives the result of the shuffle to the attacker.

22. The attacker outputs 0 or 1.

If in the situation above the probability that the attacker outputs 1 playing game Π0 is
non-negligibly different from outputting 1 playing game Π1, then the attacker wins the
game. Our aim is to show that no PPT attacker can win the above game.

3.2 Attacks on the FOO Protocol

We describe three attacks on the vote privacy for FOO protocol, which we caught with
the CCSA technique. We will comment in the next section on how attacks are found.
The first two attacks cannot be captured in the Dolev-Yao attacker model as they cannot
be discovered under the assumption of perfect cryptography. The third attack can is
Dolev-Yao attacker in nature but does not appear in previous Dolev-Yao analyses of the
protocol as those analyses assume perfectly anonymous channels.

The first attack exploits an insufficiency in the blindness property. This insufficiency
has also been pointed out in [20]. Recall that in the blindness game, a (potentially dis-
honest) signer engages in two sessions (parallel or sequential) with an honest user on
messages m0 and m1. If one session successfully completes and the other aborts then
the information of which session aborted is not revealed to the attacker. Thus, the blind-
ness property does not rule out the possibility that the signer is able to deduce which
session corresponded to m0 and which corresponded to m1 if one session aborted and
the signer knows which session aborted. For example, in the three-step blind signature
scheme described above, replace accept by accept′ where accept′(m, pk, rb, ρ) always

returns false if m is of even length and returns the value of accept(m, pk, rb, ρ) other-
wise. The resulting blind signature scheme continues to satisfy the blindness property
if the original one does. Now, if m0 is of even length and m1 is of odd length, then the
session corresponding to message m0 always aborts and thus the dishonest signer be
able to associate the aborted session to m0.

The first attack on FOO protocol proceeds as follows. Assume that we use the mod-
ified blind signature scheme in the FOO protocol and that the candidate choice v0 is
of even length and the choice v1 is of odd length. Since commitments may reveal the
length, it is possible that the commitment of v0 is also even while of v1 is odd. Assume
that A chooses vb and Bob chooses v1−b. Vote privacy requires that the attacker not be
able to deduce the value of b. In authentication phase, the attacker, acting as the admin-
istrator, correctly follows the protocol. The blinding still hides the commitments even
though their lengths are different, but according to our modified accept algorithm, the
signature on v0 will be rejected while the one on v1 will be accepted. Then during the
voting phase, only one voter will send its ballot to the administrator. If this voter is A
then b must be 1, otherwise b must be 0. Note, this attack is not a feature of our specific
implementation of the anonymous channel. Note also that even though the commit-
ments are revealed on the BB, there they appear in the same order on the two sides,
so the attack works not because the commitments reveal to the attacker the vote inside,
but because one accept may pass, the other may not. Observe also that the attack does
not manifest if v0 and v1 are of equal length. Indeed, if v0 and v1 are of equal length
then the property of commitment hiding ensures that an abort by a voter does not reveal
information about its intended vote.

The second attack relies on the fact that there is no guarantee on the lengths of the
(blind) signatures and that an encryption scheme used may reveal the lengths of the
underlying plaintexts. If a length revealing encryption scheme (such as IND-CCA2)
is used then the encrypted ballots in the voting phase are different, which allows the
attacker to deduce how A and B voted. To rule out this attack, we have to assume that
the (blind) signatures on equal length messages are of equal length.

Finally, we point out the Dolev-Yao style attack on the FOO protocol. The attack
replays a message in the voting phase of the protocol in the opening phase. Assume that
there is a third voter C in addition to A and B. The attacker remembers A’s encrypted
ballot to the mixer in the voting phase. In the opening phase of the protocol, the attacker
forwards the encrypted commitment keys of A and B to the mixer, but replaces C’s
commitment key by A’s encrypted ballot from the voting phase. The mixer checks
that the three encryptions are different, decrypts them and outputs them after shuffling
them into lexicographic order. The only ballot that appears in the output is A’s. The
commitment keys of A and B are also part of the output. The attacker can then deduce
howA andB voted. In order to prevent this attack, we modify the FOO protocol to also
include phase numbers inside the encryptions in the voting and opening phases of the
FOO protocol. The mixer must check that the phase numbers correspond to the current
phase in the protocol.

4 Computationally complete symbolic attacker (CCSA)

The CCSA model was introduced by Bana and Comon in [7] with the aim of establish-
ing computational guarantees for symbolic analysis by making the symbolic attacker as
powerful as the computational one. We limit our attention in this paper to their indistin-
guishability framework given in [6]. The CCSA framework is similar to the Dolev-Yao
framework in the sense that explicit symbolic adversarial messages are created. The
Dolev-Yao framework specifies all rules that the attacker can use to create new mes-
sages from what he has seen, and the protocol agents use pattern matching to check
whether messages coming from the attacker have the correct form. On the other hand,
in the CCSA framework, each message from the attacker is modeled by a function fi
applied to the sequence of messages that the attacker has seen thus far. Pattern match-
ing is replaced by applying function symbols on the term coming from the attacker.
Limitations on attacker capabilities originating from computational assumptions on the
primitives are specified as a set of axioms A in first-order logic based on a single indis-
tinguishability predicate (representing computational indistinguishability of sequences
of messages). Computationally, a security property of a protocol Π is formulated as the
computational indistinguishability of two protocols Π1 and Π2 constructed (depending
on the security property) from the original Π .

Verification. In the CCSA framework, the security translates to the validity of the
formula obtained by applying the indistinguishability predicate on the list of terms pro-
duced by the symbolic execution of Π1 and Π2. Hence the security formula obtained
this way must be derived as a logical consequence of the axioms A using first-order
inference. If the formula is derived and the axioms in A shown to be computationally
sound then the protocol Π is computationally secure according to Theorem 1 in [6].

Attack finding. If the security formula cannot be derived then the negation of the
security formula is consistent with A and a symbolic attacker model is then obtained.
In practice, for the security proof, a proof tree is being built, and some branch cannot
be reduced to axioms. For example, often what happens is that it cannot be shown that
an attacker message fi(· · ·) cannot equal a term, that is, the attacker may produce a
message that passes some check when it should not. Then from this branch, an Her-
brand model can be built on the terms, resulting in a symbolic attack. This symbolic
attack then has to be checked to see if it corresponds to a computational attacker or if it
originates from having too few axioms in A, as the set of axioms is not complete.

4.1 Syntax

Terms: Let S be a finite set of sorts that includes at least the sorts bool and msg.
X is an infinite set of variable symbols, each coming with a sort s ∈ S. Terms are
built on a set of function symbols F representing honest computation of primitives,
a set of function symbols G representing attacker’s computation, a set of zero-arity
function symbols (names) N representing honest generation of randomness, and a set
of variables X . The set F contains the basic symbols such as 0, true, false, L, 〈 , 〉,
EQ(,), if then else , π1 and π2 with the typing rules as follows:

– 0 : msg representing the empty message.

– true, false : bool.
– L() : msg→ msg. L(x) represents the length of x in unary.
– 〈 , 〉 : msg×msg→ msg representing pairs.

– Polymorphic equality test EQ(,) :
msg×msg→ bool
bool× bool→ bool.

– Polymorphic conditional branching if then else :
bool×msg×msg→ msg
bool× bool× bool→ bool.

– π1(), π2() : msg→ msg. πi represents the i-th projection of a pair

Formulas: As presented in [10], we have for every sequence of sorts s1, . . . , sn a pred-
icate symbol that takes 2 × n arguments of sort (s1 × . . . × sn)2, which we write as
t1, . . . , tn ∼ u1, . . . , un. The predicate t1, . . . , tn ∼ u1, . . . , un represents computa-
tional indistinguishability of the two sequences of terms t1, . . . , tn and u1, . . . , un.

The first-order formulas are built from the above atomic formulas combining the
Boolean connectives ¬, ∧, ∨, and→, and the quantifiers ∀ and ∃. The formulas are used
to represent both axioms (assumptions) and the security properties of the protocols.
Equational Theory: We use binary relation symbol =E to indicate equations the func-
tion symbols have to satisfy. Note that =E is not part of the first-order signature. The
equations specified by =E will result in axioms for ∼. We assume that the following
hold: ∀x1, x2. πi(〈x1, x2〉) =E xi, for i = 1, 2; L(L(x)) =E L(x).
Abbreviations: In order to reduce the size of the terms, we shall use the following
abbreviations: not(b)

def≡ if b then false else true , b1 & b2
def≡ if b1 then b2 else false ,

b1 or b2
def≡ if b1 then true else b2 and x = y

def≡ EQ(x, y) ∼ true. The abbreviation
EQL(x1, x2)

def≡ EQ(L(x1), (L(x2))) modeling length equality test.

4.2 Semantics

As Bana and Comon defined it in [6], the logic is interpreted over a computational
model. A computational modelMc is a particular first-order model in which the domain
consists of probabilistic polynomial-time algorithms taking the input 1η together with
two infinitely long random tapes (ρ1, ρ2), where ρ1 is for honestly generated names, and
ρ2 for adversarial use. We use [[]] to denote the semantics of syntactic objects. Once [[]]
is given on function symbols, and a valuation σ of variables of term t in the domain,
the interpretation of t in the domain is defined the usual way and denoted as [[t]]σ.
Let [[t]]ση,ρ := [[t]]σ(1η; ρ1, ρ2). In this model, function symbols in F representing the
cryptographic primitives are interpreted as polynomial-time algorithms and they act on
the outputs of the PPT algorithms in their arguments. For example, [[EQ(t1, t2)]]

σ
η,ρ := 1

if [[t1]]
σ
η,ρ = [[t2]]

σ
η,ρ, otherwise it is 0, and [[if t1 then t2 else t3]]ση,ρ := [[t2]]

σ
η,ρ if

[[t1]]
σ
η,ρ = 1, and [[if t1 then t2 else t3]]ση,ρ := [[t3]]

σ
η,ρ if [[t1]]ση,ρ = 0. Function symbols in

G representing adversarial computation are interpreted as probabilistic polynomial-time
algorithms and they also act on the outputs of the PPT algorithms in their arguments, but
they can also use randomness from ρ2. Each name n ∈ N is interpreted as a machine
[[n]] which extracts a random word of length p(η) (where p is a polynomial globally
fixed by Mc) from ρ1. Different names draw from disjoint parts of the tape ρ1. The
predicate symbol ∼ is interpreted as computational indistinguishability of the outputs
of the PPT algorithms on the two sides of ∼. Interested reader can consult either [6]

Commitments Encryptions Blind Signatures Signatures Other Symbols

kc(): msg
com(,): msg
open(, ,): msg

Shuffling
shufl(, ,): msg

ke(): msg
re(): msg
{ } : msg
dec(,): msg

⊥: msg
kb(): msg
rb(): msg
bsign(, ,): msg
b(, ,): msg
ub(, , ,): msg
acc(, , ,): bool
bver(, ,): bool

ks(): msg
rs(): msg
sign(, ,): msg
ver(, ,): bool

ph2, ph3: msg
A,B,M : msg
C1, C2, C3: msg
to(): msg
V0(): msg
V1(): msg
pubkey(): msg

Table 1: FOO function symbols with their co-domain sorts (each argument sort is msg)

or [10] for complete definition of this semantics. A formula is computationally valid if
it is satisfied in all computational interpretations.

4.3 Computationally Valid Axioms

A core set of valid axioms of the CCSA have been given in [10] and are reproduced in
Appendix B. Essentially, these core axioms can be divided into four sets. The first set
of axioms reflect the properties of the indistinguishability predicate ∼, namely, that it
is an equivalence relation and is preserved under projection, permutation and function
application. The second set of axioms says that the abbreviation = is a congruence and
preserves the equational theory =E . The third set of axioms reflect the properties of
the function symbol if then else such as if true thenxelse y = x. Finally, we have
a couple of axioms that reflect the truly random nature of names such as replacing any
name n1 by a fresh name n2 yields indistinguishable sequence of terms. The interested
reader is referred to [10] for additional details, where several small examples of usage
of the axioms are also given.

5 Vote Privacy for the FOO Protocol in CCSA Framework

We now explain how vote privacy for modified FOO protocol can be modeled in CCSA
framework. We assume that the FOO protocol is modified to ensure that the length can-
didate identities are equal and that the phase identifiers are used in Voting and Opening
phase. We will drop the adjective modified in the rest of the section. In order to make
things simpler, we assume that other than voters A and B, there is only a single other
(possibly dishonest) voter. The proof of vote privacy carries over to n voters for any n.

5.1 Function Symbols and Axioms

In order to formalize the FOO voting protocol in the CCSA framework, we shall in-
clude the following (see Table 1) function symbols in F . Please note that each argu-
ment in these symbols has sort msg. Each key-generation algorithm and each random
seed generation will be represented by a corresponding unary function symbol. When
the function symbol is applied to a name n (recall that names represent truly random
objects), then the resulting term shall represent a correctly generated key or seed.

Commitments. We include a symbol kc() in F to represent the key generation algo-
rithm for the commitment schemes defined in Section 2.2. com(x, y) is the commitment
of x using the key y whereas open(u, z) is the opening of the commitment u using the
key z. We assume that, for all x, y, open(com(x, kc(y)), kc(y)) =E x.
Encryptions. The symbol ke() denotes the public-key secret-key pair generation al-
gorithm of encryptions. We define pke(x)

def≡ π1(ke(x)) and ske(x)
def≡ π2(ke(x)),

the public encryption key and secret decryption key parts of ke(x) respectively. In or-
der to formalize the random seed of encryptions, we introduce a symbol re() (see
Table 1). Encryption of x with random seed z and public key y is denoted as {x}zy and
decryption of x with secret key z is denoted as dec(x, z). We assume that for all x, y, z,
dec({x}zpke(y), ske(y)) =E x.

Blind signatures. We introduce a symbol kb() to represent a public-verification-key
secret-signing-key pair generation algorithm of blind signatures. Once again, pkb(x)

def≡
π1(kb(x)) and skb(x)

def≡ π2(kb(x)) represent the public verification key and secret
signing key parts of the key kb(x). We also introduce a symbol rb() to represent blind-
ing key generation algorithm. The interpretations of the function symbols b, bsign, bver,
ub and acc are blind, blindsign, verify, unblind and accept as defined in Section 2.2.
b(x, y, z) is the blinding of the message x using the public verification key y and the
blinding key z. bsign(x, y, r) is the (blinded) message x blind-signed with secret blind
signing key y and random seed r. acc(x, y, z, w) is the acceptance check of the blind-
sign w created for the blinded message b(x, y, z) and ub(x, y, z, w) its unblinding. ⊥
represents undefined that is used to model blindness game. Finally, bver(x, s, y) is the
verification of unblinded signature s on the message x with the public verification key
y. The co-domains of the symbol acc and bver is bool.
Digital signatures. In addition to blind signatures, we also need plain digital signatures.
As in [10], let ks() represent generation of a key pair, the public verification key and the
secret signing key. vk(x)

def≡ π1(ks(x)) and ssk(x)
def≡ π2(ks(x)) represent the public

verification key and secret signing key parts of the key ks(x). In order to randomize
signatures, we introduce a symbol rs() for random seed generation. sign(x, y, r) is the
message x singed with secret signing key y with a random seed r and ver(z, u, y) is the
verification of signature u on the message z with the public verification key y.
Mixer. We introduce a symbol shufl(, ,) to model the shuffling functionality of mix-
nets. shufl(x1, x2, x3) is the lexicographic ordering of the messages x1, x2, and x3. As
we model only three voters, shufl has only three arguments.
Other function symbols. We introduce constants ph2 (resp. ph3) to represent the Vot-
ing (resp. Opening) Phase of the FOO protocol. These symbols are necessary to avoid
replay attacks in which an attacker can learn honest vote value by forwarding one of the
honest voter’s message from the Voting Phase to the Opening Phase (see 3.2). Constants
A and B model the identity of two honest voters and constant M models the identity of
the mixer. C1, C2, C3 model the identities of the candidates. (For simplicity, we assume
only three candidates.) Finally, the function symbols to(),V0(),V1(), pubkey() are
used to model the security game and explained in Section 5.2.
Axioms. We present axioms (see Table 2) that formalize the security assumptions on
the primitives. The axioms use the notion of freshness [6]: For any list of names ~n, and

a (possibly empty) list of terms ~v, fresh(~n;~v) is the constraint that the names in ~n are
pairwise distinct and that none of the names in ~n occur in ~v.

The axiom COMPHID models the computational hiding property of the commit-
ments (see Section 2.2). Intuitively, the axiom says that if the attacker is presented with
commitments on equal length messages but the order of these messages is hidden, then
the attacker cannot determine the order if it does not have access to commitment keys.
COMPHID can be shown to be computationally valid if and only if [[kc()]], [[com(,)]],
[[open(,)]] satisfy the computational hiding property.

The axiom BLINDNESS models the blindness property of the blind signatures (see
Section 2.2). Intuitively, in the blindness game, the dishonest signer attacker is asked to
sign two blinded messages (could be of unequal length), but the order of these messages
is hidden. Thus, the blinded messages on the two sides of ∼ are in reversed order.
Moreover, the signer is also allowed to see the unblinded signatures if the user does not
abort for either signature. However, in order to hide the order, the unblinded signatures
are presented in the same order. BLINDNESS can be shown to be computationally
valid if and only if blind signature scheme ([[kb]].[[rb]], [[b]], [[ub]], [[bsign]], [[acc]], [[bver]])
satisfies the blindness property.

The axiom SHUFFLE models the shuffling capability of the mixer. We also re-
quire further assumptions on the primitives. In particular, the commitments and pairing
should be length regular, unblinded signatures on equal length messages by the same
signer must have equal length, honestly generated commitment keys must have equal
length, candidate names should have identical length and phase identifiers should be
distinct but have identical length. For lack of space, the formalizations of these proper-
ties is given in Appendix C.

Finally, we recall the axiom representing IND-CCA2 property of encryptions from [10].
Let ~t [x] be a list of terms with a single variable x. For a closed term v, let ~t [v] denote
the term that we receive from ~t [x] by replacing all occurrences of x by v. Let u, u′, u′′

be closed terms. Consider the formula

~t [if EQL(u, u′) then {u}re(n2)
pk(n1)

else u′′] ∼ ~t [if EQL(u, u′) then {u′}re(n3)
pk(n1)

else u′′]

in which n1 ∈ N occurs only as k(n1), sk(n1) only occurs in decryption position (that
is, as in dec(, sk(n1))), and n2, n3 do not occur anywhere else. We call the above for-
mula ENCCCA2 if for any t′[x] term with x explicitly occurring in t′[x], dec(t′[x], sk(n1))
occurs only as if EQ(t′[x], x) then t′′[x] else dec(t′[x], sk(n1)), where t′′[x] is not of
the form dec(t′′′[x], sk(n1)). The intuition is that since in the IND-CCA2 game, after
encryption, the decryption oracle decrypts only those messages that are different from
the encryption, we have to make sure that the decrypted message, t′[x] is different from
the encryption, for which x stands. The reader is referred to [10] for additional details.

5.2 Modeling the Vote Privacy Security Game

As defined in [6], the BC technique treats protocols as abstract transition systems. We
do not recall the formal definitions, we just apply them to the vote privacy games Πb

for b = 0, 1 between the Challenger and the Attacker as defined in Section 3.1. The
transition system produces the terms of the execution, on which the indistinguishability

COMPHID: Let t, t1, and t2 be three ground terms and let ~z be a list of ground terms and n1

and n2 be names such that fresh(n1, n2; ~z, t, t1, t2) holds.

~z,
if EQL(t1, t2)
then 〈com(t1, kc(n1)), com(t2, kc(n2))〉
else t

∼ ~z,
if EQL(t1, t2)
then 〈com(t2, kc(n1)), com(t1, kc(n2))〉
else t

BLINDNESS: Let m0, m1, t be ground terms and let ~z be a list of ground terms. Let t0
and t1 be terms containing two variables x and y. Let n0, and n1 be names such that

fresh(n0, n1; ~z, t,m0,m1, t0, t1) holds.

~z, b(m0, t,rb(n0)), b(m1, t,rb(n1)), u0 ∼ ~z, b(m1, t,rb(n0)), b(m0, t,rb(n1)), u1

where uj = if accj0 & accj1 then pj else 〈⊥,⊥〉 , acc0i = acc(mi, t,rb(ni), t
0
i)

acc1i = acc(m1−i, t,rb(ni), t
1
i), p

j =
〈

ub(m0, t,rb(nj), t
j
j), ub(m1, t,rb(n1−j), t

j
1−j)

〉
tji = ti[x← b(mj , t,rb(n0)), y ← b(m1−j , t,rb(n1))], i, j ∈ {0, 1}

SHUFFLE: For any permutation p of {1, 2, 3}, shufl(x1, x2, x3) = shufl(xp(1), xp(2), xp(3))

Table 2: Axioms that formalize the computational assumptions of the primitives

predicate is applied. The verification task is to prove that the axioms together with first-
order inference rules imply that the execution terms produced by the transition system
for b = 0 and for b = 1 are indistinguishable.

Recall that in addition to honest voters A and B, there is an additional voter only a
single other voter. We assume the mixer M is honest, and the administrator as well as
the collector are corrupt. Recall that we assume that the names A, B, and M are dis-
tinct message constants. We also use distinct names nA, nB , nM for (honest) signing
key generations for the voters A, B, and encryption key generation for the Mixer M .
The function symbol to extracts from an incoming message the agent name. This allows
the attacker to specify which of A, B, and M should receive the message sent by the
attacker. The function symbols Vb, b ∈ {0, 1} extract from an incoming attacker mes-
sage the candidate choices for the honest voters A and B. The function symbol pubkey
extracts from an incoming attacker message the (dishonest) public-key of the attacker.

We present the transition diagram that represents the Authentication Phase of the
security game Πb in Figure 2. It illustrates all possible moves of the challenger in the
authentication phase. At the start of the game, the knowledge of the attacker is initial-
ized and is represented by φ0. The left branch of q1000 represents the situation where
A moves first for authentication followed by B while the right branch simulates the
situation that B moves first followed by A. θpi [xj]s are the bool conditions that the
challenger checks upon receiving the message xj from the attacker before taking the
respective transitions. Here p represents the Phase number, i represents the agent that
has to move (we use 1 for A, 2 for B and 3 for M) and j represents the message num-
ber. Similarly the terms tpi [xj]s represent the outputs of the challenger to the attacker

qs

q1000 Φ0

q1100t11[x1]

q2110t12[x2]

θ12[x2]

θ11[x1]

q1010t12[x1]

q2110t11[x2]

θ11[x2]

θ12[x1]

θ11[xi] ≡ (EQ(to(xi), A) & vcheck[vb]
t11[xi] ≡

〈
vk(nA), b1, sign(b1, ssk(nA),rs(n

1
s))
〉

θ12[xi] ≡ (EQ(to(xi), B) & vcheck[v1−b]
t12[xi] ≡

〈
vk(nB), b2, sign(b2, ssk(nB),rs(n

2
s))
〉

where i is in {1, 2}
Φ0 ≡ A,B,M, vk(nA), vk(nB), pke(nM), C1, C2, C3

b1 ≡ b(c1,PKAD,rb(n1
b)); c1 ≡ com(vb, kc(n

1
c))

b2 ≡ b(c2,PKAD,rb(n2
b)); c2 ≡ com(v1−b, kc(n

2
c))

vcheck[v] ≡ EQ(v, C1) or EQ(v, C2) or EQ(v, C3)
vb ≡ Vb(x1); v1−b ≡ V1−b(x1)
PKAD ≡ pubkey(x1)

Fig. 2. Authentication phase of the security game Πb

which increases attacker’s knowledge. When the checks in a transition fail, the transi-
tion moves to state qexit, which we omit in transition diagram for clarity. The transition
systems for other phases can be similarly defined (see Appendix D for more details).

We obtain the execution terms from the transition system in the following way. For a
given b bit of the Challenger, Φbi lists of terms representing what the attacker has seen up
to step i are created according to the rounds of the protocol. Notice that the initialization
frame Φ0 is defined in Figure 2 and it is independent of the bit b. For the first step, the
attacker’s computation f1 is applied to Φ0, and f1(Φ0) is sent to the Challenger, who
then carries out the checks θ11 and θ12 , and sends back

φb1 := if θ11[f1(Φ0)] then t11[f1(Φ0)] else (if θ12[f1(Φ0)] then t12[f1(Φ0)] else 0),

and we set Φb1
def≡ Φ0, φ

b
1. Similarly, in the second step, we have

φb2 :=
if θ11[f1(Φ0)]
then (if θ12[f2(Φb1)] then t12[f2(Φb1)] else 0)
else (if θ12[f1(Φ0)] then (if θ12[f2(Φb1)] then t12[f2(Φb1)] else 0) else 0),

and Φb2
def≡ Φb1, φ

b
2, which is the end of the authentication phase. The other phases are

done similarly continuing from Φb3.
Let Φbm be the last frame. In order to establish vote-privacy for the FOO protocol we

have to show that the axioms and first-order inference rules imply that Φ0
m ∼ Φ1

m. Then
from the soundness theorem of [6], it follows that there is no successful PPT attacker
break the security game. We have the following (See Section E for the proof).

Theorem 1. The modified FOO protocol respects vote privacy for one session.

6 Conclusions

We analyzed the FOO electronic voting protocol for vote privacy in the provable secu-
rity model using the computationally complete symbolic attacker (CCSA) framework.
As part of the analysis, we showed that security properties of trapdoor commitments
and blind signatures can be faithfully translated into axioms in the CCSA framework.
We demonstrated that the framework is effective in that it revealed new attacks on the

FOO protocol and could be used to prove the modified FOO protocol secure. As part of
future work, we plan to investigate expressing and verifying stronger privacy properties
of receipt-freeness and coercion-resistance for electronic voting protocols in the CCSA
framework. We also plan to investigate automation of the verification tasks.

References

1. Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret Voting Scheme for Large Scale
Elections. In: ASIACRYPT ’92. LNCS, Springer (1993) 244–251

2. Kremer, S., Ryan, M.: Analysis of an electronic voting protocol in the applied pi calculus.
In: ESOP, Springer (2005) 186–200

3. Abadi, M., Blanchet, B., Fournet, C.: The applied pi calculus: Mobile values, new names,
and secure communication. J. ACM (2017) 1–41

4. Delaune, S., Ryan, M., Smyth, B.: Automatic verification of privacy properties in the applied
pi calculus. In: IFIPTM. (2008) 263–278

5. Chadha, R., Cheval, V., Ciobâcă, c., Kremer, S.: Automated verification of equivalence
properties of cryptographic protocols. ACM Trans. Comput. Logic (2016) 1–32

6. Bana, G., Comon-Lundh, H.: A Computationally Complete Symbolic Attacker for Equiva-
lence Properties. In: CCS ’14, ACM (2014) 609–620

7. Bana, G., Comon-Lundh, H.: Towards Unconditional Soundness: Computationally Complete
Symbolic Attacker. In: POST. LNCS, Springer (2012) 189–208

8. Bana, G., Adão, P., Sakurada, H.: Computationally Complete Symbolic Attacker in Action.
In: FSTTCS’12. LIPIcs, Schloss Dagstuhl (2012) 546–560

9. Bana, G., Adão, P., Sakurada, H.: Symbolic Verification of the Needham-Schroeder-Lowe
Protocol (2012) http://web.ist.utl.pt/pedro.adao/pubs/drafts/nsl-long.pdf.

10. Bana, G., Chadha, R.: Verification methods for the computationally complete symbolic at-
tacker based on indistinguishability. Cryptology ePrint Archive, Report 2016/069 (2016)
http://eprint.iacr.org/2016/069.

11. Comon, H., Koutsos, A.: Formal computational unlinkability proofs of rfid protocols. In:
CSF, IEEE (2017) 100–114

12. Scerri, G., Stanley-Oakes, R.: Analysis of key wrapping apis: Generic policies, computa-
tional security. In: CSF, IEEE (2016) 281–295

13. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Com-
mun. ACM (1981) 84–90

14. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections (extended abstract). In: ACM
SoTC. STOC (1994) 544–553

15. Benaloh, J.D.C.: Verifiable Secret-ballot Elections. PhD thesis, Yale University (1987)
16. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: CRYPTO,

Springer (1997) 150–164
17. Smyth, B., Bernhard, D.: Ballot secrecy and ballot independence coincide. In: ESORICS,

Springer (2013) 463–480
18. Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: Sok: A comprehensive

analysis of game-based ballot privacy definitions. In: IEEE S&P. (2015) 499–516
19. Cortier, V., Dragan, C.C., Dupressoir, F., Schmidt, B., Strub, P., Warinschi, B.: Machine-

checked proofs of privacy for electronic voting protocols. In: IEEE S&P. (2017) 993–1008
20. Fischlin, M., Schröder, D.: Security of blind signatures under aborts. In Jarecki, S., Tsudik,

G., eds.: Public Key Cryptography, Springer (2009) 297–316
21. Chaum, D., Rivest, R.L., Sherman, A.T.: Blind Signatures for Untraceable Payments. In:

Advances in Cryptology: Crypto 82, Springer (1983) 199–203

http://eprint.iacr.org/2016/069

22. Abdalla, M., Namprempre, C., Neven, G.: On the (im)possibility of blind message authenti-
cation codes. In Pointcheval, D., ed.: Topics in Cryptology, Springer (2006) 262–279

23. Smart, N.P.: Cryptography Made Simple. Information Security and Cryptography. Springer
(2016)

24. Damgård, I.B., Pedersen, T.P., Pfitzmann, B.: On the existence of statistically hiding bit
commitment schemes and fail-stop signatures. Journal of Cryptology (1997) 163–194

25. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. (1991) 151–158

A Formal definitions of computationally hiding and blindness

Definition 1. Computationally Hiding [23]. A commitment scheme C = (KG, Commit,
Open) is computationally hiding [23] if for any PPT algorithm A (working in modes
find and guess) the probability that the following experiment HidingCA evaluates to 1
is negligibly different from 1/2.

Experiment HidingCA(η)

(m0,m1, βfind)← A(find, 1η) (m0 and m1 are of same length)

b
$←− {0, 1}, k0 ← KG(1η), k1 ← KG(1η),

comb ← Commit(mb, k0), com1−b ← Commit(m1−b, k1)

b∗ ← A(guess, βfind, comb, com1−b)

return 1 iff b = b∗

Definition 2. Blindness [16]. An interactive signature scheme B = (Gen, 〈S,U〉 , verif)
satisfies blindness [16] if for any efficient algorithm S∗ (working in modes find, issue
and guess) the probability that the following experiment BlindBS∗(η) evaluates to 1 is
negligibly close to 1/2, where S∗〈.,U(pk,mb)〉1,〈.,U(pk,m1−b)〉1 represents that the signer
S∗ can invoke arbitrary ordered executions with U(pk,mb) and U(pk,m1−b) once:
Experiment BlindBS∗(η) :

(pk,m0,m1, stfind)← S∗(find, 1η)

b
$←− {0, 1}, stissue ← S∗〈.,U(pk,mb)〉1,〈.,U(pk,m1−b)〉1(issue, stfind)

Let σb ← U(pk,mb), σ1−b ← U(pk,m1−b), (σ0, σ1) := (⊥,⊥) if σ0 = ⊥ or σ1 = ⊥
b∗ ← S∗(guess, σ0, σ1, stissue)

return 1 iff b = b∗

B Core axioms

We recall the core axioms from [10] in the table 3 below. The axioms use the notion of
freshness that has been defined in [6] and is reproduced in Section 5.

C Additional Axioms
Additional axioms used in the security game for the FOO protocol are given in Table 4.
COMMEQL models the assumption that the length of commitments on equal length mes-
sages are equal. COMMKEYEQL models the assumption that the length of honestly gen-
erated commitment keys are equal. UBNOTUNDEFINED models the assumption that if

Axioms for indistinguishability.
REFL: ~x ∼ ~x
SYM: ~x ∼ ~y −→ ~y ∼ ~x
TRANS: ~x ∼ ~y ∧ ~y ∼ ~z −→ ~x ∼ ~z
RESTR: for any projection and permutation p,~x ∼ ~y −→ p(~x) ∼ p(~y)

FUNCAPP: for any ~f ∈ F ∪ G, ~x ∼ ~y −→ ~x, ~f(~x) ∼ ~y, ~f(~y)
TFDIST: ¬ (true ∼ false)

Axioms for equality.
EQCONG: = is a congruence relation
EQTHEO: x = y if x =E y

Axioms for if then else .
IFSAME: if b then x else x = x
IFEVAL: for any t1, t2 terms,

if b then t1[b] else t2[b] = if b then t1[true] else t2[false]
IFTRUE: if true then x else y = x
IFFALSE: if false then x else y = y
IFBRANCH: ~z, b, x1, ..., xn ∼ ~z′, b′, x′1, ..., x′n ∧ ~z, b, y1, ..., yn ∼ ~z′, b′, y′1, ..., y′n

−→

~z, b,
if b then x1

else y1
, ...,

if b then xn
else yn

∼ ~z′, b′, if b′ then x′1
else y′1

, ...,
if b′ then x′n

else y′n

Axioms for names.
FRESHIND: Let n1, n2 be names and ~v, ~w be lists of ground terms

such that fresh(n1;~v, ~w) and fresh(n2;~v, ~w) holds. We have
~v ∼ ~w −→ n1, ~v ∼ n2, ~w.

FRESHNEQ: for any name n and a closed term v such that fresh(n; v) holds,
we have EQ(n, v) ∼ false.

Table 3: Core Axioms

a user successfully completes the blind signature protocol then then the output is differ-
ent from ⊥. UBEQL models the assumption that blind signatures on equal length mes-
sage are of equal length. PAIREQL models the length regularity of pairing. CANDEQL
(resp. PHASEEQL) models the assumptions that candidate identities (resp. phase iden-
tities) are of equal length. AGENTDIST (resp. PHASEDIST) models the assumption
that identities of honest voters (resp. phase identifiers) are distinct.

D Transition Systems for Opening and Voting phases

The Voting Phase is in Figure 2 where we use similar conventions. It starts from the
state q2110 which is final state of Authentication Phase. Again, the left branch simu-
lates the situation where the voter A receives message x3 from an attacker and it is
accepted as a blinded commitment which is signed by administrator. Then A unblinds,
encrypts the unblinded message with mixer’s public key ke(nM), and sends out the

Commitments

Let t1 and t2 be two ground terms. Let n1 and n2 be names such that fresh(n1, n2; t1, t2) holds.

COMMEQL : if EQL(t1, t2) then EQL(com(t1, kc(n1)), com(t2, kc(n2))) else true = true
COMMKEYEQL : EQL(kc(n1), kc(n2)) = true

Blind Digital Signatures

For i = 0, 1, let t, ti1, and ti2 be ground terms. Let ni be a name with

fresh(ni; t, t11, t
2
1, t

1−i
2), such that it occurs in ti2, only as b(ti1, t,rb(ni)):

UBNOTUNDEFINED :

if acc(t01, t,rb(n), t02) then EQ(ub(t01, t,rb(n0), t02),⊥) else false = false
UBEQL :

if EQL(t01, t
1
1) & EQL(t02, t

1
2) & acc(t01, t,rb(n0), t02) & acc(t11, t,rb(n0), t12)

then EQL(ub(t01, t,rb(n0), t02), ub(t11, t,rb(n1), t12))
else true

= true

Further length regularity

PAIREQL : if EQL(x1, y1) & EQL(x2, y2) then EQL(〈x1, x2〉 , 〈y1, y2〉) else true = true
CANDEQL : EQL(C1, C2) = true for i, j ∈ {1, 2, 3}
PHASEEQL : EQL(ph2, ph3) = true

Distinctness of constants

AGENTDIST : EQ(A,B) = EQ(A,M) = EQ(B,M) = false
PHASEDIST : EQ(ph2, ph3) = false

Table 4: Additional Axioms for the FOO protocol

encrypted message t21[x3]. And so forth, following the security game. The abbrevia-
tion 〈x1, x2, x3〉

def≡ 〈x1, 〈x2, x3〉〉 encodes triples and τ1(x)
def≡ π1(x), τ2(x)

def≡
π1(π2(x)) and τ3(x)

def≡ π2(π2(x)) encode projections from triples.
In order to formalize the Opening Phase, we introduce the following abbreviations:

– dist(x, y, z)
def≡ not(EQ(x, y)) & not(EQ(x, z)) & not(EQ(y, z)).

– isin(x, y)
def≡ EQ(x, τ1(y)) or EQ(x, τ2(y)) or EQ(x, τ3(y))

– bcheck(x, y)
def≡ isin(x, 〈π2(τ1(y)), π2(τ2(y)), π2(τ3(y))〉)

–
label(x, y)

def≡ if EQ(x, π2(τ1(y))) then π1(τ1(y))
else if EQ(x, π2(τ2(y))) then π1(τ2(y))

else if EQ(x, π3(τ2(y))) then π1(τ3(y))
else 0

q2110

q2210t21[x3]

q2220t22[x4]

q3221t23[x5]

θ23[x5]

θ22[x4]

θ21[x3]

q2120t22[x3]

q2220t21[x4]

q3221t23[x5]

θ23[x5]

θ21[x4]

θ22[x3]
θ21[xi] ≡ EQ(to(xi), A)
t21[xi] ≡ if acc1 then e1 else 0
θ22[xi] ≡ EQ(to(xi), B)
t22[xi] ≡ if acc2 then e2 else 0
θ23[x5] ≡ EQ(to(x5),M) & dist(d1, d2, d3) & pchk
t23[x5] ≡ shufl(d1, d2, d3)
where i is in {3, 4}, k is in {1, 2}
acck ≡ acc(ck,PKAD,rb(nkb), xi)

ek ≡ {
〈
ck, ub(ck,PKAD,rb(nkb), xi), ph2

〉
}re(n

k1
e)

pke(nM)

dj ≡ dec(τj(x5), ske(nM)), j is in {1, 2, 3}
pchk ≡ EQ(τ3(d1), ph2) & EQ(τ3(d2), ph2)&

EQ(τ3(d3), ph2)
c1, c2 are defined in Figure 2

Fig. 3. Voting Phase of the FOO protocol

Here isin(x, y) checks that if x occur in message y which itself is a triple. bcheck(,)
models the voter’s check that if his (her) ballot presents in the list of label-ballot pairs.
label(x, y) is the finding the label of x in the message y which itself is a tuple of label-
ballot pairs.

Finally, the Opening Phase is in Figure 4.

q3221

q3321t31[x6]

q3331t32[x7]

q3332t33[x8]

θ33[x8]

θ32[x7]

θ31[x6]

q3231t32[x6]

q3331t31[x7]

q3332t33[x8]

θ33[x8]

θ31[x7]

θ32[x6]

θ31[xi] ≡ EQ(to(xi), A) & distbb
t31[xi] ≡ if acc1 & bcheck(c1, x6) then e1 else 0
θ32[xi] ≡ EQ(to(xi), B) & distbb
t32[xi] ≡ if acc2 & bcheck(c2, x6) then e2 else 0
θ33[x8] ≡ EQ(to(x8),M) & dist(D1, D2, D3) & pchk

&((isink1 & isink2) or (not(isink1 or isink2)))
t33[x8] ≡ shufl(D1, D2, D3)
where distbb ≡ dist1 & dist2; isinkk ≡ isin(kk, D)

ek ≡ {〈label(ck, x6), kk, ph3〉}
re(n

k2
e)

pke(nM)

acck ≡ acc(ck, pk, r1, x3) or acc(ck, pk, r1, x4)
distk ≡ dist(πi(τ1(x6)), πi(τ2(x6)), πi(τ3(x6)))
Dj ≡ dec(τj(x8), ske(m)), j ∈ {1, 2, 3}
pk ≡ PKAD; rk ≡ rb(nkb); kk ≡ kc(n

k
c)

D ≡ 〈D1, D2, D3〉 ; i is in {6, 7}; k is in {1, 2}
pchk ≡ EQ(τ3(D1), ph3) & EQ(τ3(D2), ph3)&

EQ(τ3(D3), ph3)
c1, c2 are defined in Figure 2

Fig. 4. Opening Phase of the FOO protocol

E Sketch of the Proof of Vote Privacy

Instead of showing the full security proof, we show how the combination of COMPHID,
COMMEQL, UBNOTUNDEFINED and BLINDNESS allows us to fix the inadequacy of
the blindness property. The key idea is that as the length of candidate identities are
equal, the commitments hide the underlying vote. Thus, the probability that the attacker
can cause the blind signature for candidate vb is accepted but rejected for v1−b is negli-
gibly small. This is formalized in the following Proposition which combines COMPHID
and BLINDNESS.
Proposition 1. Let v0, v1, t be ground terms, let ~z be a list of ground terms. Assume
EQL(v0, v1) = true. Let t0 and t1 be terms containing two variables x and y. Let
nb0, nb1, nc0, nc1 be names such that fresh(nb0, nb1, nc0, nc1;~z, t, v0, v1, t0, t1) holds.
Suppose that the blind signatures satisfy BLINDNESS and UBNOTUNDEFINED, and
commitments satisfy COMPHID and COMMEQL properties. Then
~z, b(c00[v0], t,rb(nb0)), b(c01[v1], t,rb(nb1)), t0 ∼ ~z, b(c10[v1], t,rb(nb0)), b(c11[v0], t,rb(nb1)), t1

(1)
where t0 ≡ if acc00 & acc01 then

〈〈
ub0

0[v0], c00[v0], kc(nc0)
〉
,
〈
ub0

1[v1], c01[v1], kc(nc1)
〉〉

else if acc00 then
〈〈

ub0
0[v0], c00[v0], kc(nc0)

〉
,⊥
〉

else if acc01 then
〈
⊥,
〈
ub0

1[v1], c01[v1], kc(nc1)
〉〉

else 〈⊥,⊥〉
t1 ≡ if acc10 & acc11 then

〈〈
ub1

1[v0], c11[v0], kc(nc1)
〉
,
〈
ub1

0[v1], c10[v1], kc(nc0)
〉〉

else if acc11 then
〈〈

ub1
1[v0], c11[v0], kc(nc1)

〉
,⊥
〉

else if acc10 then
〈
⊥,
〈
ub1

0[v1], c10[v1], kc(nc0)
〉〉

else 〈⊥,⊥〉

Where tji = ti[x← b(cj0[vj], t,rb(b0))), y ← b(cj1[v1−j], t,rb(b1)))], i, j ∈ {0, 1},
c0i [vi] ≡ com(vi, kc(nci)) c1i [v1−i] ≡ com(v1−i, kc(nci))
acc0i ≡ acc(c0i [vi], t,rb(nbi), t

0
i) acc1i ≡ acc(c1i [vi−1], t,rb(nbi), t

1
i)

ub0
i [vi] ≡ ub(c0i [vi], t,rb(nbi), t

0
i) ub1

i [v1−i] ≡ ub(c1i [vi−1], t,rb(nbi), t
1
i)

The proof idea is the following. Let us further introduce the notation
uji [vj⊕i] ≡

〈
ubji [vj⊕i], c

j
i [vj⊕i], kc(nci)

〉
and bji [vj⊕i] ≡ b(cji [vj⊕i], t,rb(nbi)) where

⊕ is XOR. Then using the axiom IFBRANCH, it is sufficient to show the following
equivalences:

~z, b00[v0], b01[v1], acc00 & acc01, if acc00 & acc01 then
〈
u0
0[v0], u0

1[v1]
〉

else 〈⊥,⊥〉
∼ ~z, b10[v1], b11[v0], acc10 & acc11, if acc10 & acc11 then

〈
u1
1[v0], u1

0[v1]
〉

else 〈⊥,⊥〉

which follows from the BLINDNESS,UBNOTUNDEFINED and FUNCAPP; and the
equivalences

~z, b00[v0], b01[v1], acc00 & acc01, if acc0i then u0
i [vi] else⊥

∼ ~z, b10[v1], b11[v0], acc10 & acc11, if acc11−i then u1
i−1[vi] else⊥

which follow from COMPHID and FUNCAPP. However, the axiom itself is not suffi-
cient, we need the condition that the votes have equal length, otherwise these cannot be
proven and an attack is constructed, which is the first attack described in Section 3.2.

Of course, in the actual security game, encryptions are sent too where the votes are
also in reversed order, and decryptions are done by the mixer. This is dealt with the
ENCCCA2 axiom. For the applicability of the axiom, the terms sent have to be rewrit-
ten using the equality to introduce cases when the adversarial function symbols on

which decryptions are applied are either of the previous encryptions (namely the ones
sent by voter A and B), or when they are neither. More precisely, a term of the form
dec(f(Φ), sk(n1)), assuming that Φ has say two honest encryptions in them, {t}r(n)pk(n1)

and {t′}r(n
′)

pk(n1)
, has to be rewritten as

dec(f(Φ), sk(n1)) =

if EQ(f(Φ), {t}r(n)pk(n1)
)

then t
else if EQ(f(Φ), {t′}r(n

′)
pk(n1)

) then t′ else dec(f(Φ), sk(n1))

.

Thus, when the attacker messages are equal to some encrypted messages sent, the de-
cryptions can be replaced by the plaintext. When they are not equal, then the decryption
on the function symbol is kept. Once this is done, the ENCCCA2 axiom can be applied,
and the plaintexts inside the encryptions can now be switched as long as they are of
equal length. This is why we needed to assume that the unblinding results equal length.
Without that assumption we obtain the second attack in Section 3.2.

Finally, when the decryptions are applied on the correct previous encryptions, there
are still several possibilities for each decryption because a priori the adversary could
redirect the same encryption twice. A priori, each decryption will succeed on any of
the previous (four) encryptions sent by A and B. To ensure that there is no clash, we
made sure that the mixer checks both the phase and that all the decryptions are different.
Otherwise we obtain the third attack of Section 3.2.

	Formal Analysis of Vote Privacy using Computationally Complete Symbolic Attacker

