
Is there an Oblivious RAM Lower Bound for Online Reads?

Mor Weiss∗ Daniel Wichs†

April 22, 2021

Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky (JACM 1996), can be used
to read and write to memory in a way that hides which locations are being accessed. The best
known ORAM schemes have an O(log n) overhead per access, where n is the data size. The work of
Goldreich and Ostrovsky gave a lower bound showing that this is optimal for ORAM schemes that
operate in a “balls and bins” model, where memory blocks can only be shuffled between different
locations but not manipulated otherwise. The lower bound even extends to weaker settings such
as offline ORAM, where all of the accesses to be performed need to be specified ahead of time, and
read-only ORAM, which only allows reads but not writes. But can we get lower bounds for general
ORAM, beyond “balls and bins”?

The work of Boyle and Naor (ITCS ’16) shows that this is unlikely in the offline setting.
In particular, they construct an offline ORAM with o(log n) overhead assuming the existence of
small sorting circuits. Although we do not have instantiations of the latter, ruling them out would
require proving new circuit lower bounds. On the other hand, the recent work of Larsen and Nielsen
(CRYPTO ’18) shows that there indeed is an Ω(log n) lower bound for general online ORAM.

This still leaves the question open for online read-only ORAM or for read/write ORAM where
we want very small overhead for the read operations. In this work, we show that a lower bound
in these settings is also unlikely. In particular, our main result is a construction of online ORAM
where reads (but not writes) have an o(log n) overhead, assuming the existence of small sorting
circuits as well as very good locally decodable codes (LDCs). Although we do not have instantiations
of either of these with the required parameters, ruling them out is beyond current lower bounds.

∗Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel, mor.weiss@biu.ac.il.
†Department of Computer Science, Northeastern University, Boston, Massachusetts, USA, wichs@ccs.neu.edu.

Contents

1 Introduction 2
1.1 Our Contributions . 3
1.2 Our Techniques . 6

1.2.1 Read-Only ORAM . 6
1.2.2 ORAM with Writes . 7

1.3 Open Questions and Future Directions . 8

2 Preliminaries 8
2.1 Locally Decodable Codes (LDCs) . 8
2.2 Oblivious-Access Sort Algorithms . 9
2.3 Oblivious RAM (ORAM) . 10

3 Read-Only ORAM from Oblivious-Access Sort and Smooth LDCs 12
3.1 Read-Only ORAM with Oblivious Setup . 18

4 Oblivious RAM Supporting Writes with o (log n) Read Complexity 21

1

1 Introduction

An Oblivious RAM (ORAM), first introduced by Goldreich and Ostrovsky [Gol87, Ost90, GO96],
is a scheme that allows a client to read and write to his data stored on untrusted storage, while
entirely hiding the access pattern, i.e., which operations were performed and at which locations.
More precisely, we think of the client’s data as “logical memory” which the ORAM scheme encodes
and stores in “physical memory”. Whenever the client wants to read or write to logical memory,
the ORAM scheme translates this operation into several accesses to the physical memory. Security
ensures that for any two (equal length) sequences of access to logical memory, the resultant distri-
butions over the physical accesses performed by the ORAM are computationally (or statistically)
close. Following its introduction, there has been a large body of work on ORAM constructions and
security [SCSL11, GMOT12, KLO12, WS12, SvDS+13, RFK+15, DvDF+16], as well as its uses
in various application scenarios (see, e.g., [GKK+12, GGH+13, LPM+13, LO13, MLS+13, SS13,
YFR+13, CKW13, WHC+14, MBC14, KS14, LHS+14, GHJR15, BCP15, HOWW19]).

One can always trivially hide the memory access pattern by performing a linear scan of the entire
memory for every memory access. Consequently, an important measure of an ORAM scheme is its
overhead, namely the (worst-case) number of memory blocks which need to be accessed to answer
a single read or write request. Goldreich and Ostrovsky [GO96] proved a lower bound of Ω (log n)
on the ORAM overhead, where n denotes the number of memory blocks in the logical memory.
There has also been a large body of works on constructing schemes that achieve this bound (though
mostly in the amortized setting), starting with [SvDS+13, WCS15], that achieve the bound if the
block size is set to a sufficiently large polylogarithmic term; followed by works [PPRY18] achieving
O (log n log logn) overhead for Ω (log n) block size, assuming one-way functions; and culminating in
the work of [AKL+20]1 that build on [PPRY18] and improve their overhead to the optimal O (log n)
overhead. We note that one can circumvent the [GO96] lower bound by relaxing the notion of
ORAM to either allow server-side computation [AKST14], or multiple non-colluding servers [LO13],
and several works have obtained sub-logarithmic overhead in these settings [AKST14, FNR+15,
DvDF+16, ZMZQ16, AFN+17, GKW18, KM19]. However, in this work we focus on the standard
ORAM setting with a single server and no server-side computation.

In some respects, the lower bound of [GO96] is very general. First, it applies to all block sizes.
Second, it holds also in restricted settings: when the ORAM is only required to work for offline
programs in which, roughly, all memory accesses are stated explicitly in advance; and for read-
only programs that do not update the memory contents. However, in other respects, the bound
is restricted since it only applies to ORAM schemes that operate in the “balls and bins” model,
in which memory can only be manipulated by moving memory blocks (“balls”) from one memory
location (“bin”) to another. Therefore, the main question left open by the work of [GO96] is: is
there an ORAM lower bound for general ORAM schemes, that are not restricted to operate in the
“balls and bins” model?

Almost 20 years after Goldreich and Ostrovsky proved their lower bound, it was revisited by
Boyle and Naor [BN16], who show how to construct an ORAM scheme in the offline setting with
o (log n) overhead, using sorting circuits of size o (n log n). Though sorting circuits of such size
are not known, ruling out their existence seems currently out of our reach. This result can be
interpreted in two ways. On the one hand, an optimist will view it as a possible approach towards
an ORAM construction in the offline setting, which uses “small” sorting circuits as a building
block. On the other hand, a pessimist may view this result as a barrier towards proving a lower
bound. Indeed, the [BN16] construction shows that proving a lower bound on the overhead of

1The work of [AKL+20] was published after the conference version of this paper [WW18].

2

offline ORAM schemes would yield lower bounds on the size of sorting circuits, and proving circuit
lower bounds is notoriously difficult. We note that unlike sorting networks, which only contain
“compare-and-swap” gates that operate on the two input words as a whole, and for which a simple
Ω (n log n) lower bound exists, sorting circuits can arbitrarily operate over the input bits, and no
such lower bounds are known for them.

The main drawback of the Boyle and Naor result [BN16] is that it only applies to the offline
setting, which is not very natural and is insufficient for essentially any imaginable ORAM applica-
tion. More specifically, the offline setting requires that the entire sequence of accesses be specified
in advance - including which operation is performed, on which address, and in case of a write oper-
ation, what value is written. However, even very simple and natural RAM programs (e.g., binary
search) require dynamic memory accesses that depend on the results of previous operations. De-
spite this drawback, the result of Boyle and Naor is still very interesting since it shows that lower
bounds which are easy to prove in the “balls and bins” model might not extend to the general
model. However, it does not answer the question of whether general ORAM lower bounds exist in
the online setting, which is the one of interest for virtually all ORAM applications.

Very recently, and concurrently with our work, Larsen and Nielsen [LN18] proved that the
[GO96] lower bound does indeed extend to general online ORAM. Concretely, they show an Ω (log n)
lower bound on the combined overhead of read and write operations in any general online ORAM,
even with computational security. Their elegant proof employs techniques from the field of data-
structure lower bounds in the cell-probe model, and in particular the “information-transfer” method
of Pătraşcu and Demaine [PD06].

1.1 Our Contributions

In this work, we explore the read overhead of general ORAM schemes beyond the “balls and bins”
model and in the online setting. We first consider read-only ORAM schemes that only support
reads – but not writes – to the logical memory. We stress that the scheme is read-only in the
sense that it only supports programs that do not write to the logical memory. However, to emulate
such programs in the ORAM, the client might write to the physical memory stored on the server.
We note that read-only ORAM already captures many interesting applications such as private
search over a database, or fundamental algorithmic tasks such as binary search. We show how to
construct online read-only ORAM schemes with o(log n) overhead assuming “small” sorting circuits
and “good” Locally Decodable Codes (LDCs). We then extend our results to a setting which also
supports sub-linear writes but does not try to hide whether an operation is a read or a write and,
in particular, allows different overheads for these operations. In all our constructions, the server is
only used as remote storage, and does not perform any computations.

We note that, similar to [BN16], our results rely on primitives that we do not know how to
instantiate with the required parameters, but also do not have any good lower bounds for. One
can therefore interpret our results either positively, as a blueprint for an ORAM construction, or
negatively as a barrier to proving a lower bound in these settings. For simplicity of the exposition,
we choose to present our results through the “optimistic” lens.

We now describe our results in more detail.

Read-Only (RO) ORAM. We construct a read-only ORAM scheme, based on sorting circuits
and smooth locally decodable codes. Roughly, a Locally Decodable Code (LDC) [KT00] has a
decoder algorithm that can recover any message symbol by querying only few codeword symbols.
In a smooth code, every individual decoder query is uniformly distributed. Given a logical memory
of size-n, our scheme hasO (log log n) overhead, assuming the existence of linear-size sorting circuits,

3

and smooth LDCs with constant query complexity and polynomial length codewords. Concretely,
we get the following theorem.

Theorem 1.1 (Informal statement of Corollary 3.2). Suppose there exist linear-size boolean sorting
circuits, and smooth LDCs with constant query complexity and polynomial length codewords. Then
there exists a statistically-secure read-only ORAM scheme for memory of size n and blocks of size
poly log n, with O (1) client storage and O (log log n) overhead.

In Section 3, we also show a read-only ORAM scheme with o (log n) overhead based on milder
assumptions – concretely, smooth LDCs with O (log log n) query complexity, and the existence of

sorting circuits of size o
(

n logn
log2 logn

)
; see Corollary 3.3. We note that under the (strong) assumption

that the LDC has linear-size codewords, our constructions achieve linear-size server storage. We
also note that if an a-priori polynomial bound on the number of memory accesses is known, then
the constructions can be based solely on LDCs, and the assumption regarding small sorting circuits
can be removed.

ORAM schemes supporting writes. The read-only ORAM scheme described above still leaves
the following open question: is there a lower bound on read overhead for ORAM schemes supporting
write operations? To partially address this question, we extend our ORAM construction to a scheme
that supports writes but does not hide whether an operation was a read or a write. In this setting,
read and write operations may have different overheads, and we focus on minimizing the overhead of
read operations while preserving efficiency of write operations as much as possible. Our construction
is based on the existence of sorting circuits and smooth LDCs as in Theorem 1.1, as well as the
existence of One-Way Functions (OWFs). (We elaborate on why OWFs are needed in Section 1.2.)
Assuming the existence of such building blocks, our scheme has O (log log n) read overhead and
O (nε) write overhead for an arbitrarily small constant ε ∈ (0, 1), whose exact value depends on the
efficiency of the LDC encoding. Concretely, we show the following:

Theorem 1.2 (Informal statement of Theorem 4.1). Assume the existence of OWFs, as well as
LDCs and sorting circuits as in Theorem 1.1. Then for every constant ε ∈ (0, 1), there exists a con-
stant γ ∈ (0, 1) such that if LDC encoding requires n1+γ operations then there is a computationally-
secure ORAM scheme for memory of size n and blocks of size poly log n with O (1) client storage,
O (log log n) read overhead, and O (nε) write overhead.

Similar to the read-only setting, we also instantiate (Section 4, Theorem 4.2) the ORAM with
writes scheme based on milder assumptions regarding the parameters of the underlying sorting
circuits and LDCs, while only slightly increasing the read overhead. Additionally, we describe a
variant of our scheme with improved write complexity, again at the cost of slightly increasing the
read overhead:

Theorem 1.3 (Informal statement of Theorem 4.3). Assume the existence of OWFs, as well as
LDCs and sorting circuits as in Theorem 1.1, where LDC encoding requires n1+o(1) operations.
Then there exists a computationally-secure ORAM scheme for memory of size n and blocks of size
poly log n with O (1) client storage, o (log n) read overhead, and no(1) write overhead.

A note on block vs. word size. In our constructions we distinguish between words (which
are bit strings) and blocks (which consist of several words). More specifically, words, which are
the basic unit of physical memory on the server, consist of w bits; and blocks, which are the basic
unit of logical memory on the client, consist of B words. We measure the overhead as the number

4

of words the client accesses on the server to read or write to a single logical block, divided by
B. We note that it is generally easier to construct schemes with smaller word size. (Indeed, it
allows the client more fine-grained access to the physical memory; a larger word size might cause
the client to access unneeded bits on the server, simply because they are part of a word containing
bits that do interest the client.) Consequently, we would generally like to support larger word
size, ideally having words and blocks of equal size. Our constructions can handle any word size,2

as long as blocks are poly-logarithmically larger (for a sufficiently large poylogarithmic factor). A
similar differentiation between block and word size was used in some previous works as well (e.g.,
in [SCSL11, SSS12], and to get O (logN) overhead in Path ORAM [SvDS+13]).

A note regarding assumptions. We instantiate our constructions in two parameter regimes:
one based on the existence of “best possible” sorting circuits and smooth LDCs (as described
above), and one based on milder assumptions regarding the parameters of these building blocks
(as discussed in Sections 3 and 4). We note that despite years of research in these fields, we
currently seem very far from ruling out the existence of even the “best possible” sorting circuits
and smooth LDCs. Concretely, to the best of our knowledge there are no specific lower bounds
for sorting circuits (as opposed to sorting networks, see discussion above and in Section 2.2), and
even for general boolean circuits only linear lower bounds of c · n for some constant c > 1 are
known [Blu84, IM02, FGHK16]. Regarding LDCs, research has focused on the relation between
the query complexity and codeword length in the constant query regime, but there are currently no
non-trivial lower bounds for general codes. Even for restricted cases, such as binary codes, or linear
codes over arbitrary fields, the bounds are extremely weak. Specifically, the best known lower bound
shows that codewords in q-query LDCs must have length Ω

(
n(q+1)/(q−1)

)
/ log n [Woo07] (which,

in particular, does not rule out the existence of 4-query LDCs with codeword length n5/3), so
it is plausible that for a sufficiently large constant, constant-query LDCs with polynomial length
codewords exist. We note that a recent series of breakthrough results construct 3-query LDCs with
sub-exponential codewords of length exp

(
exp

(
O
(√

log n log logn
)))

= 2n
o(1)

, as well as extensions
to larger (constant) query complexity [Yek07, Rag07, Efr09, IS10, CFL+13]. Notice that lower
bounds on the size of the encoding circuit of such codes will similarly yield circuit lower bounds.

A note on the connection to Private Information Retrieval (PIR) and Doubly-Efficient
PIR (DEPIR). The notions of PIR and DEPIR, which support reads from memory stored on
a remote server, are closely related to read-only ORAM, but differ from it significantly in some
respects. We now discuss these primitives in more detail. In a (single-server) PIR scheme [KO97],
there is no initial setup, and anybody can run a protocol with the server to retrieve an arbitrary
location in the logical memory. The server is not used solely as remote storage, and in fact the
main goal, which is to minimize the communication between the client and server, inherently
requires the server to perform computations. One additional significant difference from ORAM
is that the PIR privacy guarantee inherently requires the server runtime to be linear in the size
of the logical memory, whereas a main ORAM goal is to have the server touch only a sublinear
number of blocks (which the client reads from it to retrieve the block he is interested in). In
a DEPIR scheme [BIM00, BIPW17, CHR17], there is a setup phase (as in ORAM), following
which the server(s) stores an encoded version of the logical memory, and the logical memory can
be accessed either with no key (in multi-server DEPIR [BIM00]), with a public key (in public-
key DEPIR [BIPW17]) or with a secret key (in secret-key DEPIR [BIPW17, CHR17]). First
proposed by Beimel, Ishai and Malkin [BIM00], who showed how to construct information-theoretic

2Similar to previous works (e.g., [SCSL11, SvDS+13, SS13]), we assume words are of at least logarithmic size.

5

DEPIR schemes in the multi-server setting (i.e., with several non-colluding servers), two recent
works [BIPW17, CHR17] give the first evidence that this notion may be achievable in the single-
server setting. These works achieve sublinear server runtime, with a server that is only used
as remote storage. Thus, these single-server DEPIR schemes satisfy all the required properties
of a RO-ORAM scheme, with the added “bonus” of having a stateless server (namely, whose
internal memory does not change throughout the execution of the scheme). However, these (secret-
key) constructions are based on new, previously unstudied, computational hardness assumptions
relating to Reed-Muller codes, and the public-key DEPIR scheme of [BIPW17] additionally requires
a heuristic use of obfuscation. Unfortunately, both of the above assumptions are non-standard,
poorly understood, and not commonly accepted. Additionally, these constructions do not achieve
o (log n) overhead (at least not with polynomial server storage).

A note on statistical vs. computational security. Our RO-ORAM achieves statistical se-
curity under the assumption that the server does not see the memory contents, namely the server
only sees which memory locations are accessed. Hiding memory contents from the server can
be generically achieved by encrypting the logical memory, in which case security holds against
computationally-bounded servers. We note that our ORAM scheme supporting writes requires en-
crypting the logical memory even if the server does not see the memory contents. Consequently,
our ORAM with writes scheme achieve computational security even in the setting where the server
does not see the memory contents. Alternatively, our construction can achieve statistical security
if the underlying LDC has the additional property that the memory accesses during encoding are
independent of the data. (This property is satisfied by, e.g., linear codes.) We elaborate on this
further in Sections 3.1 and 4.

1.2 Our Techniques

We now give a high-level overview of our ORAM constructions. We start with the read-only setting,
and then discuss how to enable writes.

We note that our technique departs quite significantly from that of Boyle and Naor [BN16],
whose construction seems heavily tied to the offline setting. Indeed, the high-level idea underlying
their scheme is to use the sorting circuit to sort by location the list of operations that need to be
performed, so that the outcomes of the read operations can then be easily determined by making
one linear scan of the list. It does not appear that this strategy can naturally extend to the online
setting in which the memory accesses are not known a-priori.

1.2.1 Read-Only ORAM

We first design a Read-Only (RO) ORAM scheme that is secure only for an a-priori bounded number
of accesses, then extend it to a scheme that remains secure for any polynomial number of accesses.

Bounded-access RO-ORAM using metadata. Our RO-ORAM scheme employs a smooth
LDC, using the decoder to read from memory. Recall that a k-query LDC is an error-correcting
code in which every message symbol can be recovered by querying k codeword symbols. The
server in our scheme stores k copies of the codeword, each permuted using a separate, random
permutation. (We note that permuted LDCs were already used – but in a very different way – in
several prior works [HO08, HOSW11, CHR17, BIPW17].) To read the memory block at address
j, the client runs the decoder on j, and sends the decoder queries to the server, who uses the i’th
permuted codeword copy to answer the i’th decoding query. This achieves correctness, but does

6

not yet guarantee obliviousness since the server learns, for each 1 ≤ i ≤ k, which read operations
induced the same i’th decoding query.

To prevent the server from obtaining this additional information, we restrict the client to use
only fresh decoding queries in each read operation, namely a set q1, . . . , qk of queries such that no
qi was issued before as the i’th query. The metadata regarding which decoding queries are fresh, as
well as the description of the permutations, can be stored on the server using any sufficiently efficient
(specifically, polylogarithmic-overhead) ORAM scheme. Each block in the metadata ORAM will
consist of a single word, so using the metadata ORAM will not influence the overall complexity
of the scheme, since for sufficiently large memory blocks the metadata blocks are significantly
smaller. In summary, restricting the client to make fresh queries guarantees that the server only
sees uniformly random decoding queries, which reveal no information regarding the identity of the
accessed memory blocks.

However, restricting the client to only make fresh decoding queries raises the question of whether
the ORAM is still correct, namely whether this restriction has not harmed functionality. Specif-
ically, can the client always “find” fresh decoding queries? We show this is indeed the case as
long as the number of read operations is at most M/2k, where M denotes the codeword length.
More precisely, the smoothness of the code guarantees that for security parameter λ and any index
j ∈ [n], λ independent executions of the decoder algorithm on index j will (with overwhelming
probability) produce at least one set of fresh decoding queries. Thus, the construction is secure as
long as the client performs at most M/2k read operations.

We note that given an appropriate LDC, this construction already gives a read-only ORAM
scheme which is secure for an a-priori bounded number of accesses, without relying on sorting
circuits. Indeed, given a bound B on the number of accesses, all we need is a smooth LDC with
length-M codewords, in which the decoder’s query complexity is at most M/2B.

Handling an unlimited number of reads. To obtain security for an unbounded number of
read operations, we “refresh” the permuted codeword copies every M/2k operations. (We call each
such set of read operations an “epoch”.) Specifically, to refresh the codeword copies the client picks
k fresh, random permutations, and together with the server uses the sorting circuit to permute the
codeword copies according to the new permutations. Since the logical memory is read-only, the
refreshing operations can be spread-out across the M/2k read operations of the epoch.

1.2.2 ORAM with Writes

We extend our RO-ORAM scheme to support write operations, while preserving o (log n) overhead
for read operations. The construction is loosely based on hierarchical ORAM [Ost90, GO96]. The
high-level idea is to store the logical memory on the server in a sequence of ` levels of increasing
size, each containing an RO-ORAM.3 We think of the levels as growing from the top down, namely
level-1 (the smallest) is the top-most level, and level-` (the largest) is the bottom-most. Initially,
all the data is stored in the bottom level `, and all the remaining levels are empty. To read the
memory block at some location j, the client performs a read for location j in the RO-ORAMs of
all levels, where the output is the block from the highest level that contains the j’th block. When
the client writes to some location j, the server places that memory block in the top level i = 1.
After every li write operations – where li denotes the size of level i – the i’th level becomes full.
All the values in level i are then moved to level i+ 1, a process which we call a “reshuffle” of level

3This is reminiscent of a construction of [OS97], which also instantiated the levels of a hierarchical ORAM with a
primitive guaranteeing read privacy (specifically, they use PIR). However, our goals, and the details of our construc-
tion, differs significantly from [OS97].

7

i into level i + 1. Formalizing this high-level intuition requires some care, and the final scheme is
somewhat more involved. See Section 4 for details.

We note that our construction differs from Hierarchical ORAM in two main points. First, in
Hierarchical ORAM level i is reshuffled into level i+ 1 every li read or write operations, whereas in
our scheme only write operations are “counted” towards reshuffle (in that respect, read operations
are “free”). This is because the data is stored in each level using an RO-ORAM which already
guarantees privacy for read operations. Second, Hierarchical ORAM uses Ω (log n) levels, whereas
to preserve o (log n) read overhead, we must use o (log n) levels. In particular, the ratio between
consecutive levels in our scheme is no longer constant, leading to a higher reshuffle cost (which is
the reason write operations have higher overhead in our scheme).

1.3 Open Questions and Future Directions

Our work still leaves several open questions for future research. A natural question is whether the
assumptions can be relaxed or removed. Specifically, can we construct a RO-ORAM scheme with
o (logN) overhead based solely on the existence of “good” LDCs, or alternatively, based only on the
existence of small sorting circuits? It would also be interesting to relax the requirements from the
LDCs or sorting circuits (e.g., obtaining o (logN) overhead while relying on larger sorting circuits
than in our current constructions). Finally, another possible direction is to prove unconditional
lower bounds in a fine-grained setting which, e.g., restricts the round complexity of the ORAM, a
research direction recently initiated by [CDH20].

2 Preliminaries

Throughout the paper λ denotes a security parameter. For a length-n string x and a sequence
I = (i1, . . . , il) where 1 ≤ i1 < . . . < il ≤ n, xI denotes (xi1 , . . . , xil).

Terminology. Recall that words, the basic unit of physical memory on the server, consist of w
bits; and blocks, the basic unit of logical memory on the client, consist of B words. The client may
locally perform bit operations on the bit representation of blocks, but can only access full words on
the server. We will usually measure complexity in terms of logical blocks (namely, in terms of the
basic memory unit on the client). More specifically, unless explicitly stated otherwise, client and
server storage are measured as the number of blocks they store (even though the basic storage unit
on the server side is a word), and overhead measures the (worst-case) number of blocks one needs
to read or write to implement a read or write operation on a single block. Formally:

Definition 2.1 (Overhead). For a block size B and input length n, we say that a protocol between
client C and server S has overhead Ovh for a function Ovh : N→ N, if implementing a read or write
operation on a single logical memory block requires the client to access B · Ovh (n) words on the
server.

2.1 Locally Decodable Codes (LDCs)

Locally decodable codes were first formally introduced by [KT00]. We rely on the following defini-
tion of smooth LDCs.

Definition 2.2 (Smooth LDC). A smooth k-query Locally Decodable Code (LDC) with message
length n, and codeword length M over alphabet Σ, denoted by (k, n,M)Σ-smooth LDC, is a triplet
(Enc,Query,Dec) of PPT algorithms with the following properties.

8

• Syntax. Enc is given a message msg ∈ Σn and outputs a codeword c ∈ ΣM ,
Query is given an index ` ∈ [n] and outputs a vector r = (r1, . . . , rk) ∈ [M]k,
and Dec is given cr = (cr1 , . . . , crk) ∈ Σk and outputs a symbol in Σ.

• Local decodability. For every message msg ∈ Σn, and every index ` ∈ [n],

Pr [r← Query (`) : Dec (Enc (msg)r) = msg`] = 1.

• Smoothness. For every index ` ∈ [n], every query in the output of Query (`) is distributed
uniformly at random over [M].

To simplify notations, when Σ = {0, 1} we omit it from the notation.

Remark on Smooth LDCs for Block Messages. We will use smooth LDCs for messages
consisting of blocks {0, 1}B of bits (for some block size B ∈ N), whose existence is implied by the
existence of smooth LDCs over {0, 1}. Indeed, given a (k, n,M)-smooth LDC (Enc,Query,Dec),
one can obtain a (k, n,M){0,1}B-smooth LDC

(
Enc′,Query′,Dec′

)
by “interpreting” the message and

codeword as B individual words, where the j’th word consists of the j’th bit in all blocks. Concretely,

Enc′ on input a message
(
msg1, . . . ,msgn

)
∈
(
{0, 1}B

)n
, computes y1

j . . . y
M
j = Enc

(
msg1

j , . . . ,msgnj

)
for every 1 ≤ j ≤ B, sets ci = yi1 . . . y

i
B, and outputs c =

(
c1, . . . , cM

)
. Query′ operates exactly

as Query does. Dec′, on input cr1 , . . . , crk ∈ {0, 1}B, computes zj = Dec
(
cr1j , . . . , c

rk
j

)
for every

1 ≤ j ≤ B, and outputs z1 . . . zB.

2.2 Oblivious-Access Sort Algorithms

Our construction employs an Oblivious-Access Sort algorithm [BN16] which is, roughly, a RAM
program that sorts its input, such that the access patterns of the algorithm on any two inputs
of equal size are statistically close. Thus, oblivious-access sort is the “RAM version” of boolean
sorting circuits. (Informally, a boolean sorting circuit is a boolean circuit ensemble {C (n,B)}n,B
such that each C (n,B) takes as input n size-B tagged blocks, and outputs the blocks in sorted
order according to their tags.)

Definition 2.3 (Oblivious-Access Sort Algorithm, [BN16]). An Oblivious-Access Sort algorithm
for input size n and block size B, with complexity CCSort (n,B), is a (possibly randomized) algorithm
Sort run by a client C on an input stored remotely on a server S, with the following properties:

• Operation: The input consists of n tagged blocks which are represented as length-B bit
strings (the tag is a substring of the block) and stored on the server.4 The client can perform
local bit operations, but can only read and write full blocks from the server.

• Complexity: The number of (size-B) blocks read from and written to the remote storage
during the execution of Sort is CCSort (n,B).

• Correctness: With overwhelming probability in n, at the end of the algorithm the server
stores the blocks in sorted order according to their tags.

4In [BN16], the blocks consist solely of the tag, but the algorithm is usually run when tags are concatenated with
memory blocks (which are carried as a “payload”, and the complexity increases accordingly). We choose to explicitly
include the data portion in the block.

9

• Oblivious Access: For a logical memory DB consisting of n blocks of size B, let APn,B (Sort,DB)
denote the random variable consisting of the list of addresses accessed in a random execution
of the algorithm Sort on DB. Then for every pair DB,DB′ of inputs with n size-B blocks,
APn,B (Sort,DB) ≈s APn,B

(
Sort,DB′

)
, where ≈s denotes negl (n) statistical distance.

Of course, we can directly obtain an oblivious-access sort algorithm from a boolean sorting
circuit by emulating the circuit gate-by-gate, where to emulate each gate we bring its inputs from
the RAM memory, and store its output back into RAM. However, notice that this naive emulation
will blow up the complexity by a factor of w (recall that w denotes the word size of the RAM),
because we will need to read the two words that contain the input bits of the gate in their entirety.
Boyle and Naor [BN16] show a more efficient transformation from sorting circuits to oblivious-access
sort algorithms:

Theorem 2.4 (Oblivious-access sort from sorting circuits, [BN16]). If there exist boolean sorting
circuits {C (n,B)}n,B of size s (n,B), then there exists an oblivious-access sort algorithm for n dis-

tinct elements with O (1) client storage, complexity O
(
n · log B + s

(
2n
B ,B

))
, and e−n

Ω(1)
probability

of error.

We note that [BN16] show that oblivious-access sort algorithms can be used to construct offline
ORAM with small overhead. We will show (Section 3) that oblivious-access sort algorithms are
useful also in constructing online ORAM with small overhead.

Remark on the Existence of Oblivious-Access Sort Algorithms with Small Complexity.
We note that for blocks of poly-logarithmic size B = poly log n, the existence of sorting circuits
of size s (n,B) = O (n · B · log logn) guarantees (through Theorem 2.4) the existence of oblivious-
access sort algorithms with complexity O (n · log log n).

Remark on the Relation to Sorting Networks. The related notion of a sorting network has
been extensively used in ORAM constructions. Similar to oblivious-access sort algorithms, sorting
networks sort n size-B blocks in an oblivious manner. (More specifically, a sorting network is data
oblivious, namely its memory accesses are independent of the input.) However, unlike oblivious-
access sort algorithms, and boolean sorting circuits, which can operate locally on the bits in the bit
representation of the input blocks, a sorting network consist of a single type of compare-exchange
gate which takes a pair of blocks as input, and outputs them in sorted order. We note that a simple
information-theoretic lower bound of Ω (n log n) on the network size is known for sorting networks
(as well as matching upper bounds, e.g. [AKS83, Goo14]), whereas no such bound is known for
boolean sorting circuits or oblivious-access sorting algorithms.

2.3 Oblivious RAM (ORAM)

Oblivious RAMs were introduced by Goldreich and Ostrovskey [Gol87, Ost90, GO96]. To define
oblivious RAMs, we will need the following notation of an access pattern.

Notation 2.5 (Access pattern). A length-q access pattern Q consists of a list (opl, vall, addrl)1≤l≤q
of instructions, where instruction (opl, vall, addrl) denotes that the client performs operation opl ∈
{read,write} at address addrl with value vall (which, if opl = read, is ⊥).

Definition 2.6 (Oblivious RAM (ORAM)). An Oblivious RAM (ORAM) scheme with block size
B consists of procedures (Setup,Read,Write), with the following syntax:

10

• Setup(1λ,DB) is a function that takes as input a security parameter λ, and a logical memory
DB ∈

(
{0, 1}B

)n
, and outputs an initial server state stS and a client key ck. We require that

the size of the client key |ck| be bounded by some fixed polynomial in the security parameter
λ, independent of |DB|.

• Read is a protocol between the server S and the client C. The client holds as input an address
addr ∈ [n] and the client key ck, and the server holds its current state stS . The output of the
protocol is a value val to the client, and an updated server state st′S .

• Write is a protocol between the server S and the client C. The client holds as input an address
addr ∈ [n], a value v, and the client key ck, and the server holds its current state stS . The
output of the protocol is an updated server state st′S .

Throughout the execution of the Read and Write protocols, the server is used only as remote storage,
and does not perform any computations.

We require the following correctness and security properties.

• Correctness: In any execution of the Setup algorithm followed by a sequence of Read and
Write protocols between the client and the server, where the Write protocols were executed
with a sequence V of values, the output of the client in every execution of the Read protocol
is with overwhelming probability the value he would have read from the logical memory in
the corresponding read operation, if the prefix of V performed before the Read protocol was
performed directly on the logical memory.

• Security: For a logical memory DB, and an access pattern Q, let AP (DB, Q) denote the
random variable consisting of the list of addresses accessed in the ORAM when executing
a sequence of Read and Write protocols according to Q, after the ORAM was initialized
using Setup.5 Then for every pair DB0,DB1 ∈

(
{0, 1}B

)n
of inputs, and any pair Q0 =(

opl, val0l , addr0
l

)
1≤l≤q , Q

1 =
(
opl, val1l , addr1

l

)
1≤l≤q of access patterns of length q = poly (λ),

AP
(
DB0, Q0

)
≈s AP

(
DB1, Q1

)
, where ≈s denotes negl (λ) statistical distance.

If AP
(
DB0, Q0

)
,AP

(
DB1, Q1

)
are only computationally indistinguishable, then we say the

scheme is computationally secure.

Definition 2.6 does not explicitly specify who runs the Setup procedure. It can be performed by
the client, who then sends the server state stS to the server S, or (to save on client computation)
can be delegated to a trusted third party.

Remark 2.7. Notice that Definition 2.6 does not hide whether the performed operation is a read
or a write, whereas an ORAM scheme is usually defined to hide this information. However, any
such scheme can be generically made to hide the identity of operations by always performing both
a read and a write. (Specifically, in a write operation, one first performs a dummy read; in a read
operation, one writes back the value that was read.) Revealing the identity of operations allows us
to obtain more fine-grained overheads.

Remark on Hiding Physical Memory Contents. The security property of Definition 2.6
implicitly assumes that the server does not see the contents of the physical memory: if the server
is allowed to see it, he might be able to learn some non-trivial information regarding the access

5In particular, the accesses performed during Setup are not included in AP, i.e., it includes only the accesses
performed during the Read and Write executions.

11

pattern, and thus violate the security property. As noted in Section 1.1, hiding the physical memory
contents from the server can be achieved by encrypting the physical memory blocks, but security
will then only hold against computationally-bounded servers, and so we choose to define security
with the implicit assumption that the server does not see the memory contents (which also allows
for cleaner constructions).

We will also consider the more restricted notion of a Read-Only (RO) ORAM scheme which,
roughly, is an ORAM scheme that supports only read operations.

Definition 2.8 (Read-Only Oblivious RAM (RO-ORAM)). A Read-Only Oblivious RAM (RO-
ORAM) scheme consists of procedures (Setup,Read) with the same syntax as in Definition 2.6, in
which correctness holds for any sequence of Read protocols between the client and the server, and
security holds for any pair of access patterns R0, R1 that contain only read operations.

3 Read-Only ORAM from Oblivious-Access Sort and Smooth LDCs

In this section we construct a Read-Only Oblivious RAM (RO-ORAM) scheme from oblivious-
access sort algorithms and smooth LDCs. Concretely, we prove the following:

Theorem 3.1. Suppose there exist:

• (k, n,M)-smooth LDCs with M = poly (n).

• An oblivious-access sort algorithm Sort with complexity s (n,B) for input size n and block size
B.

Then there exists an RO-ORAM scheme for logical memory of size n and blocks of size B =
Ω
(
λ · k2 · log3 (kn) log7 log (kn)

)
with k + 2k2

M · s (M,B) +O (1) overhead, and O (k) client storage.

Theorem 1.1 now follows from Theorem 3.1 (using also Theorem 2.4) for an appropriate instan-
tiation of the sorting algorithm and LDC.

Corollary 3.2 (RO-ORAM, “dream” parameters; formal statement of Theorem 1.1). Suppose
there exist:

• (k, n,M)-smooth LDCs with k = O (1) and M = poly (n).

• Boolean sorting circuits {C (n,B)}n,B of size s (n,B) = O (n · B) for input size n and block
size B.

Then there exists an RO-ORAM scheme for logical memory of size n and blocks of size Ω
(
λ · log4 n

)
with O (log log n) overhead, and O (1) client storage.6

We also instantiate our construction with sorting algorithms and LDCs with more “conservative”
parameters, to obtain the following corollary.

Corollary 3.3 (RO-ORAM, milder parameters). Suppose there exist:

• (k, n,M)-smooth LDCs with k = poly log logn and M = poly (n).

• Boolean sorting circuits {C (n,B)}n,B of size s (n,B) ∈ o
(
n·B·logn

k2

)
for input size n and block

size B.

Then there exists an RO-ORAM scheme for memory of size n and blocks of size Ω
(
λ · log4 n

)
with

o (log n) overhead, and poly log log n client storage.
6Recall that the client memory stores blocks of size B. Jumping ahead, for the setting discussed in the theorem

statement such blocks are large enough to store the entire client memory needed for the metadata ORAM.

12

A note on improved block size. As will become evident from the proof, the restriction on
the block size in Theorem 3.1 and Corollaries 3.2 and 3.3 results from instantiating the meatadata
ORAM in Construction 3.4 with path ORAM [SvDS+13] (Theorem 3.7). We note that if path
ORAM is replaced with optORAMa [AKL+20] then the block size could be reduced to roughly
B = Ω

(
λk2 log2 (kn)

)
in Theorem 3.1, and roughly B = Ω

(
λ log2 n

)
and B = λ·poly log log(n)·log2 n

in corollaries 3.2 and 3.3 (respectively), at the expense of reducing the security of the scheme to hold
computationally (instead of statistically), and obtaining amortized (instead of worst-case) overhead.
This is because optORAMa obtains amortized log n overhead with blocks of size log n and O (1)
client storage, but only has computational security (whereas path ORAM has larger block size and
client memory, but obtains statistical security and worst-case overhead).

Construction Overview. As outlined in the introduction, our construction uses a (k, n,M)-
smooth LDC. The server stores k codeword copies, each permuted using a unique uniformly random
permutation. To read block j from the logical memory, the client runs the LDC decoder until the
decoder generates a set of fresh decoding queries (i.e., a set q1, . . . , qk of queries such that for every
1 ≤ i ≤ k, qi was not issued before as the i’th query), and sends these queries to the server. The
server uses the i’th permuted codeword copy to answer the i’th decoding query. The metadata
regarding which decoding queries are fresh, as well as the description of the permutations, are
stored on the server using a (polylogarithmic-overhead) ORAM scheme, which the client accesses
to determine whether the decoder queries are fresh, and to permute them according to the random
permutations.

The execution is divided into “epochs” consisting of O (M/k) read operations. When an epoch
ends, the client “refreshes” the permuted codeword copies by picking k fresh, random permutations,
and running an oblivious-access sort algorithm with the server to permute the codeword copies
stored on the server according to the new permutations. The description of the new permutations
is stored in the metadata ORAM (the client also resets the bits indicating which decoding queries
are fresh). The refreshing operations are spread-out across the O (M/k) read operations of the
epoch. The resultant increase in complexity depends on k (which determines the epoch length, i.e.,
the frequency in which refreshing is needed), and on the complexity of the oblivious-access sort
algorithm.

Construction 3.4 (RO-ORAM from Oblivious-Access Sort and Smooth LDCs). The scheme uses
the following building blocks:

• A (k, n,M){0,1}B-smooth LDC (EncLDC,QueryLDC,DecLDC).

• An oblivious-access sort algorithm Sort.

• An ORAM scheme (Setupin,Readin,Writein).

The scheme consists of the following procedures:

• Setup(1λ,DB): Recall that λ denotes the security parameter, and DB ∈
(
{0, 1}B

)n
. Instan-

tiate the LDC with message size n over alphabet Σ = {0, 1}B, and let k be the corresponding
number of queries, and M be the corresponding codeword size. Proceed as follows.

1. Counter initialization. Initializes a step counter count = 0.

2. Data storage generation.

(a) Generate the codeword D̃B = EncLDC (DB) with D̃B ∈ ΣM .

13

(b) For every 1 ≤ i ≤ k:

– Generate a random permutation P i : [M]→ [M].

– Let D̃B
i
∈ ΣM be a permuted version of the codeword which satisfies D̃B

i

P i(j) =

D̃Bj for all j ∈ [M].

3. Metadata storage generation.

(a) For every 1 ≤ i ≤ k:

– Initialize a length-M bit-array Queriedi to ~0.

– Initialize a length-M array Permi over {0, 1}logM such that Permi (j) = P i (j).

(b) Let mDB denote the logical memory obtained by concatenating Queried1, . . . ,Queriedk

and Perm1, . . . ,Permk. Run (ckm, stm)← Setupin

(
1λ,mDB

)
to obtain the client key

and server state for the metadata ORAM.

4. Output. The long-term client key ck = ckm consists of the client key for the metadata

ORAM. The server state stS =
({

D̃B
i

: i ∈ [k]
}
, stm, count

)
contains the k permuted

codewords, the server state for the metadata ORAM, and the step counter.

• The Read protocol. To read the logical memory block at location addr ∈ [n] from the server
S, the client C with key ck = ckm operates as follows, where in all executions of the Readin

or Writein protocols on mDB S plays the role of the server with state stm and C plays the
role of the client with key ckm.

1. Generating decoder queries. Repeat the following λ times:

– Run (q1, . . . , qk)← QueryLDC (addr) to obtain decoding queries.

– For every 1 ≤ i ≤ k, run the Readin protocol to read Queriedi [qi]. We say that qi is
fresh if Queriedi [qi] = 0.

– Let (q̂1, . . . , q̂k) denote the decoding queries in the first iteration in which all queries
were fresh. (If no such iteration exists, set (q̂1, . . . , q̂k) to be the decoding queries
generated in the last iteration.)

2. Permuting queries. For every 1 ≤ i ≤ k, run the Readin protocol to read Permi [q̂i]. Let
q′i denote the value that Readin outputs to the client.

3. Decoding logical memory blocks. Read D̃B
1

q′1
, . . . , D̃B

k

q′k
from the server, and set the client

output to DecLDC

(
D̃B

1

q′1
, . . . , D̃B

k

q′k

)
.

4. Updating counter and server state. Let ` = M
2k . Read count from the server.

– If count < ` − 1, then update count := count + 1, and for every 1 ≤ i ≤ k, run the
Writein protocol to write “1” to Queriedi [q̂i].

– Otherwise, update count := 0, and for every 1 ≤ i ≤ k:

∗ Run the Writein protocol to write ~0 to Queriedi.

∗ Replace P i with a fresh random permutation on [M] by running the Fisher-
Yates shuffle algorithm (as presented by Durstenfeld [Dur64]) on Permi, using
the Readin and Writein protocols.

∗ Use Sort to sort D̃B
i

according to the new permutation P i (each block consists
of a codeword symbol, and the index in the codeword which is used as the tag
of the block).

14

If the complexity of these three steps is cepoch, then the client performs cepoch/` steps
of this computation in each protocol execution so that it is completed by the end of
the epoch.

We prove the following claims about Construction 3.4.

Claim 3.5 (ORAM security). Assuming the security of all of the building blocks, Construction 3.4
is a secure RO-ORAM scheme.

Claim 3.6 (ORAM overhead). Assume that:

• The logical memory DB has block size B, and the metadata ORAM has block size mB, satis-
fying B > mB ≥ logM .

• The metadata ORAM has overhead Ovh (N) for memory of size N .

• The oblivious-access sort algorithm has complexity CCSort (n,B) when operating on inputs
consisting of n size-B blocks.

Then every execution of the Read protocol in Construction 3.4 requires accessing

O
(
kλ+ k2

)
·mB · Ovh

(
k · (M +M logM)

mB

)
+ kB +

2k2

M
· CCSort (M,B) · B

mB

words on the server.

Claims Imply Theorem. To prove Theorem 3.1, we instantiate the metadata ORAM of Con-
struction 3.4 with the following variant of path ORAM [SvDS+13]:

Theorem 3.7 (Statistical ORAM with polylog overhead, implicit in [SvDS+13]). Let λ be a security
parameter. Then there exists a statistical ORAM scheme with negl (λ) error for logical memory
consisting of N blocks of size mB = log2N log logN with O (logN) overhead, in which the client
stores O (logN (λ+ log logN)) blocks.

Moreover, initializing the scheme requires accessing O (N ·mB) words, and the server stores
O (N) blocks.

Proof of Theorem 3.1. Security follows directly from Claim 3.5 since (as noted in Section 2.1) the
existence of a (k, n,M)-smooth LDC implies the existence of a (k, n,M){0,1}B-smooth LDC.

As for the overhead of the construction, let Nm = k (M +M logM) denote the size (in bits) of
the metadata ORAM. Substituting mB = log2Nm log logNm, and Ovh (N) = O (logN) (according
to Theorem 3.7), Claim 3.6 guarantees that every execution of the Read protocol requires accessing

O
(
kλ+ k2

)
· log2Nm log logNm ·O (logNm) + kB +

2k2

M
· s (M,B) · B

mB

words on the server. The first summand can be upped bounded by

k2λ · log2 (kM) log3 log (kM) ·O (log (kM)) ≤ k2λ · log3 (kM) log3 log (kM) .

For B = Ω
(
λ · k2 · log3 (kn) log7 log (kn)

)
(as in the theorem statement) with a sufficiently large

constant in the Ω (·) notation, and since M = poly (n), this corresponds to accessing O (B) words

on the server, so the overhead is k + 2k2

M · s (M,B) +O (1).
Finally, regarding client storage, emulating the LDC decoder requires storing k size-B blocks

(i.e, the answers to the decoder queries). Operations on mDB require (by Theorem 3.7) storing
O (logNm (λ+ log logNm)) size-mB blocks which corresponds to a constant number of size-B blocks.

15

Security Analysis: Proof of Claim 3.5. The proof of Claim 3.5 will use the next lemma,
which states that with overwhelming probability, every Read protocol execution uses fresh decoding
queries. This follows from the smoothness of the underlying LDC.

Lemma 3.8. Let k,M ∈ N, and let X = (X1, . . . , Xk) be a random variable over [M]k such that
for every 1 ≤ i ≤ k, Xi is uniformly distributed over [M]. Let S1, . . . , Sk ⊆ [M] be subsets of size

at most `. Then in l independent samples according to X, with probability at least 1 −
(
k · `M

)l
,

there exists a sample (x1, . . . , xk) such that xi /∈ Si for every 1 ≤ i ≤ k.
In particular, if ` = M

2k and l = Ω (λ) then except with probability negl (λ), there exists a sample
(x1, . . . , xk) such that xi /∈ Si for every 1 ≤ i ≤ k.

Proof. Consider a sample (x1, . . . , xk) according to X. Since each Xi is uniformly distributed over
[M], then Pr [xi ∈ Si] ≤ `

M , so by the union bound, Pr [∃i : xi ∈ Si] ≤ k· `M . Since the l samples are

independent, the probability that no such sample exists is (Pr [in a single sample, ∃i : xi ∈ Si])l ≤(
k · `M

)l
. For the “in particular” part, notice that for ` = M

2k and l = Ω (λ), 1 −
(
k · `M

)l
=

1− 2−Ω(λ).

We are now ready to prove Claim 3.5.

Proof of Claim 3.5. The correctness of the scheme follows directly from the correctness of the
underling LDC. We now argue security. Let DB0,DB1 be two logical memories consisting of n size-
B blocks, and let R0, R1 be two sequences of read operations of length q = poly (λ). We proceed
via a sequence of hybrids. We assume that in each read operation, at least one iteration in the Read
protocol succeeded in generating fresh decoder queries, and condition all hybrids on this event.
This is without loss of generality since by Lemma 3.8, this happens with overwhelming probability.

Hb
0 : Hybrid Hb0 is the access pattern AP

(
DBb, Rb

)
in an execution of read sequence Rb on the

RO-ORAM generated for logical memory DBb.

Hb
1 : In hybrid Hb1, for every 1 ≤ i ≤ k, we replace the values of Queriedi and Permi with dummy

values of (e.g.,) the all-0 string. Moreover, we replace all read and write accesses to the
metadata mDB with dummy operations that (e.g.,) read and write the all-0 string to the
first location in the metadata. (We note that the accesses to the permuted codewords re-
main unchanged, where each access consists of fresh decoding queries, permuted according to
P 1, . . . , P k.)

Hybrids Hb0 and Hb1 are statistically indistinguishable by the security of the metadata ORAM.

Hb
2 : In hybrid Hb2, for every 1 ≤ i ≤ k, and every epoch j, we replace the permutation on which the

oblivious-access sort algorithm Sort is applied, with a dummy permutation (e.g., the identity).
(As inHb1, the accesses to the codeword copies remain unchanged, and in particular the “right”
permutations are used in all epochs.)

Hybrids Hb1 and Hb2 are statistically indistinguishable by the obliviousness property of the
oblivious-access sort algorithm.

Hb
3 : In hybrid Hb3, for every 1 ≤ i ≤ k, we replace the queries to the i’th permuted codeword with

queries that are uniformly random subject to the constraint that they are all distinct.

Hybrids Hb2 and Hb3 are statistically indistinguishable since by our assumption all the queries
sent to the codeword copies are fresh, and they are permuted using random permutations.
(Notice that Hb2,Hb3 contain no additional information regarding these permutations.)

We conclude the proof by noting that H0
3 ≡ H1

3 since neither depend on DB0,DB1, R0 or R1.

16

Complexity Analysis: Proof of Claim 3.6. We now analyze the complexity of Construc-
tion 3.4, proving Claim 3.6. Notice that since mB ≥ logM , an image of any random permutation
P i : [M]→ [M] is contained in a single block of mDB. Notice also that the metadata mDB consists

of k · (M +M logM) bits, and let Nm := k·(M+M logM)
mB denote its size in size-mB blocks. Recall

that a word (i.e., the basic unit of the physical memory stored on the server) consists of w bits.

Proof of Claim 3.6. Every execution of the Read protocol consists of the following operations:

• Reading k · λ bits from mDB to check if the decoding queries in each of the λ iterations are
fresh. In the worst case, reading each bit requires reading a different block from mDB, which
requires accessing kλ ·mB · Ovh (Nm) words on the server.

• Reading k images from Perm1, . . . ,Permk to permute the chosen decoding queries. This
requires reading k blocks from mDB, which requires accessing k ·mB ·Ovh (Nm) words on the
server.

• Reading k blocks from the permuted codewords D̃B
1
, . . . , D̃B

k
to answer the decoder queries,

which requires accessing B
w · k words on the server.

• Writing k bits to mDB to update the values Queriedi
[
q̂i
]
, 1 ≤ i ≤ k, to 1, in total accessing

k ·mB ·Ovh (Nm) words on the server. (This operation is only performed when count < `− 1,
but counting it in every Read execution will not increase the overall asymptotic complexity.)

• Updating the counter, which requires accessing λ
w words on the server.7

In total, these operations require accessing O (kλ) ·mB · Ovh (Nm) + k · Bw words on the server.
In addition, every Read execution performs its “share” of the operations needed to update the

server state at the end of the epoch. More specifically, it performs a 1
` = 2k

M -fraction of the following
operations:

• Updating the metadata ORAM, which requires the following. First, writing k · MmB blocks to
mDB to reset all entries of Queriedi, 1 ≤ i ≤ k. Second, reading and writing k · 2M blocks to
mDB to update the entries of Permi, 1 ≤ i ≤ k with the images of the new permutations (this
is done using the Fisher-Yates shuffle). In total, these update operations require accessing
k ·M ·

(
1

mB + 4
)
·mB · Ovh (Nm) words on the server.

• Running k executions of Sort on an input of M blocks of size B to re-permute the codeword
copies, which requires accessing k ·CCSort (M,B) blocks on the server, i.e., k ·CCSort (M,B) · B

mB
words on the server.

So these update operations require accessing O
(
k2
)
·mB ·Ovh (Nm) + 2k2

M ·CCSort (M,B) · B
mB words

on the server per execution of the Read protocol.
In summary, reading a single logical block from DB requires accessing O

(
kλ+ k2

)
· mB ·

Ovh
(
k·(M+M logM)

mB

)
+ k

wB + 2k2

M · CCSort (M,B) · B
mB words on the server.

7Here, we assume λ ≥ logM/2k, which is the number of bits needed to represent the counter.

17

3.1 Read-Only ORAM with Oblivious Setup

In this section we generalize the notion of an RO-ORAM scheme to allow the client to run the
ORAM Setup algorithm, using the server as remote storage, when the logical memory is already
stored at the server. We call this primitive an RO-ORAM scheme with oblivious setup,8 and show
that the RO-ORAM scheme of Construction 3.4 extends to this setting. This primitive will be used
in the next section to construct an ORAM scheme supporting writes with low read overhead.

At a high level, an RO-ORAM scheme with oblivious setup is an RO-ORAM scheme (Setup,Read)
associated with an additional protocol OblSetup which allows the client to execute the Setup algo-
rithm using the server as remote storage when the logical memory is already stored on the server,
where the execution is oblivious in the sense that the scheme remains secure when the RO-ORAM
is generated using OblSetup instead of Setup. Formally,

Definition 3.9 (RO-ORAM with oblivious setup). An RO-ORAM scheme with oblivious setup is
an RO-ORAM scheme (Setup,Read), associated with an additional OblSetup protocol between the
client C and the server S, where:

• The server holds as input a logical memory DB ∈
(
{0, 1}B

)n
, and both parties hold 1λ as

input.

• The correctness and security properties of Definition 2.8 hold.

• The correctness property of Definition 2.8 holds when the RO-ORAM is instantiated with
OblSetup instead of Setup.

• The security property of Definition 2.8 holds when the ORAM is generated using OblSetup
instead of Setup, and when the access patterns AP

(
DBb, Rb

)
, b ∈ {0, 1} include also the

accesses performed during the execution of OblSetup.

Next, we show that the RO-ORAM scheme of Construction 3.4 has oblivious setup. The
oblivious setup protocol relies on the building blocks of Construction 3.4, and additionally uses a
CPA-secure symmetric encryption scheme (whose existence follows from the existence of OWFs).

The high-level idea is conceptually simple. The client first encrypts the logical memory, then
generates the codeword copies by encoding the encrypted logical memory. This can be done by
running the encoding procedure of the LDC “in the clear” (using the server as remote storage),
because by the CPA-security of the encryption scheme, the access pattern of the encoding procedure
reveals no information on the logical memory. (Indeed, the access pattern might depend on the
values of the ciphertexts, but those are computationally indistinguishable from encryptions of 0.)
Then, the client can use an “empty” metadata (initialized to ~0) to generate his keys for the metadata
ORAM, and update its contents by running the Write protocol of the metadata ORAM together
with the server. Finally, the codeword copies can be obliviously permuted using the oblivious-access
sort algorithm. This high-level intuition is formalized in the following construction.

Construction 3.10 (RO-ORAM with Oblivious Setup). The RO-ORAM scheme(
Setup′,Read′,OblSetup

)
is obtained from Construction 3.4 using a CPA-secure encryption

scheme. We use the notation of Construction 3.4 (e.g., for the LDC parameters).

• Setup′
(
1λ,DB

)
is obtained from the Setup algorithm of Construction 3.4 by replacing Step 2a

with the following: generate an encryption key sk← KeyGen
(
1λ
)
, encrypt the logical memory

D̂B← EncSE (sk,DB), and generate the codeword D̃B = EncLDC

(
D̂B
)

with D̃B ∈ ΣM .

8We could have similarly defined this notion as an extension of ORAM schemes (that support write operations),
but since we only use this property for RO-ORAM schemes, we choose to define it for this (more restricted) setting.

18

Additionally, the client key which Setup outputs in Step 4 is ck = (sk, ckm), and the server

state is
({

D̃B
i

: i ∈ [k]
}
, stm, count,DB

)
. (Notice that the server stores the logical memory.

This will be used in OblSetup, which assumes the server already stores the logical memory.)

• Read′ is obtained from the Read algorithm of Construction 3.4 by replacing Step 3 with the

following: read D̃B
1

q′1
, . . . , D̃B

k

q′k
from the server, decode val = DecLDC

(
D̃B

1

q′1
, . . . , D̃B

k

q′k

)
, and

set the client output to DecSE (sk, val).

• OblSetup is run between the client C, and the server S. Both parties have 1λ as input, and
the server also stores DB ∈

(
{0, 1}B

)n
. The protocol is executed as follows:

– The client initializes the step counter count = 0, and generates an encryption key sk←
KeyGen

(
1λ
)
. Additionally, the client initializes a metadata ORAM with k(M+logM)

mB
size-mB empty blocks (initialized to 0), by running (ckm, stm)← Setupin

(
1λ,mDB

)
, and

sends stm to the server.

– The client encrypts the logical memory D̂B← EncSE (sk,DB) (the blocks are encrypted
one-by-one, using the server as remote storage).

– The client encodes the encrypted logical memory D̃B = EncLDC

(
D̂B
)

(using the server

as remote storage), and stores k copies D̃B
i
, i ∈ [k] of D̃B on the server.

– For every 1 ≤ i ≤ k, the client and server:

∗ Write ~0 to Queriedi, using the Writein protocol.

∗ Write a fresh random permutation P i : [M]→ [M] to Permi by running the Fisher-
Yates shuffle algorithm (as presented by Durstenfeld [Dur64]) on Permi, using the
Readin and Writein protocols.

∗ Use Sort to sort D̃B
i

according to the new permutation P i (each block consists of
a codeword symbol, and the index in the codeword which is used as the tag of the
block).

– The output to the client is ck = (sk, ckm), and the output to the server is({
D̃B

i
}
i∈[k]

, st′m, count,DB

)
, where st′m denote the updated state of the server in the

metadata ORAM at the end of this protocol. (Notice that the server stores the logical
memory. This will be used in subsequent executions of OblSetup.)

We show that Construction 3.10 is an RO-ORAM scheme with oblivious setup, namely:

Lemma 3.11 (RO-ORAM with oblivious setup). Assuming the security of the building blocks
of Construction 3.4, and the CPA-security of the encryption scheme, Construction 3.10 is a
computationally-secure RO-ORAM scheme with oblivious setup.

Proof. The correctness of the scheme (when it is initialized with either Setup or OblSetup) follows
from the correctness of the underling metadata ORAM scheme, the correctness of the oblivious-
access sort algorithm and encryption scheme, and the description of Setup′,Read′ and OblSetup.

As for security, when the scheme is initialized with the Setup algorithm, security follows similarly
to Claim 3.5 (the only difference is that here the logical memory is first encrypted, but that
does not affect the proof). As for the case when the scheme is initialized with OblSetup, let
DB0,DB1 be a pair of logical memories, let R0, R1 be a pair of sequences of read operations of
equal length, and let AP0,AP1 denote the distributions over access patterns generated during the

19

execution of OblSetup on DB0,DB1 (respectively), followed by executions of the Read protocol to
perform the sequences R0, R1 (respectively). Since the generation of the encryption key, the random
permutations, the metadata mDB, and the update operations performed on the metadata ORAM
during OblSetup, are independent of the contents of the logical memory and the read sequences, we
can condition both distributions AP0,AP1 on these values. Next, the CPA-security of the encryption
scheme guarantees that the memory accesses during encoding of DB0,DB1 are computationally
indistinguishable. (Indeed, the memory accesses depend only on the encryptions of DB0,DB1,
which are computationally indistinguishable from encryptions of 0.) Moreover, the obliviousness
of the oblivious-access sort algorithm guarantees that the access patterns during sorting of the
codewords are statistically close. Consequently, the memory accesses throughout the execution of
OblSetup on DB0,DB1 are computationally indistinguishable. Finally, we claim that the memory
accesses caused by the read sequences are computationally close. To see why this holds, notice that
the only difference between the ORAMs after OblSetup is in the contents of the codeword copies.
However, these anyway do not affect the execution of the Read protocol of Construction 3.4 (since
the LDC decoder queries are independent of the codeword contents), and so the two sequences of
Read protocol executions are statistically close by the security of Construction 3.4.

Lemma 3.12 (Complexity of oblivious setup). Assume that:

• The logical memory DB has block size B, and the metadata ORAM has block size mB, satis-
fying B > mB ≥ logM .

• The metadata ORAM has Ovh (N) overhead for memories of size N , and its setup algorithm
can be executed using the server as remote storage by accessing Tm (N) words on the server,
where the client (server) stores sC (sS) size-mB blocks.

• The oblivious-access sort algorithm has complexity CCSort (n,B) when operating on inputs
consisting of n size-B blocks.

• The LDC has query complexity k, codeword length M , and on messages of length n its encoding
procedure performs TLDC (n) operations (i.e., touches TLDC (n) message symbols).

Then the OblSetup protocol of Construction 3.10 accesses

λ+ Tm

(
k (M +M logM)

mB

)
+ 2n · B

w
+ TLDC (n) · B

w
+ kM · B

w

+

(
kM

mB
+ kM

)
·mB · Ovh

(
k (M +M logM)

mB

)
+ k · CCSort (n,B) · B

mB

words on the server, where w denotes the word size. Moreover, the client stores sC · mB
B size-B

blocks, and the server stores n+ kM + sS · mB
B + λ size-B blocks.

Proof. The storage complexity of the client and server follows directly from the assumptions of the
lemma, and the description of the OblSetup algorithm.

As for the complexity of OblSetup, initializing the metadata ORAM requires accessing Tm (N)

words on the server, whereN := k(M+M logM)
mB denotes the size of mDB in size-mB blocks. Initializing

the step counter requires accessing at most λ words on the server (since a λ-bit counter can count
any arbitrary polynomial number of steps).

Encrypting the logical memory requires reading and writing each logical memory block once,
for a total of 2n · Bw words on the server. Generating the codeword requires accessing TLDC (n) · Bw

20

words on the server, and the length-M codeword is duplicated k times, so generating the codeword
copies requires accessing TLDC (n) B

w + kM · Bw words on the server.

Updating the metadata contents requires writing kM
mB + kM blocks to mDB (since Queriedi can

be updated by writing kM
mB

~0-blocks, and each image of a permutation P i has size logM ≤ mB).

Therefore, updating the metadata ORAM requires accessing
(
kM
mB + kM

)
·mB · Ovh (N) words.

Finally, permuting the codeword copies requires accessing k ·CCSort (n,B) blocks, i.e., accessing
k · CCSort (n,B) · B

mB words on the server.

A Note on Statistically-Secure RO-ORAM with Oblivious Setup. The RO-ORAM with
oblivious setup scheme of Construction 3.10 is computationally-secure (even if the server is not
allowed to see the memory contents). This is due to the fact that the access pattern during
LDC-encoding might depend on the contents of the message being encoded, which in our case is
the encrypted contents of the logical memory. Since the encryptions of two logical memories are
only computationally indistinguishable, the resultant security is computational. We note, however,
that in some cases one can forgo the encryption in the OblSetup protocol of Construction 3.10,
and obtain a statistically secure scheme. Indeed, suppose we run the OblSetup protocol without
encrypting the logical memory. The only step whose access pattern might depend on the input is the
step in which the logical memory is encoded. In particular, if we have an LDC in which the access
pattern during encoding is independent of the message being encoded, then the resultant protocol
would be oblivious (even though we have not encrypted the logical memory before encoding it).
This is indeed the case for, e.g., linear LDCs, since encoding is done by multiplying the message
by the generator matrix, so the access pattern during encoding is independent of the message.
Consequently, instantiating Construction 3.10 with a linear LDC with the parameters specified in
Lemma 3.12, would give a statistically-secure ORAM with oblivious setup, with the complexity
specified in Lemma 3.12.

4 Oblivious RAM Supporting Writes with o (log n) Read Complex-
ity

In this section we extend the RO-ORAM scheme of Section 3 to support writes, while preserving
the overhead of read operations. We instantiate our construction in several parameter regimes,
obtaining the following results.

First, by instantiating our construction with “best possible” sorting circuits and LDCs, we prove
Theorem 1.2:

Theorem 4.1 (ORAM, “dream” parameters; formal statement of Theorem 1.2). Assume the
existence of OWFs, as well as LDCs and sorting circuits as in Corollary 3.2, where the LDC has
the following additional properties:

• M = n1+δ for some δ ∈ (0, 1).

• Encoding requires M1+γ operations over size-B blocks, for some γ ∈ (0, 1).

Then there exists an ORAM scheme for memories of size n and blocks of size B =
Ω
(
λ · log3 n log7 log n

)
with O (1) client storage, where read operations have O (log log n) overhead,

and write operations have O (nε) overhead for any constant ε ∈ (0, 1) such that ε > δ + γ + δγ.

Using milder assumptions regarding the parameters of the underlying sorting circuit and LDC,
we can prove the following:

21

Theorem 4.2 (ORAM, milder parameters). Assume the existence of OWFs, as well as LDCs
and sorting circuits as in Corollary 3.3, where the LDC has the additional properties specified
in Theorem 4.1. Then there exists an ORAM scheme for memories of size n and blocks of size
B = Ω

(
λ · log3 n log7 log n

)
with poly log log n client storage, where read operations have o (log n)

overhead, and write operations have O (nε) overhead for any constant ε ∈ (0, 1) such that ε >
δ + γ + δγ.

Finally, we also obtain a scheme with improved write overhead, by somewhat strengthening the
assumptions regarding the LDC.

Theorem 4.3 (ORAM, low write overhead; formal statement of Theorem 1.3). Assume the exis-
tence of OWFs, as well as LDCs and sorting circuits as in Corollary 3.2, where the LDC has the
following additional properties:

• M = n1+o(1).

• Encoding requires M1+o(1) operations over size-B blocks.

Then there exists an ORAM scheme for memories of size n and blocks of size B =
Ω
(
λ · log3 n log7 log n

)
with O (1) client storage, where read operations have o (log n) overhead, and

write operations have no(1) overhead.

Construction Overview. As outlined in Section 1.2.2, the ORAM consists of ` levels of increas-
ing size (growing from top to bottom), where initially the logical memory is stored in the lowest
level, and all other levels are empty. read operations look for the memory block in all levels, return-
ing the top-most copy of the block, and write operations write the memory block to the top-most
level, causing a reshuffle at predefined intervals to prevent levels from overflowing.

Transforming this high-level intuition into an actual scheme requires some adjustments. First,
our RO-ORAM scheme9 was designed for logical memories given as array data structures (namely,
in which blocks can only be accessed by specifying the location of the block in the logical memory),
but upper levels are too small to contain the entire logical memory, namely they require RO-ORAM
schemes for map data structure.10 To overcome this issue, we associate with each level i an array
DBi that contains the memory blocks of level i, and is stored in an RO-ORAM Oi (for array data
structures). Additionally, we store the metadata regarding which block appears in which array
location in a (standard, polylogarithmic-overhead) ORAMMOi for map structures. Thus, to look
for block j in level i, the client first searches for j in MOi. If the j’th memory block appears in
level i, thenMOi returns the location t in which it appears in DBi, and so the client can read the
block by performing a read for address t on the RO-ORAM Oi of the level.

Second, to allow for efficient “reshuffling” of level i (which, in particular, requires a traversal
of both DBi and DBi+1), we also store DBi in every level i. Thus, every level i contains the array
DBi, the metadata ORAMMOi which maps blocks to their locations in DBi, and the RO-ORAM
Oi which stores DBi. We note that the metadata ORAM is not needed in the lowest level, because
the structure will preserve the invariant that DB` contains all the blocks “in order” (namely, the
k’th block of the logical memory is the k’th block of DB`). This structure is presented in Figure 1.

9The construction can use any RO-ORAM scheme, but the read overhead is at least the overhead of the RO-ORAM
scheme. Therefore, to obtain o (logn) overhead, we need to instantiate the ORAM with our RO-ORAM scheme.

10We note that several ORAM schemes (such as tree-based ORAM schemes, and in particular the ORAM of
Theorem 3.7), though described for logical memories given as arrays, can actually support logical memories given as
map data structures.

22

Figure 1: ORAM level structure at the onset of the computation

Finally, every “reshuffle” of level i into level i+1 requires re-generation of the RO-ORAM Oi+1,
since the contents of DBi+1 have changed. In general, re-generation cannot use the setup algorithm
of the RO-ORAM due to two reasons. First, the setup is designed to be run by a trusted party,
and so the server cannot run it, and since setup depends on the entire logical memory, it is too
costly for the client to run on his own. Second, while the setup of an RO-ORAM is only required
to be polynomial-time (since it is only executed once, and so its cost is amortized over sufficiently
many accesses to the RO-ORAM), when executed repeatedly as part of reshuffle, a more stringent
efficiency requirement is needed. The first property is captured by the ORAM with oblivious setup
primitive (Section 3.1). For the second property we use the fact that our RO-ORAM scheme
described in Section 3 has a highly-efficient oblivious setup protocol (as described in Section 3.1).

Given these building blocks, the ORAM operates as follows. To read the j’th logical memory
block, the client looks for the block in every level. At the lowest level `, which contains the entire
logical memory, this is done by reading the block at address j from O`. For all other levels 1 ≤ i < `,
this is done by first reading j from MOi to check whether the j’th memory block appears in DBi,
and if so in which index t; and then using Oi to read the t’th block of DBi. (If the j’th block does
not appear in DBi, a dummy read is performed on Oi.) The output is the copy of block j from
DBi∗ for the smallest level i∗ such that DBi∗ contains the j’th memory block. This is the “correct”
answer because the levels preserve the invariant that each level contains at most one copy of each
logical memory block, and the most recent copy appears in the top-most level that contains the
block. An example of the execution of the read protocol is presented in Figure 2.

To write value v to the block at address j, the client asks the server to write a new copy of
block j with value v to the top level. As noted above, this causes a reshuffle into lower levels at
predefined intervals to prevent levels from overflowing. More specifically, every li write operations
level i will be reshuffled into level i + 1, where li denotes the size of level i. During reshuffle, all
memory blocks from DBi are copied into DBi+1, and multiple copies of the same memory block
are consolidated by storing the level-i copy. Additionally, the ORAMs MOi+1,Oi+1 of level i+ 1
are updated, and level i is emptied (that is, DBi is replaced with an empty array, andMOi,Oi are
updated accordingly). See Figures 4 (page 27) and 6 (page 29) for an example.

Instantiating this ORAM scheme with different values of the number of levels ` yields ORAM
schemes with different tradeoffs between the read and write overhead. Concretely, Theorems 4.1
and 4.2 are obtained by setting ` to be constant, and Theorem 4.3 is obtained by setting ` = logn

log2 logn
.

We now formally describe the construction.

Construction 4.4 (ORAM with writes). The scheme uses the following building blocks:

23

Figure 2: Read execution for addr = 2 in a toy-example ORAM with logical memory size n = 5 and
` = 4 levels. The frame indicates the level which is currently accessed, and the red circle denotes the
output of the protocol. Arrows denote the output of the metadata and RO ORAMs, where dashes
arrows denote dummy accesses. In level 1 (top left) MO1 is accessed and returns t =⊥ indicating that
the second block is not in DB1, so a dummy access is performed on O1. In level 2 (top right), MO2

returns t = 1, indicating that block 2 appears as the first block of DB2. O2 is then accessed to retrieve
the first block (2, v′2) of DB2. This block is returned as the output, since higher levels (level 1) do not
contain the block. To preserve obliviousness, lower levels are still accessed. In level 3 (bottom left),
MO3 returns t = 3, indicating that block 2 appears as the third block of DB3. O3 is then accessed
to retrieve the third block (2, v′′2) of DB3, but this block is then discarded because a copy of the block
already appears at a higher level. Finally, in level 4 (bottom right), O4 is accessed to retrieve the second
block (2, v2) of DB4, which is also discarded.

• An RO-ORAM scheme with oblivious setup (SetupR,ReadR,OblSetupR).

• An ORAM scheme (Setupm,Readm,Writem) for map data structures.

We define the following protocols.

• Setup(1λ,DB): Recall that λ denotes the security parameter, and DB ∈
(
{0, 1}B

)n
. Setup

does the following.

– Initialize a writes counter. Initialize a writes counter count to 0.

– Initialize lowest level.

∗ Initialize DB` = DB. We assume without loss of generality that the blocks in DB are
of the form (j, bj), namely each logical memory block contains its logical address.11

∗ Generate an RO-ORAM schemeO` forDB` by running
(
ck`R, st`R

)
← SetupR

(
1λ,DB`

)
to obtain a client key ck`R and a server state st`R for O`.

– Initialize upper levels. For every level 1 ≤ i < `:

∗ Initialize DBi to consist of li dummy memory blocks.

11This assumption is without loss of generality since for the block sizes we consider, concatenating the address to
the block would cause at most a constant multiplicative increase in the block size.

24

∗ Generate an RO-ORAM schemeOi forDBi by running
(
ckiR, stiR

)
← SetupR

(
1λ,DBi

)
to obtain a client key ckiR and a server state stiR for Oi.
∗ Generate a map data structure Mi mapping each block (j, bj) in DBi to its index

in DBi. (That is, if (j, bj) is the t’th block of DBi then the entry (t, j) is added to
Mi.)

∗ Generate a metadata ORAM scheme MOi for Mi, by running
(
ckim, stim

)
←

Setupm
(
1λ,Mi

)
to obtain the client key and server state for MOi.

– Output. The long-term client key ck =
(

ck`R,
{

ckiR, ckim
}
i∈[`−1]

)
consists of the client

keys for the RO-ORAMs Oi and the metadata ORAMs MOi of all levels. The server

state stS =
(

count, st`R,DB
`,
{

stiR, stim,DBi
}
i∈[`−1]

)
contains the counter count of the

number of write operations performed, the server states in the RO-ORAMs Oi and the
metadata ORAMs MOi of all levels, as well as the memory contents DBi of all levels.

The Read protocol. To read the logical memory block at location addr ∈ [n] from the server S,

the client C with key
(

ck`R,
{

ckiR, ckim
}
i∈[`−1]

)
operates as follows, where in all executions of the

ReadR protocol on Oi (respectively, all executions of the Readm or Writem protocols on MOi) S
plays the role of the server with state stiR (respectively, stim) and C plays the role of the client with
key ckiR (respectively, ckim).

• Determine block location in level i. For every level 1 ≤ i ≤ `− 1, run the Readm protocol on
MOi to read the index l in which the block appears in DBi. (If block addr does not appear
in level i, then l =⊥.)

• Read block from level i. For every level 1 ≤ i ≤ ` − 1, if l =⊥, set l = 1. Run the ReadR
protocol on Oi to read the l’th block from DBi.

• Read block from level `. Run the ReadR protocol on O` to read the addr’th block from DB`.

• Output. Let i∗ be the smallest such that block addr appears in DBi∗ , and let (addr, v) denote

the block returned by the execution of the ReadR protocol on Oi∗ . Output v to C. (All other
memory blocks returned by the ReadR protocol executions are ignored.)

The Write protocol. To write value val to block addr ∈ [n] in the logical memory, the client C

with key
(

ck`R,
{

ckiR, ckim
}
i∈[`−1]

)
operates as follows.

• Generate a “dummy” level 0 which contains a single memory block (addr, val), and send it to
the server.

• Update the server state and client key as follows:

– count := count + 1.

– If l`−1 divides count, then reshuffle level `− 1 into level ` using the ReShuffle` procedure

of Figure 3, namely execute ReShuffle`
(

ck`−1
R , ck`R, ck`−1

m , st`−1
R , st`R, st`−1

m

)
.

– For every i from ` − 2 down to 0 for which li divides count, reshuffle level
i into level i + 1 using the ReShuffle procedure of Figure 5, namely execute
ReShuffle

(
i, ckiR, cki+1

R , ckim, cki+1
m , stiR, sti+1

R , stim, sti+1
m

)
.

25

The ReShuffle` procedure
Inputs:

ckjR, j ∈ {`− 1, `}: the client keys for the RO-ORAMs O`−1,O` of levels `− 1, `.

ck`−1
m : the client key for the metadata ORAM MO`−1 of level `− 1.

stjR, j ∈ {`− 1, `}: the server states for the RO-ORAMs O`−1,O` of levels `− 1, `.

st`−1
m : the server state for the metadata ORAM MO`−1 of level `− 1.

Operation:

• Updating contents of level `. For every 1 ≤ k ≤ n:

– Read the k’th block (k, vk) of DB`.
– Run the Readm protocol (with client key ck`−1

m and server state st`−1
m) on MO`−1

to read the index t in which memory block k appears in DB`−1. (If memory block
k does not appear in DB`−1 then Readm returns ⊥ to the client.)

– Run the ReadR protocol (with client key ck`−1
R and server state st`−1

R) on O`−1 to
read the value v′k of the t’th block in DB`−1. (If t =⊥, perform a dummy read of
the block at index 1.)

– If t 6=⊥, replace the k’th block in DB` with (k, v′k). Otherwise, replace the k’th
block with (k, vk) (this is a dummy write).

• Updating RO-ORAMs. Replace DB`−1 with an array consisting of l`−1 dummy blocks.

For j = `− 1, `, run the OblSetupR protocol to generate a new RO-ORAM Oj for DBj :(
c̃k
j

R, s̃t
j
R

)
← OblSetupR

(
1λ,DBj

)
. Replace ckjR, stjR with c̃k

j

R, s̃t
j
R, respectively.

• Updating metadata ORAM. For every 1 ≤ k ≤ l`−1:

– Read the k’th block (j, vj) of DB`−1.

– Remove the entry corresponding to k from M`−1 by executing the Writem protocol
on MO`−1 (with client key ck`−1

m and server state st`−1
m).

Figure 3: The ReShuffle` protocol used in Construction 4.4

26

Figure 4: ReShuffle` execution on the ORAM from Figure 2. The red circle indicates the block which is
currently updated. Arrows denote the output of the metadata and RO ORAMs, where dashes arrows
denote dummy accesses. Block 1 is updated first (top left),MO3 is accessed and returns t = 2 indicating
that block 1 appears as the second block of DB3. The block (1, v′1) is then read from O3, and updated
in DB4. Block 2 is updated next (top right),MO3 is accessed and returns t = 3 indicating that block 2
appears as the third block of DB3. The block (2, v′′2) is then read from O3, and updated in DB4. Block
3 is updated next (center left), MO3 is accessed and returns t = 1 indicating that block 3 appears as
the first block of DB3. The block (3, v′3) is then read from O3, and updated in DB4. Block 4 is updated
next (center right),MO3 is accessed and returns t =⊥, indicating that block 4 does not appear in DB3.
Therefore, a dummy read is performed on O3, and a dummy write is performed on DB4. Finally, block
5 is updated (bottom left),MO3 is accessed and returns t =⊥, indicating that block 5 does not appear
in DB3. Therefore, a dummy read is performed on O3, and a dummy write is performed on DB4. The
values of DB3,DB4 at the end of the ReShuffle` execution are depicted at the bottom right (these values
are used to generate new RO-ORAMs O3,O4, and update the metadata ORAMs MO3,MO4).

Remark on De-amortization. We note that using a technique of Ostrovsky and Shoup [OS97],
the server complexity in Construction 4.4 can be de-amortized, by slightly modifying the Write
protocol to allow the reshuffling process to be spread-out over multiple accesses to the ORAM. The
reason reshuffle operations can be “spread out” is that reshuffling is performed in a “bottom-up”
fashion, namely when it is time to reshuffle level i into level i+1, that reshuffling is executed before
level i − 1 is reshuffled into level i. Thus, the memory blocks that are involved in the reshuffle
of level i into level i + 1 have been known for the last li−1 time units, ever since level i was last
updated due to a reshuffle of level i − 1 into it. Therefore, the operations needed to perform the
reshuffle of level i into level i+ 1 can be spread out over li−1 operations.

We prove the following claims about Construction 4.4.

Claim 4.5 (ORAM security). Assuming the computational (respectively, statistical) security of
all of the building blocks, Construction 4.4 is a computationally-secure (respectively, statistically
secure) ORAM scheme.

Claim 4.6 (ORAM complexity). Assume that:

• The logical memory DB has block size B, and the underlying ORAM scheme has block size
mB, satisfying B > mB ≥ 2 log n, respectively.

27

The ReShuffle procedure
Inputs:

i: the index of a level to reshuffle.

ckjR, j ∈ {i, i+ 1}: the client keys for the RO-ORAMs Oi,Oi+1 of levels i, i+ 1.

ckjm, j ∈ {i, i+ 1}: the client keys for the metadata ORAMs MOi,MOi+1 of levels i, i+ 1.

stjR, j ∈ {i, i+ 1}: the server states for the RO-ORAMs Oi,Oi+1 of levels i, i+ 1.

stjm, j ∈ {i, i+ 1}: the server states for the metadata ORAMs MOi,MOi+1 of levels i, i+ 1.

Operation:

• Let m = count mod li+1. (Notice that level i+ 1 contains at most m elements.)

• Updating level-(i+ 1) blocks. For every 1 ≤ k ≤ m:

1. Read the k’th block (j, vj) from DBi+1.

2. Run the Readm protocol (with client key ckim and server state stim) on MOi to read the
index t in which memory block j appears in DBi. (If memory block j does not appear in
DBi then Readm returns ⊥ to the client.)

3. Run the ReadR protocol (with client key ckiR and server state stiR) on Oi to read the value
v′j of the t’th block in DBi. (If t =⊥, perform a dummy read to the block at index 1.)

4. If t 6=⊥, replace the k’th block in DBi+1 with
(
j, v′j

)
. Otherwise, replace the k’th block with

(j, vj) (this is a dummy write).

5. If t 6=⊥, remove the entry corresponding to t fromMi by executing the Writem protocol on
MOi. Otherwise, perform a dummy write to MOi, writing back the entry corresponding
to t that was read in step 2.

• Copying level-i blocks that were not in DBi+1. Initialize a counter count′ to m + 1. For every
1 ≤ k ≤ li:

1. Read the k’th block (j, vj) of DBi.
2. Run the Readm protocol (with client key ckim and server state stim) on MOi to read the

index t in which memory block j appears in DBi. (This step checks whether the k’th block
has been deleted from DBi in the previous step. If so, then Readm returns ⊥ to the client.)

3. If t 6=⊥, write (j, vj) as the count′’th block of DBi+1. Otherwise, write a dummy block as
the count′’th block of DBi+1.

4. If t 6=⊥, run the Writem protocol (with client key cki+1
m and server state sti+1

m) to write
(count′, j) to MOi+1. Otherwise, perform a dummy write to MOi+1.

5. If t 6=⊥, remove the entry corresponding to t fromMi by executing the Writem protocol on
MOi. Otherwise, perform a dummy write to MOi.

6. Update the counter: count′ := count′ + 1.

• Updating level ORAMs. Replace DBi with an array consisting of li dummy blocks. For j =

i, i + 1, run the OblSetupR protocol to generate a new RO-ORAM Oj for DBj :
(

c̃k
j

R, s̃t
j
R

)
←

OblSetupR
(
1λ,DBj

)
. Replace ckjR, stjR with c̃k

j

R, s̃t
j
R, respectively.

Figure 5: The ReShuffle protocol used in Construction 4.4

28

Figure 6: ReShuffle execution for i = 1 on the ORAM from Figure 2. The red circle indicates the block
which is currently updated. Arrows denote the output of the metadata and RO ORAMs, where dashes
arrows denote dummy accesses. The blocks of DB2 are updated first. The first block of DB2 is updated
first (top left), MO1 is accessed and returns t =⊥ indicating that this block does not appear in DB1.
Therefore, a dummy read is performed on O1, and dummy writes are performed on MO1,DB2. The
second block of DB2 is updated next (top right), MO1 is accessed and returns t = 1 indicating that
this block appears as the first block of DB1. The block (4, v′4) is then read from O1, and updated in
DB2. Then, the block is deleted from DB1 by updating MO1 (replacing the entry (1, 4) with (⊥, 4)).
Next, the blocks of DB1 are copied into DB2. The first block of DB1 is copied first. MO1 is accessed
and returns t =⊥, indicating that this block was already copied into DB2 (and removed from DB1).
Therefore, a dummy block is written to DB2, and dummy writes are performed onMO1,MO2. Finally,
the second block of DB1 is copied. MO1 is accessed and returns t = 2, indicating that the block has not
been removed from DB1. The block is then written into DB2, MO2 is updated to reflect that block 1
appears as the fourth block of DB2, and the block is deleted from DB1 by updating MO1 accordingly.
The values of DB1,DB2 at the end of the ReShuffle execution are depicted at the bottom (these values
are used to generate new RO-ORAMs O1,O2).

• The underlying RO-ORAM scheme has OvhR (N) overhead, and for logical memories of size
N OblSetupR accesses T (N) words.

• The underlying ORAM scheme has Ovhm (N) overhead.

Then each execution of the Read protocol of Construction 4.4 accesses

B · OvhR (n) +
`−1∑
i=1

(
mB · Ovhm

(
2li log n

mB

)
+ B · OvhR (li)

)
words, and each execution of the Write protocol of Construction 4.4 accesses

B

w
+

`−1∑
i=0

li+1

li
·
(

4B + 4mB · Ovhm

(
2li log n

mB

)
+ B · OvhR (li)

)

29

+
`−1∑
i=0

(
log li+1

w
+ mB · Ovhm

(
2li+1 log n

mB

)
+

T (li) + T (li+1)

li

)
words, where w denotes the word size.

Remark: Simplified Overhead Bounds. We note that the overheads in Construction 4.4 can
be simplified when it is instantiated with a metadata ORAM with poly-logarithmic overhead, and
for a large enough (poly-logarithmic) block size B = poly log n for which mB · Ovhm (n) = O (B).
Concretely, the overheads described in Claim 4.6 can be simplified as follows: the Read protocol
has O (`) +

∑`
i=1 OvhR (li) overhead, and the overhead of the Write protocol is

`−1∑
i=0

(
li+1

li
· (OvhR (li) +O (1)) +

T (li) + T (li+1)

li
+O (1)

)
.

Claims Imply Theorems. To prove Theorems 4.1-4.3, we instantiate Construction 4.4 with the
RO-ORAM of Construction 3.10, and the path ORAM scheme of Theorem 3.7 as the metadata
ORAM.

Proof of Theorem 4.1. Computational security follows directly from Claim 4.5 since by Claim 3.5,
Lemma 3.11 and Theorem 2.4, the assumptions imply the existence of a computationally-secure
RO-ORAM scheme with oblivious setup.

As for the complexity of the construction, we choose li = ni·µ where µ = ε−(δ+γ+δγ)
2(1+δ)(1+γ) is constant.

Then the ORAM has a constant number ` = 1/µ of levels. Recall that for every i ∈ [`− 1],∣∣MOi∣∣ ≤ 2n log n, and let N := 2n logn
log2 n log logn

. Therefore, the ORAM scheme of Theorem 3.7

satisfies mB = log2N log logN , and Ovhm (N) = O (logN). Moreover, by Theorem 3.1, and the
assumptions of Theorem 4.1, OvhR (n) = O (log log n).

Regarding the overhead of the Read protocol, Claim 4.6 guarantees that every execution of the
Read protocol accesses

B ·O (log log n) +
`−1∑
i=1

log2N log logN ·O
(

log

(
2ni·µ log n

log2N log logN

))
+

`−1∑
i=1

B ·O
(
log logni·µ

)
words. For B = Ω

(
λ log3 n log7 log n

)
as in the theorem statement, with a sufficiently large constant

in the Ω (·) notation, and since `, µ are constants, the second summand is at most O (B). The fact
that `, µ = O (1) also implies that the third summand is O (B · log log n). Therefore, the overall
overhead of read operations is O (log log n).

As for the overhead of the Write protocol, Claim 4.6 guarantees that every execution of the
Write protocol accesses

B

w
+

`−1∑
i=0

li+1

li
·
(

4B + 4mB · Ovhm

(
2li log n

mB

)
+ B · OvhR (li)

)

+

`−1∑
i=0

(
log li+1

w
+ mB · Ovhm

(
2li+1 log n

mB

)
+

T (li) + T (li+1)

li

)
words. We analyze each summand separately. First, by Theorem 3.7, Ovhm

(
2li logn

mB

)
= O (log n)

for every i, and so by the choice of B,

mB · Ovhm

(
2li+1 log n

mB

)
≤ O (mB · log n) = O (B) .

30

Using also the fact (noted above) that OvhR (li) = O (log log n), we get

li+1

li
·
(

4B + 4mB · Ovhm

(
2li log n

mB

)
+ B · OvhR (li)

)
= O (nµ · B · log logn) .

Moreover, since ` is constant then

`−1∑
i=0

log li+1

w
= O (log n) .

Finally, to bound the term T(li)+T(li+1)
li

, we first bound T (·). According to Lemma 3.12, the
execution of OblSetup accesses

λ+ Tm

(
k (M +M logM)

mB

)
+ 2n · B

w
+ TLDC (n) · B

w
+ kM · B

w

+

(
kM

mB
+ kM

)
·mB · Ovh

(
k (M +M logM)

mB

)
+ k · CCSort (n,B) · B

w

words, where Tm (N) denotes the number of words accessed when setting up the metadata ORAM
on logical memories of size N , Ovh (N) denote the overhead of the metadata ORAM on logical
memories of size N , TLDC (n) denotes the number of words accessed to LDC-encode length-n mes-
sages, and CCSort (n,B) denotes the number of (size-B) blocks accessed during the execution of the
oblivious-access sort algorithm.

For the specific building blocks assumed in Theorem 4.1, and by Theorem 3.7, Tm (N) =

O (N ·mB), so Tm
(
k(M+M logM)

mB

)
= O (kM logM) = O

(
n1+δ log n

)
, and Ovh (N) = O (logN) so

Ovh
(
k(M+M logM)

mB

)
= O (log n). Moreover, TLDC (n) = n(1+δ)(1+γ), and CCSort (n,B) = O (n log logn).

Therefore, executing OblSetup on a logical memory of size n accesses T (n) = λ+ n(1+δ)(1+γ) · Bw +

O
(
n1+δ log4 n

)
= O

(
n(1+δ)(1+γ)

)
words (for a large enough n).

Therefore, because li = ni·µ, we get

T (li) + T (li+1)

li
≤ 2T (li+1)

li
= 2 ·

O
(
n(i+1)µ(1+δ)(1+γ)

)
niµ

= O
(
niµ(δ+γ+δγ)+µ(1+δ)(1+γ)

)
so

`−1∑
i=0

T (li) + T (li+1)

li
≤ ` ·O

(
n`µ(δ+γ+δγ)+µ(1+δ)(1+γ)

)
≤ O (nε)

where the right-most inequality follows from the choice of µ.
In summary, since ` = O (1) then every execution of the Write protocol accesses

O (B + nµ log log n · B + nε) = O (B · nε)

words, for a large enough n (since for large enough n, nµ log log n ≤ n2µ ≤ nε). Consequently, the
overhead of write operations is O (nε).

Finally, regarding client storage, emulating the LDC decoder requires storing k = O (1) size-
B blocks. By the choice of B, running OblSetup (as part of reshuffle operations) requires the
client to store only O (1) size-B blocks. Operations on mDB require (by Theorem 3.7) storing
O (logN log logN) size-mB blocks which corresponds to a constant number of size-B blocks.

31

The proof of Theorem 4.2 is similar to the proof of Theorem 4.1, so we only sketch the differences.

Proof of Theorem 4.2. As in the proof of Theorem 4.1, we choose li = ni·µ where µ = ε−(δ+γ+δγ)
2(1+δ)(1+γ)

is constant, so ` = 1/µ.
Regarding the overhead of the Read protocol, OvhR (n) = o (log n) by Theorem 3.1 and the

assumptions of Theorem 4.2. Therefore, Claim 4.6 guarantees that every execution of the Read
protocol acccesses

B · o (log n) +

`−1∑
i=1

log2N log logN ·O
(

log

(
2ni·µ log n

log2N log logN

))
+

`−1∑
i=1

B · o
(
log ni·µ

)
words. For our choice of B, µ, and `, this is at most o (B · log n).

As for the overhead of the Write protocol, the analysis is identical to that of Theorem 4.1, except
for the second summand (which depends on OvhR), and the last summand (which depends on the
query complexity of the LDC decoder, and the complexity of the oblivious-access sort algorithm).
Concretely, the second summand is:

`−1∑
i=0

li+1

li
·
(

4B + 4mB · Ovhm

(
2li log n

mB

)
+ B · OvhR (li)

)
= o (nµ · B · log n) +O (nµ · B) .

To bound the last summand, we bound the complexity of the OblSetup protocol. Recall that
by Lemma 3.12, OblSetup accesses

λ+ Tm

(
k (M +M logM)

mB

)
+ 2n · B

w
+ TLDC (n) · B

w
+ kM · B

w

+

(
kM

mB
+ kM

)
·mB · Ovh

(
k (M +M logM)

mB

)
+ k · CCSort (n,B) · B

w

words. For the parameters assumed in the theorem statement, Tm
(
k(M+M logM)

mB

)
=

O (kM logM) = n1+δ · log n · poly log log n, and Ovh
(
k(M+M logM)

mB

)
= O (log n). Moreover,

TLDC (n) = n(1+δ)(1+γ), and CCSort (n,B) = O (n log logn) + o
(

n·logn
log2c logn

)
(where k = logc log n).

Therefore, OblSetup accesses λ + B
(
n(1+δ)(1+γ) + n1+δ · log n · poly log log n

)
= O

(
B · n(1+δ)(1+γ)

)
words (for a large enough n).

Therefore,
`−1∑
i=0

T (li) + T (li+1)

li
≤ O (B · nε)

similar to the proof of Theorem 4.1.
Consequently, every execution of the Write protocol acccesses

o (nµ · B · log n) +O (nε · B) = O (nε · B)

words for a large enough n.
Finally, regarding client storage, emulating the LDC decoder requires storing k = poly log logn

size-B blocks, running OblSetup requires the client to store only O (1) size-B blocks, and operations
on mDB require storing a constant number of size-B blocks.

32

Proof of Theorem 4.3. Security follows directly from Claim 4.5 since by Claim 3.5, Lemma 3.11 and
Theorem 2.4, the assumptions in the theorem statement imply the existence of a secure RO-ORAM
scheme with oblivious setup.

As for the complexity of the construction, we choose li = 2i·log2 logn, so the ORAM has ` =
logn

log2 logn
levels. Let N := 2n logn

log2 n log logn
, and recall that mB = log2N log logN and Ovhm (N) =

O (logN) (by Theorem 3.7), and OvhR (n) = O (log log n) (by Theorem 3.1, and the assumptions
in the theorem statement).

Regarding the overhead of the Read protocol, Claim 4.6 guarantees that every execution of the
Read protocol accesses

`−1∑
i=1

log2N log logN ·O
(

log

(
2li log n

log2N log logN

))
+
∑̀
i=1

B ·O (log log li) =
∑̀
i=1

B ·O (log log li)

words, where the equality holds for B = Ω
(
λ log3 n log7 log n

)
as in the theorem statement, with a

sufficiently large constant in the Ω (·) notation. We can upper-bound this by

B · ` ·O (log log n) = B · log n

log2 log n
·O (log log n) = o (B · log n) .

As for the overhead of the Write protocol, Claim 4.6 guarantees that every execution of the
Write protocol accesses

B

w
+

`−1∑
i=0

li+1

li
·
(

4B + 4mB · Ovhm

(
2li log n

mB

)
+ B · OvhR (li)

)

+
`−1∑
i=0

(
log li+1

w
+ mB · Ovhm

(
2li+1 log n

mB

)
+

T (li) + T (li+1)

li

)
words. We analyze each summand separately, using the fact that mB ·Ovhm

(
2li logn

mB

)
≤ O (B) for

every i (by Theorem 3.7 and the choice of B), and OvhR (li) = O (log log n) (by Theorem 3.1 and
the assumptions in the theorem statement). First,

li+1

li
·
(

4B + 4mB · Ovhm

(
2li log n

mB

)
+ B · OvhR (li)

)
= O

(
B · 2log2 logn · log logn

)
so

`−1∑
i=0

li+1

li
·
(

4B + 4mB · Ovhm

(
2li log n

mB

)
+ B · OvhR (li)

)
= O

(
B · 2log2 logn · log n

log log n

)
Moreover,

`−1∑
i=0

mB · Ovhm

(
2li+1 log n

mB

)
= O

(
B · log n

log2 log n

)
and

`−1∑
i=0

log li+1

w
≤ ` · log n =

log2 n

log2 log n
.

33

Finally, to bound the term T(li)+T(li+1)
li

, we first bound T (·). According to Lemma 3.12, the
execution of OblSetup accesses

λ+ Tm

(
k (M +M logM)

mB

)
+ 2n · B

w
+ TLDC (n) · B

w
+ kM · B

w

+

(
kM

mB
+ kM

)
·mB · Ovh

(
k (M +M logM)

mB

)
+ k · CCSort (n,B) · B

w

words, where Tm (N) denotes the number of words accessed when setting up the metadata ORAM
on a logical memory of size N , Ovh (N) denote the overhead of the metadata ORAM on a size-N
logical memory, TLDC (n) denotes the number of words accessed to LDC-encode length-n messages,
and CCSort (n,B) denotes the number of words accessed during the execution of the oblivious-access
sort algorithm.

For the specific building blocks assumed in Theorem 4.3, and by Theorem 3.7, Tm (N) =

O (N ·mB), so Tm
(
k(M+M logM)

mB

)
= O (kM logM) = n1+o(1) (for a large enough n), and

Ovh (N) = O (logN) so Ovh
(
k(M+M logM)

mB

)
= O (log n). Moreover, TLDC (n) = n1+o(1), and

CCSort (n,B) = O (n log log n). Therefore, executing OblSetup requires accessing λ + n1+o(1) · B =
n1+o(1) · B words (for a large enough n).

Therefore,

`−1∑
i=0

T (li) + T (li+1)

li
≤

`−1∑
i=0

2T (li+1)

li
≤ ` ·2 · n

1+o(1) · B
n/2log2 logn

=
log n

log2 log n
·2 ·no(1) ·B ·2log2 logn = no(1) ·B.

In summary, every execution of the Write protocol accesses

O

(
B · 2log2 logn · log n

log logn

)
+ no(1) · B = B · no(1)

words, for a large enough n.
Finally, regarding client storage, emulating the LDC decoder requires storing k = O (1) size-

B blocks. By the choice of B, running OblSetup (as part of reshuffle operations) requires the
client to store only O (1) size-B blocks. Operations on mDB require (by Theorem 3.7) storing
O (logN log logN) size-mB blocks which corresponds to a constant number of size-B blocks.

A Note On Statistically-Secure ORAM with Writes. Our ORAM with writes constructions
(Theorems 4.1-4.3) are computationally-secure due to the use of a computationally-secure RO-
ORAM with oblivious setup. However, as stated in Claim 4.5, given a statistically-secure RO-
ORAM with oblivious setup the resultant ORAM with writes would also be statistically secure.
As noted in Section 3.1, such a scheme can be obtained assuming an LDC with a small encoding
circuit, or with an oblivious encoding procedure. Thus, given an LDC with one of these additional
properties we can get a statistically-secure ORAM with writes (with the parameters stated in
Theorems 4.1-4.3).

Security Analysis: Proof of Claim 4.5. We show that Construction 4.4 is secure.

Proof of Claim 4.5. The correctness of the scheme follows from the correctness of the underling
RO-ORAM (with oblivious setup) and metadata ORAM schemes, and the description of Con-
struction 4.4. Indeed, the reshuffling procedures preserve the invariant that for every level i, DBi

34

contains at most a single copy of each memory block, where upper levels contain more recent copies,
so every read operation returns the correct value.

We now argue security. Let DB0,DB1 be two logical memories consisting of n size-B blocks, and
let Q0, Q1 be two sequences of q = poly (λ) read and write operations. We proceed via a sequence
of hybrids.

Hb
0 : Hybrid Hb0 is the access pattern AP

(
DBb, Qb

)
in an execution of the sequence Qb on the

ORAM generated for the logical memory DBb.

Hb
1 : In hybrid Hb1, for every level 1 ≤ i < `, we replace all entries of Mi with dummy values

of (e.g.,) the all-0 string. Moreover, we replace all read and write accesses to the metadata
ORAM MOi with dummy operations that (e.g.,) read and write the all-0 string to the first
location in Mi. (We note that the accesses to the arrays DBi, and the RO-ORAMs Oi,
remain unchanged.)

Hybrids Hb0 and Hb1 are statistically indistinguishable by the security of the underlying ORAM
scheme, using a standard hybrid argument in which we replace Mi and the accesses to MOi
one level at a time.

Hb
2 : In hybrid Hb2, for every level 1 ≤ i ≤ `, we initialize its RO-ORAM Oi (during Setup and

ReShuffle,ReShuffle` calls) with a dummy array whose blocks all contain (e.g.,) the all-0 string.
Moreover, we replace all read and write accesses to Oi with dummy operations that (e.g.,) read
the first block in Oi and write the all-0 string to the first block in Oi. (As in Hb1, the accesses
to the arrays DBi remain unchanged, and the answers to read operations are according to the
actual value of the blocks, as they appear in DBi.)

Hybrids Hb1 and Hb2 are computationally indistinguishable by the security of the underlying
RO-ORAM scheme with oblivious setup, using a standard hybrid argument in which we replace
the contents and accesses to Oi of one level at a time.

Notice that H0
2,H1

2 may differ only in the parts of the access pattern caused by the accesses to
DBi, i ∈ [`]. Since those accesses are independent of the access patterns Q0, Q1 (respectively), or
the contents of the logical memories DB0,DB1 (respectively), we conclude that H0

2 ≡ H1
2.

Complexity Analysis: Proof of Claim 4.6. We now analyze the complexity of Construc-
tion 4.4, proving Claim 4.6. Notice that since mB ≥ 2 log n, each entry in Mi, i ∈ [`− 1] is
contained in a single block of MOi, i ∈ [`− 1]. Notice also that for every level i ∈ [`− 1], the map
Mi contains at most li ·2 log n bits, and let Nm := 2n logn

mB denote an upper bound on
∣∣Mi

∣∣ in terms
of size-mB blocks.

Proof of Claim 4.6. We first analyze the complexity of read operations. Every execution of the
Read protocol consists of the following operations:

• For every level 1 ≤ i ≤ ` − 1, a single access to the metadata ORAM MOi, which accesses

mB · Ovhm
(

2li logn
mB

)
words.

• For every level 1 ≤ i ≤ `, a single access to the RO-ORAM Oi, which accesses B · OvhR (li)
words.

35

In total, these operations access

B · OvhR (n) +
`−1∑
i=1

(
mB · Ovhm

(
2li log n

mB

)
+ B · OvhR (li)

)
words.

Next, we analyze the complexity of write operations. Every execution of the Write protocol
consists of writing a single block of size B to the server (writing the “dummy” level 0). In addi-
tion, each Write execution performs its “share” of the operations needed to execute the reshuffle
procedures ReShuffle`, and ReShuffle for every level 1 ≤ i ≤ `− 2. More specifically, for every level
0 ≤ i < `, an execution of the Write protocol entails performing a 1

li
-fraction of the total number

of operations needed to reshuffle level i into level i+ 1. We now analyze these operations.
The ReShuffle procedure, when applied to level i, consists of the following operations:

• Every block in levels i, i+ 1 (the total number of such blocks is at most li+1) causes:

– Two accesses (one for reading, one for writing) to DBi+1,12 resulting in accessing 2B
w

words.

– Two accesses (one for reading, one for writing) to MOi, resulting in accessing 2mB ·
Ovhm

(
2li logn

mB

)
words.

• Every level-(i+ 1) block (there are at most li+1 such blocks) causes a single access to Oi,
which accesses B · OvhR (li) words.

• Every level-i block (there are at most li such blocks) causes a single update of the counter,

and a single access to MOi+1, accessing log li+1

w + mB · Ovhm
(

2li+1 logn
mB

)
words.

• The RO-ORAMs Oj , j ∈ {i, i+ 1} are regenerated by running OblSetupR on the new arrays
DBj , j ∈ {i, i+ 1}, accessing T (li) + T (li+1) words.

The ReShuffle` procedure accesses at most this number of words.
In summary, the update operations needed to reshuffle level i, 0 ≤ i < `− 1 into level i+ 1 add

a total of at most

li+1

li
·
(

4B + 4mB · Ovhm

(
2li log n

mB

)
+ B · OvhR (li)

)
+

log li+1

w
+mB·Ovhm

(
2li+1 log n

mB

)
+

T (li) + T (li+1)

li

accessed words to each execution of the Write protocol. Therefore, each execution of the Write
protocol accesses at most

B

w
+

`−1∑
i=0

li+1

li
·
(

4B + 4mB · Ovhm

(
2li log n

mB

)
+ B · OvhR (li)

)

+
`−1∑
i=0

(
log li+1

w
+ mB · Ovhm

(
2li+1 log n

mB

)
+

T (li) + T (li+1)

li

)
words on the server.

12More accurately, blocks from level i cause one access to DBi and one access to DBi+1, but these operations have
the same complexity since they entail reading or writing a size-B block.

36

Acknowledgements

We thank the anonymous Journal of Cryptology reviewers for their comments, which helped us
improve the paper. This research was supported by NSF grants CNS-1314722, CNS-1413964,
CNS-1750795 and the Alfred P. Sloan Research Fellowship. The first author was supported in part
by The Eric and Wendy Schmidt Postdoctoral Grant for Women in Mathematical and Computing
Sciences.

References

[AFN+17] Ittai Abraham, Christopher W. Fletcher, Kartik Nayak, Benny Pinkas, and Ling Ren.
Asymptotically tight bounds for composing ORAM with PIR. In Public-Key Cryp-
tography - PKC 2017 - 20th IACR International Conference on Practice and Theory
in Public-Key Cryptography, Amsterdam, The Netherlands, March 28-31, 2017, Pro-
ceedings, Part I, pages 91–120, 2017.

[AKL+20] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and
Elaine Shi. OptORAMa: Optimal oblivious RAM. In Advances in Cryptology - EURO-
CRYPT 2020 - 39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part II,
pages 403–432, 2020.

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n log n) sorting network.
In Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 25-27
April, 1983, pages 1–9, 1983.

[AKST14] Daniel Apon, Jonathan Katz, Elaine Shi, and Aishwarya Thiruvengadam. Verifiable
oblivious storage. In Public-Key Cryptography - PKC 2014 - 17th International Con-
ference on Practice and Theory in Public-Key Cryptography, Buenos Aires, Argentina,
March 26-28, 2014. Proceedings, pages 131–148, 2014.

[BCP15] Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-scale secure computation:
Multi-party computation for (parallel) RAM programs. In Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part II, pages 742–762, 2015.

[BIM00] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers computation in
private information retrieval: PIR with preprocessing. In Advances in Cryptology -
CRYPTO 2000, 20th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 2000, Proceedings, pages 55–73, 2000.

[BIPW17] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access a database
both locally and privately? In Theory of Cryptography - 15th International Conference,
TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part II, pages
662–693, 2017.

[Blu84] Norbert Blum. A boolean function requiring 3n network size. Theor. Comput. Sci.,
28:337–345, 1984.

37

[BN16] Elette Boyle and Moni Naor. Is there an oblivious RAM lower bound? In Proceed-
ings of the 2016 ACM Conference on Innovations in Theoretical Computer Science,
Cambridge, MA, USA, January 14-16, 2016, pages 357–368, 2016.

[CDH20] David Cash, Andrew Drucker, and Alexander Hoover. A lower bound for one-round
oblivious RAM. In Theory of Cryptography - 18th International Conference, TCC
2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part I, pages 457–485,
2020.

[CFL+13] Yeow Meng Chee, Tao Feng, San Ling, Huaxiong Wang, and Liang Feng Zhang. Query-
efficient locally decodable codes of subexponential length. Computational Complexity,
22(1):159–189, 2013.

[CHR17] Ran Canetti, Justin Holmgren, and Silas Richelson. Towards doubly efficient private
information retrieval. In Theory of Cryptography - 15th International Conference,
TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part II, pages
694–726, 2017.

[CKW13] David Cash, Alptekin Küpçü, and Daniel Wichs. Dynamic proofs of retrievability
via oblivious RAM. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings, pages 279–295, 2013.

[Dur64] Richard Durstenfeld. Algorithm 235: Random permutation. Commun. ACM, 7(7):420,
1964.

[DvDF+16] Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher, Ling Ren, Elaine Shi,
and Daniel Wichs. Onion ORAM: A constant bandwidth blowup oblivious RAM.
In Theory of Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv,
Israel, January 10-13, 2016, Proceedings, Part II, pages 145–174, 2016.

[Efr09] Klim Efremenko. 3-query locally decodable codes of subexponential length. In Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009, pages 39–44, 2009.

[FGHK16] Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Ku-
likov. A better-than-3n lower bound for the circuit complexity of an explicit function.
In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016,
9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 89–98,
2016.

[FNR+15] Christopher W. Fletcher, Muhammad Naveed, Ling Ren, Elaine Shi, and Emil Ste-
fanov. Bucket ORAM: single online roundtrip, constant bandwidth oblivious RAM.
IACR Cryptology ePrint Archive, 2015:1065, 2015.

[GGH+13] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana Raykova,
and Daniel Wichs. Optimizing ORAM and using it efficiently for secure computa-
tion. In Privacy Enhancing Technologies - 13th International Symposium, PETS 2013,
Bloomington, IN, USA, July 10-12, 2013. Proceedings, pages 1–18, 2013.

38

[GHJR15] Craig Gentry, Shai Halevi, Charanjit S. Jutla, and Mariana Raykova. Private database
access with HE-over-ORAM architecture. In Applied Cryptography and Network Se-
curity - 13th International Conference, ACNS 2015, New York, NY, USA, June 2-5,
2015, Revised Selected Papers, pages 172–191, 2015.

[GKK+12] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin,
Mariana Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear
(amortized) time. In the ACM Conference on Computer and Communications Secu-
rity, CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages 513–524, 2012.

[GKW18] S. Dov Gordon, Jonathan Katz, and Xiao Wang. Simple and efficient two-server
ORAM. In Advances in Cryptology - ASIACRYPT 2018 - 24th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Brisbane,
QLD, Australia, December 2-6, 2018, Proceedings, Part III, pages 141–157, 2018.

[GMOT12] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamas-
sia. Privacy-preserving group data access via stateless oblivious RAM simulation. In
Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 157–167, 2012.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
RAMs. J. ACM, 43(3):431–473, 1996.

[Gol87] Oded Goldreich. Towards a theory of software protection and simulation by oblivious
RAMs. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
1987, New York, New York, USA, pages 182–194, 1987.

[Goo14] Michael T. Goodrich. Zig-zag sort: a simple deterministic data-oblivious sorting al-
gorithm running in O(n log n) time. In Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014, pages 684–693, 2014.

[HO08] Brett Hemenway and Rafail Ostrovsky. Public-key locally-decodable codes. In Ad-
vances in Cryptology - CRYPTO 2008, 28th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, pages 126–143,
2008.

[HOSW11] Brett Hemenway, Rafail Ostrovsky, Martin J. Strauss, and Mary Wootters. Public
key locally decodable codes with short keys. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques - 14th International Work-
shop, APPROX 2011, and 15th International Workshop, RANDOM 2011, Princeton,
NJ, USA, August 17-19, 2011. Proceedings, pages 605–615, 2011.

[HOWW19] Ariel Hamlin, Rafail Ostrovsky, Mor Weiss, and Daniel Wichs. Private anonymous data
access. In Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19-23, 2019, Proceedings, Part II, pages 244–273, 2019.

[IM02] Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n− o(n) for boolean
circuits. In Mathematical Foundations of Computer Science 2002, 27th International
Symposium, MFCS 2002, Warsaw, Poland, August 26-30, 2002, Proceedings, pages
353–364, 2002.

39

[IS10] Toshiya Itoh and Yasuhiro Suzuki. Improved constructions for query-efficient locally
decodable codes of subexponential length. IEICE Transactions, 93-D(2):263–270,
2010.

[KLO12] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-based
oblivious RAM and a new balancing scheme. In Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan,
January 17-19, 2012, pages 143–156, 2012.

[KM19] Eyal Kushilevitz and Tamer Mour. Sub-logarithmic distributed oblivious RAM with
small block size. In Public-Key Cryptography - PKC 2019 - 22nd IACR International
Conference on Practice and Theory of Public-Key Cryptography, Beijing, China, April
14-17, 2019, Proceedings, Part I, pages 3–33, 2019.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In 38th Annual Symposium on Foun-
dations of Computer Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22,
1997, pages 364–373, 1997.

[KS14] Marcel Keller and Peter Scholl. Efficient, oblivious data structures for MPC. In
Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014, Proceedings, Part II, pages 506–525, 2014.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for
error-correcting codes. In Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 80–86, 2000.

[LHS+14] Chang Liu, Yan Huang, Elaine Shi, Jonathan Katz, and Michael W. Hicks. Automating
efficient RAM-model secure computation. In 2014 IEEE Symposium on Security and
Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 623–638, 2014.

[LN18] Kasper Green Larsen and Jesper Buus Nielsen. Yes, there is an oblivious RAM lower
bound! In Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings,
Part II, pages 523–542, 2018.

[LO13] Steve Lu and Rafail Ostrovsky. Distributed oblivious RAM for secure two-party com-
putation. In Theory of Cryptography - 10th Theory of Cryptography Conference, TCC
2013, Tokyo, Japan, March 3-6, 2013. Proceedings, pages 377–396, 2013.

[LPM+13] Jacob R. Lorch, Bryan Parno, James W. Mickens, Mariana Raykova, and Joshua
Schiffman. Shroud: ensuring private access to large-scale data in the data center. In
Proceedings of the 11th USENIX conference on File and Storage Technologies, FAST
2013, San Jose, CA, USA, February 12-15, 2013, pages 199–214, 2013.

[MBC14] Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. Efficient private file retrieval
by combining ORAM and PIR. In 21st Annual Network and Distributed System Se-
curity Symposium, NDSS 2014, San Diego, California, USA, February 23-26, 2014,
2014.

40

[MLS+13] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,
John Kubiatowicz, and Dawn Song. PHANTOM: practical oblivious computation in
a secure processor. In 2013 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages 311–324,
2013.

[OS97] Rafail Ostrovsky and Victor Shoup. Private information storage (extended abstract).
In Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Com-
puting, El Paso, Texas, USA, May 4-6, 1997, pages 294–303, 1997.

[Ost90] Rafail Ostrovsky. Efficient computation on oblivious RAMs. In Proceedings of the
22nd Annual ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore,
Maryland, USA, pages 514–523, 1990.

[PD06] Mihai Patrascu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe
model. SIAM J. Comput., 35(4):932–963, 2006.

[PPRY18] Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo. PanORAMa:
Oblivious RAM with logarithmic overhead. In 59th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018,
pages 871–882, 2018.

[Rag07] Prasad Raghavendra. A note on Yekhanin’s locally decodable codes. Electronic Col-
loquium on Computational Complexity (ECCC), 14(016), 2007.

[RFK+15] Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten
van Dijk, and Srinivas Devadas. Constants count: Practical improvements to oblivious
RAM. In 24th USENIX Security Symposium, USENIX Security 15, Washington, D.C.,
USA, August 12-14, 2015., pages 415–430, 2015.

[SCSL11] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with
O((logN)3) worst-case cost. In Advances in Cryptology - ASIACRYPT 2011 - 17th
International Conference on the Theory and Application of Cryptology and Informa-
tion Security, Seoul, South Korea, December 4-8, 2011. Proceedings, pages 197–214,
2011.

[SS13] Emil Stefanov and Elaine Shi. ObliviStore: High performance oblivious distributed
cloud data store. In 20th Annual Network and Distributed System Security Symposium,
NDSS 2013, San Diego, California, USA, February 24-27, 2013, 2013.

[SSS12] Emil Stefanov, Elaine Shi, and Dawn Xiaodong Song. Towards practical oblivious
RAM. In 19th Annual Network and Distributed System Security Symposium, NDSS
2012, San Diego, California, USA, February 5-8, 2012, 2012.

[SvDS+13] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely simple oblivious
RAM protocol. In 2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages 299–310, 2013.

[WCS15] Xiao Wang, T.-H. Hubert Chan, and Elaine Shi. Circuit ORAM: on tightness of
the Goldreich-Ostrovsky lower bound. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO, USA, October
12-6, 2015, pages 850–861, 2015.

41

[WHC+14] Xiao Shaun Wang, Yan Huang, T.-H. Hubert Chan, Abhi Shelat, and Elaine Shi.
SCORAM: oblivious RAM for secure computation. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ,
USA, November 3-7, 2014, pages 191–202, 2014.

[Woo07] David P. Woodruff. New lower bounds for general locally decodable codes. Electronic
Colloquium on Computational Complexity (ECCC), 14(006), 2007.

[WS12] Peter Williams and Radu Sion. Single round access privacy on outsourced storage. In
the ACM Conference on Computer and Communications Security, CCS’12, Raleigh,
NC, USA, October 16-18, 2012, pages 293–304, 2012.

[WW18] Mor Weiss and Daniel Wichs. Is there an oblivious RAM lower bound for online reads?
In Theory of Cryptography - 16th International Conference, TCC 2018, Panaji, India,
November 11-14, 2018, Proceedings, Part II, pages 603–635, 2018.

[Yek07] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length.
In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San
Diego, California, USA, June 11-13, 2007, pages 266–274, 2007.

[YFR+13] Xiangyao Yu, Christopher W. Fletcher, Ling Ren, Marten van Dijk, and Srinivas De-
vadas. Generalized external interaction with tamper-resistant hardware with bounded
information leakage. In CCSW’13, Proceedings of the 2013 ACM Cloud Computing
Security Workshop, Co-located with CCS 2013, Berlin, Germany, November 4, 2013,
pages 23–34, 2013.

[ZMZQ16] Jinsheng Zhang, Qiumao Ma, Wensheng Zhang, and Daji Qiao. MSKT-ORAM: A con-
stant bandwidth ORAM without homomorphic encryption. IACR Cryptology ePrint
Archive, 2016:882, 2016.

42

	Introduction
	Our Contributions
	Our Techniques
	Read-Only ORAM
	ORAM with Writes

	Open Questions and Future Directions

	Preliminaries
	Locally Decodable Codes (LDCs)
	Oblivious-Access Sort Algorithms
	Oblivious RAM (ORAM)

	Read-Only ORAM from Oblivious-Access Sort and Smooth LDCs
	Read-Only ORAM with Oblivious Setup

	Oblivious RAM Supporting Writes with o(logn) Read Complexity

