
Matrioska: A Compiler for Multi-Key Homomorphic Signatures

Dario Fiore1 and Elena Pagnin2

1 IMDEA Software Institute, Madrid, Spain
dario.fiore@imdea.org

2 Chalmers University of Technology, Gothenburg, Sweden
elenap@chalmers.se

Abstract. Multi-Key Homomorphic Signatures (MK-HS) enable clients in a system to sign and upload
messages to an untrusted server. At any later point in time, the server can perform a computation C
on data provided by t different clients, and return the output y and a short signature σC,y vouching for
the correctness of y as the output of the function C on the signed data. Interestingly, MK-HS enable
verifiers to check the validity of the signature using solely the public keys of the signers whose messages
were used in the computation. Moreover, the signatures σC,y are succinct, namely their size depends at
most linearly in the number of clients, and only logarithmically in the total number of inputs of C.
Existing MK-HS are constructed based either on standard assumptions over lattices (Fiore et al.,
ASIACRYPT’16), or on non-falsifiable assumptions (SNARKs) (Lai et al., ePrint’16). In this paper, we
investigate connections between single-key and multi-key homomorphic signatures. We propose a generic
compiler, called Matrioska, which turns any (sufficiently expressive) single-key homomorphic signature
scheme into a multi-key scheme. Matrioska establishes a formal connection between these two primitives
and is the first alternative to the only known construction under standard falsifiable assumptions. Our
result relies on a novel technique that exploits the homomorphic property of a single-key HS scheme to
compress an arbitrary number of signatures from t different users into only t signatures.

1 Introduction

Consider a scenario where a user Alice uploads a collection of data items x1, ... , xn to an untrusted
server. Later on, the server executes a computation P on this data and sends the result y =
P(x1, ... , xn) to another user Bob.

How can Bob be sure that y is the correct result obtained by running P on Alice’s data?
A trivial solution to this problem could be obtained by employing digital signatures: Alice could
sign each data item xi and send to the server the signatures σ1, ... , σn. Next, to convince Bob, a
server can send along with y the original inputs with their signatures, and Bob should check that
y = P(x1, ... , xn) and that each σi is a valid signature for xi. While this solution solves the above
security concern, it has a clear efficiency drawback: it requires communication between the server
and the verifier Bob that is linear in the input size of P. This linear cost is not only undesirable
but can be also unacceptable if Bob is not able to store the whole dataset.

Homomorphic Signatures. A solution to the above problem that achieves both security and
efficiency can be obtained by using homomorphic signatures (HS). With this primitive, Alice can use
her secret key to sign x1, ... , xn and sends the signed data items to the server. The server can use a
special procedure Eval that, on input a program P and a collection of signatures σ1, ... , σn, outputs
a signature σP,y. Given Alice’s public key and a triple (P, y, σP,y), Bob (or anyone else) can get
convinced that y is the correct output of P on inputs (x1, ... , xn) signed by Alice. Very informally,
homomorphic signatures are secure in the sense that an untrusted server (without knowing Alice’s
secret key) must not be able to convince the verifier of a false result. An additional property
that makes this cryptographic primitive interesting and non-trivial is that signatures must be
succinct. This means that the size of σP,y must be significantly smaller than P’s input size, e.g.,
size(σP,y) = O(log n).

The notion of homomorphic signatures was proposed by Desdmedt [14] and first formalized by
Johnson et al. [21]. Boneh et al. [4] proposed the first scheme for computing linear functions over
signed vectors and showed an application to preventing pollution attacks in linear network coding.
Following [4], a long series of works (e.g., [17,6,1,10,11,16,2,23,7,13,9]) addressed the problem of
constructing linearly-homomorphic signatures obtaining new schemes that improved on multiple
fronts, such as efficiency, security, and privacy. A few more works addressed the problem of con-
structing schemes for more expressive functionalities. Boneh and Freeman [5] proposed the first
scheme for polynomial functions based on lattices, which was later improved by Catalano, Fiore
and Warinschi [12] based on multilinear maps. In 2015, Gorbunov, Vaikuntanathan and Wichs [20]
constructed the first HS scheme for arbitrary circuits of bounded depth from standard lattices.

Multi-Key Homomorphic Signatures. In a recent work, Fiore et al. [15] initiated the study
of multi-key homomorphic signatures (MK-HS). In a nutshell, MK-HS are homomorphic signatures
that allow for computing on data signed using different secret keys. This capability extends that
one of previously known homomorphic signatures, and is useful in all those applications where one
wants to compute on data provided (and signed) by multiple users. In addition to formally defining
the notion of multi-key homomorphic signatures, Fiore et al. proposed a construction of MK-HS
based on lattices that supports bounded depth circuits. Their scheme is obtained by extending the
techniques of the single-key scheme of Gorbunov et al. [20]. Another recent work by Lai et al. [22]
shows how to build an MK-HS using SNARKs and digital signatures. However, since SNARKs
are likely to be based on non-falsifiable assumptions [19], the resulting MK-HS also relies on non
standard assumptions.

1

1.1 Our Contribution

In this work, we continue the study of multi-key homomorphic signatures. Our main interest is to
identify connections between multi-key homomorphic signatures and their single-key counterpart.
In particular, we provide the first generic method to construct multi-key homomorphic signatures
from (sufficiently expressive) single-key HS schemes. Specifically, our main result is a compiler,
called Matrioska, that yields the following result:

Theorem 1 (Informal). Let HS be a homomorphic signature scheme for circuits of polynomial
size. Then, for a constant t representing the number of distinct keys involved in a computation,
there exists a multi-key homomorphic signature scheme MKHS(HS, t) for circuits of polynomial size.
Furthermore, if HS has signatures bounded by a fixed polynomial p(λ), MKHS(HS, t) has signatures
bounded by t · p(λ).

Our result essentially shows that for a sufficiently expressive class of functions multi-key and single-
key homomorphic signatures are equivalent. Our construction is the first to establish a formal con-
nection between these two primitives without resorting to powerful primitives such as SNARKs
which only yield constructions from non-falsifiable assumptions. Also, we propose a new method-
ology to construct MK-HS, which is the first alternative to the only known construction from
standard assumptions [15]. In particular, while the techniques in [15] are specific to an algebraic
lattice setting, our construction works in a generic fashion and as such it will allow to immediately
obtain new MK-HS schemes from any future proposal of single-key HS.

Our MK-HS construction is quite involved and its efficiency is, admittedly, theoretical. In par-
ticular, in order to support circuits of (polynomial) size s, we need to start from a single-key HS
scheme that supports circuits of size scs

t−1
, where t is the number of distinct keys involved in

the computation and cs is some constant that depends on the single-key HS scheme. Therefore
our generic construction generates multi-key homomorphic signature schemes that can support
computations among a constant number of keys (i.e., users) only.

Nevertheless, our MK-HS scheme has succinct signatures that have size t · p(λ), which is non-
trivial as it is independent of the total number of inputs involved in the computation. Indeed,
even in the multi-key setting a trivial solution to build MK-HS from digital signatures (and even
from HS) would require communication linear in the total number of inputs of a computation, i.e.,
O(n · t), assuming each user provides n inputs.

An overview of our techniques. The main challenge in constructing an MK-HS scheme gener-
ically from a single-key one is to obtain a construction with succinct signatures. In particular,
obtaining succinctness requires some mechanism to “compress” n · t signatures into some informa-
tion that can at most depend linearly on log n and t. While single-key HS allow for compressing
signatures pertaining to the same key, this property seems of no utility when one needs to compute
on signatures pertaining to different keys, if nothing about their structure can be assumed.3 To
overcome this challenge, we devise a novel technique that allows us to compress n · t signatures from
t different users into t signatures; for this we show how to use the homomorphic property of the
single-key HS scheme in order to inductively “prove” that the signatures of the first i users verify
correctly on the corresponding inputs.

In what follows we illustrate the core idea of our technique considering, for simplicity, the
two-client case t = 2, and assuming each users contributes to the computation with n inputs.

3 This is the case if one aims for a generic single-key to multi-key construction. In contrast, knowing for example
the algebraic structure of signatures can be of help, as exploited in [15].

2

Let C : {0, 1}2·n → {0, 1} be the circuit we wish to evaluate. Given the messages m1, ...mn by
user id1 and mn+1, ...m2·n by user id2, we wish to authenticate the output of y = C(m1, ... ,m2·n). Let
σi be the signature for the message mi; in particular the first n signatures and the last n signatures
are associated to different secret keys.

The initial step is to construct a (2 · n)-input circuit E0 such that E0(x1, ... , x2n) = 1 iff
C(x1, ... , x2n) = y. Second, define a new circuit E1 : {0, 1}n → {0, 1} that is E0 with the last
n inputs hardwired: E1(x1, ... , xn) = E0(x1, ... , xn,mn+1, ... ,m2n). Now E1 is a circuit that has in-
puts by a single client only, thus we can run σ̂1 ← HS.Eval(E1, pk1, σ1, ... , σn). By the correctness
of the single-key homomorphic signature scheme it must hold HS.Verify(E1, pk1, σ̂1, 1) = 1. At this
point, we already compressed the signatures σ1, ... , σn into a single signature σ̂1. This is however
not yet sufficient for succinctness because verifying σ̂1 requires the circuit E1, which in turn requires
to transmit to the verifier n messages (mn+1, ... ,m2n) to let him reconstruct E1.

This is where the inductive reasoning, and our new technique, begins. Very intuitively, we use
the signatures of the second user to “prove” that HS.Verify(E1, pk1, σ̂1, 1) = 1, without letting the
verifier run this verification explicitly. Let us see H = HS.Verify((E1, (τ1, ... , τn)), pk1, σ̂1, 1) as a
binary string with the description of a (no input) circuit. Look for the bits of H where the values
mn+1, ... ,m2n are embedded. We can define a new circuit description E2 that is the same as H except
that the hardwired values mn+1, ... ,m2n are replaced with input gates. Thus E2 is an n-input circuit
satisfying E2(mn+1, ... ,m2n) = HS.Verify(E1, pk1, σ̂1, 1), which returns 1 by correctness of HS.

Now, the crucial observation is that E2 is a circuit on inputs by the second client only.
Thus, we can run σ̂2 ← HS.Eval(E2, pk2, σn+1, ... , σ2n). By the correctness of the HS scheme,
HS.Verify(E2, pk2, σ̂2, 1) = 1. Note that E2 does not contain any of the messages m1, ... ,m2·n hard-
wired; in particular E2 is completely determined by C, y, pk1, σ̂1 and a description of HS.Verify.
Hence, given (σ̂1, σ̂2) the verifier can reconstruct E2 and check if HS.Verify(E2, pk2, σ̂2, 1) = 1. In-
tuitively, this proves that for some messages signed by the second user E2(mn+1, ... ,m2n) = 1. By
the correctness of HS, this in turn implies E1(m1, ... ,mn) = 1 for some messages signed by the first
user; and by construction of E1 the latter implies C(m1, ... ,m2n) = y.

Our compiler, extends the above idea to multiple users, showing that at each step i the problem
consists in proving correctness of a computation Ei−1 that depends only on the inputs of user
i, while inputs of users > i are hardwired into it. This means that a progressive application of
this idea lets the hardwired inputs progressively disappear up to the point of obtaining a circuit
Et which has no input hardwired and thus can be reconstructed by the verifier. This is the only
computation explicitly checked by the verifier. By construction, Et encodes the nested execution of
several single-key HS verifications (from which our compiler’s name “Matrioska”), and validity of
Et implicitly implies that each Ei returns 1 (even if the verifier does not know Ei itself).

In the above description we favor intuition to precision. In fact, the full development of this
technique is given in Section 3 and requires to take care of several details to ensure that the verifier
can reconstruct the last circuit without any knowledge of the input messages.

2 Preliminaries

Notation. The security parameter of our schemes is denoted by λ. For any n ∈ N, we use [n] to
denote the set [n] := {1, ... , n}. The symbol lg denotes the logarithm in base 2; || denotes the string
concatenation, e.g., (00)||(10) = (0010); bold font letters, e.g., σ = (σ1, ... , σn), denote vectors. A
function ε(λ) is said negligible in λ (denoted as ε(λ) = negl(λ)) if ε(λ) = O(λ−c) for every constant
c > 0. Also, we often write poly(·) to denote a function that can be expressed as a polynomial.

3

2.1 Circuits

We use a modeling of circuits similar to the one in [3]. We define circuits as 6-tuples C =
(n, u, q, L,R,G). The value n ≥ 1 denotes the number of inputs to the circuit, u ≥ 1 is the number of
outputs and q ≥ 1 is the number of gates. Let w denote the total number of wires in the circuit. For
the circuits considered in this work w = n+q. The functions L and R define respectively the left and
right input wire to any given gate g ∈ [q], formally, L,R : [q] → [w] ∪ {0}. Finally, G : [q] → {0, 1}
encodes the gates by mapping each gate g ∈ [q] into a single bit Gg. In our construction we treat
circuit descriptions C as binary strings. Similarly to [3], the size of our circuit description is quasi-
linear in the number of wires: |C| ∈ O(w lg(w)). Differently from [3], we number gates from 1 to
q (instead of from n + 1 to n + q) and label the outgoing wire of a gate g as g + n. Moreover, we
introduce the 0 wire to denote constant output gates, e.g., no-input gates or gates that have the
same output independently of the input values, and allow for a gate to have the same left and right
input, i.e., L(g) ≤ R(g) < g + n.

We explain the procedure to evaluate a 1-output, n-input circuit. The formal description of
generic circuit evaluation is deferred to Appendix A due to space constraints. Given (x1, ... , xn)
and the circuit description C = (n, 1, q, L,R,G), compute y = C(x1, ... , xn) as follows. Retrieve the
label of the left and right input wires to gate g = i, for i = 1, 2, ... , q. Let l ← L(i) and r ← L(i).
Create a new variable xn+i ∈ {0, 1}. If l = 0 = r, g is a constant gate, assign xn+i ← G(i).
Otherwise, by definition l 6= 0 6= r, retrieve the values xl and xr, and return xn+i ← xl if G(i) = 0,
or xn+i ← NAND(xl, xr) if G(i) = 1. The output is xn+q = y = C(x1, ... , xn).

Another interesting operation on circuits is circuit composition. A circuit C1 is composable with
another circuit C2 if and only if u1 = n2. Intuitively, composition connects each output wire of C1

with one input wire of C2. Due to space restriction the detailed description of sequential circuit
composition is left to Appendix A, here we limit to provide an intuition. Let C3 = C1 . C2, where
. denotes the sequential circuit composition. The circuit C3 has the same number of input wires
as C1 (i.e., n3 = n1), the same number of output wires as C2, (i.e., u3 = u2), a number of gates
equal to q3 = q1 +q2, and G3 = G1||G2. The function L3 is defined as the concatenation L3 = L1||L′2
where L′2(g) = L2(g) + w1 − u1, if L2(g) 6= 0, and 0 otherwise (to preserve constant output gates).
The right-input function R3 is defined analogously.

2.2 Multi-Key Homomorphic Signatures

We recall the definitions of Fiore et al. [15] for multi-key homomorphic authenticators, adapted to
the case of signature schemes only.

We start by recalling the notion of labeled programs of Gennaro and Wichs [18].

Labeled Programs [18]. A labeled program P is a tuple (C, `1, ... , `t), such that C : Mt → M is a
function of t variables (e.g., a circuit) and `i ∈ {0, 1}∗ is a label for the i-th input of C. Labeled
programs can be composed as follows: given P1, ... ,Pn and a function G : Mn →M, the composed
program P∗ is the one obtained by evaluating G on the outputs of P1, ... ,Pn, and it is denoted as
P∗ = G(P1, ... ,Pn). The labeled inputs of P∗ are all the distinct labeled inputs of P1, ... ,Pn (all
the inputs with the same label are grouped together and considered as a unique input of P∗).

In the multi-key setting, following [15], we consider labels where ` = (id, τ), such that id is a
given client identity and τ is a tag which refers to the client’s input data. To ease the reading, we
use the compact and improper notation id ∈ P meaning that there exists at least one index label
` in the description of P = (C, (`1, ... , `n)) such that ` = (id, τ) for some string τ .

4

Definition 1 (Multi-Key Homomorphic Signature [15]). A multi-key homomorphic signa-
ture scheme MKHS is a tuple of five PPT algorithms MKHS = (MKHS.Setup,MKHS.KeyGen,
MKHS.Sign,MKHS.Eval,MKHS.Verify) that satisfy the properties of authentication correctness, eval-
uation correctness, succinctness and security. The algorithms are defined as follows:

MKHS.Setup(1λ). The setup algorithm takes as input the security parameter λ and outputs some
public parameters pp including a description of an identity space ID, a tag space T (these
implicitly define the label space L = ID × T), a message space M and a set of admissible
functions F. The pp are input to all the following algorithms, even when not specified.

MKHS.KeyGen(pp). The key generation algorithm takes as input the public parameters and outputs
a pair of keys (sk, pk), where sk is a secret signing key, while pk is the public evaluation and
verification key.

MKHS.Sign(sk, ∆, `,m). The sign algorithm takes as input a secret key sk, a dataset identifier ∆,
a label ` = (id, τ) for the message m, and it outputs a signature σ.

MKHS.Eval(P, ∆, {(σi, pkidi)}i∈[n]). The evaluation algorithm takes as input a labeled program P =
(C, (`1, ... , `n)), where C is an n-input circuit C : Mn −→ M, a dataset identifier ∆ and a set
of signature and public-key pairs {(σi, pkidi)}i∈[n]. The output is an homomorphic signature σ.

MKHS.Verify(P, ∆, {pkid}id∈P,m, σ). The verification algorithm takes as input a labeled program
P = (C, (`1, ... , `n)), a dataset identifier ∆, the set of public keys {pkid}id∈P corresponding to
those identities id involved in the program P, a message m and an homomorphic signature σ.
It outputs 0 (reject) or 1 (accept).

Remark 1 (Single/Multi-Hop Evaluation). Similarly to fully homomorphic encryption, we call a
(multi-key) homomorphic signature i-Hop if the Eval algorithm can be executed on its own outputs
up to i times. We call single-hop a scheme where Eval can be executed only on fresh signatures, i.e.,
generated by Sign, whereas a multi-hop scheme is a scheme that is i-Hop for all i.

Authentication Correctness. A multi-key homomorphic signature satisfies authentication correct-
ness if for all public parameters pp← MKHS.Setup(1λ), any key pair (skid, pkid)← MKHS.KeyGen(pp),
any dataset identifier ∆, any label ` = (id, τ) ∈ L, any message m ∈ M and any signature
σ ← MKHS.Sign(sk, ∆, `,m), it holds that

Pr [MKHS.Verify(I`, ∆, pk,m, σ) = 1] ≥ 1− negl .

Evaluation Correctness. A multi-key homomorphic signature satisfies evaluation correctness if

Pr
[
MKHS.Verify(P′, ∆, {pkid}id∈P′ ,m′, σ′) = 1

]
≥ 1− negl

where the equality holds for a fixed description of the public parameters pp ← MKHS.Setup(1λ),
an arbitrary set of honestly generated keys {(skid, pkid)}id∈ ˜ID for some ˜ID ⊆ ID, with | ˜ID| = t, a
dataset identifier ∆, a function C : Mn → M, and any set of program/message/signature triples
{(Pi,mi, σi)}i∈[n] such that MKHS.Verify(Pi, ∆, {pkid}id∈Pi ,mi, σi) = 1 for all i ∈ [n], and m′ =
g(m1, ... ,mn), P′ = g(P1, ... ,Pn), and σ′ = Eval(C, {(σi, PKi)}i∈[n]) where PKi = {pkid}id∈Pi .

Succinctness. Succinctness is one of the crucial properties that make multi-key homomorphic signa-
tures an interesting primitive. Intuitively, a MKHS scheme is succinct if the size of every signature
depends only logarithmically on the size of a dataset. More formally, let pp ← MKHS.Setup(1λ),
P = (C, (`1, ... , `n)) with `i = (idi, τi), (skid, pkid) ← MKHS.KeyGen(pp) for all id ∈ [n]. and σi ←
MKHS.Sign(skidi , ∆, `i,mi), for all i ∈ [n], then MKHS has succinct signatures if there exists a fixed
polynomial poly(·) such that size(σ) = poly(λ, t, log n) where σ = MKHS.Eval(P, {(σi, pkidi)}i∈[n]).

5

Security. We adopt Fiore et al.’s security model [15]. Very intuitively, a multi-key homomorphic
signature scheme is secure if the adversary, who can request to multiple users signatures on mes-
sages of its choice, can produce only signatures that are either the ones it received, or ones that
are obtained by correctly executing the Eval algorithm. In addition, in the multi-key setting the
adversary is also allowed to corrupt users but this shall not affect the integrity of computations
performed on data signed by other (un-corrupted) users of the system.

Formally, the security is defined via the MK-HomUF-CMA security experiment below.
Setup. The challenger C runs MKHS.Setup(1λ) and sends the output public parameters pp to the

adversary A.
Sign Queries. The adversary can adaptively submit queries of the form (∆, `,m), where ∆ is a

dataset identifier, ` = (id, τ) is a label in ID × T and m ∈ M is a message. The challenger
answers the queries performing all the 1-4 checks below:

1. If (`,m) is the first query for the dataset ∆, the challenger initializes an empty list L∆ = ∅.
2. If (∆, `,m) is the first query with identity id, the challenger generates the keys for that

identity: (skid, pkid)← KeyGen(pp). and proceeds to step 3.
3. If (∆, `,m) is such that (`,m) /∈ L∆, the challenger computes σ ← MKHS.Sign(skid, ∆, `,m)

(this is possible since C has already generated the keys for the identity id). Then the chal-
lenger updates the list L∆ ← L∆ ∪ (`,m) and returns (σ, pkid) to A.

4. If (∆, `,m) is such that (`, ·) /∈ L∆, that is, the adversary had already made a query (∆, `,m′)
for some message m′, the challenger ignores the query. Note that this means that for a given
(∆, `) pair only one message can be obtained.

Corruption Queries. At the beginning of the game, the challenger initialises an empty list Lcorr =
∅ of corrupted identities. During the game, the adversary can adaptively perform corruption
queries by sending id ∈ ID to the challenger. If id /∈ Lcorr the challenger updates the list Lcorr ←
Lcorr ∪ id and answers the query with the pair (skid, pkid) generated using KeyGen (if not done
before). If id ∈ Lcorr the challenger replies with keys (skid, pkid) assigned to id before.

Forgery. At the end of the game, the adversary outputs a tuple (P∗, ∆∗, {pk∗id}id∈P∗ , y∗, σ∗). The
experiment outputs 1 if the tuple returned by A is a forgery (defined below), and 0 otherwise.

A MK-HS scheme MKHS is unforgeable if for every PPT adversary A, its advantage AdvMKHS
A (λ) =

Pr[MK-HomUF-CMAA,MKHS(λ) = 1] is negl(λ).

Definition 2 (Forgery). We consider an execution of MK-HomUF-CMA where (P∗, ∆∗, {pk∗id}id∈P∗ ,
y∗, σ∗) is the tuple returned by A at the end of the experiment. Let P∗ = (C∗, `∗1, ... , `

∗
n). The adver-

sary’s output is said to be a successful forgery against the multi-key homomorphic signature scheme
if: MKHS.Verify((P∗, ∆∗, {pk∗id}id∈P∗ , y∗, σ∗)) = 1 and at least one of the following conditions hold:

Type-1 forgery: the dataset ∆∗ was never initialised.
Type-2 forgery: for all id ∈ P∗, id /∈ Lcorr and (`∗i ,mi) ∈ L∆∗ for all i ∈ [n], but y∗ 6=

C∗(m1, ... ,mn).
Type-3 forgery: there exists (at least) one index i ∈ [n] such that `∗i was never queried, i.e.,

(`∗i , ·) /∈ L∆∗ and idi /∈ Lcorr is a non-corrupted identity.

Non-adaptive corruption queries. We also recall a proposition given in [15], which shows that it is
sufficient to prove security for non-adaptive corruption queries. This is a setting where the adversary
A can perform corruption queries only on identities for which no signature query had already been
performed. This proposition can be used to simplify security proofs.

Proposition 1 ([15]). MKHS is secure against adversaries that do not make corruption queries
if and only if MKHS is secure against adversaries that make non-adaptive corruption queries.

6

2.3 Homomorphic Signatures

Despite some minor syntactic modifications, homomorphic signatures can be seen as a special case
of multi-key homomorphic signatures for algorithms that run on inputs by a single user only. For the
purpose of this work, single-key homomorphic signature schemes are defined by five PPT algorithms
HS = (HS.Setup,HS.KeyGen,HS.Sign,HS.Eval,HS.Verify) that have the same input-output behavior
as the corresponding algorithms in MKHS except:

- There is no identity space ID and the labels are simply ` = τ .
- The evaluation algorithm HS.Eval takes as input a circuit C, a single public key pk and a set

of signatures σ1, ... , σn. In particular HS.Eval runs without labels or dataset identifier.
- The verification algorithm HS.Verify accepts inputs from a single user only, i.e., the labeled

program P is of the form P = (C, (τ1, ... , τn)) and only one public key pk is provided.

The properties of authentication and evaluation correctness are analogous to the ones for MKHS
in the case of computations on inputs by a single client. Regarding succinctness, a homomorphic
signature scheme HS has succinct signatures if the size of any signature σ output by HS.Eval depends
only logarithmic in the number n inputs to the labelled program, i.e., size(σ) = poly(λ, log(n)).

Finally, we observe that the specialization to the single-key setting of the above security def-
inition corresponds to the strong-adaptive security definition of HS that is formalized in [8]. In
particular, the definitions in [8] allow for a simple treatment of Type-3 forgeries. In [8] it is also
shown that HS constructions for circuits that are secure in this stronger model can be generically
built, e.g., from [20].

3 The Matrioska compiler

In this section we present our main result, which is a generic compiler, which we call Matrioska, from
a single-key homomorphic signature scheme HS = (HS.KeyGen, HS.Sign, HS.Eval, HS.Verify) to a
(single-hop) multi-key scheme MKHS = (MKHS.KeyGen, MKHS.Sign, MKHS.Eval, MKHS.Verify).

The result is summarized in the following theorem:

Theorem 2. Let HS be a homomorphic signature scheme that is correct and unforgeable. Then,
for any given integer number T ≥ 1 there exists a multi-key homomorphic signature scheme
MKHS(HS,T) that supports computations on signatures generated using at most T distinct keys,
it is correct and unforgeable. Furthermore, if HS supports circuits of maximum size s and max-
imum depth d and it has succinctness l, then MKHS(Σ,T) on T distinct users has succinct-

ness T · l, and can support circuits of size s′ and depth d′ provided that s > (s′)cs
T−1

and d >

max{d′, dHSV((s′)cs
T−1

, λ)}, where dHSV and cs are a function and a non-negative constant that
depend from the single-key scheme HS.

More precisely, dHSV expresses the depth of the circuit for the verification algorithm HS.Verify as
a function of its input length (which includes the description of the labeled program P); cs is a
constant such that the size of HS.Verify on input a circuit C is size(C)cs . Notice that by efficiency
of HS (i.e., its algorithms are polynomial time), such cs exists, and dHSV can, in the worts case,
also be written as size(C)cd for some other constant cd.

The above theorem can be instantiated in two ways. If HS is a fully-homomorphic signature
(whose existence is not yet known), then for any s′ = poly(λ) and for any constant number T, we
are guaranteed that HS is executed on poly-sized circuits. Otherwise, if HS is an HS for circuits
of bounded polynomial depth (and of any, or bounded, polynomial size), as e.g., [20], then for any
s′ = poly(λ) and for any fixed number of keys T, we can derive a polynomial bound d on the depth.

7

Let us now turn to the proof of Theorem 2. This is constructive. First we show a method to
define MKHS given a HS scheme and a value T. Next, in a sequence of lemmas, we prove all the
properties stated in the theorem.

Our construction is rather involved. Therefore, to help the reader, in the next section we first
illustrate our ideas for a simple case of a computation that takes inputs from three different users,
and then, in Section 3.2, we describe the full compiler.

3.1 An intuition: the three-client case

We provide here a simplified example to explain the core idea of our Matrioska compiler. To ease the
exposition we consider the case t = 3 (three clients with identities id1, id2 and id3) and deliberately
remove dataset identifiers. A detailed description for t = n = 3 and figurative representations of
the steps are deferred to Appendix B.1.

Let P = (C, (`1, ... , `n)) be a labelled program, where C a (n)-input circuit (with n = n1+n2+n3)
and the labels `i = (idi, τi) are ordered, i.e., first n1 inputs belong to client id1, the subsequent n2
to id2 and the last n3 inputs to id3. Let σi be the signature on message mi for the label `i. For
simplicity assume that C(m1, ... ,mn) = y = 1.

Step 1. We want extract from C a circuit that contains only inputs by clients id2 and id3. To
this end, we define E1 as the partial evaluation of C on the messages mn1+1, ... ,mn. Thus, E1 is
an n1-input circuit with hardwired in it the inputs by clients id2 and id3. In our framework E1 is
obtained with two basic operations on the bit string C: (1) setting any gate g with left or right input
wire in [n] \ [n1] to be a constant gate (i.e., setting the bits L(g) and R(g) to 0), and (2) initializing
the now constant gate to the value mi for i ∈ [n] \ [n1]. At this point we obtained a circuit with
inputs of a single client only, and we can run σ̂1 ← HS.Eval(E1, pkid1 , σ1, ... , σn1). By construction
E1(m1, ... ,mn1) = C(m1, ... ,mn) = 1, therefore HS.Verify((E1, (τ1, ... , τn1)), pkid1 , σ̂1, 1) = 1.

Step 2. The actual inductive procedure begins now. We wish to verify the correctness of σ̂1 using
the messages input by client id2 as variables. Consider the input to the (single-client) verification
as the string S1 = ((E1, (τ1, ... , τn1)), pkid1 , σ̂1, 1). Recall that to construct the circuit E1 we used
the messages mn1+1, ...mn (hard-wired in its gate description). To free the inputs by client id2 we
modify S1 in the following way: (1) identify the gates that contain the messages mn1+1, ... ,mn1+n2 ,
(2) turn these gates into input gates by setting the left/right wires to the opportune values w (using
P). Let us (formally) consider HS.Verify on the modified string S1, this is a proper circuit E2 such
that E2(mn1+1, ... ,mn1+n2) = HS.Verify(E1, (τ1, ... , τn1)), pkid1 , σ̂1, 1) = 1. Being E2 a single-client
circuit we can run σ̂2 ← HS.Eval(E2, pkid2 , σn1+1, ... , σn1+n2).

Step 3. This is analogous to Step 2: we wish to verify the correctness of σ̂2 using the messages input
by client id3 as variables and define a circuit that is completely determined by public values, no hard-
wired message value. Let S2 = ((E2, (τn1+1, ... , τn1+n2)), pkid2 , σ̂2, 1), we free the inputs by client id3
as in Step 2. We define E3 as the formal evaluation of HS.Verify on the modified string S2. By
construction it holds that E3(mn1+n2+1, ... ,mn) = HS.Verify(E2, (τn1+1, ... , τn1+n2)), pkid2 , σ̂2, 1) = 1,
and we can run σ̂3 ← HS.Eval(E3, pkid3 , σn1+n2+1, ... , σn).

The multi-key homomorphic evaluation algorithm outputs σ̂ = (σ̂1, σ̂2, σ̂3).

The Matrioska verification procedure needs only reconstruct the final circuit E3, as this is fully de-
termined by the public values (P, pkid1 , pkid2 , σ̂1, σ̂2,HS.Verify, 1). Let E3 = (E3, (τn1+n2+1, ... , τn)),
the verification concludes by running the single-key verification algorithm: HS.Verify(E3, pk3, σ̂3, 1).

8

3.2 The Matrioska Compiler

In this section we describe our compiler in the general case of computing on signatures generated
by t different keys.

Definition 3 (Matrioska). Let HS = (HS.Setup,HS.KeyGen,HS.Sign,HS.Eval,HS.Verify) be a single-
key homomorphic signature scheme, we define a multi-key homomorphic signature scheme MKHS
as follows:

MKHS.Setup(1λ,T, s′, d′)→ pp. The set-up algorithm takes as input the security parameter λ, a
positive integer T that represents a bound for the maximal number of distinct identities involved in
the same homomorphic computation, and bounds s′, d′ = poly(λ) on the size and depth respectively
of the circuits used in the MKHS.Eval and MKHS.Verify algorithms. Setup first uses T, s′, d′ to
derive two integers s and d such that s > (s′)cs

T−1
and d > max{d′, dHSV((s′)cs

T−1
, λ)}. Next, it

runs HS.Setup(1λ, s, d) to obtain a tag space T (which corresponds to the label space of HS), a
message space M and a set of admissible circuits F.4 Labels of the multi-key scheme are defined as
pairs ` = (id, τ) ∈ ID×T, where the first entry is a client-identity identifier. Labeled programs are
of the form P = (C, (`1, ..., `t)) with labels as above.

MKHS.KeyGen(pp) → (pk, sk). The multi-key key-generation algorithm runs HS.KeyGen to ob-
tain a public-secret key pair. This key-pair will be associated to an identity id ∈ ID. When we need
to distinguish among clients we make the dependency on the identity explicit, e.g., (pkid, skid).

MKHS.Sign(sk, ∆, `,m)→ σ. This algorithm takes as input a secret key sk, a data set identifier
∆ (e.g., a string), a label ` = (id, τ) for the message m. It outputs

σ ← HS.Sign(skid, ∆, τ,m). (1)

Without loss of generality we assume that σ includes m.

MKHS.Eval(P, ∆, {(σi, pkidi)}i∈[t]) → σ̂. Let P = (C, (`1, ... , `n)), where C = (n, 1, q, L,R,G)
and the n ≥ t labels are of the form `j = (idi, τj) for some i ∈ [t] and τj ∈ T, where t ≤ T.

The case t = 1 In this case all the n signatures belong to the same user, that is to say, there
exists an identity id ∈ ID such that for all j ∈ [n] the labels are of the form ` = (id, τj) for some
τj ∈ T. Thus, it is possible to run the classical evaluation algorithm of HS and the output of the
multi-key evaluation algorithm for t = 1 is:

σ̂ = σ̂id ← HS.Eval
(
E0, pkid, (σ

id
1 , ... , σ

id
n)
)
. (2)

The case t ≥ 2 In this case the inputs to the labeled program belong to t distinct users. Without
loss of generality, we assume that the labels are ordered per client identity, i.e., all the labels between
`tj and `tj+1−1 are of the form (idj , ∗). For each i ∈ [t] the signature vector σi is σi = (σi1, ... , σ

i
ni)

for opportune values ni ∈ [n − t + 1] satisfying
∑t

i=1 ni = n. Let ti = (
∑i−1

j=0 nj) + 1, where we set
n0 = 0, then ti corresponds to the index of first input of identity idi. The multi-key homomorphic
evaluation performs the following t+ 1 steps.

4 If HS works without these a-priori bounds, it is enough to run HS.Setup(1λ).

9

Step 0. Given P = (C, (`1, ... , `n)) retrieve the messages corresponding to the labels `1, ... , `n. For
notation sake let mj be the message corresponding to label `j. Compute the value y = C(m1, ... ,mn).
Define a single-input single-output circuit EQy(x) that outputs 1 if and only if x = y.5 Construct
E0 = C . EQy = (n, 1, q0, L0,R0,G0). The properties of EQy imply that:

E0(x1, ... , xn) = 1 iff C(x1, ... , xn) = y . (3)

Note that E0 can be constructed directly from C and y, moreover

E0(m1, ... ,mn) = 1. (4)

Step 1. We build a n1-input circuit E1 that corresponds to a partial evaluation of E0 on the inputs
of identities idj with j > 1. Given E0 = (E0, (`1, ... , `n)), the signatures σ1 = (σ11, ... , σ

1
n1) and the

messages mn1+1, ... ,mn do:

• Define the mask circuit M1 = (n1, n, n, L
′
1,R
′
1,G
′
1) where

L′1(j) = R′1(j) =

{
1 for j ∈ [n1]
0 for j ∈ [n] \ [n1]

and G′1 =

{
0 for j ∈ [n1]
mj for j ∈ [n] \ [n1]

.

By construction M1(b1, ... , , bn1) = (b1, ... bn1 ,mn1+1, ... ,mn).

• Compose M1 with E0 to obtain E1 = M1 . E0 = (n1, 1, q1, L1,R1,G1) where: q1 = q0 + n;
G1 = (G′1||G0); L1(g) = L′1(g) for g ∈ [n], L1(g) = (L0(g − n + 1) + 1) for g ∈ [n + 1, n + q0] if
L0(g − n + 1) 6= 0 and 0 whenever L0(g − n + 1) = 0. The function R1(g) is defined analogously.
Equation (4) implies

E1(m1, ... ,mn1) = 1. (5)

• Compute σ̂1 ← HS.Eval(E1, pkid1 ,σ1). This is possible since E1 is a circuit involving only inputs
of client id1.

Remark 2. Let E1 = (E1, (τ1, ... , τn1)). Equation (5) and the correctness of the HS scheme imply
HS.Verify(E1, ∆, pkid1 , σ̂1, 1) = 1.

Step i for i ∈ [2, t]. The goal is to construct an ni-input circuit Ei using Ei−1 = (Ei−1, (τti , ... ,
τti+1−1)), ∆, pkidi and σi = (σi1, ... σ

i
ni). This will be possible using the circuits HSVi = (nHSVi, 1, qHSVi ,

LHSVi ,RHSVi ,GHSVi) for the (single-key) homomorphic signature verification against the value 1 .6

Let Si−1 = (Ei−1, ∆, pkidi−1
,σi−1) be a string of nHSVi = size(Si−1) bits. Set g1 = 1. The gates of

Ei−1 that embed the ni values input by identity idi are located in the interval Ii = [gi, gi +ni], where
gi = 3 lg(Ni−1) + 2qi−1 lg(wi−1) + gi−1 + ni−1 (see Appendix B.2 for an explanation).

• Define the mask circuit Mi = (ni, nHSVi, nHSVi, L
′
i,R
′
i,G
′
i) where

L′i(g) = R′i(g) =

{
0 if g ∈ [nHSVi] \ Ii
1 if g ∈ Ii

and G′i(g) =

{
Si−1(g) if g ∈ [nHSV3] \ Ii
0 if g ∈ Ii

.

Note that for gates g in the interval Ii, L′i(g) = 1 and G′i(g) = 0 which means that Mi outputs its
ni input bits exactly the interval Ii, while outside Ii the output of Mi is constant. In particular:
Mi(mti , ... ,mti+ni) = Si−1.

5 An explicit construction of the circuit EQy is given in Definition 4 in Appendix B.
6 The readers can consider the circuit HSVi to be the representation of HS.Verify(Ei−1, ·, ·, 1) where Ei−1 is a labelled

program for a circuit of size at most O((nHSVi−1 + qHSVi−1) lg(wHSVi−1)).

10

• Compose Mi with HSVi to obtain Ei = Mi . HSVi = (ni, 1, qi, Li,Ri,Gi) where: qi = nHSVi +
qHSVi; Gi = (G′i||GHSVi); Li(g) = L′i(g) for g ∈ [nHSVi], Li(g) = LHSVi(g − nHSVi + 1) + ni for
g ∈ [nHSVi+1, qi] if LHSVi(g−nHSVi+1) 6= 0, and 0 otherwise; and Ri is defined analogously. . Circuit
composition ensures that7 Ei(mti , ... ,mti+ni) = HS.Verify(Ei−1, ∆, pkidi−1

, σ̂i−1, 1). In particular,
applying Remark 2 inductively we get:

Ei(mti , ... ,mti+ni) = 1 (6)

Note that Ei can be constructed directly from E0 given the values mti , ... ,mn and the public data
∆, pkidj , σ̂j for j ∈ [i − 1]. In more details, for i ∈ [2, t] consider the set of bit strings: headi =
(ni, 1, qi, Li,Ri) and taili = (τti , ... , τti+ni , ∆, pkidi−1

, σ̂i−1,GHSVi). For every i ∈ [2, t] headi and taili
are completely determined by the tags for identity idi−1, the public key pkidi−1

and the evaluated
signature σ̂i−1. It is immediate to see that headi and taili are respectively the head and the tail of
the circuit description of Ei. The heart of the string Ei is where “all the magic” happens:

bodyi = (headi−1, ... , head2, 0, ... , 0︸ ︷︷ ︸
(ti+1−1)=

∑i
j=1 nj

mti , ... ,mn,G0, tail2, ... , taili) (7)

In particular, for i = t we have:

Et =
(
headt bodyt tailt

)
=
(
headt, (headt−1, ... , head2, 0, ... , 0︸ ︷︷ ︸

n

,G0, tail2, ... , tailt−1), tailt
)

(8)

Equation (8) shows that the circuit Et is completely determined by the labeled program E0 (to get the
tags and the gate description G0), the dataset identifier ∆, the public keys pkidi and the signatures
σ̂i for i ∈ [t].

• Compute σ̂i ← HS.Eval(Ei, pkidi ,σi).

Remark 3. This is possible since Ei is a ni-input circuit with inputs from the user idi only. Equation
(6) and the correctness of the HS scheme imply that

HS.Verify(Ei, ∆, pki, 1, σ̂i) = 1. (9)

The output of the multi-key evaluation algorithm is the vector of t signatures: σ̂ = (σ̂1, ... , σ̂t).

MKHS.Verify(P, ∆, {pkid}id∈P, y, σ̂)→ {0, 1}. The verification algorithm parses the labeled pro-
gram as P = (C, (`1 ... , `n)) and checks the number 1 ≤ t ≤ T of distinct identities present among
the n labels.

The case t = 1 In this case all the inputs to the labeled program P come from the same user
and σ̂ = σ̂id. In other words, all the labels are of the form `j = (id, τj) for an id ∈ ID and some
τj ∈ T. Set E0 = (C, (τ1, ... , τn)), notice that we removed the identity from the labels. The multi-key
verification algorithm returns the output of

HS.Verify(E0, ∆, pkid, 1, σ̂id). (10)

7 With abuse of notation one can think that Ei(mti , ... ,mti+ni) = Mi(mti , ... ,mti+ni) . HSVi =
HSVi(Mi(mti , ... ,mti+ni)). Since Mi(mti , ... ,mti+ni) = S2 the claim follows by the definition of HSVi.

11

The case t ≥ 2 In this case the labeled program P contains labels with t ≥ 2 distinct identities
and σ̂ = (σ̂1, ... , σ̂t). Without loss of generality, we assume that the labels are ordered per client
identity and ni ∈ [n− t+ 1] is the number of labels with identity idi.
Define E0 = (n, 1, q0, L0R0,G0) as the circuit E0 = C . EQy, where EQy(x) is the a single-
input single-output circuit that outputs 1 if and only if x = y. Thus, E0(x1, ... , xn) = 1 whenever
C(x1, ... , xn) = y. As noted in the Step 0 of the multi-key homomorphic evaluation algorithm, E0

is completely determined by P and y.
To verify the signature σ̂, the multi-key verification algorithm inductively creates the following

strings for i ∈ [2, t]:

headi = (ni, 1, qi = nHSVi + qHSVi , Li = (0, ... , 0,︸ ︷︷ ︸
(
∑i−1
j=1 nj)−bits

ni−bits︷ ︸︸ ︷
1, ... , 1, 0, ... , 0︸ ︷︷ ︸

(n−
∑i
j=1 nj)−bits

),Ri = Li)

taili = (τti−1 , ... , τti−1+ni−1 , ∆, pkidi−1
, σ̂i−1,GHSVi)

where, the circuit HSVi is the same as the one explained in MKHS.Eval, i.e., the HSVi is the (single-
key) homomorphic signature verification against the value 1. At this point the verifier can combine
all the pieces to (re)-construct the description of the circuit Et:

Et = (headt, ... , head2, 0, ... , 0︸ ︷︷ ︸
n

,G0, tail2, ... , tailt). (11)

Let Et = (Et, (τtt , ... , τn)), where we removed idt from the labels. The verification returns:

HS.Verify(Et, ∆, pkidt , σ̂t, 1). (12)

Remark 4. Note that the Et constructed by the verifier via Equation (11) coincides with the one
created by the evaluator via Equation (8).

3.3 Correctness and Succinctness of Matrioska

In what follows we show that the Matrioska scheme satisfies the properties stated in Theorem 2.

Succinctness. By construction, for a computation involving messages from t users, our signatures
consist of t signatures of the single-input scheme. It is straightforward to see that if HS signatures
have length bounded by some polynomial l, the size of Matrioska’s signatures is ≤ t · l, which is,
asymptotically, the same level of succinctness as the MK-HS construction by Fiore et al. [15].

Correctness. The following two lemmas reduce the authentication and evaluation correctness
of Matrioska multi-key homomorphic signatures to the authentication and evaluation correctness,
respectively, of the underlying single-key HS scheme.

Lemma 1. Let HS be a single-key homomorphic signature scheme with authentication correctness,
then the multi-key homomorphic signature scheme MKHS(HS,T) obtained from the Matrioska com-
piler of Definition 3 achieves authentication correctness.

The proof is quite straightforward and uses the labeled identity program I` = (Cid, `). For more
details check Appendix C.1.

Lemma 2. Let HS be a single-key homomorphic signature scheme with evaluation correctness, then
the multi-key homomorphic signature scheme MKHS(HS,T) obtained from the Matrioska compiler
of Definition 3 achieves evaluation correctness.

12

Proof. The evaluation correctness of Matrioska essentially follows from the evaluation correctness of
HS and the way we (inductively) define the circuits Ei. Moreover, notice that our MK-HS scheme is
single-hop, therefore we have to prove evaluation correctness with respect to computing on freshly
generated signatures (given that authentication correctness is granted by the previous lemma).

Formally, we want to prove that for any labeled program P = (C, (`1, ... , `n)) with C ∈ F an
admissible circuit and t ≤ T distinct keys, if all the n signatures are valid then the signature output
by the multi-key evaluation algorithm verifies, that is:

σj ← MKHS.Sign(skidj , ∆, `j ,mj), ∀j ∈ [n]

σ̂ ← MKHS.Eval(P, ∆, {σi, pkidi}i∈[t])

⇒ MKHS.Verify(P, ∆, {pkid}id∈P, y, σ̂)

Given the nature of the Matrioska approach, the proof proceeds by induction.
For t = 1, the Matrioska evaluation algorithm returns the output of HS.Eval (see Equation (2))

while the multi-key verification algorithm runs HS.Verify (see Equation (10)). Thus the correctness
follows from the evaluation correctness of the single-key homomorphic signature scheme HS.

For t ≥ 2 it is sufficient to notice that each Ei is defined in such a way that Ei(mti , ... ,mti+ni) =
1, for i ∈ [t] (see Equation (6)) and that the labeled program Et reconstructed by the verifier
coincides with the one defined in the evaluation algorithm. In details, given that the signatures
σj with j ∈ [ti, ti + ni] are valid, so is the (single-client) signature σ̂i ← HS.Eval(Ei, pkidi ,σi =
(σiti , ... , σ

i
ti+ni)). By the correctness of HS it holds that HS.Verify(Ei, ∆, pkidi , σ̂i, 1) = 1 for all i ∈ [t]

where Ei = (Ei, (τti , ... , τti+ti)). The equality between the t-th labelled program generated during
the multi-key homomorphic evaluation and the Et constructed in the verification procedure follows
from three main observations. First, MKHS.Eval and MKHS.Verify compute the same initial circuit
E0, determined by P and the value y. Second, the strings headi and taili used in the two algorithms
are equivalent. Third, Equations (8) and (11) show that the two algorithms are reconstructing the
same labelled program Et.

Circuit Growth. In what follows we analyze the size growth of the circuits Ei computed by the
Matrioska compiler, and use this to prove the bounds in Theorem 2.

Lemma 3. Let HS be a correct single-key homomorphic signature scheme that supports compu-
tations on circuits of (maximum) depth d and size s; then the multi-key homomorphic signa-
ture scheme MKHS(HS,T) obtained from the Matrioska compiler of Definition 3 supports homo-

morphic computations on circuits of size s′ and depth d′ provided that s > (s′)cs
T−1

and d >

max{d′, dHSV((s′)cs
T−1

, λ)}, where dHSV and cs are a function and a non-negative constant that
depend on the single-key scheme HS.

Proof. For t = 1, MKHS is running the plain algorithms of HS. Therefore MKHS supports circuits
of size s′ < s and depth d′ < max{d, dHSV(s)}.

For t > 1 the Matrioska compiler runs HS.Eval and HS.Verify on every Ei including Et. Since
{Ei}i∈[t] is a sequence of circuits of increasing size and depth we need to make sure that the circuit
given as input to MKHS will grow into an Et that is supported by HS.

We begin by analysing the size growth; this will be useful to obtain the bound on the depth. It
is easy to see that size(E0) ∼ size(E1), since we are only adding a few gates. The actual growth
begins with i = 2. From this point on, in fact, the verification circuit HSVi is contained in Ei. We
assume that on input a circuit Z the verification circuit HSV has size size(HSV) ∼ size(Z)cs , for
an opportune constant value cs ≥ 1 (dependent on the HS scheme). This assumption follows simply

13

by the fact that the HS algorithms must run in polynomial time and thus can be represented with
polynomial-size circuits. By construction size(Ei) = size(Ei−1)

cs for every i ∈ [2, t]. Let s′ denote
the size of the circuit C given in input to MKHS.Eval, then it is clear that it is sufficient to have
s > size(Et) = (s′)cs

t−1
, which proves the claim on the size in Lemma 3 and in Theorem 2. Detailed

estimates of the circuit growth can be found in Appendix B.3.
Let dHSV be a function that expresses the depth of the circuit HSV as a function of the length

of its inputs. In Matrioska the inputs to HSV are a circuit Ei and a few more elements depending
only on the security parameter λ. Since the size of circuits Ei grow in size with i we consider the
bound for the largest size(Et) = (s′)cs

t−1
. In this case depth(HSVt) ∼ dHSV(size(Et−1), λ) + 1 =

dHSV(s′cs
t−1
, λ). Therefore it must hold that d′ and dHSV(s′cs

t−1
, λ) < d. Letting d be greater than

the maximum between d′ and dHSV(s′cs
t−1
, λ) we ensure that Ei is supported by HS, and thus by

MKHS. It is worth noticing that a polynomial-time HS.Verify implies the depth function dHSV(·) to
be, in the worst case, a polynomial.

3.4 Security of Matrioska

In this section we argue that Matrioska MKHS schemes are unforgeable provided that so is the
underlying HS scheme. For the proof we rely on Proposition 1 from [15], which allows for a simpler
treating of corruption queries. Due to space limit, the detailed proof appears in Appendix C while
below we give a proof sketch with the main intuition.

Lemma 4. Let HS be a secure single-key homomorphic signature scheme. Then the multi-key ho-
momorphic signature scheme MKHS(HS,T) obtained from the Matrioska compiler of Definition 3 is
secure. In particular, for any PPT adversary A making signing queries on at most Qid = poly(λ)
distinct identities, there is a PPT algorithm B such that: AdvMKHS

A ≤ Qid ·AdvHS
B .

Proof sketch. The idea is that a forger against our MKHS scheme must create a forgery for the HS
scheme for at least one of the users, say idi? , involved in the computation. Thus the reduction B,
on input a public key pk, makes a guess for j∗ = i?, programs pkidj∗ = pk and generates all the

other keys. This allows B to perfectly simulate all the signing queries (perfectly hiding j∗ to A).
When A returns (P∗, ∆∗, {pk∗id}id∈P∗ , y∗, σ∗), with σ∗ = (σ̂∗1, ... , σ̂

∗
t), the crucial part of the

proof is showing the existence of an index i? such that σ̂∗i? is a forgery for HS. Specifically:

- σ∗ is of type-1 (∆∗ is new). Then i? = t and σ̂∗t is a type-1 forgery against HS.

- σ∗ is of type-2. This means: E0(m1, ... ,mn) = 0 while HS.Verify(Et, pkidt , 1, σ̂
∗
t) = 1. Then we

show that there must exist a “forking index” i? ∈ [t] such that Ei−1(mti−1 , ... ,mti−1+ni−1) = 0 but
HS.Verify(Ei, pkidi , σ̂

∗
i , 1) = 1, that is, σ̂∗i? is a type-2 forgery against HS for the labeled program Ei.

- σ∗ is of type-3. If t = 1, then i? = 1 and σ̂∗1 is a type-3 forgery against HS. If t > 1, let i ∈ [t] be
the first index such that ∃ j ∈ [n] : `j = (idi, τj) /∈ L∆∗ , i.e., the first identity for which a type-3
forgery condition holds. Then, either σ̂∗i is a type-3 forgery for HS for identity idi (and thus i? = i);
or there is i? > i such that σ̂∗i? is a type-2 forgery against identity idi? . The latter can be argued by
showing the existence of a “forking index” as in the previous case. In a nutshell, a type-3 forgery
against MKHS comes either from a type-3 forgery at some index i, or, the i-th signature is incorrect
and thus there must be a type-2 forgery at a later index to cheat on the fact that verification at
index i is correct.

Therefore, if j∗ = i? (which happens with non-negligible probability 1/Qid), B can convert A’s
forgery into one for its challenger.

14

References

1. N. Attrapadung and B. Libert. Homomorphic network coding signatures in the standard model. In D. Cata-
lano, N. Fazio, R. Gennaro, and A. Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 17–34. Springer,
Heidelberg, Mar. 2011.

2. N. Attrapadung, B. Libert, and T. Peters. Computing on authenticated data: New privacy definitions and
constructions. In X. Wang and K. Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 367–385.
Springer, Heidelberg, Dec. 2012.

3. M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In T. Yu, G. Danezis, and V. D.
Gligor, editors, ACM CCS 12, pages 784–796. ACM Press, Oct. 2012.

4. D. Boneh, D. Freeman, J. Katz, and B. Waters. Signing a linear subspace: Signature schemes for network coding.
In S. Jarecki and G. Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 68–87. Springer, Heidelberg, Mar.
2009.

5. D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions. In K. G. Paterson, editor,
EUROCRYPT 2011, volume 6632 of LNCS, pages 149–168. Springer, Heidelberg, May 2011.

6. D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary fields and new tools for lattice-based
signatures. In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi, editors, PKC 2011, volume 6571 of LNCS,
pages 1–16. Springer, Heidelberg, Mar. 2011.

7. D. Catalano, D. Fiore, R. Gennaro, and K. Vamvourellis. Algebraic (trapdoor) one-way functions and their
applications. In A. Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 680–699. Springer, Heidelberg, Mar.
2013.

8. D. Catalano, D. Fiore, and L. Nizzardo. On the security notions for homomorphic signatures. ACNS 2018, to
appear. Cryptology ePrint Archive. https://eprint.iacr.org/2016/1175.pdf.

9. D. Catalano, D. Fiore, and L. Nizzardo. Programmable hash functions go private: Constructions and applica-
tions to (homomorphic) signatures with shorter public keys. In R. Gennaro and M. J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 254–274. Springer, Heidelberg, Aug. 2015.

10. D. Catalano, D. Fiore, and B. Warinschi. Adaptive pseudo-free groups and applications. In K. G. Paterson,
editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 207–223. Springer, Heidelberg, May 2011.

11. D. Catalano, D. Fiore, and B. Warinschi. Efficient network coding signatures in the standard model. In M. Fis-
chlin, J. Buchmann, and M. Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 680–696. Springer, Hei-
delberg, May 2012.

12. D. Catalano, D. Fiore, and B. Warinschi. Homomorphic signatures with efficient verification for polynomial
functions. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 371–
389. Springer, Heidelberg, Aug. 2014.

13. D. Catalano, A. Marcedone, and O. Puglisi. Authenticating computation on groups: New homomorphic primitives
and applications. In P. Sarkar and T. Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages
193–212. Springer, Heidelberg, Dec. 2014.

14. Y. Desmedt. Computer security by redefining what a computer is. In NSPW, 1993.
15. D. Fiore, A. Mitrokotsa, L. Nizzardo, and E. Pagnin. Multi-key homomorphic authenticators. In Advances in

Cryptology–ASIACRYPT 2016: 22nd International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part II 22, pages 499–530. Springer,
2016.

16. D. M. Freeman. Improved security for linearly homomorphic signatures: A generic framework. In M. Fischlin,
J. Buchmann, and M. Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 697–714. Springer, Heidelberg,
May 2012.

17. R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin. Secure network coding over the integers. In P. Q. Nguyen and
D. Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages 142–160. Springer, Heidelberg, May 2010.

18. R. Gennaro and D. Wichs. Fully homomorphic message authenticators. In K. Sako and P. Sarkar, editors,
ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 301–320. Springer, Heidelberg, Dec. 2013.

19. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions. In
L. Fortnow and S. P. Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June 2011.

20. S. Gorbunov, V. Vaikuntanathan, and D. Wichs. Leveled fully homomorphic signatures from standard lattices.
In Proceedings of the forty-seventh annual ACM symposium on Theory of computing, pages 469–477. ACM, 2015.

21. R. Johnson, D. Molnar, D. Song, and D. Wagner. Homomorphic signature schemes. In Cryptographers’ Track at
the RSA Conference, pages 244–262. Springer, 2002.

22. R. W. Lai, R. K. Tai, H. W. Wong, and S. S. Chow. Multi-key homomorphic signatures unforgeable under insider
corruption. IACR Cryptology ePrint Archive, 2016:834, 2016.

15

https://eprint.iacr.org/2016/1175.pdf

23. B. Libert, T. Peters, M. Joye, and M. Yung. Linearly homomorphic structure-preserving signatures and their
applications. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages
289–307. Springer, Heidelberg, Aug. 2013.

A Circuit evaluation and composition of circuits

In this work we define circuits as 6-tuples C = (n, u, q, L,R,G). We consider circuits of fan-in 2 only
as any constant fan-in K circuit can be made into this form by paying a constant factor in the
circuit’s depth and size. The largest component in the string C is the descriptions of the function
L (and R), that is a sequence of q values in [w]∪ {0}, therefore |L| = |R| = q lg(w + 1). Hence, for a
fixed and reasonable encoding it holds |C| ∈ O(w lg(w)).

To show that this formalism is meaningful we describe two fundamental operations on circuits:
circuit evaluation and circuit composition.

Evaluating a Circuit. In order to evaluate a circuit on a given input, we need a gate-functionality
function that translates each bit in (the description of) G into the output of a gate. Let G(g) denote
the g-th bit in the description of G, we define the gate-functionality function γ : [q]×{0, 1}2 → {0, 1}
as:

γ(g, xl, xr) =

G(g) if L(g) = 0,
xl if (L(g) 6= 0 and G(g) = 0),
NAND(xl, xr) if (L(g) 6= 0 and G(g) = 1)

Note that when L(g) = 0 the gate-functionality of g is the constant-gate that always returns the
value G(g) ∈ {0, 1}. Otherwise, g is a proper gate: if G(g) = 0 it returns the left input to g, while
if G(g) = 1 it returns the NAND between the two input values.

We define the evaluation function evcirc on a circuit C = (n, u, q, L,R,G) and an n-bit string
(x1, x2, ... , xn) as:

process evcirc(C, (x1, ... , xn))
for g from 1 to q do:

l← L(g); r ← R(g);xg ← γ(g, xl, xr);
return (xn+q−u+1, ... , xn+q).

We will often shorten evcirc(C, (x1, ... , xn)) into C(x1, ... , xn).

Sequential composition of circuits. Given two circuits, C1 and C2, we say that C1 is composable
with C2 if u1 = n2. We denote the circuit composition as C3 = C1 . C2. The resulting circuit
C3 = (n3, u3, q3, L3,R3,G3) is defined as: n3 = n1, u3 = u2, q3 = q1 + q2. Let wi be the number of
wires in Ci, then

L3 =

L1(i) for i ∈ [w1]

0 for i ∈ [w1 + w2] \ [w1] and L2(i− w1) = 0
L2(i− w1) + w1 − u1 for i ∈ [w1 + w2] \ [w1] and L2(i− w1) 6= 0

The right-input function R3 is defined analogously. Finally, G3 = G1||G2.

16

B Details of the Matrioska construction

Definition 4 (The equal-to circuit EQy). We define EQy to be the circuit that, for a given
value y ∈ {0, 1}, returns 1 if the input bit equals y, 0 otherwise. Formally,

EQy =
(
1, 1, 5, (01134), (02325), (y, 1, 1, 1, 1)

)
.

A representation of EQy is given in Figure 1.

y

x
2

3

4

5

1

1

2

2

3

3

4

5

6

Fig. 1. The EQy circuit for the value y = m.

Note that any circuit of the form C = (n, 1, q, L,R,G) is composable with EQy and the composed
circuit

D = C .EQy = (n, 1, q+5, L||(0,w,w,w+2,w+3),R||(0,w+1,w+2,w+1,w+4),G||(y, 1, 1, 1, 1)).

B.1 The three-client three-input case

Consider the case in which we want to authenticate the result of a three-input circuit C =
(3, 1, qC , LC ,RC ,GC) evaluated on three messages, each signed by a distinct client. For notation
sake, we assume the clients have identities id1 = 1, id2 = 2 and id3 = 3. Let mi ∈ {0, 1} denote the
input of party i ∈ [3], and σi ← HS.Sign(ski, `i,mi) be the corresponding signature. Note that each
σ1, σ2 and σ3 is generated using a different secret key of the HS scheme. Moreover, in this example
we are deliberately removing dataset identifiers for ease of exposition. To ease the understanding
of the Matrioska procedure we add pictorial representations of the circuits we build at each step.
The figures show how we “build around” the initial circuit and provide an less-detailed intuition of
our technique.

Step 0. Given the labeled program P = (C, (`1, `2, `3)) and the
three messages m1,m2,m3, compute the value y = C(m1,m2,m3).
Let E0 = (3, 1, q0, L0,R0,G0) be a circuit satisfying E0(x1, x2, x3) =
1 iff C(x1, x2, x3) = y, e.g., E0 = C . EQy. Note that E0 can be con-
structed using C and y solely without, knowing the values m1,m2,m3 (see
Definition 4). By construction it holds that:

E0(m1,m2,m3) = 1. (13)

C y

==

E0

17

Step 1. We build a single-input circuit E1 that corresponds to E0

where the last two inputs m2 and m3 are fixed and hardwired into
it. In this way, we obtain a single-input single-client circuit on which
we can run HS.Eval using the public key pk1. In more details, given
E0 = (E0, (`1, `2, `3)), the signature σ1 and the messages m2,m3:

E1

m2 m3

C y

==

E0

• Define a mask circuit M1 = (1, 3, 3, L′1,R
′
1,G
′
1) where L′1 = R′1 = (1, 0, 0) and G′1 = (0,m2,m3).

The purpose of M1 is to create ad-hoc inputs for E0: given b ∈ {0, 1} as input, M1 outputs
M1(b) = (b,m2,m3).

8

• Compose M1 with E0 to obtain E1 = M1 . E0 = (1, 1, q1, L1,R1,G1) where: q1 = q0 + 3 and
G1 = (G′1||G0). Let L?0 and R?0 be the string representations of the functions:

L?0(i) =

{
L0(i) + 3 if L0(i) 6= 0, (i ∈ [q0])

0 if L0(i) = 0, (i ∈ [q0])
, R?0(i) =

{
R0(i) + 3 if R0(i) 6= 0, (i ∈ [q0])

0 if R0(i) = 0, (i ∈ [q0])

The left/right input functions of E1 are L1 = (L′1||L?0), R1 = (R′1||R?0).
Circuit composition ensures that E1(x1) = E0(x1,m2,m3) and thus equation (13) implies

E1(m1) = 1. (14)

Note that E1 can be constructed directly from E0 given m2 and m3, in particular the value m1 is
not needed:

E1 =
(
1, 1, n0 + 3, (100, L?0), (100,R?0), (0,m2,m3,G0)

)
.

• Compute σ̂1 ← HS.Eval(E1, pk1, σ1). This is possible since E1 is a one-input circuit. Moreover
equation (14) and the correctness of the HS scheme imply that

HS.Verify((E1, `1), pk1, σ̂1, 1) = 1. (15)

Step 2. The actual inductive procedure begins now. The challenge is that σ̂1 cannot be directly
checked by the verifier as it does not know the messages m2,m3 needed to define the circuit E1. Our
idea is to write equation (15) as HS.Verify(S1) = 1 for a string S1 = ((E1, `1), pk1, σ1) that contains
two bits that are the messages m2,m3, and then we want to use HS.Eval to create a signature
proving the correctness of the computation in (15). As we shall see, this is possible by repeating
our previous technique, namely seeing HS.Verify(S1) as a single-input function of m2 in which m3

is hardwired. Repeating this approach one more time, we will
later be able to let m3 also “disappear” and use HS.Eval on a
circuit that can be reconstructed by the verifier without knowing
m1,m2,m3. Coming back to this second step, in MKHS.Eval we
proceed as follows. We define a mask circuit that outputs S1
where the bit that embeds the value m2 is substituted with the
bit input to mask circuit. Next, we define E2 as the composition
of this mask and the circuit HSV2 that is the verification circuit

E1
==

yC

m2 m3

==

yC

m3

E1

1σ̂1pk1ℓ1E0

HSV2

E2

8 Recall that L′1(1) = 1 6= 0 and G′1(1) = 0, thus the first gate outputs the input to the circuit.

18

of the signature scheme when checking the authenticity of a signature against the value 1 on input
of size(E1).

9

Facts: The position of the gate that embeds the value m2 in E1 is by construction g2 = 3 lg(N1) +
2q1 lg(w1) + 2, where N1 is a given upper bound on the size of n1 and q1, indeed:

E1 =
(

1, 1, q1︸ ︷︷ ︸
3 lg(N1)

, L1,R1︸ ︷︷ ︸
2q1 lg(w1)

,G1 = (0,m2︸ ︷︷ ︸
2

,m3,G0)
)
.

Since S1 = ((E1, `1), pk1, σ1) is a valid input to HSV2, we have that |S1| = nHSV2.

Given S1 = ((E1, `1), pk1, σ̂1) and the signature σ2:

• Define a mask circuit M2 = (1, nHSV2, nHSV2, L
′
2,R
′
2,G
′
2) where

L′2(g) = R′2(g) =

{
0 if g ∈ [nHSV2] \ {g2}
1 if g = g2

and G′2(g) =

{
S1[g] if g ∈ [nHSV2] \ {g2}
0 if g = g2

The purpose of M2 is to create ad-hoc inputs for the circuit HS.Verify. The output of M2 is S1
where we overwrite the second gate of E1 to output the value input to the circuit M2 – instead of
the constant output m2. In particular,

M2(m2) =
(
(

E1︷ ︸︸ ︷
1, 1, q1, L1,R1, (0,m2,m3,G0)︸ ︷︷ ︸

G1

, `1), pk1, σ̂1)

where all values should be seen as bit-strings.

• Compose M2 with HSV2 to obtain E2 = M2 . HSV2 = (1, 1, q2, L2,R2,G2) where: q2 = nHSV2 +
qHSV2 ; and G2 = (G′2||GHSV2). Let L?HSV2

and R?HSV2
be the string representations of the functions:

L?HSV2
(i) =

{
LHSV2(i) + nHSV2 if LHSV2(i) 6= 0, (i ∈ [qHSV2])

0 if LHSV2(i) = 0, (i ∈ [qHSV2])
,

R?HSV2
(i) =

{
RHSV2(i) + nHSV2 if RHSV2(i) 6= 0, (i ∈ [qHSV2])

0 if RHSV2(i) = 0, (i ∈ [qHSV2])

The left/right input functions of E2 are defined as L2 = (L′2||L?HSV2
), R2 = (R′2||R?HSV2

).
Circuit composition ensures that E2(m2) = HS.Verify((E1, `1), pk1, σ̂1, 1), therefore by (15) it

holds that:
E2(m2) = 1 (16)

Note that E2 can be constructed directly from E0 given solely m3, and additional public data (i.e.,
pk1, σ̂1, HS.Verify, P, y), indeed:

G2 = (

g2−th index︷ ︸︸ ︷
1, 1, q0 + 3, (1, 0, 0, L?0)︸ ︷︷ ︸

L1

, (1, 0, 0,R?0)︸ ︷︷ ︸
R1

, (0,0,m3,G0︸ ︷︷ ︸
G′1

, `1, pk1, σ̂1,GHSV2)

9 With abuse of notation HSV2 = HS.Verify((·, · · ·), ·, · · · , 1). The index 2 is used to keep track of the size of the
input (and corresponding output) of the verification circuit.

19

where all values should be seen as bit-strings.

• Compute σ̂2 ← HS.Eval(E2, pk2, σ2). This is possible since E2 is a one-input circuit, and σ2 is a
signature on m2. Indeed, equation (16) and the correctness of the HS scheme imply that

HS.Verify((E2, `2), pk2, σ̂2, 1) = 1. (17)

Step 3. We proceed inductively, along the line of Step 2.

==

yC

E1

1σ̂1pk1ℓ1

HSV2

E2

E0

1σ̂2pk2ℓ2

HSV3

E3

Facts: The position of the gate that embeds the value m3 in E2 is by construction g3 = 3 lg(N2) +
2q2 lg(w2) + g2 + 1, where N2 is a given upper bound on the size of n2 and q2, indeed:

E2 =
(

1, 1, q2︸ ︷︷ ︸
3 lg(N2)

, L2,R2︸ ︷︷ ︸
2q2 lg(w2)

,G2 = (1, 1, q1, L1,R1, (0,0︸ ︷︷ ︸
g2

,m3,G0, `1...GHSV2)
)
.

Given S2 = ((E2, `2), pk2, σ̂2), and the signature σ2:

• Define a mask circuit M3 = (1, nHSV3, nHSV3, L
′
3,R
′
3,G
′
3) where

L′3(g) = R′3(g) =

{
0 if g ∈ [nHSV3] \ {g3}
1 if g = g3

and G′3(g) =

{
S2[g] if g ∈ [nHSV3] \ {g3}
0 if g = g3

The output of M3 is S2 where we overwrite the gate that embeds the constant value m3 with a gate
that outputs the value input to the circuit M3. In particular, M3(m3) = S2.

• Compose M3 with HSV3 to obtain E3 = M3 . HSV3 = (1, 1, q3, L3,R3,G3). Circuit composition
ensures that E3(m3) = HS.Verify((E2, `2), pk2, σ̂2, 1), therefore by (17) it holds that:

E3(m3) = 1. (18)

20

Note that E3 can be constructed directly from E0 = (E0, `1, `2, `3) given solely the public data
pki, σ̂i for i ∈ [2]: indeed:

E3 =
(

1, 1, nHSV3 + qHSV3 , L3 = (

nHSV3︷ ︸︸ ︷
0..0..1︸ ︷︷ ︸
g3

0..0,

qHSV3︷ ︸︸ ︷
L?HSV3

),R3 = (

nHSV3︷ ︸︸ ︷
0..0..1︸ ︷︷ ︸
g3

0..0,

qHSV3︷ ︸︸ ︷
R?HSV3

),

(

g2︷︸︸︷
0..01 0..0, L?HSV2

)︸ ︷︷ ︸
G3 =

(
(1, 1, nHSV2 + qHSV2 , L2, R2, string,GHSV2 , `2), pk2, σ̂2,GHSV3)

))
︷ ︸︸ ︷
(1, 1, q0 + 3, (1, 0, 0, L?0)︸ ︷︷ ︸

L1

, (1, 0, 0,R?0)︸ ︷︷ ︸
R1

, (0, 0, 0,G0, `1, pk1, σ̂1))

where all values should be seen as bit-strings.

• Compute σ̂3 ← HS.Eval(E3, pk3, σ3). This is possible since E3 is a one-input circuit. From Equation
(18) and the correctness of the HS scheme we get:

HS.Verify((E3, `3), pk3, σ̂3, 1) = 1. (19)

The multi-key homomorphic evaluation algorithm outputs σ̂ = (σ̂1, σ̂2, σ̂3).

In order to verify σ̂ the verifier simply needs the labeled program P = (C, (`1, `2, `3)), the value
y corresponding to the claimed output of P, the three public keys pki for i ∈ [3] and the multi-key
homomorphic signature σ̂ = (σ̂1, σ̂2, σ̂3). The verification process begins by constructing the circuit
E0. As noted before, this can be done given solely C and y. Next, the verifier computes directly the
circuit E3. This can be done using the available values `i, pki, σ̂i for i ∈ [2] and the (public) circuit
descriptions of HSV2 and HSV3. Let E3 = (E3, `3), the verification concludes by running:

HS.Verify(E3, pk3, σ̂3, 1)

It is easy to see that by correctness, this returns 1, as stated in Equation (19).

B.2 Computing the index where the messages of signer i are embedded

In this appendix we explain the reasoning behind the definition of the index

gi = 3 lg(Ni−1) + 2qi−1 lg(wi−1) + gi−1 + ni−1

in our compiler (step i in Definition 3). Recall that in this step we hold the circuit Ei−1 and
look for the positions in its gate description where the ni values input by identity idi are located.
This will be an interval Ii = [gi, gi + ni], for some index gi. Essentially, gi should jump over
the description of the first part of the circuit Ei−1 = (ni−1, 1, qi−1, Li−1,Ri−1,Gi−1) to select the
bits in Gi−1 that contain the values m(ni−1+1), ... ,mni . The description of the values ni−1, 1, qi−1
covers the first 3 lg(Ni−1) bits. Then, the left/right input functions Li−1,Ri−1 are two strings of

21

qi−1 wires covering additional 2qi−1 lg(wi−1) bits. At this point we enter the gate description of
Ei−1 that brings with an accumulative addend of gi−1 + ni−1 + 1 bits to reach the position where
Gi−1 contains the first message input by client idi. By construction Gi−1 = (G′i−1||GHSVi−1

), for
consistency let HSV1 = G0. For i ≥ 2 the gates in G′i−1 embed (a minor modification of) the string
Si−2 = ((Ei−2, `ti−1 , ... , `ti−1), pkidi−2

,σi−2), for consistency let S0 = (0..0mn1+1..mn) where the first
n1 entries are 0. When i = 2, G′1 = S0, therefore the bit that contains the first input by client id2 is
the t2 = (n1 + 1)-th bit in G1, which is consistent with the formula g1 +n1 since we set g1 = 1. Now
for i = 3, G′2 equals S1 = ((E1, `n1+1, ... , `t2−1), pkid1 ,σ1), except for the (n3) bits where G′1 has the
gates initiated to the values input by id3. This interval begins at the 3 lg(N1)+2q1 lg(w1)+n1+1 = g2
bit of S1. Therefore g3 = 3 lg(N2) + 2q2 lg(w2) + g2 + n2. This explains the recursive definition of
gi.

B.3 Growth of the circuits Ei in Matrioska

In our representation of circuits the largest factor in the size of a circuit is determined by the
description of the functions L and R. In particular, for a circuit C with q >> n the asymptotic
bound is size(C) ∼ q lg(q), where we approximate the number of wires w with the number of gates
q.10

Let q0 denote the number of gates in E0, then: size(E0) ∼ q0 lg(q0). Let n be the total number
of input to the computation (in case n=t each input belongs to a different user) then size(E1) ∼
(q0 + n) lg(q0 + n), since n < q0 in this analysis we consider

size(E1) ∼ 2q0 lg(2q0). (20)

The actual growth begins with i = 2. From this point on, in fact, the verification circuit HSVi is
contained in Ei. Without loss of generality, we assume that on input a circuit of size Z the veri-
fication circuit size(HSV) has size size(HSV) ∼ size(Z)cs , for a constant value cs ≥ 1 (dependent
on the HS scheme). In our compiler this translates to qHSVi lg(qHSVi) ∼ (qi−1 lg(qi−1))

cs , thus:

size(E2) = size(M2 . HSV2) = |(1, 1, q2, L2,R2,G2)|
∼ q2 lg(q2) (21)

∼ qHSV2 lg(qHSV2) (22)

∼ (2q0 lg(2q0))
cs . (23)

Where (21) is the usual approximation of the circuit’s size with the number of gates, (22) comes from
the fact that11 q2 = nHSV2 + qHSV2 ∼ qHSV2 and (23) is implied by our assumption size(HSV2) ∼
size(E1)

cs and (20). Following this reasoning inductively we get: size(Et) ∼ (q0 lg(q0))
cst−1

. In other
words, let s′ denote the size of the circuit C given in input to MKHS.Eval, then size(Et) = s′cs

t−1
< s.

Regarding the depth growth we notice that if the function dHSV(z, λ) is polynomial there exists a
constant cd ≥ 1 such that dHSV(z, λ) = zcd . Then depth(Et) = size(Et−1)

cd = scd·cs
1−t

. However, if
dHSV(z, λ) is logarithmic then depth(Et) = log(size(Et−1)) = (cs

1−t)s.

10 Approximating w = q + n with q is a quite tight in our case, since all Ei are circuits with one single input.
11 to upperbound we could put a factor 2 in this estimate: q2 < 2qHSV2 but since this is an asymptotic estimate and

qHSV2 > 2 it would not change much.

22

C Appended proofs

C.1 Proof of Lemma 1

Proof. The definition of authentication correctness for multi-key homomorphic signature schemes
requires that the signature σ output by MKHS.Sign(sk, `,m) verifies correctly for the message m as
the output of the identity program I` = (Cid, `). In details, Cid : M → M is the identity circuit
defined as

Cid = (nid = 1, uid = 1, qid = 1, Lid = 1,R = 1,G = 0)

and ` = (id, τ) for some τ ∈ T. Formally, we want to show that

MKHS.Verify
(
I`, pkid,m,MKHS.Sign(skid, `,m)

)
= 1.

The proof is quite intuitive and reduces to the correctness of the homomorphic signature scheme
HS. Let σ ← MKHS.Sign(sk, ` = (id, τ),m). By construction (Equation (1)) σ is the output of
σ ← HS.Sign(skid, τ,m). Since t = n = 1 the multi-key verification algorithm runs the single-key
verification circuit on the labelled program E0 = (C, τ), the key pkid, the value 1 and the signature
σ̂ = σ (Equation 10). Thus,

MKHS.Verify(I`, pk,m, σ) = HS.Verify(E0, pkid, 1, σ) = 1

by the correctness of the HS scheme.

C.2 Proof of Lemma 4

Proof. We define a reduction B between an MK-HomUF-CMA forger A and an HomUF-CMA chal-
lenger C. The reduction begins by initializing the identity counter q to 1 and by choosing a (random)
index j∗ ← [Qid] as a guess for an identity on which A will make a forgery.

Setup. In the setup phase B starts the HomUF-CMA game for the scheme HS. The reduction uses
the public parameters of the HS scheme given by its HomUF-CMA challenger C to generate pp for
the MKHS scheme (e.g., adding the ID set, redefining the labels). B sends pp to the adversary A,
and stores the public key pk provided by C.

Sign queries. In the sign queries, the reduction B answers to queries (∆, ` = (id, τ),m) as follows:

1. If this is the first query for the dataset ∆, the reduction initializes an empty list L∆ = ∅ and
proceeds to step 2.

2. If this is the first query with identity id and q 6= j∗, generate keys for the identity id running
(skq, pkq) ← MKHS.KeyGen(pp). If this is the first query with identity id and q = j∗, set
pkj∗ = pk (A is generating the user that B has guessed as to be the target for the forgery).
Update the identity-index map ω : ID→ [Qid] with ω(id) = q and increase the identity counter
q ← q + 1. Proceed to step 3 and 4.

3. If the query has not been asked before, (i.e., (`,m) /∈ L∆) and ω(id) = i 6= j∗, compute
σ ← MKHS.Sign(ski, `,m) (notice that in this case B knows the secret key). If (`,m) /∈ L∆ and
ω(id) = j∗, B queries its challenger C with (∆, τ,m) to obtain a signature σ. Finally, in both
cases, the reduction updates the list of queried messages for the database ∆: L∆ ← L∆∪{(`,m)}
and returns (σ, pki) to A (i ∈ [q]).

4. If the query has the same label of a previous query on the same dataset, i.e., there exists a
message m′ ∈M such that (`,m′) ∈ L∆, ignore the query.

It is easy to see that up to this point B perfectly simulates the MK-HomUF-CMA game to A.

23

Forgery. Let (P∗, ∆∗, {pk∗id}id∈P∗ , y∗, σ∗) denote the output of A at the end of the MK-HomUF-CMA
security experiment (simulated by B). Let id∗ denote the identity corresponding to the index j∗

chosen by B, i.e., ω(id∗) = j∗. If id∗ /∈ P∗ the reduction aborts. In this case indeed, B has for
sure failed to guess one of the identities involved in the forgery made by A. Otherwise, in what
follows we show that the forgery (P∗, ∆∗, {pk∗id}id∈P∗ , y∗, σ∗) can be converted (except with some
non-negligible error probability related to the wrong guess of j∗) into a single-key forgery for the
HomUF-CMA experiment. In what follows we do an analysis case by case.

Single user. If P∗ is a computation that involves a single user only, the reduction is perfect, i.e.,
B can turn every forgery (of any type) output by A against MKHS into a forgery against HS by
removing the identity id∗ from the labels. Indeed, notice that if B reached this point, it did not
abort, and thus id∗ ∈ P∗.

Multi-user programs. If P∗ involves t > 1 users, the reduction proceeds as follows.

Type-1 Forgery. Namely, it holds both MKHS.Verify(P∗, ∆∗, {pk∗id}id∈P∗ , y∗, σ∗) = 1 and L∆∗ = ∅.
We show that this corresponds to a type-1 forgery against HS for the t-th key in P∗. By construction
(see Equation (12)), MKHS.Verify outputs 1 if and only if HS.Verify((Et, (τ

∗
tt , ... , τ

∗
n)), ∆∗, pk∗idt , 1, σ̂

∗
t) =

1. Moreover, since L∆∗ = ∅, the reduction never queried its challenger C on the dataset ∆∗ either.
The last two conditions ensure that (Et, (τ

∗
tt , ... , τ

∗
n)), ∆∗, pk∗idt , 1, σ̂

∗
t) is a type-1 forgery against HS

for the key pair (pkidt , skidt).
Therefore, in this case the reduction B returns (Et, (τ

∗
tt , ... , τ

∗
n)), ∆∗, pk∗idt , 1, σ̂

∗
t) to its challenger,

if j∗ = ω(idt) (i.e., pkidt = pkj∗), and aborts otherwise.

Remark 5. The adversary A can possibly produce type-1 forgeries also for identities idi with i < t.
In this case, however, L∗∆ is empty and therefore it is impossible to run the (single-key) verifica-
tion algorithm on the circuits Ei for i < t, as this would require the knowledge of the messages
mti+ni+1, ... ,mn input by the last t− i users.

Type-2 Forgery. Namely, A returns (P∗, ∆∗, {pk∗id}id∈P∗ , y∗, σ∗) such that MKHS.Verify(P∗, ∆∗,
{pk∗id}id∈P∗ , y∗, σ∗)=1 and y∗ 6= C∗(m1, ... ,mn), m1, ... ,mn are the messages queries by A for the
respective labels in P∗. In the following claim, we formally show that from any type-2 forgery against
the MKHS scheme, it is possible to extract a type-2 forgery against the HS scheme (corresponding
to at least one of the users involved in P∗).

Claim. Let t ≥ 2, and let (P∗, ∆∗, {pk∗id}id∈P∗ , y∗, σ∗) be such that MKHS.Verify(P∗, ∆∗, {pk∗id}id∈P∗ ,
y∗, σ∗)=1 and y∗ 6= C∗(m1, ... ,mn), with σ∗ = (σ̂∗1, ... , σ̂

∗
t). Then, there exists (at least) one index

i ∈ [t] such that σ̂∗i is a type-2 forgery against the HS scheme (for an opportune function).

Proof. The claim follows from this inductive reasoning. Consider σ̂∗ = (σ̂∗1, ... , σ̂
∗
t). By definition

E0(m1, ... ,mn) = 1 if and only if C∗(m1, ... ,mn) = y (see Equation (3)). Since (P∗, ∆∗, {pk∗id}id∈P∗ ,
y∗, σ∗) is a type-2 forgery y∗ 6= y. Therefore E0(m1, ... ,mn) = 0. The correctness of the Matrioska
compiler therefore implies that E1(m1, ... ,mn1) = 0 as well, where E1 is the circuit defined in
MKHS.Eval with the messages of identities idj , with j > 1, hardwired.

Given the signature σ̂∗1 there are two possible cases: either HS.Verify(E1, pkid1 , σ̂
∗
1, 1) = 1 or

not. In the first case, (E1, pkid1 , σ̂
∗
1, 1) is a type-2 forgery against the HS scheme for the key-pair

(pk1, sk1), and thus we have found our forgery and the claim is proven with index i = 1. Otherwise,
we proceed inductively to the next identity to show that the claim can be proven for i > 1.

24

By induction, let i > 1 and assume Ei−1(mti−1 , ... ,mti−1+ni−1) = 0. By construction of Matrioska
it holds Ei(mti , ... ,mti+ni) = 0. Similarly to the case i = 1, note that for the signature σ̂∗i there
are two possible cases: either HS.Verify(Ei, pkidi , σ̂

∗
i , 1) = 1 or not. In the first case (Ei, pkidi , σ̂

∗
i , 1)

is a type-2 forgery against the HS scheme for the key-pair (pki, ski), and thus we have found our
forgery and the claim is proven with this index i. Otherwise, we proceed with index i+ 1.

Finally, to show that such index i must exist, we notice that we cannot reach i = t+ 1 without
finding a forgery. In fact, for i = t + 1 we would have Et(mtt , ... ,mn) = 0. However, by definition
of type-2 forgery in MK-HomUF-CMA we have that MKHS(P∗, ∆∗, {pk∗id}id∈P∗ , y∗, σ∗) = 1, that is
HS.Verify(Et, pkidt , 1, σ̂

∗
t) = 1 (see Equation (12)). This immediately shows that (Et, pkidt , 1, σ̂

∗
t) is a

type-2 forgery against HS for the key pkidt . This completes the proof of the claim.

Given the type-2 forgery produced by A, B builds the circuit Ej∗ using P∗ = (C∗, (`1, ... , `n)),
the messages stored in L∆∗ and the signatures σ̂∗i for i < j∗. Let i be the index whose ex-
istence is granted by the previous claim. If i = j∗, B outputs to its challenger C the tuple
(Ẽj∗ = (Ej∗ , (τtj∗ , ... , τtj∗+nj∗)), 1, σ̂

∗
j∗) as its type-2 forgery against HS for the key pkj∗ . Other-

wise, the reduction aborts as the guess of j∗ was incorrect and σ̂∗j∗ is not guaranteed to be a
forgery.

Type-3 Forgery. Namely, A returns (P∗, ∆∗, {pk∗id}id∈P∗ , y∗, σ∗) such that MKHS.Verify(P∗, ∆∗,
{pk∗id}id∈P∗ , y∗, σ∗)=1 and there exists one label, say `i? ∈ P∗, for which no sign query was per-
formed, i.e., (`i? = (idi? , τi?), ·) /∈ L∆∗ . In the following claim we show that any such type-3 forgery
against MKHS reduces to either a type-3 or a type-2 forgery against HS.

Claim. Let t ≥ 2. If, at the end of the MK-HomUF-CMA security experiment, A outputs a type-3
forgery for the label `i? = (idi? , τi?) ∈ P∗ then either (1) the forgery reduces to a type-3 forgery
against HS for the identity idi? , or (2) there is (at least one) type-2 forgery against HS for an
identity idi ∈ P∗ with i > i?.

Proof. Let (P∗, ∆∗, {pk∗id}id∈P∗ , y∗, σ∗) be the type-3 forgery output by the adversary at the end
of the MK-HomUF-CMA experiment. Since no sign query for the label `i? was performed during
the security experiment, it is impossible to reconstruct any circuit Ei for i < i?. The motivation
is that by construction the description of Ei includes all the messages mj with j ≥ ti, including
mi? (see Equation (7)). Therefore the first circuit that is publicly reconstructible is Ei? . Let Ei? =
(Ei? , (τti? , ... , τti?+ni?)), there are two possible cases: either HS.Verify(Ei? , ∆

∗, pki? , 1, σ̂
∗
i?) = 1 or it

equals 0. It is immediate to see that in case the verification procedure outputs 1 (Ei? , ∆
∗, pki? , 1, σ̂

∗
i?)

satisfies all the requirements for a type-3 forgery on the key pki? against the scheme HS. Otherwise,
the verification of the i?-th circuit fails, i.e., HS.Verify(Ei? , ∆

∗, pki? , 1, σ̂
∗
i?) = 0, and the correct-

ness of the Matrioska compiler implies that Ej(mtj , ... ,mtj+nj) = 0 for all j > i?. However, by
definition of type-3 forgery the final (multi-key) verification outputs 1. We are now in a situation
similar to the one of type=2 forgeries. In particular for MKHS.Verify to output 1, it must hold that
HS.Verify(Et, ∆

∗, pkidt , σ̂
∗
t , 1) = 1 (see Equation (12)). Therefore there must be a type-2 forgery

against the HS scheme for one identity idj with i? < j ≤ t. The latter follows by the same argument
used in the previous Claim (details omitted). This concludes the proof of the claim.

In light of the claim above, from a type-3 forgery (P∗, ∆∗, {pk∗id}id∈P∗ , y∗, σ∗) the reduction B can de-
rive either a type-3 forgery against its HomUF-CMA challenger (if idi? = idj∗ and HS.Verify(Ej∗ , ∆

∗,
pkj∗ , 1, σ̂

∗
j∗) = 1) or a type-2 forgery (if j∗ > i? and HS.Verify(Ej∗ , ∆

∗, pkj∗ , 1, σ̂
∗
j∗) = 1 while

25

Ej∗(mtj∗ , ... ,mtj∗+nj∗) = 0, note that since j∗ > i? we know all the messages needed to define Ej∗).

Putting together all the cases analyzed above, one can see that, when B does not abort, it
provides a perfect simulation to A and always finds a forgery against HS. Hence, AdvHS

B =
AdvMKHS

A Pr[B does not abort]. Since the simulation provided by B to A is perfect, the index
j∗ is completely hidden to A. Also, B does not abort when j∗ equals an appropriate index (in each
forgery case), which happens with probability at least 1/Qid.

26

	Matrioska: A Compiler for Multi-Key Homomorphic Signatures

