
Indistinguishability Obfuscation Without Multilinear Maps:

iO from LWE, Bilinear Maps, and Weak Pseudorandomness

Prabhanjan Ananth
CSAIL, MIT

prabhanjan@csail.mit.edu

Aayush Jain
UCLA

aayushjain@cs.ucla.edu

Amit Sahai
UCLA

sahai@cs.ucla.edu

December 25, 2018

Abstract

The existence of secure indistinguishability obfuscators (iO) has far-reaching implications,
significantly expanding the scope of problems amenable to cryptographic study. All known
approaches to constructing iO rely on d-linear maps which allow the encoding of elements from
a large domain, evaluating degree d polynomials on them, and testing if the output is zero. While
secure bilinear maps are well established in cryptographic literature, the security of candidates
for d > 2 is poorly understood.

We propose a new approach to constructing iO for general circuits. Unlike all previously
known realizations of iO, we avoid the use of d-linear maps of degree d ≥ 3.

At the heart of our approach is the assumption that a new weak pseudorandom object exists,
that we call a perturbation resilient generator (∆RG). Informally, a ∆RG maps n integers to
m integers, and has the property that for any sufficiently short vector a ∈ Zm, all efficient
adversaries must fail to distinguish the distributions ∆RG(s) and (∆RG(s)+a), with at least
some probability that is inverse polynomial in the security parameter. ∆RGs have further
implementability requirements; most notably they must be computable by a family of degree-3
polynomials over Z. We use techniques building upon the Dense Model Theorem to deal with
adversaries that have nontrivial but non-overwhelming distinguishing advantage. In particular,
we obtain a new security amplification theorem for functional encryption.

As a result, we obtain iO for general circuits assuming:

• Subexponentially secure LWE

• Bilinear Maps

• poly(λ)-secure 3-block-local PRGs

• (1− 1/poly(λ))-secure ∆RGs

Acknowledgements

We thank Dakshita Khurana for collaboration in the initial stages of this research, for contributing
to the writeup, and for countless discussions and comments supporting this work and improving
the write up. Eventually, the current set of authors had to reluctantly agree to Dakshita’s repeated
requests to not be listed in the set of authors, and hence she is in these acknowledgements instead.
We thank Boaz Barak, Sam Hopkins and Pravesh Kothari for insights and extremely helpful sugges-
tions about how attacks based on the Sum of Squares paradigm could impact our new assumptions
on perturbation-resilient generators.

Research supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier Award
1413955, and NSF grant 1619348, BSF grant 2012378, a Xerox Faculty Research Award, a Google
Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant.
Aayush Jain is also supported by a Google PhD fellowship award in Privacy and Security. This
material is based upon work supported by the Defense Advanced Research Projects Agency through
the ARL under Contract W911NF-15-C- 0205. The views expressed are those of the authors and
do not reflect the official policy or position of the Department of Defense, the National Science
Foundation, the U.S. Government or Google.

Contents

1 Introduction 1

2 Technical Overview 4

3 Reader’s Guide 11

4 Preliminaries 13
4.1 Indistinguishability Obfuscation (iO) . 14
4.2 Slotted Encodings . 14

4.2.1 Generic Bilinear Group Model . 15
4.3 Threshold Leveled Fully Homomorphic Encryption 16
4.4 Useful Lemmas for Security Amplification . 17
4.5 LWE Preliminaries . 18

5 Perturbation-Resilient Generators 19
5.1 ∆RG implementable by Three-Restricted FE . 20
5.2 Candidate for 3∆RG . 20

5.2.1 Our Instantiations. 21

6 Tempered Cubic Encoding 22
6.1 Tempered Security . 24

7 Three-restricted FE 26
7.1 Semi-functional Security . 27

8 (Stateful) Semi-Functional Functional Encryption for Cubic Polynomials 28
8.1 Semi-functional Security . 30

9 Semi-Functional Functional Encryption for Circuits 31
9.1 Semi-functional Security . 33

10 Step 1: Instantiating TCE 35
10.1 Construction of TCE . 36

11 Step 2: Construction of Three-Restricted FE from Bilinear Maps 43
11.1 Security . 45

12 Step 3: Construction of Semi-Functional FE for Cubic Polynomials 50
12.1 Construction . 51
12.2 Security Proof . 53

13 Step 4: (Sublinear) Semi-Functional Secret Key FE from Semi-Functional FE
for Cubic Polynomials 58
13.1 Randomizing Polynomials . 58
13.2 Security . 61

14 Step 5: Amplification 65

15 Construction of iO 94

References 100

A Sub-linear Functional Encryption for Circuits 100
A.1 Equivalence of Semi-Functional FE and Sublinear FE 102

1 Introduction

Program obfuscation considers the problem of building an efficient randomized compiler that takes
as input a computer program P and outputs an equivalent program O(P) such that any secrets
present within P are “as hard as possible” to extract from O(P). This property can be formalized
by the notion of indistinguishability obfuscation (iO) [BGI+01, GR07]. Formally, iO requires that
given any two equivalent programs P1 and P2 of the same size, it is not possible for a computation-
ally bounded adversary to distinguish between the obfuscated versions of these programs. Recently,
starting with the works of [GGH+13b, SW14], it has been shown that iO would have far-reaching
applications, significantly expanding the scope of problems to which cryptography can be ap-
plied [SW14, KLW15, GGHR14, CHN+16, GPS16, HSW14, BPR15, GGG+14, HJK+16, BFM14].

The work of [GGH+13b] gave the first mathematical candidate iO construction, and since then
several additional candidates have been proposed and studied [GGH13a, CLT13, GGH15, CLT15,
Hal15, BR14, BGK+14, PST14, AGIS14], [BMSZ16, CHL+15, BWZ14, CGH+15, HJ15, BGH+15,
Hal15, CLR15, MF15, MSZ16, DGG+16], as well as more recently [Lin16, LV16, AS17, LT17].

Constructing iO. Securely building iO remains a central challenge in cryptography. In this work,
we show how to utilize new techniques to securely build iO. Most notably, we show new ways to
leverage bilinear maps and tools building upon the dense model theorem [JP14, CCL18, RTTV08]
in the context of constructing iO. Using these new tools, we show how to securely construct iO
without using cryptographic multilinear maps beyond bilinear maps. We now elaborate.

Graded Encodings. All known approaches for building iO crucially rely on the existence of a
graded encoding scheme [GGH13a, CLT13, GGH15], which generalizes the notion of a cryptographic
mulitilinear map [BS02]. In a degree-d graded encoding scheme, it is possible to compute encodings
[x] of values x, such that for any degree-d polynomial f with small coefficients, given only the

encodings [x], it is possible to efficiently test whether f(x)
?
= 0. For d = 2, this corresponds to

cryptographic bilinear maps [BF01], for which we know well-studied constructions based on the
hardness present in elliptic curve groups that admit pairing operations.

However, the situation for d > 2 is much more problematic. While candidate constructions of
such graded encoding schemes exist [GGH13a, CLT13, GGH15], their security is poorly understood
due to several known explicit attacks on certain distributions of encoded values [CHL+15, BWZ14,
CGH+15, HJ15, BGH+15, Hal15, CLR15, MF15, MSZ16].

Due to a recent line of work [Lin16, LV16, AS17, Lin17a, LT17], based additionally on the subex-
ponential hardness of 3-blockwise-local PRGs and the Learning with Errors assumption (LWE),
it is known that achieving security for d = 3 is already enough to construct iO. Unfortunately,
however, the security of candidate graded encodings supporting d = 3 seems no better understood
than the general d > 2 case.

The state of our understanding strongly motivates the following central question:

Can we build iO without cryptographic multilinear maps?

1

Our Goals and Assumptions. Because subexponentially-secure1 LWE and cryptographic bi-
linear maps have a long history of security, we consider using LWE or (generically secure) crypto-
graphic bilinear maps as standard. This is in contrast with existing candidate multilinear maps,
where both constructions [GGH13a, CLT13, GGH15] and standing security models [MSZ16] are
complex and therefore difficult to understand and analyze.

Therefore, beyond using standard tools, our goal is to reduce the security of iO to problems
that are simple to state, and where the underlying mathematics has a long history of study.

More specifically, we will show how to build iO from LWE, bilinear maps, and novel weakly pseu-
dorandom objects that we call perturbation-resilient generators (∆RG), that can be implemented
with low degree polynomials over Z. Informally speaking, a perturbation-resilient generator is a
generator ∆RG such that the distributions ∆RG(s) and (∆RG(s) + a) are somewhat hard to dis-
tinguish as long as the perturbation a is relatively small. We describe ∆RGs in more detail below
in our technical overview, where we will also discuss why we conjecture that they exist (even in
light of [BBKK17, LV17] and follow-up work [BHJ+18]).

Hardness of polynomials over the reals. As we elaborate in the technical overview in more
detail, the security of our new perturbation-resilient generators crucially relies on the hardness of
solving certain expanding systems of degree-3 polynomial equations over the reals. Indeed, solving
systems of polynomials over the reals has been studied by mathematicians, scientists, and engineers
for hundreds of years. This is precisely why we are taking this approach: we want to relate iO
to simple-to-state problems related to areas of mathematics with long histories of study. Aside
from that, our work also fundamentally diversifies the kinds of assumptions from which iO can be
constructed.

A key innovation of our work is that we can work with perturbation-resilient generators where
the security property only asks that efficient adversaries fail to distinguish between two distributions
with at least some 1/poly(λ) probability – i.e. some fixed inverse polynomial in the security
parameter. Thus, even if an efficient adversary correctly predicts whether a sample comes from the
∆RG(s) distribution or the (∆RG(s) + a) distribution 99% of the time, our iO scheme will still be
secure.

We stress that the new object (∆RG) that we introduce is quite simple – indeed crucially it
is implementable by degree-3 polynomials over Z. In Section 5.2, we describe specific candidates
for such ∆RGs suggested in follow-up work by [BHJ+18] that were inspired by the hardness of
RANDOM 3-SAT. This simplicity stands in notable contrast to candidate multilinear maps. More
generally, our work motivates the further cryptanalytic study of simple pseudorandom objects.

We will also only need to use similarly weakened2 forms of 3-blockwise-local PRGs [LT17].
In followup work, our approach has been generalized to both remove the need for generic model
security for bilinear maps and using c-block-local PRGs for any constant c [JS18, LM18], and
to extend our results to perturbation-resilient generators implementable by polynomials of any
constant-degree [JS18].

In particular, we obtain the following:

1For constructing iO, we will always need to use subexponentially secure assumptions. For brevity in the intro-
duction, we will omit mention of this except in theorem statements.

2There will be a tradeoff between how much we can weaken the indistinguishability requirements of the ∆RG and
the 3-block-local PRG.

2

Theorem 1 (Informal). For every constants c, ε > 0, there is a construction of indistinguishability
obfuscation for all polynomial-sized circuits from,

•
(
1− 1

λc

)
-secure perturbation-resilient generators of stretch n1+ε on seeds of length n (see

Section 5), with security against sub-exponential size adversaries.

• 1
2λc -secure three-block-local pseudorandom generators [LT17] of stretch n1+ε on seeds of length
n, with security against sub-exponential size adversaries.

• Learning with errors secure against sub-exponential size adversaries.

• Assumptions on bilinear maps secure against sub-exponential size adversaries (that hold un-
conditionally in the generic bilinear map model).

Here κ−security refers to security where the distinguishing advantage of such adversaries is bounded
by κ. Thus, standard security would be negl(λ)-security, where negl is a negligible function. In
contrast (1− p)-security allows for an adversary that fails to distinguish only with probability p.

Along the way to proving the result above, we also obtain an amplification theorem for functional
encryption:

Theorem 2 (Informal). Assuming there exists a constant c > 0 and there exists:

• (1− 1/λc)−secure sublinear FE scheme for polynomial size circuits of depth λ.

• Learning with errors secure against sub-exponential size adversaries.

There exists a sublinear secret key FE scheme for polynomial size circuits of depth λ with negl(λ)-
security.

Note that if we assume underlying FE scheme to be secure against subexponential size, then the
resulting scheme satisfies subexponential security. Please refer Section 14 for a complete formula-
tion. The amplification theorem above relies only on subexponential LWE, and no new assumptions.

The nature of our new assumptions for iO. The key new assumption introduced by our
work is the existence of perturbation-resilient generators implementable by degree-3 polynomials
in a certain way. Here, we elaborate on what this assumption means, by breaking it up into two
assumptions, each of which is simple to state:

Weak LWE with degree-3 leakage. This assumption says that there exists distributions χ
over the integers and Q over families of multilinear degree-3 polynomials such that the following
two distributions are weakly indistinguishable, meaning that no efficient adversary can correctly
identify the distribution from which a sample arose with probability above 1

2 + 1/λ.
Distribution D1: Fix a prime modulus p = O(2λ). Run Q(n,B, ε) to obtain polynomials

(q1, ..., qbn1+εc). Sample a secret s← Zλp and sample ai ← Zλp for i ∈ [n]. Finally, for every i ∈ [n],
sample ei, yi, zi ← χ, and write e = (e1, . . . , en), y = (y1, . . . , yn), z = (z1, . . . , zn). Output:

{ai, 〈ai, s〉+ ei mod p}i∈[n]

along with
{qk, qk(e,y, z)}k∈[n1+ε]

3

Distribution D2 is the same as D1, except that we additionally sample e′i ← χ for i ∈ [n]. The
output is now

{ai, 〈ai, s〉+ e′i mod p}i∈[n]

along with
{qk, qk(e,y, z)}k∈[n1+ε]

We can think of the polynomials qk(e,y, z) as “leaking” some information about the LWE
errors ei. The assumption above states that such leakage provides only a limited advantage to
the adversary. Critically, the fact that there are n2 > n1+ε quadratic monomials involving just y
and z above, which are not used in the LWE samples at all, is crucial to avoiding linearization
attacks over Zp in the spirit of Arora-Ge [AG11]. For more discussion of the security of the above
assumption, see [BHJ+18].

The second assumption deals only with expanding degree-3 polynomials over the reals, and
requires that these polynomials are weakly perturbation resilient.

Weak Perturbation-Resilience Over the Reals. The second assumption is that there exists
polynomials that for the same parameters above the following two distributions are very weakly
indistinguishable. By very weakly indistinguishability we mean that no efficient adversary can cor-
rectly identify the distribution from which a sample arose with probability beyond 1 − 1/λ. Let
δi ∈ Z be such that |δi| < B(λ, n) for some polynomial B and i ∈ [n1+ε]:

Distribution D1 consists of the evaluated polynomial samples. That is, we output:

{qk, qk(e,y, z)}k∈[n1+ε]

Distribution D2 consists of the evaluated polynomial samples with added perturbations δi for i ∈
[n1+ε]. That is, we output:

{qk, qk(e,y, z) + δk}k∈[n1+ε]

The above assumptions are combined into a single assumption that is formally stated in Sec-
tion 5.2.

2 Technical Overview

We begin with a very high-level overview of our techniques.

The story so far. Prior work, culminating in the most recent works of [AS17, Lin17a, LT17]
showed us that the powerful primitive of indistinguishability obfuscation can be based on trilin-
ear maps and (sub-exponential) 3-block-local pseudorandom generators. Importantly for us, these
works also (implicitly) demonstrate that in order to achieve indistinguishability obfuscation, it suf-
fices to construct (sub-exponentially secure) secret-key sublinear FE for cubic polynomials, satisfy-
ing semi-functional security. Unfortunately, these prior approaches necessarily relied on multilinear
maps with degree at least 3 to build such a cubic FE scheme.

That is because intuitively such a cubic FE scheme guarantees a way to evaluate a cubic
polynomial on encrypted inputs without revealing any information about the input except the
evaluation of the polynomial. In other words, such a scheme provides a way to output the decryption

4

of a degree-3 polynomial evaluated “homomorphically” on encoded inputs. However, we seek to
accomplish this without the use of degree-3 maps.

Since we seek to operate homomorphically on encoded values, a natural starting idea is to
use fully homomorphic encryption (for concreteness and simplicity, in this paper we rely on the
GSW fully homomorphic encryption scheme [GSW13]) with polynomially bounded error in order
to perform cubic evaluations on encrypted inputs. The main challenge, however, is to reveal the
output of cubic evaluation without compromising security.

Initial approach. Our first observation is that computing the inner product 〈GSW.sk,GSW.CT〉
of a GSW secret key with a GSW ciphertext encrypting message M , outputs (M · bq/2c + e)
where the LWE modulus is q and e is a small error. With the assistance of a bilinear map, this
inner product can be carried out via pairings, such that the output (M · bq/2c + e) appears as
an exponent in the target group. Next, one can hope to test whether the message M is zero by
computing a discrete logarithm by brute-force checking all possible values, provided the output
range is polynomial, which would happen if M = 0.

A reader familiar with GSW will observe that this approach already runs into major hurdles.
The first problem is that brute-force computing the message M also reveals the error e to a potential
adversary, which is problematic when we try to invoke the semantic security of GSW. In fact, recent
work shows how knowledge of such error can be used to build devastating attacks [Agr17]. We will
crucially deal with this issue, but before we tackle this, let us first consider how we can force the
adversary to obtain only inner products 〈GSW.sk,GSW.CT〉 where the messages correspond to cubic
computations that the adversary is allowed to obtain.

3-Restricted FE. To accomplish this, we first define a restricted version of functional encryption
(FE) – which allows for the computation of multilinear cubic polynomials of three inputs, where
one remains unencoded and is called the public component and the other two are encoded; these
are the private components. In other words, our restricted FE is a partially hiding FE. The input
to the encryption algorithm is split into three parts x,y, and z, where x is not hidden by the
encryption, but y and z are kept hidden.

One of our key technical contributions is to achieve a new way of (indistinguishably) enforcing
the output of such a 3-restricted FE scheme, despite the fact that one of the encodings is publicly
known to the adversary. We use these techniques to achieve security for this 3-restricted variant of
FE relying solely on asymmetric bilinear maps. While we only need the resulting 3-restricted FE
to be sublinear, our construction in fact achieves compactness, where the size of encoding is only
linear in the input length.

Constructing Three-Restricted FE. Before getting to 3 restricted FE, let’s first recap how
secret key quadratic functional encryption schemes [AS17, Lin17a] work at a high level. Let’s say
that the encryptor wants to encrypt y, z ∈ Znp. The master secret key consists of two secret random
vectors β,γ ∈ Znp that are used for enforcement of computations done on y and z respectively.
The idea is that the encryptor encodes y and β using some randomness r, and similarly encodes
z and γ together as well. These encodings are created using bilinear maps in one of the two
base groups. These encodings are constructed so that the decryptor can compute an encoding of
[g(y, z)−rg(β,γ)]t in the target group for any quadratic function g. The function key for the given
function f is constructed in such a manner that it allows the decryptor to compute the encoding

5

[rf(β,γ)]t in the target group. Thus the output [f(y, z)]t can be recovered in the exponent by
computing the sum of [rf(β,γ)]t and [f(y, z) − rf(β,γ)]t in the exponent. As long as f(y, z) is
polynomially small, this value can then be recovered efficiently.

Clearly the idea above only works for degree-2 computations, if we use bilinear maps. However,
we build upon this idea nevertheless to construct a 3-restricted FE scheme. Recall, in a 3-restricted
FE one wants to encrypt three vectors x,y, z ∈ Znp. While y and z are required to be hidden, x is
not required to be hidden.

Now, in addition to β,γ ∈ Znp in case of a quadratic FE, another vector α ∈ Znp is also sampled
that is used to enforce the correctness of the x part of the computation. As before, given the
ciphertext one can compute [y[j]z[k]− rβ[j]γ[k]]t for j, k ∈ [n]. But this is clearly not enough, as
these encodings do not involve x in any way. Thus, in addition, an encoding of r(x[i] − α[i]) is
also given in the ciphertext for i ∈ [n]. Inside the function key, there are corresponding encodings
of β[j]γ[k] for j, k ∈ [n] which the decryptor can pair with encoding of r(x[i] − α[i]) to form the
encoding [r(x[i]−α[i])β[j]γ[k]]t in the target group.

Now observe that,

x[i] ·
(
y[j]z[k]− rβ[j]γ[k]

)
+ r(x[i]−α[i]) · β[j]γ[k]

=x[i]y[j]z[k]− rα[i]β[j]γ[k]

Above, since x[i] is public, the decryptor can herself take (y[j]z[k]−rβ[j]γ[k]), which she already
has, and multiply it with x[i] in the exponent. This allows her to compute encoding of [x[i]y[j]z[k]−
rα[i]β[j]γ[k]]t. Combining these encodings appropriately, she can obtain [g(x,y, z)− rg(α,β,γ)]t
for any degree-3 multilinear function g. Given the function key for f and the ciphertext, one can
compute [rf(α,β,γ)]t which can be used to unmask the output. This is because the ciphertext
contains an encoding of r in one of the base groups and the function key contains an encoding of
f(α,β,γ) in the other group and pairing them results in [rf(α,β,γ)]t.

In Section 11, we provide details of our 3-restricted FE; specifically, we define a notion of semi-
functional security [AS17] (variant of function-hiding) associated with a three-restricted FE scheme.
Once we have such a restricted FE, making the leap to cubic FE would require us to also keep the
public encoding hidden. Therefore, it is not clear whether we have achieved anything meaningful
yet.

Applying Three-Restricted FE. One way that we can hope to protect or hide the input
that goes into the public component of the 3-restricted FE, is to let this component itself be a
GSW-based fully homomorphic encryption of the input. We can then rely on 3-restricted FE to
homomorphically evaluate the cubic function itself and obtain a GSW encryption of the output of
cubic evaluation. Note, however, that releasing such a GSW encryption by itself is useless, because
it does not allow even an honest evaluator to recover the output of cubic evaluation.

At this point, let us go back to the initial approach described at the beginning of this section.
Notice that instead of relying on 3-restricted FE to only homomorphically evaluate the cubic func-
tion itself, we can also perform a GSW decryption via 3-restricted FE. The secret key for GSW
decryption can be embedded as input into one of the private components of the 3-restricted FE. We
show how this can be carefully done via degree three operations only, to obtain output the GSW
plaintext with some added error, that is, we obtain out = µb q2c + e. Our actual method of boot-
strapping three-restricted FE to sublinear FE for cubic polynomials involves additional subtleties,
and in particular, we define and construct what we call tempered cubic encodings that serve as a

6

useful abstraction in this process. We now further discuss one of the main technical issues that
arises in this process.

Because the error e is sampled from a (bounded) polynomial-sized domain, it is possible to
iterate, in polynomial time, over all possible values of out corresponding to µ = 0 and µ = 1, and
therefore recover µ. Unfortunately, this process also reveals the error e, which can be devastating
as we noted before.

Preventing the revelation of error terms. To prevent this issue, we will reveal the value
out = µb q2c+e but with some added noise, so as to hide the error e via noise flooding. Unfortunately,
this idea still suffers from two major drawbacks:

• How should we generate such noise? A natural idea is to rely a pseudorandom generator
that can be computed via quadratic operations only. However, this is exactly the reason
why previous approaches from the literature could not rely on bilinear maps – in fact, the
recent works of [LV17, BBKK17] showed that such PRGs are quite difficult to construct. To
overcome this problem, we introduce and rely on a very weak variant of a pseudorandom ob-
ject, that instead of guaranteeing pseudorandomness, only guarantees perturbation resilience.
Furthermore, we will implement this object with degree-3 polynomials. We will soon explain
this object in more detail.

• For an honest evaluator to recover µ by iterating over all possible values of out = µb q2c + e,
we crucially require the added noise be sampled from a polynomial-sized domain. But such
noise appears to be insufficient for security, in particular, an adversary would have advantage
at least 1

poly(λ) in distinguishing a message with added noise from a message without noise.
Another key technical contribution of our work is to find a way to amplify security, via tools
inspired by the dense model theorem. In the next two bullets, we describe these ideas in
additional detail.

The challenge of constructing degree-3 pseudorandomness: a barrier at degree 2.
As we’ve outlined above, we need a way to create pseudorandomness to (at least partially) hide
noise values. The most straightforward way to do this would be to build a degree-2 pseudorandom
generator (PRG) whose output is indistinguishable from some nice m-dimensional distribution, like
a discrete gaussian. Intuitively, if such a degree-2 object existed, a bilinear map would be sufficient
to implement it. However, the works of [BBKK17, LV17] showed that there are fundamental barriers
to constructing such PRGs due to attacks arising from the Sum of Squares paradigm. Because we
will propose a direction to overcome this barrier, we now review how these attacks work at a high
level.

For simplicity, let’s restrict our attention to polynomials where every monomial is of degree ex-
actly 2. We can represent any such polynomial p as a symmetric n-by-n matrix P , where Pi,j = Pj,i
is equal to half the coefficient of the monomial xixj if i 6= j, and Pi,i is equal to the coefficient
of the monomial x2

i . Then we observe that p(x) = x>Px. Suppose, then, we have a candidate
PRG consisting of m degree-2 polynomials that we represent by matrices M1, . . . ,Mm. Thus, to
sample from this PRG, we sample a seed vector x from a bounded-norm distribution, and obtain
the outputs yi = x>Mix. The goal of an attack would be to distinguish such outputs from a set of
independent random values r1, . . . , rm, say from a discrete gaussian distribution centered around
zero.

7

The works of [BBKK17, LV17] suggest the following attack approach: Suppose we receive values
z1, . . . , zm. Then we construct the matrix

M =
m∑
i=1

ziMi

Observe now, that if zi = yi corresponding to some seed vector x, then we have:

x>Mx =
m∑
i=1

yix
>Mix =

m∑
i=1

y2
i

Intuitively, because the above sum is a sum of squares, this will be a quite large positive value,
showing that there exists x of bounded norm such that x>Mx can be quite large.

However, if the zi = ri, then the entries of the matrix M arise from a “random walk,” and
thus intuitively, the matrix M should behave a lot like a random matrix. However a random
matrix has bounded eigenvalues, and thus we expect that there should not exist any x of bounded
norm such that x>Mx is large. Indeed, this intuition can be made formal and gives rise to actual
attacks on many degree-2 PRGs [BBKK17, LV17]. The attack above was generalized further in
a followup work to this paper [BHJ+18], showing that several families of degree-2 pseudorandom
objects cannot exist. While there are still potential caveats to known degree-2 attacks, we propose
a different, more conservative, way forward:

Perturbation-Resilient Generators (∆RG). We observe that even though the most natural
way to “drown out” the GSW error term above is by adding some nice noise distribution, all we
actually need is something we will call a perturbation-resilient generator (∆RG): Informally speak-
ing, we want that for every polynomial bound B(λ), there should exist a low-degree3 ∆RG using
polynomially bounded seeds and coefficients, such that for any perturbation vector a ∈ [−B,B]m,
it should be true that all efficient adversaries must fail to distinguish between the distributions
∆RG(x) and (∆RG(x)+a) with probability at least 1/poly(λ), which is a fixed inverse polynomial
in the security parameter. We stress again that we are not seeking a ∆RG with standard negligible
security, but only some low level of security. Indeed, even if an efficient adversary could distinguish
between ∆RG(x) and (∆RG(x) + a) with probability 1− 1/poly(λ), but still fail to distinguish on
at least 1/poly(λ) probability mass, our approach will succeed due to amplification (see below).

Crucially, instead of requiring the ∆RG to be computable via polynomials of degree two, we
define a notion of ∆RG implementable by degree three polynomials via our notion of 3-restricted
FE.

The seed for a ∆RG consists of one public and two private components, and perturbation-
resilience is required even when the adversary has access to the public component of the seed.
Furthermore, the use of cubic (as opposed to quadratic) polynomials gives reason to hope that
our ∆RGs do not suffer from inversion attacks and achieve the weak form of security described
above. Further in-depth research is certainly needed to explore our new assumptions. Indeed, we
see our work as strongly motivating the systematic exploration of the limits of various types of low
degree pseudorandom objects over Z using the Sum of Squares paradigm and beyond. Indeed, our
work reveals a fascinating connection between achieving iO and studying distributions of expanding

3In an earlier version of this paper, this overview focused on constructing degree-2 ∆RGs. However, as we describe
now, our technical approach is more general, and we describe it in greater generality here.

8

low-degree polynomials over the reals that are hard to solve. We refer the reader to [BHJ+18] for
further discussion on this topic.

Implementing Degree-3 ∆RGs. Having constructed a three-restricted FE scheme, we now
describe how to implement the degree-3 ∆RG as described above. Let e = (e1, . . . , en), y =
(y1, . . . , yn) and z = (z1, ..., zn) and we want to compute degree three polynomials of the form
q`(e,y, z) = ΣI=(i,j,k)cI · ei · yj · zk where ` ∈ [η] is the stretch. Here all variables and coefficients
are polynomially bounded in absolute value.

At first glance, one could think to could encrypt e in the public component and y, z in the
private component of the three restricted FE scheme. Then, one could issue function keys for
polynomials q` for ` ∈ [η]. However, such a scheme would essentially yield a degree 2 system of
polynomials in y and z as e is public, and not provide any additional security beyond using degree-2
polynomials. In order to fix this issue, we take a different approach.

Encrypting e as an LWE-style error. Instead, we sample a secret s ∈ Zd
p where d is some

polynomial in the security parameter. We also sample vectors ai ← Zd
p for i ∈ [n]. Then we

compute ri = 〈ai, s〉+ ei. Let wi = (ai, ri) for i ∈ [n]. Thus we have encrypted e using the secret
s. Now to implement degree-3 randomness generator we consider the polynomial:

q`(e,y, z) = ΣI=(i,j,k)cI · ei · yj · zk

This polynomial can be re-written as:

q`(e,y, z) = ΣI=(i,j,k)cI · (ri − 〈ai, s〉) · yj · zk

Now suppose in the private component that contained y, we also put y ⊗ s (where ⊗ denotes
the tensor operation). Then observe that if wi for i ∈ [n] are all public values, then the entire
polynomial can now be computed using a three-restricted FE scheme.

For this approach to be secure, intuitively we want that e is sampled from an “error” distribution
with respect to which the LWE assumption holds. (For simplicity, we can think of y and z also
being sampled from such a distribution.) The security of our ∆RG would then rely on a variant
of the LWE assumption. Experience teaches that one should be cautious when considering the
security of variants of LWE, and our case is no exception. This variant was studied in a follow-
up work of [BHJ+18], where several unsuccessful attacks were considered. We briefly review one
of these now. The most common source of devastating attacks to LWE variants is linearization.
However, a key barrier to such attacks in our setting is the fact that the LWE-based public values
wi contain no information whatsoever about y and z. Thus, over Zp, we would obtain a set
of roughly n1+ε quadratic equations in y ⊗ s and z, but crucially with large coefficients in Zp.
These large coefficients would arise from the fact that ri and ai are large values. Such systems,
called MQ systems, have been widely studied cryptanalytically and are widely believed to be hard
to solve [Wol02, KS99] in general. We again refer the reader to [BHJ+18] for further discussion.
Specific candidates for the degree-3 polynomials q` above, inspired by the hardness of RANDOM
3-SAT and suggested by [BHJ+18], are also given in Section 5.2.

Security Amplification. Crucially, we want allow an adversary to have a very large distinguish-
ing advantage when attempting to distinguish between ∆RG(x) and (∆RG(x) + a), since this is

9

a new assumption. For simplicity for this technical overview, we will assume that the ∆RG we
introduce above is 1

λ -secure. (More generally, we can tolerate any fixed inverse polynomial in the
security parameter.)

Using ideas already discussed above, it is possible to show (as we do in our technical sections)
that relying on 1

λ -secure ∆RG in the approach outlined above, allows us to achieve a “weak” form
of sublinear FE (sFE), that only bounds adversarial advantage by 1

λ . Unfortunately, such an FE
scheme it not known to yield iO, and for our approach to succeed, we must find a way to amplify
security of sublinear FE.

How should we amplify security? An initial idea is to implement a direct-product type theorem
for functional encryption. However, a simple XOR trick does not suffice: since we are trying to
amplify security of a complex primitive like FE while retaining correctness, we will additionally
need to rely on a special kind of secure computation. More precisely, we will use (subexponentially
secure) n-out-of-n threshold fully homomorphic encryption (TFHE [MW16, BGG+17]), that is
known to exist based on LWE [Reg05]. Recall that such a threshold (public key) fully homomorphic
encryption scheme allows to encrypt a ciphertext in such a way that all secret key holders can
partially decrypt the ciphertext, and then can recover the plaintext by combining these partial
decryptions. However, any coalition of secret key holders of size at most n−1 learns no information
about the message.

A simplified overview of our scheme, that makes use of t = λ2 weak sublinear FEs, is as follows:

• The setup algorithm outputs the master secret keys mski for all weak sublinear FEs.

• In order to generate the encryption of a plaintext M , generate a public key TFHE.pk and t
fresh secret keys TFHE.ski for a threshold FHE, and encryptM using the public key for thresh-
old FHE to obtain ciphertext TFHE.ct. Additionally, for all i, encrypt (TFHE.ct,TFHE.ski)
using the master secret key mski for the ith weak sublinear FE.

• To generate a function secret key for circuit C, generate t function secret keys for the sFEs,
each of which computes the output of the ith TFHE partial decryption of the result of homo-
morphic evaluation of the circuit C on TFHE.ct.

• Finally, to evaluate a functional secret key for circuit C on a ciphertext, combine the results of
the TFHE threshold decryptions obtained via the t outputs of sFE evaluation of the t function
secret keys.

The correctness of our scheme follows immediately from the correctness properties of the TFHE
scheme. Intuitively, security seems to hold because of the following argument. Upon combining λ2

independent, random instances of the weak sFE, with overwhelming probability, at least one must
remain secure. As long as a single instance remains secure, the corresponding secret key for TFHE
will remain hidden from the adversary. Now, TFHE guarantees semantic security against any
adversary that fails to obtain even one secret key, and as a result, the resulting FE scheme should
be secure. While this intuition sounds deceptively simple, many of these intuitive leaps assume
information-theoretic security. Thus, this template evades a formal proof in the computational
setting, and we must work harder to obtain our proof of security, as we now sketch.

From a cryptographic point of view, one of the early hurdles when trying to obtain such a proof
is the following. A reduction must rely on an adversary that breaks security of the final FE scheme
with any noticeable probability, in order to break 1

λ security of one of the λ2 “weak” FEs. However,

10

the reduction does not know which of the λ2 repetitions is secure, and therefore does not directly
know where to embed an external challenge. To deal with this, we rely on the concept of a hardcore
measure [Imp95, MT10]. Roughly speaking, we obtain measures of probability mass roughly 1

λ over
the randomness of the sFE schemes, such that no efficient adversary can break the security of the
sFE scheme even with some inverse subexponential probability.

However, unfortunately these hardcore measures can depend on other parameters in our system,
such as the TFHE public key. And unfortunately, this dependence is via extreme inefficiency; the
hardcore measure is not efficiently sampleable. This means that, for example, the hardcore measure
could in principle contain information about the TFHE master secret key. If this information is
leaked to the adversary, this would destroy the security of our scheme.

We overcome this issue through the following idea, which can be made formal via the work on
simulating auxiliary input [JP14, CCL18]. Because the hardcore measure has reasonable probability
mass 1

λ , it cannot verifiably contain useful information to the adversary. For example, even if the
hardcore distribution revealed the first few bits of the TFHE master secret key, the adversary
could not know for sure that these bits were in fact the correct bits. Indeed, we use the works
of [JP14, CCL18] to make this idea precise, and show that the hardcore measures can be simulated
in a way that fools all efficient adversaries, with a simulation that runs in subexponential time.

Finally, using complexity leveraging, we can set the security of the TFHE scheme to be such
that its security holds against adversaries whose running time exceeds this simulation. Thus, for
example, even if the original hardcore measure was revealing partial information about the TFHE
master secret key, we show that we can give the adversary access to a simulated hardcore measure
that provably does not reveal any useful information about the TFHE master secret key, and the
adversary can’t tell the difference!

In this way, we accomplish security amplification for sFE, which allows us to achieve iO for
general circuits when combined with previous work [AS17, LT17]. Along the way, our amplification
technique also shows that we can weaken the security requirement on the relatively new notion of
a 3-block-local PRG due to [LT17], in a way that still allows us to achieve iO.

Related Works. Concurrently and independently, the works of [LM18, Agr18] also consid-
ered the question of building iO without using multilinear maps. Later in revisions to both
works [LM18, Agr18], both works used and built upon our work in order to make use of vari-
ants of our assumptions.

3 Reader’s Guide

In Section 4, we recall some useful preliminaries for the rest of the paper. In Section 5, we define the
notion of a perturbation resilient generator ∆RG. In Section 6, we define the notion of a tempered
cubic encoding scheme. In Section 7, we define the notion of a three restricted FE scheme. In
Section 8, we define the notion of semi-functional FE for degree-3 polynomials. In Section 9 we
define the notion of semi-functional sublinear FE scheme for circuits.

We present our construction in following steps. In Section 5, we give candidate constructions of
a perturbation resilient generator ∆RG. In Section 10.1, we construct a tempered cubic encoding
scheme. In Section 11, we construct a three restricted FE scheme from bilinear maps. In Section
12, we construct the notion of a semi-functional FE scheme for cubic polynomials. In Section 13, we
construct the notion of sublinear semi-functional FE scheme for circuits. In Section 14, we present

11

our amplification theorem for semi functional FE for circuits. Finally in Section 15, we stitch all
these results to construct iO. We present a diagrammatic view of construction of iO in Figure 3.

TCE

Semi− Functional FE for Cubic Polynomials

iO

Bilinear Maps

+subexp− LWE

+subexp− LWE

+

Cubic Randomizing Polynomials

with Sublinear Complexity

(

n ! n
1+"

)

(

Single−Key; 1
poly(λ)

− Security
)

(Single−Key; negl(λ)− Security)

(

n
1+"

− Bounded Key; 1
poly(λ)

− Security
)

3− Restricted FE

[LT17]

+subexp− LWE

Semi− Functional FE for Circuits

Sublinear FE for Circuits

[BNPW16]

∆RG

Figure 1: Steps involved in the construction of iO.

In the technical overview, we have already described our notions of three restricted FE scheme
and perturbation resilient generator (∆RG). In the sequel, for clarity, we will denote by 3∆RG a
∆RG that is implementable by three restricted FE. Below we give a high level description of various
terms used above that we have not already discussed.

12

Tempered Cubic Encoding: Tempered cubic encoding is a natural abstraction encapsulating
a 3∆RG and cubic homomorphic evaluation. This framework is compatible with our notion of a
three restricted FE scheme and is used to build Functional Encryption for cubic polynomials.

Semi-Functional FE for cubic polynomials. A semi-functional FE scheme for cubic poly-
nomials (FE3 for short) is a secret key functional encryption scheme supporting evaluation for
cubic polynomials where the size of the ciphertext is linear in the number of inputs. It satisfies
semi-functional security: where you can hard code secret values in the function key which will be
decrypted only using a single special ciphertext (known as a semi-functional ciphertext). Note that
all our primitives satisfy 1− 1/poly(λ) security. They are finally amplified to construct fully secure
primitives.

Semi-Functional FE for Circuits. A semi-functional FE scheme for circuits is a secret key
functional encryption scheme supporting evaluation of circuits where the size of the ciphertext
is sublinear in the maximum size of circuit supported. This notion also satisfies semi-functional
security.

4 Preliminaries

We denote the security parameter by λ. For a distribution X we denote by x← X the process of
sampling a value x from the distribution X. Similarly, for a set X we denote by x← X the process
of sampling x from the uniform distribution over X . For an integer n ∈ N we denote by [n] the set
{1, .., n}. A function negl : N → R is negligible if for every constant c > 0 there exists an integer
Nc such that negl(λ) < λ−c for all λ > Nc.

By ≈c we denote computational indistinguishability. We say that two ensembles X = {Xλ}λ∈N
and Y = {Yλ}λ∈N are (s, ε)− indistinguishable if for every probabilistic polynomial time adversary

A of size bounded by O(s) it holds that:

∣∣∣∣Prx←Xλ [A(1λ, x) = 1] − Pry←Yλ [A(1λ, y) = 1]

∣∣∣∣ ≤ ε for

every sufficiently large λ ∈ N. We drop the notation (s, ε) from (s, ε)-indistinguishable when s is
polynomial and ε is negligible. By sub-exponential indistinguishability, we mean that there exists
some constant c > 0, such that, for any adversary of polynomial size the distinguishing advantage
is bounded by ε = O(2−λ

c
).

For a field element a ∈ Zp represented in [−p/2, p/2], we say that −B < a < B for some positive
integer B if its representative in [−p/2, p/2] lies in [−B,B].

Definition 1 (Distinguishing Gap). For any adversary A and two distributions X = {Xλ}λ∈N and
Y = {Yλ}λ∈N, define A’s distinguishing gap in distinguishing these distributions to be |Prx←Xλ [A(1λ, x) =
1]− Pry←Yλ [A(1λ, y) = 1]|

Notions for Security Amplification. We define some preliminaries that will be useful for the
security amplification theorem. We recall the definition of a measure.

Definition 2. A measure is a function M : {0, 1}k → [0, 1]. The size of a measure is |M| =
Σx∈{0,1}kM(x). The density of a measure, µ(M) = |M|2−k

Each measure M induces a probability distribution DM.

13

Definition 3. Let M : {0, 1}k → [0, 1] be a measure. The distribution defined by measure M
(denoted by DM) is a distribution over {0, 1}k, where for every x ∈ {0, 1}k, PrX←DM [X = x] =
M(x)/|M|.

We will consider a scaled versionMc of a measureM for a constant 0 < c < 1 defined asMc = cM.
Note that Mc induces the same distribution as M.

4.1 Indistinguishability Obfuscation (iO)

The notion of indistinguishability obfuscation (iO), first conceived by Barak et al. [BGI+01], guar-
antees that the obfuscation of two circuits are computationally indistinguishable as long as they
both are equivalent circuits, i.e., the output of both the circuits are the same on every input.
Formally,

Definition 4 (Indistinguishability Obfuscator (iO) for Circuits). A uniform PPT algorithm iO is
called an indistinguishability obfuscator for a circuit family {Cλ}λ∈N, where Cλ consists of circuits
C of the form C : {0, 1}n → {0, 1} with n = n(λ), if the following holds:

• Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}n, we have that

Pr
[
C ′(x) = C(x) : C ′ ← iO(λ,C)

]
= 1

• Indistinguishability: For any PPT distinguisher D, there exists a negligible function negl(·)
such that the following holds: for all sufficiently large λ ∈ N, for all pairs of circuits C0, C1 ∈
Cλ such that C0(x) = C1(x) for all inputs x ∈ {0, 1}n and |C0| = |C1|, we have:∣∣∣Pr [D(λ, iO(λ,C0)) = 1]− Pr[D(λ, iO(λ,C1)) = 1]

∣∣∣ ≤ negl(λ)

• Polynomial Slowdown: For every λ ∈ N, every C ∈ Cλ, we have that |iO(λ,C)| =
poly(λ,C).

4.2 Slotted Encodings

We define the notion of slotted encodings SE, a variant of composite order multilinear maps,
introduced by [AS17]. Unlike [AS17], we consider a relaxation of slotted encodings associated
with 5 slots and in the bilinear map setting. A slotted encoding scheme consists of the following
algorithms:

• Secret Key Generation, Gen(1λ): It outputs secret encoding key SEsp, a pairing function
e along with a prime p > 2λ and public parameters PP. We assume that e,PP and p are
implicitly given to all the algorithms below.

• Encoding, Encode(SEsp, a1, .., a4, a5, l ∈ {1, 2}): In addition to secret key SEsp, it takes as
input a1, .., a4, a5 ∈ Zp and a level l ∈ {1, 2}. It outputs an encoding [a1, a2, a3, a4, a5]l.

• Multiply, e([a1, a2, a3, a4, a5]1, [b1, b2, b3, b4, b5]2) = [Σiaibi]T . The pairing operation takes as
input an encoding of a at level 1 and b at level 2 and it outputs an encoding of Σiaibi at level
T . We require the set GT = {[a]T |a ∈ Zp} to form an additive group of order p.

14

• Addition at the top level T , Given [a]T and [b]T , the operation ‘+′ computes [a + b]T =
[a]T + [b]T .

• Encoding at level T , Given a ∈ Zp and PP, EncodeT(·) is an efficiently computable iso-
morphism that maps a ∈ G to [a]T ∈ GT .

• Zero test at all three levels ZTest(u, l): The zero-test algorithm takes an element u at level
l ∈ {1, 2, T} and checks if u = [0, 0, 0, 0, 0]l if l ∈ {1, 2}. Otherwise it checks that u = [0]T .

Remark 1. The algorithms for addition and multiplication suggests what polynomials can be eval-
uated on the encodings. Given level 1 and level 2 encodings one can compute an encoding of a
scaled inner product of the encoded element vectors at level T. At level 1 and level 2, we can only
add encoded vectors component wise.

Security: Since we prove security in the generic model, we require generic security from our
slotted encodings at level 1 and 2 when SEsp is kept hidden from the adversary.

4.2.1 Generic Bilinear Group Model

We describe the generic bilinear group model [BBG05] tailored to the slotted asymmetric setting.
This model is parameterized by slotted encodings SE, which encodes five dimensional vectors over a
prime field Zp at level 1 and 2, and it encodes element from Zp at the target level T . The encodings
are done over level 1, 2 and the target T . The multiplication operation computes encoding at level
T . The (unbounded) adversary in this model has access to an oracle O. Initially, the adversary is
handed out handles (sampled uniformly at random) instead of being handed out actual encodings.
A handle is an element in a ring Z of order p. The oracle O maintains a list L consisting of tuples
(e,Y[e], u), where e is the handle issued, Y[e] is the formal expression associated with e and e is
associated with encoding at level u ∈ {1, 2, T}.

The adversary is allowed to submit the following types of queries to the oracle:

• Addition/ Subtraction: The adversary submits (e1, u1) and (e2, u2) along with the operation
‘+’(or ‘-’) to the oracle where u1, u2 ∈ {1, 2, T}. If u1 6= u2 or If there is no tuple associated
with either e1 or e2, the oracle sends ⊥ back to the adversary. Otherwise, it replies according
to the following cases:

– u1 ∈ {1, 2}: In this case it locates (e1, p1,e1 , p2,e1 , p3,e1 , p4,e1 , p5,e1 , u1) and (e2, p1,e2 , p2,e2 ,
p3,e2 , p4,e2 , p5,e2 , u2). It creates a new handle e′ (sampled uniformly at random from R)
and appends (e′, p1,e1 + p1,e2 , p2,e1 + p2,e2 , p3,e1 + p3,e2 , p4,e1 + p4,e2 , p5,e1 + p5,e2 , u1) to
the list (in case of subtractions the polynomials are subtracted). It outputs e′ to the
adversary.

– u1 = u2 = T : In this case the adversary locates the tuples (e1, pe1 , u1) and (e2, pe2 , u2).
It creates a new handle e′ (sampled uniformly at random from R) and appends (e′, pe1 +
pe2 , u1) (or (e′, pe1 − pe2 , u1)) to the list. The oracle sends e′ to the adversary.

• Multiplication: The adversary submits (e1, u1) and (e2, u2) to the oracle. If there is no tuple
associated with either e1 or e2, the oracle sends ⊥ back to the adversary. If u1 = u2, u1 = T or
u2 = T , the oracle outputs⊥. Otherwise, it locates the tuples (e1, p1,e1 , p2,e1 , p3,e1 , p4,e1 , p5,e1 , u1)

15

and (e2, p1,e2 , p2,e2 , p3,e2 , p4,e2 , p5,e2 , u2). It creates a new handle e′ (sampled uniformly at ran-
dom from R) and appends (e′,Σj∈[5]pj,e1 ∗ pj,e2 , T) to the list.

• Zero Test: The adversary submits element (e1, u1) to the oracle. If there is no tuple associated
to e1 it outputs ⊥. Otherwise, if u1 = 1 or u1 = 2, it locates the tuples (e1, p1,e1 , p2,e1 ,
p3,e1 , p4,e1 , p5,e1 , u1). It outputs 1 if pj,e1 = 0 for all j ∈ [5] otherwise it outputs 0. If u1 = T ,
it locates the tuples (e1, p1,e1 , u1). It outputs 1 if p1,e1 = 0, otherwise it outputs 0.

Inspired from [Fre10], in [AS17] it was shown how to construct degree-2 slotted encoding scheme
in the bilinear generic group model. We remark here that the procedure given in [AS17], was
instantiated for higher degrees using graded encoding schemes. However, it can be instantiated for
degree two using bilinear maps. Thus, we have the following theorem.

Theorem 3 (Imported from [AS17]). There exists a construction of degree 2 slotted encoding
scheme in the generic bilinear group model.

4.3 Threshold Leveled Fully Homomorphic Encryption

The following definition of threshold homomorphic encryption is adapted from [MW16, BGG+17].
A threshold homomorphic encryption scheme is a tuple of PPT algorithms TFHE = (TFHE.Setup,
TFHE.Enc,TFHE.Eval,TFHE.PartDec,TFHE.FinDec) satisfying the following specifications:

• Setup, Setup(1λ, 1d, 1n): It takes as input the security parameter λ, a circuit depth d, and
the number of parties n. It outputs a public key fpk and secret key shares fsk1, . . . , fskn.

• Encryption, Enc(fpk, µ): It takes as input a public key fpk and a single bit plaintext µ ∈
{0, 1} and outputs a ciphertext CT.

• Evaluation, Eval(C,CT1, . . . ,CTk): It takes as input a boolean circuit C : {0, 1}k → {0, 1} ∈
Cλ of depth ≤ d and ciphertexts CT1, . . . ,CTk encrypted under the same public key. It outputs
an evaluation ciphertext CT. We shall assume that the ciphertext also contains fpk.

• Partial Decryption, pi ← PartDec(fski,CT): It takes as input a secret key share fski and a
ciphertext CT. It outputs a partial decryption pi related to the party i.

• Final Decyrption, FinDec(B): It is a deterministic algorithm that takes as input a set
B = {pi}i∈[n]. It outputs a plaintext µ̂ ∈ {0, 1,⊥}.

Definition 5 (TFHE). A TFHE scheme is required to satisfy the following properties for all param-
eters (fpk, fsk1, . . . , fskN) ← Setup(1λ, 1d, 1n), any plaintexts µ1, . . . , µk ∈ {0, 1}, and any boolean
circuit C : {0, 1}k → {0, 1} ∈ Cλ of depth ≤ d.

Correctness of Encryption. Let CT = Enc(fpk, µ1) and B = {PartDec(fski,CT)}i∈[n]. With all
but negligible probability in λ over the coins of Setup, Enc, and PartDec, FinDec(B) = µ1.

Correctness of Evaluation. Let CTi = Enc(fpk, µi) for 1 ≤ i ≤ k, ĈT = Eval(C,CT1, . . . ,CTk),
and B = {PartDec(fski, ĈT,)}i∈[n]. With all but negligible probability in λ over the coins of
Setup, Enc, and PartDec, FinDec(B) = C(µ1, . . . , µk).

16

Compactness of Ciphertexts. There exists a polynomial, poly, such that the size of circuit com-
puting CT← TFHE.Enc(fpk,m) is bounded by poly(λ, d, |m|).

Compactness of Partial Decryption Keys. There exists a polynomial, poly, such that |fski| ≤
poly(λ, d) for any index i ∈ [n] generated from the setup algorithm of TFHE.

(size, adv)-Semantic Security of Encryption. Any adversary A of size O(size), has advantage
bounded by adv as a function of λ over the coins of all the algorithms in the following game:

1. Run Setup(1λ, 1d, 1n)→ (fpk, fsk1, .., fskn). The adversary is given fpk.

2. The adversary outputs a set S ⊂ [n] of size n− 1.

3. The adversary receives {fski}i∈S along with Enc(fpk, b)→ CT for a random b ∈ {0, 1}.
4. The adversary outputs b′ and wins if b = b′.

Simulation Security. Let CTi = Enc(fpk, µi) for 1 ≤ i ≤ k, ĈT = Eval(C,CT1, . . . ,CTk), and
pi = PartDec(fski, ĈT,) for all i ∈ [n]. There exists a PPT algorithm Sim such that for any
subset S of the form [n] \ i∗, Sim(ĈT, {fsk}S , C(µ1, .., µk)) → p′i∗ the following distributions
are statistically close (with statistical distance 2−λ

c
for some constant c > 0):

(pi, fpk,CT1, ..,CTk, {fski}i∈[n]) ≈ (p′i∗ , fpk,CT1, ..,CTk, {fski}i∈[n]).

4.4 Useful Lemmas for Security Amplification

We first import the following theorem from [MT10].

Theorem 4 (Imported Theorem [MT10]). Let E : {0, 1}n → X and F : {0, 1}m → X be two
functions, and let ε, γ ∈ (0, 1) and s > 0 be given. If for all distinguishers A with size s we have

| Pr
x←{0,1}n

[A(E(x)) = 1]− Pr
y←{0,1}m

[A(F (y)) = 1]| ≤ ε

Then there exist two measures M0 (on {0, 1}n) and M1 (on {0, 1}n) that depend on γ, s such
that:

• µ(Mb) ≥ 1− ε for b ∈ {0, 1}

• For all distinguishers A′ of size s′ = sγ2

128(m+n+1)

| Pr
x←DM0

[A(E(x)) = 1]− Pr
y←DM1

[A(F (y)) = 1]| ≤ γ

Now we describe a lemma from [Hol06], that shows that if we sample a set Set from any
measure M by choosing each element i in the support with probability M(i), then no circuit of
(some) bounded size can distinguish a sample x chosen randomly from the set Set from an element
sampled from distribution given by M. Formally,

17

Theorem 5 (Imported Theorem [Hol06].). Let M be any measure on {0, 1}n of density µ(M) ≥
1 − ρ(n) Let γ(n) ∈ (0, 1/2) be any function. Then, for a random set Set chosen according to the
measure M the following two holds with probability at least 1− 2(2−2nγ2(1−ρ)4/64):

• (1− γ(1−ρ)
4)(1− ρ)2n ≤ |Set| ≤ (1 + γ(1−ρ)

4)(1− ρ)2n

• For such a random set Set, for any distinguisher A with size |A| ≤ 2n(γ
2(1−ρ)4

64n) satisfying

| Pr
x←Set

[A(x) = 1]− Pr
x←DM

[A(x) = 1]| ≤ γ

We also import a theorem from [CCL18] that will be used by our security proofs. This lemma
would be useful to simulate the randomness used to encrypt in an inefficient hybrid.

Theorem 6 (Imported Theorem [CCL18].). Let n, ` ∈ N, ε > 0 and Cleak be a family of distin-
guisher circuits from {0, 1}n × {0, 1}` → {0, 1} of size s(n). Then, for every distribution (X,Z)
over {0, 1}n × {0, 1}`, there exists a simulator h : {0, 1}n → {0, 1}` such that:

• h has size bounded by s′ = O(s2`ε−2).

• (X,Z) and (X,h(X)) are indistinguishable by Cleak. That is for every C ∈ Cleak,

| Pr
(x,z)←(X,Z)

[C(x, z) = 1]− Pr
x←X,h

[C(x, h(x)) = 1]| ≤ ε

4.5 LWE Preliminaries

A full-rank m-dimensional integer lattice Λ ⊂ Zm is a discrete additive subgroup whose linear span
is Rm. The basis of Λ is a linearly independent set of vectors whose linear combinations are exactly
Λ. Every integer lattice is generated as the Z-linear combination of linearly independent vectors
B = {b1, ..., bm} ⊂ Zm. For a matrix A ∈ Zd×m

p , we define the “p-ary” integer lattices:

Λ⊥p = {e ∈ Zm|Ae = 0 mod p}, Λu
p = {e ∈ Zm|Ae = u mod q}

It is obvious that Λu
p is a coset of Λ⊥p .

Let Λ be a discrete subset of Zm. For any vector c ∈ Rm, and any positive parameter σ ∈ R,
let ρσ,c(x) = exp(−π||x − c||2/σ2) be the Gaussian function on Rm with center c and parameter
σ. Next, we let ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the discrete integral of ρσ,x over Λ, and let DΛ,σ,c(y) :=

ρσ,c(y)
ρσ,c(Λ) . We abbreviate this as DΛ,σ when c = 0. We note that DZm,σ is

√
mσ-bounded.

Let Sm denote the set of vectors in Rm whose length is 1. The norm of a matrix R ∈ Rm×m
is defined to be supx∈Sm ||Rx||. The LWE problem was introduced by Regev [Reg05], who showed
that solving it on average is as hard as (quantumly) solving several standard lattice problems in
the worst case.

Definition 6 (LWE). For an integer p = p(d) ≥ 2, and an error distribution χ = χ(d) over
Zp, the Learning With Errors problem LWEd,m,p,χ is to distinguish between the following pairs of
distributions (e.g. as given by a sampling oracle O ∈ {Os,O$}):

{A, sTA + xT} and {A,u}

where A←Zd×m
q , s←Zd

p, u←Zmp , and x← χm.

18

Gadget matrix. The gadget matrix described below is proposed in [MP12, AP14].

Definition 7. Let m = d · dlog pe, and define the gadget matrix G = g2 ⊗ Id ∈ Zd×m
p , where the

vector g2 = (1, 2, 4, ..., 2blogpc) ∈ Zdlogpe
p . We will also refer to this gadget matrix as “powers-of-two”

matrix. We define the inverse function G−1 : Zd×m
p → {0, 1}m×m which expands each entry a ∈ Zp

of the input matrix into a column of size dlog pe consisting of the bits of binary representations.
We have the property that for any matrix A ∈ Zd×m

p , it holds that G ·G−1(A) = A.

5 Perturbation-Resilient Generators

A perturbation-resilient generator, denoted by ∆RG, consists of the following algorithms:

• Setup, Setup(1λ, 1n, B): On input security parameter λ, the length parameter n and a
polynomial B = B(λ), it outputs a seed Seed and public parameters PP.

• Evaluation, Eval(PP,Seed): It takes as input public parameters PP, seed Seed and outputs
a vector (h1, ..., h`) ∈ Z`. The parameter ` is defined to be the stretch of ∆RG.

The following properties are associated with a ∆RG scheme.

Efficiency: The following conditions need to be satisfied.

• The time taken to compute Setup(1λ, 1n, B) is n · poly(λ) for some fixed polynomial poly.

• For all i ∈ [`], |hi| = poly(λ, n). That is, the norm of each component hi in Z is bounded by
some polynomial in λ and n.

Perturbation Resilience: For every polynomial B(λ), for every large enough polynomial n =
n(λ) and for all large enough λ, the following holds: for every a1, ..., a` ∈ Z, with |ai| ≤ B(λ), we
have that for any distinguisher D of size 2λ,∣∣∣∣∣ Pr

x
$←−D1

[1← D(x)]− Pr
x

$←−D2

[1← D(x)]

∣∣∣∣∣ < 1− 1/λ,

where the sampling algorithms of D1 and D2 are defined as follows:

• Distribution D1: Compute (PP,Seed) ← Setup(1λ, 1n, B) and (h1, ..., h`) ← Eval(PP,Seed).
Output (PP, h1, ..., h`).

• Distribution D2: Compute (PP,Seed) ← Setup(1λ, 1n, B) and (h1, ..., h`) ← Eval(PP,Seed).
Output (PP, h1 + a1, ..., h` + a`).

Note that as is, we are not able to use the notion of a ∆RG to construct iO. We now define the
notion of a perturbation-resilient generator implementable by a three-restricted FE scheme (3∆RG
for short). This notion turns out to be useful for our construction of iO.

19

5.1 ∆RG implementable by Three-Restricted FE

A ∆RG scheme implementable by Three-Restricted FE (3∆RG for short) is a perturbation resilient
generator with some additional properties. We describe syntax again for a complete specification.

• Setup(1λ, 1n, B) → (PP,Seed). The setup algorithm takes as input a security parameter λ,
the length parameter 1n and a polynomial B = B(λ) and outputs a seed Seed and public
parameters PP. Here, Seed = (Seed.pub,Seed.priv(1), Seed.priv(2)) is a vector on Zp for
a modulus p, which is also the modulus used in three-restricted FE scheme. There are
three components of this vector, where one of the component is public and two components

are private, each in Znpoly(λ)
p . Also each part can be partitioned into subcomponents as

follows. Seed.pub = (Seedpub,1, ...,Seedpub,n), Seed.priv(1) = (Seedpriv(1),1, ...,Seedpriv(1),n) and

Seed.priv(2) = (Seedpriv(2),1, ...,Seedpriv(2),n). Here, each sub component is in Zpoly(λ)
p for some

fixed polynomial poly independent of n. Also, PP = (Seed.pub, q1, .., q`) where each qi is a
cubic multilinear polynomial described in the next algorithm. We require syntactically there
exists two algorithms SetupSeed and SetupPoly such that Setup can be decomposed follows:

1. SetupSeed(1λ, 1n, B)→ Seed. The SetupSeed algorithm outputs the seed.

2. SetupPoly(1λ, 1n, B)→ q1, ..., q`. The SetupPoly algorithm outputs q1, .., q`.

• Eval(PP,Seed)→ (h1, ..., h`), evaluation algorithm output a vector (h1, ..., h`) ∈ Z`. Here for
i ∈ [`], hi = qi(Seed) and ` is the stretch of 3∆RG. Here qi is a cubic polynomial which is
multilinear in public and private components of the seed.

The security and efficiency requirements are same as before.

Remark 2. To construct iO we need the stretch of 3∆RG to be equal to ` = n1+ε for some constant
ε > 0.

5.2 Candidate for 3∆RG

We now describe our candidate for ∆RG implementable by a three-restricted FE scheme. All these
candidates use a large enough prime modulus p = O(2λ), which is the same as the modulus used by
3−restricted FE. Then, let χ be a distribution used to sample input elements over Z. Let Q denote
a polynomial sampler. Next we give candidate in terms of χ and Q but give concrete instantiations
later.

• Setup(1λ, 1n, B) → (PP,Seed). Sample a secret s ← Z1×d
p for d = poly(λ) such that

LWEd,n·d,p,χ holds. Here χ is a bounded distribution with bound poly(λ) (see Section 4.5
for definitions). Let Q denote an efficiently samplable distribution of homogeneous degree 3
polynomials (instantiated later). Then proceed with SetupSeed as follows:

1. Sample ai ← Z1×d
p for i ∈ [n].

2. Sample ei ← χ for i ∈ [n].

3. Compute ri = 〈ai, s〉+ ei mod p in Zp for i ∈ [n].

4. Define wi = (ai, ri) for i ∈ [n].

5. Set Seed.pub(i) = wi for i ∈ [n].

20

6. Sample yi, zi ← χ for i ∈ [n].

7. Set t = (−s, 1). Note that 〈wi, t〉 = ei for i ∈ [n].

8. Set y′i = yi ⊗ t.
9. Set Seed.priv(1, j) = y′j for j ∈ [n].

10. Set Seed.priv(2, k) = zk for k ∈ [n].

Now we describe SetupPoly. Fix η = n1+ε.

1. Write e = (e1, . . . , en) for j ∈ [d], y = (y1, . . . , yn) and z = (z1, . . . , zn).

2. Sample polynomials q′` for ` ∈ [η] as follows.

3. q′` = ΣI=(i,j,k)cIei ·yj ·zk where coefficients cI are bounded by poly(λ). These polynomials
are sampled according to Q

4. Define qi be a multilinear homogeneous degree 3 polynomial takes as input Seed =
({wi}i∈[n],y

′
1, . . . ,y

′
n, z). Then it computes each monomial cIeiyj · zk as follows and

then adds all the results (thus computes q′i(e,y, z)):

– Compute cI〈wi, t〉·yj ·zk. This step requires y′i = yi⊗t to perform this computation.

5. Output q1, ..., qη.

• Eval(PP,Seed) → (h1, ..., hη), evaluation algorithm output a vector (h1, ..., hη) ∈ Zη. Here
for i ∈ [η], hi = qi(Seed) and η is the stretch of 3∆RG. Here qi is a degree 3 homogenenous
multilinear polynomial (defined above) which is degree 1 in public and 2 in private components
of the seed.

We prove that the above candidate satisfies the efficiency property of a perturbation-resilient gen-
erator.

Efficiency:

1. Note that Seed contains n LWE samples wi for i ∈ [n] of dimension d. Along with the
samples, it contains elements y′i = yi⊗ t for i ∈ [n] and elements zi for i ∈ [n]. Note that the
size of these elements are bounded by poly(λ) and is independent of n.

2. The values hi = qi(Seed) = ΣI=(i,j,k)cIei · yj · zk. Since χ is a bounded distribution, bounded
by poly(λ, n), and coefficients cI are also polynomially bounded, each |hi| < poly(λ, n) for
i ∈ [m].

Conjecture 1. The above candidate is a secure perturbation-resilient generator implementable by
three-restricted FE.

5.2.1 Our Instantiations.

We now give various instantiations ofQ. Let χ be the discrete gaussian distribution with 0 mean and
standard deviation n. The following candidate is proposed by [BHJ+18] based on the investigation
of the hardness of families of expanding polynomials over the reals. For any vector v, denote by
v[i], the ith component of the vector.

21

Instantiation 1: 3SAT Based Candidate. Let t = B2λ. Sample each polynomial q′i for
i ∈ [η] as follows. q′i(x1, . . . ,xt,y1, . . . ,yt, z1, . . . ,zt) = Σj∈[t]q

′
i,j(xj ,yj , zj). Here xj ∈ χd×n and

yj , zj ∈ χn for j ∈ [t]. In other words, q′i is a sum of t polynomials q′i,j over t disjoint set of variables.
Now we describe how to sample q′i,j for j ∈ [η].

1. Sample randomly inputs x∗,y∗, z∗ ∈ {0, 1}n.

2. To sample q′i,j do the following. Sample three indices randomly and independently i1, i2, i3 ←
[n]. Sample three signs b1,i,j , b2,i,j , b3,i,j ∈ {0, 1} uniformly such that b1,i,j ⊕ b2,i,j ⊕ b3,i,j ⊕
x∗[i1]⊕ y∗[i2]⊕ z∗[i3] = 1.

3. Set q′i,j(xj ,yj , zj) = 1− (b1,i,j · xj [i1] + (1− b1,i,j) · (1− xj [i1])) · (b2,i,j · yj [i2] + (1− b2,i,j) ·
(1− yj [i2])) · ((b3,i,j · zj [i3] + (1− b3,i,j) · (1− zj [i3]))

Remark: Note that any clause of the form a1∨a2∨a3 can be written as 1−(1−a1)(1−a2)(1−a3)
over integers where a1, a2, a3 are literals in first case and take values in {0, 1}, and thus any random
satisfiable 3SAT formula can be converted to polynomials in this manner.

Instantiation 2: Density Variations.

1. One can set q′i,j to be a random sparse polynomial for all j.

2. One variation could be to instantiate q′i,j as a random dense polynomial for all j.

3. Finally one can even consider variants where q′i,j is dense for some values of j while it is sparse
for the others.

6 Tempered Cubic Encoding

In this section, we describe the notion of a Tempered Cubic Encoding scheme (TCE for short). The
encodings in this scheme are associated with a ring Zp, for an integer p ∈ Z≥0 that is fixed by the
setup algorithm. The plaintext elements are sampled from the set R ∈ ∩[−δ, δ] for some constant
δ. TCE consists of the following polynomial time algorithms:

• Setup, Setup(1λ, 1n): On input security parameter λ, the number of inputs n, this algorithm
outputs public parameters params.

• Setup-Encode, SetupEnc(params) : On input params, this algorithm outputs secret encoding
parameters sp.

• Setup-Decode, SetupDec(params) : On input params, this algorithm outputs (public) de-
coding parameters (q1, ..., qη) where η = n1+ε described in the security definition.

• Encode, Encode(sp, a, ind, S): On input the secret parameter sp, a plain-text element a ∈ R,
a set S = {i} with i ∈ {1, 2, 3} and an index ind ∈ [n], it outputs an encoding [a]ind,S
with respect to the set S and an index ind. Without loss of generality, this algorithm is
deterministic as all the randomness can be chosen during SetupEnc. This encoding satisfies
two properties:

22

– The encoding [a]ind,S = ([a]ind,S .pub, [a]ind,S .priv(1), [a]ind,S .priv(2)) consists of a public
component [a]ind,S .pub and two private components [a]ind,S .priv(1) and [a]ind,S .priv(2).

– [a]ind,S .pub, [a]ind,S .priv(1) and [a]ind,S .priv(2) are vectors over Zp.

• Decode, Decode(q, f, {[ai]i,1}i∈[n], {[bi]i,2}i∈[n], {[ci]i,3}i∈[n]) : The decode algorithm takes as
input a decoding parameter q, a polynomial f = Σi,j,kγi,j,kaibjck with |γi,j,k| ≤ δ. It also
takes encodings {[ai]i,1}i∈[n], {[bi]i,2}i∈[n] and {[ci]i,3}i∈[3]. It outputs leak ∈ Zp.

Efficiency Properties: Consider the following experiment associated with any n, λ ∈ N, any
index ind ∈ [n], any level ` ∈ [3] and any plaintext x ∈ [−δ, δ]:

1. Setup(1λ, 1n)→ params,

2. SetupEnc(params)→ sp,

3. Encode(sp, x, ind, `)→ [x]ind,`.

Then we require the circuit size computing [x]ind,` is less than poly(λ, log n) for some fixed polyno-
mial poly.

(X,Y,Z)-Multilinear polynomials. We define the notion of (X,Y,Z) cubic multilinear poly-
nomials below.

Definition 8 ((X,Y,Z)-Multilinear). Let X = (x1, . . . , xn),Y = (y1, . . . , yn) and Z = (z1, . . . , zn)
be three sets of variables. A polynomial p ∈ Zp[x1, . . . , xn, y1, . . . , yn, z1, . . . , zn] is (X,Y,Z)-
multilinear if every term in the expansion of p is of the form τijk ·xiyjzk, for some i, j, k ∈ [n], τijk ∈
Zp.

Cubic Evaluation and Correctness: Consider the following experiment associated with any
n, λ ∈ N, any index ind ∈ [n], any index indQ ∈ [η], any level ` ∈ [3], any polynomial f =
Σi,j,kγi,j,kaibjck with γi,j,k ∈ [−δ, δ] and any plaintexts ai, bi, ci ∈ [−δ, δ] for i ∈ [n]:

1. Setup(1λ, 1n)→ params

2. SetupEnc(params)→ sp

3. SetupDec(params)→ (q1, ..., qη)

4. Encode(sp, a, i, 1)→ [a]i,1 for i ∈ [n]

5. Encode(sp, b, i, 2)→ [b]i,2 for i ∈ [n]

6. Encode(sp, c, i, 3)→ [c]i,3 for i ∈ [n]

7. Let q = qindQ

8. Decode(q, f, {[ai]i,1}i∈[n], {[bi]i,2}i∈[n], {[ci]i,3}i∈[n])→ leak

Cubic Evaluation: We now describe cubic evaluation property. This property states that the
Decode(q, f, {[ai]i,1}i∈[n], {[bi]i,2}i∈[n], {[ci]i,3}i∈[n]) algorithm evaluates an efficiently computable
cubic polynomial φq,f which depends on params, f, q, and which is a (X,Y,Z)-multilinear poly-
nomial over Zp with:

23

• X = ({[ai]i,1.pub, [bi]i,2.pub, [ci]i,3.pub}i∈[n])

• Y = ({[ai]i,1.priv(1), [bi]i,2.priv(1), [ci]i,3.priv(1)}i∈[n])

• Z = ({[ai]i,1.priv(2), [bi]i,2.priv(2), [ci]i,3.priv(2)}i∈[n])

Correctness: We require that with overwhelming probability over the randomness of the algo-
rithms:

• If f(a1, .., an, b1, .., bn, c1, .., cn) = 0, |leak| < TCEbound(λ, n) for some polynomial TCEbound.

• Otherwise, |leak| > TCEbound(λ, n).

6.1 Tempered Security

We present the definition of Tempered Security. Let F be a family of homogenous (X,Y,Z)-
multilinear δ-bounded polynomials, for some sets of vectors X,Y and Z (where each vector is of
size n). We define Sη to be a subset of η-sized product F × · · · × F (also, written as Fη).

We first describe the experiments associated with tempered security property. The experiment
is associated with a deterministic polynomial time algorithm Sim. It is also parameterised by
aux = (1λ, 1n,x,y, z, f1, ..., fη). Each vector x,y, z is in Zn and f1, ..., fη ∈ Sη.
Exptaux(1

λ, 1n, 0):

1. Challenger performs Setup(1λ, 1n)→ params

2. The challenger samples (q1, ..., qη)← SetupDec(params).

3. Challenger performs SetupEnc(params)→ sp.

4. Now compute encodings as follows.

• Compute the encodings, [xi]i,1 ← Encode(sp, xi, i, 1) for every i ∈ [n].

• Compute the encodings, [yi]i,2 ← Encode(sp, yi, i, 2) for every i ∈ [n].

• Compute the encodings, [zi]i,3 ← Encode(sp, zi, i, 3) for every i ∈ [n].

5. Compute leakj ← Decode(qj , fj , {[xi]i,1}i∈[n], {[yi]i,2}i∈[n], {[zi]i,3}i∈[n]) for j ∈ [η].

6. Output the following:

(a) Public components of the encodings, {[xi]i,1.pub, [yi]i,2.pub, [zi]i,3.pub}i∈[n].

(b) Decoding parameters qj for j ∈ [η]

(c) Output of decodings, {leakj}j∈[η].

Exptaux(1
λ, 1n, 1):

1. Challenger performs Setup(1λ, 1n)→ params

2. The challenger samples (q1, ..., qη)← SetupDec(params).

3. Challenger performs SetupEnc(params)→ sp.

24

• Compute the encodings, [xi]i,1 ← Encode(sp, 0, , i, 1) for every i ∈ [n].

• Compute the encodings, [yi]i,2 ← Encode(sp, 0, i, 2) for every i ∈ [n].

• Compute the encodings, [zi]i,3 ← Encode(sp, 0, i, 3) for every i ∈ [n].

4. Compute the following for all j ∈ [η]:

l̂eakj ← Sim
(
qj , fj , {[xi]i,1}i∈[n], {[yi]i,2}i∈[n], {[zi]i,3}i∈[n], fj(x,y, z)

)
to obtain the simulated outputs.

5. Output the following:

(a) Public components of the encodings, {[xi]i,1.pub, [yi]i,2.pub, [zi]i,3.pub}i∈[n].

(b) Decoding parameters qj for j ∈ [η]

(c) Output of decodings, {l̂eakj}j∈[η].

Definition 9 (Tempered Security). A tempered cubic encoding scheme TCE = (Setup, SetupEnc,
SetupDec,Encode,Decode) associated with plaintext space Z = [−δ, δ] is said to satisfy Tempered
security for polynomials (with coefficients over [−δ, δ]) if there exists an algorithm Sim so that
following happens:
∃c > 0, such that for all large enough security parameter λ ∈ N, and polynomial n = n(λ) and

any x,y, z ∈ Zn, (f1, .., fη) ∈ Sη and adversary A of size 2λ
c
,

|Pr[A(Exptaux(1
λ, 1n, 0) = 1]− Pr[A(Exptaux(1

λ, 1n, 1)) = 1]| ≤ 1− 1/λ+ negl(λ)

where aux = (1λ, 1n,x,y, z, f1, ..., fη) and negl(λ) is some negligible function.

Few remarks are in order:

Remark 3. For the rest of the paper, we abbreviate tempered security as Sη−tempered security to
explicitly mention the function class Sη. One can imagine Sη to be an arbitrary subset of F×· · ·×F .
However, to pursue our approach, we will set Sη as the η−sized product of cubic polynomials in
n(λ) variables with the sum of absolute value of coefficients being bounded by some polynomial (in
λ) independent of n. As described later, it turns out that this set contains the set of randomizing
polynomials constructed by [LT17], and suffices to get iO.

Remark 4. (On distinguishing gap being 1 − 1/λ) In the definition above and other definitions
described in the paper, we require distinguishing gap of any adversary of some bounded size to be
bounded by 1− 1/λ+ negl(λ), however it actually suffices if it is bounded by 1− 1/poly(λ) + negl(λ)
for any fixed polynomial poly. We do this for simplicity of description.

Remark 5. (On number of query polynomials) In the definition above, an implicit restriction on
the number of polynomials (i.e., η polynomials). Indeed, in the instantiation, we only support
η = n1+ε for some 0 < ε < 0.5. This choice of parameters will suffice for our construction of iO.
This ε will be set later.

25

7 Three-restricted FE

In this section we describe the notion of a three-restricted functional encryption scheme (denoted
by 3FE).

Function class of interest: Consider a set of functions F3FE = F3FE,λ,p,n = {f : {Znp}3 → Zp}
where Zp is a finite field of order p(λ). Here n is seen as a function of λ. Each f ∈ Fλ,p,n takes as
input three vectors (x,y, z) over Zp and computes a polynomial of the form Σci,j,k · xiyjzk, where
ci,j,k are coefficients from Zp.

Syntax. Consider the set of functions F3FE,λ,p,n as described above. A three-restricted functional
encryption scheme 3FE for the class of functions F3FE (described above) consists of the following
PPT algorithms:

• Setup, Setup(1λ, 1n): On input security parameter λ (and the number of inputs n = poly(λ)),
it outputs the master secret key MSK.

• Encryption, Enc(MSK,x,y, z): On input the encryption key MSK and input vectors x =
(x1, .., xn),y = (y1, .., yn) and z = (z1, .., zn) (all in Znp) it outputs ciphertext CT. Here x is
seen as a public attribute and y and z are thought of as private messages.

• Key Generation, KeyGen(MSK, f): On input the master secret key MSK and a function
f ∈ F3FE, it outputs a functional key sk[f].

• Decryption, Dec(sk[f], 1B,CT): On input functional key sk[f], a bound B = poly(λ) and a
ciphertext CT, it outputs the result out.

We define correctness property below.

B-Correctness. Consider any function f ∈ F3FE and any plaintext x,y, z ∈ Zp. Consider the
following process:

• sk[f]← KeyGen(MSK, f).

• CT← Enc(MSK,x,y, z)

• If f(x,y, z) ∈ [−B,B], set θ = f(x,y, z), otherwise set θ = ⊥.

The following should hold:

Pr
[
Dec(sk[f], 1B,CT) = θ

]
≥ 1− negl(λ),

for some negligible function negl.
Linear Efficiency: We require that for any message (x,y, z) ∈ Znp the following happens:

• Let MSK← Setup(1λ, 1n).

• Compute CT← Enc(MSK,x,y, z).

The size of the circuit computing CT is less than n log2 p · poly(λ). Here poly is some polynomial
independent of n.

26

7.1 Semi-functional Security

We define the following auxiliary algorithms.

Semi-functional Key Generation, sfKG(MSK, f, θ): On input the master secret key MSK, func-
tion f and a value θ, it computes the semi-functional key sk[f, θ].

Semi-functional Encryption, sfEnc(MSK,x, 1|y|, 1|z|): On input the master encryption key MSK,
a public attribute x and length of messages y, z, it computes a semi-functional ciphertext ctsf .

We define two security properties associated with the above two auxiliary algorithms. We will
model the security definitions along the same lines as semi-functional FE.

Definition 10 (Indistinguishability of Semi-functional Ciphertexts). A three-restricted functional
encryption scheme 3FE for a class of functions F3FE = {F3FE,λ,p,n}λ∈N is said to satisfy indistin-
guishability of semi-functional ciphertexts property if there exists a constant c > 0 such
that for sufficiently large λ ∈ N and any adversary A of size 2λ

c
, the probability that A succeeds in

the following experiment is 2−λ
c
.

Expt(1λ,b):

1. A specifies the following:

• Challenge message M∗ = (x,y, z). Here each vector is in Znp.

• It can also specify additional messages {Mk = (xk,yk, zk)}k∈[q] Here each vector is in
Znp.

• It also specifies functions f1, . . . , fη and hardwired values θ1, . . . , θη.

2. The challenger checks if θk = fk(x,y, z) for every k ∈ [η]. If this check fails, the challenger
aborts the experiment.

3. The challenger computes the following

• Compute sk[fk, θk]← sfKG(MSK, fk, θk), for every k ∈ [η].

• If b = 0, compute CT∗ ← sfEnc(MSK,x, 1|y|, 1|z|). Else, compute CT∗ ← Enc(MSK,x,y, z).

• CTi ← Enc(MSK,Mi), for every i ∈ [q].

4. The challenger sends
(
{CTi}i∈[q],CT

∗, {sk[fk, θk]}k∈[η]

)
to A.

5. The adversary outputs a bit b′.

We say that the adversary A succeeds in Expt(1λ,b) with probability ε if it outputs b′ = b with
probability 1

2 + ε.

We now define indistinguishability of semi-functional keys property.

27

Definition 11 (Indistinguishability of Semi-functional Keys). A three-restricted FE 3FE for a class
of functions F3FE = {F3FE,λ,p,n}λ∈N is said to satisfy indistinguishability of semi-functional
keys property if there exists a constant c > 0 such that for all sufficiently large λ, any PPT
adversary A of size 2λ

c
, the probability that A succeeds in the following experiment is 2−λ

c
.

Expt(1λ,b):

1. A specifies the following:

• It can specify messages Mj = {(xi,yi, zi)}j∈[q]. Here each vector is in Znp
• It specifies functions f1, . . . , fη ∈ F3FE and hardwired values θ1, . . . , θη.

2. Challenger computes the following :

• If b = 0, compute sk[fi]
∗ ← KeyGen(MSK, fi) for all i ∈ [η]. Otherwise, compute

sk[fi]
∗ ← sfKG(MSK, fi, θi) for all i ∈ [η].

• CTi ← Enc(MSK,Mj), for every j ∈ [q].

3. Challenger then sends
(
{CTi}i∈[q], {sk[fi]

∗}i∈[η]

)
to A.

4. A outputs b′.

The success probability of A is defined to be ε if A outputs b′ = b with probability 1
2 + ε.

If a three-restricted FE scheme satisfies both the above definitions, then it is said to satisfy semi-
functional security.

Definition 12 (Semi-functional Security). Consider a three-restricted FE scheme 3FE for a class of
functions F . We say that 3FE satisfies semi-functional security if it satisfies indistinguishability
of semi-functional ciphertexts property (Definition 10) and indistinguishability of semi-functional
keys property (Definition 11).

8 (Stateful) Semi-Functional Functional Encryption for Cubic Poly-
nomials

In this section, we define the notion of Semi-Functional Functional Encryption (referred to as FE3)
for cubic polynomials. This is defined along the same lines as the definition of projective arithmetic
functional encryption (PAFE), introduced by [AS17]. The main difference between our notion and
PAFE is that, we allow for evaluation of arithmetic circuits over values from a bounded domain
whereas PAFE allowed for evaluation of arithmetic circuits over large fields. Because of this, the
decryption in [AS17] was expressed in two steps (Projective Decrypt and Recover), whereas the
syntax of our decryption algorithm is the same as in a standard functional encryption scheme.

Function class of interest for FE3: We consider functional encryption scheme for cubic homoge-
nous polynomials over variables over integers Z. Formally, consider a set of functions FFE3,λ,n =
{f : [−ρ, ρ]n → Z} where ρ is some constant. Here n is interpreted as a function of λ. Each
f ∈ FFE3,λ,n takes as input x = (x1, .., xn) ∈ [−ρ, ρ]n and computes a polynomial of the form

28

Σci,j,kxixjxk over Z (where some variables can repeat) and each coefficient ci,j,k ∈ [ρ, ρ] and sum
of absolute values of the coefficients Σj,k|ci,j,k| < w(λ). Constructing functional encryption for
homogenous polynomials suffice to construct functional encryption for all cubic polynomials. This
is because we can always write any polynomial as a homogeneous polynomial in the same variables
and an artificially introduced variable set to 1.

Syntax. Consider the set of functions FFE3 = FFE3,λ,n as described above. A semi-functional
functional encryption scheme FE3 for the class of functions FFE3 (described above) consists of the
following PPT algorithms:

• Setup, Setup(1λ, 1n): On input security parameter λ and the length of the message 1n, it
outputs the master secret key MSK.

• Encryption, Enc(MSK,x): On input the encryption key MSK and a vector of integers x =
(x1, .., xn) ∈ [−ρ, ρ]n, it outputs ciphertext CT.

• Key Generation, KeyGen(MSK, i, f): On input the master secret key MSK and an index
i ∈ [η] denoting the index of the function in [η], function f ∈ FFE3 , it outputs a functional key
skf . Here, η denotes the number of key queries possible. Note that this algorithm is allowed
to be stateful.

• Decryption, Dec(skf ,CT): On input functional key skf and a ciphertext CT, it outputs the
result out.

We define correctness property below.

Correctness. Consider any function f ∈ FFE3 , any index i ∈ [η] and any plaintext integer vector
x ∈ [−ρ, ρ]n. Consider the following process:

• MSK← Setup(1λ, 1n)

• skf ← KeyGen(MSK, i, f).

• CT← Enc(MSK,x)

Let θ = 1 if f(x) 6= 0, θ = 0 otherwise. The following should hold:

Pr [Dec(skf ,CT) = θ] ≥ 1− negl(λ),

for some negligible function negl.

Remark 6. We consider a form of semi-functional functional encryption where the decryption
algorithm only allows the decryptor to learn if the functional value f(x) is 0 or not.

Linear Efficiency: We require that for any message x ∈ [−ρ, ρ]n the following holds:

• Let MSK← Setup(1λ, 1n).

• Compute CT← Enc(MSK,x).

The size of the circuit computing CT is less than poly(λ, log n). Here poly is some fixed polynomial
independent of n.

29

8.1 Semi-functional Security

We define the following auxiliary algorithms.

Semi-functional Key Generation, sfKG(MSK, i, f, θ): On input the master secret key MSK,
function f , an index i and a value θ, it computes the semi-functional key skf,θ.

Semi-functional Encryption, sfEnc(MSK, 1n): On input the master encryption key MSK, and
the length 1n, it computes a semi-functional ciphertext ctsf .

We define two security properties associated with the above auxiliary algorithms.
We now define indistinguishability of semi-functional keys property.

Throughout the definition we denote by Sη a set of tuples of dimension η over FFE3 . Thus
Sη ⊆ FηFE3

.

Definition 13 (Sη-Bounded Indistinguishability of Semi-functional Keys). A Semi-Functional FE
scheme for cubic polynomials FE3 for a class of functions FFE3 = {FFE3,λ,n}λ∈N is said to satisfy
Sη−bounded indistinguishability of semi-functional keys property if there exists a constant
c > 0 such that for any sufficiently large λ ∈ N and any adversary A of size 2λ

c
, the probability

that A succeeds in the following experiment is 2−λ
c
.

Expt(1λ, 1n,b):

1. A specifies the following:

• It can specify messages Mj = {xi}j∈[q]. Here each vector is in [−ρ, ρ]n

• It specifies function queries as follows:

– It specifies (f1, . . . , fη) ∈ Sη ⊆ FηFE3
.

– It specifies values θ1, . . . , θη.

2. The challenger computes the following:

• MSK← Setup(1λ, 1n)

• CTi ← Enc(MSK,Mj), for every j ∈ [q].

• If b = 0, compute sk∗fi ← KeyGen(MSK, i, fi). Otherwise, compute sk∗fi ← sfKG(MSK, i, fi, θi)
for all i ∈ [η].

3. Challenger sends {CTi}i∈q and {sk∗fi}i∈[η] to A:

4. A outputs b′.

The success probability of A is defined to be ε if A outputs b′ = b with probability 1
2 + ε.

Definition 14 (Sη-Bounded Indistinguishability of Semi-functional Ciphertexts). For a semi-
functional FE scheme FE3 for a class of functions FFE3 = {FFE3,λ,n}λ∈N , the Sη−bounded indis-
tinguishability of semi-functional ciphertexts property is associated with two experiments.
The experiments are parameterised with aux = (1λ, 1n,Γ,Mi = {(xi)}i∈Γ,M

∗ = (x), f1, .., fη).
Exptaux(1

λ, 1n,b):

1. The challenger sets θi = fi(x) for i ∈ [η]. The challenger computes the following:

30

2. Compute MSK← Setup(1λ, 1n).

3. Compute skfk,θk ← sfKG(MSK, k, fk, θk), for every k ∈ [η].

4. CTi ← Enc(MSK,Mi), for every i ∈ Γ.

5. If b = 0, compute CT∗ ← Enc(MSK,M∗).

6. If b = 1 compute CT∗ ← sfEnc(MSK, 1n).

7. Output the following:

(a) CTi for i ∈ Γ and CT∗.

(b) skfk,θk for k ∈ [η]

(c) M∗ and {Mi}i∈Γ

(d) f1, ..., fη

A semi-functional FE scheme FE3 associated with plaintext space Z = [−δ, δ] is said to satisfy
η−indistinguishability of semi–functional ciphertexts property if the following happens:
∃c > 0 such that, ∀λ > λ0, polynomial n = n(λ), polynomial Γ, for any messages {Mi}i∈Γ ∈ Zn,
M∗ ∈ Zn , (f1, .., fη) ∈ Sη and any adversary A of size 2λ

c
,

|Pr[A(Exptaux(1
λ, 1n, 0) = 1]− Pr[A(Exptaux(1

λ, 1n, 1)) = 1]| ≤ 1− 1/λ+ negl(λ)

where aux = (1λ, 1n,Γ,Mi = {(xi)}i∈Γ,M
∗ = (x), f1, .., fη)

If a FE3 scheme satisfies both the above definitions, then it is said to satisfy semi-functional security.

Definition 15 (Sη−Bounded Semi-functional Security). Consider a semi-functional FE scheme
for cubic polynomials FE3 for a class of functions FFE3. We say that FE3 satisfies Sη−bounded
semi-functional security if it satisfies Sη−bounded indistinguishability of semi-functional cipher-
texts property (Definition 14) and Sη−bounded indistinguishability of semi-functional keys property
(Definition 13).

9 Semi-Functional Functional Encryption for Circuits

In this section, we define the notion of semi-functional FE (referred to as sFE) for circuits. This
definition differs from the stateful semi-functional FE for cubic polynomials (defined in the previous
section) in many ways:

• First, the key generation algorithm is defined to be stateful in the previous section, whereas
in this section, this algorithm is stateless.

• The functional keys are associated with different classes of functions.

• The ciphertext complexity in the previous section was defined to be linear in the message size
whereas in this section, the complexity is sublinear in the circuit size.

• The adversary is issued bounded number of keys in the previous section whereas the adversary
is issued only one key associated with a multi-bit output circuit.

31

Syntax. A Semi-Functional secret-key functional encryption scheme for a message space χ =
{χλ}λ∈N and a function space C = {Cλ}λ is a tuple of PPT algorithms with the following properties:

• Setup, Setup(1λ): On input security parameter λ, it outputs the master secret key MSK.

• Encryption, Enc(MSK, x): On input the encryption key MSK and a message x ∈ χλ, it
outputs ciphertext CT.

• Key Generation, KeyGen(MSK, C): On input the master secret key MSK and a function
C ∈ Cλ, it outputs a functional key skC .

• Decryption, Dec(skC ,CT): On input functional key skC and a ciphertext CT, it outputs
the result out.

We define correctness property below.

Correctness. Consider any function C ∈ Cλ and any plaintext x ∈ χλ. Consider the following
process:

• MSK← Setup(1λ)

• skC ← KeyGen(MSK, C).

• CT← Enc(MSK, x)

The following should hold:

Pr [Dec(skC ,CT) = C(x)] ≥ 1− negl(λ),

for some negligible function negl.

Sub-Linear Efficiency: We require that for any message x ∈ χλ the following holds:

• Let MSK← Setup(1λ).

• Compute CT← Enc(MSK, x).

The size of circuit computing CT is less than `1−εC · poly(λ, |x|). poly is some fixed polynomial,
εC > 0 is some constant, |x| is the length of the message x and ` = max{size(C)}C∈Cλ .
The notion described above suffices to construct iO. We define a more general notion below.

ρ− Efficiency: We define another notion of efficiency where we require that for any message
x ∈ χλ the following holds:

• Let MSK← Setup(1λ).

• Compute CT← Enc(MSK, x).

The size of circuit computing CT is less than ρ(`, |x|, λ). Here ρ is a polynomial in ` = max{size(C)}C∈Cλ ,
|x| and the security parameter. Note that if ρ is of the form `1−εpoly(λ, |x|) for some ε > 0, then
ρ−efficiency is the same as sublinear efficiency.

Now we define the notion of (adv, sizeA)−Semi-functional security. Here adv is a parameter
denoting advantage of adversary and sizeA is the parameter denoting the size of the adversary.

32

9.1 Semi-functional Security

We define the following auxiliary algorithms.

Semi-functional Key Generation, sfKG(MSK, C, θ): On input the master secret key MSK, func-
tion C ∈ Cλ and a value θ, it computes the semi-functional key skC,θ.

Semi-functional Encryption, sfEnc(MSK, 1λ): On input the master encryption key MSK, and
the length 1λ, it computes a semi-functional ciphertext ctsf .

We define two security properties associated with the above auxiliary algorithms.
We now define indistinguishability of semi-functional key property.

Definition 16 (Indistinguishability of Semi-functional Key). A Semi-Functional FE scheme for
circuits sFE for a class of functions C = {Cλ}λ∈N is said to satisfy (sizeA) -indistinguishability
of semi-functional key property if for sufficiently large λ ∈ N, for any adversary A of size
sizeA, the probability that A succeeds in the following experiment bounded by negl.

Expt(1λ,b):

1. A specifies the following:

• It can specify messages Mj = {xj}j∈[q] for any polynomial q. Here each Mj ∈ χλ.

• It specifies function queries as follows:

– It specifies C ∈ Cλ.

– It specifies values θ in output space of C.

2. The challenger computes the following:

• MSK← Setup(1λ)

• CTj ← Enc(MSK,Mj), for every j ∈ [q].

• If b = 0, compute sk∗C ← KeyGen(MSK, C). Otherwise, compute sk∗C ← sfKG(MSK, C, θi).

3. Challenger sends {CTi}i∈q and {sk∗C} to A:

4. A outputs b′.

The success probability of A is defined to be ε if A outputs b′ = b with probability 1
2 + ε.

Definition 17 (Indistinguishability of Semi-functional Ciphertexts). For a semi-functional FE
scheme sFE for a class of functions C = {Cλ}λ∈N , the (adv, sizeA)− indistinguishability of
semi-functional ciphertexts property is associated with two experiments. The experiments are
parameterised with aux = (1λ,Γ,Mi = {xi}i∈Γ,M

∗ = x,C)
Exptaux(1

λ,b):

1. The challenger sets θ = C(x). The challenger computes the following:

2. Compute MSK← Setup(1λ).

33

3. Compute skC,θ ← sfKG(MSK, C, θ).

4. CTi ← Enc(MSK,Mi), for every i ∈ [Γ].

5. If b = 0, compute CT∗ ← Enc(MSK,M∗).

6. If b = 1 compute CT∗ ← sfEnc(MSK, 1λ).

7. Output the following:

(a) CTi for i ∈ Γ and CT∗.

(b) skC,θ.

(c) M∗ and {Mi}i∈Γ

(d) C

A semi-functional FE scheme sFE associated with plaintext space χ is said to satisfy (sizeA,
adv)-indistinguishability of semi-functional ciphertexts property if the following happens:
∀λ > λ0, any polynomial Γ, messages {Mi}i∈Γ ∈ χλ, M∗ ∈ χλ , C ∈ Cλ and any adversary A of
size sizeA:

|Pr[A(Exptaux(1
λ, 0) = 1]− Pr[A(Exptaux(1

λ, 1)) = 1]| ≤ adv

where aux = (1λ,Γ,Mi = {xi}i∈Γ,M
∗ = x,C)

Definition 18 (Semi-functional Security). Consider a semi-functional FE scheme sFE for a
class of circuits Cn,s. We say that sFE satisfies (sizeA, adv)−semi-functional security if it sat-
isfies (sizeA, adv)−indistinguishability of semi-functional ciphertexts property (Definition 17) and
sizeA−indistinguishability of semi-functional key property (Definition 16).

Remark 7. Note that if we do not specify parameters adv, sizeA we will assume adv = 1 − 1/λ +
negl(λ) and sizeA to be 2λ

c
for some constant c > 0.

Now, we rephrase the above definition of indistinguishability of semi-functional ciphertext se-
curity by using theorem 8.

Theorem 7. Fix 1λ, 1n,Γ, {Mi},M∗, C as above. Define two functions Eb for b ∈ {0, 1}, that
takes as input {0, 1}`b. Here `b is the length of randomness required to compute the following. The
functions do the following.

Consider the following process:

1. Compute MSK← sFE.Setup(1λ).

2. Compute CTi ← sFE.Enc(MSK,Mi) for i ∈ [Γ].

3. Set θ = C(M∗). Compute skC ← sFE.sfKG(MSK, C, θ).

4. If b = 0, compute CT∗ = sFE.Enc(MSK,M∗) and if b = 1, compute CT∗ = sFE.sfEnc(MSK, 1λ).

5. For b ∈ {0, 1}, Eb on input r ∈ {0, 1}`b outputs {CTi}i∈Γ, skC ,CT
∗.

34

If sFE satisfies (sizeA, adv)−indistinguishability of semi-functional ciphertexts property, then, there
exists two computable (not necessarily efficient) measuresM0 andM1 (Mb defined over {0, 1}`b for
b ∈ {0, 1}) of density exactly (1−adv)/2 such that, for all circuits A of size size′A > sizeAadv

′2/128(`0+
`1 + 1),

| Pr
u←DM0

[A(E0(u)) = 1]− Pr
v←DM1

[A(E(v)) = 1]| < adv′

Here both measures may depend on ({Mi}i∈Γ, C,M
∗)

Proof. We invoke theorem 8 to prove this. We recall the theorem below:

Theorem 8 (Imported Theorem [MT10]). Let E : {0, 1}n → X and F : {0, 1}m → X be two
functions, and let ε, γ ∈ (0, 1) and s > 0 be given. If for all distinguishers A with size s we have

| Pr
x←{0,1}n

[A(E(x)) = 1]− Pr
y←{0,1}m

[A(F (y)) = 1]| ≤ ε

Then there exist two measures M0 (on {0, 1}n) and M1 (on {0, 1}n) that depend on γ, s such
that:

• µ(Mb) ≥ 1− ε for b ∈ {0, 1}

• For all distinguishers A′ of size s′ = sγ2

128(m+n+1)

| Pr
x←DM0

[A(E(x)) = 1]− Pr
y←DM1

[A(F (y)) = 1]| ≤ γ

Due to security of sFE, we know that for any adversary A of size s = sizeA,

| Pr
u←{0,1}`0

[A(E0(u)) = 1]− Pr
v←{0,1}`1

[A(E(v)) = 1]| < adv

Thus, there exists two measuresM′0 (on {0, 1}`0) andM′1 (on {0, 1}`1) with density at least 1−adv

such that for all adversaries A′ of size size′A = sizeAadv
′2/128(`0 + `1 + 1),

| Pr
u←DM′0

[A(E0(u)) = 1]− Pr
v←DM′1

[A(E(v)) = 1]| < adv′

Now defineMb = (1−adv
2µ(M′b)

)M′b for b ∈ {0, 1}. Note that the constants (1−adv)
2µ(M′b)

< 1 as the density

µ(M′b) ≥ 1− adv. Thus, these measures can be scaled so that their density is exactly (1− adv)/2.
Since, Mb induce the same distribution as M′b for b ∈ {0, 1}, the claim holds.

10 Step 1: Instantiating TCE

The main building block in the construction of a TCE scheme is a perturbation-resilient generator.
We show how to combine a perturbation-resilient generator with techniques from [GSW13] to obtain
our TCE candidate. Now we describe some preliminaries.

35

10.1 Construction of TCE

This scheme will be parameterized by d, p, η, Sη, TCEbound, B3 and B4.

Non-commutative Product Lemma. We state a non-commutative product lemma that will
be useful for our construction. In particular, the function Fncp described in the below lemma will
be used in the decode algorithm.

We define the tensor of a vector a ∈ Z1×d
q and a matrix V ∈ Zm×mq to be a 1×dm2-dimensional

vector with the ((i− 1)m+ (j − 1)m+ k)th entry, for every i ∈ [m], j ∈ [m], k ∈ [d], in a⊗V to be
vij · ak, where vij is the (i, j)th element of V and ak is the kth element of a.

Lemma 1 (Non-commutative Product Lemma). Suppose we have a vector a ∈ Z1×d
q , matrices

U ∈ Zd×m
q ,V ∈ Zm×mq . There is a function Fncp : Z1×dm2

q × Zd×m
q → Z1×m

q that given a ⊗ V
and U, computes aUV. That is, Fncp(a ⊗ V,U) outputs aUV. Moreover, Fncp(a ⊗ V,U) =
(q1(a ⊗V,U), . . . , qm(a ⊗V,U)), where qi can be expressed as a quadratic polynomial (over Zq)
with every term being a product of an element in a⊗V and an element in U.

Proof. Let a = [a1 · · · ad]. The (i, j)th element in U is denoted by ui,j , for every i ∈ [d], j ∈ [m].
The (i, j)th element in V is denoted by vi,j .

Observe that the ith element, for every i ∈ [m], in aU is denoted by
∑m

j=1 ajuij . The ith element

in aUV, for i ∈ [m], is denoted by
∑m

k=1(
∑d

j=1 ajukj) · vik. The expression
∑m

k=1(
∑n

j=1 ajukj) · vik
can be rewritten as,

∑m
k=1

∑d
j=1(ajvik) · ukj . Recall that a⊗V is a vector consisting of ajvik, for

every i ∈ [d], j ∈ [m], k ∈ [m]. Thus,
∑m

k=1

∑d
j=1(ajvik) · ukj is a quadratic polynomial, denoted by

qi, with every term being a product of an element in a⊗V and an element in U. Thus, qi(a⊗V,U)
computes the ith element in aUV, for i ∈ [m]. This completes the proof.

Construction. We describe the scheme TCE below. This scheme will be parameterized by d, p,
η, Sη, TCEbound, B3 and B4.

• Setup, Setup(1λ, 1n): On input security parameter λ, input length bound n, it sets params =
(1λ, 1n,p, B). Here p is the modulus, which is also the modulus of the three restricted FE
scheme.

• SetupEncode, SetupEnc(params): On input params = (1λ, 1n,p, B), compute the following:

1. Sample t
$←− Zd×1

p and C
$←− Zd×m

p .

2. Set b = CTt+ eT, where e← χ1×m with ||e||∞ ≤ B3.

3. Set A = [CT||b]T in Z(d+1)×m
p .

4. Also set s = (tT,−1) in Z1×(d+1)
p

5. Sample Seed ← 3∆RG.SetupSeed(1λ, 1n, B). Without loss of generality assume that
Seed = (Seed.pub,Seed.priv(1), Seed.priv(2)). Here Seed.pub = (Seedpub,1, ...,Seedpub,n)
and Seed.priv(i) = (Seedpriv(i),1, ...,Seedpriv(i),n) for i ∈ [1, 2] are vectors in Znp.

6. Output sp = (s,A,Seed)

36

• Encode, Encode(sp, x, ind, `): On input sp = (s,A, Seed), plaintext x ∈ [−ρ, ρ], index ind
and level ` ∈ [3], proceed according to the three cases:

Sample uniformly Rind,`
$←− {0, 1}m×m. Let G ∈ Z(d+1)×m

p denote the gadget matrix and let its
inverse function be G−1(·), as given in Definition 7. Set φ ∈ Zp such that φsGem = b p

2n3B4ρ3
c,

where em is an indicator vector of dimension m with the mth position containing 1 and the
rest of the elements are zero. Compute ([x]ind,`.pub, [x]ind,`.priv(1), [x]ind,`.priv(2)) according
to Figure 2.

[x]ind,`.pub [x]ind,`.priv(1) [x]ind,`.priv(2)

` = 1 (ARind,` + xφG, Seedpub,ind)
(
xφ, Seedpriv(1),ind

) (
1, Seedpriv(2),ind

)
` = 2 ARind,` + xφ−1G G−1(−ARind,`) xφ−1s

` = 3 ARind,` + xφG 1 s⊗G−1(ARind,`)

Figure 2: Public and private encodings provided at all the three levels.

We also assume that all these public and private parts of the encodings are padded appropri-
ately with string consisting of zeroes such that their lengths are same. This length is equal
to `enc = (d + 1)×m×m log p, which is computed from the length of [x]ind,`.priv(2).

Output ([x]ind,`.pub, [x]ind,`.priv(1), [x]ind,`.priv(2)).

• Setup-Decode, SetupDec(params): On input params = (1λ, 1n,p, B), compute 3∆RG.SetupPoly(1λ,
1n, B) to obtain the polynomials q1, ..., qη.

• Decode, Decode(q, f, {Ui}i∈[n], {Vj}j∈[n], {Wk}k∈[n]): Let f = Σi,j,k∈[n] γi,j,kxiyjzk ∈ Sη.
{Ui}i∈[n] are encodings computed with respect to first level, {Vj}j∈[n] are encodings with
respect to second level and {Wk}k∈[n] are encodings computed with respect to the third
level. Parse Ui as follows: Ui.pub = (Qi,pub,Seedpub,i), Ui.priv(1) = (Qi,priv(1),Seedpriv(1),i) and
Ui.priv(2) = (Qi,priv(2),Seedpriv(2),i). Consider the following operations:

– Computing a monomial: for every monomial of the form xiyjzk, compute the follow-
ing polynomial,

Zijk =
(
Qi,priv(1) × Vj .priv(2)×Wk.pub

)
+Fncp

(
Wk.priv(2), Qi,pub × Vj .priv(1)− Vj .pub×Qi,priv(1)

)
,

where Fncp is the function guaranteed by Lemma 1.

Output
∣∣∣(∑i,j,k γi,j,kZijk

)
em + q(Seed)

∣∣∣. Note that q is a multilinear cubic polynomial.

Setting of Parameters.

• d = λc1 for some constant c1 > 0

• Let p = O(2λ
c2) be a prime and m = ddlog pe for some constant c2 > 0 such that LWEd,m,pχ

holds for a distribution χ bounded by a polynomial B3(λ).

• Let η = ` = n1+ε be the stretch of 3∆RG for some constant ε > 0.

37

• Sη: We set Sη to be (Fn,B4)η. Here, Fn,B4 is the set of homogenous cubic polynomials with
sum of absolute value of coefficients in [−B4, B4] for some polynomial B4(λ). This choice
turns out to be sufficient to construct iO. Looking ahead, these polynomials will come from
the set of degree three randomizing polynomials [LT17], which satisfy this property.

• B: The bound B is set to be m3B3B4. This is computed as the maximum norm on the
encodings for any function f ∈ Fn,B4 before smudging with 3∆RG values.

• TCEbound: TCEbound is the maximum norm of the decoded value for any function f ∈ Fn,B4

which evaluates to 0. We set TCEbound to be n3m3B3 + poly(λ, n), where poly(λ, n) is the
bound on the output of 3∆RG.

We now prove the following properties.

Correctness. First, we prove correctness of homomorphic evaluation with respect to a cubic
monomial. Then, we show how to generalize this to homomorphic evaluation of cubic polynomials.

Consider plaintexts xi, xj , xk ∈ [−ρ, ρ], indices i, j, k ∈ [n]. Generate Setup(1λ, 1n) to obtain
params = (1λ, 1n,p, B). Generate SetupEnc(params) to obtain sp = (s,A, Seed). Compute the
following three encodings:

• Ui ← Encode(sp, xi, i, 1)
• Vj ← Encode(sp, xj , j, 2)
• Wk ← Encode(sp, xk, k, 3)

Parse Ui as follows: Ui.pub = (Qi,pub,Seedpub,i), Ui.priv(1) = (Qi,priv(1),Seedpriv(1),i) and Ui.priv(2) =
(Qi,priv(2), Seedpriv(2),i). Perform the following operations.

• Computing Int1 = Qi,priv(1) × Vj .priv(2)×Wk.pub:

Int1 = xiφ · xjφ−1s · (ARk + xkφG)

= xixjsARk + xixjxkφsG

• Computing Int2 = (Qi,pub × Vj .priv(1)− Vj .pub×Qi,priv(1)):

Int2 = ((ARi + xiφG)×G−1(ARj)− (ARj + xjφ
−1G)× xiφ

= ARiG
−1(A ·Rj) + xiφARj − xiφG−1(ARj)− xixjG

= ARiG
−1(ARj)− xixjG

• Computing Int3 = Fncp(Wk.priv(2), Int2): Recall that Wk = s ⊗ G−1(ARk). From
Lemma 1, we have

Int3 = Fncp(Wk.priv(2), Int2)

= s×
(
ARiG

−1(ARj)− xixjG
)
×G−1(ARk)

= sARiG
−1(ARj)G

−1(ARk)− xixjsARk

• Computing Int = Int1 + Int3:

Intijk = sARiG
−1(ARj)G

−1(ARk) + xixjxkφsG

38

We calculate |Intijk × em| below.

|Intijk × em| = |
(
sARiG

−1(ARj)G
−1(ARk) + xixjxkφsG

)
em|

≤ |
(
sARiG

−1(ARj)G
−1(ARk)

)
em|+ |xixjxkφsGem|

= |
(
sARiG

−1(ARj)G
−1(ARk)

)
em|+ xixjxk

⌊
p

2n3B4ρ3

⌋
≤ m3||sA||∞ · ||Ri||∞ · ||G−1(ARj)||∞ · ||G−1(ARk)||∞ + xixjxk

⌊
p

2n3B4ρ3

⌋
≤ m3B3 + xixjxk

⌊
p

2n3B4ρ3

⌋
We now prove the correctness of evaluation of a polynomial f(x1, . . . , xn) =

∑
i,j,k∈[n] γi,j,kxixjxk.

We have,

Decode(q, f, {Ui}i∈[n], {Vj}j∈[n], {Wk}k∈[n]) =
∑

i,j,k∈[n]

γi,j,kIntijk × em + q(Seed)

There are two cases:

• Case f(x1, . . . , xn) = 0:

∣∣Decode(q, f, {Ui}i∈[n], {Vj}j∈[n], {Wk}k∈[n])
∣∣ ≤

∣∣∣∣∣∣
∑

i,j,k∈[n]

γi,j,kIntijk × em

∣∣∣∣∣∣+ |q(Seed)|

≤
∑

i,j,k∈[n]

γi,j,km
3B3 +

 ∑
i,j,k∈[n]

γi,j,kxixjxk

 · ⌊ p

2n3B4ρ3

⌋
+q(Seed)

=
∑

i,j,k∈[n]

γi,j,km
3B3 + q(Seed)

≤ n3m3B3 + poly(λ, n)

Note that the last inequality follows from the efficiency property of 3∆RG.

• Case f(x1, . . . , xn) = 1:

Decode(q, f, {Ui}i∈[n], {Vj}j∈[n], {Wk}k∈[n]) ≤
∑

i,j,k∈[n]

γi,j,km
3B3 +

 ∑
i,j,k∈[n]

γi,j,kxixjxk

 · ⌊ p

2n3B4ρ3

⌋
+q(Seed)

≤ n3m3B3 +
⌊p

2

⌋
+ poly(λ, n)

39

Also,

Decode(q, f, {Ui}i∈[n], {Vj}j∈[n], {Wk}k∈[n]) ≥

 ∑
i,j,k∈[n]

γi,j,kxixjxk

 · ⌊ p

2n3B4ρ3

⌋

≥
⌊

p

2n3B4ρ3

⌋
≥ n3m3B3 + poly(λ, n)

The last inequality holds because p = O(2λ
c2), for some constant c2, and the parameters

n,m,B3 are polynomial in λ.

Cubic Evaluation Property. The cubic evaluation property can be observed from the descrip-
tion of Decode.

Security. We prove security below.

Theorem 9. The above scheme satisfies tempered security assuming that 3∆RG is a secure perturbation-
resilient generator implementable by a three restricted FE scheme and learning with errors.

Proof. We first describe the simulator associated with the above scheme.

Sim(qj , fj , {[xi]i,1}i∈[n], {[yi]i,2}i∈[n], {[zi]i,3}i∈[n], fj(x,y, z)): On input polynomial qj , function fj

associated with index j ∈ [η], encodings {[xi]i,1}i∈[n], {[yi]i,2}i∈[n], {[zi]i,3}i∈[n] and output fj(x,y, z),

• Parse [xi]i,1.pub = (Qi,pub,Seedpub,i) and [xi]i,1.priv(1) = (Qi,priv(1),Seedpriv(1),i) and [xi]i,1.priv(2) =
(Qi,priv(2), Seedpriv(2),i).

• Compute (e′1, . . . , e
′
η)← (q1(Seed), ..., qη(Seed)).

• Set l̂eakj ← e′j + fj(x,y, z) ·
⌊

p
2n3B4ρ3

⌋
.

• Output l̂eakj .

We describe the hybrids below. Let aux = (1λ, 1n,x,y, z, f1, ..., fη). Each vector x,y, z is in Zn.

Hybrid1: This corresponds to the real experiment. In particular, the output of this hybrid is:

1. Challenger performs Setup(1λ, 1n)→ params

2. The challenger samples (q1, ..., qη)← SetupDec(params).

3. Challenger performs SetupEnc(params)→ sp.

4. Now compute encodings as follows.

• Compute the encodings, [xi]i,1 ← Encode(sp, xi, i, 1) for every i ∈ [n].

• Compute the encodings, [yi]i,2 ← Encode(sp, yi, i, 2) for every i ∈ [n].

40

• Compute the encodings, [zi]i,3 ← Encode(sp, zi, i, 3) for every i ∈ [n].

5. Compute leakj ← Decode(qj , fj , {[xi]i,1}i∈[n], {[yi]i,2}i∈[n], {[zi]i,3}i∈[n]) for j ∈ [η].

6. Output the following:

(a) Public components of the encodings, {[xi]i,1.pub, [yi]i,2.pub, [zi]i,3.pub}i∈[n].

(b) Decoding Parameters, {qj}j∈[η].

(c) Output of decodings, {leakj}j∈[η].

Hybrid2: In this hybrid, the leakage output by decode is instead generated by the simulator.

1. Challenger performs Setup(1λ, 1n)→ params

2. The challenger samples (q1, ..., qη)← SetupDec(params).

3. Challenger performs SetupEnc(params)→ sp.

4. Now compute encodings as follows.

• Compute the encodings, [xi]i,1 ← Encode(sp, xi, i, 1) for every i ∈ [n].

• Compute the encodings, [yi]i,2 ← Encode(sp, yi, i, 2) for every i ∈ [n].

• Compute the encodings, [zi]i,3 ← Encode(sp, zi, i, 3) for every i ∈ [n].

5. Compute {l̂eakj}j∈[η] ← Sim
(
qj , fj , {[xi]i,1}i∈[n], {[yi]i,2}i∈[n], {[zi]i,3}i∈[n], fj(x,y, z)

)
.

6. Output the following:

(a) Public components of the encodings, {[xb,i]i,1.pub, [yb,i]i,2.pub, [zb,i]i,3.pub}i∈[n].

(b) Decoding parameters, {qj}j∈[η].

(c) Output of decodings, {l̂eakj}j∈[η].

Claim 1. Assuming that 3∆RG is (1 − 1/λ)-secure against any adversary A of size at most 2λ,
|Pr[A(Hybrid1) = 1]− Pr[A(Hybrid2)]| ≤ 1− 1/λ

Proof. The only difference between Hybrid1 and Hybrid2 is in how the η number of leakages are
generated. In Hybrid1, the jth leakage is of the form qj(·) +aj . Note that aj = ej,fhe+fj(x,y, z) ·⌊

p
2n3B4ρ3

⌋
, where ej,fhe is some value in the range [−B,B]. In Hybrid2, the jth leakage is of the

form l̂eakj = qj(·) + fj(x,y, z) ·
⌊

p
2n3B4ρ3

⌋
.

Suppose the output distributions of Hybrid1 and Hybrid2 are computationally distinguish-
able with probability greater than 1 − 1/λ + negl(λ), we can design an attacker that breaks the
∆RG assumption as follows. This attacker first generates (e1,fhe, . . . , eη,fhe): this is performed by
first generating the TCE encodings and then computing (e1,fhe, . . . , eη,fhe) as a function of these
encodings. The attacker submits this tuple to the challenger of the 3∆RG. The challenger returns
the polynomials (q1, . . . , qη) along with (θ1, . . . , θη). The attacker then submits the TCE encodings

41

along with (q1, . . . , qη) and (θ1 + f1(x,y, z) ·
⌊

p
2n3B4ρ3

⌋
, . . . , θη + f1(x,y, z) ·

⌊
p

2n3B4ρ3

⌋
) to the dis-

tinguisher (who distinguishes Hybrid1 and Hybrid2). The output of the attacker is the same as
the output of the distinguisher. Thus, if the distinguisher distinguishes with probability ε then the
attacker breaks 3∆RG with probability ε.

Hybrid3: In this hybrid, generate the encodings as encodings of zeroes. In particular, execute the
following operations.

1. Challenger performs Setup(1λ, 1n)→ params

2. The challenger samples (q1, ..., qη)← SetupDec(params).

3. Challenger performs SetupEnc(params)→ sp.

• Compute the encodings, [xi]i,1 ← Encode(sp, 0, i, 1) for every i ∈ [n].

• Compute the encodings, [yi]i,2 ← Encode(sp, 0, i, 2) for every i ∈ [n].

• Compute the encodings, [zi]i,3 ← Encode(sp, 0, i, 3) for every i ∈ [n].

4. Compute {l̂eakj}j∈[η] ← Sim
(
qj , fj , {[xi]i,1}i∈[n], {[yi]i,2}i∈[n], {[zi]i,3}i∈[n], fj(x,y, z)

)
to ob-

tain the simulated outputs.

5. Output the following:

(a) Public components of the encodings, {[xb,i]i,1.pub, [yb,i]i,2.pub, [zb,i]i,3.pub}i∈[n].

(b) Decoding parameters, {qj}j∈[η].

(c) Output of decodings, {l̂eakj}j∈[η].

Claim 2. Suppose the learning with errors assumption is true, then for any adversary A of size
2λ, it holds that |Pr[A(Hybrid2) = 1]− Pr[A(Hybrid3) = 1]| ≤ 2−λ.

Proof. We show the indistinguishability of Hybrid2 and Hybrid3 by considering the following
sub-hybrids.

Hybrid2.1: The only change between hybrids Hybrid2 and Hybrid2.1 are in the generation of b.

In this hybrid, generate b
$←− Zm×1

p .
The indistinguishability of hybrids Hybrid2 and Hybrid2.1 follow from the learning with errors

assumption.

Hybrid2.2: The only change between Hybrid2.1 and Hybrid2.2 is in the generation of the public
parts of the encodings. Specifically, for every i ∈ [n], ` ∈ {2, 3}, generate the public part of

the encoding of xi,` as [xi]i,`.pub = Ui,` + xi,`G, where Ui,`
$←− Z(d+1)×m

p . For ` = 1, compute

Qi.pub = Ui,` + xi,`G, where Ui,`
$←− Z(d+1)×m

p , and additionally generate Seedpub,i.
The statistical indistinguishability of Hybrid2.1 and Hybrid2.2 follows from the extended left-

over hash lemma.

42

Hybrid2.3: The only change between Hybrid2.2 and Hybrid2.3 is in the generation of the public
parts of the encodings. Specifically, for every i ∈ [n], ` ∈ {2, 3}, generate the public part of the
encoding of xi,` as [xi,`]i,`.pub = Ui,` + 0 · G. For ` = 1, compute Qi.pub = Ui,` + 0 · G, where

Ui,`
$←− Z(d+1)×m

p , and additionally generate Seedpub,i.
The output distributions of Hybrid2.2 and Hybrid2.3 are identical.

Hybrid2.4: The only change between Hybrid2.2 and Hybrid2.3 is in the generation of the public
parts of the encodings. Specifically, for every i ∈ [n], ` ∈ {2, 3}, generate the public part of the
encoding of xi,` as [xi]i,`.pub = ARi,` + 0 ·G. For ` = 1, compute Qi,pub = ARi,` + 0 ·G, and

additionally generate Seedpub,i. Here A = [CT||bT], where (i) C
$←− Zd×m

p and, (ii) b
$←− Zm×1

p .
The statistical indistinguishability of the output distributions of Hybrid2.3 and Hybrid2.4 fol-

lows from the extended leftover hash lemma.

Finally, learning with errors assumption implies that the output distributions of Hybrid2.4 and
Hybrid3 are computationally indistinguishable. This concludes the proof.

11 Step 2: Construction of Three-Restricted FE from Bilinear
Maps

We construct a three-restricted FE scheme 3FE for the class of functions F3FE = {F3FE,λ,p,n}λ∈[N]

(recalled below). We later show that 3FE satisfies semi-functional security property. The tool to
construct this primitive is a 5-slotted encodings scheme, introduced by [AS17], of degree 2. We use
additive notation to indicate the group operation. Each slot will correspond to a group of order p.
We recall this definition in Section 4.2. The abstraction of this scheme is similar to bilinear maps
of composite order.

• Recall function class of interest. F3FE consists of all functions F3FE,λ,p,n = {f : {Znp}3 → Zp}
where Zp is a finite field of order p(λ). Here n is seen as a function of λ. Each f ∈
F3FE,λ,p,n takes as input three vectors (x,y, z) over Zp and computes a polynomial of the
form Σci,j,kxiyjzk over Zp, where the coefficients are specified by the function f .

We describe the construction below. We assume that n is known to the algorithms implicitly.

Setup(1λ, 1n): On input security parameter λ,

• Sample αi, βi, γi ← Zp for all i ∈ [n]. Denote α = (α1, ..., αn), β = (β1, ..., βn) and γ =
(γ1, ..., γn).

• Compute kj,k = [0, 0, βj · γk, 0, 0]2, for every i, j ∈ [n].

• This algorithm also does setup for a slotted encoding scheme. For simplicity of notation, we
assume that the encoding key and public parameters of this scheme are implicitly known to
the encoding algorithm and public parameters are known to the evaluation algorithms. We
also assume that the slotted encoding encodes elements in Zp.

43

Set the master secret key to be MSK = (α,β,γ, {kj,k}j,k∈[n]).

KeyGen(MSK, f): On input the master secret key MSK and function f ,

• Compute kf = [0, 0, 0, V, 0]2. We compute V as follows: set V = f(α,β,γ).

Output the resulting functional key sk[f] = ({kj,k}j∈[n],k∈[n],kf).
Note: the description of the function f is implicit in the description of kf .

Enc(MSK,x,y, z): The input message M = (x,y, z) consists of a public attribute x and private

vectors y, z. Denote by xi to be the ith component in the vector of x (and likewise for y and z).
Perform the following operations:

• Sample r ∈ Zp.

• Compute CT2,j = [yj , r · βj , 0, 0, 0]1, for every j ∈ [n].

• Compute CT3,k = [zk,−r · γk, 0, 0, 0]2, for every k ∈ [n].

• Compute CT1,i = [0, 0, (xi − αi) · r2, 0, 0]1, for every i ∈ [n].

• Compute CT0 = [0, 0, 0, r2, 0]1.

Output the ciphertext CT = (x, {CT2,i}i∈[n], {CT3,i}i∈[n], {CTxi }i∈[n],CT0).

Dec(sk[f], 1B,CT): On input the functional key sk[f] and a ciphertext CT, perform the following:
Parse the ciphertext as CT = (x, {CT2,j}j∈[n], {CT3,k}k∈[n], {CT1,i}i∈[n],CT0) and the functional
key as sk[f] = ({ki,j}i∈[n],j∈[n],kf).

• For all i, j, k ∈ [n], first compute e(CT2,j ,CT3,k) to obtain ĈTj,k and then compute ĈTi,j,k =

ĈTj,k
xi

. Note that ĈTj,k
xi

is equal to [xiyjzk − r2xiβjγk]T .

• For all i, j, k ∈ [n], compute e(CT1,i,kj,k) to obtain ĈTxi,j,k. Note that ĈTxi,j,k is equal to
[r2(xi − αi)βjγk]T .

• For all i, j, k ∈ [n], compute ansi,j,k = ĈTi,j,k ·ĈTxi,j,k. Note that ansi,j,k = [xiyjzk−r2αiβjγk]T

• Let f be represented as a polynomial g = Σi,j,kci,j,kxiyjzk where each ci,j,k ∈ Zp. Compute
Πi,j,kans

ci,j,k
i,j,k = ans∗. Note that ans∗ = [f(x,y, z)− r2f(α,β,γ)]T

• Compute e(kf ,CT0,) to get Θ∗. Note that Θ∗ = [r2f(α,β,γ)]

• Compute out = ans∗ · Θ∗. Check if out = [g]T for some g ∈ [−B,B]. If so, output the value
g, otherwise output ⊥.

We omit the correctness argument since it follows from the description of the scheme.

Efficiency: We now bound the size of the circuit computing the ciphertext. Each cipher-text
consists of 3n + 1 slotted encodings and a vector x. Each encoding is computable by a circuit of
size polynomial in log2 p · poly(λ). This proves the result.

44

11.1 Security

Theorem 10. Assuming the existence of a degree two slotted encoding scheme with five slots in the
bilinear generic group model, the construction 3FE is a secure three-restricted functional encryption
scheme in the generic bilinear map model.

We first describe the semi-functional algorithms.

sfKG(MSK, f, θ): On input master secret key MSK, function f and a value θ ,

• Compute kf = [0, 0, 0, V, θ]2. Here V is computed as before. That is, V = f(α,β,γ).

Output the resulting semi-functional key sk[f, θ] = ({kj,k}j∈[n],k∈[n],kf).

sfEnc(MSK,x, 1|y|, 1|z|): On input x ∈ Znp and length 1|y|, 1|z| (which are equal to n), where x is

the public attribute and y, z is the private message. Denote by xi to be the ith component in the
vector of x. Perform the following operations:

• Sample r ∈ Zp.

• Compute CT2,j = [0, r · βj , 0, 0, 0]1, for every j ∈ [n].

• Compute CT3,k = [0,−r · γk, 0, 0, 0]2, for every k ∈ [n].

• Compute CT1,i = [0, 0, (xi − αi) · r2, 0, 0]1, for every i ∈ [n].

• Compute CT0 = [0, 0, 0, r2, 1]1.

Output the semi-functional ciphertext ctsf = (x, {CT2,i}i∈[n], {CT3,i}i∈[n], {CTxi }i∈[n],CT0).

First, we recall the generic (slotted) bilinear group model below. We use this model to argue
security.

Generic Bilinear Group Model We describe the generic bilinear group model [BBG05] tailored
to the slotted asymmetric setting. This model is parameterized by slotted encodings SE, which
encodes five dimensional vectors over a prime field Zp at level 1 and 2, and it encodes element
from Zp at the target level T . The encodings are done over level 1, 2 and the target T . The
multiplication operation computes encoding at level T . The adversary in this model has access to
an oracle O. Initially, the adversary is handed out handles (sampled uniformly at random) instead
of being handed out actual encodings. A handle is an element in a ring Z of order p. The oracle O
maintains a list L consisting of tuples (e,Y[e], u), where e is the handle issued, Y[e] is the formal
expression associated with e and e is associated with encoding at level u ∈ {1, 2, T}.

The adversary is allowed to submit the following types of queries to the oracle:
The adversary is allowed to submit the following types of queries to the oracle:

• Addition/ Subtraction: The adversary submits (e1, u1) and (e2, u2) along with the operation
‘+’(or ‘-’) to the oracle where u1, u2 ∈ {1, 2, T}. If u1 6= u2 or If there is no tuple associated
with either e1 or e2, the oracle sends ⊥ back to the adversary. Otherwise, it replies according
to the following cases:

45

– u1 ∈ {1, 2}: In this case it locates (e1, p1,e1 , p2,e1 , p3,e1 , p4,e1 , p5,e1 , u1) and (e2, p1,e2 , p2,e2 ,
p3,e2 , p4,e2 , p5,e2 , u2). It creates a new handle e′ (sampled uniformly at random from R)
and appends (e′, p1,e1 + p1,e2 , p2,e1 + p2,e2 , p3,e1 + p3,e2 , p4,e1 + p4,e2 , p5,e1 + p5,e2 , u1) to
the list (in case of subtractions the polynomials are subtracted). It outputs e′ to the
adversary.

– u1 = u2 = T : In this case the adversary locates the tuples (e1, pe1 , u1) and (e2, pe2 , u2).
It creates a new handle e′ (sampled uniformly at random from R) and appends (e′, pe1 +
pe2 , u1) (or (e′, pe1 − pe2 , u1)) to the list. The oracle sends e′ to the adversary.

• Multiplication: The adversary submits (e1, u1) and (e2, u2) to the oracle. If there is no tuple
associated with either e1 or e2, the oracle sends ⊥ back to the adversary. If u1 = u2, u1 = T or
u2 = T , the oracle outputs⊥. Otherwise, it locates the tuples (e1, p1,e1 , p2,e1 , p3,e1 , p4,e1 , p5,e1 , u1)
and (e2, p1,e2 , p2,e2 , p3,e2 , p4,e2 , p5,e2 , u2). It creates a new handle e′ (sampled uniformly at ran-
dom from R) and appends (e′,Σj∈[5]pj,e1 ∗ pj,e2 , T) to the list.

• Zero Test: The adversary submits element (e1, u1) to the oracle. If there is no tuple associated
to e1 it outputs ⊥. Otherwise, if u1 = 1 or u1 = 2, it locates the tuples (e1, p1,e1 , p2,e1 ,
p3,e1 , p4,e1 , p5,e1 , u1). It outputs 1 if pj,e1 = 0 for all j ∈ [5] otherwise it outputs 0. If u1 = T ,
it locates the tuples (e1, p1,e1 , u1). It outputs 1 if p1,e1 = 0, otherwise it outputs 0.

Now we describe a lemma that will be crucial for the rest of the proof.

Lemma 2 (Schwartz-Zippel-DeMillo-Lipton). Consider a polynomial h ∈ Zp[y1, . . . , yn] for a prime
p. Suppose the degree of h is at most deg then,

Pr
y1,...,yn

$←−Zp

[h(y1, . . . , yn) = 0] ≤ deg

p

Now we consider three scenarios.

• Case 1: The adversary is given normal function keys and normal ciphertexts.

• Case 2: The adversary is given semi functional keys and normal ciphertexts.

• Case 3: The adversary is given semi-functional keys and one semi-functional ciphertext along
with remaining normal ciphertexts.

To argue indistinguishability of semi-functional keys property we need to argue that Case 1 is
indistinguishable to Case 2. To argue indistinguishability of semi-functional ciphertext property,
we need to argue Case 2 is indistinguishable to Case 3. We will argue this in the following manner:

• We assume that the adversary is given some set of encodings (depending on which case he is
in). Then the adversary submits a polynomial P for zero-test.

• Adversary wins if P evaluates to 0 in one case and non-zero in another.

• By a case analysis on P , we will show the if the adversary wins with non-negligible probability,
then P must contradict the shwartz-zippel lemma.

In another words, we will show that if P evaluates to 0 with non-negligible probability in one case,
then it should also evaluate to 0 with almost the same probability in other cases. Let us analyse
these cases separately.

46

Case 1: In this case the adversary is given ciphertexts and keys which contain encodings at level
1 and 2. The adversary can query for any function key for functions fl for l ∈ [η]. He also gets
challenge ciphertext CT1 along with other ciphertexts for CTq for q ∈ [2,Γ]. Each key for fl consists
of the following encodings (variables denoted by α, β, γ, r are chosen at random from Zp):

• kj,k = [0, 0, βj · γk, 0, 0]2, for every j, k ∈ [n]

• kf = [0, 0, 0, Vl, 0]2 for l ∈ [η].

Each ciphertext CTq consists of the following encodings:

• CTq2,j = [yq,j , rqβj , 0, 0, 0]1, for every j ∈ [n], q ∈ [Γ].

• CTq3,k = [zq,k,−rq · γk, 0, 0, 0]2, for every k ∈ [n], q ∈ [Γ].

• CTq1,i = [0, 0, (xq,i − αi) · r2
q , 0, 0]1, for every i ∈ [n], q ∈ [Γ].

• CTq0 = [0, 0, 0, r2
q , 0]1 for every q ∈ [Γ].

We now analyze the polynomials queried by the adversary to the oracle O. There are two types of
polynomials the adversary can submit: linear and quadratic.

If the adversary submits a linear polynomial, the oracle will output 0 only with probability at
most 2/p. This follows from lemma 2 and analyzing the structure of the encodings.

We now turn to the case when the adversary submits quadratic polynomials to the oracle. To
analyze this case, we look at all possible monomials/terms formed by evaluating multiplication of
encodings of level 1 and level 2:

1. r2
qfl(α,β,γ) for q ∈ [Γ], l ∈ [η].

2. yq1,jzq2,k − rq1rq2βjγk. for j, k ∈ [n] and q1, q2 ∈ [Γ]

3. (xq,i − αi)r2
qβjγk for i, j, k ∈ [n] and q ∈ [Γ]

4. Constant term 1. This is generated from the encoding of 1 at the level T .

Consider a zero test polynomial query P of this kind to the oracle O.

Structure of P : Let us now consider a polynomial P which is a linear combination of mono-
mials with coefficients in Zp. Any monomial of type i ∈ [4] can have a coefficient of the form ci,···
where the (i, · · ·) is replaced with quantifiers of the variables in the monomials. For example, the
coefficient of first monomial is represented as c1,l,q for q ∈ [Γ], l ∈ [η]. This polynomial P can be
represented as: k0 + Σqk1,qr

2
q + Σq1,q2k2,q1,q2rq1rq2 where each term k′s are a function of variables

independent of rq. Now by Schwartz-Zippel lemma with probability at least 1−2/p the coefficients
k2,q1,q2 = 0 for q1 6= q2. Then, we write k2,q1,q2 = Σj,kc2,q1,q2,j,kβjγk. With probability at least
1− 2/p each coefficient c2,q1,q2,j,k = 0.

Now consider coefficients of r2
q . By Schwartz-Zippel lemma, with probability at least 1 − 2/p,

the coefficients should be 0.

47

Coefficient of r2
q : The coefficient of r2

q for q ∈ [Γ] is Σl,i,j,kc1,q,lfl(α,β,γ) − c2,q,q,j,kβjγk +
c3,q,i,j,k(xq,i − αi)βjγk. Now applying Schwartz-Zippel lemma again and setting coefficients of
αiβjγk and βjγk to be 0, we observe the following conditions. With probability at least 1 − 3/p,
we have:

• −c2,q,q,j,k + Σic3,q,i,j,kxq,i = 0

• −c3,q,i,j,k + Σlc1,q,lfl,i,j,k = 0

Coefficient of 1: The coefficient of 1 is, c = c4 + Σq,j,kc2,q,q,j,kyq,jzq,k. Note from the previous
claim, we observe that this coefficient is equal to:

c = c4 + Σq,j,kΣic3,q,i,j,kxq,iyq,jzq,k

From the second sub claim in the previous claim we observe:

c = c4 + Σq,j,kΣiΣlc1,q,lf1,i,j,kxq,iyq,jzq,k

Thus
c = c4 + Σq,lc1,q,lfl(xq,yq, zk)

By Shwartz-Zippel lemma, c = 0. From this, we can conclude that the oracle returns 0 to the
polynomials submitted by the adversary only in the case when these polynomials are linear functions
in the decryptions fl(Mq) for l ∈ [η], q ∈ [Γ]. Here Mq denotes the qth message encrypted.

Case 2: In this case the keys are semi-functional while ciphertexts are honestly computed. The
encodings given to the adversary in this case are:

• kj,k = [0, 0, βj · γk, 0, 0]2, for every j, k ∈ [n]

• kf = [0, 0, 0, Vl, θl]2 for l ∈ [η]. Here θl for l ∈ [η] are hardwirings.

Each ciphertext CTq consists of the following encodings:

• CTq2,j = [yq,j , rq · βj , 0, 0, 0]1, for every j ∈ [n], q ∈ [Γ].

• CTq3,k = [zq,k,−rq · γk, 0, 0, 0]2, for every k ∈ [n], q ∈ [Γ].

• CTq1,i = [0, 0, (xq,i − αi) · r2
q , 0, 0]1, for every i ∈ [n], q ∈ [Γ].

• CTq0 = [0, 0, 0, r2
q , 0]1 for every q ∈ [Γ].

The terms computed by pairing these encodings are as follows.

1. r2
qfl(α,β,γ) for q ∈ [Γ], l ∈ [η].

2. yq1,jzq2,k − rq1rq2βjγk. for j, k ∈ [n] and q1, q2 ∈ [Γ]

3. (xq,i − αi)r2
qβjγk for i, j, k ∈ [n] and q ∈ [Γ]

4. Constant term 1. This is generated from the encoding of 1 at the level T .

The terms generated in this case are identical to terms in Case 1. Thus, these cases are indistin-
guishable.

48

Case 3: In this case, the challenge ciphertext as well as the functional keys are semi-functionally
generated. Let M = (x1,y1, z1) be the challenge. Set θi = fi(M) for i ∈ [η]. Here are the
encodings:

• kj,k = [0, 0, βj · γk, 0, 0]2, for every j, k ∈ [n]

• kf = [0, 0, 0, Vl, θl]2 for l ∈ [η]. Here θl for l ∈ [η] are hardwirings.

Each ciphertext CTq consists of the following encodings for q ∈ [2,Γ]:

• CTq2,j = [yq,j , rqβj , 0, 0, 0]1, for every j ∈ [n], q ∈ [Γ].

• CTq3,k = [zq,k,−rq · γk, 0, 0, 0]2, for every k ∈ [n], q ∈ [Γ].

• CTq1,i = [0, 0, (xq,i − αi) · r2
q , 0, 0]1, for every i ∈ [n], q ∈ [Γ].

• CTq0 = [0, 0, 0, r2
q , 0]1 for every q ∈ [Γ].

Ciphertext CT1 consists of the following encodings:

• CT1
2,j = [0, r1βj , 0, 0, 0]1, for every j ∈ [n].

• CT1
3,k = [0,−r1 · γk, 0, 0, 0]2, for every k ∈ [n].

• CT1
1,i = [0, 0, (x1,i − αi) · r2

1, 0, 0]1, for every i ∈ [n].

• CT1
0 = [0, 0, 0, r2

1, 0]1.

The terms computed by pairing these encodings are:

1. r2
qfl(α,β,γ) for q ∈ [2,Γ], l ∈ [η].

2. r2
1fl(α,β,γ) + θl for l ∈ [η].

3. yq1,jzq2,k − rq1rq2βjγk. for j, k ∈ [n] and q1, q2 ∈ [2,Γ]

4. 0− r1rq2βjγk. for j, k ∈ [n] and q2 ∈ [1,Γ]

5. (xq,i − αi)r2
qβjγk for i, j, k ∈ [n] and q ∈ [Γ]

6. Constant term 1. This is generated from the encoding of 1 at the level T .

Structure of P : The analysis of this case is similar to Case 1. The only difference are terms
where q = 1. Since θl = fl(x1,y1, z1) for l ∈ [η], the conditions on the polynomials turn out to be
the same. We elaborate now.

Let us now consider a polynomial P over Zp. Any monomial of type i ∈ [4] can have a coefficient
of the form ci,··· where the (i, · · ·) is replaced with quantifiers of the variables in the monomials. For
example, the coefficient of first monomial is represented as c1,q,l for q ∈ [Γ], l ∈ [Γ]. This polynomial
P can be represented as: k0 + Σqk1,qr

2
q + Σq1,q2k2,q1,q2rq1rq2 where each term k′s are a function of

variables independent of rq. Now by Schwartz-Zippel lemma with probability at least 1− 2/p the
coefficients k2,q1,q2 = 0 for q1 6= q2 and q1, q2 6= 1. Then, we write k2,q1,q2 = Σj,kc3,q1,q2,j,kβjγk. With
probability at least 1 − 2/p each coefficient c2,q1,q2,j,k = 0. Similarly, we observe that c4,q2,j,k = 0
for q2 6= 1. Now consider coefficients of r2

q . By Schwartz-Zippel lemma, with probability at least
1− 2/p, the coefficients should be 0.

49

Coefficient of r2
q for q 6= 1: The coefficient of r2

q for q ∈ [2,Γ] is Σlc1,q,lfl(α,β,γ)−Σl,j,kc3,q,q,j,kβjγk+
Σl,i,j,kc5,q,i,j,k(xq,i − αi)βjγk. Now applying Schwartz-Zippel lemma again and setting coefficients
of αiβjγk and βjγk to be 0, we observe the following conditions. With probability at least 1− 3/p,
we have:

• −c3,q,q,j,k + Σic5,q,i,j,kxq,i = 0

• −c5,q,i,j,k + Σlc1,q,lfl,i,j,k = 0

Coefficient of r2
q for q = 1: The coefficient of r2

1 is Σlc2,lfl(α,β,γ)−Σj,kc4,j,kβjγk+Σl,i,j,kc5,1,i,j,k(x1,i−
αi)βjγk. Now applying Schwartz-Zippel again and setting coefficients of αiβjγk and βjγk to be 0,
we observe the following conditions. With probability at least 1− 3/p, we have:

• −c4,j,k + Σic5,1,i,j,kx1,i = 0

• −c5,1,i,j,k + Σlc2,lfl,i,j,k = 0

Coefficient of 1: The coefficient of 1 is, c = c6 + Σq 6=1,j,kc3,q,q,j,kyq,jzq,k + Σlc2,lθl. Note from the
previous claim, we observe that this coefficient is equal to:

c = c6 + Σq 6=1,j,kΣic5,q,i,j,kxq,iyq,jzq,k + Σlc2,lθl

From the second claim in the previous case we observe:

c = c6 + Σq 6=1,j,kΣiΣlc1,q,lf1,i,j,kxq,iyq,jzq,k + Σlc2,1θ1

Thus
c = c6 + Σq 6=1,lc1,q,lfl(xq,yq, zk) + Σlc2,lf(x1,y1, z1)

By Schwartz-Zippel lemma c = 0.
Thus, this shows that both Case 1 and Case 3 are indistinuishable as they lead to the same

condition. The oracle returns 0 to the polynomials submitted by the adversary only in the case
when these polynomials are linear functions in the decryptions fl(Mq) for l ∈ [η], q ∈ [Γ]. Here Mq

denotes the qth message encrypted.

12 Step 3: Construction of Semi-Functional FE for Cubic Poly-
nomials

In this section we construct and then prove correctness, efficiency and security for semi-functional
functional encryption for cubic functions (referred as FE3). For this construction we assume the
existence of a three-restricted 3FE for a specific function class (defined below) and a tempered cubic
encoding scheme, TCE.

50

Function class of interest for FE3: We construct a semi-functional functional encryption
scheme for cubic homogenous polynomials over variables over integers Z. Formally, consider a
set of functions FFE3,λ,n = {f : [−ρ, ρ]n → Z}. Here n is seen as a function of λ and ρ is a constant.
Each f ∈ FFE3,λ,n takes as input x = (x1, .., xn) ∈ [−ρ, ρ]n and computes a polynomial of the
form Σci,j,kxixjxk over Z (where some variables can repeat) and each coefficient ci,j,k ∈ [−ρ, ρ]
and Σj,k|ci,j,k| < w(λ) for some fixed polynomial w(λ) independent of n. In order to implement
semi-functional functional encryption for this class of functions we use a 3FE scheme over some
large prime p and a TCE scheme with a plain-text space is Z ∩ [−∆,∆] for some large enough ∆.
Note that if p is large the result of computation is the same as the computation done over Z.

Setting parameters of TCE: We require the following notational properties of TCE which can
be instanitated as in Section 10.1.

1. We require the plain-text space Z to be Z ∩ [−∆,∆] for some polynomial ∆. ∆ should be
larger than w(λ)ρ3. This is so as to allow the computations of FFE3 to be done over Z (instead
of Z) as FFE3 contain polynomials that act on inputs in [−ρ, ρ]. This idea will be more clear
when we describe the construction.

2. (Representation) The encoding of any element a ∈ R at any level l ∈ {1, 2, 3} should consist
of three parts as described now: [a]l = ([a]l.pub, [a]l.priv(1), [a]l.priv(2)). Each part is thought
of as a vector of dimension d = d(λ) over Zp for some prime p = p(λ).

3. Security: We require that TCE scheme satisfy (Sη)−Tempered Security. We will prove that
if TCE satisfies Sη−tempered security, the semi-functional FE scheme for cubic polynomials
will satisfy Sη−Bounded semi-functional security. Thus, to construct a semi-functional FE
scheme for cubic polynomials for class of functions Sη, we need TCE to satisfy Sη−tempered
security. Denote by Sη = (FFE3,λ,n)η. Here, η is the maximum number of key queries handled
by the scheme.

4. Cubic Evaluation: We require that TCE.Decode(q, g, ·) for any cubic homogeneous polyno-
mial amounts to evaluating another cubic homogeneous polynomial φq,g on Zp over encodings
(with partial degree 1 in public as well as private components). This follows from the cubic
evaluation property of Tempered Cubic Encoding.

Function class for 3FE: To allow compatability with TCE we will use 3FE for the following class
of functions. F3FE,λ,3nd,p = {f : {Z3nd

p }3 → Zp} where Zp is a finite field of order p(λ) takes as
input (x,y, z) where each vector over Zp is of length 3nd and computes a polynomial of the form
Σci,j,kxiyjzk over Zp.

12.1 Construction

Now we formally present our construction.

FE3.Setup(1λ, 1n) : On input the security parameter 1λ the setup algorithm does the following:

1. Compute TCE.Setup(1λ, 1n)→ params.

2. Sample (q1, ..., qη)← TCE.SetupDec(params).

51

3. Let Zp denote the prime field associated with TCE encodings. Let [−ρ, ρ]n for some n = n(λ)
denote the plaintext space of which the scheme needs to be constructed. Let d = d(λ) be the
dimension of each part of encoding of TCE.

4. Now let 3FE denote the scheme for the function class F3FE = F3FE,λ,3nd,p. Run 3FE.Setup(1λ)→
sk.

5. Then sample sp← TCE.SetupEnc(params). Encode vector z with zi = 0 for i ∈ [n] at all the
three levels. That is, compute [zi]i,j ← Encode(sp, zi, i, j) for every i ∈ [n] and j ∈ [3]. Denote
[zi]i,j = ([zi]i,j .pub, [zi]i,j .priv(1), [zi]i,j .priv(2)). Here, both public and private components
belong to Zd

p. These encodings are used only in the semi-functional algorithms.

6. Output MSK = (params, sk, sp, {[zi]i,j}i∈[n],j∈[3] , {qj}j∈[η]).

FE3.Enc(MSK,x = (x1, .., xn) ∈ [−ρ, ρ]n) : On input the encryption key and the plaintext message
in [−ρ, ρ]n the encryption algorithm does the following:

1. Run TCE.SetupEnc(params)→ sp1.

2. Encode each xi for i ∈ [n] at all the three levels. That is compute [xi]i,j ← Encode(sp1, xi, i, j)
for every i ∈ [n] and j ∈ [3]. Denote [xi]i,j = ([xi]i,j .pub, [xi]i,j .priv(1), [xi]i,j .priv(2)). Here
[xi]i,j .pub, [xi]i,j .priv(1) and [xi]i,j .priv(2) belong to Zd

p

3. Construct three vectors A,B and C in Z3nd
p as follows.

• Set A as the vector of level pub parts of encodings. That is, A =
(
{[xi]i,j .pub}i∈[n],j∈[3]

)
.

• Set B as the vector of level priv(1) part of encodings. That is, B =
(
{[xi]i,j .priv(1), }i∈[n],j∈[3]

)
.

• Set C as the vector of level priv(3) part of encodings. That is, C =
(
{[xi]i,j .priv(2), }i∈[n],j∈[3]

)
.

4. Encrypt these encodings using 3FE scheme and output the resulting ciphertext. Formally,
output CT← 3FE.Enc(sk,A,B,C)

FE3.KeyGen(MSK, i, f ∈ FFE3,λ,n) : The key generation on input the master secret key MSK, an
index i and a cubic integer polynomial f with coefficients over n variables from [−ρ, ρ] does the
following:

1. Parse MSK = (params, sk, sp, {[zi]i,j}i∈[n],j∈[3] , {qj}j∈[η]).

2. See f as a polynomial with short coefficients over Z. Let φqi,f denote the resulting polynomial
in F3FE that computes TCE.Decode(qi, f, ·) ∈ Zp,

3. Compute a key for the function skf ← 3FE.KeyGen(sk, φqi,f). Output (qi, skf).

FE3.Dec ((q, skf),CT) : The decryption algorithm on input a 3FE functional key skf and TCE
decoding parameter q and a ciphertext CT does the following.

52

1. Compute temp ← 3FE.Dec(skf , 1
BFE3 ,CT) for some large enough polynomial BFE3 to ensure

correctness (described shortly).

2. temp is either a value in [−BFE3 , BFE3] or ⊥. If it is ⊥, output 1 otherwise output 0.

Now we argue the properties associated with the scheme.

Correctness: We argue correctness now. Consider the following:

• Ciphertext, CT← 3FE.Enc(sk, {[xi]i,j .pub}i∈[n],j∈[3], {[xi]i,j .priv(1)}i∈[n],j∈[3], {[xi]i,j .priv(2)}i∈[n],j∈[3]).

• Function key for f , skf ← 3FE.KeyGen(sk, φq,f). Here q is the decoding parameter.

Due to the correctness of the scheme 3FE and cubic evaluation property of TCE, the decryption
function , 3FE.Dec(skf , 1

BFE3 ,CT) does the following:
It checks |Decode(q, f, {[xi]i,j}i∈[n],j∈[3])| < BFE3 . If this is the case it outputs Decode(q, f, {[xi]i,j}i∈[n],j∈[3]),
otherwise it outputs ⊥. Now there are two cases:

• If f(x1, .., xn) = 0 then |Decode(q, f, {[xi]i,j}i∈[n],j∈[3])| < BFE3 due to correctness of TCE. In
this case we always output 0. Thus BFE3 = TCEbound(λ, n)

• If f(x1, .., xn) 6= 0 then |Decode(q, f, {[xi]i,j}i∈[n],j∈[3])| > TCEbound(λ, n) with overwhelming
probability due to correctness of TCE. In this case, we output 1 with overwhelming probability
as 3FE decryption outputs a ⊥ with overwhelming probability.

Efficiency: We now bound the size of the circuit computing ciphertext to encrypt x = (x1, .., xn) ∈
[−ρ, ρ]n. Encryption of x consists of 3FE encryption of three encoding parts of xi for i ∈ [n]. The
size of circuit computing each encoding [xi]i,j is polynomial in 3 log2 p · d < poly(λ, log n) for some
polynomial poly, due to the efficiency of the TCE scheme. Due to the linear efficiency of 3FE the
size of circuit computing CT is less than n · poly′(λ, log n) for some polynomial poly′. Note that
n < 2λ, hence, the claim follows.

12.2 Security Proof

Now we argue security.

Theorem 11. If 3FE is a secure three-restricted functional encryption scheme and TCE satisfies
Sη−tempered security, then the scheme described in Section 12.1 is a Sη−bounded secure semi-
functional functional encryption scheme for homogenous degree three polynomials according to def-
inition 18.

Proof. First we present the semi-functional algorithms and then prove Sη−bounded indistinguisha-
bility of semi-functional ciphertexts and Sη−bounded indistinguishability of semi-functional keys
separately.

FE3.sfKG(MSK, k, f ∈ FFE3,λ,n, θ) : The key generation on input the master secret key MSK =
(params, sk, sp, {[zi]i,j}i∈[n],j∈[3] {qj}j∈[η]), a cubic integer polynomial f over n variables from [−ρ, ρ],

an index k ∈ [η] along with a value θ ∈ Zp does the following:

53

1. Compute leaksim ← TCE.Sim
(
qk, f, {[zi]i,1}i∈[n], {[zi]i,2}i∈[n], {[zi]i,3}i∈[n], θ

)
.

2. Compute a 3FE semi-functional key for the function φqk,f , skf,θ ← 3FE.sfKG(sk, φqk,f , leaksim).
Output skf,θ.

We now describe the semi-functional encryption algorithm:

FE3.sfEnc(MSK, 1n) : On input the encryption key MSK = (params, sk, sp,
{

[zi]{j}
}
i∈[n],j∈[3]

, {qj}j∈[η])

and the length of the plaintext message n, the encryption algorithm does the following:

1. Parse A =
(
{[zi]i,j .pub}i∈[n],j∈[3]

)
in Z3nd

p .

2. Encrypt A using the semi-functional encryption algorithm of 3FE scheme and output the
resulting ciphertext. Formally, output ctsf ← 3FE.sfEnc(sk,A, 13nd, 13nd).

We now prove the indistinguishability of semi-functional key property.

Sη−bounded Indistinguishability of semi-functional key property: We do this by pre-
senting two hybrids, where the first hybrid correspond to the security where when the function
keys are honestly generated whereas the last hybrid corresponds to the security game when the
functional keys are semi-functional.

Hybrid0 : This corresponds to the security game with challenge bit b = 0:

1. Adversary outputs message queries Xk = (xk1, .., x
k
n) for k ∈ [q].

2. Challenger runs Setup to get 3FE encryption key sk, the encodings {[zi]i,j}i∈[n],j∈[3] and the
TCE public parameters params and encoding parameter sp.It also samples decoding parame-
ters {qi}i∈[η].

3. The challenger computes CTk ← Enc(MSK,Xk) for k ∈ [q].

4. Now the adversary requests functions (f1, .., fη) ∈ Sη. It specifies values θi for i ∈ [η].

The polynomials (qi, fi) uniquely defines a cubic polynomial φqi,fi for each i ∈ [η].

5. The challenger computes leaki ← TCE.Sim(qi, fi, {[zi]i,j}i∈[n],j∈[3] , fi, θi)

6. Challenger outputs (qi, skfi ← 3FE.KeyGen(sk, φqi,fi)) as the function key for i ∈ [η].

7. Adversary outputs b′.

Hybrid1 : This corresponds to the real security game with challenge bit b = 1. The change is
marked with the boldfaced word [Change]:

1. Adversary outputs message queries Xk = (xk1, .., x
k
n) for k ∈ [q].

2. Challenger runs Setup to get 3FE encryption key sk, the encodings {[zi]i,j}i∈[n],j∈[3] and
the TCE public parameters params and encoding parameter sp. It also samples decoding
parameters {qi}i∈[η].

54

3. The challenger computes CTk ← Enc(MSK,Xk) for k ∈ [q].

4. Now the adversary requests functions (f1, .., fη) ∈ Sη. It specifies values θi for i ∈ [η].

The polynomials (qi, fi) uniquely defines a cubic polynomial φqi,fi for each i ∈ [η].

5. The challenger computes leaki ← TCE.Sim(qi, fi, {[zi]i,j}i∈[n],j∈[3] , fi, θi)

6. [Change] Challenger outputs (qi, skfi,θi ← 3FE.sfKG(sk, φfi , leaki)) as the function key for
i ∈ [η].

7. Adversary outputs b′.

Lemma 3. If 3FE scheme satisfies indistinguishability of semi-functional key property then there
exists some constant c > 0 such that for any adversary of size 2λ

c
, |Pr[A(Hybrid0) = 1] −

Pr[A(Hybrid1) = 1]| < 2−λ
c
.

Proof. (Sketch) The only way in which the above two hybrids differ is the way the keys for functions
fi for each i ∈ [η] are generated. In Hybrid0 they are generated using 3FE.KeyGen, while in
Hybrid1 they are generated using 3FE.sfKG algorithm. Note that in both the hybrids 3FE.sfEnc is
not used. The reduction can be sketched as follows. The reduction generates the TCE parameters
and encodings itself. Then, it gets from the adversary the messages Xk, functions (f1, .., fη) and
values (θ1, .., θη). It generates values leaki (using TCE parameters) and passes it along with messages
and functions to the challenger of 3FE scheme. Challenger can then encrypt the cipher-text honestly.
It flips a coin and either sends functional keys or the semi-functional keys. These are then used to
simulate rest of the game. In the end the adversary outputs bit b′ which the reduction outputs as
it is. The indistinguishability now follows from the indistinguishability of semi-functional keys.

Sη−bounded Indistinguishability of semi-functional ciphertext property Fix messages
Mi = {(xi)}i∈Γ for some polynomial Γ and a challenge M∗ = (x,y, z). Also fix f1, ..., fη ∈ Sη.
This defines aux = (1λ, 1n,Γ,Mi = {(xi)}i∈Γ,M

∗ = (x∗), f1, .., fη). Set θi = fi(M
∗) for all i ∈ [η].

We now prove security by describing hybrids and arguing indistinguishability between them.
Hybrid0 : This corresponds to the security game with challenge bit b = 0:

1. Challenger runs Setup to get 3FE encryption key sk, the encodings {[zi]i,j}i∈[n],j∈[3] and the

TCE public parameters params and encoding parameter sp and decoding parameters {qi}i∈[η].

2. The challenger computes CTk ← Enc(MSK,Mi) for i ∈ [Γ].

3. The challenger also encrypts M∗.

(a) Run TCE.SetupEnc(params)→ sp1.

(b) Encode each x∗i for i ∈ [n] at all the three levels. That is compute [x∗i]i,j ← Encode(sp1, x
∗
i , i, j)

for every i ∈ [n] and j ∈ [3]. Denote [x∗i]i,j = ([x∗i]i,j .pub, [x
∗
i]i,j .priv(1), [x∗i]i,j .priv(2)).

Here [x∗i]i,j .pub, [x∗i]i,j .priv(1) and [x∗i]i,j .priv(2) belong to Zd
p

(c) Construct three vectors A,B and C in Z3nd
p as follows.

• Set A as the vector of level pub parts of encodings. That is, A =
(
{[x∗i]i,j .pub}i∈[n],j∈[3]

)
.

55

• Set B as the vector of level priv(1) part of encodings. That is, B =
(
{[x∗i]i,j .priv(1), }i∈[n],j∈[3]

)
.

• Set C as the vector of level priv(3) part of encodings. That is, C =
(
{[x∗i]i,j .priv(2), }i∈[n],j∈[3]

)
.

(d) Encrypt these encodings using 3FE scheme and output the resulting ciphertext. Formally,
output CT← 3FE.Enc(sk,A,B,C)

4. The polynomials (qi, fi) uniquely defines a cubic polynomial φqi,fi for each i ∈ [η].

5. The challenger computes leaki ← TCE.Sim(qi, fi, {[zi]i,j}i∈[n],j∈[3] , fi, θi)

6. Challenger outputs (qi, skfi ← 3FE.sfKG(sk, φqi,fi , leaki)) as the function key for i ∈ [η].

7. Adversary outputs b′.

Hybrid1 : This corresponds is the same as the previous hybrid, except that function keys are
generated using a semi-functional key with different hardwired values. The change is marked with
boldfaced word [Change].

1. Challenger runs Setup to get 3FE encryption key sk, the encodings {[zi]i,j}i∈[n],j∈[3] and the

TCE public parameters params and encoding parameter sp and decoding parameters {qi}i∈[η].

2. The challenger computes CTk ← Enc(MSK,Mi) for i ∈ [Γ].

3. The challenger also encrypts M∗.

(a) Run TCE.SetupEnc(params)→ sp1.

(b) Encode each x∗i for i ∈ [n] at all the three levels. That is compute [x∗i]i,j ← Encode(sp1, x
∗
i , i, j)

for every i ∈ [n] and j ∈ [3]. Denote [x∗i]i,j = ([x∗i]i,j .pub, [x
∗
i]i,j .priv(1), [x∗i]i,j .priv(2)).

Here [x∗i]i,j .pub, [x∗i]i,j .priv(1) and [x∗i]i,j .priv(2) belong to Zd
p

(c) Construct three vectors A,B and C in Z3nd
p as follows.

• Set A as the vector of level pub parts of encodings. That is, A =
(
{[x∗i]i,j .pub}i∈[n],j∈[3]

)
.

• Set B as the vector of level priv(1) part of encodings. That is, B =
(
{[x∗i]i,j .priv(1), }i∈[n],j∈[3]

)
.

• Set C as the vector of level priv(3) part of encodings. That is, C =
(
{[x∗i]i,j .priv(2), }i∈[n],j∈[3]

)
.

(d) Encrypt these encodings using 3FE scheme and output the resulting ciphertext. Formally,
output CT← 3FE.Enc(sk,A,B,C)

4. The polynomials (qi, fi) uniquely defines a cubic polynomial φqi,fi for each i ∈ [η].

5. [Change] The challenger computes leaki ← TCE.Dec(qi, fi, {[x∗i]i,j}i∈[n],j∈[3])

6. Challenger outputs (qi, skfi ← 3FE.sfKG(sk, φqi,fi , leaki)) as the function key for i ∈ [η].

7. Adversary outputs b′.

Lemma 4. If 3FE satisfies semi-functional security, then there exists a constant c > 0 such that
for any adversary A of size 2λ

c
, |Pr[A(Hybrid0) = 1]− Pr[A(Hybrid1) = 1| < 2−λ

c
.

56

Proof. (Sketch) The only difference between the two hybrids is the hardwirings while comput-
ing semi-functional functional keys. In both hybrids, ciphertexts are generated by using 3FE.Enc
algorithm. The indistinguishability follows from the indistinguishability of semi-functional keys
property of the 3FE scheme.

Hybrid2 : This corresponds is the same as the previous hybrid, except that challenge ciphertext
is generated using semi-functional encryption algorithm of 3FE scheme.

1. Challenger runs Setup to get 3FE encryption key sk, the encodings {[zi]i,j}i∈[n],j∈[3] and the

TCE public parameters params and encoding parameter sp and decoding parameters {qi}i∈[η].

2. The challenger computes CTk ← Enc(MSK,Mi) for i ∈ [Γ].

3. The challenger also encrypts M∗.

(a) Run TCE.SetupEnc(params)→ sp1.

(b) Encode each x∗i for i ∈ [n] at all the three levels. That is compute [x∗i]i,j ← Encode(sp1, x
∗
i , i, j)

for every i ∈ [n] and j ∈ [3]. Denote [x∗i]i,j = ([x∗i]i,j .pub, [x
∗
i]i,j .priv(1), [x∗i]i,j .priv(2)).

Here [x∗i]i,j .pub, [x∗i]i,j .priv(1) and [x∗i]i,j .priv(2) belong to Zd
p

(c) Construct three vectors A,B and C in Z3nd
p as follows.

• Set A as the vector of level pub parts of encodings. That is, A =
(
{[x∗i]i,j .pub}i∈[n],j∈[3]

)
.

• Set B as the vector of level priv(1) part of encodings. That is, B =
(
{[x∗i]i,j .priv(1), }i∈[n],j∈[3]

)
.

• Set C as the vector of level priv(3) part of encodings. That is, C =
(
{[x∗i]i,j .priv(2), }i∈[n],j∈[3]

)
.

(d) [Change] Encrypt these encodings using 3FE scheme and output the resulting cipher-
text. Formally, output CT← 3FE.sfEnc(sk,A, 13nd, 13nd).

4. The polynomials (qi, fi) uniquely defines a cubic polynomial φqi,fi for each i ∈ [η].

5. The challenger computes leaki ← φqi,fi(A,B,C) = TCE.Dec(qi, fi, {[x∗i]i,j}i∈[n],j∈[3]).

6. Challenger outputs (qi, skfi ← 3FE.sfKG(sk, φqi,fi , leaki)) as the function key for i ∈ [η].

7. Adversary outputs b′.

Lemma 5. If 3FE is a secure three restricted FE scheme, then there exists a constant c > 0 such
that for any adversary A of size 2λ

c
, |Pr[A(Hybrid1) = 1]− Pr[A(Hybrid2) = 1| < 2−λ

c
.

Proof. (Sketch.) The only difference between the two hybrids is the way CT∗ is generated. In
Hybrid1 it is generated using 3FE.Enc algorithm, encrypting (A,B,C). In Hybrid2, it is generated
as 3FE.sfEnc(sk,A, 13nd, 13nd). Note that function keys are generated according to the requirement
of the indistinguishability of semi-functional ciphertexts security game. The indistinguishability
follows from the indistinguishability of semi-functional ciphertext property of the 3FE scheme.

Hybrid3 : This corresponds to challenge bit b = 1. Namely, this hybrid is the same as the
previous one except that both A and leaki are generated as in TCE security game with challenge
bit 1.

57

1. Challenger runs Setup to get 3FE encryption key sk, the encodings {[zi]i,j}i∈[n],j∈[3] and the

TCE public parameters params and encoding parameter sp and decoding parameters {qi}i∈[η].

2. The challenger computes CTk ← Enc(MSK,Mi) for i ∈ [Γ].

3. The challenger also encrypts M∗.

(a) Run TCE.SetupEnc(params)→ sp1.

(b) Encode each x∗i for i ∈ [n] at all the three levels. That is compute [x∗i]i,j ← Encode(sp1, x
∗
i , i, j)

for every i ∈ [n] and j ∈ [3]. Denote [x∗i]i,j = ([x∗i]i,j .pub, [x
∗
i]i,j .priv(1), [x∗i]i,j .priv(2)).

Here [x∗i]i,j .pub, [x∗i]i,j .priv(1) and [x∗i]i,j .priv(2) belong to Zd
p

(c) Construct three vectors A,B and C in Z3nd
p as follows.

• [Change] Set A as the vector of level pub parts of encodings. That is, A =(
{[zi]i,j .pub}i∈[n],j∈[3]

)
.

(d) Encrypt these encodings using 3FE scheme and output the resulting ciphertext. Formally,
output CT← 3FE.sfEnc(sk,A, 13nd, 13nd).

4. The polynomials (qi, fi) uniquely defines a cubic polynomial φqi,fi for each i ∈ [η].

5. [Change] The challenger computes leaki ← TCE.Sim(qi, fi, {[zi]i,j}i∈[n],j∈[3] , fi, θi).

6. Challenger outputs (qi, skfi ← 3FE.sfKG(sk, φqi,fi , leaki)) as the function key for i ∈ [η].

7. Adversary outputs b′.

Lemma 6. If TCE satisfies Sη−tempered security, then there exists a constant c > 0 such that for
any adversary A, |Pr[A(Hybrid2) = 1]− Pr[A(Hybrid3) = 1| < 1− 1/λ+ negl(λ).

Proof. (Sketch.) Note that both the hybrids depend only on public part of encoding A and leakages
θi. In Hybrid2, they correspond to actual encoding of M∗, in Hybrid3, they are simulated. The
indistinguishability follows from Sη tempered security of TCE scheme.

Thus we get the result from the above three lemmas.

13 Step 4: (Sublinear) Semi-Functional Secret Key FE from Semi-
Functional FE for Cubic Polynomials

13.1 Randomizing Polynomials

A randomizing polynomials scheme defined over a field Zp consists of probabilistic polynomial time
algorithms (CktEncd, InpEncd,Decd) and is associated with a class of circuits,

Fn,s = {C : {0, 1}n → {0, 1}m : C is of size s}

• CktEncd(1λ, C): On input security parameter λ, a circuit C, it outputs polynomials (p1, . . . , pN)
over Zp. This is a deterministic algorithm.

58

• InpEncd(x;R): On input x, randomness R, it outputs the input encoding x.

• Decd(p1(x), . . . , pN (x)): On input p1(x), . . . , pN (x), it outputs the decoded value y.

Definition 19. A tuple of algorithms RP = (CktEncd, InpEncd,Decd) is a randomizing polynomials
scheme with ε-sublinear randomness complexity for a class of circuits Fn,s over Zp if the following
properties are satisfied:

• Correctness: For every C ∈ Fn,s, input x ∈ {0, 1}n, for sufficiently large λ ∈ N, we have
Pr[Decd(p1(x), . . . , pN (x)) = C(x)] ≥ 1− negl(λ), for some negligible function negl, where:

- (p1, . . . , pN)← CktEncd(1λ, C)
- x← InpEncd(x;R), where R is sampled from uniform distribution.

• adv-Security: There exists a simulator Sim such that the following holds: for every C ∈
Fn,s, x ∈ {0, 1}n, sufficiently large λ ∈ N, consider CktEncd(1λ, C) → (p1, . . . , pN) and
InpEncd(x)→ x. Then, for all adversaries A of size at most O(2λ),

Pr[A(p1(x), ..., pN (x)) = 1]− Pr[A(Sim(1λ, C, C(x))) = 1] < adv(λ) + negl(λ)

• ε-Sublinear Input Encoding: We require that the size of the circuit computing InpEncd(x;R)

is (n+ s
1

1+ε) · poly(λ).

Moreover, we say that RP is a degree-d randomizing polynomials scheme if every polynomial pi is
homogenous and has degree exactly d.

Definition 20. Let λ be the security parameter. By Cn,s we denote the set of circuits C : {0, 1}n →
{0, 1}∗ with size bounded by some polynomial s(n, λ) and depth λ. In particular, this class contains
NC1 circuits of size s(n, λ).

We construct a sublinear semi-functional secret key FE for Cn,s for s = n1+ε for some ε > 0
starting from semi-functional FE for Fλ,3, where Fλ consists of all polynomial-sized (in λ) cir-
cuits and Fλ,3 consists of all cubic polynomials over Z. As an intermediate tool, we consider
the notion degree three randomizing polynomials with ε-sublinear randomness complexity RP =
(CktEncd, InpEncd,Decd) for some ε > 0. Let SimRP be the simulator associated with the random-
izing polynomials scheme. Such RP was constructed in [LT17]:

Theorem 12 (Imported Theorem [LT17]). Assuming there exists pseudorandom generators with

• block locality three and stretch n1+ε′ for some ε′ > 0.

• distinguishing gap bounded by adv for adversaries of size 2λ

there exist a adv-secure degree three randomizing polynomials scheme with 1
1+ε′−sublinear efficiency.

We now describe the ingredients of the construction:

59

Ingredients.

• A degree 3 randomizing polynomials scheme RP for Cn,s with ε = 1
1+ε′ sublinear complexity.

Here ε′ > 0 is some constant. For any circuit C ∈ Cn,s, let N denote the number such that
CktEncd(1λ, C) = (p1, ..., pN). N is upper bounded by spoly(λ) for some polynomial poly.
Also, each polynomial pi is such that the sum of the absolute values of the coefficients are
bounded by a fixed polynomial w(λ). Let RP satisfy advRP−security.

• A Semi-functional FE scheme for cubic polynomials to be sFE3 = (Setup,KeyGen,Enc,Dec)
associated with semi-functional algorithms (sFE3.sfEnc, sFE3.sfKG). We require sFE3 to satisfy
Sη−Bounded semi-functional security. Sη is the set FN , where the set F denotes the set of all
homogeneous cubic polynomials with sum of absolute values of coefficients weight bounded by
w(λ). Note that the polynomials generated by RP are in class F . In Section 12, we construct
such a notion with distinguishing gap bounded by 1 − 1/λ, but for a general exposition we
assume that it is bounded by some advantage advsFE3 .

We denote the scheme we construct to be sFE.

Setup(1λ, 1n): On input security parameter λ, input length n, it executes the setup of the under-

lying semi-functional FE scheme to obtain sFE3.MSK ← sFE.Setup(1λ, 1n
′
). It outputs secret key

MSK = sFE3.MSK. Here n′ is the output length of |InpEncd(·, ·)|. Note that n′ = npoly(λ) for some
fixed polynomial poly.

KeyGen(MSK, C): It takes as input master secret key MSK and circuit C.

• Compute the polynomials associated with the randomizing polynomials scheme; (p1, . . . , pN)←
CktEncd(1λ, C).

• Compute the sFE3 keys associated with the polynomials (p1, . . . , pN); for every i ∈ [N],
compute sFE3.KeyGen(sFE3.MSK; pi) to obtain sFE3.skpi .

Output the functional key skC = (sFE3.skp1 , . . . , sFE3.skpN). Note that N = |C|poly(λ) for some
polynomial poly.

Enc(MSK, x): It takes as input the master secret key MSK and input x, of length n. It sam-
ples a binary string R uniformly at random of length `R. Here, `R is the length of randomness
used in algorithm InpEncd to encode a circuit of size |C| and input length n. It then computes
x ← RP.InpEncd(x,R). It then computes CT ← sFE3.Enc(MSK,x). It outputs the ciphertext
sFE.CT = sFE3.CT.

Dec(skC ,CT): It takes as input functional key skC and ciphertext CT. It executes the following
steps:

• Parse skC as (skp1 , . . . , skpN). Compute sFE3.Dec(skpi ,CT) to obtain ỹi, for ever i ∈ [N].

• Compute RP.Decode(ỹ1, . . . , ỹN) to obtain the output z.

Output z.

60

Correctness. Consider a circuit C ∈ Fλ and input x. Let the functional key, skC = (skp1 , . . . , skpN)
and ciphertext, CT = sFE3.Enc(MSK,x), where x← RP.InpEncd(x,R), be as generated in the above
scheme. From the correctness of sFE3, we have that sFE3.Dec(skpi ,CT) yields pi(x) for every i ∈ [N].
Moreover, from the correctness of randomizing polynomials, we have that the output of RP.Decode
on input (p1(x), . . . , pN (x)) is C(x).

Encryption Complexity. From the multiplicative overhead property in encryption complexity
of sFE3, we have:

|Enc(MSK, x)| = |x| · poly1(λ)

= n′ · poly1(λ)

= npoly2(λ) · poly(λ)

≤ |C|ε · poly(|x|, λ) (∵ ε-sublinear randomness complexity of RP)

Thus, the encryption complexity is ε-sublinear in |C|, as intended.

13.2 Security

We show that sFE satisfies semi-functional security. Before we show that, we need to demonstrate
the semi-functional algorithms.

sFE.sfEnc(MSK, 1|x|): On input master secret key MSK, length of input 1|x|, we compute sFE3.FkCT←
sFE3.sfEnc(MSK, 1|x|). Output the semi-functional ciphertext, FkCT = sFE3.FkCT.

sFE.sfKG(MSK, C,Θ): On input master secret key MSK, circuit C, value θ, compute Sim(1λ, C,Θ)
to obtain (θ1, . . . , θN). It then computes sFE3.fk.ski ← sFE3.sfKG(MSK, pi, θi) for every i ∈ [N],
where (p1, . . . , pN)← CktEncd(1λ, C). Output skC = (sFE3.sk1, . . . , sFE3.skN).

Now we describe our theorem. Below we prove (sizeA, adv)−semi-functional security for the
scheme where adv = 1− 1/λ and sizeA = 2λ

c
for some constant c > 0. We omit referring them for

notational simplicity.

Theorem 13. Assuming the Sηbounded indistinguishability of semi-functional keys property of
sFE3, the scheme sFE satisfies indistinguishability of semi-functional keys property.

Proof. (Sketch.) There are just two hybrids in the proof. First hybrid corresponds to the case
when key and the ciphertexts are functionally generated. Second hybrid corresponds to the case
when ciphertexts are functionally encrypted while the key is semi-functionally generated. Since
sFE3 scheme satisfies indistinguishability of semi-functional keys property, the claim follows.

Theorem 14. Assuming advRP + advsFE3 < 1 − 1/λ, the Sηbounded semi-functional security of
sFE3 and advRP−security of RP, the scheme sFE satisfies indistinguishability of semi-functional
ciphertext property.

Proof. (Sketch.) We now list hybrids. First hybrid corresponds to the case when the ciphertext is
functionally encrypted and the keys are semi-functional, whereas, in the last hybrid the ciphertext
is semi-functionally encrypted and the keys are semi-functionally encrypted.

Hybrid0 :

61

1. Adversary A on input 1λ, outputs challenge message x∗, message queries {xi}i∈[Γ] and circuit
C.

2. The challenger samples MSK← sFE.Setup(1λ).

3. Encrypt message queries honestly CT← sFE.Enc(MSK, xi) for i ∈ [Γ].

4. To encrypt the challenge message do the following:

• Sample a binary string R uniformly at random of length `R. Here, `R is the length of
randomness used in algorithm InpEncd to encode a circuit of size |C| and input length
n.

• Compute x← RP.InpEncd(x∗, R).

• Compute CT∗ ← sFE3.Enc(MSK,x)

• Set θ = C(x∗)

5. To generate the function key, do the following.

• On input master secret key MSK, circuit C, value θ, compute Sim(1λ, C,Θ) to obtain
(θ1, . . . , θN). It then computes sFE3.fk.ski ← sFE3.sfKG(MSK, pi, θi) for every i ∈ [N],
where (p1, . . . , pN)← CktEncd(1λ, C). Output skC = (sFE3.fk.sk1, . . . , sFE3.fk.skN).

6. . Give the following to the adversary:

• Challenge ciphertext CT∗.

• Ciphertext queries {CTi}i∈Γ

• Function key skC .

7. A guesses bit b′.

Hybrid1 : This hybrid is the same as the previous one except that hardwirings in the semi-
functional keys are done differently. We describe the hybrid now. The change is described with
boldfaced word [Change].

1. Adversary A on input 1λ, outputs challenge message x∗, message queries {xi}i∈[Γ] and circuit
C.

2. The challenger samples MSK← sFE.Setup(1λ).

3. Encrypt message queries honestly CT← sFE.Enc(MSK, xi) for i ∈ [Γ].

4. To encrypt the challenge message do the following:

• Sample a binary string R uniformly at random of length `R. Here, `R is the length of
randomness used in algorithm InpEncd to encode a circuit of size |C| and input length
n.

• Compute x← RP.InpEncd(x∗, R).

• Compute CT∗ ← sFE3.Enc(MSK,x)

62

• Set θ = C(x∗)

5. [Change] To generate the function key, do the following.

• On input master secret key MSK, circuit C, do the following.

• Let (p1, . . . , pN)← CktEncd(1λ, C).

• Set (θ1, . . . , θN) = (p1(x), . . . , pN (x))

• compute sFE3.fk.ski ← sFE3.sfKG(MSK, pi, θi) for every i ∈ [N]. Set skC = (sFE3.fk.sk1,
. . . , sFE3.fk.skN).

6. . Give the following to the adversary:

• Challenge ciphertext CT∗.

• Ciphertext queries {CTi}i∈Γ

• Function key skC .

7. A guesses bit b′.

Lemma 7. If sFE3 satisfies Sη indistinguishability of semi-functional key property then there exits a
constant c0 for any adversary D of size 2λ

c0 , |Pr[D(Hybrid0) = 1]−Pr[D(Hybrid1) = 1]| < 2−λ
c0 .

Proof. (Sketch). The only difference between the two hybrids is the way hardwirings θi for the keys
fk.ski for i ∈ [N] are generated. In Hybrid0, they are generated using RP.Sim, while in Hybrid1,
they are generated as pi(x) Note that in both hybrids CT∗ is functionally generated. The claim
then follows from the security of sFE3 scheme.

Hybrid2 : This hybrid is the same as the previous one except that ciphertext is generated using
sFE3.sfEnc algorithm. We describe the hybrid now.

1. Adversary A on input 1λ, outputs challenge message x∗, message queries {xi}i∈[Γ] and circuit
C.

2. The challenger samples MSK← sFE.Setup(1λ).

3. Encrypt message queries honestly CT← sFE.Enc(MSK, xi) for i ∈ [Γ].

4. To encrypt the challenge message do the following:

• Sample a binary string R uniformly at random of length `R. Here, `R is the length of
randomness used in algorithm InpEncd to encode a circuit of size |C| and input length
n.

• Compute x← RP.InpEncd(x∗, R).

• [Change] Compute CT∗ ← sFE3.Enc(MSK, 1λ)

• Set θ = C(x∗)

5. To generate the function key, do the following.

63

• On input master secret key MSK, circuit C, do the following.

• Let (p1, . . . , pN)← CktEncd(1λ, C).

• Set (θ1, . . . , θN) = (p1(x), . . . , pN (x))

• Compute sFE3.fk.ski ← sFE3.sfKG(MSK, pi, θi) for every i ∈ [N]. Set skC = (sFE3.fk.sk1,
. . . , sFE3.fk.skN).

6. Give the following to the adversary:

• Challenge ciphertext CT∗.

• Ciphertext queries {CTi}i∈Γ

• Function key skC .

7. A guesses bit b′.

Lemma 8. If sFE3 satisfies Sη−bounded indistinguishability of semi-functional ciphertexts then
there exists a constant c1 for any adversary D of size 2λ

c1 , |Pr[D(Hybrid1) = 1]−Pr[D(Hybrid2) =
1]| < advsFE3 + negl(λ).

Proof. (Sketch). The only difference between the two hybrids is the way CT∗ is generated. In
Hybrid1, they are generated using sFE3.Enc algorithm, while in Hybrid2, they are generated
using sFE3.sfEnc algorithm. Note that the keys are semi-functionally generated with θi = pi(x), as
required by indistinguishability of semi-functional ciphertexts property game of sFE3. The claim
then follows from the security of sFE3 scheme.

Hybrid3 : This hybrid is the same as the previous one except that the function key is generated
using sFE3.sfKG algorithm. We describe the hybrid now.

1. Adversary A on input 1λ, outputs challenge message x∗, message queries {xi}i∈[Γ] and circuit
C.

2. The challenger samples MSK← sFE.Setup(1λ).

3. Encrypt message queries honestly CT← sFE.Enc(MSK, xi) for i ∈ [Γ].

4. To encrypt the challenge message do the following:

• Sample a binary string R uniformly at random of length `R. Here, `R is the length of
randomness used in algorithm InpEncd to encode a circuit of size |C| and input length
n.

• Compute x← RP.InpEncd(x∗, R).

• Compute CT∗ ← sFE3.Enc(MSK, 1λ)

• Set θ = C(x∗)

5. [Change] To generate the function key, do the following.

64

• On input master secret key MSK, circuit C, value θ, compute Sim(1λ, C,Θ) to obtain
(θ1, . . . , θN). It then computes sFE3.fk.ski ← sFE3.sfKG(MSK, pi, θi) for every i ∈ [N],
where (p1, . . . , pN)← CktEncd(1λ, C). Output skC = (sFE3.fk.sk1, . . . , sFE3.fk.skN).

6. . Give the following to the adversary:

• Challenge ciphertext CT∗.

• Ciphertext queries {CTi}i∈Γ

• Function key skC .

7. A guesses bit b′.

Lemma 9. If RP is advRP−secure then for any adversary D of size 2λ, |Pr[D(Hybrid2) = 1] −
Pr[D(Hybrid3) = 1]| < advRP.

Proof. (Sketch). The only difference between the two hybrids is the way hardwirings θi are gener-
ated. In Hybrid2, they are generated as pi(x) where x← RP.InpEncd(x∗, R). In Hybrid3 they are
simulated using simulator of the RP scheme. Note that in both the hybrids CT∗ is semi-functionally
encrypted and x∗ is absent. The claim then follows from the security of RP scheme.

From the lemmas above, as long as the sum of advantages advRP + advsFE3 + negl < 1− 1/λ+
negl(λ), the claim goes through.

Remark 8. From the above proof, we observe that as long as advRP + advsFE3 < 1 − 1/λ, the
proof goes through. Thus we can allow a trade off in the required level of security between a three
block local PRGs and ∆RG. This is because advRP = advPRG and advsFE3 = adv∆RG upto negligible
factors. Here advPRG and adv∆RG is the allowed distinguishing gap for a three block local PRG and
∆RG respectively.

14 Step 5: Amplification

In this section, we construct (sizeFE, advFE)−secure ρ-sublinear secret key FE from the following
ingredients:

Ingredients: Assume there exist:

• PRF in NC1 with distinguishing gap O(advPRF) against adversaries of size O(sizePRF).

• A compact (sizeTFHE, advTFHE)−secure threshold fully homomorphic encryption scheme TFHE
for Cn,s, according to Definition 5. We note that there exist fixed polynomials p1, p2 such
that for any circuit C ∈ Cn,s according to Definition 19 and any PRF in NC1, the circuit
PartDec(·,Eval(C, ·);PRF(·, ·)) is in Cn′,s′ for n′ = n · p1(λ) and s′ = s · p2(λ).

• Statistically binding commitments Com in the CRS model, with (sizeCom, advCom)-security.
These can be instantiated based on (sizeCom, advCom)-secure one-way functions.

• Sublinear Semi-Functional FE scheme sFE for circuit class Cn′,s′ with (size, adv) semi-functional
security according to Section 9, Definition 17, where adv = 1− 1/p(λ) for some polynomial p.

65

We describe the the construction below.

• Setup(1λ) :

1. Set t = λ · p(λ).

2. For i ∈ [t], compute ski ← sFE.Setup(1λ).

3. Output MSK = (sk1, ..., skt)

• Enc(MSK,m) :

1. Parse MSK = (sk1, ..., skt).

2. Compute (fpk, fsk1, ..., fskt)← TFHE.Setup(1λ, 1t).

3. Compute fct← TFHE.Enc(fpk,m).

4. For i ∈ [t], sample Ki ← PRF.Setup(1λ).

5. For i ∈ [t], compute CTi ← sFE.Enc(ski, (fct, fski,Ki)).

6. Compute Z = Com(K1,,Kt, fsk1, ..., fskt).

7. Output (Z,CT1, . . . ,CTt).

• KeyGen(MSK,C) :

1. Parse MSK = (sk1, ..., skt).

2. Let F be the circuit described in Figure 3. For i ∈ [t], compute skC,i ← sFE.KeyGen(ski, F).

3. Output skC = (skC,1, ..., skC,t).

• Dec(skC,CT) :

1. Parse skC = (skC,1, ..., skC,t) and CT = (Z,CT1, ...,CTt).

2. For i ∈ [t], compute pi ← sFE.Dec(skC,i,CTi).

3. Output TFHE.FinDec(p1, ..., pt).

F

Input: TFHE ciphertext fct, Partial Decryption Key fski and a PRF key Ki

• Compute fctC ← TFHE.Eval(C, fct).

• Compute r ← PRF(K, fctC).

• Output PartDec(fski, fctC ; r)

Figure 3: Description of the Circuit F .

Remark 9. We note that the commitment in the scheme described above is only useful in the
security proof.

66

We prove the correctness, efficiency and security properties of the above described sub-linear
secret key FE scheme. Once we prove that, we will have the following theorem.

Theorem 15. Let (sizeFE, advFE) be some size and advantage parameters. Let sizeFE > poly(λ) for
some fixed polynomial. Then, assuming:

• (size2
FE · adv

−2
FE , adv = 1− 1/p(λ))−secure sublinear semifunctional FE scheme for Cn′,s′.

• (sizeFE · adv−2
FE · 2

λp(λ), advFE)−secure threshold homomorphic encryption scheme.

• (sizeFE · adv−2
FE · 2

λp(λ), advFE)−secure PRFs in NC1.

• (sizeFE · adv−2
FE · 2

λp(λ), advFE)−secure statistically binding commitments.

There exists a (sizeFE, 2
−λc1 + λ · p(λ) · advFE)−secure p(λ)c2 · λc2s1−εpoly(λ, n)−efficient secret key

FE scheme for Cn,s. Here c1, c2 > 0 and 1 > ε > 0 are constants.

Remark 10. Although the theorem above is a compiler from a semi-functional FE scheme to
a sublinear FE scheme (refer Section A for the definition), the theorem can be seen as security
amplification for any sublinear FE scheme. This is because, assuming one-way functions, one can
construct a sublinear semi-functional FE from a sublinear FE scheme (as shown in Section A) and
then use the theorem above.

The following corollary is an immediate consequence of the theorem above:

Corollary 1. Assuming there exists a constant c > 0 and there exists:

• (2λ
c
, adv = 1− 1/λ)−secure sublinear semi-functional FE scheme for Cn′,s′.

• (2λ
c
, 2−λ

c
)−secure threshold homomorphic encryption scheme.

• (2λ
c
, 2−λ

c
)−secure PRFs in NC1.

• (2λ
c
, 2−λ

c
)−secure statistically binding commitments.

There exists a sublinear secret key FE scheme for circuit class Cn,s with (2λ
c′
, 2−λ

c′
) security for

some constant c′ > 0.

The following corollary describes a more general setting of parameters. In particular, this covers
the case when underlying FE is secure against polynomial sized circuits.

Corollary 2. Assuming there exists a constant c > 0 and there exists:

• (sizeFE · adv−2
FE , adv = 1− 1/λ)−secure sublinear semi-functional FE scheme for Cn′,s′.

• (2λ
c
, 2−λ

c
)−secure threshold homomorphic encryption scheme.

• (2λ
c
, 2−λ

c
)−secure PRFs in NC1.

• (2λ
c
, 2−λ

c
)−secure statistically binding commitments.

There exists a sublinear secret key FE scheme for circuit class Cn,s with (sizeFE, λ
2 · advFE) security

for some constant c′ > 0.

We now prove the correctness, efficiency and security properties of the scheme.

67

Correctness: Correctness of this scheme follows from the correctness of underlying sFE scheme
and TFHE scheme.

tc · s1−εpoly(λ, n)-Efficiency. We now prove that the scheme above satisfies tc · s1−εpoly(λ, n)-
efficiency if underlying scheme is sublinear for the class Cn,s. Here c > 0 is some constant. We now
bound the size of the FE encryption circuit for class Cn,s. Note that for the encryption algorithm,

1. Step 1 takes time O(t · poly(λ)).

2. Step 2 takes time O(poly(t, λ)).

3. Step 3 takes time poly(λ, n, t) due to compactness of TFHE. Here n is the length of the
message.

4. Step 4 takes time O(poly(t, λ)).

5. Step 5 takes time O(t · T ′), where T ′ is the time taken by sFE.enc. Note that T ′ is sublinear
in s′ = s · poly(λ, t), due to sublinear efficiency of sFE. Hence it is also sublinear in s.

6. Steps 6 and 7 take time O(poly(λ, t)).

Therefore, the total time required by Enc is O(poly(λ, t, n) · T ′).
Thus if t is independent of the circuit size s, then the resulting scheme is also sublinear.

Security. We first present an overview of the proof of security.

Proof Overview. Before we go into the details of our proof, we will begin a quick overview. Recall
that Yao’s XOR lemma states that the process of XOR-ing of the outputs of many instantiations
of a function f amplifies the hardness of f . The proof of this lemma can be based on Impagliazzo’s
hard core lemma [Imp95] which identifies a hard core measure such that it suffices to sample the
inputs of f according to this hard core measure to ensure the hardness of f . Among the many
instantiations of f (in the XOR lemma), there must exist at least one instantiation where the inputs
to this instantiation are sampled from the hard core set and this instantiation renders the hardness
of the resulting function.

A naive (and unsuccessful) attempt to prove our result would be to mimic the proof of Yao’s
XOR lemma. In the first hybrid, the challenge message m∗b , for a random bit b, is encrypted, where
(m0,m1) is the challenge message submitted by the adversary. First, we invoke the security of
indistinguishability of semi-functional keys property to switch the functional keys to semi-functional
keys; the hardwired values correspond to the outputs of the functions onm∗b . We can’t yet invoke the
indistinguishability of semi-functional ciphertexts since the advantage is only inverse polynomial.
However, similar to the argument in Yao’s XOR lemma, with overwhelming probability, there must
exist some instantiation of semi-functional FE such that the randomness for this instantiation is
sampled according to the hardcore measure. The hope would be to remove the threshold FHE key
associated with this instantiation and replace the ciphertext to be an encryption of 0 – however,
this argument is flawed; we have no bound on the computational complexity of sampling from the
hardcore measure. Sampling from the measure could potentially involve breaking the security of
the FHE ciphertext and then sampling randomness based on the information contained inside the
FHE ciphertext.

68

How can we fix this issue? Suppose, instead, that this measure could be sampled by a compu-
tationally bounded sampler, with runtime4 at most 2λ. Then by suitably increasing the security of
the threshold FHE scheme, we can ensure that the computationally bounded sampler cannot break
the threshold FHE scheme which will allow us to complete the security proof of the threshold FHE.

All that is left is to show how to replace the hard-core measure with a distribution that can
be efficiently sampled. The first step is to emulate sampling from a hard-core measure by instead
uniformly sampling from a hard-core set Set, using a theorem using Holenstein [Hol06]. Then,
we can invoke a result from [CCL18] to argue that we can simulate uniformly sampling from a
set using a computationally bounded sampler. However, the issue is that the running time of the
sampler guaranteed by [CCL18] is exponential in poly(λ), for some polynomial poly, where poly(λ)
can be much larger than the size of the FHE ciphertexts and thus, this sampler can indeed break
the security of threshold FHE. Indeed, looking closely into [CCL18], we realize that the length of
the strings in Set depend on the total randomness used to create all the semi-functional ciphertexts
and semi-functional keys.

To get around this issue, we crucially use the fact that the density of the hardcore measure
must be relatively high. More specifically, instead of sampling from the set Set, we first efficiently
sample a random set SetR and inefficiently sample (in particular, this sampling algorithm breaks
the underlying commitment scheme) an index from the set SetR. We note that the size of the index
can be upper bounded by λ and thus, using [CCL18] the sampling algorithm sampling this index
can be simulated using a circuit of size exponential in λ. Putting together, we have accomplished
the task of simulating the hard-core measure using a circuit with runtime at most 2λ.

We now present the hybrids and argue indistinguishability between them. While the first hybrid
encrypts a challenge message m∗b , the last one is independent of b. We will analyze the distinguishing
advantage of the adversary between these hybrids.

4This is not accurate; we will only be able to bound the sampler by 2λp(λ), where p is as stated in the theorem.
This is still sufficient for us since we can set the TFHE parameters in such a way that the security of TFHE is
guaranteed even against adversaries running in time 2λp(λ)

69

Hybrid0 : In this hybrid, we have the following:

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. To encrypt challenge ciphertext, compute an intermediate message x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

4. Similarly, compute xj as intermediate messages corresponding to mj for j ∈ Γ, as described

above. Let xj be denoted as (xj1, . . . x
j
t).

5. Compute Z∗ = Com(K1, ...,Kt, fsk1, ..., fskt). For other ciphertext queries j ∈ [Γ], compute
Zj similarly (using respective PRF and partial decryption keys).

6. Then run the setup of the FE as follows: compute sFE.Setup(1λ) → ski for i ∈ [t] and set
MSK = (sk1, ..., skt).

7. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.KeyGen(ski, F) for the circuit F described
in the key generation algorithm.

8. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i) for i ∈ [t].

9. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, CT∗i ← sFE.Enc(ski, x

∗
i) for i ∈ [t].

10. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

11. Adversary guesses b′ ∈ {0, 1}

70

Hybrid1 : This hybrid is the same as the previous one except that the function keys are gen-
erated using semi-functional key generation algorithm. We describe the changes from the previous
hybrid using bold faced word change.

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. To encrypt challenge ciphertext, compute an intermediate message x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

4. [Change] Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ [t].

5. Similarly, compute xj as intermediate messages corresponding to mj for j ∈ Γ, as described

above. Let xj be denoted as (xj1, . . . x
j
t).

6. Compute Z∗ = Com(K1, ...,Kt, fsk1, ..., fskt). For other ciphertext queries j ∈ [Γ], compute
Zj similarly (using respective PRF and partial decryption keys).

7. Then run the setup of the FE as follows: compute sFE.Setup(1λ) → ski for i ∈ [t] and set
MSK = (sk1, ..., skt).

8. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi) for the circuit F described
in the key generation algorithm.

9. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i) for i ∈ [t].

10. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, CT∗i ← sFE.Enc(ski, x

∗
i) for i ∈ [t].

11. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

12. Adversary guesses b′ ∈ {0, 1}

Lemma 10. If sFE scheme satisfies indistinguishability of semi-functional key property then for
any adversary A of size O(size), |Pr[A(Hybrid0) = 1] − Pr[A(Hybrid1) = 1]| < 2−λ

c0 for some
constant c0 > 0 5.

Proof. (Sketch) In both the above hybrids, the ciphertexts are generated using honest encryption
algorithm. The only way the hybrids differ is the way functional keys are generated. In Hybrid0

they are functional while in Hybrid1 they are semi-functional. We can invoke a series of t hybrids,
where one by one in each system the key is generated semi-functionally instead of functionally. The
claim thus follows from indistinguishability of the semi-functional keys property of sFE scheme.

5Note that the definition in Section 9 requires the adversary to have advantage negl(λ) in the indistinguishability
of semi-function key security game. However, for our application to iO, it suffices to replace negl with a subexpo-
nentially small function. For our amplification theorem, this just means that the additive negligible security loss is
subexponentially small as opposed to some negligible function.

71

Before, we describe the next hybrid, we recall the following theorem about the scheme sFE
proved in Section 9:

Theorem 16. Fix 1λ, 1n,Γ, {Mi},M∗, C as above. Define two functions Eb for b ∈ {0, 1}, that
takes as input {0, 1}`b. Here `b is the length of randomness required to compute the following. The
functions do the following.

Consider the following process:

1. Compute MSK← sFE.Setup(1λ).

2. Compute CTi ← sFE.Enc(MSK,Mi) for i ∈ [Γ].

3. Set θ = C(M∗). Compute skC ← sFE.sfKG(MSK, C, θ).

4. If b = 0, compute CT∗ = sFE.Enc(MSK,M∗) and if b = 1, compute CT∗ = sFE.sfEnc(MSK, 1λ).

5. For b ∈ {0, 1}, Eb on input r ∈ {0, 1}`b outputs {CTi}i∈Γ, skC ,CT
∗.

If sFE satisfies (sizesFE, advsFE)−indistinguishability of semi-functional ciphertexts property, then,
there exists two computable (not necessarily efficient) measures M0 and M1 (Mb defined over
{0, 1}`b for b ∈ {0, 1}) of density exactly (1−advsFE)/2 such that, for all circuits A of size size′sFE >
sizesFE · adv′2sFE/128(`0 + `1 + 1),

| Pr
u←DM0

[A(E0(u)) = 1]− Pr
v←DM1

[A(E(v)) = 1]| < adv′sFE

Here both measures may depend on ({Mi}i∈Γ, C,M
∗)

Hybrid2 : Let adv′ be a parameter denoting a distinguishing advantage and size′ be a size
parameter. This hybrid is inefficient. Set size′ = size · adv′2/(128(`0 + `1 + 1)), where `0, `1 be
the lengths described in the theorem above. Let M0,i denote the (scaled) measure of density
1/2p(λ) corresponding to encryption algorithm as described by the theorem above and let M1,i

denote corresponding measure for semi-functional encryption algorithm. For any measure M, let
M denote the measure 1−M. Now we describe the hybrid in more detail.

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. [Change] Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability
1/2p(λ) and yi = 0 with probability (1− 1/2p(λ)). Here, each bit yi is chosen independently.

4. To encrypt challenge ciphertext, compute an intermediate message x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

72

5. Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ [t].

6. Similarly, compute xj as intermediate messages corresponding to mj for j ∈ Γ, as described

above. Let xj be denoted as (xj1, . . . x
j
t).

7. Compute Z∗ = Com(K1, ...,Kt, fsk1, ..., fskt). For other ciphertext queries j ∈ [Γ], compute
Zj similarly (using respective PRF and partial decryption keys).

8. [Change] For every i ∈ [t], to compute the following steps, we generate randomness Ri =
(r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i) as follows. If yi = 1 sample Ri ← DM0,i , otherwise, sample Ri ←
DM0,i

. We note here M0,i and M1,i may depend on (C, x∗i , {x
j
i}j∈[Γ])

9. [Change] Then run the setup of the FE as follows: compute sFE.Setup(1λ; r1,i) → ski for
i ∈ [t] and set MSK = (sk1, ..., skt).

10. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

11. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

12. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i) for i ∈ [t].

13. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

14. Adversary guesses b′ ∈ {0, 1}

Lemma 11. For any adversary A, |Pr[A(Hybrid1) = 1]− Pr[A(Hybrid2) = 1]| = 0.

Proof. (Sketch) These hybrids are identical. Note that measure generated byM0,i for every i ∈ [t],
have density exactly 1/2p(λ). With probability 1/2p(λ), uniform randomness to generate encryp-
tion can be thought of as if it was sampled fromM0,i and with 1−1/2p(λ) from its complement.

73

Hybrid3 : This hybrid is the same as the previous the hybrid except that challenger aborts if
y = 0t. The exact change is marked in red color.

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. [Change] Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability
1/2p(λ) and yi = 0 with probability (1− 1/2p(λ)). Here, each bit yi is chosen independently.
If y = 0t, abort.

4. To encrypt challenge ciphertext, compute an intermediate message x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

5. Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ [t].

6. Similarly, compute xj as intermediate messages corresponding to mj for j ∈ Γ, as described

above. Let xj be denoted as (xj1, . . . x
j
t).

7. Compute Z∗ = Com(K1, ...,Kt, fsk1, ..., fskt). For other ciphertext queries j ∈ [Γ], compute
Zj similarly (using respective PRF and partial decryption keys).

8. For every i ∈ [t], to compute the following steps, we generate randomnessRi = (r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i)
as follows. If yi = 1 sample Ri ← DM0,i , otherwise, sample Ri ← DM0,i

. We note here M0,i

and M1,i may depend on (C, x∗i , {x
j
i}j∈[Γ])

9. Then run the setup of the FE as follows: compute sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and set
MSK = (sk1, ..., skt).

10. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

11. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

12. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i) for i ∈ [t].

13. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

14. Adversary guesses b′ ∈ {0, 1}

Lemma 12. For any adversary A, |Pr[A(Hybrid2) = 1] − Pr[A(Hybrid3) = 1]| < 2−c2·λ for
some constant c2.

Proof. (Sketch) These hybrids are statistically close. The probability that the string y = 0t is
exactly (1− 1/2p(λ))t. Substituting t = p(λ)λ, the claim follows.

74

Hybrid4 : This hybrid is inefficient. In this hybrid we use the security of sFE and switch to
encrypting challenge ciphertexts semi-functionally whenever yi = 1. The exact change is marked
in red. This hybrid is now described as follows:

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability 1/2p(λ) and
yi = 0 with probability (1 − 1/2p(λ)). Here, each bit yi is chosen independently. If y = 0t,
abort.

4. To encrypt challenge ciphertext, compute an intermediate message x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

5. Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ [t].

6. Similarly, compute xj as intermediate messages corresponding to mj for j ∈ Γ, as described

above. Let xj be denoted as (xj1, . . . x
j
t).

7. Compute Z∗ = Com(K1, ...,Kt, fsk1, ..., fskt). For other ciphertext queries j ∈ [Γ], compute
Zj similarly (using respective PRF and partial decryption keys).

8. [Change] For every i ∈ [t], to compute the following steps, we generate randomness Ri =
(r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i) as follows. If yi = 1 sample Ri ← DM1,i , otherwise, sample Ri ←
DM0,i

. We note here M0,i and M1,i may depend on (C, x∗i , {x
j
i}j∈[Γ])

9. Then run the setup of the FE as follows: compute sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and set
MSK = (sk1, ..., skt).

10. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

11. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

12. [Change] Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ←

sFE.Enc(ski, x
∗
i ; r4,i) otherwise CT∗i ← sFE.sfEnc(ski, 1

λ, 1λ; r4,i).

13. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

14. Adversary guesses b′ ∈ {0, 1}

Lemma 13. If sFE satisfies indistinguishability of semi-functional ciphertexts property, then for
any adversary A of size size′, |Pr[A(Hybrid3) = 1]− Pr[A(Hybrid4) = 1]| < t · adv′.

75

Proof. (Sketch) This is a direct application of Theorem 16. Because these hybrids are inefficient, we
need to perform non-uniform fixing. This proof goes by fixing the “best possible” string y ∈ {0, 1}t
which is sampled according to the distribution specified in the hybrids. The claim is that if
|Pr[A(Hybrid3) = 1] − Pr[A(Hybrid4) = 1]| > ε, then there must exists (a non zero) y such
that |Pr[A(Hybrid3,y) = 1]− Pr[A(Hybrid4,y) = 1]| > ε. Where Hybrid3,y or Hybrid4,y repre-
sents the corresponding hybrid where string y is fixed.

This is because Σy∈{0,1}t Pr[y]|Pr[A(Hybrid3,y) = 1]−Pr[A(Hybrid4,y) = 1]| > |Pr[A(Hybrid3) =
1] − Pr[A(Hybrid4) = 1]| > ε. Since for every string y, 0 < Pr[y] < 1 (refer previous hybrid for
the calculation), Σy Pr[y] = 1, and |Pr[A(Hybrid3,0t) = 1] − Pr[A(Hybrid4,0t) = 1]| = 0 (as the
experiment is aborted) the claim follows by pigeon hole principle.

Fix any such y. We can construct w indistinguishable hybrids, where w is the weight of the string
y. For each such index i, with yi = 1, we define an intermediate Hybrid3,y,i, where the encryptions
for index j 6= i are generated as in the previous hybrid but encryption of j = i is generated
differently as follows. Instead of being computed using sFE.Enc algorithm using randomness from
M0,i, it is encrypted using sFE.sfEnc algorithm using the randomness generated from M1,i. Note
that for last such index i, such that yi = 1, Hybrid3,y,i is the same as Hybrid4,y.

Once this fixing is done, each intermediate hybrid is indistinguishable due to the security of
sFE. Note that to reduce to the security of sFE, reduction has to non-uniformly fix the randomness
generated for other indices j 6= i. Informally, we use this to advice to generate encryptions for
indices j 6= i in [t]. For index i, we get ciphertexts and the keys from the challenger. They are
either functionally encrypted using the randomness sampled fromM0,i or they are semi-functionally
encrypted using the randomness sampled from M1,i. Since the encryptions for indices j 6= i
are generated using non-uniformly fixed randomness and encryption for index i comes from the
challenger, the rest of the hybrid can be generated in polynomial time. Now the reduction can use
the adversary’s response to break the security of sFE.

76

We now restate theorem 17. We will use this theorem in this hybrid.

Theorem 17 (Imported Theorem [Hol06].). LetM be any measure on {0, 1}n of density µ(M) ≥
1− ρ(n). Let γ(n) ∈ (0, 1/2) be any function. Then, for a random set Set chosen according to the
measure M the following two holds with probability at least 1− 2(2−2nγ2(1−ρ)4/64):

• (1− γ(1−ρ)
4)(1− ρ)2n ≤ |Set| ≤ (1 + γ(1−ρ)

4)(1− ρ)2n

• For such a random set Set, for any distinguisher A with size |A| ≤ 2n(γ
2(1−ρ)4

64n) satisfying

| Pr
x←Set

[A(x) = 1]− Pr
x←DM

[A(x) = 1]| ≤ γ

Hybrid5 : This hybrid is the same as the previous hybrid except that for every i ∈ [t], instead
of sampling from a measureMi (eitherM1,i orM0,i), we sample a set Seti from the corresponding
measure, and then sample uniformly from Seti. These sets are constructed according to theorem
17. Lets analyse it case by case. For the analysis, set the bound on distinguishing advantage γ to
be 2−λ.

• If yi = 0, measureMi =M0,i has density exactly 1− 1/2p(λ). From Theorem 17 with prob-

ability at least 1− 2(2−2`0−2λ/4p(λ4)), density of Seti is atleast 1/3p(λ) and the distinguishing
advantage is bounded by 2−λ for adversaries of size 2`0−2λ/(`0poly(λ)).

• If yi = 1, measure Mi =M1,i has density exactly 1/λ. From Theorem 17 we observe follow-

ing. With probability at least, 1− 2(2−2`1−2λ(1−1/2p(λ))4/64), density of Seti is atleast 1/3p(λ)
and the distinguishing advantage is bounded by 2−λ for adversaries of size 2`1−2λ/(`1poly(λ)).

Now we describe the hybrid in detail.

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability 1/2p(λ) and
yi = 0 with probability (1 − 1/2p(λ)). Here, each bit yi is chosen independently. If y = 0t,
abort.

4. To encrypt challenge ciphertext, compute an intermediate message x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

5. Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ [t].

6. Similarly, compute xj as intermediate messages corresponding to mj for j ∈ Γ, as described

above. Let xj be denoted as (xj1, . . . x
j
t).

77

7. Compute Z∗ = Com(K1, ...,Kt, fsk1, ..., fskt). For other ciphertext queries j ∈ [Γ], compute
Zj similarly (using respective PRF and partial decryption keys).

8. [Change] For every i ∈ [t], to compute the following steps, we generate randomness Ri =
(r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i)← Seti as follows. If yi = 1 set Seti is constructed using theorem 17

from measure M1,i. Otherwise, set Seti is constructed using theorem 17 from measureM0,i.

We note here Seti may depend on (C, x∗i , {x
j
i}j∈[Γ]).

9. Then run the setup of the FE as follows: compute sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and set
MSK = (sk1, ..., skt).

10. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

11. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

12. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i)

otherwise CT∗i ← sFE.sfEnc(ski, 1
λ, 1λ; r4,i).

13. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

14. Adversary guesses b′ ∈ {0, 1}

Lemma 14. Due to theorem 17, with probability at least 1 − 2−λ (over construction of Seti),

for any adversary A of size O(22`), |Pr[A(Hybrid4) = 1] − Pr[A(Hybrid5) = 1]| < 2−λ. Here
` = min{`0, `1} is the minimum length of the randomness used in the hybrid to generate encryptions
for any index.

Proof. (Sketch) This is a direct application of Theorem 17. This proof goes by fixing the “best
possible” string y ∈ {0, 1}t which is sampled according to the distribution specified in the hybrids.
This can be proven by a series of t intermediate hybrids. We can define t intermediate hybrids,
Hybrid4,i for i ∈ [t]. Here Hybrid4,i is similar to its previous hybrid except that for system i,
randomness is sampled from Seti instead ofMi. Note that Hybrid4,t is the same as Hybrid5. Note
that if there exists an adversary A (of size described in the theorem) that distinguish Hybrid4,i

from Hybrid4,i+1 with advantage 2−λ , we can build a reduction that refutes theorem 17. In
doing so, reduction fixes non-uniformly the randomness for other systems j ∈ [t] with j 6= i. In
particular, reduction generates keys and ciphertext for all indices j 6= i, as in the previous hybrid
using the non-uniformly fixed randomness. For index i, the keys and ciphertext are generated using
the randomness given by the challenger. It is either generated using measure Mi or from the set
Seti. Due to theorem 17, the security holds.

78

Hybrid6 : This hybrid is the same as the previous hybrid except that for every i ∈ [t], the
following happens. For every i ∈ [t], construct a new set SetRi as a set of t = p(λ)λ random
samples from {0, 1}`i (here, let {0, 1}`i denote the domain of measure Mi). For every i ∈ [t],
instead of computing the challenge encryption using randomness sampled from Seti, compute it
from randomness sampled uniformly from Seti ∩ SetRi. Abort if the intersection is empty. In this
hybrid, let Machi denote the (unbounded probabilistic) machine that takes as input SetRi along
with (C, x∗i , {x

j
i}j∈[Γ]) to compute an index ji ∈ [t] of the randomness sampled from SetRi.

We describe now the randomized algorithm Machi.

1. On input Li = (SetRi, C, x
∗
i , {x

j
i}j∈[Γ]), sample the set Seti as in the previous hybrid. If

yi = 0, it is sampled from measure Mi = M0,i, otherwise from Mi =M1,i.

2. Randomly sample from Seti ∩ SetRi and output the index of the element in ji. Output ⊥ if
the intersection is empty.

Here is the hybrid description:

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability 1/2p(λ)
and yi = 0 with probability (1− 1/2p(λ)). Here, each bit yi is chosen independently. Abort
if y = 0t.

4. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

5. Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ [t].

6. Similarly, compute xj as intermediate messages corresponding to mj for j ∈ Γ, as described

above. Let xj be denoted as (xj1, . . . x
j
t).

7. Compute Z∗ = Com(K1, ...,Kt, fsk1, ..., fskt). For other ciphertext queries j ∈ [Γ], compute
Zj similarly (using respective PRF and partial decryption keys).

8. [Change] For i ∈ [t], sample SetRi as a set of t = p(λ)λ uniformly chosen inputs from domain
of Mi. Note that this measure is equal to M1,i if yi = 1 and M0,i otherwise.

9. [Change] For every i ∈ [t], to compute the following steps, we generate randomness Ri =
(r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i) as follows. Run Machi(SetRi, C, x

∗
i , {x

j
i}j∈[Γ]) → ji. Set Ri as the

randomness with index ji in the set SetRi.

79

10. Then run the setup of the FE as follows: compute sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and set
MSK = (sk1, ..., skt).

11. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

12. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

13. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i)

otherwise CT∗i ← sFE.sfEnc(ski, 1
λ, 1λ; r4,i).

14. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

15. Adversary guesses b′ ∈ {0, 1}

Lemma 15. For any adversary A, |Pr[A(Hybrid5) = 1]−Pr[A(Hybrid6) = 1]| < 2−c5λ for some
constant c5 > 0. This indistinguishability is statistical.

Proof. (Sketch) These two hybrids are statistically close via construction of Machi. This can be
proven by a series of t intermediate statistically close hybrids. Define Hybrid5,i for i ∈ [t], where
randomness to encrypt challenge ciphertext is sampled as in previous hybrid for all indices j 6= i.
For index i, it is generated using intersection of Seti ∩ SetRi. Note that Hybrid5,t is the same as
Hybrid6. Let us calculate the statistical distance between the two hybrids. The statistical distance
is bounded by the sum of probability that Seti has a density less than 1/λ and the probability that
intersection of SetRi and Seti is empty. This is because once SetRi is chosen and has a large enough
size, sampling SetRi randomly and sampling from the intersection ensures that the probability of
choosing any element from Seti is identical by symmetry.

The probability that Seti has a density smaller than 1/3p(λ) is bounded by at least 2−c·λ for some
constant c (due to theorem 17). Let us bound the probability that intersection of Seti and SetRi is
empty. This probability is bounded by (1− |Seti|2−`i)p(λ)λ. This is less than, (1− 1/3p(λ))p(λ)λ ≤
e−λ/3 with probability at least 1−2−λ over the construction of Seti (described by Hybrid5 according
to theorem 17).

80

Hybrid7 : This hybrid is the same as the previous hybrid except that the representation changes.
Let Yβ denote the set of indices i where yi = β for β ∈ {0, 1}. Let Mach′ be an (unbounded) machine
that computes the result of Mach1, ...,Macht. Precisely, Mach′ takes as input y, SetRi for i ∈ [t],
circuit C, {xji}j∈[Γ],i∈[t], Z

∗, {x∗i }i∈Y0 and hardwired partial decryption values {θi}i∈Y1 . Note that
Mach′ does not take as input x∗i for i ∈ Y1 and in order to compute the result, it may have to break
commitment Z∗ to construct x∗i for i ∈ Y1.

Denote byX the distribution (y, {SetRi}i∈[t], C, {x
j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , fct, {Zj}j∈Γ).

Thus, Mach′(X)→ (j1, ..., jt) where ji is an index in [t]. Here is the pseudocode of Mach′.

1. On input X = (y, {SetRi}i∈[t], C, {x
j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , fct, {Zj}j∈Γ),take fol-

lowing steps.

2. Break Z∗ to compute (K1, ...,Kt, fsk1, ..., fskt).

3. For i ∈ Y1, compute x∗i = (fct, fski,Ki).

4. Output
(
Machi(C, x

∗, {xji}j∈Γ)
)
i∈[t]

We describe the hybrid in detail now:

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability 1/2p(λ)
and yi = 0 with probability (1− 1/2p(λ)). Here, each bit yi is chosen independently. Abort
if y = 0t.

4. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

5. Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ [t].

6. Similarly, compute xj as intermediate messages corresponding to mj for j ∈ Γ, as described

above. Let xj be denoted as (xj1, . . . x
j
t).

7. Compute Z∗ = Com(K1, ...,Kt, fsk1, ..., fskt). For other ciphertext queries j ∈ [Γ], compute
Zj similarly (using respective PRF and partial decryption keys).

8. For i ∈ [t], sample SetRi as a set of t uniformly chosen inputs from support of Mi (which is
equal to M1,i if yi = 1 and M0,i otherwise).

81

9. [Change] Define X = (y, {SetRi}i∈[t], C, {x
j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , fct, {Zj}j∈Γ)

10. [Change] For every i ∈ [t], to compute the following steps, we generate randomness Ri =
(r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i) as follows. Run Mach′(X) → (j1, ..., jt). Set Ri as the randomness
with index ji in the set SetRi.

11. Then run the setup of the FE as follows: compute sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and set
MSK = (sk1, ..., skt).

12. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

13. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

14. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i)

otherwise CT∗i ← sFE.sfEnc(ski, 1
λ, 1λ; r4,i).

15. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

16. Adversary guesses b′ ∈ {0, 1}

Lemma 16. Statistical distance between Hybrid7 and Hybrid6 is bounded by 2−λ
c

for some
constant c > 0.

Proof. If Com satisfies statistical binding then with probability at least 1− 2−λ
c

for some constant
c > 0 over the coins of the setup algorithm of the commitment scheme, the hybrids are identical.

82

We first restate theorem 18. We will use the following theorem in this hybrid.

Theorem 18. Let n, ` ∈ N, ε > 0 and Cleak be a family of distinguisher circuits from {0, 1}n ×
{0, 1}` → {0, 1} of size s(n). Then, for every distribution (X,Z) over {0, 1}n×{0, 1}`, there exists
a simulator h : {0, 1}n → {0, 1}` such that:

• h has size bounded by s′ = O(s2`ε−2).

• (X,Z) and (X,h(X)) are indistinguishable by Cleak. That is for every C ∈ Cleak,

| Pr
(x,z)←(X,Z)

[C(x, z) = 1]− Pr
x←X,r

[C(x, h(x; r)) = 1]| ≤ ε

Hybrid8 : This hybrid is the same as the previous one except that we now simulate Mach′ using
theorem 18 by a leakage simulator h. Note that output length of Mach′ is t log t. To construct hi
using theorem 18, we set the size of distinguisher to be size8 and advantage bound to be adv8.

Constructing simulators h: To construct h we define corresponding distributions inductively as
follows. Denote byX the distribution (y, {SetRi}i∈[t], C, {x

j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , fct, {Zj}j∈Γ).

Let Z = Mach′(X). Thus theorem 18 gives us a simulator h of size sizeh = O(size8 · adv−2
8 · 2t log t).

Once we use h, the hybrid is implementable by circuit of size bounded by sizeh + poly(λ) for some
polynomial poly.

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability 1/2p(λ)
and yi = 0 with probability (1− 1/2p(λ)). Here, each bit yi is chosen independently. Abort
if y = 0t.

4. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

5. Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ [t].

6. Similarly, compute xj as intermediate messages corresponding to mj for j ∈ Γ, as described

above. Let xj be denoted as (xj1, . . . x
j
t).

7. Compute Z∗ = Com(K1, ...,Kt, fsk1, ..., fskt). For other ciphertext queries j ∈ [Γ], compute
Zj similarly (using respective PRF and partial decryption keys).

8. For i ∈ [t], sample SetRi as a set of t uniformly chosen inputs from support of Mi (which is
equal to M1,i if yi = 1 and M0,i otherwise).

83

9. Define X = (y, {SetRi}i∈[t], C, {x
j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , fct, {Zj}j∈Γ)

10. [Change] For every i ∈ [t], to compute the following steps, we generate randomness Ri =
(r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i) as follows. Run h(X)→ (j1, ..., jt). Let Ri be the randomness with
index ji in the set SetRi.

11. Then run the setup of the FE as follows: it compute sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and
set MSK = (sk1, ..., skt).

12. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

13. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

14. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i)

otherwise CT∗i ← sFE.sfEnc(ski, 1
λ, 1λ; r4,i).

15. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

16. Adversary guesses b′ ∈ {0, 1}

Lemma 17. Due to theorem 18 the following holds, for any adversary A of size O(size8), |Pr[A(Hybrid7) =
1]− Pr[A(Hybrid8) = 1]| < adv8. Here size8 > λc8 for some constant c8 > 0.

Proof. This proof is a direct application of theorem 18. Here, is our reduction.
Let X = (y, {SetRi}i∈[t], C, {x

j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , fct, {Zj}j∈Γ) as defined in stage

1 − 8 of Hybrid7 and Hybrid8. Reduction recieves X and samples (j1, ..., jt) which are either
generated using Mach′ or using simulator h. Assume that we have an adversary A (of size size8)
that distinguishes the hybrids with probability greater than adv8. Then the reduction proceeds as
follows:

1. Parse X = (y, {SetRi}i∈[t], C, {x
j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , {Zj}j∈Γ).

2. For i ∈ Y0, set θi = F (x∗i).

3. Parse aux = (j1, ..., jt). Set Ri as the randomness with index ji in the set SetRi for i ∈ [t].
Parse Ri = (r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i).

4. Then run the setup of the FE as follows: compute sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and set
MSK = (sk1, ..., skt).

5. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

6. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

7. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i)

otherwise CT∗i ← sFE.sfEnc(ski, 1
λ, 1λ; r4,i).

8. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

9. Adversary guesses b′ ∈ {0, 1}

84

10. Output adversary’s guess as its own output.

Note that the reduction emulates the either Hybrid7 (if aux is generated using Mach′) or
Hybrid8 (if aux is generated as h). Hence, the advantage of A is exactly the same as the advantage
of reduction to win in the game of theorem 6. Note that if A has size size8, the size of reduction is
size8 +poly(λ) for some fixed polynomial poly, which is also O(size8) assuming size8 is large enough.
Claim now follows from the way the parameters are set in theorem 18.

85

Hybrid9 : This hybrid is the same as the previous one except that Z∗ is now a commitment of 0.

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability 1/2p(λ)
and yi = 0 with probability (1− 1/2p(λ)). Here, each bit yi is chosen independently. Abort
if y = 0t.

4. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

5. Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ [t].

6. Similarly, compute xj as intermediate messages corresponding to mj for j ∈ Γ, as described

above. Let xj be denoted as (xj1, . . . x
j
t).

7. [Change] Compute Z∗ = Com(0κ) where κ is the length of (K1, .., kt, fsk1, ..., fskt). For other
ciphertext queries j ∈ [Γ], compute Zj as in the previous hybrids (using respective PRF and
partial decryption keys).

8. For i ∈ [t], sample SetRi as a set of t uniformly chosen inputs from support of Mi (which is
equal to M1,i if yi = 1 and M0,i otherwise).

9. Define X = (y, {SetRi}i∈[t], C, {x
j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , fct, {Zj}j∈Γ)

10. For every i ∈ [t], to compute the following steps, we generate randomnessRi = (r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i)
as follows. Run h(X)→ (j1, ..., jt). Let Ri be the randomness with index ji in the set SetRi.

11. Then run the setup of the FE as follows: it compute sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and
set MSK = (sk1, ..., skt).

12. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

13. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

14. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i)

otherwise CT∗i ← sFE.sfEnc(ski, 1
λ, 1λ; r4,i).

15. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

86

16. Adversary guesses b′ ∈ {0, 1}

Lemma 18. If Com is (sizeCom, advCom) secure and sizeCom > sizeh + poly(λ) for some fixed
polynomial poly, then for any adversary A of size O(sizeh + poly(λ)), |Pr[A(Hybrid8) = 1] −
Pr[A(Hybrid9) = 1]| < advCom.

Proof. Note that both hybrids Hybrid8 and Hybrid9 can be computed in size the sum of sizeh
(used for simulator h and a fixed polynomial poly(λ) to generate the hybrid distribution). The
reduction to the commitment scheme works by using the challenge commitment Z∗ (either a com-
mitment of 0 or respective PRF keys and TFHE partial decryption keys) to generate a hybrid.
In Hybrid8, Z∗ is a commitment of PRF keys and partial decryption keys. In Hybrid9, it is
a commitment of 0. If there is an adversary A, that distinguishes the hybrids with probability
greater than advCom, the reduction uses the challenge commitment to generate either Hybrid8 or
Hybrid9 (depending on Z∗) and runs A on it. Then it just outputs response of A as its guess. The
advantage of A then becomes the advantage of the reduction. Note that reduction runs in time
bounded in running time of generating the hybrid and running time of A. Since, Com is secure
against circuits of this size, the claim follows.

87

Hybrid10 : This hybrid is the same as the previous one except that for i ∈ Y1, θi is computed
honestly using the PartDec algorithm using true randomness, instead of using PRF key Ki.

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability 1/2p(λ)
and yi = 0 with probability (1− 1/2p(λ)). Here, each bit yi is chosen independently. Abort
if y = 0t.

4. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• [Change] Sample PRF keys Ki ← PRF.Setup(1λ) for i ∈ Y0.

• [Change] Set x∗i = (fct, fski,Ki) for i ∈ Y0.

5. [Change] Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ Y0, otherwise set θi = PartDec(fski,Eval(C, fct))
using fresh and independent randomness.

6. Similarly, compute xj as intermediate messages corresponding to mj for j ∈ Γ, as described

above. Let xj be denoted as (xj1, . . . x
j
t).

7. Compute Z∗ = Com(0κ) where κ is the length of (K1, .., kt, fsk1, ..., fskt). For other ciphertext
queries j ∈ [Γ], compute Zj as in the previous hybrids (using respective PRF and partial
decryption keys).

8. For i ∈ [t], sample SetRi as a set of t uniformly chosen inputs from support of Mi (which is
equal to M1,i if yi = 1 and M0,i otherwise).

9. Define X = (y, {SetRi}i∈[t], C, {x
j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , fct, {Zj}j∈Γ)

10. For every i ∈ [t], to compute the following steps, we generate randomnessRi = (r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i)
as follows. Run h(X)→ (j1, ..., jt). Let Ri be the randomness with index ji in the set SetRi.

11. Then run the setup of the FE as follows: it compute sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and
set MSK = (sk1, ..., skt).

12. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

13. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

14. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i)

otherwise CT∗i ← sFE.sfEnc(ski, 1
λ, 1λ; r4,i).

88

15. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

16. Adversary guesses b′ ∈ {0, 1}

Lemma 19. If PRF is (sizePRF, advPRF)−secure with sizePRF > sizeh+poly(λ) for some fixed polyno-
mial poly(λ), then for any adversary A of size O(sizePRF), |Pr[A(Hybrid9) = 1]−Pr[A(Hybrid10) =
1]| < advPRF.

Proof. Note that both hybrids Hybrid9 and Hybrid10 can be computed in time roughly the size
of running h along with polynomial overheads, and can be bounded by sizeh + poly(λ). The only
difference between the hybrids is the way θi is generated for i ∈ Y1. This is proven by fixing a best
possible y. In Hybrid9 it is generated using randomness derived from PRF keys. In Hybrid10,
they are generated using true randomness. Note that for i ∈ Y1, the PRF keys are absent. The
security then holds due to the security of PRF against adversaries of size sizePRF.

89

Hybrid11 : This hybrid is the same as the previous one except that for first index i0 ∈ Y1 ,
θi0 is simulated using the simulator of the TFHE partial decryption keys {fski}i 6=i0 . That is, set
θi0 = TFHE.Sim({fski}i 6=i0 , fct, C, C(m0)).

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability 1/2p(λ)
and yi = 0 with probability (1− 1/2p(λ)). Here, each bit yi is chosen independently. Abort
if y = 0t.

4. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• [Change] Sample PRF keys Ki ← PRF.Setup(1λ) for i ∈ Y0.

• [Change] Set x∗i = (fct, fski,Ki) for i ∈ Y0.

5. [Change] Let F be the circuit described in the key generation algorithm. Let i0 be the first
index in Y1. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ Y0, otherwise set θi = PartDec(fski,Eval(C, fct))
for i ∈ Y1 \ i0. Set θi0 = TFHE.Sim({fski}i 6=i0 , fct, C, C(m0))

6. Similarly, compute xj as intermediate messages corresponding to mj for j ∈ Γ, as described

above. Let xj be denoted as (xj1, . . . x
j
t).

7. Compute Z∗ = Com(0κ) where κ is the length of (K1, .., kt, fsk1, ..., fskt). For other ciphertext
queries j ∈ [Γ], compute Zj as in the previous hybrids (using respective PRF and partial
decryption keys).

8. For i ∈ [t], sample SetRi as a set of t uniformly chosen inputs from support of Mi (which is
equal to M1,i if yi = 1 and M0,i otherwise).

9. Define X = (y, {SetRi}i∈[t], C, {x
j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , fct, {Zj}j∈Γ)

10. For every i ∈ [t], to compute the following steps, we generate randomnessRi = (r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i)
as follows. Run h→ (j1, ..., jt). Let Ri be the randomness with index ji in the set SetRi.

11. Then run the setup of the FE as follows: it compute sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and
set MSK = (sk1, ..., skt).

12. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

13. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

90

14. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i)

otherwise CT∗i ← sFE.sfEnc(ski, 1
λ, 1λ; r4,i).

15. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

16. Adversary guesses b′ ∈ {0, 1}

Lemma 20. If TFHE is statistically simulation secure, then there exists constant c10 > 0 such that
for any adversary A, |Pr[A(Hybrid10) = 1]− Pr[A(Hybrid11) = 1]| < 2−λ

c10 .

Proof. The only difference between the hybrids is the way commitment θi0 is generated for first
i0 ∈ Y1. This is proven by fixing a best possible y. In Hybrid10 it is generated using TFHE.PartDec.
In Hybrid11, it is generated using TFHE.Sim. Note that these two distributions are statistically
close. The security then holds due to the security of TFHE.

91

Hybrid12 : This hybrid is the same as the previous one except that now we generate fct as an
encryption of 0

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability 1/2p(λ)
and yi = 0 with probability (1− 1/2p(λ)). Here, each bit yi is chosen independently. Abort
if y = 0t.

4. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• [Change] Compute fct← TFHE.Enc(fpk, 0|m0|).

• Sample PRF keys Ki ← PRF.Setup(1λ) for i ∈ Y0.

• Set x∗i = (fct, fski,Ki) for i ∈ Y0.

5. Let F be the circuit described in the key generation algorithm. Let i0 be the first index in
Y1. Set θi = F (x∗i) = PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ Y0, otherwise set
θi = PartDec(fski,Eval(C, fct)) for i ∈ Y1 \ i0. Set θi0 = TFHE.Sim({fski}i 6=i0 , fct, C, C(m0))

6. Similarly, compute xj as intermediate messages corresponding to mj for j ∈ Γ, as described

above. Let xj be denoted as (xj1, . . . x
j
t).

7. Compute Z∗ = Com(0κ) where κ is the length of (K1, .., kt, fsk1, ..., fskt). For other ciphertext
queries j ∈ [Γ], compute Zj as in the previous hybrids (using respective PRF and partial
decryption keys).

8. For i ∈ [t], sample SetRi as a set of t uniformly chosen inputs from support of Mi (which is
equal to M1,i if yi = 1 and M0,i otherwise).

9. Define X = (y, {SetRi}i∈[t], C, {x
j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , fct, {Zj}j∈Γ)

10. For every i ∈ [t], to compute the following steps, we generate randomnessRi = (r1,i, r2,i, {r3,j,i}j∈[Γ],
r4,i) as follows. Run h→ (j1, ..., jt). Let Ri be the randomness with index ji in the set SetRi.

11. Then run the setup of the FE as follows: it compute sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and
set MSK = (sk1, ..., skt).

12. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

13. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

14. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i)

otherwise CT∗i ← sFE.sfEnc(ski, 1
λ, 1λ; r4,i).

92

15. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

16. Adversary guesses b′ ∈ {0, 1}

Lemma 21. If TFHE is (sizeTFHE, advTFHE)−semantic secure and sizeTFHE > sizeh + poly(λ) for
some fixed polynomial poly, then for any adversary A of size O(sizeTFHE), |Pr[A(Hybrid11) =
1]− Pr[A(Hybrid12) = 1]| < advTFHE.

Proof. To prove this, we non-uniformly fix y. Note that both hybrids Hybrid11,y and Hybrid12,y

can be computed in time roughly the sum of time to implement sampler h and other polynomial
overheads to generate hybrid distribution, and can be bounded by sizeh + poly(λ). The only
difference between the hybrids is the way encryption fct is generated. In Hybrid11 it is generated
as an encryption of m∗b , while in Hybrid12 it is generated as an encryption of 0. In both hybrids,
for first i0 ∈ Y1, partial decryption key fski0 is missing. The security then holds due to semantic
security of TFHE.

Lemma 22. Hybrid12 is information theoretically independent of b.

Proof. This claim follows by construction.

From these lemmas we prove the theorem as follows, if we ensure that sizeFE as the minimum
of the adversary size required for all the lemmas above, we can guarantee that the total advantage
of such adversary is bounded twice the sum of advantages guaranteed by the lemmas above. Twice
because in FE security game we need to argue indistinguishability between certain messages, thus
the same sequence of hybrids appear twice. Hence, we prove the claim.
Now we ensure that for all hybrids, the size of adversary is at least O(sizeFE). Let advFE qualitatively
denote the desired security level. All these conditions can be ensured if following relations are
satisfied:

• sizeFE > poly(λ) for some fixed polynomial.

• Set adv′ = advFE and size′ = sizeFE.

• Set size8 = sizeFE and adv8 = advFE.

• sizeh = O(sizeFE · adv−2
FE · 2

t log t).

• Thus size = O(sizeFE ·adv−2
FE ·poly(λ)) for a fixed polynomial poly in the length of the random-

ness in the hybrid. Note that this can be bounded by sizeFE. Hence, size = O(size2
FE · adv

−2
FE).

• sizeCom, sizeTFHE, size > sizeh.

• advCom, advPRF, advTFHE = advFE

Total advantage achieved by any adversary of size O(sizeFE) is bounded by: 2−λ
c
+tadv′+adv8 +

advCom + advTFHE + advPRF. This advantage is bounded by O(2−λ
c

+ tadvFE). Thus we prove the
theorem.

93

15 Construction of iO

From Corollary 1, Section 14, we have the following result:

Theorem 19. Assuming

• LWE secure against subexponential sized circuits.

• Secure Three restricted FE scheme 6.

• PRGs with

– Stretch of k1+ε (length of input being k bits) for some constant ε > 0.

– Block locality three.

– Security with negl distinguishing gap against adversaries of subexponential size7.

• Perturbation resilient generators implementable by three restricted FE scheme with8:

– Stretch of k1+ε for some ε > 0.

– Security with distinguishing gap 1− 1/λ against adversaries of subexponential size.

there exists subexponentially secure sublinear secret key FE for Cn,s for any polynomial n(λ), s(λ)
for λ ∈ N.

In a follow-up to our work [JS18, LM18] showed a construction of a three-restricted FE scheme
from SXDH over bilinear maps.

Theorem 20 ([JS18, LM18]). Assuming SXDH over bilinear maps, there exists a construction of
a three-restricted FE scheme.

It was observed in [BNPW16] that any subexponentially secure secret key FE scheme for Cn,s
can be used to build iO (further assuming LWE). Thus we have,

Theorem 21. Assuming

• LWE secure against adversaries of subexponential size.

• SXDH over bilinear maps against adversaries of subexponential size.

• PRGs with

– Stretch of k1+ε (length of input being k bits) for some constant ε > 0.

– Block locality three.

– Security with negl distinguishing gap against adversaries of subexponential size.

• Perturbation resilient generators implementable by three restricted FE scheme with:

6See Section 11 for a construction of a three-restricted FE scheme from bilinear maps. The security of this
construction is justified in the generic group model.

7As pointed before in Section 13, we allow a trade-off between the required level of security of ∆RG and a three-
block local PRG.

8Refer Section 5.2 for instantiations.

94

– Stretch of k1+ε for some ε > 0.

– Security with distinguishing gap 1− 1/λ against adversaries of subexponential size.

there exists an indistinguishability obfuscation scheme for P/poly.

Now we provide a more general theorem that allows a trade-off between the required level of
security of 3∆RG and a three-block local PRG. This follows from the results in Section 13 and
Section 14.

Theorem 22. Let adv1, adv2 be two distinghing gaps such that adv1 + adv2 ≤ 1 − 1/p(λ) for any
fixed polynomial p(λ) > 1. Then assuming,

• LWE secure against adversaries of subexponential size.

• SXDH secure against adversaries of subexponential size.

• PRGs with

– Stretch of k1+ε (length of input being k bits) for some constant ε > 0.

– Block locality three.

– Security with distinguishing gap bounded by adv1 against adversaries of subexponential
size.

• Perturbation resilient generators implementable by three restricted FE scheme with:

– Stretch of k1+ε for some ε > 0.

– Security with distinguishing gap adv2 against adversaries of subexponential size.

there exists a secure iO scheme for P/poly.

Finally, if one was just interested in sublinear secret key FE scheme with polynomial security,
then as observed in Section 14, we require the security of, SXDH. 3∆RG and the block-local PRG
to hold against polynomial sized circuits.

Theorem 23. Let adv1, adv2 be two distinguishing gaps such that adv1 + adv2 ≤ 1−1/p(λ) for any
fixed polynomial p(λ) > 1. Then assuming,

• LWE secure against adversaries of subexponential size.

• Polynomially secure SXDH assumption over bilinear maps.

• PRGs with

– Stretch of k1+ε (length of input being k bits) for some constant ε > 0.

– Block locality three.

– Security with distinguishing gap bounded by adv1 against adversaries of polynomial size.

• Perturbation resilient generators implementable by three restricted FE scheme with:

– Stretch of k1+ε for some ε > 0.

– Security with distinguishing gap adv2 against adversaries of polynomial size.

there exists a secure sublinear secret key FE scheme for Cn,s.

95

References

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In Au-
tomata, Languages and Programming - 38th International Colloquium, ICALP 2011,
Zurich, Switzerland, July 4-8, 2011, Proceedings, Part I, pages 403–415, 2011.

[AGIS14] Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing obfusca-
tion: Avoiding Barrington’s theorem. In ACM CCS, pages 646–658, 2014.

[Agr17] Shweta Agrawal. Stronger security for reusable garbled circuits, general definitions
and attacks. In CRYPTO, pages 3–35, 2017.

[Agr18] Shweta Agrawal. New methods for indistinguishability obfuscation: Bootstrapping
and instantiation. IACR Cryptology ePrint Archive, 2018:633, 2018.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error.
In CRYPTO, pages 297–314, 2014.

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. EUROCRYPT, 2017.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. In EUROCRYPT, pages 440–456, 2005.

[BBKK17] Boaz Barak, Zvika Brakerski, Ilan Komargodski, and Pravesh Kothari. Limits on low-
degree pseudorandom generators (or: Sum-of-squares meets program obfuscation).
Electronic Colloquium on Computational Complexity (ECCC), 24:60, 2017.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
In CRYPTO, 2001.

[BFM14] Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Indistinguishability obfus-
cation and uces: The case of computationally unpredictable sources. In CRYPTO,
pages 188–205, 2014.

[BGG+17] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M. R.
Rasmussen, and Amit Sahai. Threshold cryptosystems from threshold fully homomor-
phic encryption. IACR Cryptology ePrint Archive, 2017, 2017.

[BGH+15] Zvika Brakerski, Craig Gentry, Shai Halevi, Tancrede Lepoint, Amit Sahai, and Mehdi
Tibouchi. Cryptanalysis of the quadratic zero-testing of GGH. Cryptology ePrint
Archive, Report 2015/845, 2015. http://eprint.iacr.org/.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology
Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, volume
2139 of Lecture Notes in Computer Science, pages 1–18. Springer, 2001.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In CRYPTO, pages 221–238, 2014.

96

http://eprint.iacr.org/

[BHJ+18] Boaz Barak, Samuel Hopkins, Aayush Jain, Pravesh Kothari, and Amit Sahai. Sum-
of-squares meets program obfuscation, revisited. Unpublished Work, 2018.

[BMSZ16] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-zeroizing
obfuscation: New mathematical tools, and the case of evasive circuits. In Advances in
Cryptology - EUROCRYPT, pages 764–791, 2016.

[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From cryptomania
to obfustopia through secret-key functional encryption. Cryptology ePrint Archive,
Report 2016/558, 2016. http://eprint.iacr.org/2016/558.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding
a nash equilibrium. In FOCS, 2015.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In TCC, pages 1–25, 2014.

[BS02] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography.
324, 11 2002.

[BWZ14] Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear maps against
zeroizing attacks. IACR Cryptology ePrint Archive, 2014:930, 2014.

[CCL18] Yi-Hsiu Chen, Kai-Min Chung, and Jyun-Jie Liao. On the complexity of simulating
auxiliary input. IACR Cryptology ePrint Archive, 2018:171, 2018.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K. Maji,
Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without
low-level zeroes: New MMAP attacks and their limitations. In CRYPTO, 2015.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. In EUROCRYPT, 2015.

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel
Wichs. Watermarking cryptographic capabilities. In STOC, 2016.

[CLR15] Jung Hee Cheon, Changmin Lee, and Hansol Ryu. Cryptanalysis of the new clt mul-
tilinear maps. Cryptology ePrint Archive, Report 2015/934, 2015. http://eprint.

iacr.org/.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, pages 476–493, 2013.

[CLT15] Jean-Sebastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. New multilinear maps
over the integers. In CRYPTO, 2015.

[DGG+16] Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Pratyay Mukherjee. Ob-
fuscation from low noise multilinear maps. IACR Cryptology ePrint Archive, 2016:599,
2016.

97

http://eprint.iacr.org/2016/558
http://eprint.iacr.org/
http://eprint.iacr.org/

[Fre10] David Mandell Freeman. Converting pairing-based cryptosystems from composite-
order groups to prime-order groups. In EUROCRYPT, pages 44–61, 2010.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-
Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional en-
cryption. In EUROCRYPT, 2014.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology
- EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings,
volume 7881 of Lecture Notes in Computer Science, pages 1–17. Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49. IEEE Computer Society,
2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In TCC, pages 498–527, 2015.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In Theory of Cryptography - 11th Theory
of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014.
Proceedings, pages 74–94, 2014.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-
graphic hardness of finding a nash equilibrium. In CRYPTO, 2016.

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In TCC, pages
194–213, 2007.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In
CRYPTO, pages 75–92, 2013.

[Hal15] Shai Halevi. Graded encoding, variations on a scheme. IACR Cryptology ePrint
Archive, 2015:866, 2015.

[HJ15] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. IACR Cryptology ePrint
Archive, 2015:301, 2015.

[HJK+16] Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters, and
Mark Zhandry. How to generate and use universal samplers. In ASIACRYPT, pages
715–744, 2016.

[Hol06] Thomas Holenstein. Strengthening key agreement using hard-core sets. PhD thesis,
ETH Zurich, 2006.

98

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. In EUROCRYPT, 2014.

[Imp95] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In FOCS,
pages 538–545, 1995.

[JP14] Dimitar Jetchev and Krzysztof Pietrzak. How to fake auxiliary input. In TCC, pages
566–590, 2014.

[JS18] Aayush Jain and Amit Sahai. How to leverage hardness of constant-degree polynomials
over r to build io. IACR Cryptology ePrint Archive, 2018:973, 2018.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability ob-
fuscation for turing machines with unbounded memory. In STOC, 2015.

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key cryptosystem
by relinearization. In Advances in Cryptology - CRYPTO ’99, 19th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999,
Proceedings, pages 19–30, 1999.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 28–57. Springer, 2016.

[Lin17a] Huijia Lin. Indistinguishability obfuscation from sxdh on 5-linear maps and locality-5
prgs. In CRYPTO, pages 599–629. Springer, 2017.

[Lin17b] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 prgs. In Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings,
Part I, pages 599–629, 2017.

[LM18] Huijia Lin and Christian Matt. Pseudo flawed-smudging generators and their appli-
cation to indistinguishability obfuscation. IACR Cryptology ePrint Archive, 2018:646,
2018.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from bilinear maps
and block-wise local prgs. Cryptology ePrint Archive, Report 2017/250, 2017. http:

//eprint.iacr.org/2017/250.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from ddh-like
assumptions on constant-degree graded encodings. In FOCS, pages 11–20. IEEE, 2016.

[LV17] Alex Lombardi and Vinod Vaikuntanathan. On the non-existence of blockwise 2-local
prgs with applications to indistinguishability obfuscation. IACR Cryptology ePrint
Archive, 2017:301, 2017.

[MF15] Brice Minaud and Pierre-Alain Fouque. Cryptanalysis of the new multilinear map over
the integers. Cryptology ePrint Archive, Report 2015/941, 2015. http://eprint.

iacr.org/.

99

http://eprint.iacr.org/2017/250
http://eprint.iacr.org/2017/250
http://eprint.iacr.org/
http://eprint.iacr.org/

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In EUROCRYPT, pages 700–718, 2012.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over GGH13. In Advances in Cryp-
tology - CRYPTO, 2016.

[MT10] Ueli M. Maurer and Stefano Tessaro. A hardcore lemma for computational indistin-
guishability: Security amplification for arbitrarily weak prgs with optimal stretch. In
TCC, pages 237–254, 2010.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In EUROCRYPT, pages 735–763, 2016.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Advances in Cryptology - CRYPTO 2014
- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part I, pages 500–517, 2014.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, pages 84–93, 2005.

[RTTV08] Omer Reingold, Luca Trevisan, Madhur Tulsiani, and Salil P. Vadhan. Dense subsets
of pseudorandom sets. In FOCS, pages 76–85, 2008.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, Symposium on Theory of Com-
puting, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 475–484.
ACM, 2014.

[Wol02] Christopher Wolf. “hidden field equations” (HFE) - variations and attacks. Master’s
thesis, Universität Ulm, December 2002. http://www.christopher-wolf.de/dpl.

A Sub-linear Functional Encryption for Circuits

In this section, we recall the notion of a sublinear secret key Functional Encryption which is known
to imply indistinguishability obfuscation [BNPW16], and was considered in many works, most
recently in [Lin17a, Lin17b, LT17, AS17].

Syntax. A sublinear secret key functional encryption FE for a message space χ = {χλ}λ∈N and a
function space C = {Cλ}λ is a tuple of PPT algorithms with the following properties:

• Setup, Setup(1λ): On input security parameter λ, it outputs the master secret key MSK.

• Encryption, Enc(MSK, x): On input the encryption key MSK and a message x ∈ χλ, it
outputs ciphertext CT.

100

http://www.christopher-wolf.de/dpl

• Key Generation, KeyGen(MSK, C): On input the master secret key MSK and a function
C ∈ Cλ, it outputs a functional key skC .

• Decryption, Dec(skC ,CT): On input functional key skC and a ciphertext CT, it outputs
the result out.

We define correctness property below.

Correctness. Consider any function C ∈ Cλ and any plaintext x ∈ χλ. Consider the following
process:

• MSK← Setup(1λ)

• skC ← KeyGen(MSK, C).

• CT← Enc(MSK, x)

The following should hold:

Pr [Dec(skC ,CT) = C(x)] ≥ 1− negl(λ),

for some negligible function negl.

Sub-Linear Efficiency: We require that for any message x ∈ χλ the following holds:

• Let MSK← Setup(1λ).

• Compute CT← Enc(MSK, x).

The size of circuit computing CT is less than `1−εC · poly(λ, |x|). poly is some fixed polynomial,
εC > 0 is some constant, |x| is the length of the message x and ` = max{size(C)}C∈Cλ .

Now we define the notion of (adv, sizeA)− security. Here adv is a parameter denoting advantage
of adversary and sizeA is the parameter denoting the size of the adversary.

Security Definition

Definition 21 (Indistinguishability of Ciphertexts). For a sublinear secret key FE scheme FE for
a class of functions C = {Cλ}λ∈N, the (adv, sizeA)− indistinguishability of semi-functional
ciphertexts property is associated with two experiments. The experiments are parameterised
with aux = (1λ,Γ,Mi = {xi}i∈Γ,M

∗
0 ,M

∗
1 , C) where C(M∗0) = C(M∗1).

Exptaux(1
λ,b):

1. Compute MSK← Setup(1λ).

2. Compute skC ← KeyGen(MSK, C).

3. CTi ← Enc(MSK,Mi), for every i ∈ [Γ].

4. If b = 0, compute CT∗ ← Enc(MSK,M∗0).

101

5. If b = 1 compute CT∗ ← Enc(MSK,M∗0).

6. Output the following:

(a) CTi for i ∈ Γ and CT∗.

(b) skC .

(c) M∗0 ,M
∗
1 and {Mi}i∈Γ

(d) C

A semi-functional FE scheme FE associated with plaintext space χ is said to satisfy (sizeA,
adv)-indistinguishability of semi-functional ciphertexts property if the following happens:
∀λ > λ0, any polynomial Γ, messages {Mi}i∈Γ ∈ χλ, M∗0 ,M

∗
1 ∈ χλ , C ∈ Cλ and any adversary A

of size sizeA:
|Pr[A(Exptaux(1

λ, 0) = 1]− Pr[A(Exptaux(1
λ, 1)) = 1]| ≤ adv

where aux = (1λ,Γ,Mi = {xi}i∈Γ,M
∗
0 ,M

∗
1 , C)

A.1 Equivalence of Semi-Functional FE and Sublinear FE

In this section, we show that any sublinear secret key FE with (size, adv)−security for circuit
class Cn,s imply a (size, adv) secure sublinear semi-functional secret key FE for Cn′,s′ , assuming
additionally a secret key encryption scheme with (size+poly(λ), negl(λ)) security for some negligible
negl and polynomial poly. Here n = n′poly(λ) and s = s′poly(λ) for some polynomial poly(λ).

Theorem 24. Assuming:

• Sublinear secret key FE with (size, adv)−security for circuit class Cn,s

• Secret key encryption scheme with (size + poly1(λ), negl) security9. Here poly1(λ) is some
fixed polynomial in λ

There exists (size, adv) secure sublinear semi-functional secret key FE scheme for circuit class Cn′,s′.
Here n = n′poly(λ) and s = s′poly(λ) for some fixed polynomial poly(λ) independent of n, s.

We now describe our construction of our semi-functional FE scheme sFE from sublinear FE
FE. Here are our algorithms. Let E denote the secret key encryption scheme. We describe the the
construction below.

• Setup(1λ) :

1. Run E.Setup(1λ)→ Esk

2. Run FE.Setup(1λ)→ sk.

3. Output MSK = (sk,Esk)

• Enc(MSK,m) :

1. Parse MSK = (sk,Esk).

9For sub-exponential security we need negl to be sub-exponentially small

102

2. Compute CT = FE.Enc(sk, (m, 0, 0|Esk|)).

3. Output CT.

• KeyGen(MSK,C) :

1. Parse MSK = (sk,Esk).

2. Compute Ect← E.Enc(Esk, 0`out). Here, `out is the output length of C.

3. Let G be the circuit described in Figure 4. Compute skC ← FE.KeyGen(sk,G).

4. Output skC .

• Dec(skC,CT) :

1. Output m∗ = FE.Dec(skC ,CT).

G

Input: Message m, flag b and a string x ∈ {0, 1}|Esk|
Hardwired: Secret key encryption ciphertext Ect.

• If b = 1, output E.Dec(x,Ect).

• Otherwise output C(m)

Figure 4: Description of the Circuit G.

Correctness: Correctness is immediate from the description of the scheme assuming the under-
lying schemes satisfy correctness.

Sub-linearity: If C takes inputs of size n and is of size s, the size of G is s · poly1(λ) (as it
just computes E.Dec over a hardwired output in addition to computing C). Also note that input
length of G is n′ = |m|+ |Esk|+ 1. If |m| = n, then n′ = n+ poly2(λ). Here both polynomials are
independent of n, s thus we prove the claim.

Indistinguishability of Semi-functional key We now describe the semi-functional key gener-
ation algorithm
sfKG(MSK,C, θ) :

1. Parse MSK = (sk,Esk).

2. [Change] Compute Ect ← E.Enc(Esk, θ). This is the change from the honest encryption
algorithm.

3. Let G be the circuit described in Figure 4. Compute skC ← FE.KeyGen(sk,G).

4. Output skC .

103

Note that in the game for indistinguishability of semi-functional keys, ciphertexts are honestly
generated and hence Esk is never used in the clear. Thus, the security follows from the security of
the encryption scheme.

Indistinguishability of Semi-functional Ciphertexts We now describe the semi-functional
encryption algorithm. The change from the honest encryption algorithm is marked below.

sfEnc(MSK, 1λ) :

1. Parse MSK = (sk,Esk).

2. [Change] Compute CTsf = FE.Enc(sk, (0, 1,Esk)).

3. Output CTsf .

Note that in the game for indistinguishability of semi-functional ciphertexts the value θ hardwired
in the functional key is set to be C(m∗) where m∗ is the challenge message. Thus, the security
follows from the security of FE scheme.

104

	Introduction
	Technical Overview
	Reader's Guide
	Preliminaries
	Indistinguishability Obfuscation (iO)
	Slotted Encodings
	Generic Bilinear Group Model

	Threshold Leveled Fully Homomorphic Encryption
	Useful Lemmas for Security Amplification
	LWE Preliminaries

	Perturbation-Resilient Generators
	RG implementable by Three-Restricted FE
	Candidate for 3RG
	Our Instantiations.

	Tempered Cubic Encoding
	Tempered Security

	Three-restricted FE
	Semi-functional Security

	(Stateful) Semi-Functional Functional Encryption for Cubic Polynomials
	Semi-functional Security

	Semi-Functional Functional Encryption for Circuits
	Semi-functional Security

	Step 1: Instantiating TCE
	Construction of TCE

	Step 2: Construction of Three-Restricted FE from Bilinear Maps
	Security

	Step 3: Construction of Semi-Functional FE for Cubic Polynomials
	Construction
	 Security Proof

	Step 4: (Sublinear) Semi-Functional Secret Key FE from Semi-Functional FE for Cubic Polynomials
	Randomizing Polynomials
	Security

	Step 5: Amplification
	Construction of iO
	References
	Sub-linear Functional Encryption for Circuits
	Equivalence of Semi-Functional FE and Sublinear FE

