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Abstract. We analyze security properties of a two-party key-agreement
protocol recently proposed by I. Anshel, D. Atkins, D. Goldfeld, and P.
Gunnels, called Kayawood protocol. At the core of the protocol is an
action (called E-multiplication) of a braid group on some finite set. The
protocol assigns a secret element of a braid group to each party (private
key). To disguise those elements, the protocol uses a so-called cloak-
ing method that multiplies private keys on the left and on the right by
specially designed elements (stabilizers for E-multiplication).

We present a heuristic algorithm that allows a passive eavesdropper
to recover Alice’s private key by removing cloaking elements. Our attack
has 100% success rate on randomly generated instances of the protocol
for the originally proposed parameter values and for recent proposals
that suggest to insert many cloaking elements at random positions of
the private key. Implementation of the attack is available on GitHub.
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1. Introduction

Braid group cryptography received significant attention since invention of
the first braid-based key-agreement protocols in 1999: Ko-Lee protocol [17]
and Anshel-Anshel-Goldefeld protocol [2]. Both protocols use conjugation
as main operation, and both were found vulnerable to linear attacks (such as
[10] and [26]) and heuristic length-based attacks (such as [16, 14, 20, 21, 23]).

Kayawood protocol (and other protocols from its family: Algebraic Eraser
proposed in [3], WalnutDSA proposed in [7], and Ironwood proposed in [5])
uses a different type of action, called E-multiplication, and utilizes com-
muting actions of non-commuting braids. This is what in our opinion
distinguishes Kayawood from “classic” braid-based schemes such as Ko-Lee.

1.1. Kayawood protocol. The Kayawood protocol is a two-party (Alice
and Bob) key-agreement protocol recently proposed by I. Anshel, D. Atkins,
D. Goldfeld, and P. Gunnells in [6]. The design of the protocol is very
similar to the design of the digital signature algorithm WalnutDSA [7] that
has been accepted by the National Institute of Standards and Technology
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for evaluation as a standard for post-quantum, public-key cryptography. At
the core of the protocol is an action (called E-multiplication) of the group
Bn of braids on n strands on some finite set which is claimed to be a suitable
primitive for use within lightweight cryptography.

By design, Alice and Bob’s private keys are braids from two commut-
ing subgroups of Bn. To disguise the private keys, the (original version of
the) protocol uses a so-called cloaking method that multiplies the keys on
the left and on the right by specially designed elements (stabilizers for E-
multiplication) and applies a certain rewriting procedure to obfuscate the
result. Recently, after a series of attacks on WalnutDSA ([15, 8, 19]), the
authors proposed several changes to the protocol including changes to the
cloaking procedure (see [1, D. Atkins on May 23, 2018]). Namely, they
suggested to use several cloaking element inserted into the private keys at
random positions.

In this paper, we show that the cloaking elements can be efficiently iden-
tified and removed from public keys, and private keys can be reconstructed.
Furthermore, following the suggestion from [1, D. Atkins on May 23, 2018],
we show that private keys can be reconstructed even when many cloaking
elements are inserted at random positions. Our attack has 100% success rate
on randomly generated instances of the protocol, and its implementation is
available on GitHub [11].

2. Action of colored Burau group on some finite set

Here we review one non-faithful representation of a braid group called the
colored Burau group.

2.1. Braid group. In this section we follow the exposition of [22, Section
5.1]. A braid is obtained by laying down a number of parallel pieces of
strands and intertwining them, without loosing track of the fact that they
run essentially in the same direction. In our pictures the direction is hori-
zontal. We number strands at each horizontal position from the top down.
See Figure 1 for example.

4
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Figure 1. A 4-strand braid.

If we put down two braids u and v in a row, so that the end of u matches
the beginning of v, we get another braid denoted by uv, i.e., concatenation
of n-strand braids is a product. We consider two braids equivalent if there
exists an isotopy between them, i.e., it is possible to move the strands of
one of the braids in space (without moving the endpoints of strands and
moving strands through each other) to get the other braid. We distinguish
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a special n-strand braid which contains no crossings and call it a trivial
braid. Clearly, the trivial braid behaves as left and right identity relative to
the defined multiplication. The set Bn of isotopy classes of n-strand braids
has a group structure, because if we concatenate a braid with its mirror
image in a vertical plane, the result is isotopic to the trivial braid.

Each braid is uniquely defined by a sequence of strand crossings. A cross-
ing is called positive if the front strand has a positive slope, otherwise it is
called negative. There are exactly n− 1 crossing types for n-strand braids,
we denote them by x1, . . . , xn−1, where xi is a positive crossing of ith and
(i+ 1)st strands. As we mentioned above, any braid is a sequence of cross-
ings, and the set {x1, . . . , xn−1} generates Bn. It is easy to see that crossings
x1, . . . , xn−1 are subject to the relations

xixj = xjxi for i, j such that |i− j| > 1
xixi+1xi = xi+1xixi+1 for 1 ≤ i ≤ n− 2.

In fact, it can be shown that the relations above define equivalence relation
on braids and, hence, Bn has the following combinatorial presentation:

Bn '
〈
x1, . . . , xn−1

∣∣∣∣ xixj = xjxi for |i− j| > 1,
xixi+1xi = xi+1xixi+1

〉
.

It easily follows from the presentation above that elements in the subgroups
Ln = 〈x1, . . . , xm−1〉 and Un = 〈xm+1, . . . , xn−1〉 pairwise commute, where
m = bn2 c.

A braid word is a word w = w(x1, . . . , xn−1) in the generators of Bn and
their inverses:

(1) w = xε1i1 . . . x
εk
ik
,

where 1 ≤ ij ≤ n − 1 and εj = ±1. The length of the braid word (1) is
k, denoted by |w|. If u = (u1, . . . , uk) is a k-tuple of braid words, then the

total length |u| of u is defined as
∑k

i=1 |ui|.
Every braid w naturally defines a permutation σw, which is a permutation

of the endpoints of the involved strands. The corresponding map w 7→ σw
is an epimorphism. If σw is trivial, then w is called a pure braid.

Recall that the commutator of braid words u and v is the braid word
[u, v] = u−1v−1uv. For a set of braids u1, . . . , uk define a set

C(u1, . . . , uk) = {c ∈ Bn | [c, ui] = 1 for every 1 ≤ i ≤ k},

called the centralizer of u1, . . . , uk. It is easy to check that a centralizer is a
subgroup of Bn.

The group Bn has a cyclic center generated by the element ∆2, where ∆
is the element, called the half twist, defined as follows:

∆ = (x1 . . . xn−1) · (x1 . . . xn−2) · . . . · (x1).
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2.2. Geodesic braid approximation. Let w be a word in generators of
Bn. The algorithmic problem to find a shortest braid word representing the
same element as w, called geodesic, is known to be computationally hard (see
[25]). In this paper, following [20, 21], we use a geodesic-braid approximation
method to estimate the geodesic length of a braid. The algorithm attempts
to minimize the given braid word exploiting the property of Dehornoy’s
form D(w) (introduced in [12]) that for a “generic” braid word w one has
|D(w)| < |w|.

2.3. Colored matrices. Fix a finite field Fq and denote by Rn the ring
of Laurent polynomials in variables {t1, . . . , tn} with coefficients in Fq. Let
GLn(Rn) be the group of invertible matrices over Rn. The symmetric group
Sn naturally acts on GLn(Rn) by permuting the variables {t1, . . . , tn}. The
result of action of σ ∈ Sn on M ∈ GLn(Rn) is denoted by Mσ. Recall that
the semidirect product of GLn(Rn) and Sn is a group

GLn(Rn) o Sn = {(M,π) |M ∈ GLn(Rn) and π ∈ Sn},
equipped with the operation

(M1, σ1) · (M2, σ2) = (M1M
σ1
2 , σ1σ2).

Define n− 1 n× n-matrices over polynomials in variables {t1, . . . , tn}:

C1(t1) =

 −t1 1 0
0 1 0
0 0 In−2

 and Ci(ti) =


Ii−2 0 0 0 0

0 1 0 0 0
0 ti −ti 1 0
0 0 0 1 0
0 0 0 0 In−i−1


for 2 ≤ i ≤ n− 1.

Lemma. A map ϕ on the generators x1, . . . , xn−1 of Bn:

xi
ϕ7→ (Ci(ti), πi),

where πi = (i, i+ 1) ∈ Sn, extends into a group homomorphism.

The group 〈(C1(t1), π1), . . . , (Cn−1(tn−1), πn−1)〉 is called the colored Bu-
rau representation of Bn and is denoted by CBn.

2.4. Action of CBn on a certain finite set. Fix n nontrivial elements
τ1, . . . , τn ∈ Fq, termed t-values, and define an evaluation map

ε : GLn(Rn)→ GLn(Fq),
that for each i replaces ti with the value τi. For (M,σ) ∈ GLn(Fq)×Sn and
(C, ρ) ∈ CBn define the following element:

(M,σ) ? (C, ρ) = (M · ε(Cσ), σρ).

It is straightforward to check that the map ? defines an action of CBn on
GLn(Fq)×Sn. By E-multiplication we understand the induced action of Bn
on GLn(Fq)× Sn.
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2.5. Cloaking elements. Let G be a group acting on a set X, x ∈ X, and
xg ∈ X denotes the result of the action of g ∈ G on x. The stabilizer of x is
the set

Stab(x) = {g ∈ G | xg = x}.
It is easy to check that Stab(x) is a subgroup of G. The protocol [6] requires
braids stabilizing some (M,σ) ∈ GLn(Fq)× Sn through the right action of
the braid group via E-multiplication. Such braids are called cloaking ele-
ments in [6, Definition 2.1]. Observe that these elements depend on t-values
that are used to define E-multiplication. The following way of constructing
cloaking elements was proposed in [6].

Proposition 2.1 ([6, Proposition 2.2]). Fix (M,σ) ∈ GLn(Fq) × Sn and
assume that a, b, i ∈ N and w ∈ Bn satisfy the following conditions:

1 ≤ a < b ≤ n and τa = τb = 1,

1 ≤ i < n and σw(i) = σ−1(a), σw(i+ 1) = σ−1(b).

Then wx±2i w−1 ∈ Stab((M,σ)).

The main purpose of a cloaking element is to “cloak” a braid A that acts
on a given pair (M,σ), multiplication of A on the left by a cloaking element
hides some structure of A without changing the way it acts. Observe that
the property of a braid to cloak (M,σ) depends on σ only. Hence, we can
denote the subgroup of Stab((M,σ)) generated by cloaking elements from
Proposition 2.1 by Cσ.

The following naturally follows from Proposition 2.1.

Corollary 2.2. If σ, ρ ∈ Sn are such that σ−1(a) = ρ−1(a) and σ−1(b) =
ρ−1(b), then Cσ = Cρ.

Remark 2.3. Geometrically, conditions of Proposition 2.1 define a braid
that:

• intertwists strands getting strands a and b next to each other using w,
• double twists a and b using x2i ,
• intertwists strands backwards using w−1.

The obtained braid has the structure as shown in Figure 2.

xi xiw w-1

σ−1(a)

σ−1(b)

Figure 2. Cloaking element.
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Another way to generate cloaking elements was suggested in [1, D. Atkins
on April 4, 2018], see [19, Proposition 2.3]. We do not consider elements
of this type here since they are similar to elements of Proposition 2.1, and
cryptanalysis [19] showed they are less secure.

2.6. Braid word obfuscation. An obfuscation procedure R for braids is
an algorithm that rewrites a braid word w into a braid word R(w) satisfying
w =Bn R(w). The main goal of an obfuscation procedure is to modify and
hide information in the public keys generated by Alice and Bob. There are
several methods suggested in [6].

• Stochastic rewriting process described in [6, Section 7].
• Dehornoy form [12].
• BKL normal forms [9].
• Garside normal forms [13, Chapter 9].

BKL normal forms and Garside normal forms provide a unique form for a
given braid (i.e., if u = v in Bn, then their normal forms are the same) and,
hence, are the strongest possible obfuscation algorithms for braids.

3. Kayawood protocol

Kayawood protocol is a two-party, Alice and Bob, key-agreement protocol
that uses E-multiplication defined in Section 2.4. The following initial public
information is generated by one of the parties or by another entity (and
distributed to each party):

• The braid group Bn, where n ≥ 16 is even.
• Obfuscation procedures R.
• A finite field Fq.
• Integers a and b satisfying 1 ≤ a < b ≤ n.
• Non-zero elements τ1, . . . , τn ∈ Fq such that τa = τb = 1.

Then Alice generates the following private data:

• β1, . . . , βr ∈ Un such that σβ1 , . . . , σβr have high order.
• z ∈ Bn such that |σz({1, . . . ,m}) ∩ {1, . . . ,m}| ≈ m/2. Recall that
m = bn2 c.
• Her private key is A = zαz−1, where α ∈ Ln.

Key establishment:

(1) Alice sends to Bob {R(zβ1z
−1), . . . ,R(zβrz

−1)} and σA.
(2) Bob performs the following:

• Generates his private key B as a random product of elements
R(zβ1z

−1), . . . ,R(zβrz
−1) and their inverses.

• Generates random v1, v2 ∈ Bn cloaking σA and σAσB respec-
tively.
• Sends his public key PB = R(v1Bv2) to Alice.

(3) Alice performs the following:
• Computes σB = σPB

.



ATTACK ON KAYAWOOD PROTOCOL: UNCLOAKING PRIVATE KEYS 7

• Generates random u1, u2 ∈ Bn cloaking σB and σBσA respec-
tively.
• Sends her public key PA = R(u1Au2) to Bob.

(4) Finally, the shared key is

(I, 1) ? A ? B

computed by Alice as (I, 1) ? A ? PB and by Bob as (I, 1) ? B ? PA.

We say that a protocol is secure against a passive eavesdropper if there
is no probabilistic polynomial time algorithm that can compute the shared
key (I, 1) ?A ?B based on the public information exchanged by the parties,
namely:

n, q, a, b, τ1, . . . , τn, {R(zβ1z
−1), . . . ,R(zβrz

−1)}, PA, PB
The corresponding computational problem can be approached on two dif-
ferent levels: matrices and braids.

4. Passive attack: finding Alice’s private key

In [6, Section 5] the authors show that the problem of computing the
shared key based on public data is polynomial-time equivalent to the cloaking
problem formulated as follows.

Cloaking problem. Given a braid β = R(v1β0v2), where v1, v2 are cloak-
ing elements for known permutations and β0 is a braid in an unknown sub-
group of Bn, find the element (I, id) ? β0.

The authors of [6] claim that there is no known approach to the problem
and even brute-force enumeration will result in a collection of possible pairs
(I, id) ? β0 and there is no a priori way to decide which β0 is correct. In this
section we show that the last statement is incorrect and reduce security of
Kayawood protocol to some clearly stated problem of computational group
theory.

Proposition 4.1. Consider PA, PB ∈ Bn and σA, σB ∈ Sn as defined in
Section 3. Suppose that u′1 ∈ CσB and u′2 ∈ CσBσA satisfy the system: [u′1PAu

′
2, zβ1z

−1] = 1
. . .
[u′1PAu

′
2, zβrz

−1] = 1

Then the shared key is equal to (I, id) ? (u′1PAu
′
2) ? PB.

Proof. Straightforward check:

(I, 1) ? u′1PAu
′
2 ? PB = (I, 1) ? u′1PAu

′
2 ? v

−1
1 PBv

−1
2 (by definition of v1, v2)

= (I, 1) ? v−11 PBv
−1
2 ? u′1PAu

′
2 (since [v−11 PBv

−1
2 , u′1PAu

′
2] = 1)

= (I, 1) ? B ? u′1PAu
′
2 (since v−11 PBv

−1
2 = B)

= (I, 1) ? B ? A (by definition of u′1, u
′
2).
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Observe that [v−11 PBv
−1
2 , u′1PAu

′
2] = 1 since v−11 PBv

−1
2 = B is a product

of zβiz
−1 and their inverses. �

Proposition 4.1 implies that the element u′1PAu
′
2 can be used instead of

Alice’s private key in communication with Bob. By definition of PA such
u′1 and u′2 exist, namely u−11 and u−12 . Furthermore, the next proposition
claims that we may assume u′2 = 1.

Proposition 4.2. If u1 ∈ CσB and u2 ∈ CσBσA, then

u1Au2 = u1Au2A
−1 ·A,

where u1Au2A
−1 ∈ CσB .

Proof. Clearly, (I, id)?B?A?u2 = (I, id)?B?A. Hence, Au2A
−1 ∈ CσB . �

In other words, multiplying A on the right by an element cloaking σBσA
is the same as multiplying A on the left by an element cloaking σB. The
same is true if we insert a cloaking element in the middle of A = A1 ◦A2:

A1 ◦A2 → A1 ◦ u ◦A2,

where u cloaks σBσA1 . Insertion of u can be viewed as multiplication of A
on the left by an element cloaking σB.

Corollary 4.3. The intersection

(2) CσBPA ∩ C(zβ1z
−1, . . . , zβrz

−1)

is not empty. Each of its elements plays the role of the Alice’s private key.

Proof. Follows from Propositions 4.1 and 4.2. �

Corollary 4.3 allows us to reformulate the cloaking problem as the follow-
ing algorithmic question.

Cloaking problem for Alice (CPA). Given braids b1, . . . , br commuting
with an unknown braid A, a permutation σB associated with an unknown
braid B ∈ 〈b1, . . . , br〉, and a braid PA ∈ CσBA, find any element in the
intersection CσBPA ∩ C(b1, . . . , br).

An instance of CPA can be viewed as a tuple

(3) (b1, . . . , br, σB, PA)

satisfying the conditions mentioned in the statement of the problem. A
solution for that instance is any element from the intersection

CσBPA ∩ C(b1, . . . , br).

This defines the basic idea of our attack: we uncloak Alice’s public key
(solving the CPA problem) and obtain a substitute for her private key.
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5. Conjugating instances of the cloaking problem:
search for the secret conjugator z

In this section we show that design of the Kayawood protocol leaves us
some freedom to manipulate with the secret conjugator z efficiently reducing
its length to much smaller values (see Tables 1 and 2). We would like to
stress out from the beginning that the problem of finding the exact element
z based on the available public data is futile (see Section 5.2), and we never
approach that problem. Instead, we are looking for a “sufficiently good”
substitute for z.

Remark 5.1. The original proposal [6] does not address the importance
of the element z, it simply prescribes to use some randomly generated z of
length [150, 400]. It is not explained why it is not secure to use z of length,
say, 50 (or even 0). The only possible explanation is that the attack [23]
(recently improved in [18] for conjugators of length 1000) does not work for
elements of length greater than 150. But [23] attempts to solve a different
problem, namely, conjugacy separation of braid-tuples modulo ∆2, where
∆2-recovery is the hardest part.

5.1. Conjugating an instance of CPA. Given a CPA instance (3), and
conjugating CσBPA ∩ C(b1, . . . , br) by some element c ∈ Bn, we get

c−1(CσBPA ∩ C(b1, . . . , br))c = c−1(CσBPA)c ∩ c−1C(b1, . . . , br)c

= CσBσcc
−1PAc ∩ C(c−1b1c, . . . , c

−1brc),

which proves the following proposition.

Proposition 5.2. A ∈ Bn is a solution of the instance (b1, . . . , br, σB, PA) if
and only if c−1Ac is a solution of the instance (c−1b1c, . . . , c

−1brc, σBσc, c
−1PAc).

Notice that conjugating the instance

(4) (zβ1z
−1, . . . , zβrz

−1, σB, u1zαz
−1u2)

by c = z produces the instance

(5) (β1, . . . , βr, σBσz, (z
−1u1z)α(z−1u2z))

with (unknown) cloaking elements z−1u1z and z−1u2z. In particular, knowl-
edge of z allows to “drop” it from consideration. Also, observe that α is a
solution to the latter instance.

In our experiments we were never able to find the exact z, but we were
able to find an element c such that δ = z−1c is a relatively short braid
(relative to |z|) in the standard word metric on Bn. Conjugating (4) by
c = zδ produces an instance

(6) (δ−1β1δ, . . . , δ
−1βrδ, σBσc, δ

−1z−1u1zαz
−1u2zδ)

instead of (5). Observe that

• the instance (4) has a solution zαz−1.
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• the instance (6) has a solution δαδ−1, which is much shorter than
zαz−1.

Hence, the new instance (6) is more advantageous for a heuristic solver
described in Section 6 than the instance (4). Below we describe how we find
an appropriate element c such that δ = z−1c is short.

5.2. Heuristic search for z. A part of the public data available to the
eavesdropper Eve includes the elements β′1, . . . , β

′
r: β′1 = zβ1z

−1,
. . .
β′r = zβrz

−1,

where β1, . . . , βr ∈ Ln and z are unknown. Based on this data it is impossible
to recover the original element z. Even if the elements β1, . . . , βr are given,
we can only find z modulo the centralizer of β1, . . . , βr. But, as we mentioned
before, it is not our goal to find the exact z. Instead, we attempt to find
an element c such that |z−1c| is relatively small. This task is approached
heuristically using ideas described in [24] and its advanced version [18].

Below we outline a procedure that for a given tuple (β′1, . . . , β
′
r) searches

for y that minimizes the total length of the conjugate tuple:
r∑
i=1

|y−1β′iy| → min .

The procedure constructs a set of conjugates of the tuple (β′1, . . . , β
′
r). Ini-

tially, the set contains (β′1, . . . , β
′
r) only. On each iteration it chooses an

unchecked tuple, let us call it (γ1, . . . , γr), of the least total length and con-
jugates the tuple by each generator and its inverse x±11 , . . . , x±1n−1:

(x±1i γ1x
∓1
i , . . . , x±1i γrx

∓1
i ),

All words are minimized using the braid minimization procedure and new
tuples are saved as unchecked conjugates of (β′1, . . . , β

′
r). We say that an

iteration is successful if the total length of one of the new tuples is less
than the total length of any checked tuple. We terminate the procedure
after 20 unsuccessful iterations. The output is a checked tuple of the least
total length. The described procedure does not fail, but, in principle, it can
produce a poor result.

To accelerate convergence to a (local) minimum, we perform the following
trick (cf. [18, Section 4.4]). On each iteration, if |γ1| > 50, then we take the
initial segment c of γ1 of length 50 and add the tuple (c−1γ1c, . . . , c

−1γrc),
with braid-minimized entries, to the set of unchecked tuples. This trick
dramatically improves running time of the procedure.

6. Cσ-coset enumeration

One way to find a solution for the instance (3) is to enumerate elements
in the coset CσBPA until an element commuting with b1, . . . , br is found. A
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straightforward approach to coset enumeration requires to find a generating
set for the subgroup CσB and enumerate its elements. That subgroup is
finitely generated, its size is proportional to the size of the Schreier’s graph
of the action which is finite but, usually, huge. Hence, we developed a
different way to solve (3) that attempts to directly identify and remove
cloaking elements from PA. Our algorithm is based on the following rather
informally stated observations.

• As mentioned in Remark 2.3, the letters xi in the word wx±2i w−1

from Proposition 2.1 twist two particular strands σ−1(a) and σ−1(b).
• Replacement wxεix

ε
iw
−1 → wx−εi xεiw

−1, where ε = ±1, produces the
trivial braid.
• Replacement of a single letter x±1i that twists strands σ−1(a) and

σ−1(b) with x∓1i in a braid word w1x
±1
i w2 corresponds to multipli-

cation of the word on the left by cloaking element w1x
∓2
i w−11 .

• Multiplying a braid word with cloaking elements on the left or on
the right (or inserting a cloaking element into a random position)
usually increases the length of the braid.
• Even though obfuscation of a cloaked braid word changes the way

the word looks, it preserves the isotopy type of the braid and the
result of obfuscation typically twists strands σ−1(a) and σ−1(b) at
the crossing corresponding to the middle of wx±2i w−1.
• By tracing strands in a given braid, we can algorithmically find all

letters that twist strands σ−1(a) and σ−1(b). We call those letters
critical letters for the corresponding strands.

Recall that we switch from the instance (4) to an instance (6), so we need
to enumerate the coset CσBσcc

−1PAc. Instead of total coset enumeration,
our algorithm attempts to decrease the length of the element c−1PAc by
flipping powers of the critical letters and applying braid-minimization to
the result expecting the length to decrease.

In more detail, the algorithm iteratively constructs a subset of CσBσcc
−1PAc

starting from the set {c−1PAc}. On each iteration it picks a shortest unpro-
cessed word w and performs the following manipulations.

• For each critical letter x±1i in w that twists strands (σBσc)
−1(a) and

(σBσc)
−1(b)

– compute a new word by replacing x±1i with its inverse x∓1i ;
– shorten the obtained braid word using geodesic-braid minimiza-

tion algorithm;
– add the result to the current set.

We say that the algorithm is successful if it finds a word that commutes
with δ−1β1δ, . . . , δ

−1βrδ. We admit failure if the algorithm is unable to find
such a word, and there is no length decrease on the last 100 iterations.

In case of a failure, we randomly reset the instance. To do that, we
choose a shortest word in the set of checked words, cloak it by 3 cloaking
elements on the left and on the right respectively, apply the normal form
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and the braid minimization procedure, and start CσBσcc
−1PAc enumeration

from the resulting braid word. Each instance gets at most 3 attempts.

7. Tested parameter values and the results

The paper [6] does not describe the precise procedure to generate cloaking
elements from Proposition 2.1, but such a description can be found in [4],
see also [19, Section 2]. In particular, for security reasons, the conjugator w
in a cloaking element is augmented with L random pure braid generators.
Since values of L for 128- and 256-bit security levels are not mentioned in
[6], we choose the corresponding values from [4].

For 128-bit security level we use the following parameters:

• n = 16.
• q = 32.
• r = 32.
• L = 15.
• |B| = 22 (in terms of generators R(zβ1z

−1), . . . ,R(zβrz
−1)).

• |z| ∈ [180, 250], |α| ∈ [300, 400], |βi| ∈ [50, 100].

For 256-bit security level the parameters are:

• n = 16.
• q = 256.
• r = 32.
• L = 30.
• |B| = 43.
• |z| ∈ [300, 400], |α| ∈ [300, 400], |βi| ∈ [100, 200].

As mentioned in Introduction, after a series of attacks on WalnutDSA the
authors proposed several changes to the protocol including changes to the
cloaking procedure (see [1, D. Atkins on May 23, 2018]). It was suggested
to use several cloaking element inserted into the private keys at random
positions. We implemented and tested this idea as well. For cloaking ele-
ments we use conjugators w of lengths in the range [30, 50] and insert 30
(for 128-bit level) and 60 (for 256-bit level) such cloaking elements into ran-
dom positions inside private keys. These insertions are made iteratively, so
randomly chosen positions may also be inside previously inserted cloaking
elements.

Overall, we tested four versions of the Kayawood protocol, two original
versions for 128- and 256-bit security levels and two versions using mul-
tiple cloaking elements to mask private keys (with the other parameters
corresponding to 128- and 256-bit levels). We used Garside normal form
followed by the braid minimization reduction to obfuscate zβiz

−1 and sto-
chastic rewriting to obfuscate public keys. For each version of the protocol
we performed 100 experiments consisting of the following steps:

(1) Generate a random protocol instance.
(2) Generate random Alice’s private data.
(3) Run key establishement protocol.
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(4) Run heuristic search for z as described in Section 5.2.
(5) Run coset enumeration to find a substitute for Alice’s private key as

described in Section 6.

Our algorithm solved all randomly generated instances, i.e., our attack
had 100% success rate. Moreover, in most cases we found the original
private key. Also, we investigated the behavior of heuristic search for z
and, for the recovered conjugator c, collected the lengths |z−1c|. For words
c−1zβ1z

−1c, . . . , c−1zβrz
−1c we checked whether they are actually written

in the generators of Un, and for c−1zαz−1c we checked whether it is written
in the generators of Ln.

All experiments were performed on a machine with two 8-core 3.1 GHz
Intel Xeon CPU E5-2687W and 64GB RAM. The results are provided in
Tables 1 and 2.

128-bit 256-bit
Average running time 12 s 40 s
Average |z−1c| 25 34
Original private key recovered 83% 75%
All c−1zβiz

−1c are in generators of Un 95% 91%
c−1zαz−1c is in generators of Ln 71% 81%
Table 1. Results for the original versions of the protocol

128-bit 256-bit
Average running time 14 s 56 s
Average |z−1c| 25 34
Original private key recovered 75% 76%
All c−1zβiz

−1c are in generators of Un 95% 91%
c−1zαz−1c is in generators of Ln 71% 81%

Table 2. Results for versions using multiple cloaking elements

8. Conclusion

Kayawood protocol, described in [6], does not provide the claimed level
of security. It suffers from poor choice of cloaking elements. By design,
cloaking elements have very specific geometric type defined by a fixed pair
of strands that can be algorithmically recognized and removed. Thus, the
definition of cloaking elements seems to be the weak part of the protocol. We
doubt that security can be improved simply by increasing parameter values.
Nevertheless, we believe that stabilizers for E-multiplication have very rich
and algebraically interesting structure and using better cloaking elements
(not simply conjugates of squares) can make the protocol more secure.
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Appendix A. Finding the shared key using public keys

Testing out our generating procedures, we discovered a very surprising
property of random keys. In about 60% of the cases one of the following
equalities was satisfied:

(I, 1) ? PA ? PB = (I, 1) ? A ? PB,(7)

(I, 1) ? PB ? PA = (I, 1) ? B ? PA,(8)

i.e., the shared key could be obtained using public keys. After a thorough
check of our implementation we realized that our observation is not a result
of an error, but a feature of the design of the protocol. We suspect that the
authors are unaware of this problem, otherwise it would be mentioned in
the description of Kayawood.

Proposition A.1. Let n ∈ N be even. In the notation of Kayawood protocol:

(1) If σA(a) = a and σA(b) = b, then (8) holds.
(2) If σB(a) = a and σB(b) = b, then (7) holds.
(3) If σ−1z (a), σ−1z (b) > n/2, then σA(a) = a and σA(b) = b.
(4) If σ−1z (a), σ−1z (b) ≤ n/2, then σB(a) = a and σB(b) = b.
(5) Assuming that σz ∈ Sn has uniform distribution:

Pr[(7) or (8)] ≥ n

2(n− 1)
>

1

2
.

Proof. Observe that (1) and (2) are particular cases of Corollary 2.2. In-
deed, if σA(a) = a and σA(b) = b, then C1 = CσA , so PB = v1Bv2B

−1B,
where v1, Bv2B

−1 ∈ C1. Similarly, (2) holds. Item (3) holds since A =
zαz−1 and α ∈ Ln, so σα acts trivially on n

2 + 1, . . . , n. Similarly, (4)
holds since β1, . . . , βr ∈ Un. Finally, notice that n

2(n−1) is the chance that

a, b ∈ {1, . . . , n2 } or a, b ∈ {n2 + 1, . . . , n}. Hence (5) holds. �

The lower bound in item (5) of Proposition A.1 is not very precise as it
takes into account only two particular cases for (7) or (8) to be true. Yet,
for n = 16, it estimates the chance of (7) or (8) as 53.3% which is relatively
close to our observations.

We note that we did not filter cases (1) and (2) of Proposition A.1 when
generating random protocol instances, since they do not affect the behavior
of our attack in any way.
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