
Actively Secure OT-Extension from
q-ary Linear Codes?

Ignacio Cascudo , René Bødker Christensen ,
and Jaron Skovsted Gundersen

Department of Mathematical Sciences, Aalborg University
{ignacio,rene,jaron}@math.aau.dk

Abstract. We consider recent constructions of 1-out-of-N OT-extension
from Kolesnikov and Kumaresan (CRYPTO 2013) and from Orrù et al.
(CT-RSA 2017), based on binary error-correcting codes. We generalize
their constructions such that q-ary codes can be used for any prime
power q. This allows to reduce the number of base 1-out-of-2 OT’s that
are needed to instantiate the construction for any value of N , at the cost
of increasing the complexity of the remaining part of the protocol. We
analyze these trade-offs in some concrete cases.

1 Introduction

A K-out-of-N oblivious transfer, or
(
N
K

)
-OT, is a cryptographic primitive that

allows a sender to input N messages and a receiver to learn exactly K of these
with neither the receiver revealing which messages he has chosen to learn nor
the sender revealing the other N − K input messages. This is a fundamental
cryptographic primitive in the area of secure multiparty computation, and in
fact [9] showed that any protocol for secure multiparty computation can be
implemented if the OT functionality is available. However, the results in [6]
indicate that OT is very likely to require a public key cryptosystem, and therefore
implementing OT is relatively expensive. Unfortunately, well-known protocols
such as Yao’s garbled circuits [14] and the GMW-compiler [5] rely on using a
large number of independent instances of OT. It is therefore of interest to reduce
the number of OT’s used in a protocol in an attempt to reduce the overall cost.
This can be done using what is called OT-extensions, where a large number of
OT’s are simulated by a much smaller number of base OT’s together with the
use of cheaper symmetric crypto primitives, such as pseudorandom generators.

Beaver showed in [1] that OT-extension is indeed possible, but it was not
before 2003 that an efficient

(
2
1

)
-OT-extension protocol was presented by Ishai et

al. in [7]. In addition, while this protocol had security against passive adversaries,
subsequent work has shown that active security can be achieved at a small
additional cost [8].

? The final authenticated publication is available online at https://doi.org/10.1007/
978-3-319-98113-0 18

https://orcid.org/0000-0001-5520-5386
https://orcid.org/0000-0002-9209-3739
https://orcid.org/0000-0003-0882-4621
https://doi.org/10.1007/978-3-319-98113-0_18
https://doi.org/10.1007/978-3-319-98113-0_18

In [10], Kolesnikov and Kumaresan noticed that Ishai et al. were in essence
relying on the fact that the receiver encodes its input as a codeword in a repetition
code, and therefore one can generalize their idea by using other codes, such as
the Walsh-Hadamard code, which not only obtains efficiency improvements for(
2
1

)
-OT-extension, but also allows to generalize the protocol into passively secure(

N
1

)
-OT-extension. In such an extension protocol the base OT’s are

(
2
1

)
-OT’s,

but the output consist of a number of
(
N
1

)
-OT’s. In more recent work, Orrù et

al. [12] and Patra et al. [13] transformed the protocol by [10] into an actively
secure

(
N
1

)
-OT-extension protocol by adding a “consistency check” which is

basically a zero-knowledge proof that the receiver is indeed using codewords of
the designated code to encode his selections. As shown in [12,13], 1-out-of-N
oblivious transfer has a direct application to the problem of private set inclusion
and, via this connection, to the problem of private set intersection. In fact this
application requires only a randomized version of

(
N
1

)
-OT, where the sender

does not have input messages, but these are generated by the functionality and
can be accessed on demand by the sender. The structure of the aforementioned
OT extension protocols is especially well suited for this application, since such a
randomized functionality is essentially implemented by the same protocol without
the last step, where the sender would send its masked inputs to the receiver.

The aforementioned papers on
(
N
1

)
-OT-extension relied on the use of binary

linear codes, and the concrete parameters of the resulting construction, the
number of OT’s and the value of N , are given respectively by the length and
size of the binary linear code being used. Furthermore, the construction requires
that the minimum distance of the code is at least the desired security parameter.
Well-known bounds on linear codes, such as the Plotkin, Griesmer or Hamming
bounds [11], provide lower bounds for the length of a code with certain size and
minimum distance, and therefore these imply lower bounds on the number of
base OT’s for the OT-extension protocol. In fact, even if we omit the requirement
on the minimum distance, we can see that at least log2N base OT’s are needed
for those extension protocols.

In this paper, we discuss the use of q-ary linear codes, where q can be any
power of a prime, as a way of reducing the number of required base OT’s in
the 1-out-of-N OT-extension constructions mentioned above. We show that one
can easily modify the protocol in [12] to work with q-ary codes, rather than just
binary.1 Given that all parameters of the code still have the same significance for

1 Update: In the published version of this work, we were unfortunately not aware of
the results by Patra et al. [13]. The protocol in [13] differs from that by Orrù et al.
[12] in the consistency check, where instead of sending full codewords, the receiver
can send parity check bits, which results in a decreased communication complexity.
The same modifications and comparisons that we describe for the protocol in [12]
can also be applied to the one in [13] (in fact, our comparisons only take into account
the encoding phase of the protocol, but not the consistency check). In order to avoid
departing too much from the published version of this document, we keep the original
description and add Remark 1 on page 15, where we describe how [13] differs from
[12].

2

the construction and, in particular, N is still the size (the number of codewords)
of the code, we obtain a reduction in the number of base OT’s required: indeed,
for given fixed values N and d, the minimal length among all q-ary linear codes
of size N and minimum distance d becomes smaller as q increases. In particular
one can show cases where the lower bound of log2N base OT’s can be improved
even if we have relatively large minimum distance.

This improvement, however, comes at a cost: since we need to communicate
elements of a larger field, the communication complexity of the OT-extension
protocol (not counting the complexity of the base OT’s) increases. This increase
is compensated to some extent by the fact that this communication complexity
also depends on the number of base OT’s.

The concrete tradeoffs obtained by the use of q-ary codes depend of course on
N and the security level. We show several examples comparing explicit results
listed in [12] and the q-ary alternative achieving the same (or similar) N and
security level. For example, for the largest value of N considered in [12] we show
that by using a linear code over the finite field of 8 elements, we need less than
half of the base OT’s, while the communication complexity increases only by
33%.

When q is a power of two, we can show an improvement on the complexity
of the consistency check that we use in the case of a general q. Namely, the
consistency check in [12] works by asking the receiver, who has previously used
the base OT’s to commit to both the codewords encoding his selections and
some additional random codewords, to open sums of random subsets of these
codewords. The natural way of generalizing this to a general prime power q is to
ask the receiver to open random linear combinations over Fq of the codewords.
However, in case q is a power of two, we show that it is enough to open random
linear combinations over F2, i.e., sums, just as in [12] (naturally, this extends to
the case where q is a power of p, where it would be enough to open combinations
over Fp). The advantage of this generalization is of course that the verifier needs
to send less information to describe the linear combinations that it requests to
open, and in addition less computation is required from the committer to open
these combinations.

We give a presentation of the protocol and its security proof that is inspired by
a recent work on homomorphic universally composable secure commitments [2].
As noted in [12], there is a strong similarity between the OT-extension protocol
constructions in the aforementioned works and several protocol constructions in a
line of work on homomorphic UC commitments [3,4,2]. In the first part of the OT-
extension protocol in [10], the base OT’s are used for the receiver to eventually
create an additive 1-out-of-2 sharing of each coordinate in the codewords encoding
his selection, so that the sender learns exactly one share of each. This is essentially
the same as the committing phase of the passively secure homomorphic UC
commitment proposed in [3] (one can say that the receiver from the OT-extension
protocol has actually committed to his inputs at that point). In order to achieve
active security, a consistency check was added in [4], which is basically the same as
the one introduced in [12] in the context of OT-extension. Finally, [2] generalized

3

this consistency check by proving that rather than requesting the opening of
uniformly random linear combinations of codewords, these combinations can be
determined by a hash function randomly selected from an almost universal family
of hash functions. This leads to asymptotical complexity gains, both in terms of
communication and computation (since one can use linear time encodable almost
universal hash functions which can in addition be described by short seeds), but
in our case it also allows us to give a unified proof of security in both the case
where the linear combinations for the consistency check are taken over Fq and
when they are taken over the subfield.

The work is structured as follows. After the preliminaries in Section 2, we
present our OT-extension protocol and prove its security in Section 3. In Sec-
tion 4, we show that the communication cost can be reduced by performing the
consistency checks over a subfield, and finally Section 5 contains a comparison
with previous protocols.

2 Preliminaries

This section contains the basic definitions needed to present and analyse the
protocol for OT-extension.

2.1 Notation

Throughout this paper, q will denote a prime power and Fq a finite field of q
elements. Every finite field has elements 0 and 1, and hence it will be natural
to embed the set {0, 1} in Fq.2 Bitstrings in {0, 1}n and vectors from Fnq are
denoted in boldface. The i-th coordinate of a vector or bitstring b is denoted bi.

For a bitstring b ∈ {0, 1}n, we will use the notation ∆b to denote the diagonal
matrix in Fn×nq with entries from the vector b, i.e. the (i, i)-entry of ∆b is bi. Note
that for vectors b, c ∈ Fnq , the product c∆b equals the componentwise product
of b and c.

2.2 Linear Codes

Since our protocol depends heavily on linear codes, we recall here the basics of
this concept. First, a (not necessarily linear) code of length n over an alphabet
Q is a subset C ⊆ Qn. An Fq-linear code C is an Fq-linear subspace of Fnq . The
dimension k of this subspace is called the dimension of the code, and therefore
C is isomorphic to Fkq . A linear map Fkq → C can be described by a matrix

G ∈ Fk×nq , which is called a generator matrix for C. Note that G acts on the

right, so w ∈ Fkq is mapped to wG ∈ C by the aforementioned linear map.
For x ∈ Fnq we define the support of x to be the set indices where x is nonzero,

and we denote this set by supp(x). Using this definition we can turn Fnq into

2 Of course, the elements of {0, 1} could be identified with the elements of the field of
two elements, F2. But for the sake of clarity, we will prefer to use {0, 1} where we
refer to bits and bitstrings and no algebraic properties are needed.

4

a metric space. This is done by introducing the Hamming weight and distance.
The Hamming weight of x is defined as wH(x) = |supp(x)|, and this induces the
Hamming distance dH(x,y) = wH(x− y), where y ∈ Fnq as well. The minimum
distance d of a linear code C is defined to be

d = min{dH(c, c′) | c, c′ ∈ C, c 6= c′},

and by the linearity of the code it can be shown that in fact

d = min{wH(c) | c ∈ C \ {0}}.

Since n, k, and d are fixed for a given linear code C over Fq, we often refer to it
as an [n, k, d]q-code.

It may be shown that if x ∈ Fnq is given by c + e for some codeword c ∈ C
and an error vector e with wH(e) < d, it is possible to recover c from x and
supp(e). This process is called erasure decoding.

Another way to see erasure decoding is by considering punctured codes. For
a set of indices E ⊆ {1, 2, . . . , n} we denote the projection of x ∈ Fnq onto the
indices not in E by πE(x). For a code C and a set of indices E, we call πE(C) a
punctured code. Now consider the case where |E| < d, which implies the existence
of a bijection between C and πE(C). This is the fact exploited in erasure decoding,
where E is the set of indices where the errors occur.

As in [2], we will use interleaved codes. If C ⊆ Fnq is a linear code, C�s denotes
the set of s× n-matrices with entries in Fq whose rows are codewords of C. We
can also see such an s × n-matrix as a vector of length n with entries in the
alphabet Fsq. Then we can see C�s as a non-linear3 code of length n over the
alphabet Fsq.

Since the alphabet Fsq contains a zero element (the all zero vector), we can
define the notions of Hamming weight and Hamming distance in the space (Fsq)n.
We can then speak about the minimum distance of C�s and even though C�s is
not a linear code, it is easy to see that the minimum distance of C�s coincides
with its minimum nonzero weight, and also with the minimum distance of C.

2.3 Cryptographic Definitions

Consider a sender S and a receiver R participating in a cryptographic protocol.
The sender holds vj,i ∈ {0, 1}κ for j = 1, 2, . . . , N and i = 1, 2, . . . ,m. For
each i the receiver holds a choice integer wi ∈ [1, N]. We let Fκ,mN-OT denote the
ideal functionality that, on inputs vj,i from S and wi from R, outputs vwi,i for
i = 1, 2, . . . ,m to the receiver R. For ease of notation, we will let the sender
input N matrices of size κ×m with entries in {0, 1}, and the receiver a vector
of length m, with entries in [1, N]. Hence, for the i’th OT the sender’s inputs
are the i’th column of each matrix, and the receiver’s input is the i’th entry of
the vector.

3 The code is linear over Fq, but not the alphabet Fsq.

5

The protocol presented in Section 3 relies on two functions with certain
security assumptions, the foundations of which we define in the following. For
the first function let X be a probability distribution. The min-entropy of X is
given by

H∞(X) = − log(max
x

Pr[X = x]),

where X is any random variable following the distribution X . If H∞(X) = t we
say that X is t-min-entropy. This is used in the following definition.

Definition 1 (t-min-entropy strongly C-correlation robustness). Con-
sider a linear code C ⊆ Fnq , and let X be a distribution on {0, 1}n with min-
entropy t. Fix {ti ∈ Fnq | i = 1, 2, . . . ,m} from some probability distribution and
let κ be a positive integer. An efficiently computable function H : Fnq → {0, 1}κ is
said to be t-min-entropy strongly C-correlation robust if

{H(ti + c∆b) | i = 1, 2, . . . ,m, c ∈ C}

is computationally indistinguishable from the uniform distribution on {0, 1}κm|C|
when b is sampled according to the distribution X .

The second type of function we need is a pseudorandom generator.

Definition 2. A pseudorandom generator is a function PRG : {0, 1}κ → Fmq
such that the output of PRG is computationally indistinguishable from the uniform
distribution on Fmq .

If A = [a1,a2, . . . ,an] is a κ×n-matrix with entries in {0, 1} for some integer n,
we use the notation PRG(A) = [PRG(a1),PRG(a2), . . . ,PRG(an)] where we see
PRG(ai) as columns of an m× n matrix.

In addition to the usual concept of advantage, one can also consider the con-
ditional advantage as it is done in [12]. Let A be an event such that there exist x0
and x1 in the sample space of the two random variables X0 and X1, respectively,
where Pr[Xi = xi | A] > 0 for i = 0, 1. Then we define the conditional advantage
of a distinguisher D given A as

Adv(D|A) =
∣∣∣Pr[D(X0) = 0|A]− Pr[D(X1) = 0|A]

∣∣∣.
We end this section by presenting the following lemma, which allows us to bound
the advantage by considering disjoint cases. The proof follows by the law of total
probability and the triangle inequality.

Lemma 1. Let A1, A2, . . . , An be events as above. Additionally, assume that the
events are disjoint. If

∑n
i=1 Pr[Ai] = 1, then

Adv(D) ≤
n∑
i=1

Adv(D | Ai) Pr[Ai]

for any distinguisher D.

6

3 Actively Secure OT-Extension

In this section we describe and analyse a generalization of the protocol described
in [12] which uses OT-extensions to implement the functionality Fκ,mN-OT by using
only n ≤ m base OT’s, which are 1-out-of-2. Our OT-extension protocol is also
using 1-out-of-2 base OT’s, but works with q-ary linear codes instead of binary.
Our main result is summarized in the following theorem.

Theorem 1. Given security parameters κ and s, let C be an [n, k, d]q linear code
with k = logq(N) and d ≥ max{κ, s}. Additionally, let PRG : {0, 1}κ → Fm+2s

q be
a pseudorandom generator and let H : Fnq → {0, 1}κ be a t-min-entropy strongly
C-correlation robust function for all t ∈ {n− d+ 1, n− d+ 2, . . . , n}. If we have
access to C, the functions PRG and H, and the functionality Fκ,n2-OT, then the
protocol in Figure 1 on page 8 implements the functionality Fκ,mN-OT.

The protocol is computationally secure against an actively corrupt adversary.

3.1 The Protocol

We start by noticing that in our protocol R has inputs wi ∈ Fkq rather than

choice integers wi ∈ [1, N]. However, the number of elements in Fkq is qk = N ,
and hence wi can for instance be the q-ary representation of wi. In this way we
have a bijection between selection integers and input vectors.

Our protocol is, like the protocol in [12], very similar to the original protocol
in [7]. The idea in this protocol is that we first do OT’s with the roles of the
participants interchanged such that the sender learns some randomness chosen by
the receiver. Afterwards, R encodes his choice vectors using the linear code C and
hides the value with a one-time pad. He sends these to S, who will combine this
information with the outputs of the OT functionality to obtain a set of vectors,
only m of which R can compute; namely the ones corresponding to his input
vectors. When S applies a t-min-entropy strongly C-correlation robust function
H to the set of vectors, he can use the outputs as one-time pads of his input
strings. Like in [12] the protocol contains a consistency check to ensure that R
acts honestly, or otherwise he will get caught with overwhelming probability. The
full protocol is presented in Figure 1 on page 8.

In order to argue that the protocol is correct, we see that for each i, the
sender S computes and sends the values yw,i for all w ∈ Fkq . Since k = logq(N),
this yields N strings for each i ∈ {1, 2, . . . ,m}. The receiver R obtains one of
these because

H(qi −wiG∆b) = H(qi − ci∆b) = H(ti).

Furthermore, if both S and R act honestly, the consistency checks in phase 3
will always pass. This follows from the observation that

T̃ + W̃G∆b = M(T0 + C∆b) = MQ.

3 In Section 4, we show if the protocol relies on a code over Fpr , it is enough to choose
M ′ ∈ F2s×m

p .

7

Hence, we note that if only passive security is needed in Protocol 1, we can omit
phase 3 and set s = 0. The aforementioned steps are included to ensure that the
receiver uses codewords in the matrix C. What a malicious receiver might gain
by choosing rows which are not codewords is explained in [7, Sec. 4].

Protocol 1: OT-Extension

1. Initialization phase
(a) S chooses uniformly at random b ∈ {0, 1}n.
(b) R generates uniformly at random two seed matrices N0, N1 ∈ {0, 1}κ×n and

defines the matrices Ti = PRG(Ni) ∈ F(m+2s)×n
q for i = 0, 1.

(c) The participants call the functionality Fκ,n2-OT, where S acts as the receiver
with input b, and R acts as the sender with inputs (N0, N1). S receives N =
N0 + (N1 −N0)∆b, and by using PRG, he can compute T = T0 + (T1 − T0)∆b.

2. Encoding phase
(a) Let W ′ ∈ Fk×mq be the matrix which has wi as its columns. R generates a

uniformly random matrix W ′′ ∈ Fk×2s
q , and defines the (m + 2s) × k-matrix

W = [W ′ |W ′′]T .
(b) R sets C = WG, and sends U = C + T0 − T1.
(c) S computes Q = T + U∆b. This implies that Q = T0 + C∆b.

3. Consistency check
(a) S samples a uniformly random matrix M ′ ∈ F2s×m

q and sends this to R.4 They
both define M = [M ′ | I2s].

(b) R computes the 2s×n-matrix T̃ = MT0 and the 2s×k-matrix W̃ = MW and
sends these matrices to S.

(c) S verifies that MQ = T̃ + W̃G∆b. If this fails, S aborts the protocol.
4. Output phase

(a) Denote by qi and ti, the i’th rows of Q and T0, respectively. For i = 1, 2, . . . ,m
and for all w ∈ Fkq , S computes yw,i = vw,i ⊕H(qi −wG∆b) and sends these
to R. For i = 1, 2, . . . ,m, R can recover vwi,i = ywi,i ⊕ H(ti).

Fig. 1. This protocol implements the functionality Fκ,mN-OT having access to Fκ,n2-OT. The
security of the protocol is controlled by the security parameters κ and s. The sender
S and the receiver R have agreed on a linear code C ⊆ Fnq with generator matrix G
of dimension k = logq(N) and minimum distance d ≥ max{κ, s}. The protocol uses a

pseudorandom generator PRG : {0, 1}κ → Fm+2s
q and a function H : Fnq → {0, 1}κ, which

is t-min-entropy strongly C-correlation robust for all t ∈ {n− d+ 1, n− d+ 2, . . . , n}.
R has m inputs w1,w2, . . . ,wm ∈ Fkq , which act as selection integers. S has inputs
vw,i ∈ {0, 1}κ, indexed by i ∈ {1, 2, . . . ,m} and w ∈ Fkq .

3.2 Proofs of Security

In this section we give formal proofs for security. The proof of security against a
malicious sender works more or less the same as the proof in [12] but in a different
notation. For completeness, we have included this proof. However, we present

8

the proof against a malicious receiver in another way, where the structure, some
strategies, and some arguments differ from the original proof.

Theorem 2. Protocol 1 is computationally secure against an actively corrupt
sender.

Proof. To show this theorem we give a simulator, which simulates the view of
the sender during the protocol. The view of S is ViewS = {N,U, T̃ , W̃}. The
simulator SimS works as follows.

1. SimS receives b from S and defines a uniformly random matrix N , sets
T = PRG(N), and passes N back to S.

2. Then SimS samples U uniformly at random and sends this to S. Additionally,
it computes Q as S should.

3. In phase 3 the simulator receives M ′ from S, and constructs M . The matrix
W̃ is sampled uniformly at random in F2s×k

q , and using this, SimS sets

T̃ = MQ− W̃G∆b. It sends T̃ and W̃ to S.
4. SimS receives yw,i from S and since SimS already knows Q and b, it can

recover vw,i = yw,i⊕H(qi−wG∆b) and pass these to the ideal functionality
Fκ,mN-OT.

We now argue that the simulator produces values indistinguishable from ViewS .
The matrix N is distributed identically in the real and ideal world. Since both
T0 and T1 are outputs of a pseudorandom generator, the matrix T0 − T1, and
therefore also U , is computationally indistinguishable from a uniformly random
matrix. In the real world, W̃ = M ′(W ′)T +(W ′′)T is uniform since W ′′ is chosen
uniformly. The simulator SimS constructs T̃ such that the consistency check
will pass. This will always be the case in the real world, and hence S cannot
distinguish between the real and ideal world. Additionally, we note that step 4
ensures that the receiver obtains the same output in both worlds. This shows
security against an actively corrupt sender. ut

We now shift our attention to an actively corrupt receiver. This proof is not
as straight forward as for the sender. The idea is to reduce the problem of
breaking the security of the protocol to the problem of breaking the assumptions
on H. Before delving into the proof itself, we will introduce some lemmata and
notations that will aid in the proof. The focus of these will be the probability that
certain events happen during the protocol. These events are based on situations
that determine the simulator’s ability or inability to simulate the real world.
Essentially, they are the event that R passes the consistency check, which we
denote by PC; the event that R has introduced errors in too many positions,
denoted by LS; and the event that the error positions from the consistency check
line up with the errors in C, which we call ES. These will be defined more
precisely below.

Inspired by the notation in the protocol, we define

C̃ = MC. (1)

9

A corrupt receiver may deviate from the protocol and may send an erroneous
W̃ , which we denote by W̃∗. Let

C̄ = C̃ − W̃∗G

and let E = supp(C̄), where C̄ is interpreted in C�2s. When writing C̃, C̄, and
E later in this section these are the definitions we are implicitly referring to.

Lemma 2. Let C, C, and M be as in Protocol 1. Further, let LS be the event
that |E| ≥ s, and let ES be the event that for every C ′ ∈ C�2s there exists a
Ĉ ∈ C�m+2s such that supp(C̃ − C ′) = supp(C − Ĉ). Then the probability that
neither ES nor LS happen is at most q−s.

Proof. The matrix M ′ in Protocol 1 is chosen uniformly at random, and hence
M can be interpreted as a member of a universal family of linear hashes. Thus,
this lemma is a special case of [2, Theorem 1] when letting m′ = m+ 2s, s′ = s,
and t′ = 0 where the primes denote the parameters in [2]. Additionally, note that
our event LS happens if MC has distance at least s from C�2s. ut

We will now bound the probability that an adversary is able to pass the consis-
tency check, even if C contains errors.

Lemma 3. Let PC denote the event that the consistency check passes. Then

Pr[PC] ≤ 2−|E|.

Proof. In order to compute Pr[PC], we consider C̄ and T̄ = T̃ − T̃∗, where the ∗
indicates that the matrix may not be constructed as described in the protocol.
The event PC happens if MQ = T̃∗ + W̃∗G∆b. However, from the definition of
Q, MQ = T̃ + C̃∆b, implying that PC happens if and only if

T̃ + C̃∆b = T̃∗ + W̃∗G∆b ⇐⇒ T̄ = −C̄∆b.

Now consider T̄ and C̄ in (Fnq)�2s, meaning that the entries C̄j and T̄j are

elements in F2s
q . If the adversary chooses C̄j = 0 for some j ∈ {1, 2, . . . , n}, it

must choose T̄j = 0 as well since the check would fail otherwise. If it chooses
C̄j 6= 0, it has two options. Either bet that bj = 0 and set T̄j = 0 or bet that
bj = 1 and set T̄j = −C̄j . This means that for each entry j ∈ E the adversary
has probability 1

2 of guessing the correct value of bj . For every entry j /∈ E,
each possible bj gives a consistent value since C̄j = T̄j = 0. By this and the
independence of the entries in b, it follows that the probability of the check
passing is bounded by Pr[PC] ≤ 2−|E|. ut

This immediately gives the following corollary.

Corollary 1. If LS denotes the same event as in Lemma 2, then

Pr[PC | LS] ≤ 2−s.

10

We now have the required results to prove the security of Protocol 1 against an
actively corrupt receiver. The events PC, LS, and ES from the previous lemmata
and corollaries will also be used in the proof of the following theorem.

Theorem 3. Protocol 1 is computationally secure against an actively corrupt
receiver.

Proof. As in the proof of Theorem 2, we construct a simulator SimR simulating
the view of the receiver, which is ViewR = {M ′,yw,i}. The simulator works as
follows.

1. SimR receives N0 and N1 from R.
2. The simulator receives U from R and combines these with T0 = PRG(N0)

and T1 = PRG(N1) to reconstruct the matrix C. Additionally, it samples
uniformly at random an internal value b. Using this b, the simulator SimR

computes Q = T0 + C∆b.
3. SimR samples a random M ′ like the sender would have done in the protocol

and sends this to R. In return, it receives T̃∗ and W̃∗, where the ∗ indi-
cates that the vectors may not be computed according to the protocol. The
simulator runs the consistency check and aborts if it fails.

4. Otherwise, it erasure decodes each row of C by letting E be the erasures
to obtain W ′. If the decoding fails, it aborts. If the decoding succeeds, the
simulator gives W ′ as inputs to the ideal functionality Fκ,mN-OT, which returns
the values vwi,i to SimR. It can now compute ywi,i = vwi,i⊕H(qi−wiG∆b),
and chooses yw,i uniformly at random in Fκq for all w 6= wi.

The matrix M ′ is uniformly distributed both in the real and ideal world. Hence,
we only need to show that the output yw,i produced by the simulator is indis-
tinguishable from the output of the protocol.

Let Z be a distinguisher for distinguishing between a real world execution
of the protocol and an ideal execution using the simulator. By Lemma 1 its
advantage is bounded by

Adv(Z) ≤Adv(Z | PC) + Adv(Z | PC, LS) Pr[PC | LS]

+ Adv(Z | PC, LS,ES) Pr[LS,ES] + Adv(Z | PC, LS,ES) Pr[PC],
(2)

where we have omitted some probability factors since they are all at most 1.
Notice that ywi,i is constructed identically in both worlds. The remaining yw,i

are uniformly distributed in the ideal world, but constructed as

yw,i = vw,i ⊕ H(qi −wG∆b) (3)

in the real world. Also notice that if the consistency check fails, the simulator
aborts before constructing the yw,i. This is the same as in the real world, and the
only information R has received before this is M ′, which is identically distributed
in both worlds. Hence, the simulator is perfect in this case. This implies that the
first term on the right-hand side in (2) is zero.

11

Since the consistency check by the simulator is identical to the consistency
check done by S, it follows that the probability for the consistency check to
pass even if R might have sent inconsistent values is the same in both worlds.
This means that Pr[PC | LS] ≤ 2−s by Corollary 1. In a similar fashion, Lemma
2 implies that the penultimate term in (2) can be bounded above by q−s. In
summary, (2) can be rewritten as

Adv(Z) ≤ 2−s + q−s + Adv(Z | PC, LS,ES)2−|E|. (4)

To show that this is negligible in κ and s, assume the opposite; that is, Z has non-
negligible advantage. We then construct a distinguisher D breaking the security
assumptions on H.

The distinguisher D simulates the protocol with minor changes in order to
produce its input to the challenger. After receiving the challenge it uses the
output of Z to respond. There exist inputs and random choices for R and S,
which maximize the advantage of Z, and we can assume that D has fixed these
in its simulation. This also means that PC, LS and ES happen in the simulation
since otherwise, Adv(Z) is negligible.

Because ES happens, puncturing C in the positions in E gives a codeword
in πE(C�m+2s). Further, the event LS ensures that this corresponds to a unique
codeword in C�m+2s. Hence, D is able to erasure decode and for i = 1, 2, . . . ,m+
2s obtain ci = wiG + ei, where ci is the i’th row of C, wH(ei) < d, and
supp(ei) ⊆ E.

The following arguments use that no matter which b the challenger chooses,
the distinguisher D knows ei∆b. This follows from the fact that PC has happened
and therefore bj for j ∈ E is known to the adversary, which is simulated by D.
Hence, the distinguisher is able to construct t′i = ti + ei∆b, where the b is the
vector eventually chosen by the challenger, and ti the i’th row of T0. Letting
t = n− |E|, define the probability distribution X to be the uniform distribution
on Fn2 under the condition that the indices in E are fixed to the corresponding
entry of b. By uniformity this distribution has min-entropy t. The distinguisher
passes X and the t′i to the challenger. It receives back xw,i for all i = 1, 2, . . . , n
and w ∈ Fkq and needs to distinguish them between being uniformly random and
being constructed as

xw,i = H(t′i + wG∆b), (5)

As in the protocol, let Q = T0 +C∆b, where b is again the vector chosen by the
challenger. Therefore, if xw,i is constructed as in (5), we have that

xw,i = H(ti + ei∆b + wG∆b)

= H(qi − ci∆b + ei∆b + wG∆b)

= H(qi − (wi −w)G∆b).

The distinguisher will now construct and input to Z the following

ywi,i = vwi,i ⊕ H(t′i),

yw,i = vw,i ⊕ xwi−w,i, for w 6= wi.

12

Since t′i = ti + ei∆b = qi −wiG∆b, we have that ywi,i is identical to the value
computed in both the real and ideal worlds.

For the remaining w we notice that if the challenger has chosen xw,i uniformly
at random, then the values yw,i are uniformly distributed as well. This is the
same as the simulator will produce in the ideal world. On the other hand, if
xw,i = H(t′i +wG∆b), then we have yw,i = vw,i⊕H(qi−w∆b). This is exactly
the same as produced during the protocol in the real world. Hence, D can feed
the values yw,i to Z, which can distinguish between the real and ideal world,
and depending on the answer from Z, D can distinguish whether the xw,i are
uniformly distributed or are constructed as H(t′i+wG∆b). Hence, the advantage
of D is the same as that of Z under the restriction that PC, LS, and ES happen.
This means that

Adv(D) = Adv(Z|PC, LS,ES) ≥ 2|E|
(
Adv(Z)− 2−s − q−s

)
, (6)

where the inequality comes from (4). This contradicts that H is t-min-entropy
strongly C-correlation robust, and therefore Z must have negligible advantage in
the security parameters κ and s. ut

4 Consistency check in a subfield

Assume that q = 2r and that r | s. By restricting the matrix M ′ in Protocol 1 to
have entries in F2, the set of possible matrices M form a 2−2s-almost universal
family of hashes. The probability in Lemma 2 can then be replaced by 2−s

by setting m′ = m + 2s, s′ = s
r , and t′ = 2s(1 − 1/r). This modification will

show itself in (4), but here only the term q−s is replaced by 2−s, and hence
the advantage will still be negligible in κ and s. However, choosing M ′ in a
subfield reduces the communication complexity, since the number of bits needed
to transmit M ′ is lowered by a factor of r. Furthermore, the computation of T̃
and W̃ can be done using only sums in Fq, instead of multiplication and sums.

This method of reducing the communication complexity can be done to an
intermediate subfield, which will give a probability bound between q−s and
2−s. In a similar way, this procedure could also be applied to fields of other
characteristics.

5 Comparison

We compare the parameters of our modified construction with those that can
be achieved by the actively secure OT-extension construction from [12]. We
will show that the ability to use larger finite fields in our modified construction
induces a tradeoff between the number of base OT’s that are needed for a given
N and given security parameters (and hence also the complexity of the set-up
phase), and the complexity of the encoding and consistency check phases of the
extension protocol.

13

We have shown that given an [n, k, d]q-code, with d ≥ max{κ, s}, one can
build an OT-extension protocol that implements the functionality Fκ,mN-OT using
the functionality Fκ,n2-OT, where N = qk. The parameters achieved in [12] are the
same as we obtain in the case q = 2.

We will limit our analysis to the case where q = 2r, and r | s. We fix the
security parameters s and κ, and fix N to be a power of q, N = qk. Note then
that N = 2k·log2 q. Let n′ and n be the smallest integers for which there exist an
[n′, k log2 q,≥ d]2-linear code and an [n, k,≥ d]q-linear code, respectively. As we
discuss later, we can always assume that n ≤ n′, and in most cases it is in fact
strictly smaller. Therefore, by using q-ary codes one obtains a reduction on the
number of base OT’s from n′ to n, and therefore a more efficient initialization
phase. Note for example that the binary construction always requires at least
a minimum of log2N base OT’s, while using q-ary codes allows to weaken this
lower bound to n ≥ logq N .

On the other hand, however, this comes at the cost of an increase in the
communication complexity of what we have called the encoding and consistency
check phases of the protocol since we need to send a masking of codewords over
a larger field. We compare these two phases separately since the consistency
check is only needed for an actively secure version of the protocol and it has
a smaller cost than the encoding phase anyway. In the encoding phase, [12]
communicates a total of (m + s)n′ bits, while our construction communicates
(m+ 2s)n log2 q bits. However, typically m� s, and therefore we only compare
the terms mn′ and mn log2 q. Hence, the communication complexity of this phase
gets multiplied by a factor log2 q ·n/n′. During the consistency check phase, which
is less communication intensive, [12] communicates a total of sm+sn′+sk log2 q
bits while our construction communicates 2sm+2sn log2 q+2sk log2 q bits when
using the method from Section 4.

We now discuss in more detail the rates between n and n′ that we can
obtain for different values of q. In order to do that, having fixed d and k, let
n′ and n denote the minimum values for which [n′, k log2 q,≥ d]2-linear codes
and [n, k,≥ d]q-linear codes exist. Let k′ denote k log2 q. It is easy to see that
n ≤ n′ by considering a generator matrix for the binary code of length n′ and
considering the code spanned over Fq by that same matrix. In many situations,
however, n is in fact considerably smaller than n′. The extreme case is when
q = N , and therefore k = 1, in which case one can take the repetition code over
Fq and set n = d. It is difficult to give a general tight bound on the relation
between n and n′, although at least we can argue that n ≤ n′ − k′ + k: indeed,
given an [n′, k′,≥ d]2-code C2 then one can obtain an [n′, k′,≥ d]q-code Cq by
simply considering the linear code spanned over the field Fq by the generator
matrix of C2 and then shorten5 Cq at k′ − k positions, after which we obtain
an [n,≥ k,≥ d]q-code C, with n = n′ − k′ + k. This bound is however by no
means tight in general. We now consider concrete examples of codes, that will
be summarized in Table 1.

5 Shortening a code at positions i1, . . . , it means first taking the subcode consisting of
all codewords with 0′s at all those positions and then erasing those coordinates.

14

Comparison

Code N n (Base OT’s) d n CC

Walsh-Had. [10] 256 256 128
Juxt. simplex code over F4 256 170 128 ÷ 1.51 × 1.33
Punct. Walsh-Had. [12] 512 256 128

Juxt. simplex code over F8 512 146 128 ÷ 1.75 × 1.71
[511, 76,≥ 171]2-BCH [12] 276 511 ≥ 171

[455, 48,≥ 174]4-BCH over F4 296 455 ≥ 174 ÷ 1.12 × 1.78
[1023, 443,≥ 128]2-BCH [12] 2443 1023 ≥ 128

[455, 154,≥ 128]8-BCH over F8 2462 455 ≥ 128 ÷ 2.25 × 1.33

Table 1. Comparison of using binary and q-ary codes for OT-extension. In the last
two columns we consider the decrease in the number of base OT’s and increase in
the dominant term of the communication complexity in the encoding phase when we
consider a q-ary construction.

Remark 1. After publication, the authors have been made aware of another work
[13], whose consistency check communicates fewer bits than in [12]. They achieve
this by essentially having the receiver sum the columns of T̃ before sending it to
S (i.e. the receiver would send in step 3(b) of our description T̃ · 1n where 1n is
the all-one vector of length n), after which the check in step 3(c) is replaced by
one in which both sides of the equation are multiplied by 1n. This can also be
used in the case q 6= 2. Since our comparisons focus on the encoding phase of [12],
this comparison applies to [13] as well since the encoding phases are identical.

Small values of N

For relatively small values of N (N < 1000), [10] suggests the use of Walsh-
Hadamard codes, with parameters [2k

′
, k′, 2k

′−1]2, while [12] improves on this by
using punctured Walsh-Hadamard codes instead. Punctured Walsh-Hadamard
codes (also known as first order Reed-Muller codes) are [2k

′−1, k′, 2k
′−2]2-linear

codes. These are the shortest possible binary linear codes for those values of N
and d, as they attain the Griesmer bound. In terms of N , the parameters can be
written as [N/2, log2N,N/4]2.

The natural generalization of these codes to Fq are first order q-ary Reed
Muller codes, which have parameters [qk−1, k, qk−1 − qk−2]q. Moreover, there is
a q-ary generalization of Walsh-Hadamard codes, known as simplex codes, which

have parameters [q
k−1
q−1 , k, q

k−1]q.
For example for q = 4, the parameters of the simplex code can be written in

terms of N as [(N − 1)/3, log4N,N/4]4, and hence, for the same values of d and
N , the number of base OT’s is reduced by a factor 3/2 since n/n′ < 2/3. On the
other hand, the communication complexity of the encoding phase increases by a
factor 2n/n′ < 4/3 compared to using binary punctured Walsh-Hadamard codes.
We note, however, that this comparison is only valid if N is a power of 4.

15

Because of the fact that N needs to be a power of q, in the comparison table
above it will be convenient to use the juxtaposition of two copies of the same
code. This means that given an [n, k, d]q code C′, we can obtain a [2n, k, 2d]q code
by sending each symbol in a codeword twice. With respect to the examples listed
in [12], we see that by choosing an adequate finite field and using juxtapositions
of simplex codes, the number of OT’s gets divided by a factor slightly over 1.5,
while the communication complexity increases by a somewhat smaller factor.

Larger values of N

For larger values of N , [12] suggests using binary BCH codes. We use q-ary BCH
codes instead. It is difficult to find BCH codes that match exactly the parameters
(N, d) from [12] so in our comparison we have always used larger values of both N
and d. This is actually not too advantageous for our construction since the codes
in [12] were selected so that their length is of the form 2m − 1 (what is called
primitive binary BCH codes, which usually yields the constructions with best
parameters) and that results in a range of parameters where it is not adequate
to choose primitive q-ary BCH codes. Nevertheless, in the case where the large
value N ′ = 2443 is considered in [12], we can reduce the number of base OT’s
needed to less than half, while the communication complexity only increases by
4/3, and in addition to that we achieve a larger value N = 2462. Observe that, for
this value of N , with a binary code the number of base OT’s would be restricted
by the näıve bound n′ ≥ log2N = 462 in any case (i.e. even if d = 1), while
using a code over F8 we only need to use 455.

Acknowledgements

The authors wish to thank Claudio Orlandi for providing helpful suggestions
during the early stages of this work, and Peter Scholl for his valuable comments.

References

1. Beaver, D.: Correlated pseudorandomness and the complexity of private
computations. In: Proceedings of the Twenty-eighth Annual ACM Sympo-
sium on Theory of Computing. pp. 479–488. STOC ’96, ACM (1996).
https://doi.org/10.1145/237814.237996

2. Cascudo, I., Damg̊ard, I., David, B., Döttling, N., Nielsen, J.B.: Rate-1, linear time
and additively homomorphic uc commitments. In: Robshaw, M., Katz, J. (eds.)
Advances in Cryptology – CRYPTO 2016. pp. 179–207. Springer Berlin Heidelberg,
Berlin, Heidelberg (2016)

3. Cascudo, I., Damg̊ard, I., David, B., Giacomelli, I., Nielsen, J.B., Trifiletti, R.:
Additively homomorphic uc commitments with optimal amortized overhead. In:
Katz, J. (ed.) Public-Key Cryptography – PKC 2015. pp. 495–515. Springer Berlin
Heidelberg, Berlin, Heidelberg (2015)

16

https://doi.org/10.1145/237814.237996

4. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Trifiletti, R.: On the complex-
ity of additively homomorphic uc commitments. In: Kushilevitz, E., Malkin, T.
(eds.) Theory of Cryptography. pp. 542–565. Springer Berlin Heidelberg, Berlin,
Heidelberg (2016)

5. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing. pp.
218–229. STOC ’87, ACM (1987). https://doi.org/10.1145/28395.28420

6. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-
way permutations. In: Proceedings of the Twenty-first Annual ACM Sym-
posium on Theory of Computing. pp. 44–61. STOC ’89, ACM (1989).
https://doi.org/10.1145/73007.73012

7. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers
Efficiently, pp. 145–161. Springer Berlin Heidelberg, Berlin, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 9

8. Keller, M., Orsini, E., Scholl, P.: Actively secure ot extension with optimal overhead.
In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology – CRYPTO 2015. pp.
724–741. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

9. Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing. pp. 20–31. STOC
’88, ACM (1988). https://doi.org/10.1145/62212.62215

10. Kolesnikov, V., Kumaresan, R.: Improved OT Extension for Transferring
Short Secrets, pp. 54–70. Springer Berlin Heidelberg, Berlin, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 4

11. MacWilliams, F., Sloane, N.: The Theory of Error-Correcting Codes. North Holland,
1 edn. (1983)

12. Orrù, M., Orsini, E., Scholl, P.: Actively Secure 1-out-of-N OT Extension with Ap-
plication to Private Set Intersection, pp. 381–396. Springer International Publishing,
Cham (2017). https://doi.org/10.1007/978-3-319-52153-4 22

13. Patra, A., Sarkar, P., Suresh, A.: Fast actively secure OT extension for
short secrets. In: 24th Annual Network and Distributed System Security Sym-
posium, NDSS 2017, San Diego, California, USA, February 26 - March 1,
2017 (2017), https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
fast-actively-secure-ot-extension-for-short-secrets/

14. Yao, A.C.: Protocols for secure computations. In: Proceedings of the
23rd Annual Symposium on Foundations of Computer Science. pp. 160–
164. SFCS ’82, IEEE Computer Society, Washington, DC, USA (1982).
https://doi.org/10.1109/SFCS.1982.88

17

https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/73007.73012
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1145/62212.62215
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-319-52153-4_22
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/fast-actively-secure-ot-extension-for-short-secrets/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/fast-actively-secure-ot-extension-for-short-secrets/
https://doi.org/10.1109/SFCS.1982.88

	Actively Secure OT-Extension from q-ary Linear Codes
	Introduction
	Preliminaries
	Actively Secure OT-Extension
	Consistency check in a subfield
	Comparison

