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Abstract. In this paper, we revisit the security conditions of masked hardware
implementations. We describe a new, succinct, information-theoretic condition called
d-glitch immunity which is both necessary and sufficient for security in the presence
of glitches. We show that this single condition includes, but is not limited to, previous
security notions such as those used in higher-order threshold implementations and
in abstractions using ideal gates. As opposed to these previously known necessary
conditions, our new condition is also sufficient. On the other hand, it excludes
avoidable notions such as uniformity. We also treat the notion of (strong) non-
interference from an information-theoretic point-of-view in order to unify the different
security concepts and pave the way to the verification of composability in the presence
of glitches. We conclude the paper by demonstrating how the condition can be used
as an efficient and highly generic flaw detection mechanism for a variety of functions
and schemes based on different operations.
Keywords: Glitches · DPA · SCA · Verification · TI · SNI · Non-Completeness ·
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1 Introduction
Cryptographic algorithms are designed such that they are mathematically secure. An
adversary with access to, for instance, the ciphertext and plaintext, should not be able to
derive the secret key with reasonable computing power. However, this black box model
often does not suffice in practice, as the existence of side-channels can significantly aide the
adversary in his quest for secret information. Since the seminal work of Kocher [Koc96],
we have learned of many cheap and scalable side-channel attacks (SCA) that successfully
exploit information such as instantaneous power consumption or electromagnetic radiation
to recover secret keys, effectively turning the adversary’s black box into a grey box.

In the realm of SCA, the most well known technique is Differential Power Analysis
(DPA) [KJJ99], a simple and efficient attack that exploits the fact that the power consump-
tion of an embedded device depends on the intermediate values that the device computes
on. In response, many countermeasures have been proposed, among which masking is one
of the most established.

1.1 History and Motivation
(In)accuracy of leakage functions. Constructing masked circuits is non-trivial. First of
all, describing the leakage of the device with high accuracy as a function of its behavior
and performed operation is a tedious work. The typical methodology in developing a
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masking scheme is to represent the circuit and its leakage in an abstract way as accurate
as possible; then prove their security in this abstraction.

A good example is the traditional d-probing adversary, where the adversary gets the
noiseless information (leakage) of d intermediates that have been probed. Schemes such as
ISW [ISW03] are secure in this instantaneous model where the adversary does not see any
transition or change in the intermediate. He sees only the stabilized value. However, as is
shown repeatedly, the proposed countermeasures would show significant vulnerabilities if
the abstraction of the leakage function is not accurate [MPG05, BGG+14, PV17]. The
naive power model used for ISW does not take into account physical defaults such as
memory transitions or glitches that impact hardware implementations.

Glitches are unintentional and undesirable hardware artifacts causing unnecessary
power consumption and hardware designers go to great lengths to minimize them for
reasons beyond security. However, reducing glitches requires a careful process of path
equalization which is a great challenge given factors such as the product and architecture
variation, working environment and device age. Most importantly in our context, glitches
can momentarily unmask values, thereby invalidating the security guarantees theoretically
provided by masking and making it a security hazard [MPG05].

Towards glitch security with necessary but not sufficient conditions. Threshold imple-
mentations (TI) [NRR06] were the first provably secure masking scheme in the presence
of glitches. The authors identified two key properties: non-completeness and uniformity,
which together ensure the provable security of TI against first-order DPA in the presence
of glitches on any hardware as long as the independent leakage assumption of masking
holds.

The concept was extended to higher-order security by Bilgin et al. [BGN+14], but it was
later shown by Reparaz et al. [RBN+15] that non-completeness and uniformity no longer
suffice to achieve higher-order security due to the possibility of multivariate attacks. The
authors also refined the definition of non-completeness to the level of individual variables
and hence opened up the possibility for securely using only d+ 1 shares in the presence of
glitches.

The property of non-completeness remains today a necessary requirement for the
security of masked hardware implementations and therefore lies at the basis of every
design process. However, it is still unclear how to define a condition that is not only
necessary but also sufficient. This means that a lot of masked implementations have
actually been designed without a clear understanding of the underlying security notions
and how particular decisions impact the resistance against SCA.

Verification tools. As a result, many proposed countermeasures of the last years (whether
they be Boolean masking, multiplicative or additive) have been shown to be vulnerable
relatively quickly after being published. This is a common trend both in software and
hardware masking [AG01, PGA06, SP06, RP10, BFGV12, BGN+14, HT16]. This history of
trial and error has given rise to a new wave of works on the verification of masking schemes,
ranging from formal to statistical [Rep16, ANR18, Cor18, BGI+18, BBFG18, SBY+18].
Despite this being an active area of research, there are still various types of schemes
for which no tools are available to prove their security. For example, for multiplicative
and arithmetic masking, no verification tool for hardware and no comprehensive formal
verification tool for software exists.

Towards composability with sufficient but not necessary conditions. Growth of the
circuit and the resulting computational complexity pose a limit on our ability to verify
implementations. In response, a lot of effort has been put into making schemes provably
secure using the concept of (strong) non-interference which implies composability. More
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specifically, d-SNI gadgets can be composed to provide d-probing security which allows
for a more efficient verification of large circuits. These notions were originally devised
for ideal circuits [Bel15, BBD+16], but have been extended with glitches among others
by [FGMDP+18, BBFG18]. The main disadvantage of this approach is that it is over-
conservative (not a necessary condition) and typically results in more randomness usage
than strictly required.

1.2 Our Contribution
In the next section, we introduce an information-theoretic metric, which is conceptually
extremely simple as well as easy to verify. Above all, it is the first necessary and sufficient
condition for d-probing security in the presence of glitches. We revisit the definition of
probing security as introduced in [GM10, Def. 4], i.e. a circuit is d-probing secure if
the mutual information of any set of d probes with the secret is zero. We redefine this
notion for hardware implementations using the adversary model of [RBN+15], where each
probed wire gives the adversary information about all the inputs to that wire up to the
last synchronization point. By replacing each probe with its glitch-extended version (i.e.
the set of inputs up to the last synchronization point), we obtain an information-theoretic
condition for probing security in the presence of glitches. While models for probing
security with glitch-extended probes have been discussed already in a number of previous
works [RBN+15, FGMDP+18], we think its security condition has not been described
formally with a single equation so far. Moreover, no prior work has described how to
combine glitch-extended probes for higher orders. In this work, we fill that gap.

We compare our new property with existing notions such as non-completeness in §3 and
(strong) non-interference in §4 and we unify these concepts by introducing new informa-
tion-theoretic definitions. This consolidation into a single framework, brings much needed
clarity and more understanding of how they are related. It also allows us to formulate a
mathematical formula for the composability of hardware implementations. In addition, we
prove that uniformity, despite being enforced in most works on masking, is not a necessary
condition for secure masked hardware implementations.

Finally in §5, we detail how our new condition can be used to detect flaws and provably
validate schemes. We demonstrate the flexibility of the condition and point out important
features that are not yet included in state-of-the-art verification tools such as [BBFG18] in
§5.2. We give examples of implementations which are difficult to verify with available tools
today, because of incompatibility with the type of masking, restrictive input distributions
and lack of support for randomness recycling among others.

2 SCA Security in the Presence of Glitches

2.1 Preliminaries
Notation. We use lowercase letters, e.g. x to denote random variables and capital letters,
e.g. F for functions. Bold font is used for a sharing of these, i.e. x = (x0, x1, . . .) is a
sharing of x and F = (F0, F1, . . .) is a masked F . We denote specific realizations of x by
superscript x∗. Further, we let xī = (x0, x1, . . . , xi−1, xi+1, . . .) be the vector obtained by
removing xi from x.

The probability distribution on x is denoted by p(x) and H(x) is the Shannon entropy
of x: H(x) = −

∑
x∗ p(x∗) log2(p(x∗)). For any x, y, we use p(x|y) to represent the

conditional probability of x on y and I(x; y) the mutual information between x and y.
The two notions are connected by the relation I(x; y) = H(x)−H(x|y). Note that mutual
information is symmetric, i.e. I(x; y) = I(y;x).
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Finally, we denote a set of multiple random variables, e.g. (x, y) by caligraphy letters
X . The union of two sets X ∪ Y is the set consisting of all variables that belong to either
X or Y or both: X ∪ Y = {x : x ∈ X or x ∈ Y}.

Statistical independence. Recall that there are a multitude of equivalent ways to express
the statistical independence of two discrete random variables x and y. For instance, x
and y are statistically independent when their mutual information is zero (I(x; y) = 0).
It then follows directly from the relation between mutual information and entropy that
H(x) = H(x|y), i.e. the entropy of x does not decrease when conditioned on y (and
vice versa). Alternatively, the statistical independence of x and y is also evidenced by
p(x, y) = p(x)p(y), which is in turn equivalent to p(x) = p(x|y). In this work, we investigate
the statistical independence by verifying that the probability distribution of x, conditioned
on a specific instantiation of y∗, is independent of that y∗. In other words, we verify that

∀y∗ : p(x|y∗) = p∗ (1)

with p∗ some constant probability distribution independent of y∗. It is easy to show that
statistical independence follows from this:

p(x) =
∑
y∗

p(x|y∗)p(y∗) = p(x|y∗)
∑
y∗

p(y∗) = p(x|y∗) (2)

Information-theoretic view. In [GM10, Def. 4], Gammel and Mangard provided an
information-theoretic definition for d-probing security. We repeat their definition below for
completeness as throughout this paper, we also use information-theoretic notions. Gammel
and Mangard trace back the origin of this metric to Siegenthaler’s correlation immunity of
a Boolean function [Sie84].

d-probing security. A circuit with secret x is d-probing secure, if and only if for any
observation set of d wires Q = (q1, q2, . . . , qd) the following condition holds:

I((q1, q2, . . . , qd);x) = 0 (3)

This condition is sufficient and necessary for d-probing security. However, it does not
account for glitches. In the rest of this section, we fill in this gap.

2.2 Glitchy Circuits
Before providing the condition, we first discuss our circuit and leakage model.

Circuit model. Assume we deal with a masked circuit as shown in Figure 1. The circuit
handles a sensitive value x which depends on the key. Every combinational block Ci

computes a single output wire qi from a set of input wires Ri = {ri1 , ri2 , . . .}. For
example, in Figure 1, wire qw1+1 is computed by combinational block Cw1+1 from inputs
Rw1+1 = {r1, r2}. Note that the wires (ri, qi) can be constants, shares of multiple sensitive
variables, or public values. Their specific roles do not matter here. The output wires of
combinational blocks (qi) are input wires to synchronization points and carry unstabilized
values. For brevity, we assume that these synchronization points are simultaneously clocked
registers. Data from one register stage (ri) forms the input to a block of combinational
logic that computes the input to the next register stage. These inputs to combinational
blocks are considered stable. Since glitch-extended probes of intermediate wires inside a
block Ci are obviously included in the glitch-extended probe of wire qi, we only consider
probes on qi from now on.
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Figure 1: Masked circuit model

The glitch function. It is inefficient or even infeasible to predict the effect of glitches
and enumerate all the possible temporary values that can occur on a wire in Ci before
the signal stabilizes at its intended function value. We provide an abstraction for this
glitch-based leakage with a glitch function. The glitch function is any function leaked by a
combinational block before it stabilizes on the intended function value. This can be an
unexpected partial result because of propagation delays in some inputs. Alternatively,
upon arrival of a late intermediate, one partial result transitions to another and the glitch
function may compute the distance between both.

It is difficult to model the glitch function, since it depends on many variables, such as
the logic library and synthesis process; hence, in this paper we consider it to be unknown.
However, we can state some of its properties. An obvious, yet important property of the
glitch function is that, under the independent leakage assumption, it depends exclusively
on the inputs of the intended function. That is, when a wire in a combinational block Ci

glitches, it momentarily computes a glitch function that depends on Ri exclusively.

Leakage model. A model that takes into account glitches considers additional leakage
compared to the traditional ISW d-probing model [ISW03]. We use the leakage model
introduced in [RBN+15] which covers all possible glitch functions as an abstraction: We
assume that, whenever the adversary probes any single value within a combinational
function, he also automatically obtains all inputs to the function (up to the last synchro-
nization point), for free. That is, an adversary probing qi obtains the knowledge of the set
Ri. We provide the adversary with all inputs, so that he himself can compute the worst
possible glitch function. The memory elements form the boundaries of the glitch extension
and transform glitch-extended probes (consisting of multiple single-bit probes from the
previous stage) into single-bit probes.

Our glitch model considers a worst-case scenario for the propagation of glitches. Šijačić
et al. [SBY+18] perform a post-place-and-route simulation of a circuit, which includes
propagation delays and therefore also simulates the occuring glitches. Their model thus
bares more resemblance to a realistic adversary compared to ours. However, as stated by
Bertoni et al. in [BM16], two equal devices might exhibit a different behaviour in terms of
glitches in practice. The latter therefore assume that every possible intermediate value
of a function may occur due to a glitch. While Bertoni et al. use so-called transients
to record exactly all possible transitions on a wire, we construct glitch-extended probes,
which implicitly include these transitions, as well as other functions such as the differences
between intermediates.

Our model thus assumes the very worst case of leaks and may be somewhat over-
conservative, since this information might not actually be leaked by the circuit. This is the
price we pay to work at a high level, where no information about the synthesis process,
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placing and routing or technology is required.
We note that this adversary model, here-on called d-glitch-extended probing adversary,

has been considered in previous works [RBN+15, FGMDP+18], but without mathematical
formalization. In [FGMDP+18], it was also extended to cover other physical defaults, such
as cross-talk. For now, we continue with the above described independent leakage model,
including glitches but no coupling effects or register transitions. For its formal definition,
we refer to that of the (1,0,0)-robust d-probing model of [FGMDP+18].

2.3 A Sufficient Condition for d-Glitch-Extended Probing Security
In what follows, we introduce a new condition that ensures security against side-channel
attacks in the presence of glitches. This security notion is elegant and conceptually simple,
as well as easy to verify for circuits in practice.

Property 1 (d-glitch immunity). A circuit such as that in Figure 1 with sensitive data x
is d-glitch immune if and only if for any observation set of d wires (qi1 , qi2 , . . . , qid

) with
respective glitch-extended probes (Ri1 ,Ri2 , . . . ,Rid

), the following condition holds:

I(Ri1 ∪Ri2 ∪ . . . ∪Rid
;x) = 0 (4)

Lemma 1. A d-glitch immune circuit is d-glitch-extended probing secure.

The reasoning is quite elementary: when the mutual information between R = Ri1 ∪
Ri2 ∪ . . .∪Rid

and the secret is zero, no combination of input wires ri ∈ R can provide any
information on the secret. Hence, no glitch function on Ci1 , .., Cid

or their combination,
no matter the exact shape, can reveal any secret information. In particular, DPA would
not be able to exploit leakage from it.

Multi-variate security. Note that d-glitch immunity puts no limitation on the register
stage of probed wires qi. Therefore, verification of higher-order security, let it be uni-variate
or multi-variate, is conceptually as simple as verification of first-order security. We note
that while glitch-extended probes have appeared in previous works [RBN+15, FGMDP+18],
this is the first formal description of how to combine them to verify higher-order security.
When testing security against d glitch-extended probes, there are no functions (such as
centered product or absolute difference) which manage to combine the probes without
losing any information available to an adversary. The information-theoretic formulation
in Equation (4) provides an almost trivial solution to this problem since it can consider
the input wires of d blocks jointly by mere concatenation of the extended probes. Hence,
d-glitch immunity easily covers multi-variate security. This is in contrast with state-of-
the-art concepts such as higher-order non-completeness and the TVLA t-test framework,
which are uni-variate in nature.

Sufficient and necessary. Note that we only take into account the inputs to the combi-
national blocks Ci and not the specific functions computed. On the one hand, this makes
d-glitch immunity conceptually simple and quite easy to verify. On the other hand, it
is a worst-case indication of leaks. A non-zero mutual information I(R;x) 6= 0 points
to the existence of some function on the inputs R that leaks sensitive information, but
there is no guarantee that this function can occur as a glitch function on the circuit that
implements Ci. Even if it does, the presence of such a leak does not imply that it can
be exploited. Glitch immunity might therefore be over-conservative when one considers
the implementation details (including the floorplan, temperature, etc.) and realistic noisy
attack scenarios, but in this adversary model, it is both necessary and sufficient.
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Model Extension. The title of this work refers to “hardware masking” in general even
though we only discussed one particular hardware defect so far, i.e. glitches. However, the
relevance of this work is not restricted to only this model, if we consider more different ways
to redefine a probe. The information-theoretic framework allows us to extend the d-probing
model with glitches while maintaining the same security condition (Equation (3)), by
essentially replacing normal probes with glitch-extended probes (Equation (4)). The same
can be done with other probe definitions, to obtain a security condition for other models,
which take into account more physical effects. For example, in [FGMDP+18], two other
types of probe extensions are discussed: transitions and couplings:

“For a memory cell m, memory recombinations (aka transitions) can be modeled
with specifically 2-extended probes so that probing m allows the adversary to
observe any pair of values stored in 2 of its consecutive invocations.”

Another (slightly less restrictive) possibility is to include transitions by means of the XOR
between two consecutively stored values of a memory cell. This would correspond to an
assumption of Hamming distance leakage.

“For any set of adjacent wires W = (w1, . . . , wd), routing recombinations (aka
couplings) can be modeled with specifically c-extended probes so that probing
one wire wi allows the adversary to observe c wires adjacent to wi.”

By replacing or complementing the glitch-extended probes R in condition (4) with
transition-extended and/or coupling-extended probes (or others), the information-theoretic
framework can be brought to many more hardware and software models. The model
definition only requires a probe definition, which accurately reflects the information
available to the adversary. In the remainder of this work, we continue only with glitch-
extended probes for the sake of clarity.

3 Threshold Implementations
Traditionally, the provable security of threshold implementations (TI) [NRR06] against
first-order attacks relies on three conditions:

T1 Correctness. The masked function should compute a masked representation of the
correct unmasked output. This property does not relate to security.

T2 Non-completeness. Any share of the masked function must be independent of at
least one input share. This property is central to security in the presence of glitches.

T3 Uniformity. The masked function uses a uniform sharing of the input and transforms
this input into a uniform sharing of the output. This property is especially important
when composing masked blocks.

Recall the definition of a uniform sharing with Sh(x) the set of all valid sharings of x:

Uniform sharing [Bil15]. A sharing x is uniform if and only if there exists a constant
p∗ such that for all x we have:

p(x|x) =
{
p∗ if x ∈ Sh(x)
0 else

and
⊕

x∈Sh(x)

p(x) = p(x) (5)

In the rest of this section, we discuss the relation between d-glitch immunity and the
TI conditions. In particular, we elaborate on the necessity and satisfactoriness of these
conditions for first order and higher orders. From these relations, we can interpret d-glitch
immunity as being a generalization of the TI properties.
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3.1 Non-Completeness and Uniformity Imply 1-Glitch Immunity
It is a well-known result that T2 and T3 imply first-order security in the presence of
glitches, since this was proven in [NRR06]. Hence, T2 and T3 together are sufficient for
1-glitch-extended probing security. In what follows, we show that a circuit satisfying T2
and T3 also fulfills 1-glitch immunity.

Lemma 2. A circuit satisfies 1-glitch immunity if it satisfies non-completeness (T2) and
uniformity (T3).

Proof. The assumptions for each stage of TI are that the input sharing x is uniform and
that each wire qi at the end of that stage must be independent of at least one input share.
Without loss of generality (wlog) we assume that qi is independent of xi and thus

Ri = xī (6)

Lemma 5 of [Bil15] states that xī and the secret x are independent for any choice of i if
the masking x is uniform. Hence,

I(xī;x) = 0 (7)

Combining (6) together with (7) forms (4): I(Ri;x) = 0.

3.2 Glitch Immunity Implies Non-Completeness
The concept of non-completeness was extended to higher orders by Bilgin et al. [BGN+14].

dth-order non-completeness [Bil15]. Any combination of up to d component functions
Fi of a shared function F must be independent of at least one input share.

Clearly the non-completeness definition aligns with the glitching adversary of this
work as the component functions Fi correspond to the combinational block functions Ci

calculated from register to register.

Lemma 3. d-glitch immunity implies dth-order non-completeness.

Proof. We use a simple proof by contraposition. Suppose that non-completeness is not
fulfilled, i.e. there exists a set of d blocks (Ci1 , Ci2 , . . . , Cid

) that jointly depend on all
input shares x. Since x =

⊕
i xi, we clearly have then that I(Ri1 ∪Ri2 ∪ . . . ∪Rid

;x) 6= 0
and hence glitch immunity is not satisfied.

3.3 A Sufficient Condition for Higher-Order Security
We have demonstrated the well-known fact that T2 and T3 together form a sufficient
condition for first-order security from an information-theoretic point-of-view. Moreover,
we have shown that non-completeness is a necessary condition for higher-order security in
this adversary model, as expected. These relations are summarized in Figure 2. However,
as presented by Reparaz et al. [RBN+15], dth-order non-completeness even together with
uniformity is not sufficient for circuits consisting of multiple register stages. This is mainly
due to the fact that TI conditions focus on the circuit behavior of a single stage and when
higher-order security is considered, this becomes a disadvantage. In contrast, d-glitch
immunity does not have such a limitation as it considers multiple stages. This observation
immediately brings up the idea to extend the TI uniformity condition to cover not only
a single stage but multiple stages, for example by requiring the combination of any d
non-linear function inputs to be jointly uniform. We do not investigate this idea further
in this paper. Instead, we show that uniformity is not a necessary condition to achieve
security.
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Figure 2: Illustration of the relations between different security notions for hardware
security. The arrows indicate an implication relation. When the line is dotted, it is only
valid for security order d = 1. The full lines are for any order d.

3.4 (Un)Necessity of Uniformity
Glitch immunity does not imply non-completeness and uniformity (simultanenously). In
fact, uniformity is not a necessary condition. The only requirement for input sharings
is included in Eqn. (4); that is, the entropy of d input shares does not decrease when
conditioned on the secret. In other words, the mutual information of a set of any d input
shares with the shared secret x must be zero:

I((xi1 , xi2 , . . . , xid
);x) = 0 (8)

The use of uniform gadgets does make composition easier, as shown in [NRR06], but it is
not strictly necessary.

It is therefore possible to have non-uniform mappings that satisfy Property 1. We
show this in Appendix A with a case study of non-uniform AND gates. While previous
authors [RBN+15, FGMDP+18] already reported the fact that uniformity is not sufficient,
its nonnecessity has not been stated nor demonstrated in any published work. Note that in
the case of a d+1-sharing, the condition becomes I(xī;x) = 0, ∀i, which implies uniformity.
Hence, uniformity is a necessary condition for d+ 1-sharings.

4 Non-Interference
When circuits get large, it is infeasible to verify probing security by exhaustive probing.
For this reason, the concept of strong non-interference has been introduced for masked
software implementations. In this section, we unify the treatment of this security notion
with glitch immunity (Property 1) in order to achieve a formal definition for composability
in the presence of glitches. The probes in the following definitions are instantaneous (i.e.
no glitches). We consider a gadget with a d+ 1-input sharing x.

Definition 1 (Simulatability [BBP+16]). A set Q = {q1, . . . , ql} of l probes can be
simulated with at most t shares of each input, if there exists a set I = i1, . . . , it of t indices
in {0, . . . , d} and a random function S with t inputs and l outputs such that for any fixed
input shares (xi)0≤i≤d, the distributions {q1, . . . , ql} and {S(xi1 , . . . , xit

)} are identical.

d-non-interference (NI) [BBP+16]. A gadget is d-non-interferent (d-NI) if and only
if every set of at most d probes can be simulated with at most d shares of each input.

d-strong non-interference (SNI) [BBP+16]. A gadget is d-strong non-interferent (d-
SNI) if and only if for every set I of t1 probes on intermediate variables (i.e., no output
wires or shares) and every set O of t2 probes on output shares such that t1 + t2 ≤ d, the
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set I ∪ O of probes can be simulated using at most t1 shares of each input.

When a gadget is d-NI, it is also d-probing secure. However, probing security (and
d-NI) is not composable and verifying a circuit by simulating probes on every single wire
is not scalable. The authors of [BBD+16] therefore propose to build each circuit from
composable gadgets. A gadget is considered composable if it is d-SNI. This essentially
means the following two things:
• If a gadget is d-SNI, it is d-NI and thus d-probing secure.
• Any circuit built from d-SNI gadgets, is d-NI and thus d-probing secure.

The use of composable (SNI) gadgets allows a divide-and-conquer approach for the
security verification of large circuits. The ease of verification comes at the cost of higher
implementation and randomness cost since the demands for strong non-interference are
quite high. It has been shown that depending on the function graph, it is sufficient for some
gadgets to be NI, rather than SNI [BBP+16]. Nevertheless, NI and SNI are both sufficient
but not necessary conditions for probing security of masked software implementations. This
is illustrated by first-order threshold implementations [NRR06], which are 1-probing secure
but neither 1-NI, nor 1-SNI. In addition, SNI is a sufficient condition for the composability
of gadgets, but it is neither necessary for probing security, nor for composability.

The concepts of NI and SNI were originally defined without regard for hardware defaults
such as glitches. In [FGMDP+18], the authors provide a robust d-(S)NI definition as
follows in order to extend the definition for glitchy circuits.

(g, t, c)-robust d-probing secure (or d-NI/SNI) circuits are secure in the d-probing
model (or d-NI/SNI) with an adversary whose probes are extended with glitches if g = 1,
with transitions if t = 1 and with couplings if c ≥ 1.

In this paper we only consider glitches, i.e. (1, 0, 0)-robust d-probing. Despite the
existence of the concept of robust SNI, it remains unclear how to automate the verification
of composability of hardware gadgets, as it is unclear how to define a single mathematical
equation.1

In this section, we first redefine (S)NI for ideal circuits from an information-theoretic
point of view. This eventually allows to extend the definitions for the presence of glitches.
For simplicity, we assume from now on that the masked implementation uses d+ 1 shares
even though similar treatment is possible for more shares.

A Note on Fields. The definition of simulatability in [BBP+16] considers a simulator
with t input bits and l output bits. This is contradictory to how the notions of (strong) non-
interference are applied in proofs and in tools such as [Cor18, BBFG18], where simulations
are typically performed at the word-level in some field GF(2n). While a formal verification
in a larger field implies also formal verification over bits, the reverse is not true. We would
like to see this distinction made more clear in the future, along with the corresponding
assumptions about the underlying hardware, i.e. are bits assumed to leak independently
or jointly grouped by words? We discuss for example bit-slicing as an example in § 5.2.

4.1 Redefining Non-Interference
We consider Q any set of at most d probes in some field GF(2n) in a gadget with input
sharing x. According to the NI definition, the view of an adversary that probes Q should
be perfectly simulatable by a simulator that has access to only d of the d+ 1 input shares.
The view of the adversary is created using knowledge of all input shares x, i.e. we write

1The work of [BBFG18], which has been done independently and simultaneously, bypasses the need for
a mathematical formula and does the automatic verification by symbolic manipulation, thereby limiting
the scope of their tool, as we will see in the next section.



Lauren De Meyer, Begül Bilgin and Oscar Reparaz 11

it as p(Q|x). This is the distribution of the probes {q1, . . . , ql} from Definition 1 and
must thus be identical to the distribution of the output of some simulator S(xi1 , . . . , xit

).
Without loss of generalization (wlog), we assume that the simulator uses all input shares
except xi. The view of the simulator can hence be written as p(Q|xī). An important detail
in the definition of simulatability is that all input shares (xi)0≤i≤d must be fixed. Hence,
the probability distributions are over the randomness that is used in the gadget only.

We therefore consider the following property:

Property 2. A gadget with d+ 1 input shares x satisfies Property 2 if and only if for
any observation set of at most d probes Q ∈ GF(2n)d, the following condition holds:

∃i : p(Q|x) = p(Q|xī)⇔ ∃i : I(Q;xi|xī) = 0 (9)

where the probability is over the random coins used in the gadget.

In other words, each probe set Q and at least one share xi must be conditionally
independent given the other shares xī. It is clear that d-non-interference and Property 2
are equivalent, when one considers the definition of simulatability.

Lemma 4. A gadget with d + 1 input shares x is d-NI over GF(2n) if and only if it
satisfies Property 2, i.e. d-non-interference and Property 2 are equivalent.

Proof.

⇒ We prove by contraposition that d-NI implies Property 2: if there exists a set Q for
which Eqn. (9) is not true, i.e. ∀i : p(Q|xī) 6= p(Q|x), then there does not exist a
simulator S and an input set I of at most d indices such that the distributions of Q
and S(xI) are identical, i.e. we cannot simulate Q using only d shares and thus the
gadget is not d-NI.

⇐ In the other direction, Property 2 implies the existence of a simulator S and an input
set I = xī such that the distributions of Q and S(xI) are identical, i.e. Property 2
implies d-non-interference.

It is well known that d-non-interference is stronger than d-probing security, i.e. d-NI
implies Eqn. (3) for any set Q. The same can be said for Property 2:

Lemma 5. Property 2 implies d-probing security over GF(2n), i.e.

∃i : I(Q;xi|xī) = 0⇒ I(Q;x) = 0 (10)

Proof. We first present two intermediate results:
I1. p(xī|x) = p(xī); This is obviously a necessary requirement for any d+ 1-sharing of

the input. In particular, it has been shown to be automatically true when the input
sharing is uniform in [Bil15, Lemma 5]. It also follows from glitch immunity (see
eqn (8)).

I2. p(Q|xī, x) = p(Q|x, x) = p(Q|x); The equality follows from the redundant infor-
mation in (x, x), since x =

∑
i xi. Furthermore, since Property 2 implies that

p(Q|x) = p(Q|xī), it follows that p(Q|xī, x) = p(Q|xī).
We can now prove (10) by showing the statistical independence of Q and x, given I1 and
I2 (i.e. given Property 2). Note that probing security does not require fixed input shares
so the probability here is over the randomness used both in the circuit and in the initial
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sharing of x.

p(Q|x) =
∑
x∗

ī

p(Q,x∗ī |x)

=
∑
x∗

ī

p(Q|x∗ī , x)p(x∗ī |x)

=
∑
x∗

ī

p(Q|x∗ī )p(x∗ī ) ← (using I1 and I2)

=
∑
x∗

ī

p(Q,x∗ī )

= p(Q)

For uniform input sharings. When the input sharing x is uniform, d-non-interference
implies a stronger and more simple property.

Property 3. A gadget with d+ 1 input shares x satisfies Property 3 if and only if for
any observation set of at most d probes Q ∈ GF(2n)d, the following condition holds:

∃i : I(Q;xi) = 0 (11)

In other words, each set of probes Q must be marginally independent of at least one
input share xi.

Lemma 6. A gadget with a uniform d+ 1 input sharing x is d-NI over GF(2n) only if it
satisfies Property 3, i.e. for each probe set Q ∈ GF(2n)d:

∃i : I(Q;xi|xī) = 0⇒ ∃i : I(Q;xi) = 0

Property 3 is thus a necessary but not sufficient condition for NI.

Proof. In the case of a uniform input sharing, we can state that disjunct sets of shares
(e.g. xī and xi) are independent, i.e. p(xī|xi) = p(xī). We use Lemma 4 to show that in
that case, d-NI implies Property 3.

p(Q|xi) =
∑
x∗

ī

p(Q,x∗ī |xi)

=
∑
x∗

ī

p(Q|x∗ī , xi)p(x∗ī |xi)

=
∑
x∗

ī

p(Q|x∗ī )p(x∗ī ) ← (using Property 2 (NI) and uniformity)

=
∑
x∗

ī

p(Q,x∗ī )

= p(Q)

4.2 Redefining Strong Non-Interference
The NI and SNI definitions are very similar apart from the number of input shares that
can be used in the simulation. We can thus likewise redefine strong non-interference.
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Property 4. Consider a gadget with d + 1 input shares x. Let Q be any observation
set of at most d probes in GF(2n) of which t1(Q) are intermediates and t2(Q) are output
probes such that t1(Q) + t2(Q) ≤ d. The gadget satisfies Property 4 if and only if for any
such Q the following condition holds:

∃T ⊂ {0, . . . , d} with |T | = t1(Q) such that I(Q; xT̄ |xT ) = 0 (12)

where the probability is over the random coins used in the gadget.

Lemma 7. A gadget with d + 1 input shares x is d-SNI over GF(2n) if and only if it
satisfies Property 4, i.e. d-strong non-interference and Property 4 are equivalent.

The proof is very similar to that of Lemma 4. We leave it to the reader.
When no outputs are probed and thus t2(Q) = 0, then Eqn. (12) aligns with Eqn. (9).

For example, when d = 2, the tuples of probes can be divided into three groups.
• for each tuple of probes Q for which t2(Q) = 0, verify that ∃i : I(Q;xi|xī) = 0.
• for each tuple of probesQ for which t2(Q) = 1, verify that ∃i 6= j : I(Q; (xi, xj)|x ¯i,j) =

0 or equivalently ∃i : I(Q; xī|xi) = 0.
• for each tuple of probes Q for which t2(Q) = 2, verify that I(Q; x) = 0
When the input sharing is uniform, we can assume that for any set of indices T ⊂

{0, . . . , d}, xT is independent from xT̄ , i.e. two disjunct sets of shares are independent of
each other. Thus similarly to Lemma 6, d-strong non-interference with a uniform input
sharing implies marginal independence of Q and some input set xT̄ , i.e.

∃T ⊂ {0, . . . , d} with |T | = t1(Q) such that I(Q; xT̄ ) = 0

4.3 Towards Strong Non-Interference in the Presence of Glitches
These information-theoretic definitions are easily extended to include security in the
presence of glitches. Following the adversary model of this work, we should only replace
each probed wire qi with its glitch-extended probe Ri.

Property 5. Consider a gadget with d + 1 input shares x. Let Q = (qi1 , qi2 , . . .) be
any observation set of at most d wires and let R = Ri1 ∪Ri2 ∪ . . . be the corresponding
glitch-extended probe. Let t1(Q) be the number of intermediate wires in Q and t2(Q) the
number of output wires in Q such that t1(Q) + t2(Q) ≤ d. The gadget satisfies Property 5
if and only if for any such Q the following condition holds:

∃T ⊂ {0, . . . , d} with |T | = t1(Q) such that I(R; xT̄ |xT ) = 0 (13)

Lemma 8. A gadget with d+ 1 input shares x is d-SNI in the presence of glitches over
GF(2n) if it satisfies Property 5.

From now on, we refer to Property 5 as d-Glitch Strong Non-Interference (d-GSNI). It
also corresponds to (1,0,0)-robust d-SNI as defined in [FGMDP+18].

How to use d-GSNI? We illustrate Lemma 8 by adopting one of the examples of Faust
et al. [FGMDP+18]. Consider the following well-known second-order secure multiplier of
three shares (x0, x1, x2) and (y0, y1, y2): In the first stage, nine products xiyj are computed,
of which only the cross-terms are remasked:

t0,0 = x0y0

t0,1 = x0y1 ⊕ r1

t0,2 = x0y2 ⊕ r2

t1,0 = x1y0 ⊕ r1

t1,1 = x1y1

t1,2 = x1y2 ⊕ r3

t2,0 = x2y0 ⊕ r2

t2,1 = x2y1 ⊕ r3

t2,2 = x2y2

(14)
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Table 1: Scaled probability distributions of the glitch-extended probe of {[z0]reg, t0,1}

p(z0, x0, y1|x∗,y∗)
(y∗1 , x∗0) (x∗1, x∗2, y∗0 , y∗2) 000 001 010 011 100 101 110 111
(0,0) * 4 4 0 0 0 0 0 0
(0,1) * 0 0 4 4 0 0 0 0
(1,0) * 0 0 0 0 4 4 0 0
(1,1) * 0 0 0 0 0 0 4 4

These intermediate nine shares ti,j are stored in a register. In the next stage, they are
compressed into three output shares.

z0 = [t0,0]reg ⊕ [t0,1]reg ⊕ [t0,2]reg

z1 = [t1,0]reg ⊕ [t1,1]reg ⊕ [t1,2]reg

z2 = [t2,0]reg ⊕ [t2,1]reg ⊕ [t2,2]reg

(15)

Next, as argued in [FGMDP+18, §5.2], it is necessary to store also these three shares
into a register in order to achieve composability. Indeed, if we consider Eqn. (15) directly
as output wires, then the multiplication is not d-GSNI. We verify this by enumerating
every single input sharing (x∗,y∗). For each input sharing, we compute the probability
distribution of the glitch-extended probes of an observation set of two outputs (t2 =
2). For example, for observation set Q = {z0, z1}, we investigate the distribution of
R = {t0,0, t0,1, t0,2, t1,0, t1,1, t1,2}. For Eqn. (13) to be satisfied, this distribution must be
identical for each input sharing. This is not the case. On the other hand, the distribution
of Q itself is identical for each input sharing (x∗,y∗), i.e. I(Q; (x,y)) = 0. Hence, a
register is indeed needed before the output. In that case R is the extended probe of an
observation set that corresponds to two intermediate wires, i.e. t2 = 0. We enumerate
all possible (x∗0, x∗1, y∗0 , y∗1). For each, we check that the probability distribution of R is
identical for each (x∗2, y∗2). This is the case, hence the conditional mutual information of the
glitch-extended probe with input shares (x2, y2) is zero: I(R; (x2, y2)|(x0, x1, y0, y1)) = 0.

As a final example, consider the observation set Q = {[z0]reg, t0,1} consisting of
one output wire and one intermediate wire (t2 = 1). Its glitch-extended probe is R =
{z0, x0, y1}2. For each fixed (x∗0, y∗1), we find that the probability distribution of {z0, x0, y1}
is constant for each (x∗1, x∗2, y∗0 , y∗2). The distributions are shown in Table 1. Hence
I(R; (x1, x2, y0, y2)|(x0, y1)) = 0. Moreover, since we are working with uniform shares,
it is implied that also I(R; (x1, x2, y0, y2)) = 0. Indeed, the probability distribution
p(R|x∗1, x∗2, y∗0 , y∗2) is (4, 4, 4, 4, 4, 4, 4, 4) for any (x∗1, x∗2, y∗0 , y∗2). This example does not
tell us more than the proof already given in [FGMDP+18] but serves to illustrate that
Property 5 could be used to create similar proofs in a more automated way. Note that in
this example, we work over bits, i.e. GF(2n) with n = 1.

Conclusion. In this section we brought the notions of (strong) non-interference into the
information-theoretic framework for side-channel security. These new equations clarify
the link with probing security and open up the possibility to port the notions to glitchy
environments. Furthermore, the information-theoretic approach will allow to use these
security concepts in more realistic settings that are on the one hand more noisy and on
the other hand include more types of leakage (e.g. transition leakage, coupling, . . . ).

2The random input has no influence on the probability distributions.
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5 Using Glitch Immunity to Detect Flawed Masking Schemes
In order to verify d-glitch immunity, one has to check whether each glitch-extended probe’s
distributions corresponding to different secrets are identical or not (cf. Eqn (1)).

This is essentially also done by the MaskVerif tool of Barthe et al. [BBFG18]. By
combining it with a verification of the (S)NI properties, they avoid the prohibiting
complexity of exhaustive search for all intermediates and achieve an efficient and powerful
verification tool for both d-probing and d-glitch-extended probing security. However, their
tool does not completely exploit the flexibility and variability of glitch immunity and is
therefore not applicable to every circuit.

In this section, we demonstrate a proof-of-concept tool that uses d-glitch immunity
to validate masked hardware circuits. Note that this section considers d-glitch-extended
probing security only. This is in contrast, with MaskVerif [BBFG18], which also considers
(glitch-)SNI. Since we do not incorporate the optimizations of [BBFG18], our performance
is not competitive with theirs. We simply wish to demonstrate how glitch immunity
can and should also be used to verify implementations, which are currently out of scope
for [BBFG18].

Finally, we also describe how the condition of glitch immunity can be relaxed to be
used for flaw detection and practical security evaluation in a way that is more effective
and informative than in a noisy lab environment.

5.1 Description
Our tool takes the HDL description of a circuit directly as input and needs no other
user-provided information apart from the required security order d. We describe two parts:
a preprocessing step prepares the input for the verification step.

Preprocessing. The preprocessing step parses the HDL code and builds a software
implementation (in C), which can simulate the entire circuit at bit level. Apart from
the circuit itself, the preprocessing step also extracts from the netlist a list of all register
inputs qi and the corresponding glitch-extended probes Ri, i.e. the set of inputs to the
combinational block Ci that determines wire qi. The C implementation is generated
such that for a given circuit, it can compute the exact values of all registers ri and use
these to construct samples for probability distributions. Per simulation (k), one sample
samplek

I is created for each unique d-tuple of observed probes QI = {qi1 , qi2 , . . . , qid
} and

its corresponding set of glitch-extended probes RI = Ri1∪Ri2 . . .∪Rid
. Concatenating the

values on the wires inRI results in a sample of bit-width |RI |. Different probe combinations
thus result in samples of different widths, but the width of a probe combination is the same
in each simulation. The probe RI can be a combination of random inputs, public values
and shares of various sensitive variables. The specific role of each wire is unimportant and
need not be tracked.

Verification. The verification step uses the prepared software implementation to simulate
the circuit for different inputs and to collect the samples of glitch-extended probes.
The application keeps two histograms for each possible d-probe QI . The histograms
corresponding to different probes have a different support because of the variable length
of the probes |RI |. In simulation k of the circuit, the application receives one sample
per probe (samplek

I ). The sample is added to one of the two histograms, depending on
the value of the unshared (secret) input x. This is illustrated in Figure 3. A circuit
with K input wires requires 2K simulations. When all simulations are complete, the two
histograms correspond to exact joint probability distributions of RI and are compared.
If a probe is found for which the histograms do not match exactly, the circuit is not
d-glitch immune, i.e. there is a dependency on the secret which could result in leakage of
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Figure 3: How to use glitch immunity to detect flaws.

sensitive information through some glitch function on those inputs. The circuit is provably
d-glitch-extended probing secure if for each d-probe, the distributions are identical for
each secret. Note that the functionality of this part is independent of the security order
d. It builds and compares histograms based on variable-width samples received from the
software implementation. Whether these samples were built from one, two or three probes
in the preprocessing step, is of no consequence.

Optimizations. It is possible that different wires in the circuit have the same set of inputs
(Ri = Rj for i 6= j). Also by concatenating different glitch-extended probes for higher-order
security, it is possible to obtain duplicates (Ri ∪ Rj = Rk ∪ Rl for i 6= j 6= k 6= l). We
avoid redundant samples by removing all but one copy of each RI from the final list of
probes.

The C implementation simulates the circuit at bit level, i.e. each multiple-bit variable
has been split into single-bit variables and only bitwise operators (AND,OR,NOT,XOR)
are used. This allows us to bitslice the simulation: using for example 32-bit integers, we
can simulate the circuit for 32 different inputs in parallel on a single core. We do not put
further effort into optimizations.

Complexity. As this methodology is completely exhaustive, the complexity naturally also
increases quickly for growing circuits. Note however that the size of a circuit in this context
should not be measured by the number of gates, as this does not influence the runtime of
the verification. We identify three important factors that impact the complexity. Firstly,
the number of inputs (K) to a circuit determines the number of simulations required (2K).
Next, naturally, the number of samples to simulate grows with the order of verification
d. Finally, a glitch-extended probe of size |R| leads to a histogram of size 2|R|. This
affects the memory complexity of the verification and therefore also the timing. Of these
three factors, the security order d is the most important, since it also directly influences
the other two. A higher security order typically results in more inputs and also in larger
glitch-extended probes. We note again that our goal here is not to reduce the complexity.
It has been shown in [BBFG18] that (S)NI verification can be used to relieve the cost of
simulations in some cases.
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Examples. We are able to exhaustively validate the d-glitch-extended probing security of
small gates such as the Domain-Oriented-Masking (DOM) AND-gate [GMK16] (with 2
or 3 shares) and the first-order secure Keccak S-box from [GSM17] within 0.02 seconds.
A 4-share DOM AND gate is verified within 0.3 seconds. It is much more interesting to
look at a flawed example such as the higher-order threshold implementation described
in [BGN+14].

This higher-order secure KATAN construction has been discussed in depth in other
works [SM15, RBN+15, Rep16] and it is well known that it exhibits a multi-variate flaw. In
particular, the authors of [RBN+15] claim that the secret is leaked when the construction
is iterated and one combines probes from cycle 1 and cycle 7. Using the above described
tool, we now find that multiple iterations are not needed and that multi-variate leakage of
the secret occurs even within one iteration of the round function, i.e. by combining probes
from cycle 1 and cycle 2. We recall the mini-cipher described in [RBN+15, Eq. (5)], which
targets second-order security. The round function receives three inputs a, b, c, each in five
shares. The circuit computes a five-share representation of d = ab⊕ c. This is done in two
stages. In the first step, d is computed in ten shares:

d0 = c1 ⊕ a1b1 ⊕ a0b1 ⊕ a1b0 d1 = c2 ⊕ a2b2 ⊕ a0b2 ⊕ a2b0

d2 = c3 ⊕ a3b3 ⊕ a0b3 ⊕ a3b0 d3 = c0 ⊕ a0b0 ⊕ a0b4 ⊕ a4b0

d4 = a1b2 ⊕ a2b1 d5 = a1b3 ⊕ a3b1

d6 = c4 ⊕ a4b4 ⊕ a1b4 ⊕ a4b1 d7 = a2b3 ⊕ a3b2

d8 = a2b4 ⊕ a4b2 d9 = a3b4 ⊕ a4b3

The ten shares are stored in registers for the sake of non-completeness. Next, they are
compressed back to five shares (d̃0, . . . , d̃4) by d̃i = di for i < 4 and d̃4 = d4 ⊕ d5 ⊕
d6 ⊕ d7 ⊕ d8 ⊕ d9. Now, consider two (glitch-extended) probes: the first on q1 = d̃4, i.e.
R1 = {d4, d5, d6, d7, d8, d9} and a second on q2 = b0, i.e. R2 = {b0}. We detect that the
joint probability distribution of R1 ∪R2 is not independent of the secret. Recall that our
condition assumes the worst possible glitch function, which does not necessarily occur in
the circuit. However, in this case we find that it only takes a glitch on d̃4 that reveals the
intermediate result d4 ⊕ d9. Indeed, the joint distribution of {d4 ⊕ d9, b0} depends on the
unshared secret b. The single round function circuit is therefore not second-order secure in
the presence of glitches, contrary to what was previously believed. We use a single core of
a 3.2 GHz Intel Core i5-6500 CPU. It takes 2,1 seconds to find this flaw. We can correct
the compression phase as follows:

d̃0 = d0 ⊕ d4

d̃1 = d1 ⊕ d7

d̃2 = d2 ⊕ d9

d̃3 = d3 ⊕ d8

d̃4 = d5 ⊕ d6

It takes 12,5 seconds to enumerate all glitch-extended probe tuples and compute the
exact joint probability distributions for every secret input. With the new compression,
the probability distributions are identical for each secret. Note that the gadget is still
vulnerable when iterated, as discussed in [RBN+15].

5.2 Advantages and Applications
We now enumerate the advantages of glitch immunity and a number of use cases for which
MaskVerif [BBFG18] is not yet compatible. We show that there is essentially no restriction
on the type of circuits that can be verified using glitch immunity, which means that it
should be possible to extend MaskVerif with these functionalities.



18 Consolidating Security Notions in Hardware Masking

Ease of Use vs. Performance. A considerable advantage of glitch immunity, is that we
do not need to know the “roles” of the wires, i.e. which share and which variable a wire
belongs to. Our tool only needs to know which wires are combined in a combinational
block and this is easily derived from the netlist. The advantage is that less user-provided
input means less room for human error. This is in contrast with tools that try to prove
non-completeness or non-interference. In those cases, the tool needs to know not only
which share is carried by each wire but also which sets of wires carry shares of the same
variable. However, it is this additional information which allows MaskVerif to be more
efficient. There is thus a trade-off between the amount of information provided to the tool
and the level of optimization possible. Similarly, the size of the glitch-extended probes can
be reduced if one knows which wires carry fresh randomness.

Multiplicative Masking. At CHES 2018, a new hardware implementation of AES was
presented, which uses multiplicative masking as opposed to Boolean masking to do the
Galois field inversion [DRB18]. Since no tool for verifying the circuit with multiplicative
masking was available, the authors were forced to rely on a manual verification to prove
the security of the scheme (cf. the appendices of [DRB18]). We are able to use our tool
to exhaustively verify the glitch-extended probing security of their first-order S-box in
20h. The second-order S-box is prohibitive in the size of its glitch-extended probes (a
tuple of probes can have as many as 32 bits) and the resulting memory requirements for
the histograms. Its automated formal verification thus requires that MaskVerif becomes
compatible with multiplicative masking.

Arithmetic Masking. Another popular type of masking is arithmetic masking, which
has been the topic of many works over the last years [HT16, Cor17]. As with multi-
plicative masking, MaskVerif currently does not allow verification of these applications.
As a result, Coron released an alternative tool to formally verify arithmetically masked
implementations [Cor18]. However, this tool is limited to software implementations, only
verifies d-(S)NI properties (not d-probing) and suffers from false negatives. While our tool
is only meant for hardware implementations, we can easily adapt it to investigate the
joint probability distributions of normal probes QI instead of glitch-extended probes RI

and use it on the implementations of Hutter and Tunstall [HT16] to demonstrate glitch
immunity’s compatibility with arithmetic masking. Our tool validates their second-order
secure implementation over GF(2) in 18 minutes.

Randomness Recycling. Belaid et al. show in [BBP+16] how the right combination
of NI and SNI gadgets can lower the fresh randomness cost of a circuit, compared to
one that consists exclusively of SNI gadgets. In many cases however, an even lower
randomness cost can be obtained by recycling random masks. Consider for example the
Boolean masked Kronecker Delta function of [DRB18], shown in Figure 4, which consists
of seven masked AND gates sharing a number of fresh random bits. The MaskVerif
tool allows modularisation, i.e. allows the use of sub-gadgets in larger ones. However,
for now, MaskVerif assumes that each gadget receives fresh randomness, which means
that the verification of the Kronecker delta function cannot exploit the modularisation.
Having a verification tool compatible with randomness recycling can be useful to find
optimally customized implementations with minimum randomness costs. By treating fresh
randomness as any other input, manipulated and re-used by the circuit, glitch immunity
trivially allows verfication of randomness recycling. Using our tool, we are able to verify
the glitch-extended probing security of the first-order implementation with randomness
recycling in 0.18 seconds.
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Figure 4: Randomness recycling in a Boolean masked Kronecker delta function [DRB18]

Verification in GF(2). Another specific though not uncommon property of the Kronecker
delta function of [DRB18] is that it operates in GF(2). In MaskVerif, it appears the only
way to work at bit-level is to provide the input in Verilog form. However, bit-level
implementations might also occur in software, for instance when bit-slicing is used to
parallelize computations with independent inputs. Examples are the implementations of
the Kronecker delta [GPQ11] or the AES S-box [BGRV15]. In fact, from the description
of MaskVerif in [BBFG18], we can only guess in which domain the inputs are interpreted
and the exhaustive simulations are performed. This is related to our note in §4 about the
field in which simulatability should be considered.

Non-Uniformity. As demonstrated in Appendix A, uniformity is not a necessary property
for secure implementations. However, without verification tools in which the distribution
of inputs can be specified, it is difficult to exploit this “observation”. Since glitch immunity
does not make any assumptions on the distribution of masks, it is perfectly suitable
to verify for example low entropy masking schemes. These have only been studied for
application in software. Given Lemma 1, investigating low entropy masking for hardware
is an interesting direction for future work. The specification of input distributions is also
related with multiplicative masking, since it is well known that a multiplicative mask is
not allowed to be zero [GT02, TSG02]. This feature was therefore also useful in the use of
our tool for the verification of [DRB18].

5.3 Efficient Flaw Detection in Practice
Provable security for masking schemes is important, which is why so many tools for
this purpose exist [BBFG18, Cor18, BGI+18]. However, provable schemes can still be
implemented incorrectly. For this reason, implementations are usually deployed onto a
hardware platform and validated using test vector leakage assessment (TVLA) [BCD+13].
While this is an important step in determining whether an implementation is practically
secure, the lab-based t-test (or χ2 test [MRSS18]) involves a lot of uncertainty. On the
one hand, lab environments are quite noisy, which sometimes allows flaws to remain
undetected. Furthermore, the results of TVLA strongly depend on the specific setup,
which is different for every lab. On the other hand, it was shown at CHES 2018 [DEM18]
that even secure schemes can show leakage. Flaw detection using simulation and glitch
immunity can fill an important gap between proving theoretical security of a scheme and
evaluating an implementation in the lab. Efficient flaw detection in software masking
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schemes was proposed first by Reparaz [Rep16]. We can now extend that work, not only by
including flaw detection for hardware schemes, but also for software, since we can replace
the moment-based t-test by a χ2 test for each separate security order, which naturally
aligns with the information-theoretic definitions of both glitch immunity and probing
security. Since flaw detection should be fast, we adapt our glitch-immunity tool to use
random simulations as in [Rep16]. This way, it can even be used for masked circuits that
cannot be formally verified due to a number of inputs that is infeasible to exhaustively
simulate.

Flaw Detection with glitch immunity. The preprocessing described in § 5.1 remains
identical. The verification step becomes a flaw detection step, by randomly choosing inputs
to feed to the software implementation, instead of exhaustively simulating it for all possible
inputs. We still enumerate every possible d-tuple of register input wires QI = {qi1 , . . . , qid

}
and verify the condition for the corresponding sampled distribution of RI . Since these
distributions are not exact, a zero mutual information is highly unlikely, if not impossible.
The significance of a non-zero mutual information is typically measured using Pearson’s χ2

test. For each pair of histograms, we therefore use such a test to verify the null hypothesis
that “the two distributions are identical”. Our χ2 test implementation is similar to the one
described in [MRSS18]. We compute the p-value of the test, which records the probability
of our observations under the null hypothesis. We reject the null hypothesis if the p-value
is below a threshold (in this case 10−5). As in [BCD+13, MRSS18], we perform the
hypothesis test using two plaintext classes: one fixed and one random, although fixed
versus fixed is also possible.

Distinction from TVLA. The statistical approach on big circuits implies that it cannot
be used for showing provable security. However, the verification is extremely informative
and relevant for flaw detection and practical security evaluation. It is orthogonal and not
to be compared to tests done in a noisy lab environment [BCD+13] since our approach
achieves a lot more accuracy and genericity. Firstly, we assume an ideal noise-free world,
independent of the physical aspects implying that we do not need to repeat the test as
the layout, library, device etc. change. Moreover, the χ2 test is much more powerful
than the moment-based t-test in its ability to detect any dependency of distributions on
the secret. Note also the difference with the TVLA methodology either used in practical
evaluations [BCD+13] or in simulation [Rep16]. There, one constructs a set of traces
once and evaluates dth-order security by comparing the different order moments of the
samples. In contrast, for each security order d, we build different samples and compare
entire probability distributions, not only statistical moments. It is as if we leak entire
glitch-extended probes under an identity leakage model to an adversary in a noiseless
environment and verify whether the secret can be distinguished from this. This is also
different from the usage of χ2 tests in [MRSS18]. We demonstrate the condition’s ability
to find flaws with some examples below.

Applications. We repeat the experiment with higher-order threshold implementations
from §5.1, but this time with the statistical version of the tool. We perform a fixed versus
random test with fixed input (a, b, c) = (0, 0, 0). It only takes 0,5 seconds to detect the flaw,
when simulating 100 000 times with random inputs. The sample where the dependency
is detected corresponds to that found by the exact tool. The statistic χ and degrees of
freedom ν are respectively 30 068.8 and 2047, corresponding to a p-value of 0.0.

We further deploy the tool in the first-order secure round function of a Keccak imple-
mentation from [GSM17], which was shown to be insecure in the presence of glitches due
to a missing register stage in [ABP+18]. We simulate not only the S-box but the entire
200-bit round function, including all linear operations, since they introduce dangerous
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dependencies in the inputs to the non-linear blocks. The circuit thus has a 200-bit input in
two shares as well as 200 bits of randomness as input. Despite such a prohibitive number of
inputs, 1 million simulations in approximately 3 minutes suffice to detect the flaw (p-value
0.0) at the input of the non-linear blocks. Finally, we again demonstrate the compatibility
with arithmetic masking, by applying the tool to the third-order implementation of the
first version of [HT16]. With 1 000 samples in 1 minute 20 seconds, the tool confirms the
flaw noted by [Cor18] (p-value 0.0).

Information theoretic vs computational security. In practice, it typically suffices to
have computational security. It was for example noted by Daemen [Dae16a, Dae16b]
that it is unclear how to exploit the non-uniformity in his initial Keccak S-box threshold
implementation [BDPVA10]. More recently, Wegener et al. demonstrated that no leakage
can be detected in practice, even when iterating the Keccak round function for 1800
rounds [WBM18]. The condition of glitch immunity is very amenable for this purpose.
The flaw detection tool essentially relaxes the glitch immunity condition by bounding
the divergence between secret-condition distributions instead of requiring a zero mutual
information.

max |p(R|x(0))− p(R|x(1))| ≤ ε (16)
where ε is an arbitrarily small number (e.g. 2−40). Eqn. (4) can be seen as an extreme
version of Eqn. (16) when setting ε = 0. This follows the reasoning that, if we need a lot of
samples (measurements) to distinguish two secret-conditioned distributions in a noiseless
simulation, an adversary will also need at least as many traces during DPA in a realistic
attack setting.

Possibility for leakage functions. A further tradeoff can be made between the accuracy
and the efficiency of the verification. While we normally build probability distributions for
the exact glitch extended probes, we can also replace this “identity function” by another
leakage function, such as for example the Hamming weight. This reduces the histogram
sizes considerably (from 2|RI | to 2log(|RI |) = |RI |) and thus allows for practical security
evaluation of even larger circuits.

6 Conclusion
In this work, we revisited an information-theoretic approach to d-probing security and
extended it to include glitches. The result is a concept of d-glitch immunity, the first
necessary and sufficient condition for d-probing security in the presence of glitches.

We related glitch immunity to the security properties that form the basis of threshold
implementations. While non-completeness is necessary and implied in glitch immunity, we
showed that uniformity is not a necessary condition.

We redefined the software security notions of (strong) non-interference in the information-
theoretic framework. We extended the definitions to include glitches and introduced the
concept of d-glitch strong non-inteference, a sufficient condition for composability of hard-
ware gadgets. It remains an open problem to find a necessary and sufficient condition for
composability.

The information-theoretic approach makes extending probing security and non-interference
conditions with glitches almost trivial. In the same way, another redefinition of probes can
extend our current models to include other unfortunate effects such as described in the
robust probing model, while easily remaining compatible with current tools.

Finally, we showed how glitch immunity can be used both for proving the security of
small gadgets and for flaw detection in larger circuits. In particular, we demonstrate the
flexibility of the condition and how it fills gaps in the current state-of-the-art.
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A First-order security of non-uniform AND gates
We focus on the composition of two AND gates as shown in Figure 5. We will use two
types of refreshing after the first gate to illustrate that uniformity is not necessary to
achieve theoretical security. Note that these AND gates are designed to demonstrate our
cause and therefore are neither optimal nor considered for use in another setting.

!
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Figure 5: Circuit of two AND gates

We consider x, y and z as our sensitive variables. The first AND gate receives 3-share
input values x and y and outputs 6-share value a as follows.

a0 = x0y0 a3 = x0y1 ⊕ x1y0

a1 = x1y1 a4 = x1y2 ⊕ x2y1

a2 = x2y2 a5 = x2y0 ⊕ x0y2

(17)

The second AND gate uses the 6-share output a with 3-share z as follows.

b0 = a0z0 ⊕ a0z1 ⊕ a1z0 ⊕ a4z1 ⊕ a5z0 ⊕ a5z1

b1 = a0z2 ⊕ a1z1 ⊕ a1z2 ⊕ a2z1 ⊕ a3z1 ⊕ a3z2

b2 = a2z0 ⊕ a2z2 ⊕ a3z0 ⊕ a4z0 ⊕ a4z2 ⊕ a5z2

(18)

As expected, the application of the second AND gate is insecure and a single probe on
either b0, b1 or b2 can reveal the secret (x, y). Table 2 demonstrates this fact through the
probability distributions of each of the shares of b, which clearly each depend on the secret.
The sum of the frequencies is always 27 = 128 since each bi has 9 input bits (3 shares of
x, y and z) of which 2 are fixed by the secret (x, y).

Table 2: Scaled probability distributions (frequencies) of bi for specific secrets (y∗, x∗)

p(b0|x∗, y∗) p(b1|x∗, y∗) p(b2|x∗, y∗)
(y∗, x∗) 0 1 0 1 0 1
(0, 0) 100 28 100 28 112 16
(0, 1) 84 44 92 36 88 40
(1, 0) 84 44 92 36 88 40
(1, 1) 84 44 92 36 72 56

This effect was previously [Bil15] contributed to the non-uniformity of the output
shares a, as shown in Table 3. The first AND gate has only 6 inputs bits (3 shares of x
and y) of which 2 are fixed by the secret. Hence, each probability distribution in Table 3
sums up to 24 = 16.

Clearly, if there is no remasking after the first AND gate, the second AND gate leaks
sensitive information. On the other hand, if we refresh every output share ai, then the
second AND gate receives a uniform sharing and is secure. However, a uniform sharing a
is not required for d-probing security with or without glitches. We look at an intermediate
approach where the output of the first gate is re-masked such that it is not completely
uniform but the second AND gate does not leak sensitive information.
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Table 3: Scaled probability distributions (frequencies) of a for specific secret (y∗, x∗)

p(a|x∗, y∗)
(y∗, x∗) a = 000000 to 111111
(0,0) 7001011000000000000000000000000000000000000000000000000002202000
(0,1) 4000000001100000001010001000010001001000100000101001000000000000
(1,0) 4000000001100000001010001000010001001000100000101001000000000000
(1,1) 0110100120000000200000000020000020000000020000000000200000000000

The Good. Let’s consider the following remasking using 2 bits of randomness:

a0 ← a0 a3 ← a3 ⊕ r1 ⊕ r2

a1 ← a1 ⊕ r1 a4 ← a4 ⊕ r2 (19)
a2 ← a2 a5 ← a5

One can see in Table 4 that the sharing a is still not uniform.

Table 4: Scaled probability distributions (frequencies) of remasked a for specific secret
(y∗, x∗)

p(a|x∗, y∗)
(y∗, x∗) a = 000000 to 111111
(0,0) 7001011001701001017010017001011002202000200200202002002002202000
(0,1) 7001011001701001017010017001011002202000200200202002002002202000
(1,0) 7001011001701001017010017001011002202000200200202002002002202000
(1,1) 0170100170010110700101100170100120020020022020000220200020020020

However, this non-uniformity does not lead to leakage in the second AND gate. To
verify this, we investigate the mutual information between the secret and the glitch-
extended probe Ri of each output bi, by looking at their probability distributions for
different secret inputs. Note that there is synchronization after the randomization, by for
example a register stage. The output shares (b0, b1, b2) thus depend respectively on the
sets R0 = (a0, a1, a4, a5, z0, z1),R1 = (a0, a1, a2, a3, z1, z2) and R2 = (a2, a3, a4, a5, z0, z2).
Since the sharing of z is uniform and used in a non-complete way, we will ignore those
inputs for now for brevity. Table 5 shows clearly that these distributions are also not
uniform. However, they are identical for each of the secret inputs (x∗, y∗). The result stays
the same for the secret (x∗, y∗, z∗) which is omitted here for readability. It automatically
follows that the probability distributions of each of the outputshares b0, b1 and b2 are also
independent of the secret. This means that this remasking allows a secure composition of
the two AND gates, provided their separation by a register stage.

Table 5: Scaled probability distributions (frequencies) of Ri for any fixed secret (x∗, y∗)

Ri = 0000 to 1111
p(R0|x∗, y∗) 8 2 8 2 8 2 8 2 4 2 4 2 4 2 4 2
p(R1|x∗, y∗) 9 3 9 3 3 1 3 1 9 3 9 3 3 1 3 1
p(R2|x∗, y∗) 8 2 8 2 8 2 8 2 4 2 4 2 4 2 4 2
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The Bad. Suppose now that instead of the randomization in Eqn. (19), we do the
following remasking.

a0 = a0 a3 = a3 ⊕ r1 ⊕ r2

a1 = a1 ⊕ r1 a4 = a4 (20)
a2 = a2 a5 = a5 ⊕ r2

We see clearly in Table 6 that the joint probability distribution of the input set R0
depends on the secret inputs even though there is no correlation of the secret with output
share b0 itself. This indicates that the remasking is sufficient in the case of a classic probe
on b0, but not in the presence of glitches. The joint probability distributions are shown in
Table 6.

Table 6: Scaled probability distributions (frequencies) of R0 = (a0, a1, a4, a5) and b0 for
various secrets (y∗, x∗)

p(R0|x∗, y∗) p(b0|x∗, y∗)
(y∗, x∗) R0 = 0000 to 1111 0 1
(0, 0) 8 2 8 2 4 2 4 2 8 2 8 2 4 2 4 2 160 96
(0, 1) 8 2 8 2 4 2 4 2 8 2 8 2 4 2 4 2 160 96
(1, 0) 8 2 8 2 4 2 4 2 8 2 8 2 4 2 4 2 160 96
(1, 1) 6 4 6 4 6 0 6 0 6 4 6 4 6 0 6 0 160 96

The Ugly. With the good remasking as in Eqn. (19), we can even do certain compositions
under the ISW setting with ideal gates. That is, even if the third input z = x, the output
is still secure as shown in Table 7, i.e. p(bi|(x∗, y∗)) = p(bi).

Table 7: Scaled probability distributions (frequencies) in the second AND gate with z = x

p(bi|x∗, y∗) p(b|x∗, y∗)
(y∗, x∗) 0 1 000 011 101 110 001 010 100 111
(0,0) 40 24 28 0 0 12 0 12 12 0
(0,1) 40 24 28 0 0 12 0 12 12 0
(1,0) 40 24 28 0 0 12 0 12 12 0
(1,1) 40 24 0 20 20 0 20 0 0 4

However, in a glitchy environment, we do not necessarily get composability. Neither
R0 = (a0, a1, a4, a5, x0, x1) nor R1 = (a0, a1, a2, a3, x1, x2) are independent from the secret.

Conclusion. In order to avoid leakage of sensitive data, what we need is independence
of the secret from the sensitive data. In this case study, we have demonstrated that this
does not necessarily require uniform distributions. Using d-glitch immunity as a verifying
mechanism, we can create custom gates with minimal randomness consumption.
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