
Continuous NMC Secure Against Permutations
and Overwrites, with Applications to CCA

Secure Commitments

Ivan Damg̊ard1?, Tomasz Kazana2??, Maciej Obremski1?, Varun Raj3, Luisa
Siniscalchi4? ? ?

1 Aarhus University
2 University of Warsaw, Institute of Informatics

3 Oracle America Inc., Redwood City
4 University of Salerno

Abstract. Non-Malleable Codes (NMC) were introduced by Dziem-
bowski, Pietrzak and Wichs in ICS 2010 as a relaxation of error correcting
codes and error detecting codes. Faust, Mukherjee, Nielsen, and Venturi
in TCC 2014 introduced an even stronger notion of non-malleable codes
called continuous non-malleable codes where security is achieved against
continuous tampering of a single codeword without re-encoding.
We construct information theoretically secure CNMC resilient to bit per-
mutations and overwrites, this is the first Continuous NMC constructed
outside of the split-state model.
In this work we also study relations between the CNMC and parallel
CCA commitments. We show that the CNMC can be used to bootstrap
a self-destruct parallel CCA bit commitment to a self-destruct parallel
CCA string commitment, where self-destruct parallel CCA is a weak
form of parallel CCA security. Then we can get rid of the self-destruct
limitation obtaining a parallel CCA commitment, requiring only one-way
functions.

1 Introduction

In this paper, we study the interesting relationship between the notions of non-
malleable codes and non-malleable commitments, and advance state of art for
both of them. Before giving our results, we introduce the notions.

1.1 Introduction to Non-Malleable Codes

Non-Malleable Codes (NMC) were introduced by Dziembowski, Pietrzak and
Wichs [DPW10] as a relaxation of error correcting codes and error detecting

? This work was supported by MPCPRO, ERC project nr. 669255.
?? Supported by Polish National Science Centre (NCN) SONATA GRANT UMO-

2014/13/D/ST6/03252.
? ? ? This research received funding from: COST Action IC1306; GNCS - INdAM. The

work of 5th author has been done in part while visiting Aarhus University, Denmark.

2 CNMC Against Permutations and Overwrites, and its Applications

codes. An NMC takes a message m and encodes it as a possibly longer and
randomized codeword c ← Enc(m). The adversary chooses and submits a tam-
pering function Tamper, that is applied to the code word to yield c′ = Tamper(c).
Applying the decoding algorithm yields a message m′ = Dec(c′). The security
guarantee for an NMC now is that the decoded message m′ is either identical to
the original message m or, in case of a decoding error, a message unrelated to m.
Correspondingly, the adversary is given either m′ or a symbol “same” indicating
that decoding was successful. Technically, we require that if m′ 6= m, then m′ can
be simulated using just the tampering function Tamper, but without knowing
anything about the tampered codeword c′.

It is generally impossible to give any meaningful guarantees if the tampering
function is unrestricted (the tamper function could decode, and then encode a
modified message). Therefore, the tampering function Tamper is always assumed
to come from some class T of functions. An immediate example application of
NM codes is for tamper resilient cryptography: if a secret key is stored in a
hardware device, the adversary could try to tamper with the device and observe
its behavior after the modification. But if the key is encoded with an NM code,
the security guarantees immediately imply that either the tampering had no
effect or the effect can be simulated without the device.

Continuous Non-Malleable Codes (CNMC) As mentioned in [JW15], non-malleable
codes can provide protection against these kind of attacks if the device is allowed
to freshly re-encode its state after each invocation to make sure that the tam-
pering is applied to a fresh codeword at each step. After each execution the
entire content of the memory is erased. While such perfect erasures may be fea-
sible in some settings, they are rather problematic in the presence of tampering.
Due to this reason, Faust et al. [FMNV14] introduced an even stronger notion
of non-malleable codes called continuous non-malleable codes where security is
achieved against continuous tampering of a single codeword without re-encoding.
In this model the adversary can iteratively submit tampering functions Tamperi
and learn mi = Dec(Tamperi(c)). We call this the continuous tampering model.
This stronger security notion is needed in many setting, for instance when using
NMCs to make tamper resilient computations on von Neumann architectures
[FMNV15].

Some additional restrictions are, however, necessary in the continuous tam-
pering model. If the adversary was given an unlimited budget of tampering
queries, then, given that the class of tampering functions is sufficiently expres-
sive (e.g. it allows to overwrite single bits of the codeword), the adversary can
efficiently learn the entire message just by observing whether tampering queries
leave the codeword unmodified or lead to decoding errors, see e.g. [GLM+04].

To overcome this general issue, [FMNV14] assume a self-destruct mechanism
which is triggered by decoding errors. In particular, once the decoder outputs a
special symbol ⊥ the device self-destructs and the adversary loses access to his
tampering oracle. This model still allows an adversary many tamper attempts,
as long as his attack remains covert. Jafargholi and Wichs [JW15] considered
four variants of continuous non-malleable codes depending on

DKORS 3

– Whether tampering is persistent in the sense that the tampering is always
applied to the current version of the tampered codeword, and all previous
versions of the codeword are lost. The alternative definition considers non-
persistent tampering where the device resets after each tampering, and the
tampering always occurs on the original codeword.

– Whether tampering to an invalid codeword (i.e., when the decoder outputs
⊥) causes a “self-destruct” and the experiment stops and the attacker cannot
gain any additional information, or alternatively whether the attacker can
always continue to tamper and gain information.

A long line of research has tried to optimize the performance of NM codes
with respect to the number of allowed tampering queries and the class of allowed
tampering functions (see the related work section for details). In this paper we
will be concerned with the case of CNMCs where there is no a priori bound on the
number of queries. This model must include a self-destruct mechanism.Further
we will be concerned with information theoretic NM codes where security holds
for an unbounded adversary, and we will look at the single state model, where the
tampering function is allowed to access the entire codeword. This is in contrast
to the split-state model where the tamper function must consider disjoint parts
of the codeword separately.

1.2 NMC- Our result

We give a construction of a self-destruct, non-persistent continuous NMC (see
Corollary 1 of Theorem 1) unconditionally secure against bit permutations com-
posed with bit overwrites. [AGM+15] gives a one time Non-Malleable Code re-
silient against bit permutations composed with bit-wise tampering. In [CMTV15]
they construct a CNMC secure against bitwise tampering (but permutations are
not allowed).

Unconditionally secure Continuous Non-Malleable Codes are notoriously hard
to construct. Very little progress was made since CNMC were proposed in 2015:

– [CMTV15] authors construct a CNMC secure against bitwise tampering
which is the simplest variant of split-state model.

– [CGL16] authors achieve a so-called many-many non-malleable code in the
2-split state model. Their construction achieves non-malleability as long as
the number of rounds of tampering is at most nγ for some constant γ < 1,
where n is the length of the codeword.

– [AKO17] authors give the persistent continuous NMC construction for 2−split
state.

– [ADN+16] gives Continuous NMC against 8−split state tampering (optimal
number of states would be 3).

This makes our result the first known unconditionally secure construction of
CNMC outside of split-state model.

4 CNMC Against Permutations and Overwrites, and its Applications

1.3 NMC- Related work

In [DPW10] the authors construct an efficient code which is non-malleable with
respect to bit-wise tampering, i.e., tampering functions that modify each bit of
the codeword arbitrarily but independently of the value of the other bits of the
codeword. Later works [DKO13, ADL14, CZ14, CG14, Li17] provided stronger
results by considering a model where the codeword is split into s parts called
states, which can each be tampered arbitrarily but independently of the other
states. Other works considered tampering via permutations and perturbations
[AGM+14], which are not captured in the split-state model. In [BDSKM16]
authors show how to construct efficient, unconditionally secure non-malleable
codes for bounded output locality (i.e. when every bit of tampering output can
depend on at most some nδ bits of input for δ < 1).

The definition in [DPW10] allows the adversary to be computationally un-
bounded. We call this an information theoretic NMC. Later works considered a
notion of computational NMC where the adversary and tampering functions are
restricted to efficient computations, see for instance [CKM11, LL12, AAnHKM+16,
BDSKM17].

The definition in [DPW10] allows the adversary to tamper the codeword
only once. We call this one-shot tampering. Faust et al. [FMNV14] consider a
stronger model where the adversary can iteratively submit tampering functions
Tamperi and learn mi = Dec(Tamperi(c)). We call this the continuous tampering
model. This stronger security notion is needed in many setting, for instance
when using NMCs to make tamper resilient computations on von Neumann
architectures [FMNV15]. Some additional restrictions are, however, necessary
in the continuous tampering model. If the adversary was given an unlimited
budget of tampering queries, then, given that the class of tampering functions
is sufficiently expressive (e.g. it allows to overwrite single bits of the codeword),
the adversary can efficiently learn the entire message just by observing whether
tampering queries leave the codeword unmodified or lead to decoding errors, see
e.g. [GLM+04].

To overcome this general issue, [FMNV14] assume a self-destruct mechanism
which is triggered by decoding errors. In particular, once the decoder outputs a
special symbol ⊥ the device self-destructs and the adversary loses access to his
tampering oracle. This model still allows an adversary many tamper attempts,
as long as his attack remains covert. Jafargholi and Wichs [JW15] provide a
general study of when CNMCs can be built assuming a self-destruct mechanism.

Faust et al. [FMNV14] constructed a CNMC in the 2-state model which is
secure against computationally bounded adversaries. It was shown in the same
work that it is impossible to construct an information theoretic CNMC for the
2-state model.

Information-theoretic results for CNMC. In [CMTV15] authors construct a CNMC
secure against bitwise tampering which is the simplest variant of split-state
model. In [AKO17] authors give the first information theoretic persistent con-
tinuous NMC construction for 2−split state. Finally in [ADN+16] authors give

DKORS 5

the first information theoretic construction of CNMC in 8− split state. Before
[ADN+16] the only known result that achieves some sort of non-malleable codes
secure against non-persistent continuous tampering was the result by Chattopad-
hyay, Goyal, and Li [CGL16]. They achieve this by constructing a so-called many-
many non-malleable code in the 2-split state model. Their construction achieves
non-malleability as long as the number of rounds of tampering is at most nγ for
some constant γ < 1, where n is the length of the codeword.

1.4 Application to Commitment Schemes

Commitment schemes. The notion of commitment is perhaps the most funda-
mental concept in cryptographic protocol design. The idea is that a sender binds
herself to a choice of a message m by exchanging some information with a re-
ceiver. The commitment should be hiding, i.e., the verifier does not learn the
committed message. Later, the sender can choose to open the commitment, i.e.,
release more information allowing the receiver to determine m. The commitment
should be binding, i.e., the sender cannot make the receiver output a message
different from the one she had in mind at commit time.

The strongest possible security notion for commitment schemes is UC secu-
rity, which intuitively asks that using the scheme is equivalent to giving m to
a trusted party who will only release it on request from the committer. This is
much stronger than simply asking for hiding and binding, e.g., we get security
under general composition. But unfortunately, we know that UC security can-
not be achieved without set-up assumptions. So a long line of research has been
aimed at achieving weaker but meaningful security guarantees without set-up.

An important example of this is the notion of non-malleable (NM) commit-
ments [DDN91]. Here we consider an adversarial Man-in-the-middle (MiM), who
on side receives a commitment from an honest sender to message m (the “left
session”) and on the other side sends a commitment to an honest receiver (the
“right session”), containing m′. The MiM wins if he succeeds in forming a new
commitment on the right such that m′ has some non-trivial relation to m. The
NM property does not follow from hiding and binding and is very important, for
instance in making auctions where committed bid is fair, or towards implement-
ing secure coin-flipping. Technically the NM property is captured by requiring
a simulator that will simulate the left session without knowing m and still the
MiM wins with essentially the same probability.

The strongest form of NM commitment security is concurrent NM commit-
ments. Here, the MiM is allowed to start any number of left sessions and right
sessions and can schedule them as he likes. One can also consider restricted ver-
sions of this, for instance a 1-1 NM commitment is secure if only 1 left and 1 right
session is allowed. A restriction that we want to consider is self-destruct (SD)
concurrent non-malleable commitment. In this version, once the MiM makes a
invalid commitment in a right session, all commitment computed after that ses-
sion are considered invalid and cannot be used to win the game. This notion
is close in spirit to the one of the weak non-malleable commitments, which has
been applied in multiple works.

6 CNMC Against Permutations and Overwrites, and its Applications

An even stronger notion of commitment security is CCA security([CLP10]):
we consider again a MiM, but he is now given an oracle that he can query on
input a commitment from (one of) the right session(s), as long as it is not a copy
of something from a left session. The requirement is that hiding holds for the left
session(s), even in presence of the oracle. Intuitively, a CCA secure commitment
is also NM secure, all other things being equal: if the MiM could break NM
security and come up with a new commitment on the right side that is related
to one from the left, he could submit it to the oracle in the CCA game and use
the reply to break hiding on the left side. One restriction on CCA commitments
that has been considered is parallel CCA security, where the MiM can ask only
one query that may, however, contain an unbounded number of commitments.
Another restriction is that of self-destruct (SD)-CCA, where the oracle stops
working if the MiM submits an invalid commitment.

Parallel CCA commitments from CNMC. In this second part we investigate
possible applications our CNMC. In particular, we will show a bridge between
(unconditionally secure) CNMC and (computational) cryptographic primitives
secure in the concurrent setting.

For the stand-alone setting the result of [AGM+15] shows how to use a bit
parallel CCA commitment5 to construct a 1-1 string non-malleable commitment
relying on stand-alone NM code. In particular, constructing string commitment
from the corresponding 1-bit primitive, they first encode the input message with
an NM code and then apply a 1-bit commitment scheme.

Following the same approach of [AGM+15] but using a CNMC (resilient
to the same class of tampering functions of [AGM+15]) we are asking which
flavor of non-malleability w.r.t. commitment we can achieve. In particular, is
it enough to plug-in our CNMC in the construction of [AGM+15] to obtain a
concurrent NM string commitment? The answer is only partial yes, due to the
self-destruct limitation of CNMC. Indeed, a MiM adversary of NM commitments
can compute multiple invalid commitments. Then, we show how to bypass this
limitations requiring only OWFs.

In more details, we obtain a compiler that takes a CCA bit commitment and
constructs an SD concurrent NM commitment. Due to the adaptiveness of our
NM code we actually achieve a stronger security notion, namely a string SD-CCA
commitment scheme. Furthermore we can relax the requirements on the CCA
bit commitment: it just needs to be SD-CCA-secure instead of CCA-secure.

5 Note that a particular accent is placed on the fact that the compiler requires as input
a possible (non-tag based) n-parallel bounding CCA bit commitment because. The
reduction is non-trivial only because they are working in the standard non-tag based
setting. Otherwise, in case of tags, one can simply sign the entire transcript using the
tags and obtain a non-malleable string commitment. In case of bit commitments, tag-
based non-malleability is a stronger requirement than the standard (non-tag-based)
non-malleability. Pass and Rosen [PR05] argue that for string commitments, the two
notions are equivalent since one can simply commit the tag as part of the string, if
there are no tags. Since we only have bit commitments, this does not work.

DKORS 7

Summarizing, we show a compiler that on input a (non-tag based) SD-CCA
bit commitment scheme and a continuous non-malleable code resilient against
permutations and bit overwrites, outputs a (non-tag based) SD-CCA string com-
mitment scheme. Our construction, like the one of [AGM+15], preserves the
round complexity of the bit commitment scheme and does not require any addi-
tional assumption. Finally , we show that a SD-parallel CCA string commitment
scheme can be upgraded to a parallel string commitment scheme without self-
destruct, assuming only one-way functions. The construction is non-trivial (it
requires very recent developed tecniques) and adds only two rounds of interac-
tion.

Together with our compiler described above, this implies the first construc-
tion that exploit the CNMC property to obtain a parallel CCA commitment. Fur-
thermore, parallel CCA commitment founds multiple applications like [Kiy15,
BDH+17]. Observe that parallel CCA commitment is not implied by parallel
NM commitment (see [BFMR18]).

Previous work on NMCs and NM commitments. The literature presents works
that exploit the properties of the non-malleable code to construct non-malleable
commitments. Goyal et al. [GPR16] use non-malleable codes in the split-state
model to realize a 3-round one-one non-malleable commitment relying on one
way permutations secure against a quasi-polynomial time adversary. Chandran
et al. [CGM+16] show that block non-malleable codes with t blocks imply non-
malleable commitments of t−1 rounds. As we discuss above, Agrawal et al. [AGM+15]
showed that is possible to construct a one-one non-malleable commitment relying
on a non-malleable code and a bounded parallel CCA bit commitment. However,
no one before uses non-malleable codes to construct a parallel CCA commitment
scheme.

The aim of this second part is to build bridges between different notions
of non-malleability, and to not construct a new NM commitment or a CCA
commitment that are already available in literature. Indeed, there is a long
line of research that tries to reduce the round complexity of NM commitment
(e.g. [DDN91, Bar02, PR05, Wee10, PW10, LP11, Goy11, GLOV12, GRRV14,
GPR16, COSV16, COSV17b, KS17, Khu17, LPS17]). Several constructions of
CCA commitment are also available in literature (e.g. [CLP10, LP12, Kiy14,
GLP+15]).

Improve the SD-RCCA PKE scheme of [CMTV15]. As a second application of
our CNMC we demonstrate that by plugging in our CNMC in the construction
of [CMTV15] we can improve the efficiency of their SD-RCCA PKE scheme. In
particular, if we plug our non-malleable code in the construction of [CMTV15]
we will obtain a modified SD-RCCA PKE that is improved in the following
aspects: 1) the modified SD-RCCA PKE uses a single public/secret key pair,
instead of n (where n is the size of the codeword); 2) we obtain a construction
with no a priori bound on the length of the string to be encrypted.

8 CNMC Against Permutations and Overwrites, and its Applications

1.5 Technical overview of our CNMC secure against
permutations-and-overwrites

Construction of Continuous Non-Malleable Code. Our code consists of an amal-
gamation of two different layers of encoding schemes.

The top layer is a Reed-Solomon code used here as a sharing scheme. We take
a message m, append a random suffix and then encode it using Reed-Solomon
to receive a codeword consisting of N blocks that may be seen as shares of bN3 c-
out-of-N secret sharing scheme. The intuition behind this scheme is that the
adversary needs to learn at least N

3 shares to learn anything about the initial
message.

The bottom layer is using a Two-Split State Super Strong Non-Malleable
Code (instantiated either by [AKO17] or [Li17]). Each share si from the above
secret sharing scheme is converted into (si||i) and then encoded using the two-
split state code to get two shares (Li, Ri) (We also expect the bit-parity of Li
to be 0 and the bit-parity of Ri to be 1). The final code is (L1, R1, ..., RN , LN).

To prove that the just described code is actually continuous non-malleable
code, we first redefine the experiment in the definition of continuous codes. The
new definition is obviously stronger, so it is sufficient to work with it. In the
new definition, whenever an adversary tampers with a blocks (Li, Ri) with non-
constant functions and succeeds in creating valid (from the point of view of
Super Strong NMC decoder) output blocks (L′i, R

′
i) (In particular, the parities

of all (L′i, R
′
i) must be correct), we will reveal blocks (Li, Ri) to the adversary.

As observed earlier, the adversary’s necesary task is to learn at least bN3 c
blocks of the underlying si shares.

Since the adversary can only tamper bitwise and permute bits we can prove
that if the adversary doesn’t know N

3 blocks and he tries to modify the code
he will either get detected with probability exponentially close to 1, or he can
attempt to learn some small amount information about the codeword (i.e. tamper
with few blocks Li, Ri with non-constant function). However, using the bottom
layer, we show that every attempt to learn even the smallest information about
the codeword (i.e. by overwriting all but only few bits) yields some probability
of detection which amplifies with amount of information adversary is trying to
learn. We will therefore show that adversary can not (i.e. the probability is
negligable) breach bN3 c blocks threshold.

The argument consists of two main technical lemmata:

– [lemma 8] If the adversary applies any non- constant functions f, g to single
block Li, Ri then, due to combination of super strong nmc properties and
parity requirements we have placed on Li, Ri, adversary risks close to 1

2
detection probability.

– [lemma 10] If the adversary decides to mix bits between different blocks
(Li, Ri) he has to risk violation of parity requirements on these blocks. This
lemma is inspired by similar lemma for unary schemes from [AGM+14].

Using these ideas we can claim that if adversary tampers with k blocks using
non-constant functions he also gets detected with a probability 1 − p−k.The

DKORS 9

proof of this fact is more involved because we have to deal with minute cases.
For example if we prove that mixing of bits will make the parity unpredictable
for each block it still may happen that the events of error are correlated so not
obviously amplify the error rate.

Example 1. Assume adversary tampers only with L1 and L2, if he permutes
bits in a way that output L′1 contains first halfs of vectors L1, L2, L′2 contains
second halfs of L1, L2. Then parity of L′1 is correct if and only if parity of L′2 is
correct. We handle this by picking only largest possible subset of independent
parity checks (see lemma 9) in this case we would focus only on parity of L′1 and
discard any other checks generated by L1, L2, R1, R2.

Example 2. Consider a tampering function which takes one bit from some blocks
(Li, Ri) and permutes them to the last block (L′N , R

′
N) while fixing all other

(Li, Ri) to some constants. If (L′N , R
′
N) has a correct parity and valid Super-

Strong NMC decoding then we will reveal, to adversary, all blocks that ’donated’
bits to (L′N , R

′
N). Notice however that this will not reveal more bits then |LN |+

|RN | blocks.

Above examples illustrate how we bound number of blocks adversary can
learn for each independent validity check he has to create.

Technical overview of our self-destruct CCA commitment and par-
allel CCA commitment.

The self-destruct CCA commitment scheme. We want to show that given a
self-destruct CCA bit commitment scheme (non-tag based), committing to each
bit of the codeword individually, results in a self-destruct CCA string commit-
ment scheme. The security proof is based on the following high-level idea: if
the adversary of the self-destruct CCA string commitment is mauling, then, the
attack on the commitment level can be ”translated” into an attack on the non-
malleable code. In other word, we can show an adversary ANMCode that breaks
the security of the non-malleable code using the adversary A on the commit-
ment level that distinguish a commitment of message m0 from a commitment of
message m1. ANMCode will act as the sender in the left session with A. Instead
in the k-th right session (for k = 1, . . . , poly(λ)) ANMCode will act as a receiver
of the string commitment. Then he needs to emulate the oracle O of the string
commitment computing the following steps: 1) define a tamper function fk based
on value v committed in the right session (note that he can obtain v querying
the oracle of the bit commitment Obit6) 2) send back to A the decoding of
fk(encmb), where encmb is an encoding of mb (received from the challenger of
the non-malleable code game). At the end, ANMCode will output what A out-
puts. However we notice that the adversary that we described is not yet an
adversary against the non-malleable code since the tamper functions can be de-
pendent on what is committed on the left. We can demonstrate that the hiding
of the self-destruct CCA bit commitment ensures that the distribution of the

6 The definition of the tamper function is more complicated, see Section 5 for the
details.

10 CNMC Against Permutations and Overwrites, and its Applications

tamper functions is computational independent from the message committed by
the sender. Therefore the final adversary against the non-malleable code will
simply commits to a random message on the left session. Finally, we crucially
need that the non-malleable code is information theoretic secure since we have
no guarantee that Obit works in polynomial time.

Upgrade SD-PCCA commitment scheme to PCCA commitment scheme. At
a very high level our PCCA string commitment scheme works as follows. The
sender interacts with the receiver in order to compute a commitment τ of m using
a self-destruct PCCA string commitment. Furthermore, the receiver engages
with the sender a protocol to allow the extraction of a trapdoor. We use the
”trapdoor protocol” described in [COSV17b] where the trapdoor is represented
by the knowledge of two signatures under a verification key sent by receiver in
the 4th last round. In order to allow the extraction of the trapdoor, the receiver
sends a signature of a randomly chosen message in the 3rd last round by the
sender. Then, the sender executes a special witness-indistinguishable proof of
knowledge (WIPoK) with the receiver in order to prove that he computed a
valid commitment of m or that he knows a trapdoor.

Observe that if we use a 3-round WIPoK it is not clear how the proof of
security will proceed. In particular, in the security proof there are some hybrids
were we simulate the oracle of the parallel CCA commitment in polynomial time
extracting the committed messages from the WIPoKs. Let us consider the hybrid
were we switch the witness in one of the WIPoK. In the reduction to the WI we
have to emulate the oracle of the parallel CCA commitments, since the reduction
has to work in polynomial time. As we said, our hope to emulate the oracle is
to extract the committed messages from the WIPoKs, however the extraction
procedure rewinds also the challenger of the WI.

To overcome this problem we adopt the approach proposed in [COSV17b]
relying on non-interactive primitives instead of 3-rounds WIPoK.

Therefore, similarly to [COSV17b], we construct this WIPoK relying on:
instance-dependent trapdoor commitments (IDTC) and special honest-verifier
zero knowledge (SHVZK).

In more details, let (ls1trap, ls
2
trap, ls

3
trap, ls

4
trap) be the transcript of a 4-round spe-

cial HVZK delayed-input7 proof of knowledge (PoK). The transcript (ls1trap, ls
2
trap, ls

3
trap, ls

4
trap)

is used to prove knowledge of two signatures of two different message w.r.t. a
verification key sent by the reaciver. The transcript (ls1trap, ls

2
trap, ls

3
trap, ls

4
trap) is

used to prove the knowledge of the trapdoor.
At the 4th last round the sender sends an equivocal com obtained running

IDTC. At last round the sender will equivocate com in order to send as opening
(dec, ls2trap). In the last round also ls4trap is sent. The instance used for the IDTC is
τ , this means that the commitment com (computed using IDTC) can be opened
to any value because τ is a well-formed commitment.

In the opening phase the sender sends the opening of the self-destruct PCCA
string commitment.

7 By delayed-input we mean that the witness and the instance are needed only to play
the last round.

DKORS 11

Note that the first two rounds of the ”trapdoor protocol” can be run with
the last two rounds of the self-destruct commitment. Therefore the described
construction has t+2 rounds (where t is the number of rounds of the self-destruct
PCCA string commitment).

Overview of the security proof. In the 1st experiment (the real game RG0)
the sender commits to m0. We observe that due to the security of the signature
scheme we can demonstrate that in the real game A is committing to a well-
formed commitments in all parallel right sessions with non-negligible probability.
Symmetrically there is the experiment RG1 where the sender commits to m1 and
A is committing to a well-formed commitment in all parallel right sessions. Then
we consider a hybrid game H0

b , for b ∈ {0, 1}, where the sender commits to mb

and the oracle is emulated extracting the committed values from the special
WIPoK. Note that H0

b is distributed statistically close to RGb until A receives
the committed values, therefore we are ensured that we can extract the values
committed in the right sessions. The 2nd hybrid game that we consider is H1

b

in which we switch the witness used to compute the transcript of the special
WIPoK in the left sessions (i.e. we are using the trapdoor that is extracted by
rewinding A in the left session). Using techniques that are similar to the one
showed in [COSV17b] we are able to demonstrate that also in H1

b we can extract
the committed values in all parallel right sessions with non-negligible probability.
Moreover, we can demonstrate that the distribution of the commitment values
along with the view of A is indistinguishable between H0

b and H1
b , for b ∈ {0, 1}.

Indeed, both in H1
0 and in H1

1 we are guaranteed that A is committing to a well-
formed commitment in all parallel right sessions with non-negligible probability.
Summing up, a detectable deviation from H1

0 and H1
1 implies a contradiction

of the self-destruct PCCA security of the underlining commitment. Finally we
observe that the extraction procedure of the signatures does not interfere with
the reductions since in the parallel right sessions the commitment phase made
by A ends in the third last round. This observation concludes the high-level
overview of the security proof.

2 Preliminaries

We denote the security parameter by λ and use “||” as concatenation operator
(i.e., if a and b are two strings then by a||b we denote the concatenation of a and
b). We use the abbreviation ppt that stands for probabilistic polynomial time.
We use poly(·) to indicate a generic polynomial function and N to denote the
set of positive integer.

A polynomial-time relation Rel (or polynomial relation, in short) is a subset
of {0, 1}∗ × {0, 1}∗ such that membership of (x,w) in Rel can be decided in
time polynomial in |x|. For (x,w) ∈ Rel, we call x the instance and w a witness
for x. For a polynomial-time relation Rel, we define the NP-language LRel as
LRel = {x|∃w : (x,w) ∈ Rel}.Analogously, unless otherwise specified, for an NP-
language L we denote by RelL the corresponding polynomial-time relation (that
is, RelL is such that L = LRelL). We denote by L̂ the language that includes both

12 CNMC Against Permutations and Overwrites, and its Applications

L and all well formed instances that do not have a witness. Moreover we require
that membership in L̂ can be tested in polynomial time. We implicitly assume
that a PPT algorithm that is supposed to receive an instance in L̂ will abort
immediately if the instance does not belong to L̂. Let A and B be two interactive
probabilistic algorithms. We denote by 〈A(α), B(β)〉(γ) the distribution of B’s
output after running on private input β with A using private input α, both
running on common input γ. Typically, one of the two algorithms receives 1λ as
input. A transcript of 〈A(α), B(β)〉(γ) consists of the messages exchanged during
an execution where A receives a private input α, B receives a private input β and
both A and B receive a common input γ. Moreover, we will refer to the view of
A (resp. B) as the messages it received during the execution of 〈A(α), B(β)〉(γ),
along with its randomness and its input. We say that a protocol (A,B) is public
coin if B sends to A random bits only.

If Z is a set then Z ← Z will denote a random variable sampled uniformly
from Z. We start with some standard definitions and lemmas about the statis-
tical distance. Recall that if X and X ′ are random variables over the same set
X then the statistical distance between X and X ′ is denoted by ∆(X;X ′), and
defined as ∆(X;X ′) = 1

2

∑
x∈X |PrX = x− PrX ′ = x|. If the variables X and

X ′ are such that ∆(X;X ′) ≤ ε then we say that X is ε-close to X ′, and write
X ≈ε X ′. If E , E ′ are some events then by ∆(X|E ; X ′|E ′) we will denote the

distance between variables X̃ and X̃ ′, distributed according to the conditional
distributions PX|E and PX′|E′ .

If UX is the uniform distribution over X then d(X|E) := ∆(X|E ;UX) is
called statistical distance of X from uniform given the event E . Moreover, if Y
is independent from X then d(X|Y) := ∆((X,Y); (UX , Y)) is called statistical
distance of X from uniform given the variable Y . More generally, if E is an event
then d(X|Y, E) := ∆((X,Y)|E ; (UX , Y)|E). It is easy to see that d(X|Y) is equal
to the average

∑
y Pr(Y = y) · d(X|Y = y) = Ey(d(X|Y = y)).

Definition 1 ((Average-) Min-Entropy). Let X have finite support X . The
min-entropy H∞(X) of X is defined by

H∞(X) = − log max
x∈X

Pr(X = x).

For an event E, the conditional min-entropy H∞(X|E) of X given E is defined
by

H∞(X|E) = − log max
x∈X

Pr(X = x|E).

For an event E and a random variable Y with finite support Y, the average
min-entropy H̃∞(X|Y, E) of X given Y and E is defined by

H̃∞(X|Y, E) = − logEy max
x∈X

Pr(X = x|Y = y, E).

Randomness extractors will be the workhorses of our non-malleable code con-
structions.

DKORS 13

Definition 2 (Flexible Two-Source Extractors). A function Ext : X1 ×
X2 → Z is called a flexible (ε, δ)-two-source extractor, if it holds for all tuples

((X1, Y1), (X2.Y2)) for which (X1, Y1) is independent of (X2, Y2) and H̃∞(X1|Y1)+

H̃∞(X2|Y2) ≥ log(|X |) + log(|Y|)− δ that

d(Ext(X1, X2)|Y1, Y2) ≤ ε.

A well known example of a flexible two-source extractor is the Hadamard
extractor or inner-product-extractor.

Lemma 1 (Hadamard Extractor [ADL14]). The function Ext : Fnq ×Fnq →
Fq given by Ext(x, y) = 〈x, y〉 is a flexible (ε, δ) extractor for δ ≤ (n−1) log(q)−
2 log(1/ε).

Lemma 2 (Entropy-preservation of inner-product for correlated dis-
tributions). Let X be random variable over X l, let C be random variable such
that for every c we have H∞(X|C = c) ≥ l · log |X |− d, where d < log |X |. Then
for any non-zero v ∈ X l

H∞(〈X, v〉X | C = c) ≥ log |X | − d

for every c in supp(C).

We will now assemble a few basic technical lemmata that we will need for
our proofs.

Lemma 3 (Bayes’ rule for statistical distance [DKO13]). Let (X,Y) ∈
X × Y be a random variables, such that d(X|Y) ≤ ε. Then for every x ∈ X we
have

∆(Y |X = x ; Y) ≤ 2|X |ε.

Also if A is a random event such that d(X|Y,A) ≤ ε, we have:

∆(Y |X = x,A ; Y |A) ≤ 2|X |ε.

Lemma 4 ([DNO16]). Let X,T be any arbitrarily correlated random variables
and let E be random event then

H̃∞(X|T, E) ≥ H̃∞(X|T)− log
1

Pr(E)
.

In the Appendix A the reader can find a series of standard definitions used
in the rest of the paper.

2.1 Commitment Schemes

We consider the standard definition of commitment scheme that it is possible to
find in Appendix A.

14 CNMC Against Permutations and Overwrites, and its Applications

Self-Destruct CCA Secure Commitment Schemes. Let Π = (Sen,Rec)
be a commitment scheme. The self-destruct CCA-oracleOsdcca forΠ = (Sen,Rec)
acts as follows in an interaction with an adversary A: it participates with A in
polynomially many sessions of the commit phase of Π as an honest receiver.
At the end of each session, if the session is valid, the oracle returns the unique
value m committed in the interaction. The oracle outputs ⊥ and implements the
self-destruct mode, (i.e. the oracle will respond with ⊥ for all subsequent com-
mitment queries) if one of the following cases happen: 1) a session has multiple
valid committed values8; 2) the commitment is invalid; 3) if the committed value
m is equal to a special self-destruct symbol ⊥.

More precisely, let us consider the following probabilistic experiment INDsdcca
b (Π =

(Sen,Rec), λ, z,A) Let Osdcca be the SD CCA-oracle for Π. The adversary has
access to Osdcca during the entire course of the experiment. On input 1λ, and

z ∈ {0, 1}? the adversary AOsdcca

sends two strings m0 and m1 with |m0| = |m1|
to the experiment. The experiment randomly selects a bit b ← {0, 1} and com-

mits to mb to AOsdcca

. Note that if A queries the oracle with a commitment of
m s.t. m ∈ {m0,m1} 9 then, the oracle returns the special symbol same. Finally

AOsdcca

sends a bit y to the experiment. The output of the experiment is replaced

by ⊥ if AOsdcca

sends a commitment to Osdcca whose transcript is identical to
the one computed on the left. Otherwise, the output of the experiment is y. Let
INDsdccab (Π = (Sen,Rec), λ, z,A) denote the output of the experiment described
above.

Definition 3 (Self-destruct CCA (SD-CCA) secure string commitment
scheme). Let Π(Sen,Rec) be a commitment scheme and Osdcca be the self-
destruct CCA-oracle for Πsdcca. We say that Πsdcca is self-destruct CCA-secure
(w.r.t. the committed-value oracle), if for every ppt-adversary A and all z ∈
{0, 1}? it holds that:

{INDsdcca0 (Π = (Sen,Rec), λ, z,A)} ≈ {INDsdcca1 (Π = (Sen,Rec), λ, z,A)}

Definition 4 (Self-destruct parallel CCA (SD-PCCA) secure string
commitment scheme). The self-destruct parallel CCA oracle is defined like
the self-destruct CCA-oracle, except that the adversary is restricted to a parallel
query, i.e., the adversary can only send a single query that may contain multiple
commitments sent in parallel. Let IND

sdpcca
b (Π = (Sen,Rec), λ, z,A) define the

output of the security game for self-destruct parallel CCA security. The formal
definition is then analogous to the definition of SD-CCA security.

Note that any SD-CCA commitment scheme is also a SD-PCCA commitment
scheme.
8 The statistical binding property guarantees that this happens with only negligible

probability.
9 As noted in [AGM+15], following [DDN91], this definition allows MIM to commit to

the same value. It is easy to prevent MIM from committing the same value generically
in case of string commitments: convert the scheme to tag based by appending the
tag with v, and then sign the whole transcript using the tag.

DKORS 15

Definition 5 (Parallel CCA secure (PCCA) string commitment scheme[BFMR18,
Kiy15]). The parallel CCA oracle is defined like self-destruct parallel CCA-
oracle, except that the oracle does not implement the self-destruct mode. In more
details, when a commitment is not valid, or a session has multiple valid commit-
ted values the oracle returns ⊥, and the committed messages (or the symbol same)

in all the other cases. Let INDsdpccab (Π = (Sen,Rec), λ, z,A) define the output of
the security game for parallel CCA security (PCCA). The formal definition is
then analogous to the definition of SD-PCCA security.

In this paper we also consider a self-destruct (parallel) CCA secure bit com-
mitment scheme that is defined as in Def. 3 (4), except that the message space
is {0, 1} and the oracle never returns same.

In all the paper we denote by δ̃ a value associated with the right session
(where the adversary A plays with the oracle) where δ is the corresponding
value in the left session. For example, the sender commits to v in the left session
while A commits to ṽ in the right session.

3 Definitions related to Non-Malleable Codes

Definition 6 (Coding Schemes). A coding scheme is a pair (Enc,Dec), where
Enc :M→ C is a randomized function and Dec : C →M∪{⊥} is a deterministic
function, such that it holds for all M ∈M that Dec(Enc(M)) = M .

Definition 7 (Two-State Code). A coding scheme (Enc,Dec) where the coun-
terdomain of Enc has the form C = {0, 1}k × {0, 1}k is called a two-state code.

Definition 8 (Paritied Two-State Code). Let (Enc,Dec) (where Enc :M→
C = C1 × C2 = {0, 1}k × {0, 1}k) be a two-state code. Now let Encpar : M → C
be a randomized function restricted to a condition that parity(Enc(m)1) = 0 and
parity(Enc(m)2) = 1, where parity is a function calculating the parity of number
of ones in a given vector (i.e. parity(0101011) = 0 and parity(011111) = 1).

More formally, the procedure computing Encpar(m) can be described as fol-
lows: we run in a loop the encoding procudure (c1, c2)← Enc(m) until parity(c1) =
0 and parity(c2) = 1.

Similarily, let Decpar : C →M∪{⊥} be defined as follows: for c = (c1, c2) ∈
C, if parity(c1) 6= 0 or parity(c2) 6= 1 then Decpar(c) := ⊥, otherwise Decpar(c) :=
Dec(c).

Now, the coding scheme (Encpar,Decpar) is called a paritied two-state code.

We will now define the continuous tampering experiment. Our definition is
a weaker version of [JW15]: instead of Super Strong Tampering experiment we
will use the standard tamper experiment from [DPW10].

Definition 9 ((Continuous-) Tampering Experiment). We will define con-
tinuous non-persistent self-destruct non-malleable codes using [AKO17] experi-
ment, which is equivalent to original [DPW10] experiment. Fix a coding scheme

16 CNMC Against Permutations and Overwrites, and its Applications

(Enc,Dec) with message space M and codeword space C. Also fix a family of

functions F : C → C. Let D = {DfC}f∈F,C∈C be some family of distributions
over {0, 1}, indexed by tampering function f and a codeword C. We will first
define the tampering oracle TamperstateC,D (f), for which initially state = alive. For
a tampering function f ∈ F and a codeword C ∈ C define the tampering oracle
by

TamperstateC,D (f) :
If state = dead output ⊥
C ′ ← f(C)

If Dec(C ′) = Dec(C) and DfC = 0 output same
M ′ ← Dec(C ′)
If M ′ = ⊥ set state← dead and output ⊥
Otherwise output C ′

Fix a tampering adversary A and a codeword C ∈ C. We define the continuous
tampering experiment CTC,D(A) by

CTC,D(A) :
state← alive

v ← ATamperstateC,D(·)

Output v

Definition 10. Let (Enc,Dec) be a coding scheme and CT be its corresponding
continuous tampering experiment for a class F of tampering functions. We say
that (Enc,Dec) is an ε-secure continuously non-malleable code against F , if there

exists a family of distributions D = {DfC}f∈F,C∈C over {0, 1} such that for all
tampering adversaries A and all pairs of messages M0,M1 ∈M that

CTC0,D(A) ≈ε CTC1,D(A),

where C0 ← Enc(M0) and C1 ← Enc(M1).

4 Continuous Non-Malleable Code against
Permutations-With-Overwrites

In this section we define a coding scheme (Encc,Decc) and prove it is a continuous
non-malleable code against a class PermOver of permutations-with-overwrites
(the actual definition will follow).

4.1 Coding scheme

LetM = {0, 1}n and C = C1× · · ·× CN , where each Ci = {0, 1}k1 ×{0, 1}k1 . Let
also (Enc2,Dec2) denote a two-state code (actually we need a two-state strong
non-malleable code here, however the specific instantiation will be given later)

DKORS 17

and hN denote a bN/3c-out-of-N secret sharing scheme (again, the specific in-
stantiation will be given later). Now we are ready to introduce the (randomized)
function (procedure) Encc :M→ C:

For m ∈ M and a random r ∈ {0, 1}n, let (d1, . . . , dN) ← hN (m||r) where
(d1, . . . , dN) ∈ ({0, 1}k2)N are shares for (m||r). Now, for each di let (Li, Ri)←
Encpar2 (di||i).

Finally, we state ci ← (Li, Ri) and Encs(m) outputs (c1, . . . , cN).
The definition of Decc is simple and straightforward (forced by the definition

of a coding scheme).

Remark 1. The above construction is not tight for a given message length n
since it also depends on the choice of parameters (N, k1, k2) and the specific
definitions of both: the two-state code (Enc2,Dec2) and the secret sharing scheme
hN . However, before we pick adequate parameters and schemes, we need one
definition more:

Definition 11. We call a two-split code (Enc2,Dec2) ε-admissible if the scheme
(Encpar2 ,Decpar2) fulfills the following requirements:

1. [Canonical encoding procedure:] Encpar2 (m) is uniform in {c : Decpar2 (c) = m}.
2. [Detection of close to bijective tampering:] For any message m, if Encpar2 (m) =

(X,Y) then for any functions f, g : {0, 1}k1 → {0, 1}k1 such that H∞(f(X)),H∞(g(Y)) ≥
2/3 · k1 − 1 and (for any x or y) f(x) 6= x or g(y) 6= y it holds:

Pr(Decpar2 (f(X), g(Y)) = ⊥) ≥ 1− ε.

3. [Detection of complete overwrite of one part:] For any constant c ∈ {0, 1}k1 ,
and any uniform X,Y ∈ {0, 1}k1 , such that parity of X is 0 and parity of Y
is 1 we get,

Pr(Dec2(X, c) = ⊥) ≥ 1− ε,
Pr(Dec2(c, Y) = ⊥) ≥ 1− ε

4. [Leakage resilient storage:] For any message m, if Encpar2 (m) = (X,Y) then

for any functions f, g : {0, 1}k1 → {0, 1}k1 such that H̃∞(X|f(X)) ≥ 1/3 ·k1
and H̃∞(Y |f(Y)) ≥ 1/3 · k1 we get

∆ [(f(X), Y) ; (f(U0), U1)] ≤ ε ,
∆ [(X, g(Y)) ; (U0, g(U1))] ≤ ε ,

where U0, U1 are independent uniformly distributed over {0, 1}k1 , such that
parity of Ui is equal i.

An instantiation of the above definition for an appropriate εc is described in
the Appendix B. Through the rest of the paper we always refer to this specific
two-state code and the specific error probability when notation (Enc2,Dec2) and
εc is used.

18 CNMC Against Permutations and Overwrites, and its Applications

4.2 Definition of the class of tampering functions

Here we define the class PermOver of tampering functions. Through this paper
functions from this class PermOver are called permutations-with-overwrites.

Let us consider a set {0, 1}q of vectors of q bits (q-vectors, for short). Now,
let denote Πq the class of permutations of bits of q-vectors. Denote also Oq the
class of functions f : {0, 1}q → {0, 1}q, such that:

for all i, either f(x)i = xi or f(x)i = bi for a fixed bi.
Loosly speaking: any function from Oq, independently for each bit, either

leaves it unchanged or sets it into a fixed value (i.e. overwrites it).
Now we simply define the class PermOverq = Oq ◦Πq. For our application we

will equate C = ({0, 1}k1 × {0, 1}k1)N with {0, 1}2k1N and consider PermOver =
PermOver2k1N as a tampering class for C.

The above description of course finishes the definition of our class of tamper-
ing functions, however we want a few further related definitions.

Related definitions. Let us fix a tampering function t ∈ PermOver. As mentioned
above we will think of t as a function from C1 × · · · × CN to C1 × · · · × CN . Now,
for each i ∈ {1, . . . , N} we say that t either leaves or overwrites or modifies the
i-th block. These phrases stand for the following:

If t(c)i = ci then t leaves the i-th block. If t(c)i = a for some a independent
of c then t overwrites the i-th block. Finally, if none of the previous occurs, then
we say that t modifies the i-th block.

If t overwrites i-th block, two cases are possible. Either ci is independent of
f(c) or some bits of ci are moved to some modified blocks. In the first case we say
that t strong-overwrites i-th block and in the second case, it weak-overwrites.

Touched blocks are blocks either modified or weak-overwritten. In that case
we say that t touches these blocks.

For a function t ∈ PermOver and a codeword c ∈ C we denote touch(t, c) the
set of all touched blocks and its indices, more formally: touch(t, c) = {(ci, i)|t touches ci}.

Example. The above definitions may look a little bit obscure at first sight, so –
to make things clearer – we give an example.

Let N = 4 and each Ci = {0, 1}6. Now let us consider:

t
(

(b11, b
1
2, b

1
3, b

1
4, b

1
5, b

1
6), (b21, b

2
2, b

2
3, b

2
4, b

2
5, b

2
6), (b31, b

3
2, b

3
3, b

3
4, b

3
5, b

3
6), (b41, b

4
2, b

4
3, b

4
4, b

4
5, b

4
6)
)

=(
(0, 0, 0, 1, 1, 1), (b21, b

2
2, b

2
3, b

2
4, b

2
5, b

2
6), (0, 1, 0, 1, 0, 1), (0, b15, b

4
4, 1, b

4
2, b

1
1)
)
.

Obviously t ∈ PermOver and we have that: t leaves the second block, over-
writes the first and the 3-rd block and modifies the 4-th block. The first block
is weak-overwritten (because the 5-th block gets one bit from the first block)
and the 3-rd block is strongly overwritten. Function t touches the blocks of the
indices 1 and 4 so, for exemplary

c = ((0, 0, 1, 1, 0, 0), (0, 0, 1, 1, 1, 1), (1, 1, 1, 1, 0, 0), (1, 0, 0, 0, 0, 1)),

we have:
touch(t, c) = {

(
(0, 0, 1, 1, 0, 0), 1

)
,
(
(1, 0, 0, 0, 0, 1), 4

)
}.

DKORS 19

4.3 Statement and Proof

The main statements for the whole Section 4 are the following:

Theorem 1. The coding scheme (Encc,Decc) is an (α + 2εc)
bN/3c-secure con-

tinuous non-malleable code against PermOver for α = (0.5)
1

8·k1 .

Corollary 1. Instantiation for the above code with (N, k2, k1) = (6dn2/3e, dn1/3e, cdn1/3e log dn1/3e),
with (Enc2,Dec2) = (EncLi,DecLi) (see Appendix B) and hN = RSN (see Ap-
pendix C) gives us a continuous non-malleable code against PermOver such that:

– the code rate is O(log n), and

– the error rate is O(2−O(n1/3)).

Proof. The message length is n and the codeword length is N · 2 · k1 ≈
6n2/3 · 2 · cn1/3 1

3 log n = 4cn log n, so the code rate is approximately 4c log n =
O(log n). (Remark: c is a constant from EncLi rate.) The error rate is:

(α+2εc)
bN/3c = ((0.5)

1
8·k1 +2εc)

bN/3c ≤ (2
−O

(
1

n1/3 logn

)
+2−O(n))n

2/3+1 = 2−O(n1/3).

Before the actual proof of Theorem 1 we want to introduce a slightly modified
version of continuous tampering experiment for (Encc,Decc) and PermOver and
a definition of a specific type of distribution that we call block-wise distribution.

The described below experiment is obviously stronger (from adversary’s point
of view) then the original one so it is sufficient to prove that our coding scheme
is secure against PermOver for the modified experiment:

Definition 12 ((Modified) Continuous Tampering Experiment). Let us
consider a tampering oracle ModTampstateC (t), for which initially state = alive.
For a tampering function t ∈ PermOver and a codeword C ∈ C define the tam-
pering oracle by

ModTampstateC (t) :
If state = dead output ⊥
C ′ ← t(C)
If Decc(C

′) = Decc(C) output (same, touch(t, c))
M ′ ← Decc(C

′)
If M ′ = ⊥ set state← dead and output ⊥
Otherwise output C ′

Fix a tampering adversary A and a codeword C ∈ C. We define the (modified)
continuous tampering experiment MCTC(A) by

MCTC(A) :
state← alive

v ← AModTampstateC (·)

Output v

20 CNMC Against Permutations and Overwrites, and its Applications

Remark 2. The main difference of the above experiment and the original one is
the output of the oracle when Decc(C

′) = Decc(C). In this case in our definition
we give the adversary additionally all touched blocks.

Definition 13 (Block-wise Distribution). For C = C1 × . . .× CN the distri-
bution D over C is a block-wise distribution if (informally speaking) each block
Ci is either fixed or uniform and independent of the other blocks.

Formally, we say that D is a block-wise distribution if there exists a set of
indices I ⊂ [1, 2, . . . , N] such that for all i ∈ I there exists ci ∈ Ci such that:

PD(Ci = ci) = 1, and
the conditional distribution (D|Ci = ci for all i) is uniform.

Remark 3. If |I| = l in the above definition, then we will sometimes say that D
has l constant blocks or that the adversary knows l blocks.

Proof skeleton for Theorem 1. Our key observation is that after each oracle call
in the tampering experiment, the distribution of the codewords (from the per-
spective of the adversary) is almost always block-wise. Moreover, to increase the
number of known (constant) blocks, the adversary must take a risk of receiving
⊥. This idea is expressed in the following Lemma 5. Notice, that from basic
properties of secret sharing schemes, the tampering experiment is independent
from the message m while the number of known blocks is smaller then bN/3c.
So, the only way for the adversary to distinguish between two different messages
is to learn at least bN/3c blocks. However (from Lemma 5) this happens with

probability at most (α+2εc)
bN/3c (for α = (0.5)

1
8·k1) so this observation finishes

the proof for Theorem 1. ut
Before the statement of the key Lemma 5, we need one definition more:

Definition 14. For a block-wise distribution D and a tampering function t ∈
PermOver we say that t freshly-touches the i-th block if t touches this block and
this block is not known in context of D.

Lemma 5. Let α = (0.5)
1

8·k1 , let l1, l2 ∈ N such that l1 + l2 < bN/3c, and let D
be a block-wise distribution over C with l1 constant blocks and let t ∈ PermOver
be a tampering function freshly-touching l2 blocks. Then, with probability at least
(1−(α+2εc)

l2) a call ModTampstateC (t) will return ⊥. Moreover – with probability
at least (1−2−n) – the distribution D conditioned on the answer from the oracle
will be block-wise with l1 + l2 constant blocks.

Proof. The proof for the first part of the statement is moved to the Lemma 6.
(Notice that in that lemma we do not consider distributions with constant blocks
and the concept of freshly-touched blocked, but we only work with uniform dis-
tribution of C. However this is not a real limitation since we can easily translate
a tampering function t ∈ PermOver into an equivalent function t′ ∈ PermOver
that is independent from known blocks and we can just restrict the domain to
not known blocks.)

DKORS 21

To prove the second part we will consider three cases (dependent on the
properties of the tampering function t):

case 1: t overwrites at least one block and leaves at least one block. In this
case we claim that the adversary gets ⊥ with probability at least (1−2−n). Here
is the argument:

The total number of either overwritten or left blocks is at least 2
3N . It means

that at least one type of these blocks is a set of size at least bN/3c. Without loss
of generality we can assume that the number of left blocks is at least bN/3c. This
means that (from properties of secret sharing), if the adversary does not get ⊥,
all other blocks must be consistent with the shared value (m||r). However for
the adversary the value of r ∈ {0, 1}n is completely random so the probability
of setting a proper value for a single overwritten block is exactly 2−n.

case 2: t does not overwrite any block. In this case most (at least 2
3N) of blocks

are left. So, if the adversary does not receive bottom then (from properties of
secret sharing) she receives same so she learns all l2 freshly modified blocks and
the new distribution of the codeword is as described.

case 3: t does not leave any block. In this case most (at least 2
3N) of blocks are

overwritten. If the adversary does not receive bottom she will simply learn all l2
not overwritten blocks and nothing more. The new distribution of the codeword
is obviously as described.

4.4 Technical lemmata

The main result for this section is the following lemma:

Lemma 6. Let t ∈ PermOver touch l blocks. Then, for a random encoding C ∈ C
of any fixed message m, the probability that the oracle ModTampaliveC (t) will not

return ⊥ is at most αmax{1,l} + 2εc, for α = (0.5)
1

8·k1 .

Before the proof, we need a bunch of auxiliary technical lemmata and defi-
nitions:

Lemma 7. If X is uniform over {0, 1}k1 , such that parity of X is fixed to 0 (or
1), and h ∈ PermOver is such that given h(X) at least one bit of X is unknown
then, parity of h(X) is unknown (i.e. is uniform).

Proof of above is trivial and we omit it.

Lemma 8 (Single Block Attack). For any fixed c let Encpar2 (c) = (X,Y). For
any deterministic function h ∈ PermOver2k1 if h 6≡ id and h 6≡ const. following
is true

Pr(Dec2(h(X,Y)) 6= ⊥) ≤ 0.5 + εc.

Proof of above can be found in Appendix D.
For the next lemmata and definitions we carry assumption of Lemma 6:
Symbol t stands for the tamepering function from PermOver and (C1, ..., CN)

stands for theN blocks of the encoding ofm. Also let C ′1, ..., C
′
N denote the values

of these blocks after t is applied.

22 CNMC Against Permutations and Overwrites, and its Applications

Definition 15. Let Transferi→j be a vector of bits that were permuted from block
Ci into block Cj (if bit was permuted and then overwrote we do not include him).
Let Si = {j | |Transferi→j| 6= 0} is a set that keeps track of blocks to which bits
from Ci were distributed.

Definition 16. We will say that touched block Ci is:

TouchedSpread if |Si| ≥ 8
TouchedPermuted if |Si| = 1 and tampering function preserves block Ci and moves

it to j−th position, i.e. always C ′j = Ci,
TouchedConcentrated it is not TouchedSpread or TouchedPermuted.

Notice that above cases exhaust all possibilities in which the block can be touched.

Lemma 9. If Ci is TouchedSpread then there exists set S̃i ⊂ Si such that:

1. |S̃i| ≥ b |Si|4 c ≥
|Si|
8 ,

2. all together {C ′j}j∈S̃i contain at most half of bits of Li and at most half of
bits of Ri.

Lemma 10. Let Ci be TouchedSpread and let S̃i be as in lemma 9. Then for
any evaluation of C1, . . . , Ci−1, Ci+1, . . . , CN , and for any value di we get that
parities of all blocks {C ′j}j∈S̃i are εc-close to uniform under the randomness of
Ci.

Proof. Since {C ′j}j∈S̃i together contain at most half of bits of Li and at most
half of bits of Ri, by Definition 11.4 we get

Transferi→j1 ||...||Transferi→j|S̃i|
≈εc U

where U is uniformly distributed over {0, 1}|S̃i|. Notice that once d1, ..., dN are
all fixed, the random variables C1, ..., CN are independent. Thus every block Cj
for j ∈ S̃i got some uniformly random, independent bits, which ends the proof
that parity of these blocks is independent and unpredictable.

Lemma 11. Let d1, ..., dN be fixed, and let C = (C1, ..., CN) be a codeword
encoding (d1, ..., dN). If tampering function t is such that there is at least one
block Ci which is TouchedPermuted then

ModTampaliveC (t) = ⊥

Proof. Let j ∈ Si then C ′j = Ci, but after decoding C ′j will hold an position
index i instead of j thus decoder will detect this tampering.

Finally, we are for the proof of Lemma 6:

Proof (of Lemma 6). First let us observe that once d1, ..., dN are all fixed, the
random variables C1, ..., CN are independent. Let us notice that if there are any
TouchedPermuted blocks then by lemma 11 we immediately get the thesis of the
lemma, thus from now on we will assume there are not TouchedPermuted blocks.

DKORS 23

When adversary touches l blocks, he risks getting detected (i.e. creating invalid
codeword). He has to fulfill at least l of such checks. If they were independent
and probability of detection were 0.4 for each of them, then easily we would get
that probability of whole bundle being valid is at most 0.6l. Sadly the checks
are not independent10. However below we argue that many checks are indeed
independent and we count their number. We proceed with following procedure,
let r = 0 let at start C = {1, ..., N} we will pick smallest i ∈ C and :

block Ci was TouchedConcentrated: let j ∈ Si. By lemma 8 we know that prob-
ability that block C ′j is valid is at most 0.5 + εc and this probability is
independent of all other blocks.
Remove i from C.
Remove from C all j such that |Sj ∩ Si| 6= 0. By removing all j we obtain
independence between all validity checks which we are counting. Notice that
we removed at most k1 · |Si| ≤ 8 · k1 elements from C.
Increase r = r + 1.

block Ci was TouchedSpread: by lemma 10 we know that probability that all

block {C ′j}j∈S̃i will be valid is at most (0.6)|S̃i|, which by lemma 9 can be

bounded by (0.5)
|Si|
8 + εc.

Remove i from C, also remove all j such that |Sj ∩ Si| 6= 0. By removing all
j we obtain independence between all validity checks which we are counting.
Notice that we removed at most k1 · |Si| elements from C.
Increase r = r + b |Si|4 c (mind that b |Si|4 c ≥

|Si|
8 ≥ 1) .

block Ci was not touched: Remove i from C.

Notice that every time we increase counter r we also remove from C all blocks
that could have created correlated validity checks. Also notice that whenever we
removed k1 · x touched elements from C we increased the counter r by at least
max{1, x8}, thus r ≥ l

8·k1 . Notice that we have at least r independent checks, each

passing with probability at most 1
2 + εc. By simple induction we can show that

(1
2 +εc)

r ≤ (1
2)r+2εc as long as εc <

1
4 . Thus we get our thesis for α = (0.5)

1
8·k1 .

5 SD-CCA Commitment Scheme from NMCode

In this section we describe our Πsdcca = (Sensdcca,Recsdcca) a t-round (non-tag
based) self-destruct CCA string commitment scheme, that makes use of the
following tools.
1. Πbit

sdcca = (Combit
sdcca,Dec

bit
sdcca) is a t-round (non-tag based) self-destruct CCA

bit commitment scheme.
2. ΠNMCode = (Enc,Dec) is a continuos non-malleable code resilient against

PermOver. The procedure Enc outputs a codeword that is n-bits long.

10 Imagine that adversary touches only C1, C2 puts first half of bits from L1, L2 into
L′

1 and second half into L′
2 while R′

1 = R1, R
′
2 = R2. Then if first block C′

1 fulfill the
parity requirements then C′

2 will also have correct parity

24 CNMC Against Permutations and Overwrites, and its Applications

Informal description of Πsdcca. At a very high level our self-destruct CCA
string commitment scheme works as follow. The sender Sensdcca encodes the mes-
sage m to commit using Enc and obtains encm. Then he interacts with Recsdcca
in order to commit to every single bit of encm = encm1 || . . . ||encmn using Combit

sdcca.
In the opening phase Sensdcca sends the opening of the bit commitments along
with m′. Recsdcca accepts the commitment iff m = m′, where m is the output of
the decoding function Dec on input the codeword obtained from the opening of
bit commitment.

This constructions preserves the number of rounds of the bit commitment
Πbit

sdcca and does not add any other computational assumptions.
Our SD-CCA commitment scheme is described in more details in Fig 1.

Common input: security parameter λ.
Input to Sensdcca: m ∈ {0, 1}λ.
Commitment phase:

1. Sensdcca:
1. Run encm ← Enc(1λ,m).

2. Sensdcca ↔ Recsdcca:
1. For i = 1, . . . , n, Sensdcca on input encmi interacts with Recsdcca and computes the

commitment phase τi of Combit
sdcca obtaining the i-th decommitment information

decsdccai
a.

3. Recsdcca: accepted the commitment iff the following conditions are satisfied.
1. For i = 1, . . . , n τi is accepting.
2. For i, j = 1, . . . , n and i 6= j τi is not identical to τj .

Decomittment phase:
1. Sensdcca → Recsdcca

1. Send (m, decsdcca1 , . . . , decsdccan) to Recsdcca.
2. Recsdcca: For i = 1, . . . , n if decsdccai is not a valid decommitment of τi then abort,
otherwise continue as follow.
1. Run (encm

′
i)← Decbitsdcca(τi, dec

sdcca
i).

2. Set encm
′

= encm
′

1 || . . . ||encm
′

n and run m′ ← Dec(encm).
3. If m 6= m′ abort, otherwise output 1.

a The n commitment phases are computed in parallel.

Fig. 1: Description of our SD-CCA string commitment scheme.

Theorem 2. If Πbit
sdcca = (Combit

sdcca,Dec
bit
sdcca) is a t-round (non-tag based) self-

destruct CCA bit commitment scheme and ΠNMCode = (Enc,Dec) is a continuous
non-malleable code resilient against PermOver, then Πsdcca = (Sensdcca,Recsdcca)
is a a t-round (non-tag based) self-destruct CCA string commitment scheme.

Proof. Correctness. The correctness follows from the correctness of Πbit
sdcca and

the definition of code satisfied by ΠNMCode.
Statistically Binding. The statistical binding property follows from the

statistical binding of Πbit
sdcca and the definition of code satisfied by ΠNMCode.

DKORS 25

Self-destruct CCA. In order to prove that Πsdpcca is a SD-CCA string
commitment scheme we have to show that the distribution of the output of A
in the experiment IND0 is computational indistinguishable from the distribution
of the output of A in the experiment IND1 (see Def. 3).

We proceed through a series of hybrid experiments where we will demon-
strate that the view of A combined with the committed values that he queries
in the experiment IND0 along with his output in IND0 (that we denote with
{viewAIND0

(1λ, z)}λ∈N,z∈{0,1}∗) is computational indistinguishable from {viewAIND1
(1λ, z)}λ∈N,z∈{0,1}∗ .

We considering the following hybrid experiments.
- INDb is the real game experiment as defined in the Definition 3, where in the left

sessions Sensdcca is committing to encmb that is the codeword obtained run-
ning Enc(1λ,mb), and the adversary A interacts with the oracle in poly(λ)
concurrent right sessions.

- Hib(1λ, z). Let encmb be the codeword obtained running Enc(1λ,mb).
In the left session interact with A as the Sensdcca does except that the

first i commitments τ1, . . . , τi of the first i bits of encmb are replaced by a
commitments of a random and independent bits r1, . . . , ri.

In the right sessions act as Recsdcca does. Furthermore when a commit-
ment query τ̃1, . . . , τ̃n in k-th right sessions (k = 1, . . . , poly(λ)) is completed
outputs a tampering k-th functions f bk defined as follow.
1. If τi is identical to τ̃j set the i-th position of f bk to j.

2. Otherwise forward τ̃i to Obit and obtains the committed bit b̂. Set the
i-th bit of f bk to set if b̂ = 0 and to reset otherwise. If Obit implements
the self-destruct mode write ⊥ in all the positions of f bk .

After that each τ̃i is processed, the hybrid experiment use the function f bk
to answer the k-th query made by A. In more details, the hybrid runs m̃←
Dec(f bk(encmb)), and based on the value of m̃ he takes one of the following
choice: a) if m̃ = mb he outputs same; b) if m̃ = ⊥ he implements the
self-destruct mode; c) if m̃ /∈ {mb,⊥} he forwards m̃ to A.
Let {viewAHib(1

λ, z)}λ∈N,z∈{0,1}∗11 be the random variable describing the view

of the adversary A combined with the committed values that A queries in the
poly(λ) right sessions along with the output ofA in hybrid experimentHib(1λ, z),
i = 0, . . . , n b ∈ {0, 1}.

We are now ready to argue that, due to the self-destruct CCA of Πbit
sdcca,

{viewAHi−1
b

(1λ, z)} ≈ {viewAHib(1
λ, z)} for i = 1, . . . , n. In more details we are

going to prove the following lemma.

Lemma 12. For all mb ∈ {0, 1}λ for all i = 1, . . . , n and b ∈ {0, 1} it holds that
{viewAHi−1

b (1λ,z)
} ≈ {viewAHib(1

λ, z)}.

Suppose by contradiction that the lemma does not hold for some i, then it
is possible to show an adversary AObit

sdcca that breaks the self-destruct CCA of
Πbit

sdcca as follows. Let Csdcca be the challenger of the bit self-destruct CCA game.

11 In order to not overburden the notation in the rest of the proof we will write
viewAHi

b
(1λ, z).

26 CNMC Against Permutations and Overwrites, and its Applications

AObit

sdcca interacts with Sensdcca and Recsdcca according to the steps described in
Hi−1b (and in Hib) except for the i-th commitment τi of the left session. For
the commitment τi he acts as a proxy between Csdcca and Sensdcca. In the end,
AObit

sdcca runs a distinguisher D (that exists by contradiction) on input the view
of A combined with the committed values that A queries in the the poly(λ)

right sessions and the output of A in the execution with AObit

sdcca and outputs
what D outputs. W.l.o.g. we assume that the i-th of encmb is 1 and the random
chosen bit ri committend in τi in Hib is 0, then if Csdcca commits to 1 AObit

sdcca

is acting as in Hi−1b , otherwise he is acting as in Hib. This observation con-
clude the proof. We observe that {viewAH0

b
(1λ, z)} ≡ {viewAINDb(1

λ, z)}, It follows

from the definition of H0
b . Therefore we can conclude that {viewAINDb(1

λ, z)} ≡
{viewAH0

b
(1λ, z)} ≈ · · · ≈ {viewAHnb (1λ, z)} for b ∈ {0, 1}. It remains to argue

that {viewAHn0 (1λ, z)} ≡s {viewAHn1 (1λ, z)}. For this last part of the proof we will
rely on continuos non-malleability of ΠNMCode. We notice that both Hn1 and Hn0
define the same distribution of tampering functions F = (F1, . . . , Fpoly(λ)) and
F ∈ PermOver since that there are no repeated transcripts. Furthermore, both
hybrid experiments Hn1 and Hn0 answer to a query of A with same when the tam-
pering function does not change the codeword (the codeword can correspond to
different messages). We also notice that if the tampering function outputs ⊥
then both the hybrids implement the self-destruct mode. We can conclude that
for all m0,m1 ∈ {0, 1}λ {viewAHn0 (1λ, z)} ≡s {viewAHn1 (1λ, z)}, which implies that

for all m0,m1 ∈ {0, 1}λ it holds that {viewAIND0
(1λ, z)} ≈ {viewAIND1

(1λ, z)}.

6 Parallel CCA Commitment Scheme from SD-PCCA
Commitment Scheme

In this section we describe our Πpcca = (Senpcca,Recpcca) a t+ 2-round (non-tag
based) PCCA string commitment scheme, that makes use of the following tools.
1. Πsdpcca = (Sensdcca,Recsdcca) is a t-round (non-tag based) SD-PCCA string

commitment scheme.
2. a 2-round IDTC schemeΠ = (Sen,Rec,TFake) for the followingNP-language
L = {τsdcca : (m, decsdcca) s.t. Recsdcca on input (m, decsdcca) accepts m as a
decommitment of τsdcca}.

3. Πsign = (Gen,Sign,Verify) is a signature scheme.
4. A 4-round delayed-input public coin LStrap = (Ptrap,Vtrap) with SHVZK sim-

ulator Strap. LStrap = (Ptrap,Vtrap) is adaptive-input PoK for the NP-relation
RelLtrap where Ltrap = {(vk : ∃ (σ1,msg1, σ2,msg2) s.t. Verify(vk,msg1, σ1) =
1 AND Verify(vk,msg2, σ2) = 1 AND msg1 6= msg2}. We denote with `trap
the dimension of the instances belonging to LStrap.

Informal description of our Πpcca = (Senpcca,Recpcca). At a very high level
our PCCA string commitment scheme works as follow. The sender Senpcca in-
teracts with the receiver Recpcca in order to compute a commitment τsdcca of m
using Πsdpcca. Furthermore, Recpcca engages with Senpcca a protocol to allow the

DKORS 27

extraction of a trapdoor. We adopt the one described in [COSV17b] in which the
trapdoor is represented by the knowledge of two signatures under a verification
key sent by Recpcca in the 4th last round. In order to allow the extraction of the
trapdoor, Recpcca sends a signature of a message randomly chosen in the 3rd last
round by the Senpcca.

Furthermore Senpcca engages Recpcca a special WIPoK that proves that τsdcca
is a well-formed commitment or the knowledge of two signatures for two different
messages w.r.t. a verification key.

In more details, the special WIPoK works as follows. In the 3rd last round
Senpcca, computes and sends a trapdoor commitment com w.r.t. the instance
τsdcca using the equivocal commitment procedure of Π.

In the 4th last round and in the 2nd last round Senpcca receives, respectively,
from Recpcca 1st and the 3rd round (ls1trap, ls

3
trap) of LStrap. Then, Senpcca in the

last round has to complete the LStrap transcript. The LStrap transcript proves
the knowledge of two signatures for two different messages w.r.t. a verification
key vk. Since, the honest committer Senpcca has no such knowledge he runs the
SHVZK simulator of LStrap on input ls1trap, ls

3
trap, vk in order to obtain the 2nd

and the 4th round (ls2trap, ls
4
trap) of LStrap.

Moreover, in the last round Senpcca runs the equivocal procedure of Π (using
as equivocal secret the decommitment informations of τsdcca) and obtains an
opening (dec, ls2trap) w.r.t. of com. Senpcca sends to Recpcca (ls2trap, ls

4
trap, dec).

In the opening phase Senpcca sends the opening of Πsdpcca.
Our PCCA commitment scheme is described in more details in Fig 2.

Theorem 3. If Πsdpcca = (Sensdpcca,Recsdpcca) is a t-round (non-tag based) self-
destruct PCCA string commitment scheme and OWFs exists, then Πsdcca =
(Senpcca,Recpcca) is a a t + 2-round (non-tag based) PCCA string commitment
scheme.

Before we start the security proof we recall that LStrap (see [COSV17a, LS90])
and Π (see [COSV17b]) as well as Πsign (using [Rom90]) can be instantiated from
OWFs.

Proof. Correctness. The correctness follows from the correctness of Πsdpcca

and the completeness of ΠOR. Statistically Binding. The statistical bind-
ing property follows from the statistical binding of Πsdpcca. Parallel CCA.
In order to prove that Πpcca is a PCCA string commitment scheme we have
to show that the distribution of the output of A in IND0 is computational in-
distinguishable from the distribution of the output of A in IND1 (see Def. 5).
We proceed through a series of hybrid experiments where we will demonstrate
that the view of A combined with the committed values that he queries in
the experiment IND0 along with the output of A in IND0 (that we will de-
note with {viewAIND0

(1λ, z)}λ∈N,z∈{0,1}∗) is computational indistinguishable from

{viewAIND1
(1λ, z)}λ∈N,z∈{0,1}∗ .

- H0
b(1

λ, z) is the real game experiment as defined INDb in the Definition 5, where
in the left session Sensdcca is committing to mb, and the adversary A interacts

28 CNMC Against Permutations and Overwrites, and its Applications

Common input: security parameter λ, instances length: `, `trap.
Input to Senpcca: m ∈ {0, 1}λ.
Commitment phase:

1. Senpcca ↔ Recpcca:
1. Senpcca on input m interacts with Recpcca and compute the commitment phase

τsdpcca of Sensdpcca obtaining the decommitment information decsdpcca.
2. Senpcca interacts with Recpcca in order to prove that he computes a well-formed

commitment of m a:
a. Recpcca runs the following algorithms: (sk, vk) ← Gen(1λ), ρ ← Rec(1λ, `),

ls1trap ← Vtrap(1λ, `trap). Then, he sends (vk, ρ, ls1trap) to Recpcca.
b. Senpcca picks msg, ls3trap ← {0, 1}λ, and runs the following algorithms: ls2trap ←
Strap(1λ, `trap, ls

3
trap; rtrap), com, aux ← TFake(1λ, ρ, τsdpcca). Then, he sends

(com,msg) to Recpcca.
c. Recpcca picks ls3trap ← {0, 1}λ and runs σ ← Sign(sk,msg). Then, he sends (c, σ)

to Senpcca.
d. Senpcca If Verify(vk,msg, σ) 6= 1 then aborts, otherwise continues as fol-

low. Runs ls4trap ← Strap(vk, rtrap). Furthermore, he sets x = (τsdpcca) and
w = (m, decsdpcca) then runs dec ← TFake(x,w, ρ, ls2trap, aux). Then, he sends
(dec, ls2trap, ls

4
trap) to Recpcca.

1. Recsdcca: accept the commitment iff the following conditions are satisfied.
1. Rec(ρ, x, com, ls2trap, dec) = 1.
2. Vtrap(vk, ls1trap, ls2trap, ls3trap, ls4trap) = 1
3. If Recsdpcca accepts the commitment τsdpcca.

Decomittment phase:
1. Senpcca → Recpcca: send (m′, decsdcca) to Recpcca.
2. Recsdcca: If decsdpcca is not a valid decommitment of τsdpcca then abort, otherwise runs
Recsdpcca on input (τsdpcca, decsdpcca) obtaining m. If m = m′ output 1 and 0 otherwise.

a The rounds a. and b. can be run in parallel with the last two rounds of the commitment
phase of Πsdpcca.

Fig. 2: Description of our Parallel CCA string commitment scheme.

DKORS 29

with the oracle Opcca in poly(λ) parallel right sessions. We can prove that in
H0
b(1

λ, z) the adversary A, in the the poly(λ) right sessions, computes (ex-
cept with negligible probability) only well-formed commitments. This proof
follows from the security of the signature scheme. In more details, suppose
by contradiction that A is not computing a well-formed commitments in
the i-th right sessions, then we can construct an adversary Asign that breaks
the security of the signature scheme sign, for some i ∈ {1, . . . , poly(λ)}. Let
ṽk be the challenge verification key. The adversary Asign interacts adversary
A in the left session as a honest sender Senpcca does. In the rights sessions
he acts as a honest receiver Recpcca does except for a i-th right session, for

which he acts in the following way. In the i-th right session A uses ṽk to
compute the first round and the oracle Sign(s̃k, ·) to compute a signature
σ̃1 of a message m̃sg1 sent by A in the second round. At the end of the
execution Asign extracts using the extractor Ext of LStrap two signatures for

two different signatures w.r.t. the verification key ṽk. Observe that the ex-
traction succeeds with non-negligible probability, because by contradiction
we are assuming that A computes a non-valid commitment. This implies
that in the i-th right session the instance τ̃sdpcca,i of the IDTC scheme Π is
false (τ̃sdpcca,i /∈ L) therefore Π is statistically binding. This guarantees that
A is using the knowledge of two different signatures to complete the LStrap
transcript. The proof ends with the observation that Sign(s̃k, ·) is called only
once.

Note that since the right sessions are parallel the reduction does not
need to emulate the oracle. In fact it will use the extraction procedure when
all the commitment phases of the right sessions are ended and just before
the reduction has to send back the committed values to A. Clearly we have
that {viewAINDb(1λ,z)} ≡s {view

A
H0
b(1

λ,z)
}.

- H1
b(1

λ, z) differs from H0
b(1

λ, z) only in the fact that the oracle Opcca in poly(λ)
parallel right sessions is emulated in polynomial time. Intuitively, in order
to extract the value committed in τ̃sdcca,i in the i-th right session, the hybrid
needs to obtain from A two valid openings for the commitment ˜comi sent
in the 2nd last round by A. Indeed, the Ext of Π (that exists from Special
Binding of Π) on input two different openings of ˜comi and the instance of the
NP-language L associated to the IDTC outputs the witness for the instance.
In this case, since the instance of the IDTC scheme is τ̃sdcca,i, the extracted
witness corresponds to the opening informations of τ̃sdcca,i.

In order to obtain the opening of ˜comi the hybrid apply the follow-
ing extraction procedure Extpcca. The hybrid will act as the receiver Recpcca
does until the end of the parallel right sessions. Then the hybrid, in i-th
right session, rewinds A up to the 2nd last round and sends multiple dif-

ferent l̃s
3′

trap,i ← {0, 1}λ in order to collect a different opening w.r.t. ˜comi,
for i = 1, . . . , n. Finally, the hybrid extracts the committed values using Ext
and sends them to A. Observe that in the left session, during the rewinds,
A can send multiple 2nd to last rounds. In particular, A can send differ-
ent 3rd rounds of LStrap. For each new 3rd round of LStrap, the hybrid in

30 CNMC Against Permutations and Overwrites, and its Applications

order to complete the left session runs the SHVZK simulator of LStrap and

obtains ls2
′

trap, ls
4′

trap. Then, the hybrid runs TFake in order to obtain opening

(ls2
′

trap, dec) w.r.t. com. The hybrid sends dec′, ls2
′

trap ls4
′

trap to A.
It is left to argue that during the rewinds A sends a different openings of

˜comi, for i ∈ {1, . . . , poly(λ)}. Note that H1
b(1

λ, z) is distributed statistical
close to H0

b(1
λ, z) until A receives the committed values. Therefore we are

guaranteed that also in H1
b(1

λ, z) the adversary A (except with negligible
probability) does not use the knowledge of two signatures to compute the
LStrap transcript. This implies that A has to equivocate the trapdoor com-
mitment to complete the i-th right session. Therefore, A in the rewinds is
changing the opening of ˜comi.

For the above reasons the abort probability of the experiment is in-
creasing only by a negligible amount. Moreover A is using the equivocation
procedure of Π, we can claim that in in all the poly(λ) right sessions, com-
putes (except with negligible probability) well-formed commitments. For the
above arguments we conclude that {viewAH0

b(1
λ,z)
} ≡s {viewAH1

b(1
λ,z)
}.

- H2
b(1

λ, z) differs from H1
b(1

λ, z) only in the fact that in the left session of
H1
b(1

λ, z) the adversary A is rewound from the 2nd last round to the 3rd
last round, in order to extract two signatures σ1, σ2 for two distinct mes-
sages (msg1,msg2) w.r.t. a verification key vk. Note that after p rewinds the
probability of not obtaining a valid new signature is less than 1/2. Therefore
the probability that A does not give a second valid signature for a randomly
chosen message after λ/p rewinds is negligible in λ. For the above reasons
the procedure of extraction of signatures for different messages in H1

b(1
λ, z)

succeeds except with negligible probability. Observe that the above devia-
tion increases the abort probability of the experiment only by a negligible
amount, therefore {viewAH2

b(1
λ,z)
} ≡s {viewAH1

b(1
λ,z)
}. Due to the statistical

indistinguishability between this two hybrids we can argue that also in H2
b

the extraction procedure Extpcca succeeds with non-negligible probability.
This implies that A in all the poly(λ) right sessions, computes (except with
negligible probability) well-formed commitments.

- H3
b(1

λ, z) differs from H2
b(1

λ, z) in the way the transcript of LStrap is computed.
More precisely, the prover Ptrap of LStrap is used to compute the messages
ls2trap and ls4trap instead of using the SHVZK simulator. Observe that the proce-

dure of extraction of the signatures succeeds in H3
b(1

λ, z) with non-negligible
probability because before the last round the distribution of H3

b(1
λ, z) is sta-

tistically close to the one of H2
b(1

λ, z). Note that also in this hybrid we want
emulate the oracle in polynomial time. In this hybrid we slightly change the
extraction procedure Extpcca. The new procedure Ext′pcca is almost the same
except that for the following modification. In the rewinding threads for the
left session the hybrid upon receiving a 3rd round of LStrap uses the honest

prover P of LStrap to compute ls2
′

trap, ls
4′

trap. Moreover, during the rewinding

thread the values dec, ls2
′

trap stay the same. Indeed upon receiving another

DKORS 31

3rd round of lstrap the hybrid uses the honest prover P of LStrap to compute

ls4
′

trap for the same ls2
′

trap.

It follows from the SHVZK of LStrap that also in this hybrid Ext′pcca
succeeds with non-negligible probability. In more details, suppose by con-
tradiction that in i-th right session Ext′pcca fails to extract the committed
messages with non-negligible probability, then it is possible to show an ad-
versary against the SHVZK of LStrap. The reduction would work as follows.
Let CSHV ZK be the challenger for the SHVZK of LStrap.
1. The reduction interacts with the adversary in the left and in the i-th

right session according to H3
b (and H2

b).
2. The reduction, upon receiving ls3trap in the left session forwards this mes-

sage to CSHV ZK together with (xtrap = vk, wtrap = (msg1,msg2, σ1, σ2)).
3. The reduction, upon receiving (ls2trap, ls

4
trap) from CSHV ZK , uses them to

complete the left execution against A.
4. When A stops, the reduction rewinds the adversary in the i-th right

session applying the extraction procedure Ext′pcca.

5. If the the extraction procedure Ext′pcca fails output a random bit, other-
wise output 0 (to claim that the challenger has used the Special HVZK
simulator).
Note that when the challenger uses the honest procedure to compute

the transcript of LStrap the view of A during the reduction is distributed
identical to the view of A in H3

b . Therefore the probability that the extractor
procedure Ext′pcca is successful when the transcript of LStrap is computed using
the honest prover procedure corresponds (except a negligible difference) to
the probability that the Ext′pcca succeeds in H3

b . This observation conclude
the proof.

Since Ext′pcca succeeds with non negligible probability, we can argue that
A, in all the poly(λ) right sessions, computes (except with negligible prob-
ability) well-formed commitments.

From the SHVZK of LStrap it also follows that {viewAH2
b
(1λ, z)} and

{viewAH3
b
(1λ, z)} are computationally indistinguishable.

- The hybrid H4
b(1

λ, z) differs from H3
b(1

λ, z) since the honest sender procedure
is used to compute com, dec in the left session. More precisely, the hybrid
computes ls2trap ← Ptrap(1

λ, `trap, ls
1
trap)

12 and (com, dec)← Sen(1λ, ls2trap).
Note that also in this hybrid we are emulating the oracle Opcca extract-

ing the committed values by using the same procedure as in H3
b(1

λ, z). We
can argue that also in this hybrid the procedure Ext′pcca succeeds with non
negligible probability, otherwise we can show a reduction to the trapdorness
property of Π.

In more details, suppose by contradiction that in i-th right session Ext′pcca
fails to extract the committed messages with non-negligible probability, it

12 Note that due to the delayed-input property of LStrap the statement xtrap = vk and
witness wtrap = (msg1,msg2, σ1, σ2) are required by Ptrap only to compute ls4trap and
are not needed to compute ls2trap.

32 CNMC Against Permutations and Overwrites, and its Applications

is possible to show an adversary against the trapdoor property of Π. The
reduction would work as follows. Let CTrap be the challenger for the trap-
dorness experiment of Π.
1. The reduction interacts with the adversary in the left and in the i-th

right session according to H4
b (and H3

b).
2. The reduction, upon receiving ls1trap, ρ in the left session computes ls2trap ←
Ptrap(1

λ, `trap, ls
1
trap) and forwards this message to CTrap together with

τsdcca, ρ.
3. The reduction, upon receiving (com, dec) from CTrap, uses them to com-

plete the left execution against A.
4. When A stops, the reduction rewinds the adversary in the i-th right

session applying the extraction procedure Ext′pcca.

5. If the the extraction procedure Ext′pcca fails output a random bit, other-
wise output 0 (to claim that the challenger has used equivocation pro-
cedure).

We conclude the proof observing that the view of A in the reduction is dis-
tributed identical toH3

b when the challenger used the equivocation procedure
to compute (com, dec) and to H4

b otherwise.
Since Ext′pcca succeeds with non negligible probability, we can argue that

A, in all the poly(λ) right sessions, computes (except with negligible prob-
ability) well-formed commitments.

The trapdorness of Π ensures that {viewAH4
b
(1λ, z)} and {viewAH3

b
(1λ, z)}

are computationally indistinguishable.

To conclude the proof, it remains left to argue that {viewAH4
0
(1λ, z)} ≈

{viewAH4
1
(1λ, z)}. For this last part of the proof we will rely on the self-destruct

parallel CCA of Πsdpcca. Suppose by contradiction that the claim does not hold
we can use A to construct an adversary Asdpcca that breaks the self-destruct par-
allel CCA security of Πsdpcca. Let m0,m1 be the challenge messages, then Asdpcca

works as following against the challenger Csdpcca. In the left session Asdpcca acts as
a proxy for all the messages of Πsdpcca between Csdpcca and A and computes the
other messages of Πsdcca according to the sender procedure described inH4

0(1λ, z)
(H4

1(1λ, z)). In the right sessions Asdpcca has to emulate the oracle Opcca, and he
will relies on the oracle Osdpcca of Πsdpcca. In more details Asdpcca acts as a proxy
between the queries made by A and the oracle Osdpcca. Note that both in the
hybrid experiments H4

0(1λ, z) and H4
1(1λ, z) A always (except with negligible

probability) queries the oracle Opcca on well-formed commitments, which im-
plies that the oracle Osdpcca never implements the self-destruct mode. Therefore,
Ahiding can always (except with negligible probability) uses Osdpcca to handle the
queries made by A. As regarding the other messages of Πpcca he will acts as
the hones receiver of H4

0(1λ, z) (H4
1(1λ, z)). At the end Asdpcca runs the distin-

guisher D (that exists by contradiction) that distinguishes {viewAH4
0
(1λ, z)} from

{viewAH4
1
(1λ, z)}, and he outputs what D outputs. Observe that if Csdpcca com-

mits to m0 then Asdpcca acts as in H4
0(1λ, z) otherwise he acts as in H4

1(1λ, z).
Observe also that the rewinds made to extract the signatures in the left session

DKORS 33

do not interfere with the reduction since the parallel commitment queries made
by A ends in the third last round. We can conclude that for all m0,m1 ∈ {0, 1}λ
{viewAH4

0
} ≈ {viewAH4

1
}, which implies that for all m0,m1 ∈ {0, 1}λ it holds that

{viewAIND0
(1λ, z)} ≈ {viewAIND1

(1λ, z)}.

Comparison to [CMTV15]. In [CMTV15] authors show that it is possible to
construct a string SD-RCCA PKE schemeΠsdrcca = (Gensdrcca,Encsdrcca,Decsdrcca)
starting from a continuos non malleable code and a 1-bit SD-RCCA PKE13

Πbit
sdrcca = (Genbitsdrcca,Enc

bit
sdrcca,Dec

bit
sdrcca) scheme. At a very high level their con-

struction works as follow.

- The generation algorithm Gensdrcca generates l couple of public key secret key
running Genbitsdrcca, where l is the length of the codeword.

- The encryption algorithm Encsdrcca encodes the message m to encrypt using the
the non-malleable code. Then, it encrypts the l bits of the codewords using
the encryption algorithm Encbitsdrcca of the 1-bit CCA PKE scheme on the l
different secret keys.

- The decryption algorithm Decsdrcca decrypts each bit using Decbitsdrcca, obtaining
the codeword. The encoded message is obtained running the decode algo-
rithm of the non-malleable code.

Replacing their non-malleable code with our non-malleable it is possible to
modify their construction to use just one couple of public key secret key. The
proposed SD-RCCA PKE scheme changes the previous scheme in the follow-
ing three aspects: 1) the generation algorithm runs Genbit once generating a
single couple of public key secret key; 2) the encryption/decryption algorithms
encrypts/decrypts the bits of the codeword using the same secret key/public
key; 3) Decsdrcca will output ⊥ if for i, j = 1, . . . , n and i 6= j enci is identical to
encj , where enci and encj are bit encryption. Finally, we note that we obtain a
construction with no a priori bound on the length of the string to be encrypted.
In more details, we have the following theorem.

Theorem 4. If Πbit
sdrcca = (Genbitsdrcca,Enc

bit
sdrcca,Dec

bit
sdrcca) is a 1-bit SD-RCCA

PKE and ΠNMCode = (Enc,Dec) is a continuos non-malleable code resilient
against PermOver, then Πsdrcca = (Gensdrcca,Encsdrcca,Decsdrcca) is a string SD-
RCCA PKE scheme.

The proof is almost the same as the one of Theorem 2. Intuitively, in the
modified construction it is possible to use a single couple of public key secret
key because our code is resilient against permutation functions.

Acknowledgments

We thank Michele Ciampi for several discussion on the applications of our
CNMC.

13 The formal definition can be found in [CMTV15]

34 CNMC Against Permutations and Overwrites, and its Applications

References

[AAnHKM+16] Divesh Aggarwal, Shashank Agrawal, Divya Gupta nad Hemanta
K. Maji, Omkant Pandey, and Manoj Prabhakaran. Optimal com-
putational split state non-malleable codes. To appear in TCC 16-A,
2016.

[ADL14] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable
codes from additive combinatorics. In STOC. ACM, 2014.

[ADN+16] Divesh Aggarwal, Nico Döttling, Jesper Buus Nielsen, Maciej Obrem-
ski, and Erick Purwanto. Information theoretic continuously non-
malleable codes in the constant split-state model. Unpublished
Manuscript, available on eprint. Presented at IMS Workshop on In-
formation Theoretic Cryptography in NUS, Singapore., 2016.

[Agg15] Divesh Aggarwal. Affine-evasive sets modulo a prime. Information
Processing Letters, 115(2):382–385, 2015.

[AGM+14] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey,
and Manoj Prabhakaran. Explicit non-malleable codes resistant to
permutations and perturbations. IACR Cryptology ePrint Archive,
2014:841, 2014.

[AGM+15] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey,
and Manoj Prabhakaran. Explicit non-malleable codes against bit-
wise tampering and permutations. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th An-
nual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer
Science, pages 538–557. Springer, 2015.

[AKO17] Divesh Aggarwal, Tomasz Kazana, and Maciej Obremski. In-
ception makes non-malleable codes stronger. TCC, 2017.
http://eprint.iacr.org/.

[Bar02] Boaz Barak. Constant-round coin-tossing with a man in the mid-
dle or realizing the shared random string model. In 43rd Symposium
on Foundations of Computer Science (FOCS 2002), 16-19 November
2002, Vancouver, BC, Canada, Proceedings, pages 345–355, 2002.

[BDH+17] Brandon Broadnax, Nico Döttling, Gunnar Hartung, Jörn Müller-
Quade, and Matthias Nagel. Concurrently composable security with
shielded super-polynomial simulators. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, Advances in Cryptology - EUROCRYPT
2017 - 36th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Paris, France, April 30 - May 4,
2017, Proceedings, Part I, volume 10210 of Lecture Notes in Computer
Science, pages 351–381, 2017.

[BDSKM16] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal
Malkin. Non-malleable codes for bounded depth, bounded fan-
in circuits. Cryptology ePrint Archive, Report 2016/307, 2016.
https://eprint.iacr.org/2016/307.

[BDSKM17] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin.
Non-malleable codes from average-case hardness: Ac0, decision trees,
and streaming space-bounded tampering. Cryptology ePrint Archive,
Report 2017/1061, 2017. https://eprint.iacr.org/2017/1061.

DKORS 35

[BFMR18] Brandon Broadnax, Valerie Fetzer, Jörn Müller-Quade, and Andy
Rupp. Non-malleability vs. cca-security: The case of commitments.
In Michel Abdalla and Ricardo Dahab, editors, Public-Key Cryptog-
raphy - PKC 2018 - 21st IACR International Conference on Practice
and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March
25-29, 2018, Proceedings, Part II, volume 10770 of Lecture Notes in
Computer Science, pages 312–337. Springer, 2018.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of
partial knowledge and simplified design of witness hiding protocols.
In YvoG. Desmedt, editor, Advances in Cryptology — CRYPTO ’94,
volume 839 of Lecture Notes in Computer Science, pages 174–187.
Springer Berlin Heidelberg, 1994.

[CG14] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding
against bit-wise and split-state tampering. In TCC, 2014.

[CGL16] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extrac-
tors and codes, with their many tampered extensions. In Proceedings
of the forty-eighth annual ACM symposium on Theory of Computing,
pages 285–298. ACM, 2016.

[CGM+16] Nishanth Chandran, Vipul Goyal, Pratyay Mukherjee, Omkant
Pandey, and Jalaj Upadhyay. Block-wise non-malleable codes. In Ioan-
nis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide
Sangiorgi, editors, 43rd International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy,
volume 55 of LIPIcs, pages 31:1–31:14. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016.

[CKM11] Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. Bitr: built-in tam-
per resilience. In Advances in Cryptology–ASIACRYPT 2011, pages
740–758. Springer, 2011.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and
composable security in the plain model from standard assumptions. In
51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 541–
550. IEEE Computer Society, 2010.

[CMTV15] Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi.
From single-bit to multi-bit public-key encryption via non-malleable
codes. In Dodis and Nielsen [DN15], pages 532–560.

[COSV16] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti.
Concurrent non-malleable commitments (and more) in 3 rounds. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology
- CRYPTO 2016 - 36th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part III,
volume 9816 of Lecture Notes in Computer Science, pages 270–299.
Springer, 2016. Full version https://eprint.iacr.org/2016/566.

[COSV17a] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti.
Delayed-input non-malleable zero knowledge and multi-party coin toss-
ing in four rounds. In Yael Kalai and Leonid Reyzin, editors, Theory of
Cryptography - 15th International Conference, TCC 2017, Baltimore,
MD, USA, November 12-15, 2017, Proceedings, Part I, volume 10677
of Lecture Notes in Computer Science, pages 711–742. Springer, 2017.

36 CNMC Against Permutations and Overwrites, and its Applications

[COSV17b] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Vis-
conti. Four-round concurrent non-malleable commitments from one-
way functions. In Jonathan Katz and Hovav Shacham, editors,
Advances in Cryptology - CRYPTO 2017 - 37th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 20-
24, 2017, Proceedings, Part II, volume 10402 of Lecture Notes in
Computer Science, pages 127–157. Springer, 2017. Full version
https://eprint.iacr.org/2016/621.

[CPS13] Kai-Min Chung, Rafael Pass, and Karn Seth. Non-black-box simulation
from one-way functions and applications to resettable security. In Dan
Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium
on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 231–240. ACM, 2013.

[CPS+16] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Sinis-
calchi, and Ivan Visconti. Improved or-composition of sigma-protocols.
In Eyal Kushilevitz and Tal Malkin, editors, Theory of Cryptography
- 13th International Conference, TCC 2016-A, Tel Aviv, Israel, Jan-
uary 10-13, 2016, Proceedings, Part II, volume 9563 of Lecture Notes
in Computer Science, pages 112–141. Springer, 2016. Full version
http://eprint.iacr.org/2015/810.

[CZ14] Eshan Chattopadhyay and David Zuckerman. Non-malleable codes in
the constant split-state model. FOCS, 2014.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryp-
tography (extended abstract). In Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing, May 5-8, 1991, New Orleans,
Louisiana, USA, pages 542–552, 1991.

[DKO13] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-
malleable codes from two-source extractors. In Advances in Cryptology-
CRYPTO 2013. Springer, 2013.

[DN15] Yevgeniy Dodis and Jesper Buus Nielsen, editors. Theory of Cryptog-
raphy - 12th Theory of Cryptography Conference, TCC 2015, Warsaw,
Poland, March 23-25, 2015, Proceedings, Part I, volume 9014 of Lec-
ture Notes in Computer Science. Springer, 2015.

[DNO16] Nico Döttling, Jesper Buus Nielsen, and Maciej Obremski. Information
theoretic continuously non-malleable codes in the constant split-state
model. Unpublished Manuscript, available on eprint. Presented at IMS
Workshop on Information Theoretic Cryptography in NUS, Singapore.,
2016.

[DPW10] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-
malleable codes. In ICS, pages 434–452. Tsinghua University Press,
2010.

[FMNV14] S. Faust, P. Mukherjee, J. Nielsen, and D. Venturi. Continuous
non-malleable codes. In Theory of Cryptography Conference - TCC.
Springer, 2014.

[FMNV15] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele
Venturi. A tamper and leakage resilient von neumann architecture. In
Jonathan Katz, editor, Public-Key Cryptography - PKC 2015 - 18th
IACR International Conference on Practice and Theory in Public-Key
Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015, Pro-

DKORS 37

ceedings, volume 9020 of Lecture Notes in Computer Science, pages
579–603. Springer, 2015.

[GLM+04] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and
Tal Rabin. Algorithmic tamper-proof (ATP) security: Theoretical
foundations for security against hardware tampering. In Moni Naor,
editor, Theory of Cryptography, First Theory of Cryptography Confer-
ence, TCC 2004, Cambridge, MA, USA, February 19-21, 2004, Pro-
ceedings, volume 2951 of Lecture Notes in Computer Science, pages
258–277. Springer, 2004.

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Con-
structing non-malleable commitments: A black-box approach. In 53rd
Annual IEEE Symposium on Foundations of Computer Science, FOCS
2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 51–60,
2012.

[GLP+15] Vipul Goyal, Huijia Lin, Omkant Pandey, Rafael Pass, and Amit Sa-
hai. Round-efficient concurrently composable secure computation via a
robust extraction lemma. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, Theory of Cryptography - 12th Theory of Cryptography Con-
ference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings,
Part I, volume 9014 of Lecture Notes in Computer Science, pages 260–
289. Springer, 2015.

[GMY06] Juan A. Garay, Philip MacKenzie, and Ke Yang. Strengthening
zero-knowledge protocols using signatures. Journal of Cryptology,
19(2):169–209, 2006.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way
functions. In Proceedings of the 43rd ACM Symposium on Theory of
Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages
695–704, 2011.

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-
malleable commitments. In Daniel Wichs and Yishay Mansour, editors,
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016,
pages 1128–1141. ACM, 2016.

[GRRV14] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. An
algebraic approach to non-malleability. In 55th IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS 2014, Philadelphia,
PA, USA, October 18-21, 2014, pages 41–50, 2014. An updated full
version is available at http://eprint.iacr.org/2014/586.

[JW15] Zahra Jafargholi and Daniel Wichs. Tamper detection and continuous
non-malleable codes. In Dodis and Nielsen [DN15], pages 451–480.

[Khu17] Dakshita Khurana. Round optimal concurrent non-malleability from
polynomial hardness. In Yael Kalai and Leonid Reyzin, editors, The-
ory of Cryptography - 15th International Conference, TCC 2017, Balti-
more, MD, USA, November 12-15, 2017, Proceedings, Part II, volume
10678 of Lecture Notes in Computer Science, pages 139–171. Springer,
2017.

[Kiy14] Susumu Kiyoshima. Round-efficient black-box construction of compos-
able multi-party computation. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Pro-

38 CNMC Against Permutations and Overwrites, and its Applications

ceedings, Part II, volume 8617 of Lecture Notes in Computer Science,
pages 351–368. Springer, 2014.

[Kiy15] Susumu Kiyoshima. Statistical concurrent non-malleable zero-
knowledge from one-way functions. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th An-
nual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part II, volume 9216 of Lecture Notes in Computer
Science, pages 85–106. Springer, 2015.

[KS17] Dakshita Khurana and Amit Sahai. How to achieve non-malleability
in one or two rounds. In Chris Umans, editor, 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berke-
ley, CA, USA, October 15-17, 2017, pages 564–575. IEEE Computer
Society, 2017.

[Li17] Xin Li. Improved non-malleable extractors, non-malleable codes and
independent source extractors. STOC, 2017. https://arxiv.org.

[LL12] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience
in the split-state model. In Advances in Cryptology–CRYPTO 2012,
pages 517–532. Springer, 2012.

[LP11] Huijia Lin and Rafael Pass. Constant-round non-malleable commit-
ments from any one-way function. In Lance Fortnow and Salil P. Vad-
han, editors, Proceedings of the 43rd ACM Symposium on Theory of
Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages
705–714. ACM, 2011.

[LP12] Huijia Lin and Rafael Pass. Black-box constructions of composable
protocols without set-up. In Reihaneh Safavi-Naini and Ran Canetti,
editors, Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Pro-
ceedings, volume 7417 of Lecture Notes in Computer Science, pages
461–478. Springer, 2012.

[LPS17] Huijia Lin, Rafael Pass, and Pratik Soni. Two-round and non-
interactive concurrent non-malleable commitments from time-lock puz-
zles. In Chris Umans, editor, 58th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2017, Berkeley, CA, USA, Octo-
ber 15-17, 2017, pages 576–587. IEEE Computer Society, 2017.

[LS90] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-
knowledge proofs. In Advances in Cryptology - CRYPTO, 1990.

[PR05] Rafael Pass and Alon Rosen. New and improved constructions of non-
malleable cryptographic protocols. In Harold N. Gabow and Ronald
Fagin, editors, Proceedings of the 37th Annual ACM Symposium on
Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages
533–542. ACM, 2005.

[PW10] Rafael Pass and Hoeteck Wee. Constant-round non-malleable commit-
ments from sub-exponential one-way functions. In Advances in Cryp-
tology - EUROCRYPT 2010, 29th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, French
Riviera, May 30 - June 3, 2010. Proceedings, pages 638–655, 2010.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure
signatures. In Proceedings of the Twenty Second Annual ACM Sympo-
sium on Theory of Computing, pages 387–394, Baltimore, Maryland,
14–16 May 1990.

DKORS 39

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-
malleability amplification. In 51th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS 2010, October 23-26, 2010, Las
Vegas, Nevada, USA, pages 531–540. IEEE Computer Society, 2010.

A Definition and Tools

Definition 17 (One-way function (OWF)). A function f : {0, 1}? → {0, 1}?
is called one way if the following two conditions hold:

– there exists a deterministic polynomial-time algorithm that on input y in the
domain of f outputs f(y);

– for every ppt algorithm A there exists a negligible function ν, such that for
every auxiliary input z ∈ {0, 1}poly(λ):

Prob [y←{0, 1}? : A(f(y), z) ∈ f−1(f(y))] < ν(λ).

Definition 18 (Following the notation of [CPS13]). A triple of ppt algo-
rithms (Gen,Sign,Verify) is called a signature scheme if it satisfies the following
properties.

Validity: For every pair (s, v)← Gen(1λ), and every m ∈ {0, 1}λ, we have that

Verify(v,m,Sign(s,m)) = 1.

Security: For every ppt A, there exists a negligible function ν, such that for
all auxiliary input z ∈ {0, 1}? it holds that:

Pr[(s, v)← Gen(1λ); (m,σ)← ASign(s,·)(z, v) ∧ Verify(v,m, σ) = 1 ∧m /∈ Q] < ν(λ)

where Q denotes the set of messages whose signatures were requested by A
to the oracle Sign(s, ·).

Definition 19 (Computational indistinguishability). Let X = {Xλ}λ∈N
and Y = {Yλ}λ∈N be ensembles, where Xλ’s and Yλ’s are probability distribution
over {0, 1}l, for same l = poly(λ). We say that X = {Xλ}λ∈N and Y = {Yλ}λ∈N
are computationally indistinguishable, denoted X ≈ Y , if for every ppt distin-
guisher D there exists a negligible function ν such that for sufficiently large
λ ∈ N,∣∣∣Pr

[
t← Xλ : D(1λ, t) = 1

]
− Pr

[
t← Yλ : D(1λ, t) = 1

] ∣∣∣ < ν(λ).

We note that in the usual case where |Xλ| = Ω(λ) and λ can be derived
from a sample of Xλ, it is possible to omit the auxiliary input 1λ. In this paper
we also use the definition of Statistical Indistinguishability. This definition is the
same as Definition 19 with the only difference that the distinguisher D is un-
bounded. In this case use X ≡s Y to denote that two ensembles are statistically
indistinguishable.

40 CNMC Against Permutations and Overwrites, and its Applications

Definition 20 (Witness Indistinguishable (WI)). An argument/proof sys-
tem Π = (P,V), is Witness Indistinguishable (WI) for a relation Rel if, for
every malicious ppt verifier V?, there exists a negligible function ν such that for
all x,w,w′ such that (x,w) ∈ Rel and (x,w′) ∈ Rel it holds that:∣∣∣Pr [〈P(w),V?〉(x) = 1]− Pr [〈P(w′),V?〉(x) = 1]

∣∣∣ < ν(|x|).

Obviously one can generalize the above definitions of WI to their natural
adaptive-input variants, where the adversarial verifier can select the statement
and the witnesses adaptively, before the prover plays the last round.

Definition 21 (Proof/argument system). A pair of ppt interactive algo-
rithms Π = (P,V) constitute a proof system (resp., an argument system) for
an NP-language L, if the following conditions hold:
Completeness: For every x ∈ L and w such that (x,w) ∈ RelL, it holds that:

Pr [〈P(w),V〉(x) = 1] = 1.
Soundness: For every interactive (resp., ppt interactive) algorithm P?, there

exists a negligible function ν such that for every x /∈ L and every z:
Pr [〈P?(z),V〉(x) = 1] < ν(|x|).

A proof/argument system Π = (P,V) for an NP-language L, enjoys delayed-
input completeness if P needs x and w only to compute the last round and
V needs x only to compute the output. Before that, P and V run having as
input only the size of x. The notion of delayed-input completeness was defined
in [CPS+16]. An interactive protocol Π = (P,V) is public coin if, at every round,
V simply tosses a predetermined number of coins (i.e. a random challenge) and
sends the outcome to the prover. Moreover we say that the transcript τ of an
execution b = 〈P(z),V〉(x) is accepting if b = 1.

Definition 22 (Proof of Knowledge [LP11]). A protocol Π = (P,V) that
enjoys completeness is a proof of knowledge (PoK) for the relation RelL if there
exists a probabilistic expected polynomial-time machine Ext, called the extrac-
tor, such that for every algorithm P?, there exists a negligible function ν, every
statement x ∈ {0, 1}λ, every randomness r ∈ {0, 1}? and every auxiliary input
z ∈ {0, 1}?,

Pr [〈P?r (z),V〉(x) = 1] ≤ Pr
[
w ← ExtP

?
r (z)(x) : (x,w) ∈ RelL

]
+ ν(λ).

We also say that an argument system Π is a argument of knowledge (AoK)
if the above condition holds w.r.t. any ppt P?.

In this paper we also consider the adaptive-input PoK/AoK property for all
the protocols that enjoy delayed-input completeness. Adaptive-input PoK/AoK
ensures that the PoK/AoK property still holds when a malicious prover can
choose the statement adaptively at the last round.

A 3-round protocol Π = (P,V) for a relation RelL is an interactive protocol
played between a prover P and a verifier V on common input x and private input

DKORS 41

w of P s.t. (x,w) ∈ RelL. In a 3-round protocol the first message a and the third
message z are sent by P and the second messages c is played by V. At the end
of the protocol V decides to accept or reject based on the data that he has seen,
i.e. x, a, c, z.

We usually denote the message c sent by V as a challenge, and as challenge
length the number of bit of c.

Definition 23 (Σ-Protocol). A 3-round public-coin protocol Π = (P,V) for
a relation RelL is a Σ-Protocol if the following properties hold:

– Completeness: if (P,V) follow the protocol on input x and private input w
to P s.t. (x,w) ∈ RelL, V always accepts.

– Special soundness: if there exists a polynomial time algorithm such that,
for any pair of accepting transcripts on input x, (a, c1, z1), (a, c2, z2) where
c1 6= c2, outputs witness w such that (x,w) ∈ RelL.

– Special Honest Verifier Zero-knowledge (Special HVZK): there exists a ppt
simulator algorithm S that for any x ∈ L, security parameter λ and any chal-
lenge c works as follow: (a, z)← S(1λ, x, c). Furthermore, the distribution of
the output of S is computationally indistinguishable from the distribution of
a transcript obtained when V sends c as challenge and P runs on common
input x and any w such that (x,w) ∈ RelL

14.

Definition 24 (adaptive-input Special Honest Verifier Zero-knowledge [COSV17a]).
A delayed-input 3-round protocol Π = (P,V) for relation RelL enjoys adaptive-
input Special Honest Verifier Zero-knowledge (SHVZK) if there exists a two
phases ppt simulator algorithm S that works as follow:

1. a ← S(1λ, c, `; ρ), where 1λ is the security parameter, c is the challenge `
is the size of the instance to be proved and the randomness ρ;

2. z ← S(x, ρ)15, where x is the instance to be proved.
Π is SHVZK if any x ∈ L and for any c ∈ {0, 1}λ, the distribution of the
transcripts (a, c, z), computed by S, is computationally indistinguishable from
the distribution of a transcript obtained when V sends c as challenge and P runs
on common input x and any w (available only in the third round) such that
(x,w) ∈ RelL.

A.1 2-Round Instance-Dependent Trapdoor Commitments

Here we define a special commitment scheme based on an NP-language L where
sender and receiver also receive as input an instance x. While correctness and
computational hiding hold for any x, we require that statistical binding holds
for x 6∈ L and knowledge of a witness for x ∈ L allows to equivocate. Finally, we

14 Note that we require that the two transcripts are computationally indistinguishable
as in [GMY06], instead of following [CDS94] that requires the perfect indistinguisha-
bility between the two transcripts.

15 To not overburden the notation we omit the randomness when we use the adaptive-
input Special HVZK simulator

42 CNMC Against Permutations and Overwrites, and its Applications

require that a commitment along with two different openings allows to compute
the witness for x ∈ L. We recall that L̂ denotes the language that includes L
and all well formed instances that are not in L.

Definition 25. Let 1λ be the security parameter, L be an NP-language and RelL
be the corresponding NP-relation. A triple of ppt algorithms Π = (Sen,Rec,Sen)
is a 2-Round Instance-Dependent Trapdoor Commitment scheme if the following
properties hold.

Correctness. In the 1st round, Rec on input 1λ and x ∈ L̂ outputs ρ. In the
2nd round Sen on input the message m, 1λ, ρ and x ∈ L outputs (com, dec).
We will refer to the pair (ρ, com) as the commitment of m. Moreover we
will refer to the execution of the above two rounds including the exchange
of the corresponding two messages as the commitment phase. Then Rec on
input m, x, com, dec and the private coins used to generate ρ in the com-
mitment phase outputs 1. We will refer to the execution of this last round
including the exchange of dec as the decommitment phase. Notice that an
adversarial sender Sen? could deviate from the behavior of Sen when com-
puting and sending com and dec for an instance x ∈ L̂. As a consequence
Rec could output 0 in the decommitment phase. We will say that dec is a
valid decommitment of (ρ, com) to m for an instance x ∈ L̂, if Rec outputs
1.

Hiding. Given a ppt adversary A, consider the following hiding experiment
ExpHidingbA,Π(λ, x) for b = 0, 1 and x ∈ L̂R:
– On input 1λ and x, A outputs a message m, along with ρ.
– The challenger on input x,m, ρ, b works as follows: if b = 0 then it runs

Sen on input m, x and ρ, obtaining a pair (com, dec), otherwise it runs
TFake on input x and ρ, obtaining a pair (com, aux). The challenger
outputs com.

– A on input com outputs a bit b′ and this is the output of the experiment.
We say that hiding holds if for any ppt adversary A there exist a negligible
function ν, s.t.:∣∣∣Prob

[
ExpHiding0A,Π(λ, x) = 1

]
−Prob

[
ExpHiding1A,Π(λ, x) = 1

] ∣∣∣ < ν(λ).

Special Binding. There exists a ppt algorithm Ext that on input a commit-
ment (ρ, com), the private coins used by Rec to compute ρ, and two valid
decommitments (dec, dec′) of (ρ, com) to two different messages m and m′

w.r.t. an instance x ∈ L, outputs w s.t. (x,w) ∈ RelL with overwhelming
probability.

Trapdoorness. For any ppt adversary A there exist a negligible function ν,
s.t. for all x ∈ L it holds that:∣∣∣Prob

[
ExpComA,Π(λ, x) = 1

]
−Prob

[
ExpTrapdoorA,Π(λ, x) = 1

] ∣∣∣ < ν(λ)

where ExpComA,Π(λ, x) and ExpTrapdoorA,Π(λ, x) are defined below16.

16 We assume w.l.o.g. that A is stateful.

DKORS 43

ExpComA,Π(λ, x): ExpTrapdoorA,Π(λ, x):
-On input 1λ and x, A outputs
(ρ,m).

-On input 1λ and x, A outputs
(ρ,m).

-Senon input 1λ, x, m and ρ,
outputs (com, dec).

-TFake on input 1λ, x and ρ,
outputs (com, aux).
-TFake on input tk s.t. (x, tk) ∈
RelL, x, ρ, com, aux and m out-
puts dec.

-A on input (com, dec) outputs
a bit b and this is the output of
the experiment.

-A on input (com, dec) outputs
a bit b and this is the output of
the experiment.

B Instantiation of Definition 11

In this section we discuss possible instantiations of definition 11:

with [AKO17]: EncAKO : {0, 1}m →
(
{0, 1}O(m6)

)2
is 2−O(m)− admissible,

with [Li17]: EncLi : {0, 1}m →
(
{0, 1}O(m·logm)

)2
is 2−O(m)− admissible.

Of course the second code of the above gives better parameters. However we
will argue for both above statements.

The most straight forward instantiation would be using the super-strong
NMC from [AKO17] (with the improved affine evasive function from [Agg15]).
Let us briefly recall the construction:

For any m ∈ M, EncAKO(m) = Enc1 ◦ Enc2(m), where for any m ∈ M,
Enc2(m) ← {X ∈ F | h(X) = a||b||m}, where h is affine-evasive function, and
a, b were chosen uniformly at random. For any x ∈ F, Enc1(x) = (L,R), where
L,R ∈ FN are uniform such that 〈L,R〉 = x, φ(L, a) = valid and φ(R, b) = valid
where φ is a check function based on Reed-Salomon codes, such that for every
a we get Prx(φ(x, a) = valid) = 1

|a| . The construction is secure for any N ≥
C · log4 |F|, where C is some constant, which makes the whole codeword length
equal to C · log5(|F|).

Another instantiation option is with nm-Extractor (f.e. [Li17]), we need to
modify the extractor in generic way:

Definition 26 (Encoding scheme based on nm-Ext). Let r ∈ N be any
constant

EncLi(M) :
L,R← {l, r | Ext(l, r) = 0r||M}
Output (L,R)

DecLi(L,R) :
Check whether:

Dec(L,R) = 0r||M ,
If the check fails output ⊥
Otherwise, output M ∈M

44 CNMC Against Permutations and Overwrites, and its Applications

When we encode m bits with modified [Li17] we obtain O(m logm) bits of code-
word.

Let us make some observations about (EncAKO,DecAKO) and (EncLi,DecLi)
schemes, Since the proofs are identical in all but one cases we will refer to
(Enc,Dec) as any of the mentioned schemes. Also for simplicity we will not get
into exact parameters instead of we will denote negligible factors as negligible,
reader can think of negligible = 2−O(m).

[Canonical encoder] Fulfilled trivially.
[Balanced code] There is the same number of codewords decoding to each mes-

sage. Thus distribution of Enc(U) is the same as (U,U ′|Dec(U,U ′) 6= ⊥) for
U,U ′ uniform and independent.

[Detection of close to bijective tampering] Since Enc is Super-Strong NMC that
means that whenever adversary’s tampering outputs valid codeword i.e.
Dec(f(L), g(R)) 6= ⊥ and (f(L), g(R)) 6= (L,R) then adversary will learn
whole f(L), g(R), that can not give him any information about encoded
message m else adversary broke the NMC-game, thus:

d(Dec(m)|f(L), g(R)) < negligible,

by lemma 3 :

∆
(

[f(L), g(R)|Dec(L,R) = m] ; [f(L̃), g(R̃)]
)
< negligible,

where L̃, R̃ are uniform and independent. If f(L̃), g(R̃) have a lot of entropy then:

d(〈f(L̃), g(R̃)〉) < negligible,

and thus

Pr[Dec(f(L̃), g(R̃)) = ⊥] > 1− negligible,

∆ ([Dec(f(L), g(R))|Dec(L,R) = m] ; [⊥]) < negligible

[Leakage resilient storage] Since all of the constructions are based on the ran-
domness extractor by the identical argument as above we will obtain the
leakage resilience.

Now let us make some observations about (Encpar,Decpar) (recall Definition 8).
Let us go through all conditions from Definition 11:

[Canonical encoder] Fulfilled trivially.
[Detection of close to bijective tampering] Notice that for uniformly random
L,R, parities are respectively 0, 1 with probability 1/4. If (Encpar,Decpar)
would not fulfill detection property with some non-negligible probability δ
then (Enc,Dec) would not fulfill it with probability at least δ/4 which is a
contradiction.

[Leakage resilient storage] For Enc(m) = L,R we know that

f(L), g(R) ≈negligible f(U), g(U ′) (1)

DKORS 45

where U,U ′ are independent, uniformly distributed.
Let Encpar(m) = (L0, R1). We want to prove that

f(L0), g(R1) ≈negligible f(U0), g(U1)

where U0, U1 are independent, uniformly distributed with parities respec-
tively 0, 1. Let us define following function:

f ′(x) :=

{
f(x) if parity of x is 0

c, otherwise.

Since f ′, g′ reveal only one extra bit of information compare to f, g, by
equation 1 we get

f ′(L), g′(R) ≈negligible f
′(U), g′(U ′)

which implies the Leakage resilience of (Encpar,Decpar).
[Detection of complete overwrite of one part, for [AKO17]] If c = 0k we can easly

exclude it from the domain simply assuming DecAKO(0k) = ⊥, it is only one
point thus such change will affect parameters in negligible way. For c 6= 0k

by lemma 2 we get that for U0 uniform with parity 0: H∞(〈U0, c〉) misses
only 1 bit to full entropy. Thus 〈U0, c〉 will not hit correct affine evasive set,
and decoding will result in ⊥.

[Detection of complete overwrite of one part, for [Li17]] Argument is very similar,
since most outer layer of [Li17] is based on inner product, as long as c 6= 0k

we get that H∞(〈U0, c〉) misses only 1 bit to full entropy. By the 0r padding
on message we added to nm-extractor we get that probability of hitting the
0r||m format is at most (1

2)r−1 which concludes the proof.

Remark 4. Keep in mind that entropy rate threshold 1/3 in definition 11 is
completely arbitrary and all proofs can be easily adopted to any other threshold.

C Instantiation of a secret sharing scheme

In this section we aim for a coding scheme RSN : {0, 1}2n → ({0, 1}k2)N that
holds the bN/3c-out-of-N secret sharing property. We show such construction
for all parameters such that bN/3c · k2 ≥ 2n.

It turns out that the only we need for this purpose is the Reed-Solomon error
correcting code c with following parameters:

– alphabet size = 2k2 ,
– block length = N ,
– message length M = 2 · d 2nk2 e.

Now our coding scheme may be defined as: RSN (m) = c(m||x), where x is a
randomness of the same size as m.

We omit the simple proof that the above code actually holds the bN/3c-out-
of-N secret sharing property.

46 CNMC Against Permutations and Overwrites, and its Applications

D Proof of Lemma 8

Proof. Let us denote h(X,Y) = X ′, Y ′. Also let us proceed with following defi-
nitions, let OverwritesX denote number of overwritten, by function h, bits in X.
Let TransferX→Y′ denote the vector of bits that were permuted from X into Y ′

(if a bit was permuted and then overwritten such bit does not count), and let
Swaps = |TransferX→Y′ |+ |TransferY→X′ | .

Case 1: Swaps 6= 0, 2k1.
We know that |TransferX→Y′ |+ |TransferY→X′ | > 0, without loss of generality let
us assume that |TransferY→X′ | > 0, and thus X ′ has some entropy. Trivially from
bounded size of X ′ we get |TransferX→X′ |+ |TransferY→X′ | ≤ n.

Subcase 1.1: TransferY→X′ = n:
Then D will output ⊥ since the parity of X ′ will be equal 1 instead of 0.

Subcase 1.2: 0 < TransferY→X′ < n:
Then by Definition 11.4, we get

TransferX→X′ ,TransferY→X′ ≈ε TransferU0→X′ ,TransferU1→X′ ,

where U0, U1 are independent uniformly distributed over {0, 1}k1 , such that par-
ity of Ui is equal i.
Then by lemma 7 we get that parity of TransferX→X′ ||TransferY→X′ is equal 0
with probability 1

2 ± εc. Thus parity of X ′ will be equal 0 with probability at
most 1

2 + εc, if parity of X ′ is equal 1 then D will output ⊥.

Case 2: Swaps = 2n.
Then parity of X ′ is 1 and parity of Y ′ is 0, D will output ⊥.

Case 3: Swaps = 0.
We know that |TransferX→Y′ | = |TransferY→X′ | = 0, we will denote h(X,Y) =
f(X), g(Y). We partition this case in following subcases:

Subcase 3.1: OverwritesX ≤ 1/3 · k1 and OverwritesY ≤ 1/3 · k1.
From this subcase assumptions we get

H∞(f(X)),H∞(g(Y)) ≥ 2/3 · k1.

If h 6≡ id then at least one f, g is not id, without loss of generality let us assume
that f 6≡ id. If f 6≡ id and f ∈ PermOver then there is at least 1/2 probability 17

17 If f 6≡ id and f ∈ PermOver then there must be at least one overwrite or at least one
permutation cycle in f . If there is an overwrite then probability that overwritten bit
was equal original is 1

2
. If there was a permutation then it had to have at least one

cycle of length at least 2, then f(X) = X only if all elements in a cycle are equal,
which again happens with probability at most 1

2
.

DKORS 47

that f(X) 6= X. Let ZX = {x ∈ {0, 1}k1 | f(x) = x}. Since Pr(X ∈ ZX) ≥ 1/2
by lemma 4 we get

H∞(f(X)|X ∈ ZX) ≥ H∞(f(X))− log
1

Pr(X ∈ ZX)
≥ H∞(f(X))− 1

Thus by Definition 11.2 we get D(f(X), g(Y)) = ⊥ with probability at least 1/2.

Subcase 3.2: OverwritesX > 1/3 · k1 or OverwritesY > 1/3 · k1.
Then by Def 11.4

TransferX→X′ ,TransferY→Y′ ≈ε TransferU0→X′ ,TransferU1→Y′ ,

where U0, U1 are independent uniformly distributed over {0, 1}k1 , such that par-
ity of Ui is equal i.
Let us consider following cases:

Subcase 3.2.a: |TransferX→X′ | = |TransferY→Y′ | = 0.
That means both X ′ and Y ′ are constant (i.e. completely overwritten), it con-
tradicts assumption that h 6≡ const..

Subcase 3.2.b: |TransferX→X′ | = k and |TransferY→Y′ | = 0.
By Definition 11.3 we get that D(X ′, Y ′) = ⊥ with probability at least 1 − εc.
The same holds if |TransferX→X′ | = 0 and |TransferY→Y′ | = k1.

Subcase 3.2.c: TransferX→X′ 6= 0, k1 or TransferY→Y′ 6= 0, k1.
Without loss of generality assume that TransferX→X′ 6= 0, k1.

If TransferX→X′ ≤ 2/3k1 then by Definition 11.4 we get

TransferX→X′ , Y ≈ε TransferU0→X′ , U1

By lemma 7 we get that parity of TransferX→X′ ||Y is equal 0 with probability
1
2 ± εc. Again parity requirements of D will be fulfilled with probability at most
1
2 ± εc.

If TransferX→X′ > 2/3k1 then let us consider complement of TransferX→X′ , i.e.
the bits of X that were not permuted into X ′, let us denote that complement as
TX . In a identical fashion as above we obtain

TX , Y ≈εc TU0
, U1

We obtain that parity of TX ||Y is unknown and equal to parity of TransferX→X′ ||Y .
Again parity requirements of D will be fulfilled with probability at most 1

2 ± εc.

