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Abstract. We propose a new computational problem over the noncom-
mutative group, called the twin conjugacy search problem. This problem
is related to the conjugacy search problem and can be used for almost
all of the same cryptographic constructions that are based on the con-
jugacy search problem. However, our new problem is at least as hard
as the conjugacy search problem. Moreover, the twin conjugacy search
problem has many applications. One of the most important applications,
we propose a trapdoor test which can replace the function of the deci-
sion oracle. We also show other applications of the problem, including:
a non-interactive key exchange protocol and a key exchange protocol, a
new encryption scheme which is secure against chosen ciphertext attack,
with a very simple and tight security proof and short ciphertexts, under
a weak assumption, in the random oracle model.
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1 Introduction

1.1 Background and related work

The conjugacy search problem is an important computational problem on non-
commutative groups while it is also a widely used cryptographic primitive. In the
context of quantum computing, Ko[1] first proposed a public key encryption sys-
tem based on the conjugacy problem over the braid group, which greatly promot-
ed the development of the group theoretic cryptography. It makes more and more
scholars focus on the research of the conjugacy search problem and its public key
cryptosystem and gets many excellent results[2,3,4,6,23]. Although the security
of many cryptographic schemes on the braid group has been questioned[7,8,14],
it is a good ideal that take the braid group as an instantiated object to study
the non commutative group. The public key schemes based on non commutative
groups have attracted increasing attention[9,10,12].

The rapid development of quantum computing technology has aggravated the
threat to the existing public key cryptosystem[11,13]. However, the algorithm of
resisting quantum attack is also constantly proposed. It may be an effective
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method to find the anti quantum attack algorithm on the non commutative
group. As one of the difficult problems on the noncommutative group, the con-
jugacy search problem is very suitable for designing public key cryptosystems.
In recent years, many good papers have been put forward[15,16,17].

Recently, inspired by David Cash et al. [18], we found that the conjugacy
search problem has very similar with the Diffie-Hellman problem, due to space
constraints, we must defer the details of the theory.

1.2 The Diffie-Hellman problem and the Conjugacy Search problem

To illustrate the similarities between Diffie-Hellman problem and conjugacy
search problem more intuitively, we show that:

Hashed-ElGamal Encryption Scheme Based on Diffie-Hellman Prob-
lem.[20]

This public key encryption scheme makes use of a group G of prime order
q with generator g ∈ G, a sysmmetric cipher (E,D), and a hash function H.
Assume that K is a security parameter, the GenKeyDH(K) is a key generator
of this scheme. The secret key x is a random integer in Zq, then the public key
X = gx mod q can be computed. For the sake of simplicity, the following pro-
cedure omits the operation: mod q.

KeyGenDH−hElG(K) :

(x, g,X)← GenKeyDH(K);
pk = (g,X), sk = x, where X = gx.

Epk(m) : (the plaintext is m.)

y ←R Zq, Y = gy, Z = Xy, k = H(Y,Z), c = Ek(m);
output (Y, c).

Dsk(Y, c) : (the ciphertext is (Y, c))

Z = Y x, k = H(Y,Z),m = Dk(c);
output m.

The ElGamal scheme[19] based on the Diffie-Hellman problem is a great dis-
covery in public key cryptography. The research in this aspect is more mature
than the ElGamal scheme based on the conjugacy search problem. For the sake
of conciseness, we simplify the Hashed-ElGamal Encryption Scheme[20] to DH-
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hElG.

Hashed-ElGamal Encryption Scheme Based on Conjugacy Search Prob-
lem[5]

This public key encryption scheme makes use of a non commutative group
Bl+r and two exchangeable subegroup LBl, RBr, a sysmmetric cipher (E,D),
and a hash functionH. Assume thatK is a security parameter, theGenKeyCSP (K)
is a key generator of this scheme. The secret key x is a random element in
LBl, choose a sufficiently complicated element g in Bl+r, then the public key
X = xgx−1 can be computed.

KeyGenCSP−hElG(K) :

(x, g,X)← GenKeyCSP (K);
pk = (g,X), sk = x, where X = xgx−1.

Epk(m) :

y ←R RBr, Y = ygy−1, Z = yXy−1, k = H(Y, Z), c = Ek(m);
output (Y, c).

Dsk(Y, c) :

Z = xY x−1, k = H(Y,Z),m = Dk(c);
output m.

With the appropriate modification of the algorithm proposed by Ko[1], we get
the Hashed-ElGamal Encryption Scheme based on the conjugacy search problem
and simplify it to CSP-hElGamal.

Formally, there are many similarities between DH-hElG and CSP-hElG, and
the main difference lies in the computational characteristics of groups. David
proposed a new computational problem called the twin Diffie-Hellman problem,
and its applications[18], it has solved important problems on the security proofs
of the Diffie-Hellman problem. Their results are very useful and amazing. In-
spired by the work of David Cash et al.[18], we find some new properties of the
conjugacy search problem on the noncommutative group.

1.3 Our result

In order to describe our work more succinctly, the braid group is used as the
implementation group of this theory, but all of our results can be applied to any
non commutative group, as long as two exchangeable subgroups are contained in
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the group and the conjugacy search problem is difficult over it. In this paper, for
the first time, we define several security assumptions related to the conjugacy
search problem, and analyze the security of the CSP-hElG scheme under each
security assumptions. The main results are as follow:

1. We propose a new computation problem called the twin conjugacy search
problem, and prove that it is at least as hard as the ordinary conjugacy search
problem. In addition, the twin conjugacy search problem is hard, even given
access to a corresponding decision oracle, assuming the ordinary conjugacy
search problem (without any oracles) is hard.

2. We show a trapdoor test based on the twin conjugacy search problem, and
it can simulate the function of a decision oracle.

3. A non-interactive key exchange protocol and a key exchange protocol based
on the new problem are proposed, and we present a new public key encryp-
tion scheme which is secure against chosen ciphertext attack.

2 Preliminaries

Braid group is a typical non-commutative group, it is an important way that
using braid group as an implementation tool to explore cryptography algorithm
on non commutative group. There are many studies on the braid group and the
theory of cryptography[21,22]. However, this paper only takes it as a implemen-
tation tool, and we no longer spend too much space on the braid group. At the
same time, the reader does not have to fall into complex group theory. What we
have to explain is:

Define Bn as a n-braid group generated by σ1, σ2, · · · , σn−1, and following
the relations: {

σiσjσi = σjσiσj if |i− j| = 1
σiσj = σjσi if |i− j| > 2

Let LBl be the left subgroup of Bn, and let RBr be the right subgroup of Bn,
the following algebraic operations need to be noted

∀x ∈ LBl,∀y ∈ RBr, then xy = yx

Conjugacy search problem is a very important computational problem in
non-commutative group. It is to be known that the problem is hard on the braid
group[9,10]. Describe the following

Conjugacy Search Problem (CSP) (g,X) ∈ Bn × Bn,, find x ∈ Bn such
that X = xgx−1

Compared with other groups, braid group has richer connotations and alge-
braic properties. However, the braid group is not necessary for our theory, and it
is just for the conciseness of the narrative. In fact, our theory can be extended to
any noncommutative group as long as two exchangeable subgroups are contained
in the group and the conjugacy search problem is difficult over it.
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3 Security Assumptions

The security of public key cryptography rely on the security assumptions related
to a difficult problem. Here are some security assumptions associated with the
conjugate problem.

The Computional Conjugacy Search Assumption(The CCS Assump-
tion): We assume that it is hard to compute Z, given the values X and Y in
braid group Bl+r. Define z := ccs(X,Y ), where X = xgx−1, Y = ygy−1, Z =
xyg(xy)−1

Ko et al proposed a new public-key cryptosystem based on the braid group,
we make some improvements to it, and name it as the conjugacy search encryp-
tion scheme(the CS encryption schme), that is, the CSP-hElG Scheme in the
introduction.

The CS encryption scheme: (Enc,Dec) is a pair of symmetric key encryption
algorithms while H is a hash function,H : Bl+r → {0, 1}l(k), l(k) is a security
parameter. g is an element in Bl+r.

1. KeyGeneration Choose a random element x in LBl, compute X = xgx−1,
then the public key is (X, g), while the private key is (x, g).

2. Encryption For cipher message m ∈ Bl+r, one chooses a random element y
in RBr, computes Y = ygy−1, Z = yXy−1, k = H(Y, Z), c = Enck(m). The
ciphertext is (Y, c).

3. Decryption Decipher gets the target ciphertext (Y, c), computes Z = xY x−1, k =
H(Y,Z),m = Deck(c).

It has been proved that the CS encryption scheme is secure against chosen
plaintext attack. However, the CCS assumption is not sufficient to establish
the security of chosen ciphertext attack, even the H is a random oracle. To
illustrate the problem, an adversary selects group elements Ŷ , Ẑ randomly, to
encrypt a message m, compute k̂ = H(Ŷ , Ẑ), and ĉ = Enck̂(m̂). Futher, assume

that the adversary gives the ciphertext Ŷ , ĉ to a decryption oracle obtaining the

decryptionm. It is easy to judge the equation Ẑ
?
= H(X, Ŷ ) through the equation

m
?
= m̂. So, for random elements Ŷ , Ẑ, the adversary can answer Ẑ

?
= ccs(X, Ŷ )

through the decryption oracle. In general, the adversary would not be able to

efficiently answer such questions of the form ’is Ẑ
?
= ccs(X, Ŷ )’ on his own, and

so the decryption oracle is leaking some information about that secret key x
which could conceivably be used to break the encryption scheme[18].

In fact, when the adversary get a decryption oracle, what he need to do is

compute ccs(X,Y ), after answering questions of the form ′is Ẑ
?
= ccs(X, Ŷ )′

many times. Thus, we need a stronger assumption to ensure the security of
Chosen-Ciphertext Attack(CCA).



6 X. Chen et al

The Strong CCS Assumption: We assume that it is hard to compute css(X,Y ),
given random X,Y in Bl+r, along with access to a decision oracle for the predi-
cate ccsp(X, ·, ·), which on input (Ŷ , Ẑ), returns ccsp(X, Ŷ , Ẑ), define the pred-
icate

ccsp(X, Ŷ , Ẑ) := ccs(X, Ŷ )
?
= Ẑ

It is not difficult to prove that the CS encryption scheme is secure against
chosen ciphertext attack when the H is modeled as a random oracle, under the
strong CCS assumption and if the underlysing symmetric cipher (Enc,Dec) is
itself secure against chosen ciphertext attack[5].

Compare to the CCS assumption, the Strong CCS assumption is too stronger.
In genral, the weaker the assumption, the more secure the algorithm is, and the
results are more rigorous. To get CCA security under the CCS assumption, we
propose a new computational problem:

The Twin Conjugacy Search Problem(the twin CSP): (g,X1, X2) ∈
Bn ×Bn ×Bn, find x1, x2 ∈ Bn such that X1 = x1gx

−1
1 , X1 = x1gx

−1
1 .

Like the CS encryption scheme, we propose a new encryption scheme based
on the twin conjugacy search problem.

The Twin CS encryption scheme: (Enc,Dec) is a pair of symmetric key
encryption algorithms while H is a hash function,H : Bl+r → {0, 1}l(k), l(k) is
a security parameter. g is an element in Bl+r.

1. KeyGeneration Choose random elements x1, x2 in LBl, compute X1 =
x1gx

−1
1 , X2 = x2gx

−1
2 , then the public key is (X1, X2, g), while the private

key is (x1, x2).
2. Encryption For cipher message m ∈ Bl+r, one chooses a random ele-

ment y in RBr, computes Y = ygy−1, Z1 = yX1y
−1, Z2 = yX2y

−1, k =
H(Y, Z), c = Enck(m). The ciphertext is (Y, c).

3. Decryption Decipher gets the target ciphertext (Y, c), computes Z1 =
x1Y x

−1
1 , Z2 = x2Y x

−1
2 , k = H(Y, Z),m = Deck(c).

Like the conjugacy search problem, we present the security assumption re-
lated the twin conjugacy search problem.

The Twin Computational Conjugacy Search Assumption (The twin
CCS assumption): Suppose that it is hard to compute Z1, Z2 in braid group
Bl+r, given the values X1, X2, Y in braid group Bl+r. Define

(Z1, Z2) := 2ccs(X1, X2, Y ) = (ccs(X1, Y ), ccs(X2, Y ))

where

X1 = x1gx
−1
1 , X2 = x2gx

−1
2 , Y = ygy−1, Z1 = (x1y)g(x1y)−1, Z2 = (x2y)g(x2y)−1

In addition, we can present a stronger assumpution.
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The Strong Twin Computational Conjugacy Search Assumption (The
Strong Twin CCS assumption): Suppose that it is hard to compute 2ccs(X1,
X2, Y ), given the values X1, X2, Y in braid group Bl+r, along with access to a
decision oracle for the predicate ccsp(X1, X2, ·, ·, ·), which on input Ŷ , Ẑ1, Ẑ2,
returns 2ccsp(X1, X2, Ŷ , Ẑ1, Ẑ2). Define the predicate

2ccsp(X1, X2, Ŷ , Ẑ1, Ẑ2) := (ccs(X1, Y ), ccs(X2, Y )) = (Z1, Z2)

It’s easy to know that the twin CS encryption scheme is secure against chosen
ciphertext attack when the H is modeled as a random oracle, under the strong
twin CCS assumption and if the underlysing symmetric cipher (Enc,Dec) is
itself secure against chosen ciphertext attack.

Above all, we propose two encryption schemes and four kinds of security
assumptions related to the conjugate problem over the braid group. Next we’ll
discuss the relationships of each assumption, and the security of the twin CS
encryption scheme. One of our main results is the following:

Theorem 1. The CCS assumption holds if and only if the strong twin CCS
assumption holds.

It is not hard to see that the twin strong CCS assumption implies the CCS
assumption, while the non-trivial direction to prove is that the CCS assumption
implies the strong twin CCS assumption. However, we need to defer the proof
of Theorem 1 to save space.

4 A Trapdoor Test and a Proof of Theorem 1

In the following, we will propose another one of our results: trapdoor test theo-
rem. Our theory is largely inspired by David[18]. David et al proposed the twin
Diffie-Hellman problem and a trapdoor test over general cyclic group, their works
are amazing, and it has greatly promoted the development of provable security
theory. However, our theory is based on the conjugacy search problem over the
non-commutative group. We emphasize

Lemma ∀ x, y ∈ Bn, Remember xy−1 as x
y , ∀r ∈ Bn, then

r(
x

y
)r−1 =

rxr−1

ryr−1

proof :

rxr−1

ryr−1
= rxr−1 · (ryr−1) = r(xy−1)r−1 = r

x

y
r−1

Now, we propose the main theory:
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Theorem 2 (Trapdoor Test). Let Bl+r be a braid group, RBr and LBl are
right subgroup and left subgroup of the Bl+r, g is a random elemet on the group
of Bl+r. Choose X1 ←R Bl+r, r ←R LBl, s ← RBr, define a random variable

X2 = sgs−1

rX1r−1 , if Ŷ , Ẑ1, Ẑ2 are random elements on the Bl+r. Then we have:
(a.) X2 is uniformly distributed over G;
(b.) X1 and X2 are independent;
(c.) if X1 = x1gx

−1
1 , X2 = x2gx

−1
2 , x1, x2 ∈ LRl, then the probability that

the truth value of

Ẑ2 · rẐ1r
−1 = sŶ s−1 (1)

does not agree with the truth value of

Ẑ1 = x1Ŷ x
−1 ∧ Ẑ2 = x2Ŷ x

−1
2 (2)

is negligible; moreover, if (3) holds, then (2) certainly holds.

proof: Observe that

X2 =
sgs−1

rX1r−1

The elements s and r are randomly selected from RBr and LBl, respectively,
and X1 ∈ Bl+r. It is easy to verify that X2 is uniformly distributed over Bl+r,
and that X1, X2, r are mutually independent, from which (a.) and (b.) follow.
To prove (c.), condition on fixed values of X1, X2, suppose that Ŷ = ygy−1, y ∈
RBr. If (2) holds, because of

X2 =
sgs−1

rX1r−1

then

yX2y
−1 =

ysgs−1y−1

yrX1r−1y−1
=

sŶ s−1

ryX1y−1r−1

That is,

sŶ s−1 = (yX2y
−1)(ryX1y

−1r−1)

so

Ẑ2 · rẐ1r
−1 = (x2Ŷ x

−1
2 )r(x1Ŷ x

−1
1 )r−1

= yX2y
−1ryX1y

−1r−1

= sŶ s−1

Thus, while (2) holds, (1) certainly holds. Conversely, if (2) does not hold, we
show that (1) holds with a negligible probability. Observe that (1)

sŶ s−1 = yX2y
−1 · (ryX1y

−1r−1) = Ẑ2 · rẐ1r
−1
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So

Ẑ2
−1
· yX2y

−1 =
rẐ1r

−1

ryX1y−1r−1
= r

Ẑ1

yX1y−1
r−1 (3)

It is not hard to see, if Ẑ1 = x1Ŷ x
−1
1 and Ẑ2 6= x2Ŷ x

−1
2 , then (3) certainly

does not hold. This leaves us with the case Ẑ1 6= x1Ŷ x
−1
1 . But in the case, the

right hand side of (3) is a random element of Bl+r since r is uniformly distributed
over LBl, but the left hand side is a fixed element of Bl+r. It is easy to see that
the probability that selects an element from Bl+r to make it equal to a fixed
element of Bl+r is negligible.

Now, we can prove the theorem 1 through the trapdoor test.

Theorem 1. The CCS assumption holds if and only if the strong twin CCS
assumption holds.

Proof: The twin strong CCS assumption implies the CCS assumption obviously.
To prove that the CCS assumption implies the strong twin CCS assumption. Let
us define some terms:

Assume that an adversary B who attack the CCS assumption, an adversary
A who attack the strong twin CCS assumption. B gets the challenge instance
(X,Y ) of the CCS assumption, the target is to compute ccs(X,Y ).

First, B chooses r ←R LBl, s←R RBr, sets

X1 = X, X2 =
sgs−1

rX1r−1

and gives A the challenge instance (X1, X2, Y ), A need to do to is compute
(Z1, Z2) = 2ccs(X1, X2, Y ).

Second, A chooses Ŷ , Ẑ1, Ẑ2 to query B, then B processes each decision query
Ŷ , Ẑ1, Ẑ2 by testing if Ẑ2 · rẐ1r

−1 = sŶ s−1 holds.
Finally, if and when A outputs (Z1, Z2), B tests if this output is correct by

testing if Z2 · rZ1r
− = sY s−1 holds. If this does not hold, then B outputs ”fail-

ure”, otherwise, B outputs Z1. The proof is easily completed using the trapdoor
test.

5 Key Exchange Protocol

In the following we propose a new non-interactive key exchanege protocol based
on the twin conjugacy search problem.

Non-interactive Key Exchange Protocol: Suppose that Alice and Bob are
the two parties of the communication, g is a random element in braid group
Bl+r. Alice’s secret key is (x1, x2), x1, x2 ∈ LBl pulic key is (X1, X2), where
X1 = x1gx

−1
1 , X2 = x2gx

−1
2 ; Bob’s secret key is (y1, y2), y1, y2 ∈ RBr, public

key is (Y1, Y2), where Y1 = y1gy
−1
1 , Y2 = y2gy

−1
2 . Keys which belong to Alice

and Bob are authenticated by a trusted third party, they can share the key:
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– Alice compute x1Y1x
−1
1 , x1Y2x

−1
1 , x2Y1x

−1
2 , x2Y2x

−1
2

– Bob compute y1X1y
−1
1 , y1X2y

−1
1 , y2X1y

−1
2 , y2X2y

−1
2

Because of ccs(Xi, Yj) = xiYjx
−1
i = yjXiy

−1
j , i = 1, 2; j = 1, 2, Alice and

Bob can compute the same value through the same hash function H:

k = H(ccs(X1, Y1), ccs(X1, Y2), ccs(X2, Y1), ccs(X2, Y2))

Now we propose a new key agreement system:

Key Exchange Protocol: Assume that g is a random element in braid group
Bl+r.

1. Alice chooses random secret elements x1, x2 ∈ LBl and sends (X1, X2) to
Bob, where X1 = x1gx

−1
1 , X2 = x2gx

−1
2 ;

2. Bob chooses random secret elements y1, y2 ∈ LBl and sends (Y1, Y2) to Bob,
where Y1 = y1gy

−1
1 , Y2 = y2gy

−1
2 ;

3. Alice receives X1, X2 and computes x1Y1x
−1
1 , x1Y2x

−1
1 , x2Y1x

−1
2 , x2Y2x

−1
2 ;

4. Bob receives Y1, Y2 and computes y1X1y
−1
1 , y1X2y

−1
1 , y2X1y

−1
2 , y2X2y

−1
2 .

Because of ccs(Xi, Yj) = xiYjx
−1
i = yjXiy

−1
j , i = 1, 2; j = 1, 2, Alice and

Bob can compute the same value through the same hash function H:

k = H(ccs(X1, Y1), ccs(X1, Y2), ccs(X2, Y1), ccs(X2, Y2))

6 Twin CCS-ElGamal Encryption

6.1 Security Model

The security model is portrayed by Indistinguishability-Game (IND-GAME),
mainly divided into three levels: Indistinguishability-Chosen Plaintext Attack
(IND-CPA) [24], Indistinguishability - (Non Adaptive) Chosen Ciphertext At-
tack (IND-CCA) [25], Indistinguishability - (Adaptive) Chosen Ciphertext At-
tack (IND-CCA2) [26]. We recall the definition for the CCA2.

Definition Indistinguishability - (Adaptive) Chosen Ciphertext At-
tack (IND-CCA2) [26] The IND game of public key encryption scheme under
(Adaptive) chosen ciphertext attack (IND-CCA2) is as follows

1. Initialization. The Challenger B generates the password system, and the
Adversary A obtains the system public key pk.

2. Training1. A sends the ciphertext C to the B, and B sends the decrypted
plaintext to A.(Polynomial bounded)

3. Challenge. The Adversary A outputs two messages of the same length, M0

and M1. The Challenger B chooses β ←R {0, 1}, cipher Mβ , and sends
ciphertext C∗ (Target ciphertext) to A.
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4. Training2. A sends the ciphertext C(C 6= C∗) to the B, and B sends the
decrypted plaintext to A.(Polynomial bounded)

5. Guess. A outputs β′, if β′ = β, return 1, A attack successfully.

The advantage of the adversary A can be defined as a function of the param-
eter K:

AdvCCA2
A (K) =

∣∣∣∣Pr[β′ = β]− 1

2

∣∣∣∣
For a polynomial time adversary A, there is a negligible function ε(K) that
makes AdvCCA2

A (K) ≤ ε(K) set up, it is called IND-CCA2 security.

6.2 Security of the Twin CS Encryption Scheme

Theorem 3. Suppose that H is modeled as a random oracle, the twin CS
encryption scheme is secure against Chosen Ciphertext Attack under the CCS
assumption, and that the underlying symmetric cipher is itself secure against
chosen ciphertext attack.

Proof: It is easy to see that the twin CS encryption scheme is secure against
chosen ciphertext attack under the strong twin CCS assumption, and that the
underlying symmetric cipher is itself secure against chosen ciphertext attack,
H is modeled as a random oracle. However, according to theorem 1, the CCS
assumption holds if and only if the strong twin CCS assumption holds. So, the
twin CS encryption scheme is secure against Chosen Ciphertext Attack under
the condition of the theorem 3.

7 Conclusion

In this work, we presented the twin conjugacy search problem and a trapdoor
test. The trapdoor test is very useful and has many applications. In fact, our work
would like to avoid making stronger assumptions, or working with specialized
groups. All of the theory in this paper built in the braid group, however, our
theory applies to any noncommutative group as long as the conjugacy search
problem is hard over it. Compared to the original CSP-scheme, we make a little
change in the process of the encryption.

Acknowledgments. We thank any reviewers to comments our paper.
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