
Offline Witness Encryption from Witness PRF
and Randomized Encoding in CRS model

Tapas Pal and Ratna Dutta

Department of Mathematics, Indian Institute of Technology Kharagpur
Kharagpur-721302, India

tapas.pal@iitkgp.ac.in,ratna@maths.iitkgp.ernet.in

Abstract. Witness pseudorandom functions (witness PRFs) generate a
pseudorandom value corresponding to an instance x of an NP language
and the same pseudorandom value can be recomputed if a witness w that
x is in the language is known. Zhandry (TCC 2016) introduced the idea
of witness PRFs and gave a construction using multilinear maps. Wit-
ness PRFs can be interconnected with the recent powerful cryptographic
primitive called witness encryption. In witness encryption, a message can
be encrypted with respect to an instance x of an NP language and a de-
cryptor that knows a witness w corresponding to the instance x can
recover the message from the ciphertext. Mostly, witness encryption was
constructed using obfuscation or multilinear maps.
In this work, we build (single relation) witness PRFs using a puncturable
pseudorandom function and a randomized encoding in common refer-
ence string (CRS) model. Next, we propose construction of an offline
witness encryption having short ciphertexts from a public-key encryp-
tion scheme, an extractable witness PRF and a randomized encoding in
CRS model. Furthermore, we show how to convert our single relation
witness PRF into a multi-relation witness PRF and the offline witness
encryption into an offline functional witness encryption scheme.

Keywords: Witness PRF, offline witness Encryption, randomized encoding.

1 Introduction

Witness PRF. Zhandry [25] generalizes the idea of witness encryption to
initiate the study of a relatively modern and rich primitive witness pseudorandom
functions (wPRFs). The power of wPRFs lie in the fact that it can be used in
place of obfuscation to build many cryptographic tools that do not need to
hide a programme P completely, like multiparty non-interactive key exchange
without trusted setup, poly-many hardcore bits, re-usable witness encryption,
Rudich secret sharing for monotone NP language and fully distributed broadcast
encryption.

Witness PRF for an NP language L is capable of computing a pseudoran-
dom function F on an input statement x without the knowledge of secret key
whenever a valid witness w for x ∈ L is known and F(x) can not be recognized

in its domain if x 6∈ L, that is there does not exist a witness explaining x ∈ L.
More specifically, wPRF first computes a pair of keys (fk, ek) depending on a
relation circuit R corresponding to an NP language L where fk is the function
secret key and ek is the function evaluation key. We note that R(x,w) = 1 if w is
a valid witness for x ∈ L; otherwise 0. A user having the secret key fk generates
a pseudorandom value F(fk, x) ∈ Y for any input x. The same pseudorandom
value can be recovered using Eval(ek, x, w) without the secret key fk if a valid
witness w for x ∈ L is known. From the adversary’s point of view, the pseu-
dorandom value F(fk, x) is computationally indistinguishable from a uniformly
chosen element in Y if there does not exist a witness w for x ∈ L. On the other
hand, if x ∈ L then, an adversary distinguishing F(fk, x) from a random element
in Y is to mean that there exists an efficient extractor that can be used to obtain
a witness for x ∈ L. A wPRF processing this security assumption is called an
extractable witness pseudorandom function (extractable wPRF). Another vari-
ant of wPRF is termed as multi-relation wPRF where one can generate different
function evaluation keys associated with many relation circuits of the same lan-
guage L.

Witness encryption. Garg et al. [15] introduced the notion of witness encryp-
tion (WE) which is closely related to wPRFs. In a plain public-key encryption
(PKE), we encrypt data using a public key and decryption is possible if the
corresponding secret key is known. WE enables us to encrypt a message with
respect to an instance x of an NP language L. Only a witness holder can recover
the original message from the ciphertext if he has a valid witness w for x ∈ L.
The notion of Functional witness encryption was introduced by Boyle et al. [7]
where a decrypter can only learn a function of the message if a valid witness for
the instance is known. They have established the equivalence between functional
WE and differing inputs obfuscation.

Witness encryption consists of only two algorithms encryption and decryp-
tion. As a result, all the heavy-duty parts have been included in the encryption
algorithm that makes WE more inefficient to use in small devices. Abusalah et
al. [1] added a Setup phase which processes necessary tools to produce public
parameters for encryption and decryption. Witness encryption with additional
setup phase is called offline witness encryption (OWE).

Motivation. WEs and wPRFs are relatively new cryptographic primitives
mostly built from either multilinear maps or obfuscation. As a result these prim-
itives are experiencing inefficiency due to the existing noisy multilinear maps
and impracticality of obfuscation. We aim to construct more efficient wPRF and
OWE for any class of NP languages. Zhandry [25] used multilinear maps to con-
struct wPRFs which are instance dependence and multilinearity level increases
with respect to the size of relation circuits. The recent line of attacks on multi-
linear maps [12,10,6,16] is a threat to the cryptosystems where security is based
on complexity assumptions related to multilinear maps. It was mentioned in [25]
that wPRFs can be obtained from obfuscation but there was no explicit con-
struction. In the same work, wPRFs were used to replace obfuscation from many
cryptographic tools but those applications may not be fruitful in the practical

2

sense as the existing multilinear maps are only approximate and encountered
many non-trivial attacks.

The OWE scheme of [1] was realized using ElGamal public-key encryp-
tion and Gorth-Sahai proofs (GS-proofs) [20]. We note that GS-proofs are effi-
cient non-interactive witness-indistinguishable proofs for some specific languages
involving pairing product equations, multi-scaler multiplication equations or
quadratic equations over some groups. The ElGamal ciphertexts can be rep-
resented in a way to get a set of pairing product equations so that a statistical
simulation-sound non-interactive zero-knowledge (SSS-NIZK) proof can be en-
sured using the GS-proofs for those equations. Therefore, for practical use of
the OWE scheme of [1], we need to carefully choose the PKE scheme so that
a SSS-NIZK proof can be achieved through the GS-proofs. Otherwise, we need
to use the transformation of [4,14] to achieve a SSS-NIZK proof that involves
indistinguishability obfuscation and it may unnecessarily increase the size of
OWE-ciphertexts. More specifically, for a given circuit C, an NIZK proof [19]
for circuit satisfiability problem requires a size of O(|C|k) where O(k) is the
size of common reference string and |C| denotes size of circuit C. Therefore, the
SSS-NIZK proof is of size at least linear in the size of the encryption circuit of
the underlying PKE. We aim to get an OWE with relatively short ciphertexts
where we do not require to generate such proofs and can use any PKE schemes
as far as our requirement. Getting an efficient encryption algorithm producing
short ciphertexts is a desirable property while constructing OWE so that one
can use it in other cryptographic constructions.

Our contribution. In this work we construct a single relation wPRF (Sec-
tion 3) using a puncturable pseudorandom function and sub-exponentially se-
cure randomized encoding scheme in CRS model. Our approach is to use the
puncturable programming technique of [24] and incorporate the idea of getting
obfuscation from randomized encoding (RE) scheme in common reference string
(CRS) model [23]. A sub-exponentially secure randomized encoding scheme in
CRS model can be achieved from a sub-exponentially secure public key functional
encryption scheme and learning with error assumptions with sub-exponential
hardness [23]. The security proof of our wPRF is independent of instances and
does not rely on non-standard assumptions. We turn our single relation wPRF
into a multi-relation wPRF (Remark 2) where one can use the scheme with a
class of relations related to an NP language.

Furthermore, we build an OWE scheme (Section 4) utilizing an extractable
wPRF. We replace SSS-NIZK by wPRF from the construction of [1] to reduce
the size of ciphertext by at least linear to the size of encryption circuit of the ele-
mentary PKE scheme required in the building block. More precisely, our scheme
is based on a public-key encryption, an extractable wPRF and employs a sub-
exponentially secure randomized encoding scheme in CRS model. Consequently,
the ciphertexts contain a pseudorandom string of fixed size instead of a SSS-
NIZK proof. Using the same blueprint of [1], our OWE can be turned into an
offline functional witness encryption (OFWE) scheme (Remark 3) where de-
cryption releases a function of a message and witness as output. Inherently, our

3

OFWE also possesses short ciphertext as compared to that of [1]. Unfortunately,
the only extractable wPRF is known to be constructed from multilinear maps
[25]. Our construction of OWE would be more interesting if wPRF with extract-
ing feature can be built from standard assumptions without multilinear maps
which is still an open problem.

Previous work. Zhandry formalized the notion of witness PRF [25] and
constructed it using subset-sum encoding scheme. The notion of subset-sum en-
coding was instantiated from multilinear maps [13,11] and the security is based
on multilinear subset-sum Diffie-Hellman assumption. The wPRF obtained from
subset-sum encoding cannot immediately compute a pseudorandom value for an
instance x of NP language L, rather a reduction procedure is followed where x is
converted into a subset-sum instance. The reduced subset-sum instance depends
on L and the size of instance x. The security of the wPRF is also based on mul-
tilinear subset-sum Diffie-Hellman assumption and hardness of the assumption
is shown in a generic multilinear map model [25].

Abusalah et al. gave a construction of OWE using plain public-key encryption,
SSS-NIZK proof system and obfuscation. We note that SSS-NIZK can be ob-
tained from one-way functions and indistinguishable obfuscation [4,14]. They
built an OFWE utilizing the same primitives.

2 Preliminaries

We use the notations in Table 1 throughout this paper. We take ⊥ as a dis-
tinguishing symbol. Now, we go through the definition of randomized encoding

a← A a is an output of the procedure A.

a
$←− X a is chosen uniformly at random from set X.

negligible function µ : N → R is a negligible function if µ(n) ≤ 1
p(n)

holds for every

polynomial p(·) and all sufficiently large n ∈ N.
(λ0, S(·))-indistinguishability Two ensembles {Xλ} and {Yλ} are (λ0, S(·))-indistinguishable means

|Pr[x
$←− Xλ : D(x) = 1]− Pr[y

$←− Yλ : D(y) = 1]| ≤ 1
S(λ)

for

any security parameter λ > λ0 and every S(λ)-size distinguisher D,
S : N→ N.

δ-sub-exponential Two ensembles {Xλ} and {Yλ} are δ-sub-exponential indis-

indistinguishability tinguishable means |Pr[x
$←− Xλ : D(x) = 1] − Pr[y

$←− Yλ : D(y) =

1]| < δ(λ)Ω(1), for any security parameter λ and every poly-size dis-

tinguisher D, where δ(λ) < 2λ
ε
, 0 < ε < 1.

Expt(1λ, 0) ≈δ Expt(1λ, 1) For any polynomial size distinguisher D, the advantage ∆ =
|Pr[D(Expt(1λ, 0)) = 1]− Pr[D(Expt(1λ, 1)) = 1]| is bounded by δ.

Table 1. Notations

(RE) scheme in CRS model and briefly discuss how one can get indistinguisha-
bility obfuscation from RE [23]. The rest of the definitions related to this work
can be found in Appendix A.

4

2.1 Randomized Encoding Scheme in CRS Model

Randomized encoding was introduced by Ishai and Kushilevitz [21] to encode a
complex deterministic function Π along with an input x through an encoding
algorithm whose output distribution Π̂(x) can efficiently compute Π(x) and
reveals no information beyond Π(x). Recently, Lin et al. [23] studied randomized
encoding scheme in both plain model and common reference string (CRS) model
with compactness and sub-linear compactness of the size of encodings.

Definition 1 (Randomized encoding schemes in CRS model). A randomized
encoding scheme RE = (Setup, Enc, Eval) in CRS model for a class of Turing
machines {Mλ} where Setup and Enc are randomized algorithms and Eval is a
deterministic algorithm, performs as follows:

– (crs, pk)← RE.Setup(1λ, 1m, 1n, 1T , 1l): A trusted third party takes as input
a security parameter λ, a machine size bound m, input length bound n, time
bound T and output length l. It outputs a common reference string crs and
a public key pk.

– Π̂x ←RE.Enc(pk,Π, x): The encoding algorithm uses a public key pk, a
Turing machine Π ∈Mλ together with an input x and outputs an encoding
Π̂x.

– y ←RE.Eval(Π̂x, crs): An evaluator makes use of an encoding Π̂x and a
common reference string crs and outputs some y.

Correctness: For any λ ∈ N, m(λ), n(λ), T (λ), l(λ) ∈ N, Turing machine Π ∈
Mλ and input x with |Π| ≤ m, |x| ≤ n and |ΠT (x)| ≤ l, we have that

Pr

[
RE.Eval(Π̂x, crs) = ΠT (x) : (crs, pk)← RE.Setup(1λ, 1m, 1n, 1T , 1l)

Π̂x ← RE.Enc(pk,Π, x)

]
= 1

Here ΠT (x) denotes the output of the Turing machine Π on input x when run
in at most T steps.

Definition 2 ((λ0, S(·))-simulation security of randomized encoding in CRS
model). We say that a randomized encoding scheme RE for a class of Turing
machines {Mλ} in CRS model is (λ0, S(·))-simulation secure if there exists a
PPT algorithm Sim and a constant c such that for every {Π,x,m, n, l, T} where
Π ∈Mλ and |Π|, |x|,m, n, l, T ≤ B(λ) for some polynomial B, the ensembles{

(crs, pk, Π̂x) : (crs, pk)← RE.Setup(1λ, 1m, 1n, 1T , 1l), Π̂x ← RE.Enc(pk,Π, x)
}

and
{

(crs, pk, Π̂x) : (crs, pk, Π̂x)← Sim(1λ, ΠT (x), 1|Π|, 1|x|, 1m, 1n, 1T , 1l)
}

are (λ0, S
′(λ))-indistinguishable (see Table 1), with S′(λ) = S(λ) − B(λ)c for

all λ ∈ N. The RE is said to be δ-simulation secure for some specific negligible
function δ(·) if S′(λ) is greater than δ(λ)Ω(1). Also, we say that RE is δ-sub-
exponential simulation secure if δ(λ) < 2λ

ε

, 0 < ε < 1.

5

Hardwired: Π̃[
−→
pk1, C, ε, α], −→crs

Input: an input z = (z1z2 . . . zn)

1. Π̃ ← Π̃[
−→
pk1, C, ε, α], i← 0

2. while i < n do

3. (Π̃[
−→
pki+2, C, z1z2 · · · zi0, αi+1

0], Π̃[
−→
pki+2, C, z1z2 · · · zi1, αi+1

1]) ← RE.Eval(Π̃, crsi)

4. Π̃ ← Π̃[
−→
pki+2, C, z1z2 · · · zizi+1, α

i+1
zi+1

]

5. end do
6. return RE.Eval(Π̃, crsi)

Fig. 1. The Special Circuit G[Π̃[
−→
pk1, C, ε, α],−→crs]

Remark 1 In [23], an iO is instantiated from a sub-exponentially secure and
sub-linearly compact RE scheme in CRS model (Definition 21) and a sub-
exponentially secure pseudorandom generator (PRG). They followed the tech-
nique of GGM construction [17] of building a PRF from a PRG using a tree.
To get an iO, the PRG in the GGM construction is replaced with a sub-
exponentially secure sub-linear compact RE in CRS model. Let {Cλ}λ∈N be a
circuit class with maximum size S, input size n, output size l and the running
time bound T . The obfuscation procedure for a circuit C ∈ Cλ works as follows:

– We generate (crsi, pki) ← RE.Setup(1λ, 1S , 1n, 1T , 1l), for i ∈ {0, 1, . . . , n},
where crsi is a common reference string and pki is an encoding key. Let
−→crs = {crsi}ni=0,

−→
pki = {pkj}nj=i.

– We construct an input less Turing machine Π[
−→
pki+1, C, z, α

i
zi] where hard-

coded entities are
−→
pki+1, C, z = z1z2 . . . zi ∈ {0, 1}i and a string αizi ∈

{0, 1}2p(λ,i) (p being a polynomial depending on λ, i)1 for all i ∈ {0, 1, . . . , n−
1}. When i = 0, z is the null string ε and αizi is a random string α

$←−
{0, 1}2p(λ,0). The Turing machine Π[

−→
pk1, C, ε, α] computes randomized en-

codings of Π[
−→
pk2, C, 0, α

1
0] and Π[

−→
pk2, C, 1, α

1
1] where (α1

0, α
1
1) ← PRG(α)

with |α1
0| = |α1

1| = 2p(λ, 1), PRG being a sub-exponentially secure pseudo-

random generator. To be more specific, the Turing machine Π[
−→
pk1, C, ε, α]

first generates (α1
0, α

1
1)← PRG(α) and uses the randomness α1

0 to compute

encoding Π̃[
−→
pk2, C, 0, α

1
0]←RE.Enc(pk1, Π[

−→
pk2, C, 0, α

1
0], ε) and the random-

ness α1
1 to compute the encoding Π̃[

−→
pk2, C, 1, α

1
1]←RE.Enc(pk1, Π[

−→
pk2, C, 1,

α1
1], ε). More generally, the Turing machine Π[

−→
pki+1, C, z, α

i
zi] computes ran-

domized encodings Π̃[
−→
pki+2, C, z0, α

i+1
0] ← RE.Enc(pki+1, Π[

−→
pki+2, C, z0,

αi+1
0], ε) and Π̃[

−→
pki+2, C, z1, α

i+1
1]← RE.Enc(pki+1, Π[

−→
pki+2, C, z1, α

i+1
1], ε),

where (αi+1
0 , αi+1

1) ← PRG(αizi) for i ∈ {1, 2, . . . , n − 1}. When i = n, the

machine Π[
−→
pki+1, C, z, α

i
zi] outputs C(z). We denote the class of all such

Turing machines associated with the class of circuits {Cλ} as {Mλ}.

1
For every λ ∈ N, i ≤ 2λ, p(λ, i) = p(λ, i − 1) + (2dλ)1/ε and p(λ,−1) = λ where ε is a constant
associated with the sub-exponential security of PRG, d > 0 is any constant strictly greater than
c and the constant c represents the security loss associated with the indistinguishability security
of RE (section 4, [23]).

6

– We compute an encoding Π̃[
−→
pk1, C, ε, α] ← RE.Enc(pk0, Π[

−→
pk1, C, ε, α], ε).

Next, we construct the special circuit G[Π̃[
−→
pk1, C, ε, α],−→crs] as described in

Figure 1 which takes input an n bit string z = z1z2 · · · zn. For each i ∈
{0, 1, . . . , n− 1}, the circuit recursively computes RE.Eval(Π̃[

−→
pki+1, C, z1z2

· · · zi, αizi], crsi) which by correctness of RE, is equal to the output of the

Turing machine Π[
−→
pki+1, C, z1z2 · · · zi, αizi] i.e. two randomized encodings

Π̃[
−→
pki+2, C, z1z2 · · · zi0, αi+1

0] and Π̃[
−→
pki+2, C, z1z2 · · · zi1, αi+1

1] (as in line 3

of Figure 1). Finally, the circuit returns RE.Eval(Π̃[
−→
pkn+1, C, z, α

n
zn], crsn)

which actually is equal to C(z). The obfuscation of the circuit C is iO(1λ, C)

= G[Π̃[
−→
pk1, C, ε, α],−→crs].

– To evaluate the circuit C for an input z, we compute G[Π̃[
−→
pk1, C, ε, α],−→crs](z).

Lin et al. [23] proved that for any pair of functionally equivalent circuits C0,

C1 ∈ Cλ, the joint distribution (Π̃[
−→
pk1, C0, ε, α],−→crs) is indistinguishable from

(Π̃[
−→
pk1, C1, ε, α],−→crs). In particular, they have shown using the method of in-

duction that for any label i ∈ {0, 1, . . . , n}, z ∈ {0, 1}i the joint distribu-

tions (Π̃[
−→
pki+1, C0, z, α

i
zi],
−→crsi,

−→
pki) and (Π̃[

−→
pki+1, C1, z, α

i
zi],
−→crsi,

−→
pki) are indis-

tinguishable. The indistinguishability was achieved by the simulation security of
the RE scheme as described in the following theorem.

Theorem 1 [23] Assuming the existence of sub-exponentially secure one-way
functions, if there exists a sublinearly compact randomized encoding scheme in
the CRS model with sub-exponential simulation security, then there exists an
bounded-input indistinguishability obfuscator for Turning machines.

We stress that RE.Enc(pk0, Π[
−→
pk1, C, ε, α], ε) is actually a ciphertext obtained

from the encryption algorithm of underlying PKFE that uses (Π[
−→
pk1, C, ε, α], ε,

0λ+1) as the plaintext. The size of the special circuit G is bounded by poly(λ, |C|,
T) and runtime of G on input z is bounded by poly(λ, |z|, |C|, T). We will use

the notation G[Π̃[
−→
pk1, C, ε, α],−→crs] for obfuscating a circuit C using a randomized

encoding scheme in CRS model.

3 Our Witness PRF

Construction 1. We describe our construction of witness PRF (wPRF) that
uses a puncturable pseudorandom function pPRF = (Gen, Eval, Punc) with
domain X = {0, 1}k and range Y and a randomized encoding scheme RE =
(Setup, Enc, Eval) which is a bounded input sub-linearly compact randomized
encoding scheme in CRS model. Our scheme wPRF = (Gen, F, Eval) for an NP
language L with relation circuit R : X×W → {0, 1}, X = {0, 1}k,W = {0, 1}n−k
and |R| ≤ s, is given by the following algorithms.

• (fk, ek)← wPRF.Gen(1λ, R): A trusted third party generates a secret func-
tion key fk and a public evaluation key ek for a relation R by executing the
following steps where λ is a security parameter.

7

Hardwired: a pPRF key K.
Input: an instance x ∈ X = {0, 1}k and a witness w ∈ W = {0, 1}n−k.
Padding: the circuit is padded to size pad = pad(s, n, λ), determined in the analysis.

1. if R(x,w) = 1 then
2. y ← pPRF.Eval(K, x).
3. else y ← ⊥
4. end if
5. return y

Fig. 2. Evaluation Circuit E = EC[K]

– Choose a pPRF key K ← pPRF.Gen(1λ) where K ∈ {0, 1}λ.
– Construct the circuit E = EC[K] ∈ {Eλ} as defined in Figure 2. Let

the circuit E be of size S with input size n, output size l and T is the
runtime bound of the circuit.

– Generate (crsi, pki) ←RE.Setup(1λ, 1S , 1n, 1T , 1l) for i ∈ {0, 1, . . . , n}
where crsi is a common reference string and pki is an encoding key. We

define −→crs = {crs}ni=0 and
−→
pki = {pkj}nj=i.

– Compute the randomized encoding Π̃[
−→
pk1, E, ε, α]← RE.Enc(pk0, Π[

−→
pk1,

E, ε, α], ε) where ε is a null string, α is a random binary string and

Π[
−→
pk1, E, ε, α] is a Turing machine defined in Remark 1.

– Build the special circuit G[Π̃[
−→
pk1, E, ε, α],−→crs] as described in Figure 1.

– Set fk = K, ek = G [Π̃[
−→
pk1, E, ε, α],−→crs] and output (fk, ek). The secret

function key fk is sent to a user over a secure channel and the evaluation
key ek is made public.

• y ← wPRF.F(fk, x): This algorithm is run by the user who has a secret
function key fk and outputs a wPRF value y ← pPRF.Eval(K,x) ∈ Y for
an instance x ∈ X using the secret function key fk as a pPRF key K.
• wPRF.Eval(ek, x, w): An evaluator takes a witness w ∈ W for x ∈ L and

uses the public evaluation key ek = G[Π̃[
−→
pk1, E, ε, α],−→crs] to get back the

wPRF value as G[Π̃[
−→
pk1, E, ε, α],−→crs](z) where z = (x,w) ∈ {0, 1}n.

Correctness. The output of wPRF.F for an instance x is a pPRF evaluation
y ← pPRF.Eval(K, x) ∈ Y on x using the secret key K ∈ {0, 1}λ. On the

other hand, for wPRF.Eval an witness-holder computes G[Π̃[
−→
pk1, E, ε, α],−→crs]

(z) where z = (x,w). By the correctness of randomized encoding scheme as

discussed in Remark 1, we have G[Π̃[
−→
pk1, E, ε, α],−→crs](z) = E(x,w). The circuit E

(Figure 2) on input x,w, first checks whether R(x,w) = 1 holds. If this condition
is satisfied, then it outputs y ← pPRF.Eval(K,x) ∈ Y using the hardcoded
key K. Therefore a valid witness-holder of x ∈ L can recompute the wPRF
value y ∈ Y associated with x using the witness w and the evaluation key

ek = G[Π̃[
−→
pk1, E, ε, α],−→crs]. Note that, if w is not valid witness for x ∈ L then

the output of G[Π̃[
−→
pk1, E, ε, α],−→crs](z) = E(x,w) is the distinguished symbol

⊥. Therefore, our wPRF follows the correctness property stated in Equation 1,
Definition 8.

Padding Parameter. The proof of security relies on the indistinguishability of

randomized encodings of the machines Π[
−→
pk1, E, ε, α] and Π[

−→
pk1, E

∗, ε, α](where

8

1. The adversary A submits a challenge statement x∗ ∈ X \ L.

2. The challenger generates (fk, ek)← wPRF.Gen(1λ, R) as follows and sends ek to A:

2.1 Chose K ← pPRF.Gen(1λ) and set fk = K
2.2 Construct the circuit E = EC[K] as defined in Figure 2

2.3 Generate (crsi, pki)←RE.Setup(1λ, 1S , 1n, 1T , 1l) for i ∈ {0, 1, . . . , n} where S, n, T, l are

the same as in Construction 1 and set −→crs = {crs}ni=0 and
−→
pki = {pkj}

n
j=i

2.4 Build the special circuit G[Π̃[
−→
pk1, E, ε, α],−→crs] as described in Figure 1 where

Π̃[
−→
pk1, E, ε, α] ← RE.Enc(pk0, Π[

−→
pk1, E, ε, α], ε) and Π[

−→
pk1, E, ε, α] is a Turing machine

defined in Remark 1.
2.5 Set ek = G[Π̃[

−→
pk1, E, ε, α],−→crs]

3. The challenger computes y∗ ← wPRF.F(fk, x∗) ∈ Y and sends it to A.
4. The adversary A can make polynomial number of queries for wPRF.F on some x ∈ X \ {x∗}

to the challenger and receives wPRF.F(fk, x).
5. The adversary A outputs a bit b′.

Fig. 3. Hybd0 associated with our wPRF

E and E∗ are defined in Figure 2 and 4 respectively). For this we set pad =
max(|E|, |E∗|). The circuits E and E∗ compute the relation circuit R on an input
(x,w) of size n and evaluate a puncturable PRF over the domain X = {0, 1}k
of size 2k using a hardwired element which is a pPRF key for E or a punctured
pPRF key for E∗. Thus, pad ≤ poly(λ, s, k) where s is the size of the relation
circuit R.

Efficiency. In this analysis, we discuss the size of wPRF.F and wPRF.Eval.
The size of X is 2k and wPRF.F includes a PRF evaluation over the domain X .
Therefore, size of wPRF.F is bounded by poly(λ, k). We note that, wPRF.Eval

only runs the circuit G[Π̃[
−→
pk1, E, ε, α],−→crs] over an input of size n. The running

time of G[Π̃[
−→
pk1, E, ε, α],−→crs] is poly(λ, n, |E|, T) = poly(λ, n, k, s, T) and the

size of G[Π̃[
−→
pk1, E, ε, α],−→crs] is poly(λ, |E|, T) = poly(λ, k, s, T). In particular,

the running time and size of wPRF.Eval are respectively poly(λ, n, k, s, T) and
poly(λ, k, s, T). Here we note that the runtime T of the circuit E is bounded by
the runtime of the relation R and the runtime of a pPRF evaluation. So, T ≤
TR+ poly(λ, k) where TR is the runtime of the relation circuit R on input (x,w)
of size n. Hence, the runtime of wPRF.Eval is bounded by poly(λ, n, k, s, TR)
and size of wPRF.Eval is bounded by poly(λ, k, s, TR).

Theorem 2 Assume existence of δ-sub-exponentially secure one-way functions.
Our construction 1 of wPRF = (Gen, F, Eval) is δ-selectively secure witness
PRF if the pPRF is a δ-secure puncturable PRF and the RE is a bounded
input sub-linearly compact randomized encoding scheme in CRS model with δ-
sub-exponential simulation security for the class of Turing machines {Mλ} as-
sociated with the circuit class {Eλ}.

Proof. We prove this by showing that for any non-uniform PPT adversary A,
the distinguishing advantage between the two experiments ExptwPRF

A (1λ, 0) and
ExptwPRF

A (1λ, 1) (Figure 11) is negligible. Consider the following hybrid games:

Hybd0 This is the standard experiment ExptwPRF
A (1λ, 0) described in Figure 3.

9

Hardwired: a punctured key K{x∗}.
Input: an instance x ∈ X and a witness w ∈ W

1. if R(x,w) = 1 then
2. if x = x∗ then
3. return y∗

4. else return pPRF.Eval(K{x∗}, x)
5. end if
6. return ⊥

Fig. 4. Evaluation Circuit E∗ = EC[K{x∗}]

Hybd1 In this hybrid game we change K ← pPRF.Gen(1λ) into a punctured

key K{x∗} ← pPRF.Punc(K,x∗) and ek = G[Π̃[
−→
pk1, E

∗, ε, α],−→crs] instead

of G[Π̃[
−→
pk1, E, ε, α],−→crs] where E∗ = EC[K{x∗}] is the circuit as defined in

Figure 4 and y∗ ← pPRF.Eval(K,x∗) ∈ Y. We note that the functionality
and running time of both the circuits E and E∗ are the same. Also, the

size of the two machines Π[
−→
pk1, E, ε, α] and Π[

−→
pk1, E

∗, ε, α] is the same due

to padding. Therefore, the joint distribution (Π̃[
−→
pki+1, E, z, α

i
zi],
−→crsi,

−→
pki)

is indistinguishable from (Π̃[
−→
pki+1, E

∗, z, αizi],
−→crsi,

−→
pki) for every label i ∈

{0, 1, . . . , n} and z ∈ {0, 1}i (as discussed in Remark 1). Hence by simulation
security of the RE scheme, we have Hybd0 ≈δ Hybd1 (notation explained in
Table 1), i.e., these two hybrid games are computationally indistinguishable.

Hybd2 This hybrid game is the same as previous one except that here we
take y∗ as a uniformly random element from Y instead of setting y∗ ←
pPRF.Eval(K,x∗) ∈ Y. From the pseudorandomness at punctured points
(Definition 5) of the pPRF we have,

µ(λ) ≥ |Pr[A(K{x∗},pPRF.Eval(K,x∗)) = 1] − Pr[A(K{x∗}, U) = 1]|
≥ |Pr[Hybd1(λ) = 1]− Pr[Hybd2(λ) = 1]|

for infinitely many λ and a negligible function µ where U denotes uniform
distribution over the domain Y of pPRF.Eval. Since the pPRF is δ-secure,
we have µ(λ) ≤ δ(λ)ω(1). Thus it holds that Hybd1 ≈δ Hybd2.

Hybd3 In this hybrid game, again we consider ek = G[Π̃[
−→
pk1, E, ε, α],−→crs] cor-

responding to the circuit E = EC[K] as in the original experiment Hybd0.
Everything else is the same as in Hybd2. Following the similar argument as
in Hybd1, we have Hybd2 ≈δ Hybd3.

Note that Hybd3 is actually the regular experiment ExptwPRF
A (1λ, 1). Hence, by

the above sequence of hybrid arguments, ExptwPRF
A (1λ, 0) is indistinguishable

from ExptwPRF
A (1λ, 1) and we write ExptwPRF

A (1λ, 0) ≈δ ExptwPRF
A (1λ, 1). This

completes the proof of Theorem 2.

Corollary 1. Assuming LWE with sub-exponential hardness and the existence
of δ-sub-exponentially secure one-way functions, if there exists a weakly sub-
linear compact public key functional encryption scheme for P/poly with δ-sub-
exponential security, then there exists a δ-secure witness PRF scheme.

The proof of this corollary is sketched in Appendix B.

10

Remark 2 A multi-relation wPRF can be obtained from the above single-
relation wPRF by generating evaluation keys for various relation circuits. This
can be accomplished by splitting the key generation algorithm into two separate
parts, one for function secret-key and the other is for function evaluation key.
We describe this in Appendix C.

4 Our Offline Witness Encryption

Construction 2. We now construct an offline witness encryption scheme OWE
= (Setup, Enc, Dec) for any NP language L with relation circuit R : X ×W →
{0, 1}. The main ingredients and notations used in this proposed construction
are the following:

(i) A public-key encryption PKE = (Gen, Enc, Dec) semantically secure under
chosen plaintext attack.

(ii) An extractable witness PRF wPRF = (Gen, F, Eval) for the NP language
L′ = {(c1, c2,PK1,PK2) : ∃ (x,m, r1, r2) such that ci = PKE.Enc(PKi, (x,
m); ri) for i = 1, 2} with the relation R′ : χ′ × W ′ → {0, 1}. Therefore,
R′((c1, c2,PK1, PK2), (x,m, r1, r2)) = 1 if c1 and c2 are both encryptions of
the same message (x,m) using public keys PK1, PK2 and randomness r1,
r2 respectively; otherwise 0. Here we assume that message, ciphertext of the
PKE and the wPRF value can be represented as bit-strings.

(iii) A sub-linearly compact bounded input randomized encoding scheme RE =
(Setup, Enc, Eval) in CRS model with δ-sub-exponential simulation security
for Turing machines.

• (ppe, ppd) ← OWE.Setup(1λ, R): This is run by a trusted authority to gen-
erate public parameters for both encryption and decryption where R is a
relation circuit and λ is a security parameter. It works as follows:

– Obtain two pairs of PKE keys (SK1,PK1) ← PKE.Gen(1λ) and (SK2,
PK2)← PKE.Gen(1λ).

– Generate (fk, ek)← wPRF.Gen(1λ, R′) for the relation circuit R′.
– Construct the circuit C1 = MOC[SK1, fk] ∈ {Cλ} as defined in Figure 5.

Let S be the size of the circuit C1 with input size n, output size l and
T is the runtime bound of the circuit on an input of size n.

– Generate (crsi, pki) ← RE.Setup(1λ, 1S , 1n, 1T , 1l) for i ∈ {0, 1, . . . , n}
where crsi is a common reference string and pki is an encoding key. Set
−→crs = {crs}ni=0 and

−→
pki = {pkj}nj=i.

– Compute the randomized encoding Π̃[
−→
pk1, C1, ε, α] ← RE.Enc(pk0,

Π[
−→
pk1, C1, ε, α], ε) where ε is a null string, α is a random binary string

and Π[
−→
pk1, C1, ε, α] is a Turing machine defined in Remark 1.

– Build the special circuit G[Π̃[
−→
pk1, C1, ε, α],−→crs] described in Figure 1.

– Set and output (ppe = (PK1,PK2, ek), ppd = G[Π̃[
−→
pk1, C1, ε, α],−→crs]).

• c← OWE.Enc(1λ, x,m, ppe): An encrypter encrypts a message m ∈M with
respect to an NP statement x ∈ X using the public parameters for encryption
ppe and produces a ciphertext as follows:

11

Hardwired: a PKE secret key SKj , a wPRF function key fk.
Input: a ciphertext c and a witness w ∈ W

1. Parse c = (c1, c2, x, y)
2. if (wPRF.F(fk, (c1, c2,PK1,PK2)) = y) then
3. (x̂, m̂) ← PKE.Dec(SKj , cj)
4. if ((x̂ = x)

∧
(R(x̂, w) = 1)) then

5. return m̂
6. end if
7. end if
8. return ⊥

Fig. 5. Message Output Circuit Cj = MOC[SKj , fk], j = 1, 2

– Choose two random strings r1, r2
$←− {0, 1}lPKE(λ) where lPKE is a poly-

nomial in λ.
– Compute two ciphertexts ci = PKE.Enc(PKi, (x,m); ri) for i = 1, 2.
– Generate a wPRF evaluation of the statement (c1, c2,PK1,PK2) with

witness (x,m, r1, r2) as y ← wPRF.Eval(ek, (c1, c2,PK1,PK2), (x,m, r1,
r2)) and output c = (c1, c2, x, y) as ciphertext.

• OWE.Dec(c, w, ppd): On receiving a ciphertext c, a receiver who has a witness

w for x ∈ L, runs this algorithm using public parameter ppd = G[Π̃[
−→
pk1, C1, ε,

α],−→crs] for decryption to learn the message by outputting G[Π̃[
−→
pk1, C1, ε, α],

−→crs](z) where z = (c, w).

Correctness. The ciphertext c has four components where first two compo-
nents c1, c2 are the encryptions of the same message (x,m), the third one is a
statement x ∈ L and the last component y is a wPRF evaluation of the state-
ment (c1, c2,PK1,PK2) with witness (x,m, r1, r2). Therefore, we pass the check
at line 2 of the circuit C1 (Figure 5) as the correctness of wPRF scheme (Equa-
tion 1, Definition 8) implies wPRF.Eval(ek, (c1, c2,PK1,PK2), (x,m, r1, r2)) =
wPRF.F(fk, (c1, c2,PK1,PK2)). We recover (x,m)←PKE.Dec(SK1, c1) in line 3
of the circuit C1 assuming the exactness of the PKE scheme. If w ∈ W is a valid
witness for the statement x ∈ L, then R(x,w) = 1 and the circuit C1 returns the
message m ∈M. Finally, by the correctness of RE as described in Remark 1, we

have G[Π̃[
−→
pk1, C1, ε, α],−→crs](z) = C1(z) = m where z = (c, w). Hence Equation 4

of Definition 15 holds and the correctness of our OWE is established.

Efficiency. The encryption algorithm OWE.Enc computes two public-key en-
cryption on a message of size (|x|+ |m|) and one wPRF evaluation of an input of
the form (c1, c2,PK1,PK2) with size-bound poly(λ, |x|+ |m|) using a witness of
the form (x,m, r1, r2) with size-bound (|x| + |m| + 2.poly(λ)). Therefore, time
of encryption is bounded by the time of PKE.Enc and evaluation time of wPRF
and we have that TimeOWE.Enc ≤ 2. poly(λ, |x|+|m|) + TimewPRF.Eval. Also, the
size of the ciphertext is SizeOWE.c = 2 SizePKE.c + |x|+ |y| where SizePKE.c de-
notes the size of PKE-ciphertext. We note that |y| can be bounded by a constant
that does not depend on the PKE scheme.

Theorem 3 Assuming the existence of sub-exponentially secure one-way func-
tions, our construction 2 of OWE = (Setup, Enc, Dec) is δ-selectively secure
offline witness encryption if the underlying PKE is a δ-secure public-key en-
cryption under chosen plaintext attack (Definition 6), the wPRF is a δ-secure

12

1. The adversary chooses (x,m0,m1, st) ← A(1λ) and sends it to the challenger. Here x 6∈ L,
|m0| = |m1| and st contains some auxiliary information.

2. The challenger generates public parameters (ppe, ppd) ← OWE.Setup(1λ, R) as follows and
sends it to A:
2.1 Generate (SKi,PKi)← PKE.Gen(1λ) for i = 1, 2 and (fk, ek)← wPRF.Gen(1λ, R′) where

relation R′ is the same as in Construction 2
2.2 Set ppe = (PK1,PK2, ek)
2.3 Construct the message output circuit C1 = MOC[SK1, fk] (see Figure 5)

2.4 Generate (crsi, pki) ← RE.Setup(1λ, 1S , 1n, 1T , 1l) for i ∈ {0, 1, . . . , n} where S, n, T, l

are the same as in Construction 2 and set −→crs = {crs}ni=0 and
−→
pki = {pkj}

n
j=i

2.5 Construct the special circuit G[Π̃[
−→
pk1, C1, ε, α],−→crs] as described in Figure 1, where

Π̃[
−→
pk1, C1, ε, α] ← RE.Enc(pk0, Π[

−→
pk1, C1, ε, α], ε) and Π[

−→
pk1, C1, ε, α] is a Turing ma-

chine defined in Remark 1.
2.6 Set ppd = G[Π̃[

−→
pk1, C1, ε, α],−→crs]

3. The challenger produces the ciphertext c ← OWE.Enc(1λ, x,m0, ppe) as follows and submits
it to A:

3.1 Chose r1, r2
$←− {0, 1}lPKE(λ)

3.2 Compute c1 ←PKE.Enc(PK1, (x,m0); r1), c2 ←PKE.Enc(PK2, (x,m0); r2)
3.3 Evaluate y ← wPRF.Eval(ek, (c1, c2,PK1,PK2), (x,m0, r1, r2))
3.4 Set c← (c1, c2, x, y)

4. The adversary observing (st, c, ppe, ppd), outputs a bit b′ ← A(st, c, ppe, ppd).

Fig. 6. Hybd0 associated with our OWE

extractable witness PRF (Definition 10) and the RE is a bounded input δ-sub-
exponential simulation secure (Definition 2) sub-linear compact randomized en-
coding scheme (Definition 21) in CRS model for the class of Turing machines
{Mλ} associated with the class of circuits {Cλ}.

Proof. We show that the distinguishing advantage between two experiments
ExptOWE

A (1λ, 0) and ExptOWE
A (1λ, 1) (see Figure 13) for any non-uniform PPT

adversary A is negligible by defining the following sequence of hybrid games and
thereby, prove the indistinguishability between them. Let the challenge messages
be m0 and m1.

Hybd0 The first game is the standard selective security experiment ExptOWE
A (1λ,

0) where the adversary A is given the ciphertext corresponding to the mes-
sage m0. We describe it in Figure 6.

Hybd1 In this hybrid game we choose y randomly from Y instead of computing
y ← wPRF.Eval(ek, (c1, c2,PK1,PK2), (x,m0, r1, r2)). We show that these
games are indistinguishable under the extractable security of wPRF and the
semantic security of the PKE scheme.

Claim 1. Assuming the PKE is a semantically secure public-key encryp-
tion2 and the wPRF is an extractable witness PRF, Hybd0 and Hybd1 are
δ-indistinguishable.

Proof. Suppose the OWE-adversary A has a non-negligible advantage in
distinguishing Hybd0 and Hybd1. Then A is now an adversary for wPRF
relative to the relation R′ and the security of extractable wPRF (Defini-
tion 10) implies that there is an extractor (Equation 3) E that on input
ek, (c1, c2,PK1,PK2),Aux, y, {xi}, r, is able to find a witness w′ = (x,m0, r1,

2
We know that indistinguishability security implies semanitc security for a public key encryption
scheme.

13

1. The PKE-challenger runs PKE.Gen(1λ) → (SK2,PK2) and makes Pk2 public.
2. The PKE-adversary B submits the challenge messages m′0,m

′
1 to the PKE-challenger as follows

with some auxiliary information st and |m′0| = |m
′
1|:

2.1 Invoke OWE-adversary A to obtain (x,m0,m1, stA) ← A(1λ) where x 6∈ L and |m0| =
|m1|

2.2 Genereate (SK1,PK1)← PKE.Gen(1λ)

2.3 Compute (fk, ek)← wPRF.Gen(1λ, R′) for the relation R′ defined in Construction 2

2.4 Choose r1
$←− {0, 1}lPKE(λ)

2.5 Compute c1 = PKE.Enc(PK1, (x,m0); r1)
2.6 Set m′0 = (x,m0), m′1 = (x,m1) and st = (SK1,PK1, fk, ek, c1, r1, x,m0,m1, stA)

3. The PKE-challenger chooses a random bit b ∈ {0, 1} and sends the ciphertext

c′b ←PKE.Enc(PK2,m
′
b = (x, mb); r2) to B, where r2

$←− {0, 1}lPKE(λ).
4. The PKE-adversary B simulates A to output a guess for b by observing (st, c′b) as foloows:

4.1 Set c2 = c′b

4.2 Compute y
$←− Y

4.3 Construct the message output circuit C1 = MOC[SK1, fk] (see Figure 5)

4.4 Generate (crsi, pki) ← RE.Setup(1λ, 1S , 1n, 1T , 1l) for i ∈ {0, 1, . . . , n} where S, n, T, l

are the same as in Construction 2 and set −→crs = {crs}ni=0 and
−→
pki = {pkj}

n
j=i

4.5 Construct the special circuit G[Π̃[
−→
pk1, C1, ε, α],−→crs] as described in Figure 1, where

Π̃[
−→
pk1, C1, ε, α] ← RE.Enc(pk0, Π[

−→
pk1, C1, ε, α], ε) and Π[

−→
pk1, C1, ε, α] is a Turing ma-

chine defined in Remark 1.
4.6 Set c = (c1, c2, x, y), ppe = (PK1,PK2, ek), ppd = G[Π̃[

−→
pk1, C1, ε, α],−→crs] and send

(stA, c, ppe, ppd) to the OWE-adversary A
4.7 Output a guess b′ ← A(stA, c, ppe, ppd) for b

Fig. 7. The PKE-adversary B simulating Hybd2

r2), where Aux contains stA, the wPRF queries {xi} and r indicates the
random coin used by A. Therefore, E breaks the semantic security of the
underlying PKE scheme used in our construction and we arrive at a contra-
diction. This proves that Hybd0 ≈δ Hybd1.

Hybd2 In this hybrid game, we set c2 ← PKE.Enc(PK2, (x,m1); r2) instead of
c2 ← PKE.Enc(PK2, (x,m0); r2). The distribution of ciphertexts in Hybd1

and Hybd2 are computationally indistinguishable due to the CPA-security of
underlying PKE scheme (Definition 7). We prove this in the following claim.

Claim 2. Assuming the PKE is a δ-secure public-key encryption under cho-
sen plaintext attack, Hybd1 and Hybd2 are δ-indistinguishable.

Proof. To prove this we construct a PKE-adversary B against the security
(Definition 7) of PKE scheme for the key PK2 as described in Figure 7. From
the construction we see that if c′b ← PKE.Enc(PK2, (x,m0); r2), then B sim-
ulates Hybd0. If c′b ← PKE.Enc(PK2, (x,m1); r2), then B simulates Hybd1.
Therefore, the distinguishing advantage of A between Hybd0 and Hybd1 can
be bounded as

|Pr[Hybd0(λ) = 1]− Pr[Hybd1(λ) = 1]|
≤ |Pr[ExptPKE

B (1λ, 0) = 1]− Pr[ExptPKE
B (1λ, 1) = 1]|.

Then, we can use the indistinguishability guarantee of the underlying PKE
and it implies that the above advantage can be made less than a negligible
function of λ. Therefore, we have Hybd1 ≈δ Hybd2.

14

1. The OWE-adversary chooses (x̄, m̄0, m̄1, st) ← A(1λ) and sends it to the RE-adversary B,
where x̄ 6∈ L, |m̄0| = |m̄1| and st contains some auxiliary information.

2. The RE-adversary B generates public parameters (ppe, ppd) as follows and sends it to A:

2.1 Generate (SKi,PKi)← PKE.Gen(1λ) for i = 1, 2 and (fk, ek)← wPRF.Gen(1λ, R′) where
relation R′ is the same as in Construction 2

2.2 Set ppe = (PK1,PK2, ek)
2.3 Construct the message output circuits Cj = MOC[SKj , fk] for j = 1, 2 (see Figure 5)

2.4 Generate (crsi, pki) ← RE.Setup(1λ, 1S , 1n, 1T , 1l) for i ∈ {0, 1, . . . , n} where S, n, T, l

are the same as in Construction 2 and set −→crs = {crs}ni=0 and
−→
pki = {pki}

n
j=i

2.5 Submit the circuits Cj to the RE-challenger for j = 1, 2

2.6 The RE-challenger pick a random j
$←− {1, 2} and sends Π̃[

−→
pk1, Cj , ε, α] ←

RE.Enc(pk0, Π[
−→
pk1, Cj , ε, α], ε) to B where Π[

−→
pk1, Cj , ε, α] is a Turing machine defined

in Remark 1.
2.7 Construct the special circuit G[Π̃[

−→
pk1, Cj , ε, α],−→crs] as described in Figure 1.

2.8 Set ppd = G[Π̃[
−→
pk1, C1, ε, α],−→crs]

3. The RE-adversary B produces a OWE-ciphertext c̄ as follows and submits it to the OWE-
adversary A:

3.1 Chose r1, r2
$←− {0, 1}lPKE(λ)

3.2 Compute c̄1 ←PKE.Enc(PK1, (x̄, m̄0); r1), c̄2 ←PKE.Enc(PK2, (x̄, m̄1); r2)

3.3 Choose ȳ
$←− Y

3.4 Set c̄ = (c̄1, c̄2, x̄, ȳ)and send it to the OWE-adversary A
4. Output b′ ← A(st, c̄, ppe, ppd).

Fig. 8. The RE-adversary B simulating Hybd3

Hybd3 This hybrid game is the same as the previous game except that we take

ppd as the circuit G[Π̃[
−→
pk1, C2, ε, α],−→crs] instead of setting ppd ←G[Π̃[

−→
pk1, C1,

ε, α],−→crs]. We show that the adversary A’s distinguishing advantage between
Hybd2 and Hybd3 is negligible in the following claim.

Claim 3. Assuming the RE is a δ-sub-exponential simulation secure sub-
linear compact randomized encoding scheme in CRS model for the class of
Turing machines {Mλ} associated with the class of circuits {Cλ}, Hybd2

and Hybd3 are δ-indistinguishable.

Proof. We need to show that the joint distributions (Π̃[
−→
pki+1, C1, z, α

i
zi],
−→crsi,−→

pki) and (Π̃[
−→
pki+1, C2, z, α

i
zi],
−→crsi,

−→
pki) for every label i ∈ {0, 1, . . . , n} and

z ∈ {0, 1}i, are indistinguishable. It will imply that the two hybrids Hybd2,
Hybd3 are indistinguishable. If the functionality, runtime and size of two
circuits C1 and C2 are the same then the above indistinguishability follows
from the underlying simulation security of RE scheme in CRS model accord-
ing to the discussion in Remark 1.

We define an RE-adversary B against the indistinguishability secure RE
scheme in Figure 8. We note RE is δ-indistinguishability secure implies

that, if the two ensembles {Π1(x1), |Π1|, |x1|, T1 : (Π1, x1, T1)
$←− X1,λ}

and {Π2(x2), |Π2|, |x2|, T2 : (Π2, x2, T2)
$←− X2,λ} are δ-indistinguishable

then the two distributions {RE.Enc(pk,Π1, x1): (Π1, x1, T1)
$←− X1,λ} and

{RE.Enc(pk,Π2, x2): (Π2, x2, T2)
$←− X2,λ} are also δ-indistinguishable,

where Πj ∈Mλ and Tj denotes the runtime of Πj on input xj for j = 1, 2.

Therefor, if ppd = G[Π̃[
−→
pk1, C1, ε, α],−→crs] then B simulates Hybd1 and if ppd

15

= G[Π̃[
−→
pk1, C2, ε, α],−→crs] then B simulates Hybd2. Now we show the func-

tional equivalence of the circuits C1 and C2. Let (c, w) be any arbitrary
input to the circuits Cj , j = 1, 2 where c = (c1, c2, x, y).

Case 1. (x = x̄, c1 = c̄1 and c2 = c̄2): Since x̄ 6∈ L, we have R(x,w) = 0 in
line 4 of Cj (Figure 5), thus C1 and C2 both output ⊥.

Case 2. (x 6= x̄, c1 = c̄1 and c2 = c̄2): Correctness of PKE scheme implies
PKE.Dec(SKj , cj) = (x̄, m̄j) in line 3 of Cj (Figure 5) and both the circuits
returns ⊥ as x 6= x̄ in line 4.

Case 3. (c1 6= c̄1 or c2 6= c̄2): If c1 and c2 are encryptions of the same mes-
sage then we have PKE.Dec(SK1, c1) = PKE.Dec(SK2, c2). Therefore, the
behavior of both circuits C1 and C2 are the same as they differ only in line 3.
If the decryptions of c1 and c2 are not equal then (c1, c2,PK1,PK2) 6∈ L′ and
by the correctness of wPRF scheme we have y 6= wPRF.F(fk, (c1, c2,PK1,
PK2)). Hence, the circuits C1 and C2 return ⊥ due to line 2 (Figure 5).

This shows that C1 and C2 are functionally equivalent. Also, we note
that size and time bound for both the circuits are the same. Hence, we have
Hybd2 ≈δ Hybd3. This completes the proof of Claim 3.

Hybd4 The only difference of this hybrid from Hybd3 is that we compute
c1 ←PKE.Enc(PK1, (x,m1); r1) instead of c1 ←PKE.Enc(PK1, (x,m0); r1).
Therefore, Hybd3 and Hybd4 are computationally indistinguishable by the
CPA security of the underlying PKE scheme for the key PK1.

Claim 4. Assuming the PKE is a δ-secure public-key encryption under cho-
sen plaintext attack, Hybd3 and Hybd4 are δ-indistinguishable.

Hybd5 In this hybrid game we take ppd as the circuit G[Π̃[
−→
pk1, C1, ε, α],−→crs]

instead of G[Π̃[
−→
pk1, C2, ε, α],−→crs] as in the standard scheme. Therefore, by

the underlying simulation secure RE scheme we have Hybd4 and Hybd5 are
computationally indistinguishable as stated in the following claim.

Claim 5. Assuming the RE is a δ-sub-exponential simulation secure sub-
linear compact randomized encoding scheme in CRS model for the class of
Turing machines {Mλ} associated with the class of circuits {Cλ}, Hybd4

and Hybd5 are δ-indistinguishable.

Hybd6 In this hybrid we compute y ← wPRF.Eval(ek, (c1, c2,PK1,PK2), (x,m0,
r1, r2)) instead of choosing y randomly from Y. The indistinguishability is
guaranteed by the following claim.

Claim 6. Assuming the PKE is a semantically secure public-key encryp-
tion and the wPRF is an extractable witness PRF, Hybd5 and Hybd6 are
δ-indistinguishable.

The proofs of claim 4, 5, and 6 are analogous to that of claim 2, 3, and 1
respectively. Observe that Hybd6 is the experiment ExptOWE

A (1λ, 1). The indis-
tinguishability between the above hybrid games implies that ExptOWE

A (1λ, 0) ≈δ

16

Hardwired: a PKE secret key SKj , a wPRF function key fk.
Input: a ciphertext c and a witness w ∈ W

1. Parse c = (c1, c2, x, y)
2. if (wPRF.F(fk, (c1, c2,PK1,PK2)) = y) then

3. (x̂, (f̂ , m̂)) ← PKE.Dec(SKj , cj)
4. if ((x̂ = x)

∧
(R(x̂, w) = 1)) then

5. return f̂(m̂, w)
6. end if
7. end if
8. return ⊥

Fig. 9. Modified Message Output Circuit Fj = MMOC[SKj , fk], j = 1, 2

ExptOWE
A (1λ, 1) and the distinguishing advantage for the adversary A is strictly

less than µ(λ), where µ is a negligible function of λ. This completes the proof.

Remark 3 We convert our OWE scheme into an offline functional witness en-
cryption (OFWE) scheme for a class of functions {fλ}λ∈N. The encryption algo-
rithm of OFWE is the same as our OWE except that it takes an additional input
a function f ∈ fλ and then encrypts the pair of the function f and a message
m with the statement x using the PKE encryption to produce ciphertexts ci ←
PKE.Enc(PKi, (x, (f,m)); ri) for i = 1, 2. In line 3 of the circuit Cj (Figure 5),

we will have PKE.Dec(SKj , cj) = (x̂, (f̂ , m̂)) and in line 5 it will return f̂(m̂, w)
instead of m̂ (see circuit Fj in Figure 9). Rest of the algorithms of OFWE.Setup
and OFWE.Dec will be the same as that of our OWE scheme. The time of en-
cryption of the OWEF is bounded by poly(λ, |x|+|m|+|f |) where |x|, |m|, |f | are
the size of x,m, f respectively. The correctness and the security of the OFWE
depend on the same assumptions as in the case of our OWE.

References

1. H. Abusalah, G. Fuchsbauer, and K. Pietrzak. Offline witness encryption. In
International Conference on Applied Cryptography and Network Security, pages
285–303. Springer, 2016.

2. P. Ananth, Z. Brakerski, G. Segev, and V. Vaikuntanathan. The trojan method
in functional encryption: From selective to adaptive security, generically. IACR
Cryptology ePrint Archive, 2014:917, 2014.

3. N. Bitansky, R. Nishimaki, A. Passelègue, and D. Wichs. From cryptomania to
obfustopia through secret-key functional encryption. In Theory of Cryptography
Conference, pages 391–418. Springer, 2016.

4. N. Bitansky and O. Paneth. Zaps and non-interactive witness indistinguishability
from indistinguishability obfuscation. In Theory of Cryptography Conference, pages
401–427. Springer, 2015.

5. D. Boneh and B. Waters. Constrained pseudorandom functions and their appli-
cations. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 280–300. Springer, 2013.

17

6. D. Boneh, D. J. Wu, and J. Zimmerman. Immunizing multilinear maps against
zeroizing attacks. Cryptology ePrint Archive, Report 2014/930, 2014. https:

//eprint.iacr.org/2014/930.
7. E. Boyle, K.-M. Chung, and R. Pass. On extractability (aka differing-inputs)

obfuscation. TCC, 2014.
8. E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom

functions. In International Workshop on Public Key Cryptography, pages 501–519.
Springer, 2014.

9. Z. Brakerski, I. Komargodski, and G. Segev. Multi-input functional encryption in
the private-key setting: Stronger security from weaker assumptions. Cryptology
ePrint Archive, Report 2015/158, 2015. https://eprint.iacr.org/2015/158.

10. J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehle. Cryptanalysis on the multi-
linear map over the integers and its related problems. Cryptology ePrint Archive,
Report 2014/906, 2014. https://eprint.iacr.org/2014/906.

11. J.-S. Coron, T. Lepoint, and M. Tibouchi. Practical multilinear maps over the
integers. In Advances in Cryptology–CRYPTO 2013, pages 476–493. Springer,
2013.

12. J.-S. Coron, T. Lepoint, and M. Tibouchi. Cryptanalysis of two candidate fixes
of multilinear maps over the integers. IACR Cryptology ePrint Archive, 2014:975,
2014.

13. S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices.
In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 1–17. Springer, 2013.

14. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM
Journal on Computing, 45(3):882–929, 2016.

15. S. Garg, C. Gentry, A. Sahai, and B. Waters. Witness encryption and its appli-
cations. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pages 467–476. ACM, 2013.

16. C. Gentry, S. Halevi, H. K. Maji, and A. Sahai. Zeroizing without zeroes: Crypt-
analyzing multilinear maps without encodings of zero. Cryptology ePrint Archive,
Report 2014/929, 2014. https://eprint.iacr.org/2014/929.

17. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. ACM, 33:792–807, 1986.

18. S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich.
Reusable garbled circuits and succinct functional encryption. In Proceedings of
the forty-fifth annual ACM symposium on Theory of computing, pages 555–564.
ACM, 2013.

19. J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge
for np. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 339–358. Springer, 2006.

20. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 415–432. Springer, 2008.

21. Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In Foundations of Computer
Science, 2000. Proceedings. 41st Annual Symposium on, pages 294–304. IEEE,
2000.

22. L. A. Levin. One way functions and pseudorandom generators. Combinatorica,
7(4):357–363, 1987.

18

https://eprint.iacr.org/2014/930
https://eprint.iacr.org/2014/930
https://eprint.iacr.org/2014/906
https://eprint.iacr.org/2014/929

23. H. Lin, R. Pass, K. Seth, and S. Telang. Output-compressing randomized encodings
and applications. In Theory of Cryptography Conference, pages 96–124. Springer,
2016.

24. A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In Proceedings of the forty-sixth annual ACM symposium
on Theory of computing, pages 475–484. ACM, 2014.

25. M. Zhandry. How to avoid obfuscation using witness prfs. In Theory of Cryptog-
raphy Conference, pages 421–448. Springer, 2016.

A Useful Definitions

A.1 Pseudorandom Function

A finite set of functions {Fs : X → Y}s with a seed or key s is said to form a pseu-
dorandom function family [17] if Fs can be efficiently computed for given s and is
computationally indistinguishable from a random function R : X → Y given oracle
access to R.

Definition 3 (Pseudorandom function). A pseudorandom function(PRF) is a function
F : {0, 1}λ ×X → Y with polynomial runtime satisfying

|Pr[AF(K, ·)(1λ) = 1 : K
$←− {0, 1}λ]− Pr[AR(·)(1λ) = 1 : R

$←− U]| ≤ µ(λ)

for every probabilistic polynomial time (PPT) adversary A, where U is the set of all
functions from X to Y and µ is a negligible function in λ. The pseudorandom function F
is said to be δ-secure for some specific negligible function δ(·) if the indistinguishability
gap µ(λ) is less than δ(λ)Ω(1).

A.2 Puncturable Pseudorandom Function

Sahai and Waters [24] introduced a key-puncturing technique for pseudorandom func-
tions that can be used to build many cryptographic primitives with the help of obfus-
cation. The punctured key of a puncturable pseudorandom function allows to evaluate
PRF at all points except for the points in a (predefined) polynomial-size set.

Definition 4 (Puncturable pseudorandom function). A puncturable pseudorandom
function (pPRF) consists of a tuple of algorithms pPRF = (Gen, Eval, Punc) over
the domain X and range Y and is defined as follows:

– K ←pPRF.Gen(1λ): It is a randomized algorithm run by a trusted authority which
takes as input a security parameter λ and outputs a secret key K ∈ {0, 1}λ.

– y ←pPRF.Eval(K′, x): It is a deterministic algorithm which on input a key K′

and an element x ∈ X , outputs the PRF value y ∈ Y.
– K{S} ←pPRF.Punc(K,S): It is a deterministic algorithm that takes a secret key
K and a polynomial-size set S ⊂ X as input and outputs a punctured key K{S}.
If S contains a single element, say x, then we simply write K{S} as K{x}.

Correctness: (Functionality preserving under puncturing) For all polynomial-size sub-
set S of X , and for all x ∈ X \ S we have that

Pr[pPRF.Eval(K,x)= pPRF.Eval(K{S}, x)]=1.

19

Definition 5 (Pseudorandomness at punctured points). We say that a puncturable
pseudorandom function pPRF = (Gen, Eval, Punc) preserves pseudorandomness at
punctured points if

|Pr[A(K{S}, {pPRF.Eval(K,x)}x∈S) = 1] − Pr[A(K{S}, U |S|) = 1]| ≤ µ(λ)

for every PPT adversary A and any polynomial-size subset S of X , where K ←
pPRF.Gen(1λ), K{S} ← pPRF.Punc(K,S), U denotes the uniform distribution over
Y and µ is a negligible function in λ. The pPRF is said to be δ-secure for some specific
negligible function δ(·) if the above indistinguishability gap µ(λ) is less than δ(λ)Ω(1).

It has been observed by [5,8] that puncturable PRFs can be constructed from one-
way functions using the GGM tree-based construction of PRFs [17] where the size of
the punctured key grows polynomially with the number of elements in the set S. The
GGM construction [17] of pseudorandom functions uses a cryptographically strong bit
(CSB) generator or pseudorandom generator (PRG) which can be obtained from one-
way functions. Moreover, if the one-way functions are assumed to be sub-exponentially
hard then the PRG is also sub-exponentially secure. We describe these facts in the
following theorems:

Theorem 4 [17,22] Assuming the existence of sub-exponentially secure one-way func-
tions, there exists an efficiently computable sub-exponentially secure pseudorandom gen-
erator for any desired poly-size input length.

Theorem 5 [17,5,8] Assuming the existence of one-way functions, there exists an ef-
ficiently computable puncturable pseudorandom function for any desired poly-size input
length.

A.3 Public-Key Encryption

Definition 6 (Public-key encryption). A public-key encryption scheme for a message
space M is a tuple of PPT algorithms PKE = (Gen, Enc, Dec) with the following
properties:

– (SK, PK) ← PKE.Gen(1λ): This is a randomized key generation algorithm which
is run by a trusted third party with a security parameter λ as input. It outputs a
public key PK and a secret key SK. A user who obtains a key pair (PK, SK) from
a trusted party, keeps the secret key SK and publishes the public key PK.

– c ← PKE.Enc(PK, m; r): The encrypter uses the public key PK to encrypt a
message m ∈ M using a randomness r and produces a ciphertext c which is
broadcasted over a public domain.

– PKE.Dec(SK, c) ∈ M ∪ {⊥}: The recipient of a ciphertext c runs this algorithm
using the secret key SK and gets either a message m ∈M or ⊥ where ⊥ indicates
a failure of the algorithm.

Correctness: For every λ ∈ N, m ∈M, we have

Pr[PKE.Dec(SK, c) = m : (SK, PK)← PKE.Gen(1λ), c← PKE.Enc(PK, m; r)] = 1

20

1. The challenger runs PKE.Gen(1λ) →(SK, PK) and makes PK public.
2. The adversary A selects m0,m1 ∈ M such that |m0| = |m1| and sends (m0,m1, st) to the

challenger where st contains some auxiliary information.
3. Next, the challenger chooses a random bit b ∈ {0, 1}, a randomness r and sends

cb ←PKE.Enc(PK, mb; r) to A.
4. The adversary A observes cb and st and outputs a guess b′ for b.

Fig. 10. ExptPKE
A (1λ, b): The security game of a CPA-secure public-key encryption

Definition 7 (Indistinguishability under chosen-plaintext attacks). We say that a
public-key encryption scheme PKE = (Gen, Enc, Dec) is indistinguishable under chosen
plaintext attacks (CPA) if

|Pr[ExptPKE
A (1λ, 0) = 1]− Pr[ExptPKE

A (1λ, 1) = 1]| ≤ µ(λ)

for any λ ∈ N and every PPT adversary A in the experiments ExptPKE
A (1λ, b) de-

fined in Figure 10 where b ∈ {0, 1} and µ is a negligible function of λ. The PKE is
said to be δ-selectively secure for some specific negligible function δ(·) if the above
indistinguishability gap µ(λ) is less than δ(λ)Ω(1).

A.4 Witness PRF

Informally, a witness PRF scheme [25] produces a somewhat random value from a set
with respect to an instance x ∈ L for an NP language L and a user can recompute the
value provided he has a witness w for x ∈ L.

Definition 8 (Witness PRF). A witness PRF (wPRF) for an NP language L with
the witness relation R : χ ×W → {0, 1} consists of three algorithms wPRF = (Gen,
F, Eval) and works as follows:

– (fk, ek) ← wPRF.Gen(1λ, R): A trusted authority 3 takes as input the security
parameter λ and a relation circuit R : χ × W → {0, 1} and randomly generates
a secret function key fk and a public evaluation key ek. A user receiving (fk, ek)
through a secure channel, keeps fk as a secret key and publishes ek. We note that
R(x,w) = 1 if and only if w is a valid witness for x ∈ L.

– y ←wPRF.F(fk, x): Using a function key fk and an input x ∈ χ, the user runs this
algorithm which deterministically outputs some y ∈ Y.

– wPRF.Eval(ek, x, w) ∈ Y ∪ {⊥} : An witness holder runs this algorithm using
an evaluation key ek, an input x ∈ χ and a witness w ∈ W and deterministically
recovers either y ∈ Y or ⊥.

Correctness: For all x ∈ X , w ∈ W, we have that

wPRF.Eval(ek, x, w) =

{
wPRF.F(fk, x) if R(x,w) = 1
⊥ if R(x,w) = 0

(1)

Definition 9 (Selectively secure witness PRF). We say that a witness PRF scheme
wPRF = (Gen, F, Eval) for an NP language L, a relation R : χ ×W → {0, 1}, a set
Y, is selectively secure if

3
We note that a user may itself run this algorithm to get the secret function key fk and the
evaluation key ek which is made public.

21

1. The adversary A chooses a single challenge query on an instance x∗ ∈ X \ L to the challenger.

2. The challenger generates (fk, ek)← wPRF.Gen(1λ, R) and gives ek to the adversary A.

3. The challenger computes y0 ← wPRF.F(fk, x∗), selects y1
$←− Y and sends yb to A for a

randomly chosen b ∈ {0, 1}.
4. The adversary A makes polynomially many queries on instance xi ∈ X , i = 1, 2, . . . , u, to

which the challenger responses with wPRF.F(fk, xi) if xi 6= x∗; otherwise terminates the game.
5. Then A outputs a guess b′ for b.

Fig. 11. ExptwPRF
A (1λ, b): The security game of a selectively-secure witness PRF

∣∣Pr
[
ExptwPRF

A (1λ, 0) = 1
]
− Pr

[
ExptwPRF

A (1λ, 1) = 1
]∣∣ ≤ µ(λ)

for any λ ∈ N and every PPT adversary A in the experiments ExptwPRF
A (1λ, b) de-

fined in Figure 11 where b ∈ {0, 1} and µ is a negligible function of λ. The wPRF
is said to be δ-selectively secure for some specific negligible function δ(·) if the above
indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

Definition 10 (Extractable witness PRFs). A witness PRF scheme wPRF = (Gen,
F, Eval) for an NP language L with relation R is said to be a secure extractable witness
PRF with respect to an R-instance sampler D if there exists a polynomial p(·) such
that ∣∣∣∣∣Pr

[
AwPRF.F(fk,·)(ek, x∗,Aux, y∗) = 1 : (fk, ek)← wPRF.Gen(λ,R),

(x∗,Aux)
$←− DwPRF.F(fk,·)(ek), y∗ ← wPRF.F(fk, x∗)

]
−

Pr

[
AwPRF.F(fk,·)(ek, x∗,Aux, y∗) = 1 : (fk, ek)← wPRF.Gen(λ,R),

(x∗,Aux)
$←− DwPRF.F(fk,·)(ek), y∗

$←− Y

] ∣∣∣∣∣ ≥ 1

2
+

1

p(λ)
(2)

for every PPT adversary A and infinitely many λ, then there exists a PPT extractor
E and a polynomial q(·) such that

Pr

[
w∗

$←− E(ek, x∗,Aux, y∗, {xi}, r) : R(x∗, w∗) = 1, {xi} are the wPRF.F queries
of A and r is the random coin of A

]
≥ 1

q(λ)

(3)
for infinitely many λ.

A.5 Multi-Relation Witness PRF

The notion of multi-relation witness PRFs was introduced by Zhandry [25] to work
with multiple relations but with the same secret function key.

Definition 11 (Multi-Relation Witness PRFs). A multi-relation witness PRF scheme
for for a set of relations R = {R : |R| ≤ s,R : χ × W → {0, 1}} consists of three
algorithms mwPRF=(Gen, F, Eval) and works as follows:

– fk← mwPRF.Gen(λ, s): It is a randomized algorithm run by a user4 which takes
as input a security parameter λ and a bound s on the size of supported relations
and produces a secret function key fk.

4
This algorithm can be processed by a trusted third party to generate the secret function key fk
and in that case the key is sent to a user through a secure channel.

22

1. The adversary A chooses a single challenge query on an instance x∗ ∈ X to the challenger.

2. The challenger generates fk
$←−mwPRF.Gen(1λ, s), and delivers s to the adversary A.

3. The challenger computes y0 ← mwPRF.F(fk, x∗) and y1
$←− Y and sends yb to A for a randomly

chosen b ∈ {0, 1}.
4. The adversary A makes polynomially many evaluation key queries Ri ∈ R for i = 1, 2, · · · l,

to which the challenger responses with ekRi ← mwPRF.KeyGen(fk, Ri) if x∗ has no witness
corresponding to the relation Ri; otherwise stops the game.

5. Next, A makes polynomially many queries on instance {xij }
u(i)
j=1 ∈ X , for i = 1, 2, · · · , l, u(i) is

a polynomial in λ. The challenger responses with mwPRF.F(fk, xij) if xij 6= x∗ and xij is an

instance of interest corresponding to the relation Ri; otherwise the challenger terminates the
game.

6. Finally, A outputs a guess b′ for b.

Fig. 12. ExptmwPRF
A (1λ, b): The security game of a selectively-secure multi-relation

witness PRF scheme

– y ← mwPRF.F(fk, x): It is a deterministic algorithm that takes as input a secret
function key fk and an instance x ∈ X , and outputs an element y ∈ Y for some set
Y.

– ekR ← mwPRF.KeyGen(fk, R): It is possibly a randomized algorithm run by a
user having fk, which needs as input a secret function key fk and a relation circuit
R, and produces a public evaluation key ekR corresponding to the relation R.

– mwPRF.Eval(ekR, x, w) ∈ Y∪{⊥}: It is a deterministic algorithm run by a witness
holder that on input an evaluation key ekR, an instance x and a witness w, outputs
an element y ∈ Y or ⊥.

Correctness: For all x ∈ X , w ∈ W, we have that

mwPRF.Eval(ekR, x, w) =

{
mwPRF.F(fk, x) if R(x,w) = 1
⊥ if R(x,w) = 0

Definition 12 (Selectively secure multi-relation witness PRF). We say that a multi-
relation witness PRF scheme mwPRF=(Gen, F, Eval) for a set of relations R = {R :
|R| ≤ s,R : χ×W → {0, 1}}, a set Y, is selectively secure if∣∣Pr

[
ExptmwPRF

A (1λ, 0) = 1
]
− Pr

[
ExptmwPRF

A (1λ, 1) = 1
]∣∣ ≤ µ(λ)

for any λ ∈ N and every PPT adversary A in the experiments ExptmwPRF
A (1λ, b)

defined in Figure 12 where b ∈ {0, 1} and µ is a negligible function of λ. The mwPRF
is said to be δ-selectively secure for some specific negligible function δ(·) if the above
indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

A.6 Witness Encryption

Witness encryption was introduced by Garg et al. [15] to encrypt a message with an
NP statement and decryption is successful with a valid witness to the statement.

Definition 13 (Witness encryption). A witness encryption (WE) scheme for an NP
language L with the witness relation R : χ ×W → {0, 1} consists of two algorithms
WE = (Enc, Dec) satisfying the following:

23

1. The adversary A chooses x ∈ X \ L, m0,m1 ∈ M such that |m0| = |m1| and sends
(x,m0,m1, st) to the challenger where st is a state containing some auxiliary information.

2. The challenger generates (ppe, ppd)← OWE.Setup(1λ, R) and sends this to A.

3. The challenger selects b ∈ {0, 1} and sends cb ← OWE.Enc(1λ, x,mb, ppe) to A.
4. The adversary A outputs a bit b′ for b by observing (st, cb, ppe, ppd).

Fig. 13. ExptOWE
A (1λ, b): The security game of a selectively-secure offline witness

encryption

– c ←WE.Enc(1λ, x,m): An encrypter takes as input a security parameter λ, an
instance x ∈ χ and a message m ∈M and outputs a ciphertext c.

– WE.Dec(c, w) ∈ M ∪ {⊥}: A witness holder takes a ciphertext c and a witness
w ∈ W as input and outputs a message m ∈M or ⊥.

Correctness: For any λ ∈ N, m ∈ M, (x,w) ∈ χ×W such that x ∈ L, R(x,w) = 1,
we have that

Pr
[
WE.Dec(c, w) = m : c←WE.Enc(1λ, x,m)

]
= 1.

Definition 14 (Soundness security of witness encryption). A tuple of algorithms WE
= (Enc, Dec) is soundness secure witness encryption scheme for an NP language L and
a relation R : χ×W → {0, 1}, if

|Pr[A(WE.Enc(1λ, x,m0))=1] − Pr[A(WE.Enc(1λ, x,m1))=1]| ≤ µ(λ)

for any x 6∈ L, for any PPT adversary A and messages m0,m1 ∈ M with |m0| = |m1|
where µ is a negligible function of λ. The WE scheme is said to be δ-soundness secure
for some specific negligible function δ(·) if the above indistinguishability gap µ(λ) is
less than δ(λ)Ω(1).

A.7 Offline Witness Encryption

Witness encryption scheme with an offline phase [1] reduces time of encryption by
shifting the heavy-computing part into a setup algorithm. We note that setup is inde-
pendent of the statement and message to be encrypted.

Definition 15 (Offline witness encryption). An offline witness encryption (OWE)
scheme for an NP language L with witness relation R : χ × W → {0, 1} is a tuple
of algorithms OWE = (Setup, Enc, Dec) with the following requirements:

– (ppe, ppd)←OWE.Setup(1λ, R): This algorithm is run by a trusted third party
which takes as input a security parameter λ and publishes a public parameter ppe
for encryption and a public parameter ppd for decryption.

– c←OWE.Enc(1λ, x,m, ppe): The encryption algorithm takes as input the security
parameter λ, an instance x ∈ χ, a message m ∈M and encryption parameter ppe.
It computes a ciphertext c and broadcasts it over a public channel.

– OWE.Dec(c, w, ppd) ∈M∪{⊥}: A witness holder on receiving a ciphertext c runs
this algorithm using a witness w and decryption parameter ppd to recover either
m ∈M or ⊥.

24

Correctness: For any λ ∈ N, m ∈ M, (x,w) ∈ χ×W such that x ∈ L, R(x,w) = 1,
we have that

Pr

[
OWE.Dec(c, w, ppd) = m : (ppe, ppd)← OWE.Setup(1λ, R),

c← OWE.Enc(1λ, x,m, ppe)

]
= 1. (4)

Definition 16 (Selectively secure offline witness encryption). We say that an offline
witness encryption OWE = (Setup, Enc, Dec) for an NP language L and a relation
R : χ×W → {0, 1}, is selectively secure if∣∣Pr

[
ExptOWE

A (1λ, 0) = 1
]
− Pr

[
ExptOWE

A (1λ, 1) = 1
]∣∣ ≤ µ(λ)

for any λ ∈ N and every PPT adversary A in the experiments ExptOWE
A (1λ, b) de-

fined in Figure 13 where b ∈ {0, 1} and µ is a negligible function of λ. The OWE is
said to be δ-selectively secure for some specific negligible function δ(·) if the above
indistinguishability gap µ(λ) is less than δ(λ)Ω(1).

A.8 Offline Functional Witness Encryption

The notion of functional witness encryption scheme was given by Boyel et al. [8] who
established the equivalence between extractable obfuscation and functional witness
encryption with extractable security. Abusalah et al. [1] introduced functional witness
encryption with a setup algorithm and named it as offline functional witness encryption.

Definition 17 (Offline functional witness encryption). An offline functional witness
encryption (OFWE) scheme for an NP language L with witness relation R : χ×W →
{0, 1} and a class of functions {fλ}λ∈N is a tuple of algorithms OFWE = (Setup, Enc,
Dec) with the following requirement:

– (ppe, ppd)←OFWE.Setup(1λ, R): A trusted third party runs this algorithm taking
input a security parameter λ and publishes a public parameter ppe for encryption
and a public parameter ppd for decryption.

– c ←OFWE.Enc(1λ, x, (f,m), ppe): The encryption algorithm takes as input a se-
curity parameter λ, an instance x ∈ χ, a function f ∈ fλ, a message m ∈ M and
encryption parameter ppe. It outputs a ciphertext c over a public channel. The
domain of the function class is M×W.

– OFWE.Dec(c, w, ppd) ∈ M ∪ {⊥}: A witness holder on receiving a ciphertext c
runs this algorithm using a witness w and decryption parameter ppd and recovers
either f(m,w) or ⊥.

Correctness: For any λ ∈ N, f ∈ fλ, m ∈ M, (x,w) ∈ χ × W such that x ∈ L,
R(x,w) = 1, we have that

Pr

[
OFWE.Dec(c, w, ppd) = f(m,w) : (ppe, ppd)← OFWE.Setup(1λ, R),

c← OFWE.Enc(1λ, x, (f,m), ppe)

]
= 1.

Definition 18 (Selectively secure offline functional witness encryption). We say that
an offline functional witness encryption OFWE = (Setup, Enc, Dec) for an NP language
L with witness relation R : χ×W → {0, 1} and a function class {fλ}λ∈N, is selectively
secure if ∣∣Pr

[
ExptOFWE

A (1λ, 0) = 1
]
− Pr

[
ExptOFWE

A (1λ, 1) = 1
]∣∣ ≤ µ(λ)

for any λ ∈ N and every PPT adversary A in the experiments ExptOFWE
A (1λ, b) defined

in Figure 14 where b ∈ {0, 1} and µ is a negligible function of λ. The OFWE is
said to be δ-selectively secure for some specific negligible function δ(·) if the above
indistinguishability gap µ(λ) is less than δ(λ)Ω(1).

25

1. The adversary A chooses x ∈ X , (f0,m0), (f1,m1) ∈ fλ×M such that f0(m0, w) = f1(m1, w)
for all w satisfying R(x,w) = 1 and |(f0,m0)| = |(f1,m1)| and sends (x,m0,m1, st) to the
challenger where st is a state containing some auxiliary information.

2. The challenger generates (ppe, ppd)← OFWE.Setup(1λ, R) and sends this to A.

3. The challenger selects b ∈ {0, 1} and sends cb ← OFWE.Enc(1λ, x, (fb,mb), ppe) to A.
4. The adversary A guesses a bit b′ for b by observing (st, cb, ppe, ppd).

Fig. 14. ExptOFWE
A (1λ, b): The security game of a selectively-secure offline functional

witness encryption

A.9 Compactness and Sub-linear Compactness of Randomized
encoding schemes in CRS model

Definition 19 (Compact randomized encoding for Turing machines). A (λ0, S(·))-
simulation secure randomized encoding scheme (see Definition 2) is said to be compact
if

TimeRE.Enc(1
λ, Π, x, T) = poly(λ, |Π|, |x|, log T) and

TimeRE.Eval(Π̂x, crs) = poly(λ, |Π|, |x|, T)

for every security parameter λ, Turing machine Π, input x, time-bound T and every
encoding Π̂x ← RE.Enc(pk,Π, x) where (crs, pk) ← RE.Setup(1λ, ·). Here TimeX(·)
denotes the time-bound of the algorithm X with a specified class of inputs.

Definition 20 (Succinct randomized encoding for Turing machines). A (λ0, S(·))-
simulation secure randomized encoding scheme is said to be succinct for a class of
Turing machines {Mλ} if the efficiency requirement for RE.Enc is defined as

TimeRE.Enc(1
λ, Π, x, T) = l · poly(λ, |Π|, |x|, log T).

The notations are the same as in Definition 19

Definition 21 (Sub-linear compactness of randomized encoding for Turing machines).
A (λ0, S(·))-simulation secure randomized encoding scheme is said to be sub-linearly
compact for a class of Turing machines {Mλ} if the efficiency requirement for RE.Enc
is defined as

TimeRE.Enc(1
λ, Π, x, T) ≤ poly(λ, |Π|, |x|) · T 1−ε

for some ε ∈ (0, 1). The notations are the same as in Definition 19

Randomized encoding schemes in CRS model can be constructed from a public key
functional encryption (PKFE) scheme and a pseudorandom generator [23]. The com-
pactness (respectively, sub-linear compactness) of RE in CRS model depends on the
compactness (respectively, sub-linear compactness) of the underlying PKFE. In [3], a
weakly sub-linear compact PKFE for P/poly (i.e. for polynomial size circuits) is con-
structed using plain public key encryption and strong exponentially-efficient indistin-
guishability obfuscation (SXIO). They also instantiated SXIO from sub-exponentially
secure secret key functional encryption (SKFE) schemes. The existence of a sub-linearly
compact randomized encoding scheme for Turing machines follows from the two theo-
rems stated below.

26

Theorem 6 [3] Assuming a plain public-key encryption (PKE) and strong exponentially-
efficient indistinguishability obfuscation (SXIO) with a small enough constant com-
pressing factor, there exists a weakly sub-linear compact public key functional encryp-
tion (PKFE) scheme (for functions with long output).

Theorem 7 [23] Assuming hardness of Learning With Error (respectively, sub-exponential
hardness), if there exists a selectively secure weakly sub-linear compact public key func-
tional encryption (PKFE) scheme for P/poly (respectively, with sub-exponential hard-
ness), then there exists a sub-linearly compact randomized encoding (RE) scheme for
Turing machines in CRS model with (respectively, sub-exponential) simulation security.

Remark 4 The existence of sub-linearly compact RE scheme for Turing machines is
almost directly followed from a succinct RE scheme and a weakly sub-linear compact
RE scheme for Turing machines [23]. The succinctness of a RE scheme for Turing ma-
chines depends on the succinctness of PKFE for P/poly. Using only the sub-exponential
hardness of LWE, there exists a succinct PKFE with sub-exponential security for NC1

[18]. Also, there exist transformations [18,2] from symmetric key encryption with de-
cryption circuit in NC1 together with succinct PKFE for NC1 to a succinct PKFE for
P/poly. We note that if the symmetric key encryption and the succinct PKFE for NC1

are both sub-exponentially secure then the resulting succinct PKFE for P/poly is also
sub-exponentially secure.

A sub-exponentially secure weakly sub-linear compact PKFE is achieved in
[3] using SXIO and a public-key encryption scheme with sub-exponential security.
Indistinguishability obfuscation (iO) is a technique to make a class of circuits {Cλ}
unintelligible in the sense that for any circuit C ∈ Cλ, C and iO(1λ, C) have the same
output on all possible inputs and iO(1λ, C0) is indistinguishable from iO(1λ, C1) for
any two circuits C0, C1 ∈ Cλ such that C0(x) = C1(x), where λ is the security pa-
rameter. We want the size of iO(1λ, C) bounded by poly(λ, |C|). An SXIO has the
same functionality as an indistinguishability obfuscator with nontrivial efficiency. The
running time of SXIO on input (1λ, C) is at most 2nγ · poly(λ, |C|) where the circuit
C ∈ Cλ takes an input of length n and γ (< 1) is the compressing factor. To get such an
SXIO with an arbitrary compressing factor, it is required to have a multi-input SKFE
[9] which supports an unbounded polynomial number of functional keys. Also, 1-input
single-key SKFE suffices to get an SXIO but with a restriction on compressing factor
γ satisfying 1

2
≤ γ ≤ 1 and such an SXIO can be used to build a sub-exponentially

secure weakly sub-linear compact PKFE [3].

B Proof of Corollary 1

The existence of sub-exponentially hard LWE and δ-sub-exponentially secure weakly
sub-linear compact public key functional encryption scheme for P/poly imply a δ-sub-
exponential simulation secure (Definition 2) randomized encoding scheme for Turing
machines in CRS model (Theorem 7). We get a δ-secure puncturable PRF (Definition
5) from δ-secure one-way functions (Theorem 5). We need sub-exponentially secure one-
way functions for getting a sub-exponentially secure pseudorandom generator (Theorem
4) which is required for constructing the special circuit G in Figure 1. The corollary
follows directly from Theorem 2.

27

Hardwired: a pPRF key K and a relation R.
Input: an instance x ∈ X = {0, 1}k and a witness w ∈ W = {0, 1}n−k.
Padding: the circuit is padded to size pad = padER

(s, d, n, λ), determined in the analysis.

1. if (R(x,w) = 1) then
2. y ← pPRF.Eval(K, x)
3. else y ← ⊥
4. end if
5. return y

Fig. 15. Evaluation Circuit ER = EC[K,R]

C Construction of Multi-relation witness PRFs

We will give a generic construction of multi-relation witness PRFs using the same idea
involved in the construction of our single relation witness PRFs.

Construction 3. Let pPRF = (Gen, Eval, Punc) be a puncturable pseudorandom
function with domain {0, 1}k, range Y and RE = (Setup, Enc, Eval) be a bounded input
δ-sub-exponential simulation secure sub-linear compact randomized encoding scheme
in CRS model for Turing machines. Our mwPRF = (Gen, F, KeyGen, Eval) for an
NP language L with a set of relations R = {R : |R| ≤ s, R : χ ×W → {0, 1},X =
{0, 1}k and W = {0, 1}n−k}, is given by the following algorithms.

• fk← mwPRF.Gen(1λ, s): This is run by a user with input a security parameter λ
and a bound s on the size of the relations in R.

– Choose a pPRF key K ← pPRF.Gen(1λ), K ∈ {0, 1}λ.

– Set and output fk = K as the secret function key. The user keeps fk as secret.

• y ←mwPRF.F(fk, x): This algorithm generates a PRF value y ← pPRF.Eval(K,x)
by taking input a secret function key fk = K and an instance x ∈ X . The value
y ∈ Y is treated as the mwPRF value corresponding to the statement x ∈ X .

• ekR ← mwPRF.KeyGen(fk, R): This algorithm is used to compute a evaluation
key for any given relation R ∈ R. It works as follows on input a secret function
key fk and a relation R:

– Construct the circuit ER ∈ {Eλ} as described in Figure 155. Let the circuit
ER be of size S with input size n, output size l and runtime bound T .

– Generate (crsi, pki) ← RE.Setup(1λ, 1S , 1n, 1T , 1l) for i ∈ {0, 1, . . . , n} where
crsi is a common reference string and pki is an encoding key. Set −→crs = {crs}ni=0

and
−→
pki = {pkj}nj=i.

– Compute the randomized encoding Π̃[
−→
pk1, ER, ε, α]← RE.Enc(pk0, Π[

−→
pk1, ER,

ε, α], ε) where ε is a null string, α is a random binary string and Π[
−→
pk1, ER, ε, α]

is a Turing machine defined in Remark 1.

– Build the special circuit G[Π̃[
−→
pk1, ER, ε, α],−→crs] as described in Figure 1 and

output ekR = G[Π̃[
−→
pk1, ER, ε, α],−→crs].

• mwPRF.Eval(ekR, x, w): An entity having a witness w ∈ W corresponding to an in-

stance x ∈ X , runs this algorithm using an evaluation key ekR = G[Π̃[
−→
pk1, ER, ε, α],

−→crs] and outputs G[Π̃[
−→
pk1, ER, ε, α],−→crs](z) where z = (x,w).

5
The only difference from the circuit E (Figure 2) is that, ER is now hardcoded with a relation R
that can vary with evaluation key ekR.

28

Correctness. We note that our mwPRF.F(fk, x) is a pPRF evaluation on x ∈ X and
one can only use mwPRF.Eval with an evaluation key ekR if he has a valid witness w
for x such that R(x,w) = 1 as the circuit ER is hardcoded with the relation circuit
R. The correctness of this scheme follows from a similar argument discussed in the
correctness of Construction 1.

Padding Parameter. We take padER(s, d, n, λ) ≤ poly(λ, k, s) due to a similar argu-
ment as in the case of our single relation witness PRF in Construction 1.

Efficiency. The efficiency of our multi-relation witness PRF is the same as that of our
single relation witness PRF in Construction 1.

Theorem 8 Assuming LWE with sub-exponential hardness and the existence of δ-
sub-exponentially secure one-way functions, if there exists a weakly sub-linear compact
public key functional encryption scheme for P/poly with δ-sub-exponential security,
then there exists a δ-secure multi-relation witness PRF scheme.

We skip the proof of this theorem as it is similar to the proof of Theorem 2.

Remark 5 OurmwPRF computes a randomized encoding of a Turing machineΠ[
−→
pk1,

ER, ε, α] to get an evaluation key ekR for a relation R. Whereas, the generation of
evaluation key of [25] needs to compute a multilinear map with the multilinearity
level equal to the size of the description of the corresponding relation R which makes
evaluation key ekR computationally more expensive than ours.

29

	Offline Witness Encryption from Witness PRF and Randomized Encoding in CRS model
	Introduction
	Preliminaries
	Randomized Encoding Scheme in CRS Model

	Our Witness PRF
	Our Offline Witness Encryption
	Useful Definitions
	Pseudorandom Function
	Puncturable Pseudorandom Function
	Public-Key Encryption
	Witness PRF
	Multi-Relation Witness PRF
	Witness Encryption
	Offline Witness Encryption
	Offline Functional Witness Encryption
	Compactness and Sub-linear Compactness of Randomized encoding schemes in CRS model

	Proof of Corollary 1
	Construction of Multi-relation witness PRFs

