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Abstract. At Eurocrypt ’10, Gama, Nguyen and Regev introduced lat-
tice enumeration with extreme pruning: this algorithm is implemented in
state-of-the-art lattice reduction software and used in challenge records.
They showed that extreme pruning provided an exponential speed-up
over full enumeration. However, no limit on its efficiency was known,
which was problematic for long-term security estimates of lattice-based
cryptosystems. We prove the first lower bounds on lattice enumeration
with extreme pruning: if the success probability is lower bounded, we can
lower bound the global running time taken by extreme pruning. Our re-
sults are based on geometric properties of cylinder intersections and some
form of isoperimetry. We discuss their impact on lattice security estimates.

1 Introduction

Among all the candidates submitted in 2017 to the NIST standardization of
post-quantum cryptography, the majority are based on hard lattice problems,
such as LWE and NTRU problems. Unfortunately, security estimates for lattice
problems are known to be difficult: many different assessments exist in the re-
search literature, which is reflected in the wide range of security estimates in
NIST submissions (see [2]), depending on the model used. One reason is that
the performance of lattice algorithms depends on many parameters: we do not
know how to select these parameters optimally, and we do not know how far
from optimal are current parameter selections. The most sensitive issue is the
evaluation of the cost of a subroutine to find shortest or nearly shortest lattice
vectors in certain dimensions (typically the blocksize of blockwise reduction al-
gorithms). In state-of-the-art lattice reduction software [11,7,9], this subroutine
is implemented by lattice enumeration with extreme pruning, introduced at
Eurocrypt ’10 by Gama, Nguyen and Regev [16] as a generalization of pruning
methods introduced by Schnorr et al [34,35] in the 90s. Yet, most lattice-based
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NIST submissions chose their parameters based on the assumption that siev-
ing [1,28,22,20,8] (rather than enumeration) is the most efficient algorithm for
this subroutine. This choice goes back to the analysis of NewHope [3, Sect. 6],
which states that sieving is more efficient than enumeration in dimension≥ 250
for both classical and quantum computers, based on a lower bound on the cost
of sieving (ignoring subexponential terms) and an upper bound on the cost of
of enumeration (either [11, Table 4] or [10, Table 5.2]). In dimensions around
140− 150, this upper bound is very close to actual running times for solving
the largest record SVP challenges [32], which does not leave much margin for
future progress; and for dimensions ≥ 250, a numerical extrapolation has been
used, which is also debatable.

It would be more consistent to compare the sieving lower bound by a lower
bound on lattice enumeration with extreme pruning. Unfortunately, no such
lower bound is known: the performances of extreme pruning strongly depends
on the choice of bounding function, and it is unknown how good can be such
a function. There is only a partial lower bound on the cost of extreme pruning
in [11], assuming that the choice of step bounding function analyzed in [16] is
optimal. And this partial lower bound is much lower than the upper bound
given in [11,10].

Our results. We study the limitations of lattice enumeration with extreme prun-
ing. We prove the first lower bound on the cost of extreme pruning, given a
lower bound on the global success probability. This is done by studying the
case of a single enumeration with cylinder pruning, and generalizing it to the
extreme pruning case of multiple enumerations, possibly infinitely many. Our
results are based on geometric properties of cylinder intersections and a prob-
abilistic form of isoperimetry: usually, isoperimetry refers to a geometric in-
equality involving the surface area of a set and its volume.

Our lower bounds are easy to compute and appear to be reasonably tight in
practice, at least in the single enumeration case: we introduce a cross-entropy-
based method which experimentally finds upper bounds somewhat close to
our lower bounds.

Impact. By combining our lower bounds with models of strongly-reduced lat-
tice bases introduced in [26,11,7] and quantum speed-ups for enumeration [6],
we obtain more sound comparisons with sieving: see Fig. 1 for an overview.
It suggests that enumeration is faster than sieving up to higher dimensions
than previously considered by lattice-based submissions to NIST post-quantum
cryptography standardization: the cost lower bound used by many NIST sub-
missions is not as conservative as previously believed, especially in the quan-
tum setting. Concretely, in the quantum setting, the lower bounds of enumera-
tion and sieving cross in dimensions roughly 300-400 in the HKZ-basis model or
beyond 500 in the Rankin-basis model, depending on how many enumerations
are allowed. We note that in high dimension, our lower bound for enumeration
with 1010 HKZ bases is somewhat close to the numerical extrapolation of [17,
(2)], called Core-Enum+O(1) in [2].
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Fig. 1. Upper/lower bounds on the classical/quantum cost of enumeration with cylin-
der pruning, using strongly-reduced basis models. See Sect. 5 for the exact meaning of
these curves: the lower bounds correspond to (16) and (17) and the upper bounds are
found by the algorithm in Sect. 4. For comparison, we also displayed several curves
from [2]: 20.292n and 20.265n as the simplified classical/quantum complexity of sieve al-
gorithms, and the numerical extrapolation of enumeration cost of [17, (2)].

Technical overview. Enumeration is the simplest algorithm to solve hard lattice
problems: it outputs L ∩ B, given a lattice L and an n-dimensional ball B ⊆ Rn.
It dates back to the early 1980s [29,18,15] but has been significantly improved
in practice in the past twenty years, thanks to pruning methods introduced
by Schnorr et al. [34,35,33], and later revisited and generalized as respectively
cylinder pruning by Gama, Nguyen and Regev [16] and discrete pruning by
Aono and Nguyen [5]: pruning methods offer a trade-off by enumerating over
a special subset S ⊆ B, at the expense of missing solutions. Gama et al. [16] in-
troduced the idea of extreme pruning where one repeats pruned enumeration
many times over different sets S: this can be globally faster than full enumer-
ation, even if a single enumeration has a negligible probability of returning
solutions. In the case of cylinder pruning, [16] showed that the speed-up can be
asymptotically exponential for simple choices of the pruning subset S.
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Cylinder pruning uses the intersection S of n cylinders defined by a lattice
basis and a bounding function f : by using different lattice bases B, one obtains
different sets S. The running time and the success probability of cylinder prun-
ing depend on the quality of the basis, and the bounding function f . But when
one uses different bases, these bases typically have approximately the same
quality, which allows to focus on f , which determines the radii of S.

The probability of success of cylinder pruning is related to the volume of S,
whereas its cost is related to the volumes of the ’canonical’ projections of S. We
show that if the success probability is lower bounded, that is, if S is sufficiently
big (with respect to its volume, or its Gaussian measure for the case of solving
LWE), then the function f defining S can be lower bounded: as a special case,
if S occupies a large fraction of the ball, f is lower bounded by essentially the
linear pruning function of [16]. This immediately gives lower bounds on the
volumes of the projections of S, but we significantly improve these direct lower
bounds using the following basic form of isoperimetry: for certain distributions
such as the Gaussian distribution, among all Borel sets of a given volume, the
ball centered at the origin has the largest probability. The extreme pruning case
is obtained by a refinement of isoperimetry over finitely many sets: it is some-
what surprising that we obtain a lower bound even in the extreme case where
we allow infinitely many sets S.

All our lower bounds are easy to compute. To evaluate their tightness, we
introduce a method based on cross-entropy to compute good upper bounds in
practice, i.e., good choices of f . This is based on earlier work by Chen [10].

Open problem. Our lower bounds are specific to cylinder pruning [16]. It would
be interesting to obtain tight lower bounds for discrete pruning [5].

Roadmap. In Section 2, we introduce background and notation on lattices, enu-
meration and its cost estimations. Section 3 presents our lower bounds as geo-
metric properties of cylinder intersections. Section 4 shows how to obtain good
upper bounds in practice, by finding nice cylinder intersections using cross-
entropy. Finally, in Section 5, we evaluate the tightness of our lower bounds
and discuss security estimates for the hardness of finding nearly shortest lattice
vectors. The appendix includes proofs of technical results. The full version of
this paper on eprint also includes sage scripts to compute our lower bounds.

2 Background

2.1 Notation

Throughout the paper, we use row representations of matrices. The Euclidean
norm of a vector v ∈ Rn is denoted ‖v‖. The ’canonical’ projection of u ∈ Rn

onto Rk for 1 ≤ k ≤ n is the truncation τk(u) = (u1, . . . , uk).
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Measures. We denote by vol the standard Lebesgue measure over Rn. We de-
note by ρn,σ the centered Gaussian measure of variance σ2, whose pdf over Rn

is
(2πσ2)−n/2e−‖x‖

2/(2σ2).

The standard Gaussian measure is ρn = ρn,1.

Balls. We denote by Balln(R) the n-dimensional zero-centered ball of radius R.
Let Vn(R) = vol(Balln(R)). Let u = (u1, . . . , un) be a point chosen uniformly at
random from the unit sphere Sn−1, e.g. ui = xi/

√
∑n

j=1 x2
j , where x1, . . . , xn are

independent, normally distributed random variables with mean 0 and variance

1. Then ‖τk(u)‖2 =
∑k

i=1 x2
i

∑k
i=1 x2

i +∑n
i=k+1 x2

i
= X

X+Y , where X and Y have distributions

Gamma(k/2, θ = 2) and Gamma((n− k)/2, θ = 2) respectively. Here, we use
the scale parametrization to represent Gamma distributions. Hence, ‖τk(u)‖2

has distribution Beta(k/2, (n− k)/2). In particular, ‖τn−2(u)‖2 has distribution
Beta(n/2− 1, 1), whose pdf is x(n/2)−2/B(n/2− 1, 1) = (n/2− 1)x(n/2)−2. It
follows that the truncation τn−2(u) is uniformly distributed over Balln−2(1),
which allows to transfer our results to random points in balls.

Recall that the cumulative distribution function of the Beta(a, b) distribution
is the regularized incomplete beta function Ix(a, b) defined as:

Ix(a, b) =
1

B(a, b)

∫ x

0
ua−1(1− u)b−1du, (1)

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) denotes the beta function. We have the following ele-

mentary bounds (by integrating by parts):

xa(1− x)b−1

aB(a, b)
≤ Ix(a, b) ∀a > 0, b ≥ 1, 0 ≤ x ≤ 1 (2)

Ix(a, b) ≤ xa

a · B(a, b)
∀a > 0, b ≥ 1, 0 ≤ x ≤ 1 (3)

For z ∈ [0, 1] and a, b > 0, I−1
z (a, b) + I−1

1−z(b, a) = 1 which is immediate from
the relation Ix(a, b) + I1−x(b, a) = 1.

Finally, P(s, x) =
∫ x

0 ts−1e−tdt/Γ(s) is the regularized incomplete gamma
function.

Lattices. A lattice L is a discrete subgroup of Rm, or equivalently the set
L(b1, . . . , bn) = {∑n

i=1 xibi : xi ∈ Z} of all integer combinations of n linearly
independent vectors b1, . . . , bn ∈ Rm. Such bi’s form a basis of L. All the bases
of L have the same number n of elements, called the dimension or rank of L, and
the same n-dimensional volume of the parallelepiped {∑n

i=1 aibi : ai ∈ [0, 1)}
they generate. We call this volume the co-volume, or determinant, of L, and
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denote it by covol(L). The lattice L is said to be full-rank if n = m. The most
famous lattice problem is the shortest vector problem (SVP), which asks to find
a non-zero lattice vector of minimal Euclidean norm. The closest vector problem
(CVP) asks to find a lattice vector closest to a target vector.

Orthogonalization. For a basis B = (b1, . . . , bn) of a lattice L and i ∈ {1, . . . , n},
we denote by πi the orthogonal projection on span(b1, . . . , bi−1)

⊥. The Gram-
Schmidt orthogonalization of the basis B is defined as the sequence of orthogo-
nal vectors B? = (b?

1 , . . . , b?
n), where b?

i := πi(bi). We can write each bi as
b?

i + ∑i−1
j=1 µi,jb?

j for some unique µi,1, . . . , µi,i−1 ∈ R. Thus, we may represent
the µi,j’s by a lower-triangular matrix µ with unit diagonal. The projection of a
lattice may not be a lattice, but πi(L) is an n + 1− i dimensional lattice gener-
ated by πi(bi), . . . , πi(bn), with covol(πi(L)) = ∏n

j=i
∥∥b?

j

∥∥.

The Gaussian Heuristic. For a full-rank lattice L in Rn and a measurable set C ⊂
Rn, the Gaussian heuristic estimates the number of lattice points inside of C
to be approximately vol(C)/vol(L). Accordingly, we would expect that λ1(L)
might be close to GH(L) = Vn(1)−1/nvol(L)1/n, which holds for a random
lattice L.

Cylinders. The performances of cylinder pruning are directly related to the fol-
lowing bodies. Define the (k-dimensional) cylinder-intersection of radii R1 ≤
· · · ≤ Rk as the set

CR1,...,Rk =

{
(x1, . . . , xk) ∈ Rk, ∀j ≤ k,

j

∑
`=1

x2
` ≤ R2

j

}
⊆ Ballk(Rk).

Gama et al. [16] showed how to efficiently compute tight lower and upper
bounds for vol(CR1,...,Rk ), thanks to the Dirichlet distribution and special in-
tegrals.

2.2 Enumeration with Cylinder Pruning

To simplify notations, we assume that we focus on the SVP setting, i.e. to find
short lattice vectors, rather than the more general CVP setting. Let L be a full-
rank lattice in Rn. Given a basis B = (b1, . . . , bn) of L and a radius R > 0,
Enumeration [29,18,15] outputs L ∩ S where S = Balln(R) by a depth-first tree
search: by comparing all the norms of the vectors obtained, one extracts a short-
est non-zero lattice vector.

We follow the general pruning framework of [5], which replaces S by a sub-
set of S depending on B. Given a function f : {1, . . . , n} → [0, 1], Gama et al. [16]
introduced the following set to generalize the pruned enumeration of [34,35]:

Pf (B, R) = {x ∈ Rn s.t. ‖πn+1−i(x)‖ ≤ f (i)R for all 1 ≤ i ≤ n}, (4)
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where the πi is the projection over span(b1, . . . , bi−1)
⊥. The set Pf (B, R) should

be viewed as a random variable. Note that Pf (B, R) ⊆ Balln(R) and if g is the
constant function equal to 1, then Pg(B, R) = Balln(R).

Gama et al. [16] noticed that the basic enumeration algorithm can actually
compute L ∩ Pf (B, R) instead of L ∩ Balln(R), just by changing its parameters.
We call cylinder pruning this form of pruned enumeration, because Pf (B, R) is
an intersection of cylinders, since each equation ‖πn+1−i(x)‖ ≤ f (i)R defines a
cylinder. Cylinder pruning was historically introduced in the SVP setting, but
its adaptation to CVP is straightforward, as was shown by Liu and Nguyen [21].

Complexity of Enumeration. The advantage is that for suitable choices of f , enu-
merating L ∩ Pf (B, R) is much cheaper than enumerating L ∩ Balln(R): indeed,
[16] shows that cylinder pruning runs in ∑n

k=1 Nk poly-time operations, where
Nk is the number of points of πn+1−k(L ∩ Pf (B, R)): this is because Nk is ex-
actly the number of nodes at depth n− k + 1 of the enumeration tree which is
searched by cylinder pruning. By the Gaussian heuristic, we have heuristically
Nk ≈ Hk where:

Hk =
vol(πn+1−k(Pf (B, R)))

covol(πn+1−k(L))
=

vol(CR f (1),...,R f (k))

covol(πn+1−k(L))
.

It follows that the complexity of cylinder pruning is heuristically:

N =
n

∑
k=1

vol(CR f (1),...,R f (k))

∏n
i=n−k+1 ‖b?

i ‖
(5)

This N is a heuristic estimate of the number of nodes in the tree searched by
cylinder pruning. It depends on one hand on R and the bounding function
f , but on the other hand on the quality of the basis B, because of the term
∏n

i=n−k+1 ‖b?
i ‖. In the SVP setting, one can further divide (5) by two, because

of symmetries in the enumeration tree.

Success Probability. We consider two settings:

Approximation Setting: The algorithm is successful if and only if we find at
least one non-zero point of L ∩ Pf (B, R), that is L ∩ Pf (B, R) 6⊆ {0}. This
is the situation studied in [5] and corresponds to the use of cylinder prun-
ing in blockwise lattice reduction. By the Gaussian heuristic, the number of
points of L ∩ Pf (B, R) is heuristically:

vol(Pf (B, R))
covol(L)

=
vol(CR f (1),...,R f (n))

covol(L)
.

So we estimate the probability of success as:

Pr
succ

= min

(
1,

vol(CR f (1),...,R f (n))

covol(L)

)
. (6)
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Since covol(L) = Vn(GH(L)), if R = βGH(L), then (6) becomes

Pr
succ

= min

(
1, βn vol(CR f (1),...,R f (n))

Vn(R)

)
. (7)

Unique Setting: This corresponds to the situation studied in [16] and to
bounded distance decoding (BDD). There is a secret vector v ∈ L, whose
distribution is assumed to be the Gaussian distribution over Rn of param-
eter σ. The algorithm is successful if and only if v is returned by the al-
gorithm, i.e. if and only if v ∈ Pf (B, R). So we estimate the probability of
success as:

Pr
succ

= ρn,σ(Pf (B, R)) = ρn,σ(C f (1)R,..., f (n)R). (8)

3 Lower Bounds for Cylinder Pruning

In this section, we prove novel geometric properties of cylinder intersections: if
a cylinder intersection is sufficiently big (with respect to its volume or its Gaus-
sian measure), we can lower bound the radii defining the intersection, as well as
the volume of all its canonical projections, which are also cylinder intersections.

A basic ingredient behind these properties is a special case of cylinder in-
tersections, corresponding to the step-bounding functions used in [16]. More
precisely, we consider the intersection of a ball with a cylinder, which we call a
ball-cylinder:

Dk,n(R, R′) =

{
(x1, . . . , xn) ∈ Rn,

k

∑
l=1

x2
l ≤ R2 and

n

∑
l=1

x2
l ≤ R′2

}
.

In other words, Dk,n(R, R′) = CR,...,R,R′ ,...,R′ where R is repeated k times, and R′

is repeated n− k times. The following result is trivial:

Lemma 1. Let R1 ≤ R2 ≤ · · · ≤ Rn and 1 ≤ k ≤ n. Then:

CR1,...,Rn ⊆ Dk,n(Rk, Rn).

Note that for fixed k, n and R′, vol(Dk,n(R, R′)) is an increasing function of R.
The following lemma gives properties of the volume and Gaussian measures of
ball-cylinders, based on the background:

Lemma 2. Let R ≤ R′ and 1 ≤ k ≤ n. Then:

vol(Dk,n(R, R′)) = Vn(R′)× I(R/R′)2(k/2, 1 + (n− k)/2)

ρk,σ(Ballk(R)) ≥ ρn,σ(Dk,n(R, R′)) ≥ ρk,σ(Ballk(R))ρn,σ(Balln(R′))

ρn,σ(Balln(R)) = P(n/2, R2/(2σ2))
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Proof. Because Dk,n(R, R′) ⊆ Balln(R′), vol(Dk,n(R, R′))/Vn(R′) is the proba-
bility that a random vector (x1, . . . , xn) (chosen uniformly at random from the
n-dimensional ball of radius R′) satisfies ∑k

l=1 x2
l ≤ R2, that is, ∑k

l=1(xl/R′)2 ≤
(R/R′)2. It follows that this probability is also the probability that a random
vector (y1, . . . , yn) (chosen uniformly at random from the n-dimensional unit
ball) satisfies: ∑k

l=1 y2
l ≤ (R/R′)2. From the background, we know that ∑k

l=1 y2
l

has distribution Beta(k/2, (n + 2− k)/2), which proves the first equality.
Note that Dk,n(R, R′) ⊆ Dk,n(R,+∞), which proves that ρn,σ(Dk,n(R, R′)) ≤

ρk,σ(Ballk(R)). Furthermore, by the Gaussian correlation inequality on convex
symmetric sets, we have:

ρn,σ(Dk,n(R, R′)) ≥ ρn,σ(Balln(R′))× ρn,σ

(
{(x1, . . . , xn) ∈ Rn :

k

∑
i=1

x2
i ≤ R2}

)
= ρk,σ(Ballk(R))ρn,σ(Balln(R′))

which proves that ρn,σ(Dk,n(R, R′)) ≥ P(k/2, R2/(2σ2))P(n/2, R′2/(2σ2)).
Finally, let x1, . . . , xn be independent, normally distributed random vari-

ables with mean 0 and variance 1. Then X = ∑n
i=1 x2

i has the distribution
Gamma(n/2, θ = 2) whose CDF is P(n/2, x/2). Therefore ρn(Balln(R)) =
P(n/2, R2/2). ut

3.1 Lower Bounds on Cylinder Radii

The following theorem lower bounds the radii of any cylinder intersection cov-
ering a fraction of the ball:

Theorem 1. Let 0 ≤ R1 ≤ · · · ≤ Rn be such that vol(CR1,...,Rn) ≥ αVn(Rn), where
0 ≤ α ≤ 1. If for all 1 ≤ k ≤ n, we define αk > 0 by Iαk (k/2, 1 + (n− k)/2) = α,
then vol(Dk,n(

√
αkRn, Rn)) ≤ vol(CR1,...,Rn) and:

Rk ≥
√

αkRn.

Proof. Lemma 1 shows that:

vol(CR1,...,Rn) ≤ vol(Dk,n(Rk, Rn)).

On the other hand, Lemma 2 shows that by definition of αk:

vol(Dk,n(
√

αkRn, Rn))

= Vn(Rn)× Iαk

(
k
2

, 1 +
n− k

2

)
= αVn(Rn) ≤ vol(CR1,...,Rn),

which proves the first statement. Hence:
vol(Dk,n(

√
αkRn, Rn)) ≤ vol(Dk,n(Rk, Rn)), which implies that Rk ≥

√
αkRn.

ut
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The parameter α in Th. 1 is directly related to our success probability (7) in the
approximation setting: indeed, if Rn = βGH(L) and Prsucc ≥ γ, then α = γ/βn

satisfies the condition of Th. 1. We have the following Gaussian analogue of
Th. 1, where the lower bound on the volume is replaced by a lower bound on
the Gaussian measure:

Theorem 2. Let 0 ≤ R1 ≤ · · · ≤ Rn be such that ρn,σ(CR1,...,Rn) ≥ β, where
0 ≤ β ≤ 1. If for all 1 ≤ k ≤ n we define βk > 0 by P(k/2, βk/(2σ2)) = β, then
ρn,σ(Dk,n(

√
βk, Rn)) ≤ ρn,σ(CR1,...,Rn) and Rk ≥

√
βk.

Proof. On the one hand, Lemma 1 shows that:

ρn,σ(CR1,...,Rn) ≤ ρn,σ(Dk,n(Rk, Rn)).

On the other hand, Lemma 2 shows that by definition of βk:

ρn,σ(Dk,n(
√

βk, Rn)) ≤ P(k/2, βk/2(σ2)) = β ≤ ρn,σ(CR1,...,Rn),

which proves the first statement. Hence:

ρn,σ(Dk,n(
√

βk, Rn)) ≤ ρn,σ(Dk,n(Rk, Rn)),

which implies that Rk ≥
√

βk. ut
In Th. 2, β can be chosen as any lower bound on the success probability in the
unique setting (8).

Th. 1 allows to derive numerical lower bounds on the radii, from any lower
bound on the success probability. However, there is a special case for which
the lower bound has a simple algebraic form, thanks to the following technical
lemma (proved in Appendix A):

Lemma 3. If 1 ≤ k ≤ n, then:

1− P(1/2, 1/2) ≤ Ik/n(k/2, (n− k)/2) ≤ P(1/2, 1/2) (9)

By coupling Th. 1 and Lemma 3, we obtain that the squared radii of any high-
volume cylinder intersection are lower bounded by linear functions:

Theorem 3. Let 0 ≤ R1 ≤ · · · ≤ Rn such that vol(CR1,...,Rn) ≥ P(1/2, 1/2) ×
Vn(Rn). Then for all 1 ≤ k ≤ n:

Rk ≥
√

k
n + 2

Rn.

Proof. The assumption and (9) imply that

vol(CR1,...,Rn) ≥ Ik/(n+2)(k/2, 1 + (n− k)/2)Vn(Rn).

Hence, we can apply Th. 1 with αk =
√

k/(n + 2). ut
Note that P(1/2, 1/2) ≈ 0.683 . . . , so any bounding function with high success
probability must have a cost lower bounded by that of some linear pruning,
which means that its speed-up (compared to full enumeration) is at most single-
exponential (see [16]).
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3.2 Lower Bounds on Cylinder Volumes from Isoperimetry

The lower bounds on radii given by Th. 1 and 2 provide lower bounds on
vol(CR1,...,Rk ) for all 1 ≤ k ≤ n− 1. Indeed, if Rk ≥

√
αkRn, then:

vol(CR1,...,Rk ) ≥ vol(C√α1Rn ,...,
√

αk Rn).

Such lower bounds immediately provide a lower bound on the cost of enumer-
ation with cylinder pruning, because of (5).

In this subsection, we show that this direct lower bound can be significantly
improved, namely it can be replaced by Vk(

√
αkRn). Our key ingredient is the

following isoperimetric result, which says that among all Borel sets of given
volume, the ball centered at the origin has the largest measure, for any isotropic
measure which decays monotonically radially away :

Theorem 4 (Isoperimetry). Let A be a Borel set of Rk. Let D be a distribution over
Rk such that its probability density function f is radial and decays monotonically radi-
ally away: f (x) ≤ f (y) whenever ‖x‖ ≥ ‖y‖. If a random variable X has distribution
D, then:

Pr(X ∈ A) ≤ Pr(X ∈ B),

where B is the ball of Rk centered at the origin such that vol(B) = vol(A).

Proof. The statement is proved in [38, p498-499] for the special case where D is
the Gaussian distribution over Rk. However, the proof actually works for any
radial probability density function which decays monotonically radially away.

ut

It implies the following:

Lemma 4. Let 1 ≤ k ≤ n. Let π = τk be the canonical projection of Rn over Rk.
Let C be a subset of the n-dimensional ball of radius R′ such that both C and π(C) are
measurable. If R is the radius of the k-dimensional ball of volume vol(π(C)), then:

vol(C) ≤ vol(Dk,n(R, R′)) and ρn,σ(C) ≤ ρn,σ(Dk,n(R, R′)).

Proof. Let B′ be the n-dimensional centered ball of radius R′. Let B be the k-
dimensional centered ball of radius R. Let x be chosen uniformly at random
from B′. Since C ⊆ B′, vol(C)/Vn(R′) is exactly Pr(x ∈ C), and we have:

Pr(x ∈ C) ≤ Pr(π(x) ∈ π(C)).

Let D be the distribution of y = π(x) ∈ Rk . Then by Th. 4,

Pr(y ∈ π(C)) ≤ Pr(y ∈ B).

Hence:

Pr(x ∈ C) ≤ Pr(y ∈ B) =
vol(Dk,n(R, R′))

Vn(R′)
,
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which proves the first statement. Similarly, if x is chosen from the Gaussian
distribution corresponding to ρn,σ, then

ρn,σ(C)/ρn,σ(B′) = Pr(x ∈ C) ≤ Pr(π(x) ∈ π(C)).

Let D′ be the distribution of y = π(x) ∈ Rk: this is a Gaussian distribution.
Then by Th. 4,

Pr(y ∈ π(C)) ≤ Pr(y ∈ B) =
ρn,σ(Dk,n(R, R′))

ρn,σ(B′)
.

ut

It has the following geometric consequence:

Corollary 1. Let R1 ≤ R2 ≤ · · · ≤ Rn and 1 ≤ k ≤ n. Let R > 0 such that
vol(CR1,...,Rn) ≥ vol(Dk,n(R, Rn)) or ρn,σ(CR1,...,Rn) ≥ ρn,σ(Dk,n(R, Rn)). Then:

vol(CR1,...,Rk ) ≥ Vk(R).

Proof. Let C = CR1,...,Rn and π = τk be the canonical projection of Rn over
Rk. Then π(C) = CR1,...,Rk . If r is the radius the k-dimensional ball of volume
vol(π(C)), Lemma 4 implies that: vol(C) ≤ vol(Dk,n(r, Rn)) and ρn,σ(C) ≤
ρn,σ(Dk,n(r, Rn)). Thus, by definition of R, we have either vol(Dk,n(R, Rn)) ≤
vol(C) ≤ vol(Dk,n(r, Rn)) or ρn,σ(Dk,n(R, Rn)) ≤ ρn,σ(C) ≤ ρn,σ(Dk,n(r, Rn)),
which each imply that r ≥ R. ut

Note that CR1,...,Rk and Ballk(R) are the projections of respectively CR1,...,Rn and
Dk,n(R, Rn) over Rk. So the corollary is a bit surprising: if one particular body
is “bigger” than the other, then so are their projections. Obviously, this cannot
hold for arbitrary bodies in the worst case.

This corollary implies the following lower bounds, which strengthens The-
orem 1:

Corollary 2. Under the same assumptions as Th. 1, we have:

vol(CR1,...,Rk ) ≥ Vk(
√

αkRn).

Proof. From Th. 1, we have: vol(CR1,...,Rn) ≥ vol(Dk,n(
√

αkRn, Rn)). And we
apply Cor. 1. ut

Similarly, we obtain:

Corollary 3. Under the same assumptions as Th. 2, we have:

vol(CR1,...,Rk ) ≥ Vk(
√

βkRn).

It would be interesting to study if the lower bounds of the last two corollaries
can be further improved.



Lower Bounds on Lattice Enumeration with Extreme Pruning 13

3.3 Generalisation to Finitely Many Cylinder Intersections

In this section, we give an analogue of the results of Sect. 3.2 to finitely many
cylinder intersections, which corresponds to the extreme pruning setting. The
key ingredient is the following refinement of isoperimetry:

Theorem 5 (Isoperimetry). Let A1, . . . , Am be Borel sets of Rk. Let D be a distribu-
tion over Rk such that its probability density function f is radial and decays monoton-
ically radially away: f (x) ≤ f (y) whenever ‖x‖ ≥ ‖y‖. If a random variable X has
distribution D, then:

1
m

m

∑
i=1

Pr(X ∈ Ai) ≤ Pr(X ∈ B),

where B is the ball of Rk centered at the origin such that vol(B) = 1
m ∑m

i=1 vol(Ai).

Proof. The statement is proved in [38, p499-500] for the special case where D is
the Gaussian distribution over Rk. However, the proof actually works for any
radial probability density function which decays monotonically radially away.

ut

Lemma 5. Let 1 ≤ k ≤ n. Let π = τk be the canonical projection of Rn over Rk. Let
C1, . . . , Cm ⊆ Balln(R′) such that all the Ci’s and π(Ci)’s are measurable. If R is the
radius of the k-dimensional ball of volume 1

m ∑m
i=1 vol(π(Ci)), then:

1
m

m

∑
i=1

vol(Ci) ≤ vol(Dk,n(R, R′)) and
1
m

m

∑
i=1

ρn,σ(Ci) ≤ ρn,σ(Dk,n(R, R′)).

Proof. Let B′ be the n-dimensional centered ball of radius R′. Let B be the k-
dimensional centered ball of radius R such that vol(B) = 1

m ∑m
i=1 vol(π(Ci)).

Let x be chosen uniformly at random from B′. Since Ci ⊆ B′, vol(Ci)/Vn(R′) is
exactly Pr(x ∈ Ci), and we have:

Pr(x ∈ Ci) ≤ Pr(π(x) ∈ π(Ci)).

Let D be the distribution of y = π(x) ∈ Rk . Then by Th. 5,

1
m

m

∑
i=1

Pr(y ∈ π(Ci)) ≤ Pr(y ∈ B).

Hence:
1
m

m

∑
i=1

Pr(x ∈ Ci) ≤ Pr(y ∈ B) =
vol(Dk,n(R, R′))

Vn(R′)
,

which proves the first statement. ut

It has the following geometric consequence:
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Corollary 4. Let C1, . . . , Cm ⊆ Balln(Rn) be n-dimensional cylinder intersections.
Let 1 ≤ k ≤ n and denote by π = τk the canonical projection of Rn over Rk.
Let R > 0 such that 1

m ∑m
i=1 vol(Ci) ≥ vol(Dk,n(R, Rn)) or 1

m ∑m
i=1 ρn,σ(Ci) ≥

ρn,σ(Dk,n(R, Rn)). Then:

1
m

m

∑
i=1

vol(π(Ci)) ≥ Vk(R).

Proof. If r is the radius of the k-dimensional ball of volume 1
m ∑m

i=1 vol(π(Ci)),
the Lemma 5 implies that: 1

m ∑m
i=1 vol(Ci) ≤ vol(Dk,n(r, Rn)) and

1
m ∑m

i=1 ρn,σ(Ci) ≤ ρn,σ(Dk,n(r, Rn)). Thus, by definition of R, we have either
vol(Dk,n(R, Rn)) ≤ vol(C) ≤ vol(Dk,n(r, Rn)) or ρn,σ(Dk,n(R, Rn)) ≤ ρn(C) ≤
ρn,σ(Dk,n(r, Rn)), which each imply that r ≥ R. ut
Theorem 6. Let C1, . . . , Cm ⊆ Balln(Rn) be n-dimensional cylinder intersections
such that ∑m

i=1 vol(Ci) ≥ mαVn(Rn), where 0 ≤ α ≤ 1. If for all 1 ≤ k ≤ n,
we define αk > 0 by Iαk (k/2, 1 + (n − k)/2) = α, then vol(Dk,n(

√
αkRn, Rn)) ≤

1
m ∑m

i=1 vol(Ci) and:
m

∑
i=1

vol(π(Ci)) ≥ mVk(
√

αkRn),

where π = τk denotes the canonical projection of Rn over Rk.

Proof. Lemma 2 shows that by definition of αk:

vol(Dk,n(
√

αkRn, Rn)) = αVn(Rn) ≤
1
m

m

∑
i=1

vol(Ci),

which proves the first statement. And the rest follows by Lemma 4. ut
Again, the parameter α in Th. 6 is directly related to our global success proba-
bility (7) in the approximation setting: the global success probability is
≤ ∑m

i=1 vol(Ci)/covol(L) so if Rn = βGH(L) and the global success probability
is ≥ γ, then α = γ/(mβn) satisfies the condition of Th. 1.

We have the following Gaussian analogue of Th. 6:

Theorem 7. Let C1, . . . , Cm ⊆ Balln(Rn) be n-dimensional cylinder intersections
such that ∑m

i=1 ρn,σ(Ci) ≥ mβ, where 0 ≤ β ≤ 1/m. If for all 1 ≤ k ≤ n, we define
βk > 0 by P(k/2, βk/(2σ2)) = β, then ρn,σ(Dk,n(

√
βkRn, Rn)) ≤ 1

m ∑m
i=1 ρn,σ(Ci)

and:
m

∑
i=1

vol(π(Ci)) ≥ mVk(βk),

where π = τk denotes the canonical projection of Rn over Rk.

In the unique setting, the global success probability is ≤ ∑m
i=1 ρn,σ(Ci), so if the

global success probability is ≥ γ, then β = γ/m satisfies the condition of Th. 7.
Surprisingly, we will show that Th. 6 and 7 imply that we can lower bound

the cost of extreme pruning, independently of the number m of cylinder inter-
sections:
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Lemma 6. Let the global probability 0 ≤ α′ ≤ 1 and 1 ≤ k ≤ n. Let α = α′/m and
αk > 0 such that Iαk (k/2, 1+(n− k)/2) = α. Then, mVk(

√
αk) is strictly decreasing

w.r.t. m, yet lower bounded by some linear function of α′:

mVk(
√

αk) > α′ · kVk(1)
2
· B
(

k
2

, 1 +
n− k

2

)
.

Furthermore, for fixed α′, k and n, the left-hand side converges to the right-hand side
when m goes to infinity and αk is defined as above.

Lemma 6 implies that the cost of enumeration decreases as the number of cylin-
der intersections increases, if the global probability α′ is fixed. However, there
is a limit given by some linear function of α′ which depends only on n.

To prove the lemma, we use the following two lemmas:

Lemma 7. For a ≥ 0, b ≥ 1, 0 < z ≤ 1:

∂

∂z
I−1
z (a, b) ≥ 1

az
I−1
z (a, b)

Proof. Substituting x = I−1
z (a, b) in (3) we obtain:

(1− I−1
z (a, b))b−1(I−1

z (a, b))a

aB(a, b)
≤ z.

This implies that

∂

∂z
I−1
z (a, b) = B(a, b)(1− I−1

z (a, b))1−b(I−1
z (a, b))1−a ≥ 1

az
I−1
z (a, b).

ut

Lemma 8. For a ≥ 0, b ≥ 1:

lim
y→0+

y
(I−1

y (a, b))a
=

1
a · B(a, b)

Proof. Bounding inequalities (2) and (3) from both sides implies that

lim
x→0+

Ix(a, b)
xa =

1
a · B(a, b)

.

Letting x = I−1
y (a, b), the claim holds. ut

Proof of Lemma 6
We have Iαk (k/2, 1+ (n− k)/2) = α′/m and αk = I−1

α′/m(k/2, 1+ (n− k)/2).
This gives:

mVk(
√

αk) = Vk(1)m ·
(

I−1
α′/m(k/2, 1 + (n− k)/2)

)k/2
.
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Thus, to show the first claim, it suffices to prove that

g(y) =
1
y

(
I−1
α′y(k/2, 1 + (n− k)/2)

)k/2

is strictly increasing over 0 < y ≤ 1.
For simplicity, we write I := I−1

α′y(k/2, 1 + (n− k)/2) and we have:

g′(y) =
α′k
2y

Ik/2−1 · ∂I
∂y
− Ik/2

y2

By Lemma 7, we can see that ∂I
∂y ≥

2
α′ky > I and g′(y) > 0 which proves the

first claim. The lower bound can be derived by the limit of the function. By the
relationship

lim
m→∞

mVk(
√

αk) = Vk(1) · lim
y→0+

g(y),

and the straightforward consequence of Lemma 8,

lim
y→0+

g(y) = α′ · k
2
· B
(

k
2

, 1 +
n− k

2

)
,

we obtain the second claim. ut
By a similar technique, we can show a similar result for the Gaussian case:

the proof is postponed to Appendix A.3.

Lemma 9. Let the global probability 0 ≤ β′ ≤ 1 and 1 ≤ k ≤ n. Let β = β′/m
and βk > 0 such that P(k/2, βk/(2σ2)) = β. Then, mVk(

√
βk) is strictly decreasing

w.r.t. m, yet lower bounded by some linear function of β′:

mVk(
√

βk) > β′(2πσ2)k/2.

Moreover, for fixed β′, k and σ, the left-hand side converges to the right-hand side when
m goes to infinity and βk is defined as above.

4 Efficient Upper Bounds based on Cross-Entropy

In order to guess how tight are our lower bounds in practice, we need to be
able to find efficiently very good bounding functions for cylinder pruning. Dif-
ferent methods have been used over the years (see [16,10,7,9]). In this section,
we present the method that we used to generate bounding functions that try
to minimize the enumeration cost, under the constraint that the success prob-
ability is greater than a given p0 > 0. From our experience, different methods
usually give rise to close bounding functions, but their running time can vary
significantly.
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4.1 Our Formulation and Previous Algorithms

Usually, the problem to find optimal cost has two formulations and our algo-
rithm targets the first one:

1. [11,7] for a given basis B, radius R, and target probability p0, minimize
the cost (5) subject to the constraint that the probability (6) is greater than
p0. The variables are R1, . . . , Rn. This kind of constrained optimization is
known as monotonic optimization because the objective function and con-
straint functions are both monotonic, i.e., f (x1, . . . , xn) ≤ f (x′1, . . . , x′n) if
xi ≤ x′i for all i. It is known that the optimal value is on the border (see,
for example [12]). A heuristic random perturbation is implemented in the
progressive BKZ library [7], and an outline of the cross-entropy method is
mentioned in Chen’s thesis [10].

2. [9] for a given basis B and radius, minimize the expected cost of extreme
pruning [16]: m · EnumCost+ (m− 1) · PreprocessCost where m is a variable
defining the number of bases, and therefore the success probability of the
enumeration. The variables are R1, . . . , Rn and m. This is an unconstrained
optimization problem. A heuristic gradient descent and the Nelder-Mead
method are implemented in the fpLLL library [9].

We explain why we introduce a new approach. All the known approaches
try to minimize an approximate upper bound of the enumeration cost: this ap-
proximation is the sum of n terms, where each term can be derived from the
computation of a simplex volume (following [16]) which costs O(n2), where the
unit is number of floating-point operations and the required precision might be
linear in n. Although there exists an O(n2) algorithm to compute the approxi-
mate upper bound [4, Section 3.3], a naive random perturbation strategy is too
slow to converge.

Besides, we think that the Nelder-Mead and gradient descent are not suit-
able for our optimization problem. If we want to apply such methods to the con-
strained problem, a usual approach converts the problem into a corresponding
global optimization problem by introducing penalty functions. Then, we find
a near-optimal solution to the original problem by using the optimized vari-
able of the converted problem. However, we know that the optimal point is
on the border at which the penalty functions must change drastically. It could
make the optimal point of the new problem far from the original one. Hence,
we need an algorithm to solve our constrained problem directly.

For this purpose, we revisit Chen’s partial description [10] of the cross-
entropy method to solve the problem (i). In Section 4.2, we give a brief overview
of the cross-entropy method, and in Section 4.3, we explain how we modify it
for our purpose.

4.2 A Brief Introduction to the Cross Entropy Method

The original motivation of the cross entropy method is to speed up Monte-Carlo
simulation for approximating a probability. If the target probability is extremely
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small, the number of sampling points must be huge. To solve this issue, Rubin-
stein [30] introduced the cross entropy method and showed that the algorithm
could be used for combinatorial optimization problems. This subsection gives
a general presentation of the cross-entropy method: we will apply it to the op-
timization of pruning functions. For more information, see for example [30,14].

Let χ be the whole space of combinations and consider a cost function S :
χ → R≥0 that we want to minimize. Assume that we have a probability distri-
bution Dχ,u defined over χ and parametrized by a vector u. We fix the corre-
sponding probability density function fu(x). A cross-entropy algorithm to find
the optimal combination X∗ := argminX∈χS(X) is outlined in Algorithm 1;
here we use the description in the textbook [14, Algorithm 2.3].

Algorithm 1 A Generic Framework of the Cross-Entropy Method
Input: Searching space χ,cost function S : χ → R≥0, initial parameter vector

v0, algorithm parameter ρ, N, d;for example, N = 1000, ρ = 0.1 and d = 10.
Output: An approximation S(x∗) of the minimal and corresponding x∗.

1: t← 1
2: According to Dχ,vt−1 , sample X1, . . . , XN from χ
3: Let the threshold γt be the dρNe-th smallest value of S(Xi)
4: Solve the stochastic program (10) for the inputs (X1, . . . , XN , γt, vt−1) and

find the new parameter vt
5: if the found minimum S(X∗) during the execution of the algorithm is not

updated in the last d loop then
6: output the smallest S(X∗) and X∗

7: else
8: let t← t + 1 and goto Step 2
9: end if

The stochastic program in Step 4 is the problem of finding the parameter
vector v which optimizes

arg max
v

N

∑
i=1

IS(Xi)≤γt
log fv(Xi) (10)

where

IS(Xi)≤γt
=

{
1 if S(Xi) ≤ γt
0 if S(Xi) > γt

is the characteristic function. It is known that the new distribution Dχ,vt derived
from the solution is closer to the ideal distribution Dχ,opt that outputs the op-
timal Xopt = arg minX S(X) with probability 1, than the previous distribution
Dχ,vt−1 . In other words, the cost of sampled elements from Dχ,vt are likely to
smaller than that of samples from Dχ,vt−1 . This is quantified by the function to
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measure the distance between two probability distributions:

D(g, fv) :=
∫

g(x) log
g(x)
fv(x)

dx

which is known as the cross-entropy, or Kullback-Leibler distance. The above
algorithm wants to minimize the distance from the optimal state g by changing
the parameter vector v.

The stochastic program (10) can be easily solved analytically if the family of
distribution function { fv(x)}v∈V is a natural exponential family (NEF) [31]. In
particular, if the function fv(x) is convex and differentiable with respect to v,
the solution of (10) is obtained by solving the simultaneous equations

N

∑
i=1

IS(Xi)≤γt
∇ log fv(Xi) = 0. (11)

The Gaussian product (12) used in the next section is one of the simplest
examples of such functions.

4.3 Our Algorithm

For the generic algorithm (Algorithm 1), we substitute our cost function and
constraints. Then, we modify the sampler and introduce the FACE strategy as
explained in this section. Recall that the input is a lattice basis and its Gram-
Schmidt lengths, a radius R and a target probability p0. We mention that our
algorithm follows [19, Algorithm 2] for optimization over a subset of Rm by
Kroese, Porotsky and Rubinstein.

Modified sampler: The sampling parameter is u = (c1, . . . , cn−1, σ1, . . . , σn−1) ∈
R2n−2
≥0 where c and σ correspond to the center and deviation respectively.

Since the bounding radii must increase and the last coordinate is Rn = 1,
the searching space is

χ = {(x1, . . . , xn−1) ∈ (0, 1]n : x1 ≤ x2 ≤ · · · ≤ xn−1} ⊂ Rn−1.

To sample from the space following the parameter u, define the correspond-
ing probability distribution Dχ,u as follows: sample each ui from N(ci, σ2

i ) inde-
pendently, if all ui ≥ 0, then let (x1, . . . , xn) be (u1, . . . , un) sorted in increasing
order and output it. We sort the output because because we do not know a suit-
able distribution from which the sampling from χ is easy. As we will see later,
when the algorithm is about to converge, the Gaussian parameters σi become
small, and the distributions of ui’s and xi become close. Below we assume that
the probability density function of Dχ,u is sufficiently close to that of the Gaus-
sian product

fu(X) =
1

(2π)n/2

n−1

∏
i=1

(
1
σi

exp(−(xi − ci)
2/(2σ2

i ))

)
. (12)
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The gradients of log of the function are

∂

∂ci
log fu(X) =

xi − ci

σ2
i

,

and
∂

∂σi
log fu(X) = − 1

σi
+

(xi − ci)
2

σ3
i

.

Substituting them into (11), we obtain the formulas to update ci and σi as fol-
lows

cnew
i ←

∑j:S(Xj)≤γt
xj,i

|{j : S(Xj) ≤ γt}|

σnew
i ←

√√√√∑j:S(Xj)≤γt
(xj,i − ci)2

|{j : S(Xj) ≤ γt}|

(13)

where we denote xj,i for the i-th coordinate of Xj.

The FACE strategy: For practical speedup, we can employ the fully-automated
cross-entropy (FACE) strategy described in [14, Section 4.2]. It simply replaces
the full sampling in Step 2 in Figure 1 by a recycling strategy. Consider a list L =
{X1, . . . , XN}. If the cost of a new sample is less than maxi∈[N] S(Xi), replace
the new sample to the maximum element in the list, and update the parameter
vector by (13) using all items in the list, i.e., with γt = +∞.

We did preliminary experiments on this strategy and found that our prob-
lem has a typical trend, i.e. if the size N of list is small (≈ 10), the minimum
cost mini∈[N] S(Xi) decreases very fast but seems to stay near a local minimum.
On the other hand, if we choose a large N (≈ 1000), the speed of convergence
is slow, but the pruning function found is better than in the small case if we use
many loop iterations. Hence, we start with a small N and increase it little by
little.

Integrating the above, we give the pseudocode of our optimizing algorithm
in Algorithm 2. We used a heuristic parameter set Ninit = 10 and Nmax = 50,
and terminate the computation if v is not updated in the last 10 loop iterations.

5 Tightness and Applications to Security Estimates

In this section, we study the heuristic cost N of (5) divided by two (SVP setting).

5.1 Modeling Strongly Reduced Bases

The cost (5) of cylinder pruning over Pf (B, R) depends both on the quality of
the basis B, the radius R and the pruning function f . The results of Sect. 3 al-
low to lower bound the numerator of each term of (5), but we also need to
lower bound the part depending on the basis B. This was already discussed
in [25,11,7] using two models of strongly reduced bases: the Rankin model
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Algorithm 2 Cross-Entropy Method for Optimizing Pruning Radii
Input: Gram-Schmidt lengths (‖b?

1‖, . . . , ‖b?
n‖), Radius of the ball R, Target

probability p0, initial and maximum size of list N, Nmax, initial parameter
vector u = (c, σ), parameter to increase list size d.

Output: A near optimal cost and corresponding radii (R1, . . . , Rn)
1: Sample new X = (R1, . . . , Rm) from Dχ,u
2: if Pr(X) < p0 then
3: goto Step 1
4: end if
5: if |L| < N then
6: L← L ∪ X
7: else
8: Xi ← argmaxXi∈LCost(Xi)

9: end if
10: if Cost(X) < Cost(Xi) then
11: Replace Xi by X
12: Update u by using list L
13: end if
14: if u is not updated in the last d loops then
15: N ← N + 1
16: end if
17: if N > Nmax then
18: output minimum among X1, . . . , XN−1 and exit
19: end if
20: goto Step 1

used in [11,25] which provides conservative bounds by anticipating progress
in lattice reduction, and the HKZ model used in [11,7] which is closer to the
state-of-the-art. This part is more heuristic than Sect. 3.

The HKZ model. The BKZ algorithm tries to approximate HKZ-reduced bases,
which are bases B such that ‖b?

i ‖ = λ1(πi(L)) for all 1 ≤ i ≤ n. When running
BKZ, an HKZ basis is the best output one can hope for. On the other hand, a
BKZ-reduced basis with large blocksize will be close to an HKZ-basis, so this
model is somewhat close to the state-of-the-art. It corresponds to an idealized
Kannan’s algorithm [18] where enumerations are only performed over HKZ-
reduced bases (see [23] for more practical variants). Unfortunately, in theory,
we do not know what the ‖b?

i ‖’s of an HKZ basis will look like exactly, except
for i = 1, but we can make a guess. Following [11,7], we assume that for 1 ≤
i ≤ n − 50, ‖b?

i ‖ ≈ GH(πi(L)) = Vn−i+1(1)−1/(n−i+1) (∏n
k=i ‖b?

k‖
)1/(n−i+1),

which means that we assume that πi(L) behaves like a random lattice. Then we
can simulate ‖b?

i ‖ for 1 ≤ i ≤ n− 50 by a simple recursive formula. We stop at
n− 50, because Chen and Nguyen [11] reported that the last projected lattices
do not behave like random lattices. For the remaining indices, they proposed
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to use a numerical table from experimental results in low dimension: we use
the same table. Note that for a large dimension such as 200, errors in the last
coordinates are not an issue because the contribution of the terms k ≤ 50 in N
is negligible.

The Rankin model. It is known that HKZ bases are not optimal for minimizing
the running time of enumeration. For instance, Nguyen [27, Chapter 3] noticed
a link between the cost of enumeration and the Rankin invariants of a lattice,
which provides lower bounds on heuristic estimates of the number of nodes
and identifies better bases than HKZ. However, finding these better bases is
currently more expensive [13] than finding HKZ-reduced bases. Recall that the
Rankin invariants γn,m(L) of an n-rank lattice L satisfy:

γn,m(L) := min
S: sublattice of L

rank(S)=m

(
vol(S)

covol(L)m/n

)2

≤ ∏m
i=1 ‖b?

i ‖2

covol(L)2m/n , (14)

for any basis (b1, . . . , bn) of L. We have the following lower bound [37, Cor. 1]
for Rankin’s constant γn,m := maxL γn,m(L):

γn,m ≥
(

n · ∏n
n−m+1 Z(j)
∏m

j=2 Z(j)

)2/n

where Z(j) := ζ(j)Γ(j/2)π−j/2. (15)

According to [36], it seems plausible that most lattices come close to realizing
Rankin constants: for any ε > 0 and sufficiently large n, most lattices L “should”
verify γn,m(L)1/(2m) ≥ γ

1/(2m)
n,m − ε for all m.

Ignoring ε, if we lower bound any term of the form ∏m
i=1 ‖b?

i ‖
2

covol(L)2m/n in the sim-
plified cost (5) by the right-hand side of (15), we obtain the following heuristic
lower bound formula:

N =

1
2

n

∑
k=1

vol(CR1,...,Rk )
n−k

∏
i=1
‖b?

i ‖

vol(L)
>

1
2

n

∑
k=1

vol(CR1,...,Rk )

vol(L)k/n

(n− k)

n

∏
j=k+1

Z(j)

n−k

∏
j=2

Z(j)



1
n−k

In both cases, substituting the volume lower bounds in Section 3.2 and 3.3, we
obtain closed formulas to find the lower bound complexity which are suitable
for numerical analyses.

On the other hand, for any n-rank lattice L, and any fixed m ∈ {1, . . . , n− 1},
there is a basis (b1, . . . , bn) of L such that ∏m

i=1 ‖b?
i ‖

2

covol(L)2m/n = γn,m(L). This existence
would only be guaranteed for fixed m, such as for the m maximizing the cor-
responding number Nn+1−m of nodes in the enumeration tree at depth m. By
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idealization, we call Rankin basis a basis such that for all m ∈ {1, . . . , n − 1},
∏m

i=1 ‖b?
i ‖

2

covol(L)2m/n is approximately less than the right-hand side of (15): since such
bases may not exist, this is an over-simplification to guess how much speed-up
might be possible with the best bases. We use Rankin bases to compute specu-
lative upper bounds, anticipating progress in lattice reduction.

5.2 Explicit Lower Bounds

We summarize the applications of the results of Section 3.2 and 3.3, to compute
lower bounds on the number of nodes searched by cylinder pruning with lower
bounded success probability.

Single Enumeration. By Corollary 2, if α is a lower bound on the success proba-
bility,

N ≥ 1
2

n

∑
k=1

Vk(
√

αkRn)

∏n
i=n−k+1 ‖b?

i ‖
(16)

where αk is defined by Iαk (k/2, 1 + (n− k)/2) = α.
For the Gaussian case with success probability ≥ β, from Corollary 3,

N ≥ 1
2

n

∑
k=1

Vk(
√

βk)

∏n
i=n−k+1 ‖b?

i ‖

where βk is defined by P(k/2, βk/(2σ2)) = β.

Multiple Enumerations. For the situation where one can use m bases, let α′ be a
lower bound on the global success probability. Then by Lemma 6,

N ≥ α′

4

n

∑
k=1

kVk(Rn)B(k/2, 1 + (n− k)/2)
∏n

i=n−k+1 ‖b?
i ‖

(17)

where α′ satisfies vol(∪m
i=1Ci) ≥ α′vol(Rn).

Lemma 9 also implies a lower bound for the Gaussian setting with global
success probability ρn,σ(∪m

i=1Ci) ≥ β′:

N ≥ β′

2

n

∑
k=1

(2πσ2)k/2

∏n
i=n−k+1 ‖b?

i ‖
.

5.3 Radii Tightness

To check tightness, we give two figures (Figure 2) that compare the lower bound
of radii from Corollary 2, and the best radii generated by our cross entropy
method. The comparison is for two regimes: high and low success probability.
Note that the left probability 0.6827 is an approximation of P( 1

2 , 1
2 ) for which

the linear pruning is the best known proved lower bound.
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We see that the radii bounds are reasonably tight in both cases. We deduce
that in these examples, the enumeration cost bounds will also be tight, because
the cost is dominated by what happens around k ≈ n/2.

We note that it is to easier to compute lower bounds than upper bounds.

Fig. 2. Comparison of lower bound and near optimal radii; for the 150-dimensional sim-
ulated HKZ basis, compute near optimal radii and lower bound radii for α = 0.6827 &
P( 1

2 , 1
2 ) (Top) and α = 10−10 (Bottom).

5.4 Security Estimates for Enumeration

Fig. 1 (in the introduction) displays four bounds on the cost of enumeration in
several situations, for varying dimension and simulated HKZ bases and Rankin
bases:

– The thin red curve is an upper bound of the enumeration cost using M =
1010 bases with single success probability α = 10−10 computed by the cross-
entropy method.

– The bold red curve is a lower bound of the enumeration cost using M =
1010 bases with single success probability α = 10−10 computed by M times
(16).
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– The thin green curve is an upper bound of the enumeration cost w.r.t. in-
finitely many bases with global success probability α′ = 1. This is computed
by M times an upper bound of the enumeration cost with single success
probability 1/M for a very large M where the single cost is greater than
lattice dimension.

– The bold green curve is a lower bound of the enumeration cost w.r.t. in-
finitely many bases with a large global success probability. This is computed
by (17) with α′ = 1.

In all experiments, we take the radius by Rn = GH(L). The cost is the number of
nodes of of the enumeration tree in the classical computing model. The security
level is the base-2 logarithm of the cost, which is divided by two in the quantum
computing model [6,24].

We also draw the curve of 20.292n and 20.265n which are simplified lower
bounds of the cost for solving SVP-n used in [2] for classical and quantum com-
puters, respectively.

In all the situations where we use 1010 bases, the upper bounds (thin red
curve) and the lower bounds (bold red curve) are close to each other, which
demonstrates the tightness of our lower bound.

In the classical setting, our lower bounds for enumeration are higher than
sieve lower bounds. On the other hand, in the quantum setting, there are cases
where enumeration is faster than quantum sieving. For instance, if an attacker
could find many quasi-Rankin bases by some new lattice reduction algorithm,
the claimed 2128 quantum security might be dropped to about 296 security. In
such a situation, the required blocksize would increase from about 480 to 580.

5.5 Experimental Environments

All experiments were performed by a standard server with two Intel Xeon E5-
2660 CPUs and 256-GB RAM. We used the boost library version 1.56.0, which
has efficient subroutines to compute (incomplete) beta, (incomplete) gamma
and zeta functions with high precision.
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A Proof of Lemma 3

Let

p(k, n) := Ik/n

(
k
2

,
n− k

2

)
=

∫ k/n
0 z

k
2−1(1− z)

n−k
2 −1dz

B( k
2 , n−k

2 )
(18)

To prove Lemma 3, it suffices to show that: for any integers 1 ≤ k < n,

p(n, k) ≤ P(
1
2

,
1
2
) =

∫ 1/2
0 t−1/2e−t

Γ( 1
2 )

≈ 0.682689...
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A.1 Formulas and Lemmas

We have
Γ(a + 1) = aΓ(a) and B(a, b + 1) = B(a, b)

b
a + b

. (19)

The following recurrence formulas hold (see 8.17.18 and 8.17.21 of NIST
Digital Library of Mathematical Functions http://dlmf.nist.gov/8.17 respec-
tively):

Ix(a, b) = Ix(a + 1, b− 1) +
xa(1− x)b−1

aB(a, b)
. (20)

Ix(a, b) = Ix(a, b + 1)− xa(1− x)b

bB(a, b)
. (21)

We recall:

Theorem 8. (Chebyshev integral inequality) For any nonnegative, monotonically in-
creasing function f (x) and monotonically decreasing function g(x), we have∫ b

a
f (x)g(x)dx ≤ 1

b− a

(∫ b

a
f (x)dx

)
·
(∫ b

a
g(x)dx

)
.

Lemma 10. For a, b > 1, the function za(1 − z)b is maximized at zmax = a
a+b .

Furthermore, it is strictly increasing over z ∈ [0, zmax] and strictly decreasing over
z ∈ [zmax, 1].

A.2 Proof Body

The proof of Lemma 3 can be derived from the following three lemmas.

Lemma 11. If n ≥ 2, then: p(1, n) < p(1, n + 2).

Proof. By (21), we have

p(1, n) = I 1
n

(
1
2

,
n + 1

2

)
− n−1/2(1− 1/n)

n−1
2

n−1
2 · B

(
1
2 , n−1

2

)

= I 1
n+2

(
1
2

,
n + 1

2

)
+

∫ 1
n
1

n+2
z−1/2(1− z)

n−1
2 dz

B
(

1
2 , n+1

2

) − n−1/2(1− 1/n)
n−1

2

n−1
2 · B

(
1
2 , n−1

2

) .

Then J = p(1, n)− p(1, n + 2) is equal to the last two terms. We will show
that J < 0. From (19), we have B

(
1
2 , n+1

2

)
= n−1

n B
(

1
2 , n−1

2

)
and we get

J′ = J · (n− 1)B
(

1
2

,
n− 1

2

)
= n

∫ 1
n

1
n+2

z−1/2(1− z)
n−1

2 dz− 2n−1/2(1− 1/n)
n−1

2
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of which we want to show negativeness.
Since the integral function z−1/2(1− z)

n−1
2 is strictly decreasing, the trivial

bound

n
∫ 1

n

1
n+2

z−1/2(1− z)
n−1

2 dz

< n
(

1
n
− 1

n + 2

)(
1

n + 2

)−1/2 (
1− 1

n + 2

) n−1
2

=
2√

n + 2

(
1− 1

n + 2

) n−1
2

holds. Thus, letting f (x) = 1√
x (1− 1/x)

n−1
2 , we have J′ < 2( f (n + 2)− f (n))

and it suffices to show that f (x) is strictly decreasing over the range x ∈ (n, n +
2). It is equivalent to check that the derivative of g(x) = f (1/x) =

√
x(1 −

x)
n−1

2 is > 0 for 1
n+2 < x < 1

n . We have:

(log g(x))′ =
g′(x)
g(x)

=
1

2x
+

n− 1
2

1
x− 1

=
nx− 1

2x(x− 1)

which is > 0 if 0 < x < 1
n . Hence, g(1/(n + 2)) < g(1/n), f (n + 2) < f (n), and

J′ = J · (n− 1)B
(

1
2

,
n− 1

2

)
= 2( f (n + 2)− f (n)) < 0.

Therefore, p(1, n) = p(1, n + 2) + J < p(1, n + 2) for any n ≥ 2. ut

Corollary 5. If n ≥ 2, then p(1, n) < P( 1
2 , 1

2 ).

Proof. With p(1, 2) = 1
2 and p(1, 3) = 1√

3
≈ 0.5773 and the known result

p(1, n)→ P( 1
2 , 1

2 ) (n→ ∞), we obtain that p(1, n) < P( 1
2 , 1

2 ) for n ≥ 2. ut

Lemma 12. p(2, n) < P( 1
2 , 1

2 ) for any n ≥ 2

Proof. By definition,

p(2, n) =
Γ
( n

2
)

Γ(1)Γ
( n

2 − 1
) ∫ 2

n

0
(1− z)

n−4
2 dz =

n− 2
2

∫ 2
n

0
(1− z)

n−4
2 dz

= 1−
(

1− 2
n

) n
2−1

.

For 2 ≤ n ≤ 8, we can check it is smaller than 0.68 numerically, Also, for n ≥ 9,
since the function (1− 1/x)x is monotonically increasing with x, we have

1−
(

1− 2
n

) n
2−1

< 1−
(

1− 2
n

) n
2
≤ 1− (1− 2/9)9/2 < 0.68 < P

(
1
2

,
1
2

)
.

ut
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Lemma 13. p(k + 2, n) < p(k, n) for any 1 ≤ k < n.

Proof. By definition and (20)

p(k + 2, n)

= I k+2
n

(
k
2
+ 1,

n− k
2
− 1
)
= I k+2

n

(
k
2

,
n− k

2

)
− 2

k
( k+2

n )
k
2 ( n−k−2

n )
n−k−2

2

B( k
2 , n−k

2 )

= p(k, n) +

∫ k+2
n

k
n

z
k
2−1(1− z)

n−k
2 −1dz

B( k
2 , n−k

2 )
− 2

k
( k+2

n )
k
2 ( n−k−2

n )
n−k−2

2

B( k
2 , n−k

2 )
.

Thus, it suffices to show

∫ k+2
n

k
n

z
k
2−1(1− z)

n−k
2 −1dz− 2

k

(
k + 2

n

) k
2
(

n− k− 2
n

) n−k−2
2

:= I − J < 0.

Let us define g(z) = z
k
2+1(1 − z)

n−k
2 −1 which is strictly increasing over

[0, k+2
n ]. Since z−2 is strictly decreasing, Chebyshev’s integral inequality implies

that

I =
∫ k+2

n

k
n

z−2g(z)dz <
n
2

∫ k+2
n

k
n

z−2dz
∫ k+2

n

k
n

g(z)dz =
n2

k(k + 2)

∫ k+2
n

k
n

g(z)dz

<
n2

k(k + 2)
· 2

n
g
(

k + 2
n

)
= J.

Therefore, we have I < J and it derives p(k + 2, n) < p(k, n). ut

A.3 Proof of Lemma 9

Recall that P(a, z) :=
∫ z

0 xa−1e−xdx
Γ(a) which implies:

e−zza

Γ(a + 1)
< P(a, z) <

za

Γ(a + 1)
for a > 0, z > 0. (22)

Also, they imply the bound

P−1(a, x) > (Γ(a + 1)x)1/a for a > 0, 0 < x < 1 (23)

and the limits

lim
z→0+

P(a, z)
za =

1
Γ(a + 1)

and lim
x→0+

x
(P−1(a, x))a =

1
Γ(a + 1)

. (24)

Hence, we have

lim
m→∞

mVk(
√

βk) = Vk(1) lim
m→∞

m ·
(

2σ2P−1(k/2, β)
)k/2

= Vk(1) · β′ · Γ(k/2 + 1)(2σ2)k/2 = β′ · (2πσ2)k/2.



Lower Bounds on Lattice Enumeration with Extreme Pruning 31

To show the decreasing property, it suffices to show that
g(y) = 1

y · (P−1(k/2, β′y))k/2 is strictly increasing over 0 < y ≤ 1.
We use the inequality

∂

∂x
P−1(a, x) = Γ(a)eP−1(a,x)P−1(a, x)1−a ≥ P−1(a, x)

ax

which is immediate from the left hand side of (22) with z = P−1(a, x).
Hence, denoting P := P−1(k/2, β′y) for simplicity,

g′(y) =
β′k
2y

Pk/2−1 · ∂P
∂y
− Pk/2

y2 >
β′k
2y

Pk/2−1 · P
(k/2)β′y

Pk/2−1 − Pk/2

y2 = 0

This completes the proof. ut
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