
Polynomial Functional Encryption Scheme
with Linear Ciphertext Size

Jung Hee Cheon, Seungwan Hong, Changmin Lee, Yongha Son

Seoul National University (SNU), Republic of Korea

Abstract. In this paper, we suggest a new selective secure functional
encryption scheme for degree d polynomial. The number of ciphertexts
for a message with length ` in our scheme is O(`) regardless of d, while
it is at least `d/2 in the previous works.
Our main idea is to generically combine two abstract encryption schemes
that satisfies some special properties. We also gives an instantiation of
our scheme by combining ElGamal scheme and Ring-LWE based homo-
morphic encryption scheme, whose ciphertext length is exactly 2`+1, for
any degree d.

1 Introduction

Functional encryption is an encryption scheme that, given the function key Sf
for the function f and the encrypted message m, the decryption algorithm with
the key Sf only outputs the evaluation value f(m). Unlike to the traditional
encryptions which decrypt all or nothing, functional encryption can provide only
limited decryption capacity with a function key and so has a lot of interesting
applications. As a specific subclass of such a functional encryption, AIBE, IBE,
ABE were realized [9,22,25,31,32]. Because these are important applications in
the field of cryptography, it shows the usefulness of functional encryption.

Unfortunately, it has not yet been fully clarified to construct the practi-
cal functional encryption that support the general circuit. A recent study show
that indistinguishable obfuscation or cryptographic multilinear map can be a
candidate to construct the functional encryption for all circuits. Since this indis-
tinguishable obfuscation is implemented via multilinear maps, the results lead
to the research of designing multilinear maps. However, until now, due to the
absence of exact multilinear map of degree > 2, the functional encryption for
general circuit has not been realized. On the other hand, instead of the exact
multilinear map, a method using an approximate multilinear map has been sug-
gested [18–20, 23], but the security of these maps is suspected due to several
attacks in many cases [12,13,16,17,27,30].

Instead of supporting general functionality, a functional encryption that pro-
vide only certain functionality have been presented. Previously known results
such as equality testing [7,9,24], keyword search [1,8,28], boolean formulate [26],
inner product predicates [28], can be examples of the functional encryption. Be-
sides, a functional encryption for inner product functionality (i.e. linear func-
tion) [2, 3, 6] and quadratic functions [5, 21] are known to date. It also enables

numerous applications. In particular, since all multivariate polynomial functions
are represented by the inner product of the monomials, the functional encryption
for general polynomial can be constructed using the functional encryption for
inner product. In this case, however, ciphertexts of `d monomials are needed to
compute the degree d polynomial for ` messages, which is far from practical. In
summary, it remains an open problem to design a secure functional encryption
with O(`) ciphertexts, for degree d > 2 polynomials.

1.1 Our Contribution

In this paper, we provide a new generic construction of functional encryption
with O(`) ciphertexts for message vector length ` and degree-d polynomial func-
tionality in secret key setting.

More specifically, we illustrate a generic method to construct a functional
encryption by combining two encryption schemes satisfying certain properties.
Briefly, the first scheme should have a decryption algorithm of linear arithmetic
circuit. The second scheme supports module operations among ciphertexts. Refer
to Section 3.1 for more details. We also present the our scheme achieves both
function privacy and selective security, which is a security model that declares
messagesM0 andM1 in the semantic security game before generating the master
key.

As a concrete example, we suggest a functional encryption scheme for degree-
3 polynomial. It is designed by combining a ring LWE based homomorphic en-
cryption scheme and an Elgamal public key encryption scheme. The scheme
provides only 2`+ 1 ciphertexts, which is independent to degree. As another op-
tion, we propose a way to use the LTV homomorphic encryption scheme instead
of ring LWE based scheme. In this case, the number of ciphertexts decreased to
by ` + 1.

Technical Overview. Here, we describe some intuitions with respect to con-
struction idea and its security proof. First we recall the Abdella et al.’s functional
encryption scheme for inner product functionality (for short, IPE scheme). In
order to evaluate ⟨m⃗, f⃗⟩ for a message vector m⃗ = (m1,⋯,m`) ∈ Z` and coeffi-
cients f⃗ = (f1,⋯, f`) ∈ Z`, it is the main idea of the IPE scheme to encrypt the
each message entry mi using a module encryption scheme, which is an encryp-
tion scheme supporting scalar multiplication and addition between ciphertexts.
Then, by its properties, it multiplies the fi coefficient and adds all ciphertexts to
get the ciphertext of ⟨m⃗, f⃗⟩. Additionally the IPE scheme would have a special
public information Sf⃗ that helps one to only decrypt the ciphertext. It implies
that we obtain the inner product value of m⃗ and f⃗ .

Now we consider the functional encryption for a polynomial function of order
greater than 1. For the sake of simplicity, we only consider degree d = 2 poly-
nomial F here. For an `-length message vector m⃗ = (mi), degree 2 polynomial

2

function F (m⃗) can be represented by

F (m⃗) = ∑
0≤i,j≤`

Fi,j ⋅mi ⋅mj

for some coefficient Fi,j . The representation implies that ciphertexts for all mono-
mials of mi ⋅mj is enough to evaluate function F like the existing IPE schemes.
However, since existing IPE schemes do not support multiplication between ci-
phertexts, it looks nontrivial to devise a scheme of linear ciphertext size.

Our main idea is to use a hybrid technique, proposed by Cheon et al. [15]. In
other words, we propose a functional encryption scheme by combining a scheme
LDE, that provide a decryption circuit using only a linear arithmetic and an
R module encryption scheme RMod, where the ring R is a underlying space of
LDE’s ciphertext.

For the sake of simplicity, we assume that the encryption of LDE.Enc (ski,mi)

with secret key ski is decrypted with just multiplication, i.e.mi = LDE.Enc (ski,mi)⋅

ski Therefore, from each ciphertext of mi 1 ≤ i ≤ ` encrypted by LDE, one can
generate the encryption of mi ⋅mj , say LDE.Enc (ski,j ,mi ⋅mj) by multiplying
each ciphertexts, where ski,j ∶= ski ⋅ skj is the its secret key.

Now, to convert this ciphertext to that of module scheme, so called RMod,
we provide evaluation keys. They are all encrypted with LDE’s secret key with
module scheme and of the form RMod.Enc(ski,j) (to simplify, we omit the secret
key of RMod as an input of algorithm RMod.Enc). We put here a coefficient
factor Fi,j so that we can naturally obtain the ciphertext of Fi,j ⋅mi ⋅mj . In other
words, encryptions RMod.Enc(Fi,j ⋅ ski,j) are published. Then, by multiplying it
to LDE.Enc (ski,j ,mi ⋅mj), we obtain intermediate term, which can be expressed
as follows.

LDE.Enc (ski,j ,mi ⋅mj) ⋅ RMod.Enc(Fi,j ⋅ ski,j)

= RMod.Enc(Fi,j ⋅ ski,j ⋅ LDE.Enc (ski,j ,mi ⋅mj))

= RMod.Enc(Fi,j ⋅mi ⋅mj)

Since RMod encryption scheme supports addition, by adding the all intermediate
term, we then get the encryption of F (m⃗) for the RMod scheme. Finally, by
decrypting the ciphertext using a special form, denoted c0, which plays a similar
role to the function key SF in the Abdella et al.’s IPE scheme, we can recover
the evaluation value F (m⃗).

To proceed to security proof, we observe that the public information that an
adversary can obtain consists of

1) Ciphertexts ci encrypted by LDE,
2) Encrypted secret information ski,j related to ci encrypted by RMod,
3) An additional information c0 that helps to decrypt RMod.Enc(F (m⃗)).

In the case of 1) and 2), for T = O(`d), we prove that the semantic security of
LDE(with the T number of message query) or RMod(with polynomial number of
message query) is not provided if our functional encryption does not satisfy the

3

semantic security due to 1) or 2) information leakage with T number of message
query. In this argument we use a similar idea to the security proof of Cheon
et al.’s hybrid scheme [15]. In other words, if the two base schemes satisfy the
semantic security, 1) and 2) reveals no information. Finally, we show that c0 can
be computed by already revealed information from LDE and RMod, so we can
conclude that c0 do not reveal any other information in hybrid scheme. For more
details, please refer the section 3.3.

2 Preliminary

In this section, we introduce notations used in this paper and recall the basic
notions including the functional encryption and the somewhat homomorphic
encryption needed to construct our schemes.

Notation For any set S, we write ∣S∣ by the size of S.We denote [n] = {1,2,⋯, n}
for an positive integer n. For a positive integer p, we fix the represents of the
group Zp by (−p/2, p/2] ∩Z.

Without other special mention, R denotes an abstract ring. We use bold
letter to represent a polynomial. A vector having elements in R(or polynomial)
is denoted with upward arrow as a⃗(or a⃗), and for a vector a⃗, we denote the
i-th component of any vector a⃗ (or a⃗) as ai (or ai). We also denote a vector by
(ai)i∈[`] when we want to emphasize each entry and the length; if the length is
obvious in the context, we simply write it by (ai).

We use ∥⋅∥∞ to denote the infinity norm of vector. Moreover, for a polynomial
a, ∥a∥ denotes the infinity norm of the coefficient vector.

For a positive integers d and `, we define the set Id,` by the collection of
every multi-subset1 of [`] having size d. We call an element of I ∈ Id,` by an
index, and if there is no confusion, we omit the subscripts d, `. For any vector
x⃗ = (x1,⋯,x`) of ring elements and an index I ∈ I, we define

x(I)
=∏
i∈I
xi.

Given two vectors a⃗ = (a1,⋯, am) and b⃗ = (b1,⋯, bn), the tensor product of
a⃗, b⃗ is defined by a⃗ ⊗ b⃗ = (ai ⋅ bj)(i,j)∈[m]×[n]. Note that the tensor product of
vectors of length m and n has the length mn.

For an algorithm A, a ← A means that the algorithm A outputs a. For the
distribution D and the set S, the algorithms AD and AS refer to the algorithm
for sampling according to the distribution D and the algorithm for sampling
uniformly in the set S, respectively. If there is no confusion, we abolish the
notation of d←D and s← S instead of d← AD and s← AS , respectively. When
we computing between the outputs of algorithms, we use the operation between
algorithms. For instance, b = A1 + A2 means that we first sample a1 ← A1 and
a2 ← A2, and then compute b = a1 + a2.
1 Multiset is modification of the concept of a set that, unlike a set, allows for multiple
instances for each of its elements.

4

2.1 Functional Encryption

We first provide a definition of functionality and a secret key version of functional
encryption based on Boneh et al.’s paper [10]. Next, we present security notions
of the functional encryption.

Definition 1 (Functionality). The functionality F defined over (K,M) is a
function F ∶ K ×M → Y, where K,M, and Y are the key space, the message
space, and the output space, respectively.

Definition 2 (Secret key Functional Encryption (sFE)). The secret key
functional encryption for a functionality F over (K,M) consists of the algo-
rithms (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec). Each algorithm is defined by

– FE.Setup(1λ) : This algorithms runs following two subalgorithms :
● FE.Param(1λ) : Given security parameter λ, output public parameter pp.
● FE.SkGen(pp) : Given public parameter pp, output master secret key msk.

Then output (pp,msk).
– FE.KeyGen(msk, k) : For a key k ∈ K and a master secret key msk, KeyGen

outputs a secret key skk.
– FE.Enc(msk,m) : For a message m ∈ M and a master secret key msk, Enc

outputs a ciphertext Ct.
– FE.Dec(skk,Ct) Given a secret key skk and a ciphertext Ct, Dec outputs y ∈ Y.

and satisfy the correctness condition: y = F(k,m) with overwhelming probability.

We remark that every algorithms defined after Setup need the public param-
eter pp as its input. However, we omit it for the sake of simplicity.

Security Intuitively, indistinguishability security model of sFE is to distinguish
between the functional encryption of one input m0 ∈ M and that of another
m1 ∈ M, if one can only obtain secret keys for a functions which output the
same values on m0 and m1. Depending on whether the two challenge inputs
(m0,m1) are chosen adaptively or fixed, adaptive indistinguishability functional
security and selective one are defined.

Since, in this work, we are mainly interested in the later security model, we
only provide the definition of the selective security against T number of chosen-
plaintext attacks via the security game below.

Definition 3 (T -Selective-Message IND security with function Privacy
for sFE(T -SEL-IND-FP)). There are two participants in T -SEL-IND-FP game.
An adversary A wants to show its ability to break the IND security of chosen sFE
scheme with T number of selected messages and a challenger C wants to make
sure the A’s argument is correct. For each purpose, they proceed the following
game.

1. C generates pp← FE.Param and gives pp to A.

5

2. A chooses m⃗0 = (m0
1,m

0
2,⋯,m

0
T), m⃗

1 = (m1
1,m

1
2,⋯,m

1
T) ∈ MT and gives

(m⃗0, m⃗1) to C.
3. C generates msk ← FE.SkGen. Then C chooses random bit b ← {0,1} and

gives key generating oracle FE.KeyGenOmsk,b(⋅ , ⋅ , m⃗
0, m⃗1) that can be used

polynomially many times to A. This oracle is defined as follows.
– FE.KeyGenOmsk,b(k

0, k1, m⃗0, m⃗1) : Given k0, k1 ∈ K, this oracle checks
whether k satisfies F(k0,m0

t) = F(k1,m1
t) for all t ∈ [T]. If so, the oracle

returns SKk ← FE.KeyGen(msk, kb). Otherwise it returns nothing.
4. C gives {ct = FE.Enc(msk,mb

t)}t∈[T] to A.
5. A outputs b′ ∈ {0,1}.

We define the advantage of A in this game by

AdvFE-T -SEL-IND-FP
A = ∣Pr[b = b′] −

1

2
∣.

We say the FE scheme satisfies the T -SEL-IND-FP security if there is no PPT
adversary A such that AdvFE-T -SEL-IND-FP

A is non-negligible.

Throughout the paper, FE means sFE unless otherwise noted.

3 Abstract Description of Our Scheme

In this section, we present our functional encryption scheme for degree-d poly-
nomial funtionality and show that it satisfies T -Sel-Sec security. To follow the
common way to write polynomial, we denote the funtionality F of FE scheme as
F(F, x⃗) = F (x⃗) for F ∈ K and x⃗ ∈ MFE.

We remark that we can only consider homogeneous polynomials, since every
polynomials with ` variables can be expressed as a homogeneous polynomial
with degree ≤ 2`. For instance, the polynomial F (x1, x2, x3) = x1x2x3 + 2x1 can
be represented by G(x1, x2, x3,1,1) where

G(x1, x2, x3, x4, x5) = x1x2x3 + 2x1x4x5.

3.1 Generalized Encryption Schemes

Our functional encryption scheme is constructed by combining two abstract
scheme; LDE and RMod. We first give the description of each scheme, and prop-
erties for each scheme to satisfy.

LDE : An Encryption Scheme with Linear Decryption Circuit. Let R
be a ring. An encryption scheme with linear decryption circuit LDE is defined
over the following spaces.

– The message spaceMLDE,
– The secret key space Rn (or a subset of Rn),

6

– The ciphertext space Rn.

We require that LDE includes an encoding algorithm LDE.Ecd that transforms
an elementm ∈ MLDE into an element µ ∈ R.We also have an decoding algorithm
LDE.Dcd that uniquely determines an element m ∈ MLDE, given an element
µ ∈ R.

Now LDE is defined by a family of algorithms

(LDE.Param,LDE.SkGen,LDE.Enc,LDE.Dec) ∶

– LDE.Param(1λ) : Output public parameter pp = R.
– LDE.SkGen(pp) : Given public parameter pp, output the secret key s⃗k ∈ Rn.

– LDE.Enc(s⃗k,m) : Given a secret key s⃗k ∈ Rn and a message m ∈ MLDE,
output a ciphertext c⃗ ∈ Rn.

– LDE.Dec(s⃗k, c⃗) : Given a secret key s⃗k ∈ Rn and a ciphertext c⃗ ∈ Rn, compute
the inner product µ = ⟨s⃗k, c⃗⟩ ∈ R, and output m← LDE.Dcd(µ).

We further assume that LDE.Ecd preserves ring operations, and then the ten-
sor product ⊗ ∶ R∗ ×R∗ →R∗ implies a multiplication between two ciphertexts,
while extending ciphertext space and the secret key space R∗ = ⊍

n≥1
Rn (disjoint

union). More precisely, for two ciphertext c⃗1 and c⃗2 having secret key s⃗k1 and
s⃗k2, we define c⃗Mult = c⃗1 ⊗ c⃗2; it holds that

⟨s⃗k1 ⊗ s⃗k2, c⃗1 ⊗ c⃗2⟩ = ⟨s⃗k1, c⃗1⟩ ⋅ ⟨s⃗k2, c⃗2⟩.

Note that LDE.Dec algorithm is naturally extended to extended ciphertexts and
secret keys.

– LDE.Dec(s⃗k
′
, c⃗′) : Given a secret key s⃗k

′
∈ R∗ and a (extended) ciphertext

c⃗′ ∈ R∗ having same length, compute the inner product µ = ⟨s⃗k
′
, c⃗⟩ ∈ R, and

output m← LDE.Dcd(µ).

Finally, since our main concern is ciphertexts of the form ⊗di=1c⃗i where c⃗i
having same length n, we especially denote by nd the length of ⊗di=1c⃗i. In the
above multiplication, we have nd = nd.

Remark. If the secret key is of the form s⃗k = (1, sk,⋯, skn−1) ∈ Rn, one can define
another multiplication for c⃗ = (ci) ∈ R

n1 and c⃗2 = (c′i) ∈ R
n2 by

c⃗Mult =
⎛

⎝
∑
i+j=k

ci ⋅ c
′
j

⎞

⎠
2≤k≤n1+n2

∈ R
n1+n2−1.

This results in nd = 1+d ⋅ (n− 1), which is O(d ⋅n). It can be easily checked that
n′-length ciphertexts are decrypted by (1, sk,⋯, skn

′−1
) ∈ Rn

′

.

7

RMod : R-module Encryption Scheme. Let R be a ring. We use the fol-
lowing spaces.

– The message space R.
– The secret key space R.
– The randomness space R.
– The ciphertext space M2, where (M,⊕,⊙) is an R-module.

Then an R-module encryption scheme RMod refers to a family of algorithms

(RMod.Param,RMod.SkGen,RMod.Enc,RMod.Dec)

which are defined as below.

– RMod.Param(1λ) : Output public parameter pp = R.
– RMod.SkGen(pp) : Given public parameter pp, output a secret key sk = s ∈ R.
– RMod.Enc(sk,m) : This algorithm is represented by a subalgorithm RMod.E

defined by following :
● RMod.E(sk,m, r) : Given a secret key sk ∈ R, message m ∈ R, and ran-
domness r ∈ R, output an element c ∈M.

Given a secret key sk ∈ R and a message m ∈ R, sample r ∈ R, and output

c⃗ = (RMod.E(1,0, r),RMod.E(sk,m, r)) ∈M2.

– RMod.Dec(sk, c⃗) : Given a secret key sk ∈ R and ciphertext c⃗ ∈ M2, output
the message m ∈ R.

The algorithm RMod.E has following properties.

– (Module Operations in M) : For any a ∈ R and E ciphertexts

c1 ← RMod.E(s1,m1, r), c2 ← RMod.E(s2,m2, r),

it holds that

c1 ⊕ c2 = RMod.E(s1 + s2,m1 +m2, r),

a⊙ c1 = RMod.E(a ⋅ s1, a ⋅m1, r)

– (Randomness deletion with zero secret key) : For any random r1, r2 ∈ R and
m ∈ R,

RMod.E(0,m, r1) = RMod.E(0,m, r2).

With this condition, one can use RMod.E(1,0, r) to generate RMod.E(s′,m′, r)
without knowing r. Note that anyone having pp can compute RMod.E(0,1,0),
and hence we have

(s′ ⊙ RMod.E(1,0, r)) ⊕ (m′
⊙ RMod.E(0,1,0))

= (RMod.E(s′,0, r)) ⊕ (RMod.E(0,m′,0))

= (RMod.E(s′,0, r)) ⊕ (RMod.E(0,m′, r))

= RMod.E(s′,m′, r)

8

Security Models for LDE and RMod. The security model for LDE and RMod
directly follows the one for symmetric key encryption. We state the definition of
T -IND security model and IND security model for symmetric key encryption in
Appendix A.

3.2 Hybrid Construction of FE Scheme from LDE and RMod

In the scheme description, the operator ⟨ ⋅ , ⋅ ⟩ ∶ Rnd ×Rnd →R is focused on the
general inner product in Rnd . Meanwhile, we can consider another inner product
between a vector in Rnd and Mnd via operations ⊕,⊙. We denote this inner
product by ⟨ ⋅ , ⋅ ⟩M . In other words, for (ci)i∈[nd] ∈ R

nd and (Cti)i∈[nd] ∈M
nd ,

we define
⟨(ci), (Cti)⟩M = ⊕

i∈[nd]
ci ⊙ Cti.

Now we are ready to construct a functional encryption scheme. Our functional
encryption scheme can evaluate any degree d polynomial F ∶ M`

FE →MFE. We
observe F can be represented by

F (m⃗) = F (m1,⋯,m`) = ∑
I∈I

FI ⋅ m⃗
(I)

for some FI ∈ R, where the set I consists of all the size d multi-subsets of [`].
Our hybrid functional encryption scheme

FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)

with pp = {R, `, d} is defined as below.

– FE.Setup(1λ, `, d) :
● FE.Param(1λ) : Run LDE.pp(1λ) and RMod.pp(1λ) to get ppLDE and
ppRMod, respectively. Then construct ppFE from {ppLDE,ppRMod}. Output
ppFE.

● FE.SkGen(ppFE, `, d) Set ppLDE = ppRMod = R from LDE.Param and RMod.Param
with security parameter λ.
Run LDE.SkGen to get s⃗kLDE and run RMod.SkGen for each (I, i) ∈ I ×
[nd] to get secret keys {sI,i = RMod.SkGen(ppRMod)}(I,i)∈I×[nd]. Output

msk = {skLDE,{s⃗I = (sI,1,⋯, sI,nd
)}I∈I}.

– FE.KeyGen(msk, F) : Sample a random element r ∈ R and compute evk0 =

RMod.E(1,0, r). Then for each I ∈ I, compute secret key

⊗
d
i=1s⃗kLDE ∶= (skd1,⋯, sk

d
nd

).

Now run RMod.E algorithm with same randomness r to get

evkI,i = RMod.E(sI,i, FI ⋅ sk
d
i , r)

for i ∈ [nd]. Output skF = {evk0,{ ⃗evkI = (evkI,1,⋯, evkI,nd
)}I∈I}.

9

– FE.Enc(pp,msk, m⃗ = (m1,⋯,m`) ∈ M
`
FE) : Compute ci = LDE.Enc(skLDE,mi)

for i ∈ [`] and c0 = ∑
I∈I

⟨s⃗I ,⊗i∈Ici⟩. Output Ct = {c0, c⃗ = (c1,⋯, c`)}.

– FE.Dec(skF ,Ct) ∶ Compute

C = ⊕
I∈I

⟨⊗i∈Ici, ⃗evkI⟩M .

Then compute µ = RMod.Dec(c0, (evk0,C)) ∈ R and output LDE.Dcd(µ) ∈
MFE.

We remark that, since the coefficients FI are encrypted by the RMod encryp-
tion scheme, our scheme naturally provides function privacy.

Correctness. We denote c⃗I = ⊗i∈I c⃗i. Then for each index I ∈ I, we know

c⃗I = LDE.Enc(⊗di=1s⃗kLDE, m⃗
(I)

) ∈ R
nd ,

which means ⟨⊗di=1s⃗kLDE, c⃗I⟩ = LDE.Ecd(m(I)) for some error eI ∈ R. Therefore,
it holds that

⟨c⃗I , ⃗evkI⟩M = ⟨c⃗I , (RMod.E(sI,i, FI ⋅ sk
d
i , r))i∈nd

⟩M

= RMod.E(⟨s⃗I , c⃗I⟩, FI ⋅ ⟨⊗⃗
d
i=1s⃗kLDE, c⃗I⟩, r)

= RMod.E(⟨s⃗I , c⃗I⟩, FI ⋅ LDE.Ecd(m⃗
(I)

), r).

Hence we have

C = ⊕
I∈I

⟨c⃗I , ⃗evkI⟩M

= ⊕
I∈I

RMod.E(⟨s⃗I , c⃗I⟩, FI ⋅ LDE.Ecd(m⃗
(I)

), r)

= RMod.E(c0,LDE.Ecd(F (m⃗)), r).

Hence µ = RMod.Dec(c0, (evk0,C)) = LDE.Ecd(F (m⃗)), and then LDE.Dcd(µ)
gives F (m⃗).

3.3 Security Proof

In this section, we mainly work on the index set I ×[nd] for evk’s and ciphertext
space. For the ease of reading, we denote the cardinality of set I × [nd] by L,
and we also denote the index (I, i) ∈ I × [nd] by j ∈ [L]. In other words, a set(or
vector) (vI,i)(I,i) ∈ R is identically denoted as (vj)j∈[L].

Additionally, in this proof we only use the inner product in the space RL.
We denote this inner product by ⟨ ⋅ , ⋅ ⟩L ∶ R

L ×RL →R, which is defined as

⟨a⃗, b⃗⟩L = ∑
(I,i)∈N

aI,i ⋅ bI,i = ∑
j∈[L]

aj ⋅ bj for any a⃗, b⃗ ∈ RL.

The security of our hybrid scheme FE is based of the security of LDE and
RMod. We state this fact formally as following theorem.

10

Theorem 1. For ` < T < ∣I`,d∣ ⋅nd, assume that the LDE scheme satisfies T -IND
security and the RMod scheme satisfies IND-CPA security. Then our secret key
functional encryption scheme FE constructed as Section 3.2 is T -SEL-IND-FP
secure.

The proof of the Theorem 1 is given in the rest of this section. Our proof is
based on the hybrid argument. First, we define the games Gamei for i = 0,1,2,
and 3. In each game, there exists an adversary A and plays a game with a
challenger C. We denote the advantage of A in Gamei by AdvGamei

A .

Game0 In this game, C and A plays the original selective IND-CPA game for
FE scheme. We recall the Definition 3 by changing variables to fix with our
definition of FE scheme.

1. C generates pp← FE.Param(1λ) and gives pp to A.
2. A chooses M0 = {m⃗0

1,⋯, m⃗
0
T },M

1 = {m⃗1
1,⋯, m⃗

1
T } ∈ (R`2)

T and gives them to
C.

3. C generates msk = {s⃗kLDE,{s⃗I = (sI,i)i∈[nd]}I∈I} ← FE.SkGen(pp).
4. C chooses random bit b ← {0,1} and A earns the oracle FE.KeyGenOmsk,b(⋅

, ⋅ ,M0,M1) that can be used polynomially many times. This oracle works
as follows.
– FE.KeyGenOmsk,b(F

0, F 1,M0,M1) : Given F b
′

(x⃗) = ∑I∈I F
b′

I x⃗
(I) for b′ ∈

{0,1}, the oracle checks whether F 0(m⃗0
t) = F 1(m⃗1

t) for all t ∈ [T] or
not. If not, the oracle returns nothing. Otherwise, the oracle chooses a
random element rF ←R and computes the followings :

evk0 = RMod.E(1, 0, rF) ∈M

s⃗k
(d)
LDE = (sk

(d)
i)i∈[nd] = ⊗

d
i=1s⃗kLDE ∈ R

nd

evkI,i = RMod.E(sI,i, F
b
I ⋅ sk

(d)
i , rF) for (I, i) ∈ I × [nd]

The oracle defines ⃗evkI = (evkI,i)i∈nd
∈Mnd for I ∈ I and returns skF =

{evk0,{ ⃗evkI}I∈I} to A.
5. C computes Ctt = (ct,0, c⃗t = (ct,i = FE.Enc(msk,mb

t,i))i∈[`]) for t ∈ [T]. Then
C gives Ct = {Ctt}t∈[T] to A.

6. A outputs b′ ∈ {0,1}.

By the definition, we have AdvGame0

A = AdvFE−T -SEL-IND-FP
A .

Game1 In this game, the challenger C has an additional RMod ciphertext
C⃗tRMod ∈M

2, which is an encryption of 0. In precise,

C⃗tRMod = (CtRMod,0,CtRMod,1) = (RMod.E(1,0, r),RMod.E(skRMod,0, r))

for some unknown RMod secret key skRMod ∈ R and a random r ∈ R. Compared
to Game0, the steps 3, 4, and 5 are modified as follows :

11

– Step 3: Before C generates secret keys of FE and give pp to A, C further pre-
compute some conatants for the step 4. First C chooses pp ← FE.Param(1λ)
and generates s⃗kLDE ← LDE.SkGen(pp) only. Then C randomly chooses a bit
b ← {0,1} and computes c⃗t = (ct,i = LDE.Enc(s⃗kLDE,m

b
i)i∈[`]) for t ∈ [T]. Let

c⃗tI = (ctI,i)i∈[nd] = ⊗i∈Ict,i ∈ R
nd and ctj = c

t
I,i. Now C randomly samples a

nonzero vector v⃗1 = (v1,j)j∈[L] in the set

H = {y⃗ ∈ RL ∶ ⟨y⃗, (ctj)j⟩L = 0 for all t ∈ [T]}.

Note that H is a orthogonal space of the set {(ctj)j)}t∈[T] in inner product
space (RL, ⟨ ⋅ , ⋅ ⟩L). From the assumption T < L, H is not a trivial space.
Then selects C chooses random L− 1 number of polynomials {sk}2≤k≤L in R
and also find vectors v⃗k = (vk,j)j∈[L] ∈ R

L for 2 ≤ k ≤ L so that the matrix
V = (vj,k)1≤j,k≤L ∈ (R)L×L is invertible.
Now it’s ready. C gives pp to A.

– Step 4: In this step, the oracle KeyGenOmsk,b computes evk’s differently. In-
stead of the original evk0 and ⃗evkI for I ∈ I, the oracle defines

evk0 = CtRMod,0

evkI,i = evkj

= (v1,j ⊙ CtRMod,1) ⊕ (
L

⊕
k=2

(sk ⋅ vk,j) ⊙ CtRMod,0) ⊕ (skj ⊙ RMod.E(0,1,0))

for all (I, i) = j ∈ [L] where skj = F
b
I ⋅ sk

d
i when (I, i) corresponds to j. Then

KeyGenO returns skF = {evk0,{ ⃗evkI = (evkI,i)i∈[nd]}}.
– Step 5: Using {c⃗t}t∈[T] which are already computed in Step 3, C computes
ct,0 as

ct,0 =
L

∑
k=2

sk⟨v⃗k, (c
t
j)j⟩L for t ∈ [T].

Then C defines Ctt = (ct,0, c⃗t) for t ∈ [T] and gives {Ctt}t∈[T] to A.

Lemma 1. AdvGame1

A = AdvGame0

A .

Proof. By the properties of RMod.E, evkj can be written as RMod.E(s′j , skj , r)

where s⃗′ = (s′j)j∈[L] = skRMod ⋅ v⃗1 +
L

∑
k=2

sk ⋅ v⃗k = V ⋅ (skRMod s2 ⋯ sL)
T

for each

j ∈ [L]. We claim that ct,0 satisfies the condition ct,0 = ⟨s⃗′, (ctj)j⟩L for all t ∈ [T].
This is true since

⟨s⃗′, (ctj)j⟩L = ⟨skRMod ⋅ s⃗1 +
L

∑
k=2

ak ⋅ s⃗k, (c
t
j)j⟩L

= skRMod ⋅ ⟨s⃗1, (c
t
j)j⟩L + ⟨

L

∑
k=2

ak ⋅ s⃗k, (c
t
j)j⟩L

=
L

∑
k=2

ak⟨s⃗k, (c
t
j)j⟩L

= ct,0

12

from the fact s⃗1 ∈ H. Therefore the only difference between Game0 and Game1
is that the vector of RMod secret keys s⃗ is changed to s⃗′. Since skRMod and s′ks
are randomly sampled in R and the matrix V is invertible, s⃗′ is also chosen
randomly, same as in Game0. In other words, {s⃗j}j∈[L] and {s⃗′j}j∈L belong
to the same distribution in RL. Therefore the difference between Game0 and
Game1 doesn’t affect the advantage of A. ⊓⊔

Game2 In this game, the only difference with Game1 is that the challenger C
is given RMod ciphertext C⃗tRMod ∈ M2 is an encryption of random a ∈ R, not
encryption of zero. In precise,

C⃗tRMod = (CtRMod,0,CtRMod,1) = (RMod.E(1,0, r),RMod.E(skRMod, a, r)).

Lemma 2. ∣AdvGame2

A −AdvGame1

A ∣ ≤ AdvRMod−IND-CPA
BRMod

for some adversary BRMod

in IND-CPAgame of the RMod scheme.

Proof. The only difference between Game2 and Game1 is the given RMod ci-
phertext. Hence if there exists an adversary BRMod who can distinguish Game2
and Game1 can also distinguish RMod.E(skRMod,0, r) and RMod.E(skRMod, a, r)
by the difference of advantages between Game2 and Game1. Therefore the dif-
ference of advantages between Game2 and Game1 for any adversary A must
be smaller than the advantage of BRMod in IND-CPA game for RMod. ⊓⊔

Game3 In this game, the only difference with Game2 is Step 4. The Step 4 is
replaced as follows:

– Step 4 : From the knowledge of C = {c⃗t}t∈[T], (F 0, F 1) and (M0,M1), C

computes the subspace of RL by

HC,F 0,M0 = {y⃗ ∈ RL ∶ ⟨y⃗, (ctj)j∈[L]⟩L = F 0
(m⃗0

t) for t ∈ [T]}.

Note that HC,F 0,M0 is not a trivial subspace in RL since T < L. Hence C
can sample random nonzero vector t⃗ = (tj)j∈[L] ∈ HC,F 0,M0 . Then C samples
sj ∈ R for j ∈ [L], rF ∈ R and defines evk0, evkI,i = evkj as

evk0 = RMod.E(1,0, rF)

evkj = RMod.E(sj , tj , rF) for j ∈ [L].

The other computations are the same.

Lemma 3. AdvGame3

A = AdvGame2

A .

Proof. Recall that skj = FI ⋅skdi when the index j corresponds to (I, i). InGame2,
evkj is equal to RMod.E(s′j , skj + a ⋅ s1,j , r) for all j ∈ [L]. On the other hand, in
Game3, evkj is equal to RMod.E(s′j , tj+a⋅s1,j , r) for all j ∈ [L]. Since s⃗1 is chosen
to satisfy ⟨s⃗1, (c

t
j)j⟩L = 0 for all t ∈ [T], we can check that (skj)j+a⋅s⃗1 ∈ HC,F 0M0

13

regardless of choice of s⃗1 ∈ H. Conversely, every elements in HC,F 0,M0 can be
expressed as (skj)j + a ⋅ s⃗ for some a ∈ R and s⃗ ∈ H. We remark that the vector
t⃗ ∈ HC,F 0,M0 works as the secret key of LDE whatever b is since F 0(m⃗0

t) = F
1(m⃗1

t)

for all t ∈ [T]. Therefore the distrubition of (skj)j +a ⋅ s⃗1 and t⃗ is the same. This
fact implies that Game2 and Game3 are indistinguishable. ⊓⊔

Lemma 4. AdvGame3

A ≤ AdvLDE−T -IND
BLDE

for some adversary BLDE in T -IND game
of the LDE scheme.

Proof. Note that one can efficiently compute the set Hc⃗,F (m⃗b) if c⃗, m⃗b and F are
given. Using this set, we claim that there exists an adversary BLDE who plays
an T -IND game about LDE scheme with challenger C′ using the adversary A in
Game3 as an oracle. The detail of the game between C′ and BLDE is as follows.

1. C′ runs LDE.Param and LDE.SkGen to get (pp, sk) and gives pp to BLDE. Then
BLDE gives pp to A.

2. A chooses M0 = (m⃗0
t)t∈[T],M

1 = (m⃗1
t)t∈[T] ∈ (R`)T and gives this pair to

BLDE. Then BLDE gives m0,m1 to C.
3. C′ randomly chooses a bit b← {0,1} and computes ct,i = LDE.Enc(skLDE,m

b
t,i)

for (t, i) ∈ [T] × [`]. C′ defines c⃗t = (ct,i)i∈[`] for t ∈ [T] and gives {c⃗t}t∈[T] to
BLDE. Then BLDE gives {c⃗t}t∈[T] to A.

4. BLDE randomly fixes msk′ = {sI,i}(I,i)∈I×nd
sampled in R. Then BLDE gives

the oracle KeyGenO′
msk′(⋅ , ⋅ ,M

0,M1,{ct}t∈[T])} to A. This oracle is defined
as follows:
– KeyGenO′

msk′(F
0, F 1,M0,M1,{ct}t∈[T])} : Given F b

′

∶ x⃗ ↦ ∑I∈I F
b′

I x⃗
(I)

for b′ ∈ {0,1}, the oracle checks whether F 0(m⃗0
t) = F 1(m⃗1

t) for all
t ∈ [T]. If not, then this oracle returns nothing. Otherwise, the ora-
cle computes the subspace HC,F 0,M0 of RL by C = {c⃗t}t∈T , F

0 and M0.
(since F 0(m⃗0

t) = F
1(m⃗1

t) for all t ∈ [T], HC,F 0,M0 is not depend on b).
Then the oracle samples y⃗ = (yI = (yI,i)i∈nd

)I∈I ←Hc⃗,F (m⃗b). For random
rF ∈ R, the oracle computes the followings:

evk0 = RMod.E(1,0, rF)

evkI,i = RMod.E(sI,i, yI,i, rF) for (I, i) ∈ I × [nd].

The oracle returns skF = {evk0, ⃗evkI = (evkI,i)i∈[nd]}.
5. BLDE gives {c⃗t}t∈[T] to A.
6. A returns a bit b′ to BLDE, then BLDE also returns b′ to C′.

In the above game, A has the roll same as Game3. Thus if A returns the
right answer b′ = b, then B also wins the T -IND game for LDE. Therefore the
advantage of BLDE in T -IND game for LDE is greater than A in Game3. ⊓⊔

Conclusion of Proof By the Lemma 1, 2, 3, and 4, we can conclude that for
any adversary A, there exists adversaries BRMod and BLDE such that

AdvFE−T -SEL-IND-FP
A ≤ AdvRMod−IND-CPA

BRMod
+AdvLDE−T -IND

BLDE
.

This result completes the proof of Theorem 1.

14

4 Concrete Schemes

In this section, we provide concrete constructions of functional encryption built
upon the framework of the previous section. In particular, we use a RLWE-
based somewhat homomorphic encryption (SHE) [11] as LDE scheme, and ElG
encryption as RMod scheme. The use of RLWE-based SHE yields FE ciphertext
length 2 ⋅`+1, and note that the ciphertext length is independent from the degree
d. Although our construction can deal with every degree d, we here only consider
the degree 3 for simplicity.

4.1 FE from RLWE and ElG

We give a detailed description of our FE scheme, which has message spaceMFE =

R2 = Z2[X]/⟨XN + 1⟩, and key space

K = {F ∶ R`2 → R2 ∶ F (x⃗) = ∑
I∈I

FI ⋅x
(I) for x⃗ ∈ R`2, FI ∈ Z}.

We also consider a cyclic group ⟨g⟩ of prime order p. For an element a =

∑
N−1
i=0 ai ⋅X

i ∈ Rp, we denote [a]g = (ga0 ,⋯, gaN−1) ∈ GN . With this notation,
GN becomes a Rp-module equipped with the following operations.

– (Addition) ⊕ ∶ GN ×GN → GN by [a]g ⊕ [b]g ∶= [a + b]g
– (Scalar multiplication) ⊙ ∶ R ×GN → GN by b⊙ [a]g ∶= [b ⋅ a]g.

The RLWE Scheme We specify RLWE-based encryption scheme, which is used
for LDE. It is defined over the following spaces.

– The message space R2,
– The secret key space R∗

p,
– The ciphertext space R∗

p.

Then, RLWE-based scheme consists of algorithms:

(RLWE.Param,RLWE.SkGen,RLWE.Enc,RLWE.Mult,RLWE.Dec).

– RLWE.Param(1λ) : Output public parameters pp = {p,N,DZ,αp} where DZ,αp
is an error distribution.

– RLWE.SkGen(pp) : Sample a random sk ∈ R, and let s⃗k = (1, sk) ∈ R2.
– RLWE.Enc(s⃗k,m,pp) : Sample a random polynomial a ∈ Rp, and an error

polynomial e ∈ R having each coefficients sampled from DZ,αp. Return ci-
phertext

c⃗ = (−a ⋅ sk +m + 2e,a) ∈ R2.

– RLWE.Dec(s⃗k = (1,sk), c⃗ ∈ Rn,pp) : Compute

µ ∶= ⟨c⃗, (1,sk,⋯,skn−1)⟩ ∈ R

and return µ̄mod 2 ∈ MLDE.

15

– RLWE.Mult(c⃗ ∈ Rn1
p , c⃗

′
∈ Rn2

p ,pp) : Write c⃗ = (c1,⋯,cn1) and c⃗
′
= (c′1,⋯c

′
n2

).
Output

c⃗Mult =
⎛

⎝
∑
i+j=k

ci ⋅ c
′
j

⎞

⎠
2≤k≤n1+n2

∈ Rn1+n2−1
p .

One can check that RLWE scheme can be viewed as LDE scheme, by defining
RLWE.Ecd(m) to returnm+2e with e← DZ,αp and µ mod 2← RLWE.Dcd(µ).

ElG Encryption Scheme The ElG encryption scheme is defined over the fol-
lowing spaces.

– The message space Rp
– The secret key space Rp
– The randomness space Rp
– The ciphertext space GN

Then, the ElG encryption scheme consists of algorithms.

(ElG.Param,ElG.SkGen,ElG.Enc,ElG.Dec),

which are described as follows.

– ElG.Param(1λ) : Generate a group G of order p and its generator g. Output
public parameter pp = {g, p,N}.

– ElG.SkGen(pp) : Given public parameter pp, sample s← Rp. Output a secret
key sk = s = ∑

N
i=0 si ⋅X

i.
– ElG.Enc(sk,m = ∑

N
i=0mi ⋅ X

i ∈ Rp) : Sample an integer r ← Rp Compute
c0 = [r]g and c⃗ = (ci) with ci = [r ⋅ si +mi]g, and output (c⃗0, c⃗) ∈ G

N ×GN .
– ElG.Dec(sk, (c⃗0, c⃗)) : Compute c⃗ − s ⊙ c⃗0 = [m′]g ∈ G

N . Then the i-th entry
of the vector is of the form [m′

i]g ∈ G. Then recover m′
i by solving discrete

logarithm with a pair ([m′
i]g, g) for each i ∈ [N]. Finally output ∑N−1

i=0 m′
i ⋅X

i

Now we argue that the ElG scheme can be understood as RMod scheme where
the Rp module M is GN . First, by defining ElG.E(s,m,r) ∶= [r ⋅s+m]g, we can
understand (c⃗0, c⃗) ∈ G

N ×GN by

(ElG.E(1,0;r),ElG.E(s,m,r))

. We then see that, the ElG scheme supports Rp module operations. Indeed, we
have

ElG.E(sk,m,r) ⊕ ElG.E(sk′,m′,r) = ([r ⋅ ski +mi]g) ⊕ ([r ⋅ sk′i +m
′
i]g)

= ([r ⋅ (ski + sk′i) + (mi +m
′
i)]g)

= ElG.E(sk + sk′,m +m′,r),

b⊙ ElG.E.(sk,m,r) = b⊙ ([r ⋅ ski +mi]g)

= ([r ⋅ b ⋅ ski + b ⋅mi]g)

= ElG.E(b ⋅ sk,b ⋅m,r).

16

Remark. In the original ElG scheme, both the message space and the secret
space are defined over Zp. Instead, we use the variant of ElG scheme defined
over Rp. This modified ElG scheme has a natural reduction from the existing
ElG scheme and still satisfies the semantic security. The reduction can be found
in the appendix C.

Functional Encryption for Degree-3 Polynomial Now we obtain a concrete
functional encryption by substituting LDE into RLWE, and RMod into ElG in the
abstract FE scheme of the previous section.

We denote the message vector length `. Note that since we use degree 3 and
RLWE scheme having ciphertext in R2

p, we know #(I) and nd is less than `3

and smaller than 4 ⋅ `3, respectively, in the RLWE and ElG scheme. Our hybrid
functional encryption scheme

FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)

with pp = {p,N, `,B} is defined as follows:

– FE.Setup(1λ,pp) :
1. Run RLWE.skGen(pp,N) to get secret key s⃗k = (1,sk).
2. For each (I, i) ∈ I × [4], run ElG.skGen(pp,N) to get a set of secret keys
sI,i and set s⃗I ∶= (sI,1,sI,2,sI,3,sI,4)

3. Output msk = {s⃗k,{s⃗I}I∈I}.

– FE.KeyGen(msk, F,pp) :
1. Choose r ← Rp and compute evk0 = [r]g ∈ G

N

2. For each (I, i) ∈ I × [4], set evkI,i = [r ⋅ sI,i + FI ⋅ sk
i−1

]g ∈ G
N and set

⃗evkI ∶= (evkI,1, evkI,2, evkI,3, evkI,4) ∈ G
N×4.

3. Output {evk0,{ ⃗evkI}I∈I}.

– FE.Enc(msk,m⃗ = (mi)i∈[`],pp) :
1. Sample ti,0 ← Rp and ei ∈ Rp having coefficients sampled from DZ,αp.

Set
c⃗i = (ti,1, ti,0) = (ti,0,−ti,0 ⋅ sk +mi + 2ei) ∈ R

2
p

for i ∈ [`] and let c⃗ = (c⃗1,⋯, c⃗`).
2. For each I ∈ I, compute a vector

C⃗I=(i,j,k) = (C3,(i,j,k),C2,(i,j,k),C1,(i,j,k),C0,(i,j,k)) ∈ R
4
p

with

C3,(i,j,k) = ti,1 ⋅ tj,1 ⋅ tk,1

C2,(i,j,k) = ti,0 ⋅ tj,1 ⋅ tk,1 + ti,1 ⋅ tj,0 ⋅ tk,1 + ti,1 ⋅ tj,1 ⋅ tk,0

C1,(i,j,k) = ti,1 ⋅ tj,0 ⋅ tk,0 + ti,0 ⋅ tj,1 ⋅ tk,0 + ti,0 ⋅ tj,0 ⋅ tk,1

C0,(i,j,k) = ti,0 ⋅ tj,0 ⋅ tk,0

and evaluate
c0 = ∑

I∈I
⟨s⃗I , C⃗I⟩.

17

3. Output Ct = {c0, c⃗}.

– Dec(skF ,Ct,pp) ∶
1. Compute a vector C⃗I from Ct.
2. Compute

C⃗ = ⊕
I∈I

⟨⊗i∈I c⃗i, ⃗evkI⟩ ∈ G
N .

3. Compute C⃗ − c0 ⊙ evk0 = [µ]g ∈ G
N . Then recover µ by solving discrete

logarithm, and output µ mod 2.

In the decryption process, one has to solve discrete logarithm of [µ]g. Note
that µ would be F (m⃗) + 2eF for some error polynomial eF , and the following
lemma gives one bound for ∥eF ∥∞.

Lemma 5. Assuming the error distribution DZ,αp is bounded by T, we have
µ = F (m⃗) + 2eF ∈ Rp with ∥eF ∥∞ = O(3logN+1 ⋅ T 4).

Thus we have to try about O(3logN+1 ⋅ T 4) candidates for each coefficient,
and therefore FE.Dec costs at most O(N ⋅ 3logN+1 ⋅ T 4) times.

5 Conclusion

We propose a functional encryption scheme with linear ciphertext size that sup-
ports degree d polynomials. Unfortunately, the proposed scheme cannot support
arbitrarily large degree d, but this is enough to have some important conse-
quences for current open problems.

Our main idea is to generically combine two abstract schemes LDE and RMod
where LDE scheme has a decryption procedure consisting of inner product of ci-
phertext and secret key, and RMod scheme supports R-module operations among
ciphertexts and a decryption with B-bounded noise. We also give a concrete con-
struction of such abstract framework, by using a variant of SHE scheme for LDE
scheme and ElG for RMod scheme.

It would be an interesting question to find another candidate for LDE or RMod
schemes, which can yield more efficiency or larger degree capacity. For example,
as a main drawback of our concrete scheme, we need to find a discrete logarithm
for some group element in the decryption procedure. Although the exponent
would be set small so that it can be solved in polynomial time, this is definitely
not an easy task. Since this discrete logarithm comes from the decryption of ElG
scheme used as RMod scheme, another scheme for RMod than ElG can speed up
the decryption of the functional encryption.

References

1. M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee,
G. Neven, P. Paillier, and H. Shi. Searchable encryption revisited: Consistency
properties, relation to anonymous ibe, and extensions. In Annual International
Cryptology Conference, pages 205–222. Springer, 2005.

18

2. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional encryp-
tion schemes for inner products. In IACR International Workshop on Public Key
Cryptography, pages 733–751. Springer, 2015.

3. S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner
products, from standard assumptions. In Annual Cryptology Conference, pages
333–362. Springer, 2016.

4. M. Albrecht, S. Bai, and L. Ducas. A subfield lattice attack on overstretched ntru
assumptions. In Annual Cryptology Conference, pages 153–178. Springer, 2016.

5. C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay. Practical functional encryp-
tion for quadratic functions with applications to predicate encryption. In Annual
International Cryptology Conference, pages 67–98. Springer, 2017.

6. A. Bishop, A. Jain, and L. Kowalczyk. Function-hiding inner product encryp-
tion. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 470–491. Springer, 2015.

7. D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption
without random oracles. In International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 223–238. Springer, 2004.

8. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption
with keyword search. In International conference on the theory and applications of
cryptographic techniques, pages 506–522. Springer, 2004.

9. D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In
Annual international cryptology conference, pages 213–229. Springer, 2001.

10. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and chal-
lenges. In Theory of Cryptography Conference, pages 253–273. Springer, 2011.

11. Z. Brakerski, V. Vaikuntanathan, and C. Gentry. Fully homomorphic encryption
without bootstrapping. In Proc. of ITCS’12. Citeseer, 2012.

12. J. H. Cheon, P. Fouque, C. Lee, B. Minaud, and H. Ryu. Cryptanalysis of the new
CLT multilinear map over the integers. In Advances in Cryptology - EUROCRYPT
2016 - 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I,
pages 509–536, 2016.

13. J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé. Cryptanalysis of the multilin-
ear map over the integers. In Advances in Cryptology - EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 3–12,
2015.

14. J. H. Cheon, J. Jeong, and C. Lee. An algorithm for ntru problems and cryptanal-
ysis of the ggh multilinear map without a low-level encoding of zero. LMS Journal
of Computation and Mathematics, 19(A):255–266, 2016.

15. J. H. Cheon and J. Kim. A hybrid scheme of public-key encryption and some-
what homomorphic encryption. IEEE transactions on information forensics and
security, 10(5):1052–1063, 2015.

16. J. Coron, M. S. Lee, T. Lepoint, and M. Tibouchi. Cryptanalysis of GGH15
multilinear maps. In Advances in Cryptology - CRYPTO 2016 - 36th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part II, pages 607–628, 2016.

17. J. Coron, M. S. Lee, T. Lepoint, and M. Tibouchi. Zeroizing attacks on indistin-
guishability obfuscation over CLT13. In Public-Key Cryptography - PKC 2017 -
20th IACR International Conference on Practice and Theory in Public-Key Cryp-
tography, Amsterdam, The Netherlands, March 28-31, 2017, Proceedings, Part I,
pages 41–58, 2017.

19

18. J. Coron, T. Lepoint, and M. Tibouchi. Practical multilinear maps over the in-
tegers. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I,
pages 476–493, 2013.

19. J. Coron, T. Lepoint, and M. Tibouchi. New multilinear maps over the integers.
In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, pages 267–286,
2015.

20. S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lat-
tices. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26-30, 2013. Proceedings, pages 1–17, 2013.

21. R. Gay. Functional encryption for quadratic functions, and applications to pred-
icate encryption. Cryptology ePrint Archive, Report 2016/1106, 2016. https:
//eprint.iacr.org/2016/1106.

22. C. Gentry. Practical identity-based encryption without random oracles. In An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 445–464. Springer, 2006.

23. C. Gentry, S. Gorbunov, and S. Halevi. Graph-induced multilinear maps from
lattices. In Theory of Cryptography - 12th Theory of Cryptography Conference,
TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II, pages 498–
527, 2015.

24. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Proceedings of the fortieth annual ACM symposium
on Theory of computing, pages 197–206. ACM, 2008.

25. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Proceedings of the 13th ACM
conference on Computer and communications security, pages 89–98. Acm, 2006.

26. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Proceedings of the 13th ACM
conference on Computer and communications security, pages 89–98. Acm, 2006.

27. Y. Hu and H. Jia. Cryptanalysis of ggh map. In Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages 537–565.
Springer, 2016.

28. J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 146–162. Springer,
2008.

29. A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computa-
tion on the cloud via multikey fully homomorphic encryption. In Proceedings of the
forty-fourth annual ACM symposium on Theory of computing, pages 1219–1234.
ACM, 2012.

30. E. Miles, A. Sahai, and M. Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over ggh13. In Annual Cryptology
Conference, pages 629–658. Springer, 2016.

31. A. Sahai and B. Waters. Fuzzy identity-based encryption. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages
457–473. Springer, 2005.

32. A. Shamir. Identity-based cryptosystems and signature schemes. In Workshop on
the theory and application of cryptographic techniques, pages 47–53. Springer, 1984.

20

https://eprint.iacr.org/2016/1106
https://eprint.iacr.org/2016/1106

A Security Definition for Symmetric Key Encryption

In this section, we will define the indistinguishable security for chosen plaintext
attack for symmetric key encryption. We note that we are focusing on the sym-
metric encryption because we construct secret key functional encryption, so we
don’t need the public key anymore, even if there already exists the public key in
concrete scheme, such as RLWE, ElG, etc. For the symmetric key scheme Sym
which consists of four algorithms (Param,SkGen,Enc,Dec), we define T -message
IND game (in short, T -IND game) for an integer T as follows.

Definition 4 (T -IND Game for Symmetric Key Encryption). There are
two participants in T -IND game. An adversary A wants to show that he can
break the T -IND security of the scheme and a challenger C wants to make sure
the A’s argument is correct. For each purpose, they proceed the following game.

1. C generates pp← Param(1λ), sk← SkGen(pp) and gives pp to A.
2. A chooses two set of messages m⃗0 = (m0

1,⋯,m
0
T) and m⃗1 = (m1

1,⋯,m
1
T).

Then A gives (m⃗0, m⃗1) to C.
3. C chooses random bit b← {0,1} and gives c⃗ = (ct = Enc(sk,mb

t))t∈[T] to A.
4. A outputs b′ ∈ {0,1}.

We define the advantage of A in this game by

AdvSym−T -IND
A = ∣Pr[b = b′] −

1

2
∣.

We say the symmetric key encryption scheme satisfies the T -IND security if
there is no PPT adversary A such that AdvSym−T -IND

A is non-negligible.

Recall that our LDE and RMod schemes have the same concept with sym-
metric key encryptions, so the T -IND security definition for LDE and RMod can
be defined from Definition 4.

B Proof for Lemma 5

Recall that each entry of c⃗i ∈ R2
p satisfies ⟨c⃗i, sk⟩ = mi + 2ei, with ∥ei∥∞ ≤ T.

Then for every c⃗i ⊗ c⃗j , it holds that

⟨c⃗i ⊗ c⃗j , sk⊗ sk⟩ =m1 ⋅m2 + 2eMult,

with ∥eMult∥∞ = O(2N ⋅ T 2). We can inductively show that c⃗(I) ∈ Rd+1p has
O((2N)log d ⋅ T d) error size.

C Reduction from DDH to Ring-ElG

Note that for fixed group G of prime order p with generator g, DDH assumption
is that distinguishing following two distributions is hard :

D1 = {(gx, gy, gxy) ∶ x, y ← Zp},D2 = {(gx, gy, gxy+r) ∶ x, y, r ← Zp}.

21

We prove that IND-CPA security for Ring-ElG in our scheme defined as
Section 4.1, by proving following theorem.

Theorem 2. Assuming DDH assumption, ring-Elgamal scheme ring-ElG is IND-CPA
secure.

Proof. Suppose there exists an adversaryA such that AdvRing-ElG−IND-CPA
A is non-

negligible. For a random bit b← {0,1}, suppose ([x]g, [y]g, T) sampled from Db

is given. Then now we roll the challenger in IND-CPA game with A. The game
proceeds as follows:

1. From security parameter λ, we choose an integer N and give (g, p,N) to A.

2. We randomly choose g =
N−1
∑
i=0

giX
i ← Rp.

3. For each message query m =
N−1
∑
i=0

miX
i given by A, we randomly choose

t =
N−1
∑
i=0

tiX
i from Rp and compute g′i = ∑

j+k=i
gjtk − ∑

j+k=N+i
gjtk mod p for

i = 0,⋯,N − 1. Note that g(X)t(X) =
N−1
∑
i=0

g′i(X) in Rp. Now return

cm,0 = t⊙[y]g, c⃗m = ((g′0⊙T)⊕[m0]g, (g
′
1⊙T)⊕[m1]g,⋯, (g

′
N−1⊙T)⊕[mN−1]g)

to A.
4. For ciphertext query, A gives f0

=
N−1
∑
i=0

f0i X
i and f1

=
N−1
∑
i=0

f1i X
i to us, then

we randomly choose a bit b′ ← {0,1}, t′ =
N−1
∑
i=0

t′iX
i ← Rp and compute

g′′i = ∑
j+k=i

gjt
′
k− ∑

j+k=N+i
gjt

′
k mod p for i = 0,⋯,N−1. Note that g(X)t′(X) =

N−1
∑
i=0

g′′i (X) in Rp. Now return

c0 = t
′
⊙[y]g, c⃗ = ((g′′0 ⊙T)⊕[f b0]g, (g

′′
1 ⊙T)⊕[f b1]g,⋯, (g

′′
N−1⊙T)⊕[f bN−1]g)

to A. to A.
5. A returns a bit b′′.

We know that T = [xy + r]g for some r, where r is 0 or chosen from random
in Zp. Also we can easily check that (cm,0, c⃗m) = ([yt]g,ElG.E(xg,m + rg, yt))

and c0, c⃗ = ([yt′]g,ElG.E(xg,f
b
+ rg; yt′)). Since t, t′,g are randomly chosen, A

can return the valid output.
If r = 0, then A will return b′′ = b′ with advantage AdvElG−IND-CPA

A . Other if
r is random, then A can know only the information of f b + rg, which tells no
information about f b. Thus A will return b′′ = b′ with advantage 0. Therefore,
we choose b = 1 if b′′ = b′ and b = 0 otherwise, then our advantage for DDH
is the half of AdvElG−IND-CPA

A , which is non-negligible. This contradicts to our
assumption.

22

D Another variant of RLWE

One can preserve the ciphertext length in RLWE scheme, by publishing an ad-
ditional key Switch that switches c⃗Mult ∈ R

3
p into c⃗′Mult ∈ R

2
p. To be precise, the

Setup and Mult process are changed as following:

– Setup′(1λ,pp) : Sample a random s ∈ R, and let sk = (s,1) ∈ R2
p. Publish

Switch = {Switchi ∶= RLWE.Enc(sk,2i ⋅ s2)}.

– Mult′(c⃗, c⃗′ ∈ R2
p,Switch) : Write c⃗ = (c1,c2) and c⃗′ = (c′1,c

′
2). Decompose

c1 ⋅ c
′
1 ∈ Rp by ∑i = 2i ⋅ di with di ∈ R2. Output

c⃗′Mult = (c1 ⋅ c
′
2 + c

′
1 ⋅ c2, c2 ⋅ c

′
2) +∑

i

Switchi ⋅ di.

To build a functional encryption with this RLWE version, we need to add
Switch to FE.Enc(msk,m⃗). In other words, the ciphertext would contains Switch
additional to ciphertext c⃗. However, in this case, we have to assume circular
security, since the additional public information Switch is a sort of encryption of
sk by sk.

In the original RLWE scheme, it can avoid the circular security by assuming
many secret key skk = (1,sk), and providing many

Switch(k) = {Switch
(k)
i ∶= RLWE.Enc(skk+1,2

i
⋅ s2k)}.

Then, given two ciphertexts encrypted with skk, we have a ciphertext c⃗Mult en-
crypted with skk+1. However, in this case, the ciphertext CT in our FE scheme
gets longer along with degree d, which is undesirable for our goal.

E Another candidate for LDE : LTV SHE scheme [29]

As another LDE encryption candidate, we introduce hybrid functional encryption
using the LTV scheme [29].

– Setup(1λ,pp) : Sample a polynomial f ∈ R whose each coefficient is sampled
from DZ,αp, and let sk = 2f + 1 ∈ Rp. Repeat until sk is invertible in Rp.

– Enc(sk,m ∈ R2) : Sample a polynomial g ∈ R whose coefficients are sampled
from DZ,αp. Return ciphertext c = (2g + 1) ⋅ sk−1 + 2e +m ∈ Rp.

– Dec(sk′,c) : Compute m̄ = c ⋅ sk′ ∈ Rp, and return m = m̄ ∈ R2.
– Mult(c1,c2) : Output cMult = c1 ⋅ c2 ∈ Rp. The corresponding skMult would be

skMult = sk1 ⋅ sk2 ∈ Rp.

In LTV scheme, the ciphertext and secret key are always elements in Rp,
different from RLWE scheme that having ciphertext and secret key in R2

p, and it
leads to FE ciphertext length ` + 1, less than 2` + 1 in RLWE.

However, In 2015, concurrently and independently Albrecht et al. and Cheon
et al. proposed new attacks, called subfield attack [4,14]. It allows to find a secret
key of the LTV scheme in subexponential time. As a result, the parameter of
ring LWE-based scheme is set more efficiently than that of the LTV scheme in
terms of the same security parameters.

23

	Polynomial Functional Encryption Scheme with Linear Ciphertext Size

