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Abstract

We analyze the structure of commutative ring homomorphic encryption schemes
and show that they are not quantum IND-CCA secure.

1 Introduction

Fully Homomorphic Encryption (FHE) is considered to be the ”holy grail” of cryptogra-
phy. In short, fully homomorphic encryption allows to perform arbitrary computation on
encrypted data. The main usability of such a device is to outsource a computation to a re-
mote server without compromising data privacy. In [12], C. Gentry succeeded in describing
the first plausible method for constructing fully homomorphic encryption schemes. Gentry’s
approach consists of several steps: first, he constructs a somewhat homomorphic encryp-
tion scheme which is an encryption scheme that supports evaluating low-degree polynomials
on the encrypted data. Next, he ”squashes” the decryption procedure so that it can be
expressed as a low-degree polynomial which is supported by the scheme, and finally, he de-
velops a bootstrapping technique which allows one to obtain a fully homomorphic scheme.
The first generation of fully homomorphic schemes ([13], [11], [24], [10], [15]) constructed
following this recipe is based on ideal lattices, which became lately the standard ground
for post-quantum cryptology [21]. A second generation of encryption schemes started in
[5], where fully homomorphic encryption was established in a simpler way, based on the
learning with errors assumption; the scheme was then improved in [7]. Currently, perhaps
the simplest FHE scheme based on the learning with errors assumption is by Brakerski [6]
who builded on Regev’s public key encryption scheme [20]. The most recent achievement in
this direction was obtained in [16], where a significant FHE scheme was introduced claiming
three important properties: simpler, faster, and attribute-based FHE. Here we emphasize
that all these FHE scheme are ”noisy” schemes, namely, ciphertexts for these FHE schemes
involve ”noise” terms to conceal plaintexts. In this respect, an immediate question is whether
one can actually construct a noise-free FHE scheme. In such a noise-free FHE scheme, the
ciphertext space and the plaintext space should both have ring structures, and the decryp-
tion algorithm should be a ring homomorphism, so that one can call such a scheme a ring
homomorphic encryption scheme. Moreover, as explained in [14], it is enough to look for a
ring homomorphic encryption scheme in which the plaintext is the field with two elements
F2. Let us mention here that a different approach towards achieving noise-free FHE was
considered in [19]. Namely, they showed that the NAND operator, which is sufficient for
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constructing arbitrary operations on bits, can be realized (in a certain suitable sense) in some
non-commutative groups. In this article, we investigate the structure of ring homomorphic
encryption schemes, where the ciphertext space is a finite abelian ring R and the plaintext
space is the field F2. To any finite abelian ring R we attach an (idempotent) F2-algebra Ê(R),
such that any homomorphism from R to F2, in particular the decryption homomorphism,
factors over the homomorphism from Ê(R) to F2. Moreover, since any ring homomorphism
from an idempotent F2-algebra to F2 is just a projection, one can compute an orthogonal
basis of Ê(R) (which is unique up to permutations), and then with overwhelming probability
find that projection idempotent, which will play the role of the decryption key. Although
we do not give an algorithm to compute such a basis, we show how to (quantum) compute
the projection idempotent for any given homomorphism from R to F2.

We stress out that our method is a quantum attack for the secret key, thus, after the
projection element has been found using quantum computations, the decryption is performed
classically. If one would allow the decryption algorithm to be performed quantum, then more
general results are available. For example, in [1], the authors prove that any (commutative)
group encryption scheme is not quantum resistant. However, for decrypting a ciphertext,
one has to run every time a quantum algorithm. Apparently, the authors in [1] prove that
a group encryption scheme does not meet a stronger security notion, namely IND-CPA. In
fact, our proof of IND-CCA insecurity can be modified to their case using precisely the same
method (δ-covering subsets). Since this reduction would bring no new insight, we chose to
use the case of IND-CCA security, which is equivalent to the uniform sampling assumption
in [1].

The plan of the article is as follows: Section 2 is devoted to the study of the structure of
finite commutative semigroups while in Section 3 the structure of finite commutative rings is
analyzed. In Section 4 we review basic definitions and properties of homomorphic encryption
schemes. Section 5 is dedicated to quantum computations on commutative semigroups. In
Section 6 we show how to compute the decryption algorithm in ring encryption schemes and
prove that any commutative ring homomorphic encryption is not quantum IND-CCA secure.
In Section 7 we explicitly compute the structure of monoid algebras in two important cases.
We end this article with a brief conclusion section.

2 Finite commutative semigroups

Let (G, ·) be a finite commutative semigroup. Two elements g1, g2 ∈ G are called powerfully
equal if there exist two positive integers m and n such that gm1 = gn2 . This defines an
equivalence relation on G, that will be denoted by ∼. If G is a monoid, the equivalence class
containing the unit consists of all invertible elements. On the other hand, if we denote by 0
the ”absorbing” element of G (if it exists it is unique), defined by 0 · g = 0, ∀g ∈ G, then
the equivalence class containing 0 consists of all nilpotent elements. Since G is finite, any
element g satisfies a relation of the form ga = gb with a > b positive integers. Such a pair
(a, b) is called a relation pair for g. Let (a, b) be the minimal (with respect to lexicographic
order) relation pair for g ∈ G. Then b is called the index and a− b is called the period of the
element g and they are denoted by i(g), respectively p(g). The subsemigroup of G generated
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by g consists of two disjoint parts: the tail part consisting of {g, ..., gi(g)−1} and the cyclic
part {gi(g), ..., gi(g)+p(g)−1}. Notice that the cyclic part is in fact a cyclic group with identity

element gkp(g), where k = d i(g)
p(g)
e and generator gkp(g)+1. The following notion will play an

important role in what follows:

Definition 1. A subsemigroup B of G is called a block if any two of its elements are
powerfully equal.

The equivalence relation on elements induces an equivalence relation on blocks, and we write
A ∼ B whenever the blocks A and B are equivalent.

Proposition 1. Let A and B be two blocks in a semigroup G. Then AB := {ab|a ∈ A, b ∈ B}
is again a block. Moreover, A ∼ B if and only if A ∩B 6= ∅, in which case AB ∼ A ∼ B.

Proof. It is clear that AB is a subsemigroup. To prove that any two elements of AB are
powerfully equal it is enough to show a1b ∼ a2b, for any a1, a2 ∈ A and any b ∈ B. Let
m1,m2 two positive integers such that am1

1 = am2
2 , and consider a positive integer k greater

than max{ i(b)
m1p(b)

, i(b)
m2p(b)

}. Then:

(a1b)
kp(b)m1 = a

kp(b)m1

1 bkp(b)m1 = a
kp(b)m2

2 bkp(b)m1 = a
kp(b)m2

2 bkp(b)m2 = (a2b)
kp(b)m2

The rest of the theorem follows from the definitions.

It is useful to take into account the following easy remark:

Remark 2. Each block contains a unique idempotent element of G. In particular, two
equivalent blocks have the idempotent in their intersection.

It is clear that a class of equivalence in G is a maximal block with respect to inclusion. We
have the following:

Proposition 2. There is a one-to-one correspondence between the idempotents in G and
the powerfully equal classes of equivalence. Moreover, the set of all idempotents of G is a
subsemigroup E(G) of G, and the operation on E(G) corresponds to the multiplication on
blocks.

Proof. First of all, there is a very easy way to construct the idempotent e(A) corresponding
to a block A: pick any element a ∈ A then akp(a) is an idempotent where k = di(a)/p(a)e (in
fact one can take any k greater than this value). In a block, the idempotent is unique because
any two elements are potentially equal and e(A)n = e(A) for any positive integer n. Since
two nonequivalent classes have empty intersection, they give rise to different idempotents.
Now, the proposition follows immediately.

The above proof shows that for any semigroup G we have a map e : G → E(G), where
e(g) is the unique idempotent in the maximal block of g. As above, e(a) = akp(a), where k =
di(a)/p(a)e. Notice that, since the multiplication on E(G) corresponds to the multiplication
on blocks, the map e is a homomorphism of semigroups.

The decomposition of a semigroup in its maximal blocks is considered in the following:
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Proposition 3. Let G be a semigroup. For each f ∈ E(G), denote by Bf the maximal block
in G containing f .

i) G =
∐

f∈E(G) Bf .

ii) For each f ∈ E(G) let B0
f := {g ∈ Bf | ∃k ≥ 2 such that gk = g}. Then B0

f is a group
with the identity f .

iii) G0 :=
∐

f∈E(G) B
0
f is a subsemigroup of G.

Proof. Assertion i) follows immediately from the previous proposition. Notice that, g ∈ Bf

is in B0
f if and only if g is in the cyclic part of some element of Bf . In particular, if g ∈ B0

f

then the whole cyclic part of g is in B0
f , therefore the inverse of g is in B0

f . Now, if g1, g2 ∈ G
with gk1

1 = g1 and gk2
2 = g2, then (g1g2)1+(k1−1)(k2−1) = g1g2. This proves that B0

f is a group
and G0 is a subsemigroup of G.

3 Finite Commutative Rings

In this section we investigate the structure of (non-unital) finite commutative rings and
their associated idempotent subrings. As the following proposition shows the structure of
the associated idempotent subring is particularly simple. This allows us to fully describe the
reduction of any homomorphism of a finite ring to its idempotent subring. In the next section,
we shall apply this to the case of commutative ring homomorphic encryption schemes. If
R is a ring then we denote by E(R) the idempotent semigroup associated to the semigroup
(R, ·). It is easy to see that E(R) becomes a ring of characteristic 2 if we define the addition
by: e⊕ e′ = e+ e′ − 2ee′, ∀e, e′ ∈ E(R). We shall refer to this ring (E(R),⊕, ·) as being the
idempotent ring of R, or, as we shall see, as the idempotent F2-algebra of R.

Proposition 4. Let R be a (non-unital) finite commutative ring and let E(R) be its idem-
potent ring then:

i) E(R) is an F2−algebra and is isomorphic to Fn2 for some n.
ii) Any nontrivial ring homomorphism φ : E(R)→ F2 is the projection on the i-th coor-

dinate, for some i ∈ {1, ..., n} (here we identify E(R) with Fn2 via the above isomorphism).

Proof. i) A nonzero element f of E(R) is called primitive if it cannot be written as f =
e1 ⊕ e2, where e1, e2 are orthogonal (i.e. e1 · e2 = 0) nonzero idempotents. Then, any two
distinct primitive idempotents are orthogonal. Indeed, Let f, f ′ be two distinct primitive
idempotents. If f · f ′ 6= 0, then since f = ff ′ ⊕ (f ⊕ ff ′) we get f = ff ′. A similar
argument shows that f ′ = ff ′, therefore f = f ′. Primitive elements always exist: assuming
the contrary, for any f ∈ E(R) we obtain an infinite sequence e1, . . . , ek, . . . of elements such
that f =

∑2k
i=k ei and {ei}i=k,2k are mutually orthogonal, for any k ≥ 1. More precisely, if

f = ek⊕ . . .⊕e2k, since ek is not primitive, we write ek = e2k+1⊕e2k+2 with e2k+1 ·e2k+2 = 0.
Since ekei = 0, then for any k+1 ≤ i ≤ 2k we get that eie2k+1 = eie2k+2. Multiplying the last
equality by e2k+1 yieds eie2k+1 = eie2k+2 = 0. Since |E(R)| < +∞ we get a contradiction.
In fact, the argument shows that any nonzero element of E(R) can be written as a sum of
primitive idempotents. Since primitive idempotents are orthogonal, this writing is unique.
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Thus, we get a decomposition E(R) =
⊕

e F2e where e runs through the finite set of primitive
idempotents. Notice that the sum of all primitive idempotents is the unit in E(R), so that
E(R) is an F2−algebra isomorphic to Fn2 , where n is the number of primitive idempotents.

ii) We shall denote from now on by e1, ..., en the primitive elements of E(R); they cor-
respond to the standard basis via the isomorphism E(R) ' Fn2 . Since φ is a nontrivial
homomorphism of rings there exists an i ∈ {1, ..., n} such that φ(ei) = 1. We prove that
φ(ej) = 0, ∀j 6= i. Supposing that there exist a j 6= i such that φ(ej) = 1, then φ(ei+ej) = 0,
and φ(ei) = φ(ei(ei + ej)) = φ(ei)φ(ei + ej) = 0, which is a contradiction. This shows that
φ is the projection on the i-th coordinate.

Remark 3. If R is a finite ring with unity then it is an Artin ring, and the structure theorem
for Artin rings (Theorem 8.7 in [2]) shows that R is isomorphic to a product R1× ...×Rn of
local Artin rings. Notice that a local Artin ring has only two idempotents, these are 0 and 1.
The isomorphism R ' R1× ...×Rn gives rise to an isomorphism E(R) ' E(R1× ...×Rn),
and since E(R1 × ...×Rn) = E(R1)× ...× E(Rn) = F2 × ...× F2, as sets, we obtain

E(R) ' E(R1 × ...×Rn) ' Fn2
The proof of the last proposition shows that even in the case of a non-unital ring R,

the idempotent algebra is isomorphic to Fn2 . Notice that if R is a ring with unity, then
1 = e1 + ...+ en and the map R→

∏
Rei, x 7→ (xe1, ..., xen) is an isomorphism, so that the

rings Ri are in fact isomorphic to the rings Rei. In particular, the number of local Artin
rings in the decomposition is equal to the number of primitive idempotents.

As before, if R is a finite ring and e1, ..., en are its primitive idempotents then let ē =
e1⊕ ...⊕ en. Since any two primitive idempotents are orthogonal, ē = e1 + ...+ en. We shall
denote by R̄ the principal ideal of R generated by ē. Notice that R̄ is a unital subring of
R, its unit being ē. In addition, all idempotents of R are in R̄, so that E(R) = E(R̄). The
following diagram commutes

R R̄

E(R) E(R̄)

ϕ

eR eR̄

where eR and eR̄ are the maps that associate to an element its idempotent, and ϕ is the map
x 7→ xē. Indeed, we have

eR(x) = eR(x) · ē = eR(x) · eR(ē) = eR(xē) = eR̄(ϕ(x)).

Suppose now that R̄ ' R̄1 × ... × R̄n is the above isomorphism, where (R̄i,mi) are local
Artin rings. We denote by J the set of all indices j ∈ {1, 2, ..., n} for which the residue
field R̄i/mi is isomorphic to F2. Let Ê(R̄) be the F2-subalgebra of E(R̄) generated by all
primitive idempotents ej with j ∈ J . We also let Ê(R) := Ê(R̄). Let’s consider the following
composition of ring homomorphisms:
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ψ : R
ϕ→ R̄→ R̄1 × ...× R̄n →

n∏
i=1

R̄i/mi →
∏
j∈J

R̄j/mj '
∏
j∈J

F2

where the last map is the obvious projection map. Notice that composing ψ with the inclusion
ι : Ê(R) ↪→ R we get an isomorphism of rings ψ◦ ι : Ê(R)

∼−→
∏

j∈J R̄j/mj. As we have seen
above the map eR : R → E(R) is in general a homomorphism of semigroups with respect
to multiplication, but is not a homomorphism with respect to addition. On the other hand
the composition êR : R

eR−→ E(R)→ Ê(R), where the last map is the obvious projection, is
a ring homomorphism. Indeed, it is easy to see that êR = (ψ ◦ ι)−1 ◦ ψ, which proves the
claim. For further use, we define ê :=

∑⊕
j∈J ej =

∑
j∈J ej, so that the map E(R)→ Ê(R) is

given by e 7→ e · ê.

Remark 4. For characteristic 2 (nonunital) rings, one has functorial interpretation for the
subrings E(R) respectively Ê(R), an aspect that we will pursue in a forthcoming paper. More
precisely, E(·) is naturally equivalent to the functor Hom(F2, ·) from the category of rings
of characteristic 2 to the category of idempotent F2-algebras, while Ê(·) is characterized by
the universal property that any morphism in Hom(R,F2) factors through a morphism in
Hom(Ê(R),F2).

However, in practice, one needs explicit descriptions of these functors. This is the reason
we chose not to make categorical analysis in the present work.

4 Homomorphic encryption schemes

The homomorphic encryption schemes in their generality were treated by different authors
and many treaties. We refer to [22] for a monograph treatment of the subject and to [3] for
a treatment of their security behavior. Let us define ring homomorphic encryption schemes
and explore their properties. Throughout this section (and this work) we use λ to indicate the
security parameter. Since a ring homomorphic encryption is a certain type of homomorphic
encryption scheme, we introduce first these schemes.

A homomorphic (public-key) encryption scheme (over F2)

HE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval)

is a quadruple of PPT algorithms as follows.

• Key Generation. The algorithm (pk, evk, sk) ← HE.KeyGen(1λ) takes a unary
representation of the security parameter and outputs a public encryption key pk, an
evaluation key evk, and a secret decryption key sk.

• Encryption. The algorithm c← HE.Encpk(m) takes the public key pk and a single
bit message m ∈ {0, 1} and outputs a ciphertext c.

• Decryption. The algorithm m? ← HE.Decsk(c) takes the secret key sk and a ci-
phertext c and outputs a message m? ∈ {0, 1}.
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• Homomorphic Evaluation. The algorithm cf ← HE.Evalevk(f, c1, ..., c`) takes the
evaluation key evk, a function f : {0, 1}` → {0, 1} and a set of ` ciphertexts c1, ..., c`,
and outputs a ciphertext cf .

We say that a scheme HE is C-homomorphic for a class of functions C = {Cλ}λ∈N, if for any
sequence of functions fλ ∈ Cλ and respective inputs µ1, ..., µ` ∈ {0, 1} (where ` = `(λ)), it
holds that

Pr[HE.Decsk(HE.Evalevk(fλ, c1, ..., c`) 6= fλ(µ1, ..., µ`)] = negl(λ),

where (pk, evk, sk)← HE.KeyGen(1λ) and ci ← HE.Encpk(µi).
In addition, a homomorphic scheme HE is compact if there exist a polynomial s = s(λ) such
that the output length of HE.Eval is at most s bits long, regardless of f or the number of
inputs.

Definition 5. A homomorphic scheme HE is fully homomorphic (FHE) if its is compact
and homomorphic for the class of all arithmetic circuits over F2.

In this work we are interested only in the following type of FHE scheme:

Definition 6. A ring homomorphic encryption scheme is a quadruple (Rλ,F2,Encλ,Decλ),
consisting of a finite ring Rλ, a homomorphism of rings Decλ : Rλ → F2, and a PPT
algorithm Rλ 3 c ← Encλ(m), such that Decλ(c) = m, for any c ← Encλ(m), and the
scheme is compact as a homomorphic encryption scheme.

Let us note that compactness is equivalent in this case to the existence of a representation

Rλ
ı
↪→ {0, 1}n(λ), where n(λ) is a polynomial in λ, such that Decλ : ı(Rλ)→ F2 is a determin-

istic polynomial time algorithm, and Encλ is a probabilistic polynomial time algorithm, both
in the security parameter λ. Since any function f : {0, 1}` → {0, 1} may be represented by a
polynomial over F2, and Dec is a ring homomorphism that correctly decrypts any encryption
of a bit message, we see that a ring homomorphic encryption scheme (as a homomorphic
encryption scheme) is homomorphic for the class of all arithmetic circuits over F2.

The only security notion we consider in this paper is quantum indistinguishability under
chosen ciphertext attack, quantum IND-CCA for short. To define it we introduce first the
following experiment in which A is a quantum polynomial time adversary.

Experiment quantum IND-CCA
- Generate a pair of keys (pk, sk)← HE.KeyGen(1λ). Give A access to a decryption oracle
and run A on input pk.
- Choose at random a bit message m, and compute c ← HE.Encpk(m). Give c to A and
continue its computation without access to the decryption oracle.
- Let m′ be A’s output. Output 1 if m′ = m and 0 otherwise.

Definition 7. A scheme HE is quantum IND-CCA secure if for any quantum polynomial
time adversary A, it holds that

Advquantum IND-CCA(A) =

∣∣∣∣Pr [quantum IND-CCA(A) = 1]− 1

2

∣∣∣∣ = negl(λ).
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5 Quantum Computations on Semigroups

In this section we show that for any semigroup G, the map G→ E(G) can be computed in
polynomial time using a quantum algorithm. Since we have no contribution to this result,
we have included this section only for completeness. The algorithm we present here was
described in [8](see also [9]), and is an adaptation of Shor’s algorithm(see [23]).

Proposition 5. Given a semigroup G and an element g ∈ G, there is an efficient quantum
algorithm to determine the period of g.

Proof. If N is the order of G, then choose a number M > N2 + N and create the state
1√
M

∑M
j=1 |j〉|gj〉. Usually, one chooses M to be a power of 2, say M = 2m, because in which

case the above state is created as follows: apply the Hadamard transform to each bit in
a register of m zeroes to get the superposition 1√

2m

∑2m

j=1 |j〉, and then the algorithm for

computing the function j 7→ gj is applied in the second (classical) register. Suppose now
that we measure the second register, then if we obtain an element gj in the tail of g (in other
words 1 ≤ j ≤ i − 1), then the first register is left in a computational basis state, which is
useless. Fortunately, this happens with probability i−1

M
≤ N

M
< 1

N
, which is very small(N is

exponential in the security parameter), so that we repeat the experiment until we obtain an
element in the cycle of g, i.e. j ≥ i. In this case, if we ignore the second register, we get in
the first register the superposition 1√

n

∑n−1
j=0 |x0 + jp〉, for some x0 ∈ {i, i + 1, ..., i + p − 1}

and

n =

{
bM−i

p
c+ 1, if x0 ≤M − pbM−i

p
c

bM−i
p
c, otherwise.

Apply now the quantum Fourier transform, i.e. the unitary operator defined on the basis
state by:

|`〉 7→ 1√
M

M∑
k=1

ζ
(`−1)(k−1)
M |k〉,

to the above superposition to get:

1√
nM

M∑
k=1

ζ
(x0−1)(k−1)
M

(
n−1∑
j=0

ζ
jp(k−1)
M

)
|k〉.

After measuring the superposition, the outcome k occurs with probability

Pr(k) =
1

nM

∣∣∣∣∣
n−1∑
j=0

ζ
jp(k−1)
M

∣∣∣∣∣
2

.

If M divides p(k − 1) then Pr(k) = n
M

, otherwise Pr(k) =
sin2(π(k−1)pn

M
)

nM sin2(π(k−1)p
M

)
. To show

that this probability distribution is strongly peaked around values of k for which k − 1 is
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close to integer multiples of M
p

, we compute the probability of seeing k = b jM
p
e+ 1, for some

j ∈ Z. If we write k = jM
p

+ ε, with |ε| ≤ 1
2
, then

Pr

(
k =

⌊
jM

p

⌉
+ 1

)
=

sin2(πjn+ πεpn
M

)

nM sin2(πj + πεp
M

)
=

sin2(π|ε|pn
M

)

nM sin2(π|ε|p
M

)
.

Using the inequalities 3
5
x ≤ sinx ≤ x, for all 0 ≤ x ≤ π

2
+ π

40
, and the fact that pn

M
< 1 + 1

N
,

we obtain:

Pr

(
k =

⌊
jM

p

⌉
+ 1

)
≥ 9n

25M
.

Notice that the above bound is very close to 9
25p

, so that Fourier sampling produces a value

k, with k − 1 being the closest integer to an integer multiple of M
p

, with probability Ω(1).

One of the convergents of the continued fraction expansion of
b jMp e
M

is
j

p
, because p2 < M .

One computes the continued fraction expansion until one obtains the closest convergent to
b jMp e
M

, whose denominator is smaller than N ; this denominator must be equal to p (see for
example [17]). Since all these calculations can be done in polynomial time in the security
parameter λ, one finds p in (quantum) polynomial time.

Corollary 8. Given a semigroup G, then e(g) can be computed in polynomial time for any
g ∈ G.

To find e(g), we need to compute gkp, for any k satisfying kp ≥ i. This can be done in
polynomial time for k = dN

p
e.

6 Decrypting in Ring Encryption Schemes

Our strategy for the computation of the decryption map of a ring homomorphic encryption
scheme (R,F2,Enc,Dec) is based on the following commutative diagram:

R E(R) Ê(R)

F2

eR

Dec
D

D̂

where D and D̂ are the restrictions of Dec to E(R) and Ê(R), respectively, and eR is the
idempotent map. Indeed, since Dec(xn) = Dec(x)n = Dec(x), for any x ∈ R and any positive
integer n, we get that Dec = D ◦ eR. The commutativity of the other part of the diagram
is equivalent to Dec(ê) = 1. To prove it we show first that Ê(R) is nonempty. Notice that
the morphism of rings Dec : R → F2 factors over the morphism φ : R →

∏n
i=1 R̄i/mi, so

that the resulted morphism
∏n

i=1 R̄i/mi → F2, gives rise, for each i, to a morphism of fields

R̄i/mi → F2, which is nontrivial only if R̄i/mi is isomorphic to F2, consequently Ê(R) is
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nonempty, and Dec : R→ F2 factors over the morphism φ : R→
∏

j∈J R̄j/mj. Since ψ ◦ ι(ê)
is the unit of

∏
j∈J R̄j/mj, we get that Dec(ê) = 1.

By Proposition 4, D is a projection so that we need to find the coordinate s ∈ J that
defines it. Unfortunately, even though E(R) has a simple structure determined by its prim-
itive idempotents, it is difficult, if not impossible, to compute them in polynomial time. So,
rather than finding all primitive idempotents, we will concentrate on finding the primitive
idempotent es. For that, we compute first ē and then ê.

If e and e′ are idempotents in R we define the operation e ∨ e′ = e ⊕ e′ ⊕ ee′, which
is commutative and associative. Notice that if the primitive idempotent ei occurs in the
sum decomposition of at least one of the idempotents e and e′ then ei also occurs in the
decomposition of e ∨ e′. To find ē we choose k random elements x1, ..., xk ∈ R, and we
compute eR(x1)∨ ...∨ eR(xk). It is easy to see that, for any x ∈ R, the primitive idempotent
ei occurs in the sum decomposition of eR(x) if and only if x /∈ kerφi. Since φi is a ring
homomorphism, this happens with probability ≥ 1

2
. Consequently, the probability that ei

occurs in the sum decomposition of eR(x1) ∨ ... ∨ eR(xk) is at least 1− 1
2k

, and then

Pr (eR(x1) ∨ ... ∨ eR(xk) = ē) ≥
n∏
i=1

(1− 1

2k
) > 1− n

2k
.

So, if we choose k > n+ λ then the probability is at least 1− 1
2λ

(since we don’t know n we
can choose k > log2 |R|+ λ), hence with overwhelming probability we have computed ē.

To find ê we choose k random elements x1, ..., xk ∈ R and we compute eR(x1− x2
1)∨ ...∨

eR(xk − x2
k). The primitive idempotent ei occurs in the sum decomposition of eR(x − x2)

if and only if φi(x − x2) 6= 0 ⇔ φi(x) /∈ {0, 1}, hence this happens with probability ≥ 1
3

if
i /∈ J (notice that φi(x− x2) = 0 for all i ∈ J). As above we have:

Pr

(
eR(x1) ∨ ... ∨ eR(xk) =

∑
i/∈J

ei

)
≥
∏
i/∈J

(
1−

(
2

3

)k)
> 1− n− |J |

1.5k
> 1− n

1.5k
.

This time, if we choose k > log2 |R|+λ
log2 3−1

, we obtain
∑

i/∈J ei with overwhelming probability.

Finally, we compute ê = ē−
∑

i/∈J ei.

Proposition 6. If (R,F2,Enc,Dec) is a commutative ring homomorphic encryption scheme
with Ê(R) ' F2, then the scheme is not resistant to quantum computing based attacks.

Proof. If Ê(R) ' F2 then ê is a primitive idempotent and es = ê, hence R̄s ' R̄ê is a local
Artin ring. Since Dec : R → F2 factors over the homomorphism fs : R → R̄ → R̄ê '
R̄s, x 7→ xê, there exist a homomorphism Ds : R̄s → F2 such that Dec(x) = Ds(xê), ∀x ∈ R.
Notice that Ds(y) = 0 if and only if y ∈ ms, for all y ∈ R̄s. Since ms is a nilpotent ideal,
let k be the smallest positive integer such that mk

s = (0). Then, Dec(x) = 0 iff (xê)m = 0,
for some m ≥ k. If mi

s = mi+1
s for some 0 ≤ i ≤ k − 1, then by Nakayama’s lemma ([2]),

mi
s = (0), which is false. Hence, |mi

s/m
i+1
s | ≥ 2 for all 0 ≤ i ≤ k − 1 so that |mi+1

s | ≤
|mis|

2
,

therefore |mi
s| ≤

|R̄s|
2i
≤ |R|

2i
. We obtain that k ≤ dlog2 |R|e, so that to decrypt x ∈ R one

computes (xê)m with m = dlog2 |R|e.

10



In general we have the following result:

Theorem 9. Any commutative ring homomorphic encryption scheme is not quantum IND-
CCA secure.

Proof. In a sequence of randomly distributed elements of R about half of them are encryp-
tions of 0, and with the help of the decryption oracle one finds which are those. In other
words, we can produce a sufficiently large, uniformly distributed in R, set of encryptions of
0. As above, if the elements of this set are x1, ..., xk, then, with overwhelming probability,
ê(eR(x1)∨ ...∨eR(xk)) contains ej with j ∈ J \{s} in its sum decomposition. In other words,
with overwhelming probability, we have ê − ê(eR(x1) ∨ ... ∨ eR(xk)) = es. Now, as above,
to decrypt x ∈ R one computes (xes)

k with k = dlog2 |R|e. If (xes)
k = 0 then Dec(x) = 0,

otherwise Dec(x) = 1.

Remark 10. Since the encryption algorithm is public, one can use it to produce a sufficiently
large set of encryptions of 0 as above. Unfortunately, one has no control on the frequency of
apparition of such a ciphertext c, whose associated idempotent contains ei, with i ∈ I \{s}, in
its sum decomposition, equivalently eR(c)·ei = ei. Suppose that fs = ê−ê(eR(x1)∨...∨eR(xk)),
where {x1, ..., xk} is a sufficiently large set of encryptions of 0. It is easy to see that if c ∈ R
is any ciphertext such that eR(c)(ē − fs) = eR(c), then Dec(c) = 0. On the other hand, if
eR(c)(ē− fs) = eR(c)− fs, then Dec(c) = 1. Unfortunately, if fs 6= es, there are ciphertexts
that do not satisfy neither the first nor the second equality. In this case, one can try to
produce a new fs by adding new encryptions of 0 to the set above. It is not clear how big the
set of encryptions of zero has to be in order to get fs = es with overwhelming probability.

7 Examples: Semigroup/Monoid Algebras

One of the natural constructions of rings with interesting idempotent structure is using
semigroup/monoid algebras. In this section we shall study the properties of such rings from
the cryptographic point of view.
For a semigroup G, we denoted by G0 :=

∐
f∈E(G) B

0
f , which is a subsemigroup of G (see

Proposition 3).

Definition 11. Let G be a semigroup. A subset I ⊆ M is called 2-invariant if the map
x 7→ x2 from I to I is a bijection.

In other words, the above map is a permutation of a 2-invariant set. In view of this definition
we have:

Lemma 12. Let G be a semigroup.
i) If I is a 2-invariant subset of G, then I ⊆ G0.
ii) E(F2[G]) = {

∑
x∈I [x] | I is 2-invariant}.

Proof. The first claim is easy since for any element x ∈ I, there exist k ≥ 1 such that
x2k = x, therefore x ∈ G0. The second claim follows easily from the definitions. Let us
notice here that an x ∈ G0 admits a k ≥ 1 such that x2k = x, if and only if p(x) is odd.

11



An important application of the previous lemma is the following:

Proposition 7. If G is a semigroup, then:

E(F2[G0]) = E(F2[G]) and Ê(F2[G0]) = Ê(F2[G]).

Here we identify F2[G0] with its image through the inclusion in F2[G].

Proof. Only the second equality requires an argument. Due to the first equality we can
identify the primitive idempotents of F2[G] and F2[G0], let’s say that these are ei, i ∈ I.
Then the local Artin factors that appear in the product decompositions of these two F2-
algebras ar in fact the ideals generated by ei, for each i ∈ I. For each i ∈ I, the inclusion
F2[G0]ei → F2[G]ei induces a homomorphism of their residue fields, which is injective. We
claim that this homomorphism is also surjective. Indeed, notice that any element of G has
a 2k-power, for a sufficiently large k, that belongs to G0, therefore the same is true for any
element x of F2[G], i.e. there exists some positive integer k such that x2k ∈ F2[G0]. Then,
we also have that (xe)2k = (x)2ke ∈ F2[G0]e, in other words any element in the residue field
of F2[G]e has a 2k-power that belongs to the residue field of F2[G0]e. Since the residue field
of F2[G0]e is a finite extension of F2, and the Frobenius morphism is surjective on any finite
field, we get the claim. Since the inclusion map F2[G0] → F2[G] induces isomorphisms for
the residue fields of the corresponding local Artin factors, we get the second equality.

The following proposition is an immediate consequence of Proposition 3 and Proposition 7:

Proposition 8. If G is a semigroup, then we have an isomorphism of F2-vector spaces:

E(F2[G]) '
⊕

f∈E(M)

E(F2[B0
f ]).

Notice that the above isomorphism is not an isomorphism of rings. What we can say
about the image of the multiplication on the left hand side via the above isomorphism is
that it preserves the structure given by the multiplication on E(G), i.e. if x ∈ E(F2[B0

e ]) and
y ∈ E(F2[B0

f ]) then xy ∈ E(F2[B0
ef ]). In view of the above facts, it is important we study

the extremal cases, namely the case when |E(G)| = 1 and the case when B0
f = {f} for all

f ∈ E(G), equivalently G0 = E(G). The general case deserves a separate analysis that we
would carry on in a different paper. However, the two extremal cases are the building blocks
for the general case.

7.1 One idempotent monoid algebra

Let M be a commutative semigroup consisting of only one block, that is M = Bf ; equiv-
alently |E(M)| = 1. In this case M0 := B0

f , which is a group. Using the decomposition
theorem for abelian groups, there exist C1, ..., Ck cyclic groups such that M0 ' C1× ...×Ck.
Then we have an isomorphism of F2-algebras F2[M0] ' F2[C1] ⊗F2 ... ⊗F2 F2[C1]. Suppose
now that C is a cyclic group of order N = 2m ·N ′, where N ′ is odd and m is a non-negative
integer. Then, we have the isomorphisms F2[C] ' F2[X]/(XN − 1) ' F2[X]/(XN ′ − 1)2m .

12



Next, we use the decomposition XN ′ − 1 =
∏

d|N ′ Φd(X), where Φd(X) are the cyclotomic
polynomials, to get an isomorphism:

F2[C] '
∏
d|N ′

F2[X]/(Φd(X))2m .

Next, let ν2(d) be the order of 2 in the group (Z/dZ)×. Then Φd(X) decomposes in F2[x]
into

Φd(X) =

φ(d)/ν2(d)∏
i=1

Pi,d(x),

where Pi,d are irreducible distinct polynomials, all of degree ν2(d). Using Chinese Remainder
Theorem (in F2[X]), we get the following isomorphisms of F2-algebras:

F2[C] '
∏
d|N ′

φ(d)/ν2(d)∏
i=1

F2[X]/(Pi,d(X))2m .

We have the following:

Lemma 13. Let Q1(X), ..., Qk(X) ∈ F2[X] be irreducible polynomials, and m1, ...,mk non-
negative integers. Then, there is a one-to-one correspondence between the local Artin factors
of

S(Q1, ..., Qk;m1, ...,mk) := F2[X]/(Q1(X))2m1 ⊗F2 ...⊗F2 F2[X]/(Qk(X))2mk ,

and the local Artin factors of S(Q1, ..., Qk; 0, ..., 0). In addition, corresponding factors have
isomorphic residue fields.

Proof. Any maximal ideal of S(Q1, ..., Qk;m1, ...,mk) contains the elements 1⊗ ...⊗Pi(X)⊗
...⊗1, for all i ∈ 1, k; let m be the ideal generated by them. Since S(Q1, ..., Qk;m1, ...,mk)/m '
S(Q1, ..., Qk; 0, ..., 0), the conclusion follows.

Since tensor products commute with direct products, one is let to the following structure of
group algebras:

Proposition 9. Assume that the abelian group M0 '
∏k

j=1 Z/Nj Z with Nj = 2mjN ′j, N
′
j

odd numbers and mj non-negative integers for all j, then

F2[M0] '
∏

dj |N ′
j ,∀j

φ(dj)/ν2(dj)∏
ij=1,∀j

S(Pi1,d1 , ..., Pik,dk ;m1, ...,mk).

We have the following consequence:

Corollary 14. With the above notations, we have:

dimF2(E(F2[M ])) =
∑

dj |N ′
j ,∀j

∏
j φ(dj)

lcmj(ν2(dj))
.
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Proof. Lemma 13 givesE(S(Pi1,d1 , ..., Pik,dk ;m1, ...,mk)) ' E(S(Pi1,d1 , ..., Pik,dk ; 0, ..., 0)). On
the other hand, we have the isomorphisms:

S(Pi1,d1 , ..., Pik,dk ; 1, ..., 1) ' F2ν2(d1) ⊗F2 ...⊗F2 F2ν2(dk) '
(
F

2lcmj(ν2(dj))

) ∏
j ν2(dj)

lcmj(ν2(dj)) ,

where the last isomorphism follows from Theorem 16.8 in [18]. Now, use Proposition 7 and
Proposition 9 to get the result.

We end this section with the following important result:

Theorem 15. Let M be a commutative semigroup with only one block (e.g. abelian group),
then

Ê(F2[M ])) ' F2.

Consequently, any ring homomorphic encryption scheme over F2 with ciphertext space F2[M ]
is not secure under quantum attacks.

Proof. One can see that the only factor of S(Pi1,d1 , ..., Pik,dk ; 0, ..., 0) isomorphic to F2 cor-
responds to di = 1 for all i, therefore occurs only once. Now, the conclusion follows from
Proposition 7 and Proposition 9.

7.2 Full idempotent monoid algebra

In this case, M is a commutative semigroup such that M = E(M). We may suppose that
M is a monoid because we may always add a neutral element. Since any element of F2[M ] is
idempotent, we have that E(F2[M ]) = F2[M ]. On the other hand, we know from Proposition
4 that there exists an isomorphism E(F2[M ]) ' Fn2 for some n. Counting the dimensions,
we get that n = |M |. In addition, we obtain Ê(F2[M ]) = E(F2[M ]) = F2[M ]. To explicitly
provide the isomorphism mentioned above, we need to seek primitive elements in F2[M ], as
in the proof of Proposition 4. It is not quite easy to do this step and we shall provide next
the answer for the case where M is a free idempotent monoid.

We identify M with the free monoid (Fk2, ·), so that let ei = (0, . . . , 1, . . . 0), where 1 is in
the ith position. For any subset A ⊆ {1, . . . , k}, let eA :=

∑
i∈A ei (here the sum is considered

in the F2-algebra Fk2). Also, for any subset S ⊆ {1, . . . , k}, we define ES :=
∑

A⊆S[eA] ∈
F2[M ]. By convention, E∅ := [0].

Proposition 10. We have an isomorphism of F2-algebras:

F2[M ] '
⊕

S⊆{1,...,k}

F2 · ES.

Proof. The only thing we need to check is that the idempotents ES form an orthogonal basis.
The number of these elements coincide with the dimension dimF2 F2[M ] = 2k. Thus we need
only to check the orthogonality relations. So let’s consider S and T two different subsets of
{1, . . . , k}. Then:
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ES · ET =
∑

A⊆S, B⊆T

[eA][eB] =
∑

A⊆S, B⊆T

[eA∩B] =
∑

C⊆S∩T

[eC ]
∑

A⊆S, B⊆T, A∩B=C

1.

We claim that the last sum is always even (i.e. 0 in F2). Since the relation is symmetric
in S and T , we may assume that there exists x ∈ S \ T. In particular, x 6∈ C. Then, in the
last sum, the subsets A that do not contain x and A ∪ {x} both are counted for any fixed
subset B. The claim is now obvious.

8 Conclusions

• In the present work we are only interested in ring homomorphic schemes over F2 since
those are exactly the schemes that produce FHE schemes. If one is interested in general
ring encryption schemes, then one has to consider the case in which the plaintext space is
an arbitrary ring.
• Our analysis is restricted to the commutative case. Some of the results may extend to
the noncommutative case, but it is beyond the scope of this article. The reader might have
observed already that in fact the structure of ring homomorphic encryption schemes is actu-
ally governed solely by the existence of the decryption algorithm. However in constructing
ring homomorphic encryption schemes, one needs an efficient encryption algorithm and this
is usually the innovative part in such constructions. Thus, this article can be viewed as a
negative result in the sense it shows how not to construct a ring homomorphic encryption
scheme. Moreover, if one wants to construct such a scheme in the post-quantum era, then
such thing is virtually impossible in the commutative case.
• Although we prove that under mild hypothesis ring homomorphic encryptions are not
quantum secure, there is no example of ring homomorphic encryption scheme (enjoying all
the good features) that enjoys classical security. If one relax some of the conditions imposed
for ring homomorphic encryption schemes, then one can find such examples. In [4] there
are two examples based on monoid algebras where there is only one relaxation in the initial
conditions: ”compact” is replaced by ”bounded”.
• The main novelty of this article (compared with other quantum attacks such as in [1]) is
that we use quantum computation to find a (pseudo)-secret key which is used afterwards
classically for decryption.
• As we mentioned in the Introduction, the IND-CCA security can be replaced by IND-CPA
security using the δ-covering subgroups. The probability of the pseudo secret key to be the
real secret key(i.e. of decrypting correctly any cyphertext) depends on the chosen δ.
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