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Abstract

Motivated by what we call “honest but lazy” parties in the context of secure multi party
computation, we revisit the notion of multi-key FHE schemes (MFHE). In MFHE, any mes-
sage encrypted using a public key pki can be “expanded” so that the resulting ciphertext is
encrypted with respect to a set of public keys (pk1, .., pkn). Such expanded ciphertexts can be
homomorphically evaluated with respect to any circuit to generate a ciphertext ct. Then, this
ciphertext ct can be partially decrypted using a secret key ski (corresponding to the public
key pki) to produce a partial decryption pi. Finally, these partial decryptions {pi}i∈[n] can be
combined to recover the output. However, this definition of MFHE works only for n-out-of-n
access structures and, thus, each node in the system is a point of failure. In the context of
“honest but lazy” parties, it is necessary to be able to decrypt even when only given a subset of
partial decryptions (say t out of n). In order to solve this problem, we introduce a new notion
of multi-key FHE designed to handle arbitrary access patterns that can reconstruct the output.
We call it a threshold multi-key FHE scheme (TMFHE).

Our main contributions are the following:

• We formally define and construct TMFHE for any access structure given by a monotone
boolean formula, assuming LWE.

• We construct the first simulation-extractable multi-string NIZK from polynomially hard
LWE.

• We use TMFHE and our multi-string NIZK to obtain the first round-optimal (three round)
MPC protocol in the plain model with guaranteed output delivery secure against malicious
adversaries or, more generally, mixed adversaries (which supports “honest but lazy” par-
ties), assuming LWE.

• Our MPC protocols simultaneously achieve security against the maximum number of cor-
ruptions under which guaranteed output delivery is achievable, depth-proportional com-
munication complexity, and reusability.
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1 Introduction

Starting with the breakthrough work of Gentry [Gen09], fully homomorphic encryption (FHE) has
been extensively studied over a long sequence of works (see e.g. [Gen09, BV11b, BV11a, BGV12,
GSW13]). In an FHE scheme, given a public key pk and a ciphertext of a message m encrypted
using this public key, a user can homomorphically evaluate this ciphertext with respect to any
circuit C to generate a new ciphertext ct that is an encryption of C(m) without learning anything
about the message. Then, the decryptor, using the secret key sk can decrypt this message to
recover the output C(m). However, traditionally, FHE schemes are single-key in nature: that is,
they can be used to perform arbitrary computation on data encrypted using the same public key.

In this work, we build a new multi-party generalization of FHE that we call Threshold Multi-
Key FHE, which we build from the LWE assumption. We then use this new primitive to achieve
efficient secure multi-party protocols (MPC) in a model that allows for some honest parties to be
“lazy,” as we discuss below. Subsequent to our work, our Threshold Multi-Key FHE was used
in [GPS19], which explicitly extends our MPC model with honest but lazy parties to also allow
lazy parties to return in future rounds and builds upon our MPC protocol to achieve their results.
We believe both our notion of Threshold Multi-Key FHE and our MPC model and protocol will
continue to find other applications, as well (see e.g. [CCLS20], for another subsequent result that
builds upon ours). We now elaborate on our contributions.

Multi-Key FHE. Lopez-Alt et al. [LTV12] introduced the notion of multi-key fully homomorphic
encryption. Informally, in a multi-key FHE scheme, any message encrypted using a public key pki
can be “expanded” so that the resulting ciphertext is encrypted with respect to a set of public keys
(pk1, .., pkn). Such expanded ciphertexts can be homomorphically evaluated with respect to any
circuit to generate a ciphertext ct. Then, this ciphertext ct can be partially decrypted using a secret
key ski (corresponding to the public key pki) to produce a partial decryption pi. Finally, these
partial decryptions {pi}i∈[n] can be combined to recover the output. In addition to the semantic
security of encryption, a multi-key FHE scheme also requires that given any expanded (and possibly
evaluated) ciphertext ct encrypting a message m, any set of (n − 1) secret keys {ski}i 6=i∗ for any
i∗, and the message m, it is possible to statistically simulate the partial decryption pi∗ . Multi-key
FHE has been extensively studied [CM15,MW16,PS16,BHP17] and has proven particularly useful
in the context of building round-efficient secure multiparty computation protocols for protocols
achieving security with abort. Recall that in security with abort, a single party that aborts could
potentially prevent all honest parties from receiving the output.

1.1 A New Primitive: Threshold Multi-Key FHE

However, none of the existing multi-key FHE schemes enable the output to be reconstructed unless
all the n partial decryptions are given out and hence they only “work” for n-out-of-n access struc-
tures. Unfortunately, this leads to situations where every secret key owner in the system represents
a single point of failure, since if their partial decryption is not given out, it is not possible to recover
the output. This is sufficient for protocols only achieving security with abort, as this security notion
allows the functionality to fail if even a single party misbehaves. If we want to create schemes that
are capable of handling failures, we would necessarily want one to be able to decrypt even when
one only possesses a subset of partial decryptions (say t out of n).
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At first glance, it seems that our goal is simply incompatible with the notion of multi-key FHE.
For instance, suppose that a ciphertext encrypting m under a public key pk can be combined with
two public keys pk′ and pk′′, and “expanded” into a ciphertext encrypting m under a 2-out-of-3
threshold under the triple of public keys {pk, pk′, pk′′}. Such a feature would imply the insecurity
of the original encryption, since an adversary could sample the public keys {pk′, pk′′} together with
their secret keys {sk′, sk′′}, and then use the two secret keys {sk′, sk′′} to obtain m using the
expanded ciphertext.

In order to solve this problem, we introduce a new notion of threshold multi-key FHE1 where
ciphertexts cannot be “expanded.” Instead, in our notion, given a collection of public keys
{pk1, . . . , pkn}, it is possible for an encryptor to encrypt a message m with respect to an access
pattern such as t-out-of-n. Then this ciphertext would only be decryptable by combining partial
decryptions obtained from holders of at least t corresponding secret keys. As we show in this work,
it turns out that this functionality is sufficient for obtaining new applications to MPC (see below
for details).

In this work, we first formally define threshold multi-key FHE in a general way, and then we
show to construct this new primitive from the learning with errors (LWE) assumption. Formally,
we show the following theorem:

Theorem 1 (Informal). Assuming LWE, there exists a secure threshold multi-key FHE scheme for
the class of access structures A induced by all monotone boolean formulas.

In Section 2, we describe the challenges and techniques involved in our construction. Our next
contribution is an application of threshold multi-key FHE in the context of round-optimal secure
MPC protocols with guaranteed output delivery (GOD).

1.2 Application to Round-Optimal MPC

Secure multi-party computation (MPC) [Yao82,Yao86,GMW87] has been a problem of fundamen-
tal interest in cryptography. In an MPC protocol, a set of mutually distrusting parties can evaluate
a function on their joint inputs while maintaining privacy of their respective inputs. Over the last
few decades, much of the work related to MPC has been devoted to achieving stronger security
guarantees and improving efficiency with respect to various parameters such as round complex-
ity and communication complexity. In this work, we further advance our understanding of this
landscape with threshold multi-key FHE being the main technical tool.

MPC Supporting “Honest but Lazy” Parties. In traditional MPC, every party is required
to remain online and participate completely in the protocol execution. This applies not only to
“classical” MPC protocols where every party has to participate and send a message in every round
of the protocol, but also to other interesting variants such as protocols in the client-server setting
where all the servers are required to remain active until the end of the protocol execution. We
refer the reader to Section 1.4 for a more detailed comparison with related works. In other words,
traditional MPC protocols decide to treat a “lazy” party that just aborts midway into the protocol
execution as a corrupt party that is colluding with the other corrupt parties, and this is addressed

1We remark that in fact, some existing standard multi-key FHE schemes [MW16] also sometimes used the term
threshold multi-key FHE to refer to their primitive, which requires an n-out-of-n threshold. We will use threshold
multi-key FHE to denote only our stronger notion supporting general thresholds.
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in different ways. In some cases, all parties abort the protocol execution while in other cases, the
“lazy” party is just discarded and all the other parties compute the function on their joint inputs
alone. We believe that such an outlook is undesirable as there are several reasons why even an
honest party might have to abort and become “lazy” during the execution of a protocol without
having to be deemed as colluding with the corrupt parties. A few potential reasons include:

• Connectivity - A party might lose connectivity and hence be unable to continue the protocol.

• Computational resources - A computationally weak party might be unable to perform inten-
sive computation and hence be forced to exit the protocol.

• Interest - At some point, a party might just lose interest in that protocol execution due to
other higher priority tasks that come up.

Motivated by the above realistic scenarios, we would like to construct MPC protocols that can
handle “honest but lazy” parties without simply lumping them in with the other corrupted parties
(since treating all aborting parties as “malicious” will unrealistically enhance the power of the
adversary and limit our protocol’s capabilities). Furthermore, we would like our protocol to be
robust to aborting parties (that is, have guaranteed output delivery). Informally, this means that
at the end of the protocol execution, regardless of the behavior of the adversary, the honest parties
can still compute the output of the function on all their joint inputs (with either a default or the
actual input for each of the corrupted parties). Ideally, we would like to achieve a stronger form of
guaranteed output delivery, where, when possible, the output of the protocol is with respect to the
actual input of all the “honest but lazy” parties, rather than some default input. This is akin to
stating that provided an “honest but lazy” party actually sent a message dependent on its input,
the protocol will compute the functionality with respect to this party’s input, regardless of whether
or not the party aborted during the rest of the protocol. We call this property input fidelity. In
this work, we ask

Can we construct round-optimal protocols in the plain model that achieve the above desiderata?

If such protocols are achievable, then

Can these protocols handle the maximum number of possible corruptions?

What can we say about the assumptions, communication complexity, and reusability of such
protocols?

Using our new primitive, threshold multi-key FHE, we are able to answer all the above sat-
isfactorily. We construct the first round-optimal (three-round) MPC protocol in the plain model
that achieves our desired properties. Moreover, our protocol is capable on handling the maximum
number of corruptions that a protocol can possibly support while achieving the desired properties.
Our protocol relies only on the learning with errors (LWE) assumption. Furthermore, our protocol
has depth-proportional communication complexity and is reusable.
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Formalizing Our Desired Properties. Formally, we study MPC with guaranteed output de-
livery in the presence of threshold mixed adversaries, introduced by Fitzi et al. [FHM98,FHM99]. In
this setting, a threshold mixed adversaryA is allowed to corrupt three sets of parties (AMal,ASh,AFc)
such that the following holds: (i) |AMal| ≤ tMal, |ASh| ≤ tSh, and |AFc| ≤ tFc, for a tuple of thresh-
olds (tMal, tSh, tFc). (ii) The set of parties in AMal are maliciously corrupted meaning that the
adversary can choose to behave using any arbitrary polynomial time algorithm on behalf of each of
them. (iii) The set of parties in ASh are corrupted in a semi-honest manner and so the adversary is
required to follow the protocol execution honestly on behalf of each of them. (iv) The set of parties
in AFc are corrupted in a fail-corrupt manner meaning that for each party in this set, the adversary
can specify when that party is required to abort the protocol execution. Until then, these parties
follow the protocol execution honestly. Note that the adversary never gets to see the inputs or
internal state of any of the fail-corrupt parties and hence these parties capture our motivation of
“honest but lazy” parties - where their laziness is enforced by the adversary in the security game.
In this work, our goal is to build a round-optimal MPC protocol with guaranteed output delivery
in this model that also simultaneously satisfies the following desirable properties:

• Security Against the Maximum Number of Corruptions: Security should hold against
a threshold mixed adversary that can corrupt the maximum number of parties under which
guaranteed output delivery is achievable.

• Input Fidelity: In line with our motivation, we want our protocol to satisfy not only
guaranteed output delivery, but also the stronger property that the output of the computation
is a function of the joint inputs of all parties, including those that aborted after a “certain
point”. Intuitively, we would like our protocol to be divided into two phases - an input
commitment phase and a computation phase. We refer to the end of the input commitment
phase as this “point.” That is, in the scenario where the adversary corrupts a set of parties in
a fail-corrupt manner, for every fail-corrupt party Pi that aborts after the input commitment
phase, its input yi that is used to compute the final output C(y1, . . . , yn) is set to be its actual
input xi used in the protocol so far and not a default input ⊥. Recall that this aligns with
our original motivation where we wish to not discard honest but lazy parties and deem them
to be corrupt.

• Depth-Proportional Communication Complexity: For any function f , the communica-
tion complexity of the protocol should be poly(λ, d,N, `inp) where N is the number of parties,
λ is the security parameter, `inp is the input length for each party, d is the depth of the circuit
computing f .

• Reusability: Given the transcript of the input commitment phase of the protocol, the com-
putation phase of the protocol should be able to be reused across an unbounded polynomial
number of executions to compute different functions on the same fixed joint inputs of all the
parties.

Prior to our work, much of the focus in this model was on obtaining feasibility results, under-
standing under what corruption patterns is secure computation even possible, and improving the
communication complexity. We refer to Section 1.4 for a more detailed discussion on the prior work
in this model. In particular, Hirt et al. [HMZ08] showed that in the setting of a threshold mixed
adversary, MPC with guaranteed output delivery is possible if and only if 2tMal + tSh + tFc < N ,
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where N is the total number of parties. Since we are interested in guaranteed output delivery,
we focus on constructing MPC protocols that are secure against (tMal, tSh, tFc)-threshold mixed
adversaries, for any (tMal, tSh, tFc) satisfying the above inequality. Furthermore, in light of the
result of Gordon et al. [GLS15] showing that three rounds are required for MPC with guaranteed
output delivery in the traditional model (this can be viewed as a special case of the threshold mixed
adversary model, where tSh and tFc are both 0), we observe that a three round protocol will be
round-optimal in this setting.

Utilizing our new primitive, threshold multi-key FHE, given any tuple of thresholds (tMal, tSh, tFc)
satisfying the Hirt et al. [HMZ08] inequality, we construct the first round-optimal (three-round)
MPC protocol with guaranteed output delivery that is secure against such a threshold mixed adver-
sary. Since guaranteed output delivery is possible if and only if the Hirt et al. [HMZ08] inequality
holds, our resulting protocol is optimal in terms of the best possible corruption we can tolerate. The
first two rounds of our protocol form the input commitment phase, and round 3 is the computation
phase. Our protocol has input fidelity, in the sense that the functionality is computed with respect
to the inputs of all parties that did not abort in the first two rounds, even if that party aborts
in round three. Additionally, given the transcript of the input commitment phase (the first two
rounds of the protocol), the third round can be reused across an unbounded polynomial number of
executions to compute different functions on the same fixed joint inputs of all parties. Our protocol
also has depth-proportional communication complexity. Formally, we show the following result:

Theorem 2 (Informal). Assuming learning with errors (LWE), for any function f on N inputs,
for any tuple of thresholds (tMal, tSh, tFc) satisfying 2tMal + tSh + tFc < N , there exists a three-
round MPC protocol with guaranteed output delivery in the plain model that is secure against a
(tMal, tSh, tFc)-mixed adversary. The protocol has input fidelity, depth-proportional communication
complexity, and is reusable.

By instantiating Theorem 2 with the (dN/2−1e, 0, 0)-mixed adversary we achieve an interesting
result in the traditional MPC world in the plain model: in particular, notice that this setting corre-
sponds to an honest majority of parties and as a result, we get a three round MPC protocol in the
plain model with guaranteed output delivery. As mentioned previously, our protocol is round opti-
mal for this setting as well due to the lower bound of Gordon et al. [GLS15]. Formally, we achieve
the following corollary, matching the round complexity of the recent independent work [ACGJ18],
but for the first time, also achieving input fidelity, reusability, and depth-proportional communica-
tion complexity, assuming only LWE.

Corollary 1 (Informal). Assuming LWE, for any function f , there exists a three-round MPC
protocol with guaranteed output delivery in the plain model in the presence of an honest majority.

1.3 Multi-String NIZK from LWE

As a stepping stone to achieving Theorem 2, we first consider the weaker setting of a (tSm, tSh, tFc)-
semi-malicious mixed adversary that corrupts the sets (ASm,ASh,AFc) of parties such that the
first set of parties ASm, with |ASm| ≤ tSm, is only corrupted in a semi-malicious manner - that is,
on behalf of each party in this set, the adversary can pick any arbitrary randomness of its choice
but using this randomness, the party is required to execute the protocol honestly. We define this
formally in the technical sections. Once we have constructed a protocol that is secure against a semi-
malicious mixed adversary, we are able to bootstrap it to one that is secure against a (malicious)
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mixed adversary in the plain model using a multi-string non-interactive zero knowledge (NIZK)
argument.

In a multi-string NIZK argument system, introduced in the work of Groth and Ostrovsky [GO07],
a set of parties can each generate one CRS that can then be combined to compute one unified CRS
which is used to compute NIZKs. The guarantee is that as long as a majority of the individual
CRS strings are honestly generated, the argument system is correct and secure. Unfortunately, one
of the tools in the construction of multi-string NIZKs in [GO07] was a Zap [DN07], which is not
known from polynomially hard LWE. In order to obtain Theorem 2 assuming only polynomially
hard LWE, we construct a (simulation-extractable) multi-string NIZK directly from LWE, which
may be of independent interest. Formally, we show the following.

Theorem 3 (Informal). Assuming polynomially hard LWE, there exists a simulation-extractable
multi-string NIZK for NP.

1.4 Related Work

Client-Server MPC. Secure computation in the client-server setting has been a widely studied
problem [FKN94,IK97,NPS99,DI05,BCD+09,IKP10,KMR11,CKKC13]. The key differences from
our model are the following: (i) in a client server setting, the identity of the server/servers and
clients are decided a priori. As a result, the parties who perform the computation (the servers)
are decided in advance while in our setting, any set of “non-lazy” parties can run the computation
phase. (ii) In the client server model, all the clients can essentially turn “lazy” after submitting
their messages to the server but we typically crucially require all the servers to take part in the
computation to receive meaningful output. Once again, this is different from our setting.

Dishonest Majority MPC in the Plain Model. A long sequence of works constructed
constant-round MPC protocols against dishonest majority based on a variety of assumptions and
techniques (see, e.g., [KO04, Pas04, PW10, Wee10, Goy11, GMPP16, ACJ17, BHP17, COSV17a,
COSV17b] [BGI+17,JKKR17,BGJ+17,GKP17,BGJ+,HHPV17,BL18]). We stress that while the
exact round complexity of MPC in the dishonest majority setting has been extensively studied, it is
not clear or analyzed whether any of these protocols are also secure in the more general framework
of a general mixed adversary.

MPC with Mixed Adversaries. Fitzi et al. [FHM98] introduced the notion of MPC in the
presence of a mixed adversary. Starting with their work, a series of papers [FHM98, FHM99,
Hir01,IKLP06,BFH+08,HMZ08,ZHM09,SPCR09,Zik10] studied and established lower bounds for
corruption patterns under which MPC is feasible. Another line of work [CPA+08,HT13,LO14] was
focused on improving the communication complexity of MPC protocols for various functionalities
in the mixed adversary setting with various corruption patterns.

MPC with Guaranteed Output Delivery. There have been a variety of prior works regard-
ing MPC with guaranteed output delivery and/or fairness in the broadcast model. Cleve [Cle86]
showed that we cannot construct fair MPC protocols unless there are an honest majority of par-
ties. [BOGW88] constructed MPC protocols with fairness, and [CL14] studied the relationship
between fairness and guaranteed output delivery in MPC protocols. There have also been a variety
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of works constructing MPC protocols with guaranteed output delivery. [DI05] constructed a three-
round MPC protocol with guaranteed output delivery that is secure against an adversary that can
corrupt less than one fifth of the parties. [AJLA+12] constructed five-round MPC protocols with
guaranteed output delivery secure against an adversary that corrupts a minority of parties from
LWE and NIZKs. Subsequently, Gordon et. al [GLS15] constructed a three-round MPC protocol
with guaranteed output delivery in the CRS model from LWE and NIZKs. Furthermore, [GLS15]
showed that achieving guaranteed output delivery in two rounds, even in the CRS model, is impos-
sible. This built upon a previous result [GIKR02] that had ruled out such protocols in the plain
model when the adversary can corrupt more than a single party. There have also been a couple
of very nice recent works that take on the challenging task of constructing MPC protocols with
guaranteed output delivery with information-theoretic security. [ABT19] construct a three-round
protocol for NC1 circuits that can handle a malicious adversary that corrupts up to a quarter of
the parties. [GLS19] construct a protocol for poly-sized circuits over point-to-point channels with
round-complexity the number of multiplication gates in the circuit that can handle a malicious
adversary that corrupts up to a third of the parties. Recently, Halevi et al [HIK+19] studied guar-
anteed output delivery in the setting of functionalities where only one party gets output. In a recent
work, Patra and Ravi [PR19] studied round optimal MPC protocols with GOD in the presence of
dynamic corruption while the focus of our work is only static corruption.

Independent Work. Recently, in an independent work, Ananth et. al [ACGJ18] also constructed
a three-round honest majority MPC protocol with guaranteed output delivery in the plain model,
assuming PKE and ZAPs. Their techniques are substantially different from ours, and we note that if
we instantiate our protocol with the (dN/2−1e, 0, 0) tuple of thresholds, we are able to match their
result, assuming LWE, as shown in Corollary 1. Moreover, our protocol simultaneously achieves
depth-proportional communication complexity and reusability, properties not achievable by their
protocol. Furthermore, we note that our general protocol can handle threshold mixed adversaries,
whereas their protocol is only secure against malicious adversaries in the honest majority setting.

Subsequent works. The work of [CSW19] (which cites us as prior work) can use a threshold
PKI model, which is a very strong form of certified PKI model, to achieve some of our results
(guaranteed output delivery, depth proportional communication) in 2 rounds. In this work, we do
not make any trust assumptions. However, we observe that our protocol already gives a 2-round
protocol with a much weaker form of PKI where the public keys can be any arbitrary string. Thus,
our work also implies results in a “plain” PKI setting. Last-round reusability, which we achieve,
was also not studied in [CSW19]. However, we note that the focus of [CSW19] was to understand
adaptive security in the context of communication efficient protocols, which we do not study.
A recent series of works [KRR17,CCRR18,HL18,CCH+19,PS19] have developed a framework for
instantiating the Fiat-Shamir transform [FS87] using a hash function that satisfies a property called
correlation-intractability [CGH04]. This culminated in the work of Peikert and Shiehian [PS19], who
were able to obtain the first NIZK from LWE by constructing a correlation-intractable hash function
family for (bounded) circuits from LWE. Following this, there have been two works [BFJ+20,
JJ19], subsequent to ours, that construct two message statistically witness indistinguishable ZAP
arguments from quasipolynomial LWE. From this, using the work of [GO07] one can construct a
multi-string NIZK from quasipolynomial LWE. We obtain a multi-string NIZK argument system
assuming only the polynomial hardness of LWE.
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2 Technical Overview

We first describe the challenges involved in defining and constructing our new primitive of threshold
multi-key FHE in the next subsection. This is followed by the techniques involved in construct-
ing our round-optimal MPC protocol with guaranteed output delivery. Finally, we discuss the
techniques used to construct a multi-string NIZK from LWE.

2.1 Threshold Multi-Key FHE (TMFHE)

2.1.1 Definitional Challenges.

Recall that we would like to construct a version of multi-key FHE that only requires some (say t
out of n) of the partial decryption shares in order to reconstruct the output as opposed to all n
partial decryptions, as is required in all existing multi-key FHE schemes.

At first glance, it is not even clear how to define such a notion. The most direct approach
leads to a definition that is impossible to achieve. Consider for example the n/2-out-of-n access
structure. In this case, if we follow the standard procedure used by known multi-key FHE schemes,
any evaluator can expand a ciphertext encrypting a message m with respect to public key pkn
to a ciphertext ct with respect to the set of public keys (pk1, ..., pkn). Then, the evaluator can
use secret keys sk1, .., skn/2 to learn the value of m, as the set {1 . . . , n/2} satisfies the access
structure. However, in doing so, an adversary can learn m without knowing skn, breaking the
semantic security of the encryption scheme with respect to (pkn, skn) and leading to a notion that
provides no security.

Although we seem to have arrived at a notion that is not meaningful at all, we note that
the issue with the above approach is that a ciphertext encrypted with respect to a public key
pk can be expanded to one encrypted with respect to many public keys. However, if we prevent
ciphertexts from being expanded, there is hope of achieving a meaningful notion. Expanding on
this idea, we arrive at the following (informal) definition. Any party can generate its own key
pair (pk, sk). Any encryptor can compute ct ← Encrypt(pk1, .., pkn,A,m). Given two (or more)
ciphertexts encrypted with respect to the same set of public keys and the same access structure A,
it is possible to homomorphically evaluate a circuit on these ciphertexts and partially decrypt the
resulting ciphertext using any secret key ski to recover a partial decryption pi. Given {pi}i∈B for
some B satisfying A, one can reconstruct the output. Roughly, we require two security guarantees
from the scheme.

1. Given {ski}i∈S for some S /∈ A,

Encrypt(pk1, . . . , pkn,A,m0) ≈c Encrypt(pk1, .., pkn,A,m1)

for any two equal length messages m0,m1.

2. Given a ciphertext ct for an underlying message m and {ski}i∈S for any maximally unqualified
set2 S /∈ A (for example (n/2 − 1) of the parties for the example above), it is possible to
statistically simulate a partial decryption pi for any i ∈ [n].

For technical reasons, we require a more nuanced security definition, and we refer the reader to
Section 4 for the details.

2By maximally unqualified set S, we mean that for any i ∈ [n] \ S, (S ∪ {i}) ∈ A. Similarly, a set S is minimally
qualified if for any i ∈ [S], (S \ {i}) /∈ A.
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2.1.2 Construction Overview.

In order to construct TMFHE, one could try many approaches to build on top of existing multi-key
FHE schemes. For example, one could try the following. Given any set of public keys (pk1, .., pkn),
generate ciphertexts ctS ← Encrypt({pki}i∈S ,m) for all minimally valid sets S ∈ A. However, such
an approach is not feasible for access structures such as n/2−out-of-n as then the encryptor has to
compute encryptions for roughly

(
n
n/2

)
subsets, which is super-polynomial.

To overcome this limitation, we use the tool of threshold FHE introduced in the work of Boneh
et al. [BGG+18]. In a threshold FHE scheme, the setup algorithm samples a single public key fpk
and n secret key shares (fsk1, .., fskn) for a secret key fsk that are shared according to the access
structure A. Using the public key fpk, an encryptor can encrypt a message m to receive a ciphertext
ct (which may be evaluated). This ciphertext can then be partially decrypted independently using
key shares ski to compute a partial decryption pi. Then using these {pi}i∈S for any set S ∈ A, one
can recover m. Security properties are two fold:

• Given {ski}i∈S for some S /∈ A, Encrypt(pk,A,m0) ≈c Encrypt(pk,A,m1) for any two equal
length messages m0,m1.

• Second, given a ciphertext ct with underlying message m and {ski}i∈S for any maximally
unqualified S /∈ A, it is possible to statistically simulate partial decryptions pi for any i ∈ [n].

We make the following useful observations about threshold FHE which will aid us in our con-
struction.

1. The setup algorithm of the scheme of [BGG+18] first samples (pk, sk)← FHE.Setup(1λ) and
then secret shares sk according to the access structure using a “special purpose” secret sharing
scheme to compute shares (sk1, .., skn) so that the reconstruction involves just addition of
some subset of shares. Looking ahead to the security proof, this feature allows us to easily
simulate partial decryptions.

2. The encryption procedure just involves encrypting the message m using an underlying FHE
scheme.

3. The underlying FHE scheme can be instantiated using most of the known homomorphic
encryption schemes satisfying a few general properties.

Thus, we observe that, in particular, the multi-key FHE schemes of both [MW16,BHP17], can be
used to instantiate the underlying FHE scheme in threshold FHE. This can then be used to evaluate
on multiple ciphertexts encrypted with respect to different public keys - since, using multi-key FHE,
one can expand on various ciphertexts and evaluate jointly on them. However, at this point, it
is still not clear how to compute (or simulate) partial decryptions, especially since the threshold
FHE construction of [BGG+18] only handled underlying FHE schemes where the ciphertext was
encrypted with respect to a single public key. However, we observe the following property of the
multi-key FHE schemes of both [MW16,BHP17]. Suppose we have two ciphertexts, ct1 and ct2 that
are encrypted under public keys fpk1 and fpk2, respectively. In the multi-key FHE scheme, we can
expand these ciphertexts to ĉt1 and ĉt2, each encrypted under the set of public keys {fpk1, fpk2}.
If the secret keys corresponding to fpk1 and fpk2 are fsk1 and fsk2, respectively, then the secret key
for decryption of ĉt1 and ĉt2 (and any ciphertext computed by evaluating on these ciphertexts) is
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[fsk1, fsk2]. In a standard threshold FHE scheme, the secret key would be secret shared across n
parties. For simplicity, assume that we secret share according to the n out of n access structure. Let
party i’s shares of fsk1 and fsk2 be denoted by fsk1,i and fsk2,i, respectively. Since the decryption
procedure of the multi-key FHE scheme is linear and the secret sharing of fsk1 and fsk2 is also
linear and, crucially, with respect to the same access structure, one could have party i partially
decrypt by running the decryption procedure of the multi-key FHE scheme using the secret key
[fsk1,i, fsk2,i]. Given these partial decryptions, one could combine them to recover the message by
adding them as specified by the reconstruction procedure of the secret sharing scheme.

The above gives intuition as to how one might construct threshold multi-key FHE, but several
points are still unclear. In particular, we noted that in order to achieve a meaningful notion, we
want an encryptor to encrypt with respect to a public key set and an access structure. The idea
is that the public key set that an encryptor encrypts with respect to is not a public key set of
the underlying MFHE scheme, but rather simply a set of public keys for a public-key encryption
scheme. These public keys serve as a means to send the corresponding multi-key FHE secret key
shares to the other parties. At a high level, encryption works by generating a multi-key FHE
public key fpk and secret key shares fsk1, . . . , fskn corresponding to the access structure A. The
encryptor then encrypts fski under pki and includes this in the ciphertext. This allows a set of
parties satisfying the access structure to use their secret keys ski of the public-key scheme to recover
the necessary fski’s to decrypt the ciphertext. Furthermore, as we noted above, standard multi-key
FHE expansion and evaluation will result in a ciphertext that can be decrypted by concatenating
the secret key shares for each of the ciphertexts.

The above discussion is highly simplified and is meant to provide the reader with some intuition
behind our construction. We ignored various subtle points and refer the reader to the main technical
sections for the details. As a consequence of our techniques, we are able to directly simulate partial
decryptions against an adversary that corrupts any set S 6∈ A, not only a maximally unqualified
one. The constructions of [MW16,BHP17] could only simulate against a maximally unqualified set
(N − 1 out of the N parties in their case) and relied on a transformation to achieve simulation
security against any unqualified corrupted set.

2.2 MPC with Guaranteed Output Delivery

Recall that a (tMal, tSh, tFc)-threshold mixed adversary is one which corrupts three sets of parties
(AMal,ASh,AFc) with |AMal| ≤ tMal, |ASh| ≤ tSh, and |AFc| ≤ tFc that behave as follows: the
set of parties in AMal are completely malicious and can behave arbitrarily as per the adversary’s
choice, the set of parties in ASh are corrupted in a semi-honest manner meaning that they are
required to follow the protocol behavior correctly and the set of parties in AFc are corrupted in a
fail-corrupt manner meaning that for each party in this set, the adversary can choose to abort the
protocol execution at any point. Crucially, the adversary does not get to see the internal state of
any fail-corrupt party. Intuitively, we can imagine these fail-corrupt parties as honest “lazy” parties
whose aborting/laziness is controlled by the adversary. In this work, we focus on the setting of
static corruptions where the adversary is required to specify all three sets apriori. Of course, note
that for each fail-corrupt party, the adversary still has the luxury to determine adaptively when
each party is expected to abort.

Our three-round MPC protocol secure against a threshold mixed adversary follows the same
recipe as in the works of Mukherjee and Wichs [MW16] and Brakerski et al. [BHP17] who con-
struct MPC protocols from multi-key FHE. We adapt it to instead use the underlying system as a
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threshold multi-key FHE scheme. Further, we will parametrize our protocol using an access struc-
ture A which will be used to run the setup of the threshold multi-key FHE scheme. Recall that
since we are interested in the setting where guaranteed output delivery is possible, we require that
(tMal, tSh, tFc) respect the Hirt et al. [HMZ08] inequality. That is, 2tMal + tSh + tFc < N . In our
protocol, given a threshold tuple (tMal, tSh, tFc), A will be set as the (N − tMal − tFc)-out-of-N
access structure. This ensures that tMal + tSh, the maximum number of parties for which the ad-
versary can view the internal state is less than the required threshold to satisfy the access structure.

Security Against Semi-Malicious Mixed Adversaries. Let’s first consider the simpler setting
where the first set of corrupted parties AMal can only be semi-malicious. That is, on behalf of each
of them, the adversary can pick randomness of its choice but the parties are required to follow the
protocol behavior honestly using this randomness. The adversary may also choose to have these
parties abort at any time. A more formal definition is given in Appendix B. The overall structure
of our MPC protocol with respect to any access structure is the following:

• In round 1, each party generates its parameters and public key for the threshold multi-key
FHE scheme.

• In round 2, each party individually encrypts its input with respect to the combined set of
public keys and access structure and broadcasts the ciphertext.

• All parties can now homomorphically compute a threshold multi-key FHE encryption of the
output, with respect to the functionality under consideration. Then, each party broadcasts a
partial decryption of the output using its secret key. The partial decryptions can be combined
to recover the output in plaintext.

It can be readily observed from the definition of threshold multi-key FHE that this protocol
satisfies correctness and security even in the presence of a threshold mixed adversary (with semi-
malicious corruptions), where some lazy honest parties could drop off from the protocol execution
at any point as determined by the fail-corrupt corruption. Furthermore, the fact that the protocol
has guaranteed output delivery can be observed by noting that at most tMal + tFc parties will
abort. So, at least N − tMal − tFc parties will remain, which is sufficient to recover the output.
Note that since we have restricted the adversary to behave semi-maliciously instead of maliciously
on the set AMal, every message sent will be “valid.”
One key difference from the previous works [MW16,BHP17] is the following: in the standard model
MPC protocols of [MW16,BHP17], due to the design of the multi-key FHE primitive, the protocol
is secure only against a semi-malicious adversary that corrupts all but one party. They then need
to transform it to a protocol that is secure against an adversary that can corrupt any arbitrary
number of parties up to all but one of them. In our MPC protocol, the security guarantee given by
the threshold multi-key FHE scheme allows us to prove a more general statement that our protocol
is in fact secure even if the adversary chooses to corrupt fewer parties than it is capable of (it
chooses to corrupt less than the threshold number of parties).

Handling Malicious Adversaries. The final step in achieving our MPC protocol is to allow the
set AMal to be maliciously corrupted. One way to do this would be to use a NIZK and have each
party send a proof in each round that they computed their message properly; if the NIZK proof
does not verify, the party would be treated as malicious and ignored. Unfortunately, using a NIZK
would require us to introduce a CRS, and we want our protocol to be in the plain model.
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Round One: Malicious. To do so, the first crucial observation we make is that the underlying
semi-malicious protocol (without a NIZK) in the plain model is already in fact secure against an
adversary that can behave maliciously only in the first round. The reason is that the first round
message, which consists of the adversary’s parameters for the threshold multi-key FHE scheme, is
simply a random matrix and a public key. To argue semi-malicious security, we only needed the
following two properties:

• The honest parties’ matrices are generated uniformly at random.3

• The simulator, before the beginning of round three, only needs to know the randomness used
by the adversary in the second round to generate its ciphertext. In particular, the simulator
does not need to know a corresponding secret key for the public key sent by the adversary in
round 1.

As a result, we did not require the input or randomness used by the adversary to generate its round
one messages, and hence our protocol is secure against an adversary that can behave maliciously
in round one.

Multi-String NIZK. Armed with the above property, we note that our protocol no longer needs
to prove correctness of round one messages using a NIZK. Therefore, we will use the first round
messages of all parties to try to collectively generate a valid CRS that can then be used to generate
the NIZKs and achieve a construction in the plain model. The notion of multi-string NIZKs,
introduced in the work of Groth and Ostrovsky [GO07] exactly fits this requirement. As discussed
previously, in a multi-string NIZK argument system, a set of parties can each generate one CRS
that can then be combined to compute one unified CRS which is used to compute NIZKs. The
guarantee is that as long as a majority of the individual CRS strings are honestly generated, the
argument system is correct and secure4.

In our protocol, we can use this primitive as follows: in round 1, each party generates an
individual CRS for the multi-string NIZK system. At the end of round 1, all parties can combine
the above set of CRS strings to compute one unified CRS that can then be used to compute NIZKs.
In rounds 2 and 3, each party also sends a NIZK along with their message, and the other parties
make sure the NIZK verifies. If the NIZK does not verify, the party that submitted an invalid
message is ignored for the rest of the protocol and treated as if it had aborted instead.

There is one additional hurdle to ensuring that a multi-string NIZK suffices for our setting.
The multi-string NIZK is only secure if a majority of the CRSs are honestly generated. However,
we want our protocol to be secure against any (tMal, tSh, tFc)- mixed adversary, where 2tMal +
tSh + tFc < N . In particular, we need the multi-string NIZK to be secure in settings without an
honest majority! Fortunately, the multi-string NIZK is still secure in our setting, provided that
the CRSs are uniformly random strings. To see why this is the case, we first observe that tFc, the
number of fail-corrupt parties does not present any difficulties. This is because these parties fall
under the “honest but lazy” parties in our motivation, and so while the adversary can force them to
abort, the adversary can never learn any internal state information of these parties or cause them
to behave dishonestly. Therefore, any CRS output by these parties will be an honest CRS, and so

3This was a wonderful observation made in the work of Brakerski et al. [BHP17].
4As is the case with compiling semi-malicious protocols into malicious secure ones, we need the NIZK to be

simulation-extractable.
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choosing to not have these parties abort prior to round 1 only increases the number of honest CRSs
that are output. The second observation is that any semi-honest corruptions also do not cause any
difficulties. This is because the honest procedure for generating a CRS is to simply sample a random
string. Therefore, even if an adversary semi-honestly corrupts a party, it can neither prevent it
from outputting an honestly generated random string nor learn any state information that could
compromise the random string. Therefore, all the CRSs output by the semi-honest corrupt and
fail-corrupt parties are honest, and since 2tMal + tSh + tFc < N , it follows that a majority of the
CRSs are honestly generated. Therefore, security of the multi-string NIZK system holds and we
obtain a plain model construction. In this work, we construct a multi-string NIZK from LWE that
satisfies this additional property required of the CRS and we elaborate more on this construction
now.

2.3 Multi-String NIZK from LWE

The above demonstrated that a simulation-extractable multi-string NIZK would allow us to obtain
our round-optimal MPC protocol. However, a multi-string NIZK is not known to exist from LWE.
Previously it was known from statistically sound ZAPS as shown in the work of [GO07]. However,
ZAPs are not known to exist from polynomially hard LWE. One might think that we could use the
recent result of Peikert and Shiehian [PS19], which constructs either a statistically-sound NIZK in
the common reference string model or a computationally-sound NIZK in the common random string
model. One might think that we could use the transformation of Dwork and Naor [DN07] to obtain
a ZAP from LWE and then apply the transformation of [GO07]. However, this does not work,
since their transformation crucially requires a statistically-sound NIZK in the common random
string model, which is not known from polynomially hard LWE (the recent works of [BFJ+20,JJ19]
construct such ZAPs from quasipolynomial LWE). Therefore, we require a different approach. We
construct the first multi-string NIZK from LWE and use it as a tool in obtaining our round-optimal
MPC result.

Our construction proceeds in two main steps. We first build a multi-string non-interactive
witness indistinguishable (NIWI) argument from LWE and then show how to bootstrap it to obtain
a simulation-extractable multi-string NIZK.

A recent series of works [KRR17,CCRR18,HL18,CCH+19,PS19] have developed a framework for
instantiating the Fiat-Shamir transform [FS87] using a hash function that satisfies a property called
correlation-intractability [CGH04]. This culminated in the work of Peikert and Shiehian [PS19],
who were able to obtain the first NIZK from LWE by constructing a correlation-intractable hash
function family for (bounded) circuits from LWE. The notion of a correlation-intractable hash
function family is defined formally in Appendix A.5. Informally, a hash function family H is
correlation-intractable for a relation R if given a sampled key K, it is hard to find an x such that
(x,HK(x)) ∈ R. Following the formula introduced in the above works, we will apply the Fiat-
Shamir transform to the Σ protocol for Graph Hamiltonicity by Blum [Blu86] in order to obtain
our multi-string NIZK.

Multi-String NIWI from LWE. The first step is to construct a multi-string NIWI from LWE. A
multi-string NIWI is defined analogously to a multi-string NIZK. That is, in a multi-string NIWI,
a set of parties can each generate one CRS that can then be combined to compute one unified CRS
which is used to compute NIWIs. The guarantee is that as long as a majority of the individual
CRS strings are honestly generated, the argument system is correct and secure.
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To construct the multi-string NIWI, we first construct a non-interactive commitment scheme in
the multi-string model with the property that the scheme remains hiding and binding provided that
a majority of the CRSs are honestly generated. At a high level, this is done by having each CRS be
a public key pki of a public key encryption (PKE) scheme. To commit to a message m, one simply
secret shares m using a bn/2c + 1-out-of-n secret sharing scheme to obtain shares (m1, . . . ,mn),
then encrypts mi under pki, and outputs these n ciphertexts as the commitment. Since a majority
of the public keys were generated honestly, a majority of the shares are hidden by the encryption,
so the commitment scheme satisfies hiding. By the correctness of the PKE scheme, the resulting
commitment scheme must also be binding. Furthermore, we observe that this commitment scheme
also has an associated trapdoor that facilitates extraction of the message committed. In particular,
any majority of the secret keys ski can be used as a trapdoor as they can recover a majority of
message shares from the commitment and, therefore, the message.

The multi-string NIWI is built by having each party generate its CRS in the setup phase as a
public key pki of a PKE scheme and a hash key Ki from the correlation hash function family H. To
prove a statement x ∈ L using a witness w, we run λ parallel repetitions of the Σ protocol using the
above commitment scheme as the underlying commitment scheme and making it non-interactive
via the Fiat-Shamir transformation, with the hash function instantiated using HKi . A proof is the
transcript of all the parallel executions of the Σ protocol. Soundness follows from the correlation-
intractability of the hash function family H, the binding property of the commitment scheme and
the soundness of the underlying Σ protocol. Witness indistinguishability follows from the wit-
ness indistinguishability of the underlying Σ protocol and the fact that the commitment scheme
is hiding even if a minority of shares are learned. We refer the reader to Section 7.2 for more details.

Obtaining a Multi-String NIZK. In order to obtain a multi-string NIZK from our multi-string
NIWI, we use the standard trick found in [FLS99,GO07] each party also generates a random string
ri as part of their CRS and the statement that is proven using the multi-string NIWI now is that
x ∈ L OR a majority of the ri’s are actually the output of a pseudorandom generator G. Soundness
and zero knowledge then follow via standard arguments, and we refer the reader to Section 7.3 for
more details. We then observe that we can also prove simulation-extractability of our multi-string
NIZK if we additionally use the commitment scheme from before once again and require the prover
to commit to its witness using this scheme. The statement being proved using the multi-string
NIWI would now be that either x ∈ L using a witness w that was committed OR a majority of the
ri’s are actually the output of a pseudorandom generator G. Further, in order to prove that the
scheme is simulation extractable, here, we will instantiate all the underlying PKE schemes inside
the extra commitment scheme (for the witness) with CCA-secure PKE schemes. As a result, our
extractor for the simulation-extractable NIZK can use the secret keys of all the honest parties for
this extra commitment scheme as a trapdoor to learn the witness associated with the adversary’s
proof. We refer the reader to Section 7.3 for more details about the proof.

Finally, recall that in order to use the multi-string NIZK in our MPC protocol, we require that
the CRS generated by each party is a uniformly random string. However, in our construction, in
addition to the random string r, the CRS consists of two public keys (one for committing to the
witness and one for the commitment used in the Σ protocol) and a hash key K for a correlation-
intractable hash function family H. We will use an encryption scheme whose public keys are
statistically-close to uniform and we also observe that the hash key is statistically-close to uniform.
This ensures that the CRS is also statistically-close to uniform. We then prove that this is in fact
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sufficient for the MPC application and we don’t require the CRS to be a uniformly random string.
We refer to Section 7.4 for more details.

Roadmap. We define some preliminaries in Section 3. Then, we formally define threshold multi-
key FHE in Section 4 and give our construction in Section 5. In Section 6, we describe our
round optimal MPC protocol with guaranteed output delivery against threshold mixed adversaries.
Finally, in Section 7, we construct multi-string NIZKs.

3 Preliminaries

We denote the security parameter by λ. For an integer n ∈ N, we use [n] to denote the set
{1, 2, . . . , n}. We use D0

∼=c D1 to denote that two distributions D0,D1 are computationally
indistinguishable. We use negl(λ) to denote a function that is negligible in λ. We use x ← A to
denote that x is the output of a randomized algorithm A, where the randomness of A is sampled
from the uniform distribution. We use PPT as an abbreviation for probabilistic polynomial-time.
Whenever we write {xj}j∈S for a set of parties S, we assume that the party j that xj corresponds
to is included in S. When we say an error distribution is E-bounded, we mean that the errors are
in [−E,E].

Cryptographic Primitives. We formally define multi-key FHE, secret sharing, correlation in-
tractable hash functions, simulation-extractable multi-string NIZKs, and Sigma protocols in Ap-
pendix A. We define MPC against a threshold mixed adversary with guaranteed output delivery
following the works of [FHM99,FHM98] in Appendix B.

Guaranteed Output Delivery (GOD) Consider an MPC protocol π amongst N parties. Infor-
mally, π is said to possess guaranteed output delivery (GOD) if for every PPT malicious adversary,
for all possible sets of inputs {x1, . . . , xN}, for any function f , the following holds: At the end of
the execution of π, every honest party outputs f(y1, . . . , yn) where yi = xi for every honest party
Pi and yj = xj/⊥ for every corrupt party Pj .

4 Threshold Multi-Key FHE: Definition

In this section, we present the definition of threshold multi-key fully homomorphic encryption
(TMFHE) in the plain model with distributed setup5. TMFHE will be the main building block in
our MPC protocol.

Definition 1 (TMFHE). Let P = {P1, . . . , PN} be a set of parties and let S be a class of efficient
access structures on P . A threshold multi-key fully homomorphic encryption scheme supporting up
to N parties is a tuple of PPT algorithms

TMFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec)

satisfying the following specifications:

5Note that we can instead define TMFHE with a single trusted setup, which will allow us to construct MPC
protocols in the CRS model as in [MW16]. However, our main focus is on the plain model, and therefore, we use
decentralized setup as in [BHP17].
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paramsi ← DistSetup(1λ, 1d, 1N , i): It takes as input a security parameter λ, a circuit depth d, the
maximal number of parties N , and a party index i. It outputs the public parameters paramsi
associated with the ith party. We define params = params1|| . . . ||paramsN .

(pk, sk)← KeyGen(1λ): It takes as input the security parameter λ and outputs a key pair (pk, sk).

ct← Encrypt(params, pk1, . . . , pkN ,A,m): It takes as input the public parameters params, public
keys pk1, . . . , pkN , an access structure A over P and a plaintext m ∈ {0, 1}λ and outputs a
ciphertext ct. Throughout, we will assume that all ciphertexts include the public parameters,
the public keys, and the access structure that they are encrypted under.

ĉt← Eval(C, ct1, . . . , ct`): It takes as input a boolean circuit C : ({0, 1}λ)` → {0, 1} ∈ Cλ of depth
≤ d and ciphertexts ct1, . . . , ct` for ` = poly(N). It outputs an evaluated ciphertext ĉt.

pi ← PartDec(i, sk, ĉt): It takes as input an index i, a secret key sk and an evaluated ciphertext ĉt
and outputs a partial decryption pi.

µ̂← FinDec(B): It takes as input a set B = {pi}i∈S for some S ⊆ {P1, . . . , PN} where we recall that
we identify a party Pi with its index i. It deterministically outputs a plaintext µ̂ ∈ {0, 1,⊥}.

We require that for any parameters {paramsi ← DistSetup(1λ, 1d, 1N , i)}i∈[N ], any key pairs

{(pki, ski)← KeyGen(1λ)}i∈[N ], any supported access structure A over P , any plaintexts m1, . . . ,m` ∈
{0, 1}λ for ` = poly(N), and any boolean circuit C : ({0, 1}λ)` → {0, 1} ∈ Cλ of depth ≤ d, the fol-
lowing is satisfied:

Correctness. Let cti = Encrypt(params, pk1, . . . , pkN ,A,mi) for 1 ≤ i ≤ `, ĉt = Eval(C, ct1, . . . , ct`),
and B = {PartDec(i, ski, ĉt)}i∈S. With all but negligible probability in λ over the coins of
DistSetup, KeyGen, Encrypt, and PartDec,

FinDec(B) =

{
C(m1, . . . ,m`), S ∈ A
⊥ S 6∈ A.

Compactness of Ciphertexts. There exists a polynomial, poly, such that |ct| ≤ poly(λ, d,N) for
any ciphertext ct generated from the algorithms of TMFHE.

Simulation Security. There exist PPT algorithms Sim1, Sim2 such that for any PPT adversary
A, we have that the experiments ExptA,Real(1

λ, 1d, 1N ) and ExptA,Sim(1λ, 1d, 1N ) are compu-
tationally indistinguishable.

ExptA,Real(1
λ, 1d, 1N ):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal number of
parties 1N , the adversary A outputs an access structure A ∈ S over N parties and
a maximal set S ⊆ [N ] such that S 6∈ A.

2. For i ∈ [N ], run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given {paramsi}i∈[N ].

Sample key pairs KeyGen(1λ) → (pki, ski) for i ∈ [N ]. The adversary is given
{pki}i∈[N ] and {ski}i∈S.

3. The adversary then outputs messages m1, . . . ,m` ∈ {0, 1}λ for ` = poly(N).
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4. params is set to the concatenation of the paramsi’s for i ∈ [N ]. Let PK = {pki}i∈[N ].
The adversary is given cti ← Enc(params,PK,A,mi) for i ∈ [`].

5. The adversary issues polynomially many queries of the form
(Ck : ({0, 1}λ)` → {0, 1}), where Ck ∈ C. Let the evaluated ciphertext be ĉtk ←
Eval(Ck, ct1, . . . , ct`). After each query, the adversary receives pi,k ← PartDec(i, ski, ĉtk)
for all i ∈ [N ]\S.

6. A outputs out. The output of the experiment is out.

ExptA,Sim(1λ, 1d, 1N ):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal number of
parties 1N , the adversary A outputs an access structure A ∈ S over N parties and
a maximal set S ⊆ [N ] such that S 6∈ A.

2. For i ∈ [N ], run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given {paramsi}i∈[N ].

Sample key pairs KeyGen(1λ) → (pki, ski) for i ∈ [N ]. The adversary is given
{pki}i∈[N ] and {ski}i∈S.

3. The adversary then outputs messages m1, . . . ,m` ∈ {0, 1}λ for ` = poly(N).

4. params is set to the concatenation of the paramsi’s for i ∈ [N ]. Let PK = {pki}i∈[N ].
The adversary is given {cti}i∈[`] ← Sim1(params,PK,A).

5. The adversary issues polynomially many queries of the form
(Ck : ({0, 1}λ)` → {0, 1}), where Ck ∈ C. Let the evaluated ciphertext be ĉtk ←
Eval(Ck, ct1, . . . , ct`). After each query, the adversary receives {pi,k}i 6∈S ← Sim2(µk, ĉtk, S, {ski}i∈S),
where µk = Ck({mi}i∈[`]).

6. A outputs out. The output of the experiment is out.

The security notion is inspired by the security definitions of multi-key FHE [MW16, BHP17]
suitably adapted to the context of general access structures. Observe that the above definition
captures both the semantic security of ciphertexts and the simulation security of partial decryptions.

Looking ahead to our MPC protocol, we will actually need some stronger guarantees from the
TMFHE scheme, which adds complexity to the security definition. In our MPC protocol, the
adversary is allowed to choose which honest parties abort in each round and is rushing, so he is
allowed to control the randomness of corrupted parties as a function of the honest parties. We
capture this by allowing the simulator of the TMFHE scheme to be stateful. Additionally, since
the adversary in MPC is rushing, it is allowed to see the honest parameters/ciphertexts before it
picks its parameters/ciphertexts.

The (more general) formal definition is given below.

Definition 2 (Simulation Security of TMFHE). There exist stateful PPT algorithms Sim1,Sim2

such that for any PPT adversary A, the experiments ExptA,Real(1
λ, 1d, 1n) and ExptA,Sim(1λ, 1d, 1n)

defined below are computationally indistinguishable.

ExptA,Real(1
λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal number of
parties 1n, the adversary A outputs a number of parties N ≤ n, a set S ⊆ [N ] and
an access structure A ∈ S over N parties such that S 6∈ A.
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2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given {paramsi}i 6∈S.
Sample key pairs KeyGen(1λ) → (pki, ski) for i 6∈ S. The adversary is given
{pki}i 6∈S.

3. For each i ∈ S, the adversary either outputs paramsi and randomness rKeyGeni used
to generate (pki, ski) or ⊥.

4. Let Sparams ⊆ [N ] be the set of parties Pi for which paramsi is defined and let S1 =
S ∩ Sparams. The adversary then outputs messages m1, . . . ,m` ∈ {0, 1}λ and a set
L ⊆ Sparams\S1 of indices with |L| = ` for some ` ≤ |Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams. For i ∈ S1, run

KeyGen(1λ; rKeyGeni ) to obtain (pki, ski)i∈S1. Let PK = {pki}i∈Sparams. Let A′ be the
restriction of A to the parties in Sparams. The adversary is given cti ← Enc(params,
PK,A′,mi) for i ∈ L.

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i ) for a message mi and

randomness used for encryption rEncrypti or ⊥. For the i ∈ S1 for which (mi, r
Encrypt
i )

is defined, set cti = Enc(params,PK,A′,mi; r
Encrypt
i ). Let Sct ⊆ Sparams be the set of

indices for which cti is defined.

7. The adversary issues polynomially many queries of the form
(S′k, Sct,k, Ck : ({0, 1}λ)sk → {0, 1}), where S′k ⊆ Sparams\S1, Sct,k ⊆ Sct, Ck ∈ C, and
sk = |Sct,k| ≤ |Sct|. Let CT k = {cti}i∈Sct,k and let the evaluated ciphertext be ĉtk ←
Eval(Ck, CT k). After each query, the adversary receives pi,k ← PartDec(i, ski, ĉtk)
for all i ∈ S′k.

8. A outputs out. The output of the experiment is out.

ExptA,Sim(1λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal number of
parties 1n, the adversary A outputs a number of parties N ≤ n, a set S ⊆ [N ] and
an access structure A ∈ S over N parties such that S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given {paramsi}i 6∈S.
Sample key pairs KeyGen(1λ) → (pki, ski) for i 6∈ S. The adversary is given
{pki}i 6∈S.

3. For each i ∈ S, the adversary either outputs paramsi and randomness rKeyGeni used
to generate (pki, ski) or ⊥.

4. Let Sparams ⊆ [N ] be the set of parties Pi for which paramsi is defined and let S1 =
S ∩ Sparams. The adversary then outputs messages m1, . . . ,m` ∈ {0, 1}λ and a set
L ⊆ Sparams\S1 of indices with |L| = ` for some ` ≤ |Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams. For i ∈ S1, run

KeyGen(1λ; rKeyGeni ) to obtain (pki, ski)i∈S1. Let PK = {pki}i∈Sparams. Let A′ be the
restriction of A to the parties in Sparams. Run ({cti}i∈L, state)← Sim1(params,PK,
A′, S1, L) and give {cti}i∈L to the adversary.

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i ) for a message mi and

randomness used for encryption rEncrypti or ⊥. For the i ∈ S1 for which (mi, r
Encrypt
i )

is defined, set cti = Enc(params,PK,A′,mi; r
Encrypt
i ). Let Sct ⊆ Sparams be the set of

indices for which cti is defined.
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7. The adversary issues polynomially many queries of the form
(S′k, Sct,k, Ck : ({0, 1}λ)sk → {0, 1}), where S′k ⊆ Sparams\S1, Sct,k ⊆ Sct, Ck ∈ C,
and sk = |Sct,k| ≤ |Sct|. Let CT k = {cti}i∈Sct,k and let the evaluated ciphertext

be ĉtk ← Eval(Ck, CT k). After each query, the adversary receives {pi,k}i∈S′k ←
Sim2(state, µk, ĉtk, S1, S

′
k, {ski}i∈S1), where µk = Ck({mi}i∈Sct,k) if S1∪S′k ∈ A′ and

µk = ⊥ otherwise.

8. A outputs out. The output of the experiment is out.

Remark 1. Due to the notational complexity of the above security definition, we have restricted
the definition to the case where there is at most a single message associated with each party Pi.
This definition is sufficient for our applications of TMFHE to constructing MPC. However, the
definition can be generalized to allow a polynomial number of messages associated with each party
Pi, and the security proofs naturally extend to this setting.

5 Threshold Multi-Key FHE: Construction

In this section, we construct threshold multi-key FHE as defined in Section 4. Formally, we show
the following.

Theorem 4 (TMFHE). Assuming LWE, there exists a secure threshold multi-key FHE scheme for
the class of access structures {0, 1}-LSSSD. In particular, there exists a secure TMFHE scheme for
any access structure induced by a monotone boolean formula and any t out of N access structure.

We use several ingredients. First, we initialize a multi-key FHE scheme using the construction
in [BHP17]. Then, we utilize the techniques in the construction of threshold FHE in [JRS17]6,
which shows how to transform a generic FHE scheme satisfying several properties into a threshold
FHE scheme. We observe that the multi-key FHE construction of [BHP17] is “compatible” with
the thresholdizing transformation described in [JRS17]. Finally, we use a public key encryption
scheme to tie everything together.

In more detail, examining the construction of [JRS17], we note that it is compatible with a
generic FHE scheme where :

1. The secret key sk is a vector in Zmq for some prime q.

2. The decryption function Dec can be broken into two algorithms Dec0,Dec1 where Dec0(sk, ct)
computes a linear function in sk and ct to output µ dq/2e + e for some bounded error e ∈
[−E,E] with E << q, where ct is an encryption of µ. Dec1 then takes this resulting value
and rounds to recover µ.

We note that the construction of multi-key FHE in [BHP17] satisfies these required proper-
ties. Furthermore, it satisfies the following additional properties that will be useful to note in the
construction.

1. An evaluated ciphertext ĉt that encrypts a bit µ with respect to public keys pk1, . . . , pk` is a
matrix that satisfies

~s · ĉt ≈ µ~s ·G
6We note that the work of Boneh et al. [BGG+18] is a merge of [JRS17] and [BGGK17].
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for a gadget matrix G and ~s = (sk1|| . . . ||sk`), where ski is the secret key corresponding to
public key pki. Each ski is of the form (si||1).

2. There exists a low-norm vector ~v such that G~v = (0, 0, . . . , dq/2e)T . Decryption proceeds by
evaluating ~s · ĉt · ~v and then outputs 1 if the resulting value is closer to dq/2e than 0 and 0
otherwise.

Furthermore, [JRS17] shows the following result.

Theorem 5 ( [JRS17]). For any access structure A on N parties induced by a monotone boolean
formula, there exists a {0, 1}-LSSSD scheme of a vector s ∈ Zmq where each party P receives at
most w shares of the form si ∈ Zmq for w = poly(N).

5.1 Construction

Let MFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec) be a multi-key FHE scheme instanti-
ated with the construction in [BHP17]. Let PKE = (Setup,Enc,Dec) be a public-key encryption
scheme. Let χsm denote the uniform distribution on the interval [−Esm, Esm] for a value Esm to
be determined.

Our threshold multi-key FHE construction TMFHE is given as follows:

DistSetup(1λ, 1d, 1N , i): Run MFHE.DistSetup(1λ, 1d, 1N , i)→ paramsi and output paramsi.

KeyGen(1λ): Run PKE.Setup(1λ)→ (pk, sk) and output (pk, sk).

Encrypt(params, pk1, . . . , pkN ,A,m): Run MFHE.KeyGen(params)→ (fpk, fsk). Compute {fski,j}i∈[N ],j∈[w]

for some w = poly(N) by applying the {0, 1}-LSSSD scheme associated with A to fsk to . Set
ct′ ← MFHE.Enc(fpk,m) and for i ∈ [N ], set cti = PKE.Enc(pki, {fski,j}j∈[w]). Output

ct = (ct′, ct1, . . . , ctN ).

Eval(C, ct1, . . . , ct`): Parse cti as (ct′i, cti,1, . . . , cti,N ). Let fpki be the MFHE public key associated

with ct′i. Run MFHE.Eval(C, ct′1, . . . , ct
′
`)→ ĉt

′
. Output

ĉt = (ĉt′, {cti,j}(i,j)∈[`]×[N ]).

PartDec(i, sk, ĉt): Parse ĉt as (ĉt′, {ctk,j}(k,j)∈[`]×[N ]). For every k ∈ [`], run PKE.Dec(sk, ctk,i) →
{fskk,i,j}j∈[w]. For t ∈ [w], compute

(fsk1,i,t||fsk2,i,t|| . . . ||fsk`,i,t) · ĉt′ · ~v + esmt → p′t,

where esmt ← χsm and ~v is the low-norm vector used for decryption in [BHP17] described
above. Output pi = (i, {p′t}t∈[w]).

FinDec(B): Parse B as {(i, {p′t}t∈[w])}i∈S for some set S of indices. If S 6∈ A, output ⊥. If S ∈ A,
apply the {0, 1}-LSSSD reconstruction to get ≈ µ̂ dq/2e. Then, round to recover µ̂.
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Correctness and Compactness
Correctness follows from the correctness of the underlying MFHE scheme and the {0, 1}-LSSSD

scheme. Let ĉt be a correctly generated evaluated ciphertext with MFHE ciphertext component ĉt′

and let B = {pi}i∈S = {PartDec(i, ski, ĉt)}i∈S for some set of parties S as specified in the definition
of correctness. If S 6∈ A, then FinDec(B) = ⊥ as desired. If S ∈ A, then by the correctness of the
{0, 1}-LSSSD reconstruction procedure, there exists some subset of shares that sum to the secret.
In other words, given {pi}i∈S = {(i, {p′i,t}t∈[w])}i∈S , there exist sets Wi ⊆ [w] such that∑

i∈[N ]

∑
t∈Wi

p′i,t = (fsk1||fsk2|| . . . ||fskN ) · ĉt′ · ~v +
∑
i∈[N ]

∑
t∈Wi

esmi,t .

Note that this reconstruction procedure works even with the concatenation of secrets and multi-
plying by ĉt′ because each of the fski’s is shared with respect to the same secret sharing scheme
and the reconstruction procedure is linear. This gives

µ dq/2e+ e+
∑
i∈[N ]

∑
t∈Wi

esmi,t ,

where e is the error incurred by the underlying MFHE scheme. If∣∣∣∣∣∣e+
∑
i∈[N ]

∑
t∈Wi

esmi,t

∣∣∣∣∣∣ < q/4,

then rounding will correctly recover µ. Since e is sampled from an E-bounded distribution and
each esmi,t from an Esm-bounded one, if E +NwEsm < q/4, then correctness will be satisfied.

Compactness follows immediately from the construction and the compactness of the underlying
schemes.
Instantiation. In order for correctness to hold, we required that E+NwEsm < q/4. For security,
we required that NwE/Esm = negl(λ). Recall that w = poly(N). Let W = poly(N) be an upper
bound for the set of access structures supported by the scheme. Then, setting E/Esm < λ− log2 λ

and Esm < q/8NW gives us an instantiation that satisfies both correctness and security. The
MFHE scheme of [BHP17] can be instantiated with such properties assuming a variant of the
learning with errors assumption, which is as hard as approximating the shortest vector problem to
within a subexponential factor.

5.2 Security

For notational simplicity, we will prove security in the game where the adversary only submits a
single circuit C. The proof naturally extends to the full definition where the adversary is allowed
to submit polynomially many circuits, due to the adaptive nature of the result in Proposition 1.
We make a note in the proof showing this extension. We will prove security via a series of hybrid
games. We use red text to denote the difference between the current hybrid and the previous
one. One thing to note is that in the security game, each party generates their parameters paramsi
with respect to the number of parties N . However, some parties may abort and not output any
parameters, which leads to encryption being done with respect to a set of parties of size N ′ ≤ N .
Therefore, it is necessary for parameters generated with respect to N parties to be able to be used
for encryptions with respect to N ′ parties. This is not an issue in our construction because we
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observe that the paramsi of each party in the MFHE construction in [BHP17] and, therefore, also
in our TMFHE construction, are simply random matrices Ai of a size dependent on N . Therefore,
truncating the matrix to the appropriate size for a scheme with N ′ parties is equivalent to having
run the distributed setup algorithm for N ′ parties.

Hyb0 : This is the same as the “real” experiment. Namely,

Hyb0(1λ, 1d, 1n) = ExptA,Real(1
λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal number of
parties 1n, the adversary A outputs a number of parties N ≤ n, a set S ⊆ [N ] and an
access structure A ∈ S over N parties such that S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary is given {paramsi}i 6∈S .
Sample key pairs KeyGen(1λ)→ (pki, ski) for i 6∈ S. The adversary is given {pki}i 6∈S .

3. For each i ∈ S, the adversary either outputs paramsi and randomness rKeyGeni used to
generate (pki, ski) or ⊥.

4. Let Sparams ⊆ [N ] be the set of parties Pi for which paramsi is defined and let S1 =
S ∩ Sparams. The adversary then outputs messages m1, . . . ,m` ∈ {0, 1}λ and a set L ⊆
Sparams\S1 of indices with |L| = ` for some ` ≤ |Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams. For i ∈ S1, run

KeyGen(1λ; rKeyGeni ) to obtain (pki, ski)i∈S1 . Let PK = {pki}i∈Sparams . Let A′ be the
restriction of A to the parties in Sparams. The adversary is given cti ← Enc(params,PK,
A′,mi) for i ∈ L.

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i ) for a message mi and

randomness used for encryption rEncrypti or ⊥. For the i ∈ S1 for which (mi, r
Encrypt
i ) is

defined, set cti = Enc(params,PK,A′,mi; r
Encrypt
i ). Let Sct ⊆ Sparams be the set of indices

for which cti is defined.

7. The adversary outputs a circuit C : ({0, 1}λ)s → {0, 1} along with a subset S′ct ⊆ Sct
with C ∈ C and s = |S′ct| ≤ |Sct|. Let CT = {cti}i∈S′ct and let the evaluated ciphertext

be ĉt← Eval(C, CT ).

8. The adversary outputs a set S′ ⊆ Sparams\S1. For all i ∈ S′, the adversary is given
pi ← PartDec(i, ski, ĉt).

9. A outputs out. The output of the experiment is out.

Hyb1 : This is the same as Hyb0 except we expand the TMFHE encryption and partial decryption
procedures according to our construction.

Hyb1(1λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal number of
parties 1n, the adversary A outputs a number of parties N ≤ n, a set S ⊆ [N ] and an
access structure A ∈ S over N parties such that S 6∈ A.
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2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary is given {paramsi}i 6∈S .
Sample key pairs KeyGen(1λ)→ (pki, ski) for i 6∈ S. The adversary is given {pki}i 6∈S .

3. For each i ∈ S, the adversary either outputs paramsi and randomness rKeyGeni used to
generate (pki, ski) or ⊥.

4. Let Sparams ⊆ [N ] be the set of parties Pi for which paramsi is defined and let S1 =
S ∩ Sparams. The adversary then outputs messages m1, . . . ,m` ∈ {0, 1}λ and a set L ⊆
Sparams\S1 of indices with |L| = ` for some ` ≤ |Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams. For i ∈ S1, run

KeyGen(1λ; rKeyGeni ) to obtain (pki, ski)i∈S1 . Let PK = {pki}i∈Sparams . Let A′ be the
restriction of A to the parties in Sparams.

For i ∈ L, run MFHE.KeyGen(params) → (fpki, fski). Apply the secret sharing scheme
associated with A′ to fski to arrive at {fski,j,k}j∈Sparams,k∈[w] for some w = poly(n). Set
ct′i ← MFHE.Enc(fpki,mi) and for j ∈ Sparams, set cti,j = PKE.Enc(pkj , {fski,j,k}k∈[w]).
The adversary is given

cti = (ct′i, {cti,j}j∈Sparams).

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i ) for a message mi and

randomness used for encryption rEncrypti or ⊥. For the i ∈ S1 for which (mi, r
Encrypt
i ) is

defined, set cti = Enc(params,PK,A′,mi; r
Encrypt
i ). Let Sct ⊆ Sparams be the set of indices

for which cti is defined.

7. The adversary outputs a circuit C : ({0, 1}λ)s → {0, 1} along with a subset S′ct ⊆ Sct
with C ∈ C and s = |S′ct| ≤ |Sct|. Let CT = {cti}i∈S′ct and let the evaluated ciphertext

be ĉt← Eval(C, CT ).

8. The adversary outputs a set S′ ⊆ Sparams\S1.

Parse ĉt as (ĉt′, {cti,j}(i,j)∈S′ct×Sparams). Define Sshares as the set of all the indices of the
secret shares corresponding to the parties in S1 under the secret sharing scheme as-
sociated with A′. Notationally, these are {(j, k)}j∈S1,k∈[w]. Define S′shares in an analo-
gous manner for the set S′. For (i, j) ∈ S′ct\L × S1, decrypt cti,j using skj to recover
{fski,j,k}i∈S′ct\L,j∈S1,k∈[w]. For (j, k) ∈ S′shares, compute

p̃j,k = (fskI1,j,k||fskI2,j,k|| . . . ||fskIs,j,k) · ĉt
′ · ~v,

where ~v is the low-norm vector used for decryption in [BHP17] and the Ii’s are the
ordered sequence of indices in S′ct. Then, for (j, k) ∈ S′shares, set

p′j,k = p̃j,k + esmj,k ,

where esmj,k ← χsm. For all j ∈ S′, give the adversary

pj = (j, {p′j,k}k∈[w]).

9. A outputs out. The output of the experiment is out.
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Hyb2 : This is the same as Hyb1 except that for all i ∈ L, j 6∈ S1, we set the encrypted fski,j,k’s to
0. Note that these are the secret shares that the adversary is not able to recover.

Hyb2(1λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal number of
parties 1n, the adversary A outputs a number of parties N ≤ n, a set S ⊆ [N ] and an
access structure A ∈ S over N parties such that S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary is given {paramsi}i 6∈S .
Sample key pairs KeyGen(1λ)→ (pki, ski) for i 6∈ S. The adversary is given {pki}i 6∈S .

3. For each i ∈ S, the adversary either outputs paramsi and randomness rKeyGeni used to
generate (pki, ski) or ⊥.

4. Let Sparams ⊆ [N ] be the set of parties Pi for which paramsi is defined and let S1 =
S ∩ Sparams. The adversary then outputs messages m1, . . . ,m` ∈ {0, 1}λ and a set L ⊆
Sparams\S1 of indices with |L| = ` for some ` ≤ |Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams. For i ∈ S1, run

KeyGen(1λ; rKeyGeni ) to obtain (pki, ski)i∈S1 . Let PK = {pki}i∈Sparams . Let A′ be the
restriction of A to the parties in Sparams.

For i ∈ L, run MFHE.KeyGen(params) → (fpki, fski). Apply the secret sharing scheme
associated with A′ to fski to arrive at {fski,j,k}j∈Sparams,k∈[w] for some w = poly(n). Set
ct′i ← MFHE.Enc(fpki,mi) and for j ∈ Sparams, set cti,j = PKE.Enc(pkj , {fski,j,k}k∈[w]) if

j ∈ S1 and cti,j = PKE.Enc(pkj ,~0) if j 6∈ S1, where ~0 is an all 0 encryption of the same
length as w secret key shares. The adversary is given

cti = (ct′i, {cti,j}j∈Sparams).

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i ) for a message mi and

randomness used for encryption rEncrypti or ⊥. For the i ∈ S1 for which (mi, r
Encrypt
i ) is

defined, set cti = Enc(params,PK,A′,mi; r
Encrypt
i ). Let Sct ⊆ Sparams be the set of indices

for which cti is defined.

7. The adversary outputs a circuit C : ({0, 1}λ)s → {0, 1} along with a subset S′ct ⊆ Sct
with C ∈ C and s = |S′ct| ≤ |Sct|. Let CT = {cti}i∈S′ct and let the evaluated ciphertext

be ĉt← Eval(C, CT ).

8. The adversary outputs a set S′ ⊆ Sparams\S1.

Parse ĉt as (ĉt′, {cti,j}(i,j)∈S′ct×Sparams). Define Sshares as the set of all the indices of the
secret shares corresponding to the parties in S1 under the secret sharing scheme as-
sociated with A′. Notationally, these are {(j, k)}j∈S1,k∈[w]. Define S′shares in an analo-
gous manner for the set S′. For (i, j) ∈ S′ct\L × S1, decrypt cti,j using skj to recover
{fski,j,k}i∈S′ct\L,j∈S1,k∈[w]. For (j, k) ∈ S′shares, compute

p̃j,k = (fskI1,j,k||fskI2,j,k|| . . . ||fskIs,j,k) · ĉt
′ · ~v,

where ~v is the low-norm vector used for decryption in [BHP17] and the Ii’s are the
ordered sequence of indices in S′ct. Then, for (j, k) ∈ S′shares, set

p′j,k = p̃j,k + esmj,k ,
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where esmj,k ← χsm. For all j ∈ S′, give the adversary

pj = (j, {p′j,k}k∈[w]).

9. A outputs out. The output of the experiment is out.

Hyb3 : This is the same as Hyb2 except that for all j ∈ S′, the partial decryptions given to the
adversary are simulated.

Hyb3(1λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal number of
parties 1n, the adversary A outputs a number of parties N ≤ n, a set S ⊆ [N ] and an
access structure A ∈ S over N parties such that S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary is given {paramsi}i 6∈S .
Sample key pairs KeyGen(1λ)→ (pki, ski) for i 6∈ S. The adversary is given {pki}i 6∈S .

3. For each i ∈ S, the adversary either outputs paramsi and randomness rKeyGeni used to
generate (pki, ski) or ⊥.

4. Let Sparams ⊆ [N ] be the set of parties Pi for which paramsi is defined and let S1 =
S ∩ Sparams. The adversary then outputs messages m1, . . . ,m` ∈ {0, 1}λ and a set L ⊆
Sparams\S1 of indices with |L| = ` for some ` ≤ |Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams. For i ∈ S1, run

KeyGen(1λ; rKeyGeni ) to obtain (pki, ski)i∈S1 . Let PK = {pki}i∈Sparams . Let A′ be the
restriction of A to the parties in Sparams.

For i ∈ L, run MFHE.KeyGen(params) → (fpki, fski). Apply the secret sharing scheme
associated with A′ to fski to arrive at {fski,j,k}j∈Sparams,k∈[w] for some w = poly(n). Set
ct′i ← MFHE.Enc(fpki,mi) and for j ∈ Sparams, set cti,j = PKE.Enc(pkj , {fski,j,k}k∈[w]) if

j ∈ S1 and cti,j = PKE.Enc(pkj ,~0) if j 6∈ S1, where ~0 is an all 0 encryption of the same
length as w secret key shares. The adversary is given

cti = (ct′i, {cti,j}j∈Sparams).

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i ) for a message mi and

randomness used for encryption rEncrypti or ⊥. For the i ∈ S1 for which (mi, r
Encrypt
i ) is

defined, set cti = Enc(params,PK,A′,mi; r
Encrypt
i ). Let Sct ⊆ Sparams be the set of indices

for which cti is defined.

7. The adversary outputs a circuit C : ({0, 1}λ)s → {0, 1} along with a subset S′ct ⊆ Sct
with C ∈ C and s = |S′ct| ≤ |Sct|. Let CT = {cti}i∈S′ct and let the evaluated ciphertext

be ĉt← Eval(C, CT ).

8. The adversary outputs a set S′ ⊆ Sparams\S1.

Parse ĉt as (ĉt′, {cti,j}(i,j)∈S′ct×Sparams). Define Sshares as the set of all the indices of the
secret shares corresponding to the parties in S1 under the secret sharing scheme asso-
ciated with A′. Notationally, these are {(j, k)}j∈S1,k∈[w]. Define S′shares in an analogous
manner for the set S′. If S1 ∪ S′ 6∈ A′, set Smax = Sshares ∪ S′shares. Else, set Smax to be a
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maximally unqualified set of shares with Sshares ⊆ Smax ⊆ Sshares∪S′shares. If S1∪S′ ∈ A′,
set µ = C({mi}i∈S′ct). Else, set µ = ⊥.

For (i, j) ∈ S′ct\L× S1, decrypt cti,j using skj to recover {fski,j,k}i∈S′ct\L,j∈S1,k∈[w].

For (j, k) ∈ Smax, compute

p̃j,k = (fskI1,j,k||fskI2,j,k|| . . . ||fskIs,j,k) · ĉt
′ · ~v,

where ~v is the low-norm vector used for decryption in [BHP17] and the Ii’s are the
ordered sequence of the indices in S′ct. Then, for every (j, k) ∈ S′shares\Smax, let Tj,k ⊆
Smax ∪ {(j, k)} be a minimal valid share set containing (j, k). Then, set

p̃j,k = µ dq/2e −
∑

(α,β)6=(j,k)∈Tj,k

p̃α,β.

Then, for (j, k) ∈ S′shares, set
p′j,k = p̃j,k + esmj,k ,

where esmj,k ← χsm. For all j ∈ S′, give the adversary

pj = (j, {p′j,k}k∈[w]).

9. A outputs out. The output of the experiment is out.

Hyb4 : This is the same as Hyb3 except that for all i ∈ L, the secret key shares are generated with
respect to 0 rather than fski.

Hyb4(1λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal number of
parties 1n, the adversary A outputs a number of parties N ≤ n, a set S ⊆ [N ] and an
access structure A ∈ S over N parties such that S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary is given {paramsi}i 6∈S .
Sample key pairs KeyGen(1λ)→ (pki, ski) for i 6∈ S. The adversary is given {pki}i 6∈S .

3. For each i ∈ S, the adversary either outputs paramsi and randomness rKeyGeni used to
generate (pki, ski) or ⊥.

4. Let Sparams ⊆ [N ] be the set of parties Pi for which paramsi is defined and let S1 =
S ∩ Sparams. The adversary then outputs messages m1, . . . ,m` ∈ {0, 1}λ and a set L ⊆
Sparams\S1 of indices with |L| = ` for some ` ≤ |Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams. For i ∈ S1, run

KeyGen(1λ; rKeyGeni ) to obtain (pki, ski)i∈S1 . Let PK = {pki}i∈Sparams . Let A′ be the
restriction of A to the parties in Sparams.

For i ∈ L, run MFHE.KeyGen(params) → (fpki, fski). Apply the secret sharing scheme
associated with A′ to 0 to arrive at {fski,j,k}j∈Sparams,k∈[w] for some w = poly(n). Set
ct′i ← MFHE.Enc(fpki,mi) and for j ∈ Sparams, set cti,j = PKE.Enc(pkj , {fski,j,k}k∈[w]) if

j ∈ S1 and cti,j = PKE.Enc(pkj ,~0) if j 6∈ S1, where ~0 is an all 0 encryption of the same
length as w secret key shares. The adversary is given

cti = (ct′i, {cti,j}j∈Sparams).
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6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i ) for a message mi and

randomness used for encryption rEncrypti or ⊥. For the i ∈ S1 for which (mi, r
Encrypt
i ) is

defined, set cti = Enc(params,PK,A′,mi; r
Encrypt
i ). Let Sct ⊆ Sparams be the set of indices

for which cti is defined.

7. The adversary outputs a circuit C : ({0, 1}λ)s → {0, 1} along with a subset S′ct ⊆ Sct
with C ∈ C and s = |S′ct| ≤ |Sct|. Let CT = {cti}i∈S′ct and let the evaluated ciphertext

be ĉt← Eval(C, CT ).

8. The adversary outputs a set S′ ⊆ Sparams\S1.

Parse ĉt as (ĉt′, {cti,j}(i,j)∈S′ct×Sparams). Define Sshares as the set of all the indices of the
secret shares corresponding to the parties in S1 under the secret sharing scheme asso-
ciated with A′. Notationally, these are {(j, k)}j∈S1,k∈[w]. Define S′shares in an analogous
manner for the set S′. If S1 ∪ S′ 6∈ A′, set Smax = Sshares ∪ S′shares. Else, set Smax to be a
maximally unqualified set of shares with Sshares ⊆ Smax ⊆ Sshares∪S′shares. If S1∪S′ ∈ A′,
set µ = C({mi}i∈S′ct). Else, set µ = ⊥.

For (i, j) ∈ S′ct\L× S1, decrypt cti,j using skj to recover {fski,j,k}i∈S′ct\L,j∈S1,k∈[w].

For (j, k) ∈ Smax, compute

p̃j,k = (fskI1,j,k||fskI2,j,k|| . . . ||fskIs,j,k) · ĉt
′ · ~v,

where ~v is the low-norm vector used for decryption in [BHP17] and the Ii’s are the
ordered sequence of the indices in S′ct. Then, for every (j, k) ∈ S′shares\Smax, let Tj,k ⊆
Smax ∪ {(j, k)} be a minimal valid share set containing (j, k). Then, set

p̃j,k = µ dq/2e −
∑

(α,β)6=(j,k)∈Tj,k

p̃α,β.

Then, for (j, k) ∈ S′shares, set
p′j,k = p̃j,k + esmj,k ,

where esmj,k ← χsm. For all j ∈ S′, give the adversary

pj = (j, {p′j,k}k∈[w]).

9. A outputs out. The output of the experiment is out.

Hyb5 : This is the same as Hyb4 except that for all i ∈ L, the ciphertexts given to the adversary
contain MFHE encryptions of 0 rather than mi.

Hyb5(1λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal number of
parties 1n, the adversary A outputs a number of parties N ≤ n, a set S ⊆ [N ] and an
access structure A ∈ S over N parties such that S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary is given {paramsi}i 6∈S .
Sample key pairs KeyGen(1λ)→ (pki, ski) for i 6∈ S. The adversary is given {pki}i 6∈S .
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3. For each i ∈ S, the adversary either outputs paramsi and randomness rKeyGeni used to
generate (pki, ski) or ⊥.

4. Let Sparams ⊆ [N ] be the set of parties Pi for which paramsi is defined and let S1 =
S ∩ Sparams. The adversary then outputs messages m1, . . . ,m` ∈ {0, 1}λ and a set L ⊆
Sparams\S1 of indices with |L| = ` for some ` ≤ |Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams. For i ∈ S1, run

KeyGen(1λ; rKeyGeni ) to obtain (pki, ski)i∈S1 . Let PK = {pki}i∈Sparams . Let A′ be the
restriction of A to the parties in Sparams.

For i ∈ L, run MFHE.KeyGen(params) → (fpki, fski). Apply the secret sharing scheme
associated with A′ to 0 to arrive at {fski,j,k}j∈Sparams,k∈[w] for some w = poly(n). Set

ct′i ← MFHE.Enc(fpki, 0
λ) and for j ∈ Sparams, set cti,j = PKE.Enc(pkj , {fski,j,k}k∈[w]) if

j ∈ S1 and cti,j = PKE.Enc(pkj ,~0) if j 6∈ S1, where ~0 is an all 0 encryption of the same
length as w secret key shares. The adversary is given

cti = (ct′i, {cti,j}j∈Sparams).

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i ) for a message mi and

randomness used for encryption rEncrypti or ⊥. For the i ∈ S1 for which (mi, r
Encrypt
i ) is

defined, set cti = Enc(params,PK,A′,mi; r
Encrypt
i ). Let Sct ⊆ Sparams be the set of indices

for which cti is defined.

7. The adversary outputs a circuit C : ({0, 1}λ)s → {0, 1} along with a subset S′ct ⊆ Sct
with C ∈ C and s = |S′ct| ≤ |Sct|. Let CT = {cti}i∈S′ct and let the evaluated ciphertext

be ĉt← Eval(C, CT ).

8. The adversary outputs a set S′ ⊆ Sparams\S1.

Parse ĉt as (ĉt′, {cti,j}(i,j)∈S′ct×Sparams). Define Sshares as the set of all the indices of the
secret shares corresponding to the parties in S1 under the secret sharing scheme asso-
ciated with A′. Notationally, these are {(j, k)}j∈S1,k∈[w]. Define S′shares in an analogous
manner for the set S′. If S1 ∪ S′ 6∈ A′, set Smax = Sshares ∪ S′shares. Else, set Smax to be a
maximally unqualified set of shares with Sshares ⊆ Smax ⊆ Sshares∪S′shares. If S1∪S′ ∈ A′,
set µ = C({mi}i∈S′ct). Else, set µ = ⊥.

For (i, j) ∈ S′ct\L× S1, decrypt cti,j using skj to recover {fski,j,k}i∈S′ct\L,j∈S1,k∈[w].

For (j, k) ∈ Smax, compute

p̃j,k = (fskI1,j,k||fskI2,j,k|| . . . ||fskIs,j,k) · ĉt
′ · ~v,

where ~v is the low-norm vector used for decryption in [BHP17] and the Ii’s are the
ordered sequence of the indices in S′ct. Then, for every (j, k) ∈ S′shares\Smax, let Tj,k ⊆
Smax ∪ {(j, k)} be a minimal valid share set containing (j, k). Then, set

p̃j,k = µ dq/2e −
∑

(α,β)6=(j,k)∈Tj,k

p̃α,β.

Then, for (j, k) ∈ S′shares, set
p′j,k = p̃j,k + esmj,k ,
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where esmj,k ← χsm. For all j ∈ S′, give the adversary

pj = (j, {p′j,k}k∈[w]).

9. A outputs out. The output of the experiment is out.

Simulator: Note that the simulator is implicit in Hyb5. Namely, Sim1 is the algorithm in Step
5 to generate the ciphertexts and Sim2 is the algorithm in Step 8 used to generate the partial
decryptions. The state passed from Sim1 to Sim2 is

state = {fski,j,k}i∈L,j∈Sparams,k∈[w],

the shares generated by Sim1 for these indices when secret sharing 0.

Remark 2. Note that although Sim2 is given {ski}i∈S1, it only uses these secret keys to recover

{fski,j,k}i∈S′ct\L,j∈S1,k∈[w]. If Sim2 was instead given {(mi, r
Encrypt
i )}i∈S′ct\L, it could simulate in the

same manner by using (mi, r
Encrypt
i )’s to run the adversary’s encryption computation and recover

the secret key shares {fski,j,k}i∈S′ct\L,j∈S1,k∈[w]. This observation will be useful later when showing
our MPC protocol in the plain model is secure against threshold mixed adversaries.

Lemma 1. Hyb0 and Hyb1 are indistinguishable.

Proof. These two hybrids are identical; we merely expanded the TMFHE encryption and partial
decryption procedures for an easier comparison with future hybrids.

Lemma 2. Hyb1 and Hyb2 are computationally indistinguishable.

Proof. This follows from the semantic security of the underlying public-key encryption scheme.
Suppose there was an adversaryA that can distinguish between these two hybrids. Then, if we make
a sequence of intermediate hybrids, where we switch a single fski,j,k encryption to 0 in successive
hybrids, A can distinguish between two neighboring intermediate hybrids in this sequence. A′ can
break the semantic security of PKE by interacting with A according to these intermediate hybrids.
When it needs to either give an encryption of fski,j,k or 0, A′ submits these two messages to its
challenger and receives an encryption of one of them, which it feeds to A. If A can distinguish
between the intermediate hybrids, then A′ also can distinguish between an encryption of fski,j,k
and an encryption of 0, contradicting the security of PKE.

Lemma 3. Assuming E/Esm < negl(λ), then Hyb2 and Hyb3 are statistically indistinguishable.

Proof. The only difference in the adversary’s view between Hyb2 and Hyb3 is that in Hyb2, all the
partial decryptions for (j, k) ∈ S′shares are generated using the real secret key shares, whereas in
Hyb3, the partial decryptions for (j, k) ∈ Smax∩S′shares are generated using the real secret key shares,
but the partial decryptions for (j, k) ∈ S′shares\(Smax ∩ S′shares) are simulated using µ. Therefore,
the distributions of p̃j,k and p′j,k for (j, k) ∈ Smax ∩ S′shares in Hyb2 and Hyb3 are identical. For the
remaining (j, k) ∈ S′shares, note that by the properties of a {0, 1}-LSSSD scheme and the linearity
of computing the p̃j,k’s, there exists a minimal valid share set Tj,k ⊆ Smax ∪ {(j, k)} such that∑

(α,β)∈Tj,k

p̃α,β = µ dq/2e+ e
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for some E-bounded noise e. Therefore, it follows that

p̃j,k = µ dq/2e+ e−
∑

(α,β)∈Tj,k\{(j,k)}

p̃α,β.

This is the value of the p̃j,k computed in Hyb2, whereas in Hyb3, the value is

p̃j,k = µ dq/2e −
∑

(α,β)∈Tj,k\{(j,k)}

p̃α,β.

Setting p̃j,k to be the value computed in Hyb3, it follows that in Hyb3, the adversary receives the
value

p̃j,k + esmj,k

and in Hyb2, the adversary receives the value

p̃j,k + e+ esmj,k

for esmj,k ← χsm uniformly at random for each (j, k) ∈ S′shares. Since

(p̃j,k + e)− p̃j,k = e ∈ [−E,E],

it follows from Proposition 1 and Lemma 19 that the statistical distance between Hyb2 and Hyb3

is ≤ nwE/Esm ≤ poly(n)E/Esm = negl(λ). Note that the adaptive nature of the adversary
in Proposition 1 allows indistinguishability to extend to the case of multiple circuits, where the
adversary may choose the circuit queries adaptively.

Lemma 4. Hyb3 and Hyb4 are indistinguishable.

Proof. This follows from the fact that the secret sharing scheme associated with A is information-
theoretically secure. In both Hyb3 and Hyb4, only shares associated with unqualified sets are
used. Since unqualified sets reveal no information about the secret, these two games must be
indistinguishable.

Lemma 5. Hyb4 and Hyb5 are computationally indistinguishable.

Proof. This follows from the semantic security of the underlying MFHE scheme. Suppose there is
an adversary A that can distinguish between these two hybrids. Then, consider a sequence of `
intermediate hybrids where in neighboring hybrids, we switch one of the encryptions of mi to an
encryption of 0λ. There must exist two neighboring intermediate hybrids that A can distinguish
between. A′ can break the semantic security of the MFHE scheme by interacting with A according
to these hybrids. When A′ would need to generate an encryption of either mi or 0 depending on
which intermediate hybrid it is running, A′ submits mi and 0 as two messages to its challenger
and receives an encryption of one of them, which it uses to continue interacting with A. If A
can distinguish between these two hybrid, then A′ will be able to distinguish between MFHE
encryptions of mi and 0, contradicting the semantic security of MFHE.
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6 Round-Optimal MPC with Guaranteed Output Delivery Se-
cure Against Threshold Mixed Adversaries

In this section, we use threshold multi-key FHE to construct a round-optimal (three-round) MPC
protocol in the plain model with guaranteed output delivery that is secure against a threshold mixed
adversary (defined in Appendix B), assuming LWE. Our protocol supports all functionalities com-
putable by polynomial-sized circuits and is parameterized by a tuple of thresholds (tMal, tSh, tFc)
that represent the number of malicious, semi-honest, and fail-corrupt corruptions that the adver-
sary is allowed to make, respectively. Our protocol has guaranteed output delivery and is secure
provided that 2tMal + tSh + tFc < N , the Hirt et al. [HMZ08] inequality that characterizes the
threshold values under with guaranteed output delivery is possible to achieve.

Thus, our resulting protocol is both optimal in terms of the best possible corruption we can
tolerate and also round-optimal (since at least three rounds are required for a protocol to have
guaranteed output delivery, as shown by Gordon et al. [GLS15]). Moreover, our protocol has
depth-proportional communication complexity, is reusable, and has input fidelity for “honest but
lazy” parties. Formally, we show the following.

Theorem 6. Assuming LWE, for any function f , for any tuple of thresholds (tMal, tSh, tFc) sat-
isfying 2tMal + tSh + tFc < N , there exists a three-round MPC protocol with guaranteed output
delivery in the plain model that is secure against a (tMal, tSh, tFc)-mixed adversary. Furthermore,
the protocol is reusable, has communication complexity poly(λ, d,N), where d is the depth of the
circuit computing f and the functionality is computed with respect to the inputs of all parties that
send valid messages in the first two rounds.

Note that our result in the mixed adversary setting is in fact broader and more general than the
traditional MPC setting. By instantiating Theorem 6 with the (dN/2 − 1e, 0, 0)-mixed adversary
(this corresponds to the honest-majority setting against a malicious adversary), we immediately
obtain the following corollary.

Corollary 2. Assuming LWE, for any function f , there exists a three-round MPC protocol with
guaranteed output delivery in the plain model that is secure against a malicious adversary in the
honest majority setting. Furthermore, the protocol is reusable and has communication complexity
poly(λ, d,N), where d is the depth of the circuit computing f .

Like Theorem 6, this result is round-optimal and supports the maximum possible number of
corruptions.

6.1 Security Against a Semi-Malicious Mixed Adversary

As a stepping stone to showing Theorem 6, we first construct a protocol that satisfies all the
properties of Theorem 6, except that it is only secure against a semi-malicious mixed adversary
(defined in Appendix B), which is simply a mixed adversary that corrupts some parties semi-
maliciously, rather than maliciously. We describe below our three-round MPC protocol that is
secure against a (tSm, tSh, tFc)-semi-malicious mixed adversary A = (ASm,ASh,AFc) for 2tSm +
tSh + tFc < N .
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Notation: Consider N parties P1, . . . , PN with inputs x1, . . . , xN , respectively, who wish to eval-
uate a boolean circuit C with depth ≤ d. Without loss of generality, assume |xi| = λ ∀i ∈ [N ]. Let
(DistSetup,KeyGen,Enc,Eval,PartDec,FinDec) be the previously constructed threshold multi-key
FHE scheme. Fix (tSm, tSh, tFc) satisfying 2tSm + tSh + tFc < N . Let A be the (N − tSm − tFc)-
out-of-N threshold access structure.

Protocol: We now describe our construction.

• Input Commitment Phase:

– Round 1: Each party Pi does the following:

1. Run TMFHE.DistSetup(1λ, 1d, 1N , i) to obtain paramsi.

2. Run TMFHE.KeyGen(1λ) to compute (pki, ski).

3. Output (paramsi, pki).

– Round 2: Each party Pi does the following:

1. Parse the message (if one was sent) from Pj as (paramsj , pkj). Let S1 ⊆ [N ] be the
set of parties that sent a message in round 1.

2. Truncate each paramsj for j ∈ S1 to the appropriate size given |S1|7. Set params as
the concatenation of the truncated paramsj ’s for j ∈ S1. Set PK = {pkj}j∈S1 . Let
A′ be the access structure induced by restricting A to the parties in S1 (that is, the
(N − tSm − tFc)-out-of-|S1| access structure).

3. Run TMFHE.Encrypt(params,PK,A′, xi) to compute cti.

4. Output cti.

• Computation Phase:

– Round 3: Each party Pi does the following:

1. Parse the previous message (if one was sent) from Pj as ctj . Let S2 ⊆ [N ] be the
set of parties that sent a message in round 2. Let CT = {ctj}j∈S2 . Let C ′ be the
circuit induced by hardcoding the inputs to C corresponding to parties not in S2 to
be 0λ.

2. Run TMFHE.Eval(C ′, CT ) to obtain ĉt.

3. Run TMFHE.PartDec(i, ski, ĉt) to obtain pi.

4. Output pi.

• Output Computation: Each party Pi does the following:

1. Parse the previous message (if one was sent) from Pj as pj . Let S3 ⊆ [N ] be the set of
parties that sent a message in round 3.

2. Take any set S ⊆ S3 with S ∈ A and run TMFHE.FinDec(B) where B = {pj}j∈S to
recover µ̂. If no such set exists, output ⊥.

7Note that the paramsi of each party in the MFHE construction in [BHP17] and, therefore, also in our TMFHE
construction, are simply random matrices Ai of a size dependent on N . Therefore, truncating the matrix to the
appropriate size for a scheme with |S1| parties is equivalent to having run the distributed setup algorithm for |S1|
parties.
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Correctness. Correctness follows immediately from the correctness of the underlying TMFHE
scheme. In particular, let S ⊆ [N ] be the set of parties that finished the input commitment
phase and let S′ ⊆ S be the set of parties that finished the computation phase. Note that
C ′({xi}i∈S) = f(y1, . . . , yN ) where yi = xi if i ∈ S and 0λ otherwise. Furthermore, if S′ ∈ A,
then S′ ∈ A′ and therefore running TMFHE.FinDec will correctly recover f(y1, . . . , yN ) as desired.

Security.
We will first give a description of the simulator and then argue indistinguishability between the

real and ideal worlds.

Simulator: The simulator Sim is given the security parameter λ and an auxiliary input z. Let f
be representable by a circuit C of depth ≤ d. Let (tSm, tSh, tFc) be the corruption thresholds of the
adversary, where 2tSm + tSh + tFc < N . Let A be the (N − tSm − tFc)-out-of-N access structure.
Sim proceeds as follows:

• Before Protocol Execution: From the semi-malicious mixed adversary Adv, Sim receives
a tuple of sets (ASm,ASh,AFc) of corrupted parties, with |ASm| ≤ tSm, |ASh| ≤ tSh, and
|AFc| ≤ tFc.

• Input Commitment Phase (Round 1): For every fail-corrupt party that Adv wishes to
abort in this round, Sim instructs the corresponding party. For each honest and each fail-
corrupt party not yet instructed to abort, Pi, Sim does the following:

1. Run TMFHE.DistSetup(1λ, 1d, 1N , i) to compute paramsi.

2. Run TMFHE.KeyGen(1λ) to compute (pki, ski).

3. Give (paramsi, pki) as Pi’s round 1 message to Adv.

Sim then receives round 1 messages from Adv on behalf of every party in the sets ASm and
ASh.

• Input Commitment Phase (Round 2): For every fail-corrupt party that Adv wishes to
abort in this round, Sim instructs the corresponding party. Then, Sim parses the message (if
one was sent) from party Pj as (paramsj , pkj). Let S1 ⊆ [N ] be the set of parties that sent
a message in round 1. It truncates each paramsj to the appropriate size for |S1| parties and
sets params as the concatenation of the truncated paramsj ’s for all j ∈ S1. Let PK denote
{pkj}j∈S1 . Let A′ be the access structure induced by restricting A to the parties in S1. Let
S2
hon be the set of honest and fail-corrupt parties that send a message in round 2. Let S1

corr be
the set of corrupted (semi-malicious and semi-honest) parties that sent a message in round
1. Sim does the following:

1. Run Sim1(params,PK,A′, S1
corr, S

2
hon) to compute ({cti}i∈S2

hon
, state), where Sim1 is the

first algorithm of the TMFHE simulator.

2. Give cti as Pi’s round 2 message to Adv for i ∈ S2
hon.

Let S2 ⊆ [N ] be the set of parties that sent a round 2 message. For semi-maliciously and
semi-honestly corrupted parties Pi in S2, Sim receives the input xi used by Adv and sends it
to the trusted party. For the fail-corrupt parties that already aborted, Sim sends 0λ to the
trusted party.
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• Query to Ideal Functionality: Sim receives the output b from the trusted party.

• Computation Phase (Round 3): For every fail-corrupt party that Adv wishes to abort in
this round, Sim instructs the corresponding party. Let CT = {ctj}j∈S2 . Let C ′ be the circuit
induced by hardcoding the inputs to C corresponding to aborted fail-corrupt parties as 0λ.
Let S3

hon be the set of honest and fail-corrupt parties that have not yet been told to abort
in round 3 by Adv. For corrupted (semi-honest and semi-malicious) parties Pi in S1

corr, Sim
extracts the secret keys ski that they generated. Sim does the following

1. Run Sim2(state, b, ĉt, S1
corr, S

2
hon, {ski}i∈S1

corr
) to compute {pj}j∈S2

hon
, where Sim2 is the

second algorithm of the TMFHE simulator and ĉt is the ciphertext obtain by evaluating
C ′ on the ciphertexts in CT .

2. For j ∈ S3
hon, give pj as Pj ’s round 3 message to Adv.

Sim tells the trusted party to send b to all honest parties.

Lemma 6. For any tuple of thresholds (tSm, tSh, tFc) with 2tSm+tSh+tFc < N , for any (tSm, tSh, tFc)-
semi-malicious mixed adversary Adv = (ASm,ASh,AFc), for the above simulator Sim,

|Pr[D(REALΠ,Adv(z)(λ, ~x)) = 1]− Pr[D(IDEALf,Sim(z)(λ, ~x)) = 1]| ≤ negl(λ)

for any PPT distinguisher D.

Proof. Suppose there was some (tSm, tSh, tFc)-semi-malicious mixed adversary Adv = (ASm,ASh,
AFc) for which there existed a distinguisher D that could distinguish between the real and ideal
world experiments. Then, there exists an adversary Adv′ that could break the security of the
underlying TMFHE scheme. Recall that A is the N − tSm − tFc-out-of-N access structure. Adv′

proceeds as follows.

1. Adv′ runs Adv, which outputs a tuple of sets (ASm,ASh,AFc) of corrupted parties.

2. Adv outputs a set of fail-corrupt parties S1
inp ⊆ AFc that will abort in round 1 (they will never

send a message). Let Sparties = [N ]\S1
inp and let N ′ = |Sparties|. Adv′ outputs N ′ ≤ N as its

number of parties, the corrupted set S = (ASm ∪ASh) ⊆ Sparties, and the access structure A′
induced by restricting A to the parties in Sparties.

3. For i ∈ Sparties\S, Adv′ receives (paramsi, pki) and gives this to Adv as Pi’s round 1 message.

4. For each j ∈ S, Adv will output (paramsj , pkj). By running Adv, Adv′ is able to determine

the randomness rKeyGenj used by Adv to generate pkj and outputs (paramsj , r
KeyGen
j ).

5. Let S2
hon be the set of honest and fail-corrupt parties that will send a round 2 message. Adv′

outputs this set along with the inputs xi ∈ {0, 1}λ for i ∈ S2
hon. Adv′ is given cti for i ∈ S2

hon

and gives this to Adv as Pi’s round 2 message.

6. By running Adv, Adv′ is able to extract the input xi and randomness rEncrypti used by Adv for

each i ∈ S. Adv′ outputs (xi, r
Encrypt
i ) for all i ∈ S.
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7. Let S2 = (S2
hon∪ASm∪ASh) be the set of parties that sent a round 2 message. Let C ′ be the

circuit induced by C by setting the input of all parties that did not send a round 2 message
to 0λ. Adv′ outputs C ′ along with S2.

8. Let S3
hon be the set of honest and fail-corrupt parties that send a round 3 message. Adv′

outputs S3
hon and receives partial decryptions pi for i ∈ S3

hon. Adv′ gives these to Adv as Pi’s
round 3 message. Adv outputs some function of its view and Adv′ outputs the same value
along with {xi}i 6∈S .

Since A is the N − tSm − tFc-out-of-N access structure and 2tSm + tSh + tFc < N , it follows
that |ASm∪ASh| ≤ tSm + tSh < N − tSm− tFc, and therefore, ASm∪ASh 6∈ A′ (the N − tSm− tFc-
out-of-N ′ access structure), so Adv′ is a valid adversary for the TMFHE security game. If Adv′

is interacting with the real TMFHE security game, it simulates the real world experiment for Π
exactly for some fixed inputs. Similarly, if Adv′ is interacting with the simulated TMFHE security
game, it simulates the ideal world experiment for Π exactly. Therefore, the existence of Adv would
result in an adversary that could break the security of the TMFHE scheme, a contradiction.

Guaranteed Output Delivery and Input Fidelity. Observe that since all the honest parties
and all the semi-honestly corrupted parties will never abort, there are at least N− tSm− tFc partial
decryption shares given out at the end of the protocol. Therefore, the output can be recovered
and our protocol has guaranteed output delivery. Moreover, our protocol satisfies the property
that the output of the computation is a function of the joint inputs of all parties, including those
that aborted after the input commitment phase was completed. That is, in the scenario where the
adversary corrupts a set of parties in a fail-corrupt manner, for every fail-corrupt party Pi that
aborts after the input commitment phase, its input yi that is used to compute the final output
C(y1, . . . , yn) is set to be its actual input xi used in the protocol so far and not a default input ⊥.
Recall that this is in line with our motivation for studying this setting where an honest but lazy
party is not entirely discarded and its input is still considered in the computation if it aborted after
the input commitment phase.

Communication Complexity. To see that the protocol has communication complexity poly(λ, d,N),
note that the round 1 message is clearly of size poly(λ, d,N). So is the round 2 message due to the
compactness of the TMFHE scheme. Similarly, the size of ĉt is poly(λ, d,N) and, therefore, so too
is the partial decryption.

Reusability. Reusability means that given the transcript of the input commitment phase, the
computation phase can be run any polynomial number of times on different functions using the same
transcript for the input commitment phase to compute the different functionalities. Reusability
follows from the following:

1. The input commitment phase of Π is function-independent.

2. Our TMFHE simulator can simulate partial decryptions for a polynomial number of adap-
tively chosen circuit queries.
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6.2 Handling a Malicious Mixed Adversary

In the above protocol, the adversary can only corrupt some subset ASm of the parties semi-
maliciously, some subset ASh in a semi-honest manner and another subset AFc in a fail-corrupt
manner. In order to show Theorem 6, we need to allow the adversary to corrupt the first subset
ASm maliciously.

Our first observation is that the protocol is secure even against mixed adversaries that are al-
lowed make parties in ASm behave maliciously in round 1, but only semi-maliciously in rounds 2
and 3. After noting this, we further observe that if we had a simulation-extractable multi-string
NIZK [GO07] in the plain model where the honest party’s behavior when generating a CRS is to
simply sample a uniformly random string8, then we could upgrade to security against malicious
mixed adversaries. We simply have each party send a reference string CRS in round 1 and then
require each party to also provide a NIZK argument in rounds 2 and 3 using these CRSs to ensure
that they submitted a valid message in that round. As mentioned previously, the multi-string
NIZK is only secure if a majority of the CRSs are honestly generated. However, we want our
protocol to be secure against any (tMal, tSh, tFc)- mixed adversary, where 2tMal + tSh + tFc < N .
In particular, we are no longer in the honest majority setting. As discussed earlier, this is not an
issue because only the CRSs corresponding to a maliciously-corrupted party could be dishonestly
generated and since the honest-generation behavior is to simply output a uniformly random string,
a party that is semi-honestly corrupted will also output a perfectly good CRS. Furthermore, since
the number of maliciously-corrupted parties is a minority of the total number of parties that send a
CRS, a majority of the CRSs will be honestly generated and security of the multi-string NIZK holds.

Security Against a Round 1 Malicious Mixed Adversary. We begin by showing security of
the protocol in Section 6.1 against a semi-malicious mixed adversary that can behave maliciously
in round 1. Since paramsi in the MFHE construction in [BHP17] is simply a matrix Ai of random
entries, it follows that every Ai output of a malicious adversary could also have been output by
a semi-malicious adversary that chose the appropriate randomness (we can simply truncate the
message or pad it with 0’s if the malicious adversary sends a message of inappropriate length).
However, a malicious adversary may send a pki that does not correspond to any possible public
key output by the TMFHE.KeyGen algorithm. So, in the proof, the simulator does not receive the
randomness rKeyGeni used by the adversary to compute the round 1 message for a corrupted party
and therefore does not receive ski for corrupted parties. However, as we saw in Section 5, the
simulator does not need to know ski or rKeyGeni . Rather, it suffices to know (xi, r

Encrypt
i ), the input

and randomness used to compute a corrupted party’s round 2 message in order to simulate. Thus,
an analogous simulator and proof can be used to show security against this adversary.

Upgrading to Malicious Security via Multi-String NIZKs. We now show how to use a
simulation-extractable multi-string NIZK with uniformly random CRSs to upgrade the protocol
in Section 6.1 to one that achieves Theorem 6. The final step is to show that such a multi-string
NIZK can be built from LWE. This was not previously known, and we show this in Section 7.

Construction. Let TMFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec) be the previously
constructed threshold multi-key FHE scheme from Section 5 with the underlying PKE scheme in-

8For ease of exposition, we assume here that the honest CRS is a uniformly random string. However, there is a
subtle technical issue, which we handle in Section 7 where we construct the multi-string NIZK.
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stantiated with one where any string is a valid public key (a dense cryptosystem). Fix (tMal, tSh, tFc)
satisfying 2tMal + tSh + tFc < N . Let A be the N − tMal− tFc-out-of-N threshold access structure.
Let NIZK = (Gen,Prove,Verify) be a simulation-extractable multi-string NIZK. To compare against
our previous protocol in Section 6.1, we highlight the changes in red.

• Round 1: Each party Pi does the following:

1. Run TMFHE.DistSetup(1λ, 1d, 1N , i) to obtain paramsi.

2. Run TMFHE.KeyGen(1λ) to compute (pki, ski).

3. Run NIZK.Gen(1λ
′
) to compute crsi, where λ′ = poly(λ, d,N) is the size of statements

that will be proven.

4. Output (paramsi, pki, crsi).

• Round 2: Each party Pi does the following:

1. Parse the message (if one was sent) from Pj as (paramsj , pkj , crsj) by appropriately
truncating or padding with 0’s if it was of incorrect length. Let S1 ⊆ [N ] be the set of
parties that sent a message in round 1.

2. Truncate each paramsj for j ∈ S1 to the appropriate size given |S1|. Set params as
the concatenation of the truncated paramsj ’s for j ∈ S1. Set PK = {pkj}j∈S1 . Let
CRS = {crsj}j∈S1 . Let A′ be the access structure induced by restricting A to the parties
in S1 (that is, the (N − tSm − tFc)-out-of-|S1| access structure).

3. Sample randomness ri and run TMFHE.Encrypt(params,PK,A′, xi; ri) to compute cti.

4. Run NIZK.Prove(CRS, yi, (xi, ri)) to compute πi, where yi is the statement that there
exists some input x and randomness r such that
TMFHE.Encrypt(params,PK,A′, x; r) = cti.

5. Output (cti, πi).

• Round 3: Each party Pi does the following:

1. Parse the previous message (if one was sent) from Pj as (ctj , πj) and check that
NIZK.Verify(CRS, yj , πj) = 1. Let S2 ⊆ S1 be the set of parties that sent a message in
round 2 that passed the verification. Let CT = {ctj}j∈S2 . Let C ′ be the circuit induced
by hardcoding the inputs to C corresponding to parties not in S2 to be 0λ.

2. Run TMFHE.Eval(C ′, CT ) to compute ĉt.

3. Sample randomness r′i and run TMFHE.PartDec(i, ski, ĉt; r
′
i) to compute pi.

4. Run NIZK.Prove(CRS, zi, (ski, r′i)) to compute π′i, where zi is the statement that there ex-
ists randomness r, r′ such that TMFHE.KeyGen(1λ; r) = (pki, sk) and TMFHE.PartDec(i, sk, ĉt; r′) =
pi.

5. Output (pi, π
′
i).

• Output Computation: Each party Pi does the following:
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1. Parse the previous message (if one was sent) from Pj as (pj , π
′
j) and check that NIZK.Verify(CRS, zj , π′j) =

1. Let S3 ⊆ S2 be the set of parties that sent a message in round 3 that passed verifica-
tion.

2. Take any set S ⊆ S3 with S ∈ A′ and run TMFHE.FinDec(B) where B = {pj}j∈S to
recover µ̂. If no such set exists, output ⊥.

Correctness and Communication Complexity. Correctness follows from the correctness of
the protocol in Section 6.1 and perfect completeness of the multi-string NIZK. Depth-proportional
communication complexity follows from the fact that the communication complexity of the pro-
tocol in Section 6.1 was poly(λ, d,N) and the size of the NIZK reference strings and proofs are
poly(λ, d,N) because the evaluated ciphertext can be computed publicly and the NIZK is only
used to prove correctness of encryption and partial decryption, which only depends on the depth
of the function.

Guaranteed Output Delivery and Input Fidelity. Guaranteed output delivery and input
fidelity follow the fact that these properties held for the protocol in Section 6.1 and that since
honestly generated CRSs are always a majority (since honest strings are simply uniformly random
and the number of malicious corruptions is a minority), by soundness of the multi-string NIZK, an
adversary cannot cheat and submit an invalid ciphertext as its round 2 message since this message
will be discarded with overwhelming probability. The output recovered is the same as that in the
protocol of Section 6.1. Namely, they compute C(y1, . . . , yN ) where yi = xi if Pi sent valid messages
in rounds 1 and 2 and yi = 0λ otherwise.

Security. We provide a description of the simulator.

Simulator: The simulator Sim is given the security parameter λ and an auxiliary input z. Let
f be representable by a circuit C of depth ≤ d. Let (tMal, tSh, tFc) be the corruption thresholds
of the adversary, where 2tMal + tSh + tFc < N . Let A be the (N − tMal − tFc)-out-of-N access
structure. Let ExtGen,Ext, SimProve be the extraction and simulation algorithms associated with
the simulation-extractable multi-string NIZK. Sim proceeds as follows:

• Before Protocol Execution: Sim receives a tuple of sets (AMal,ASh,AFc) of corrupted
parties, with |AMal| ≤ tMal, |ASh| ≤ tSh, and |AFc| ≤ tFc.

• Round 1: For every fail-corrupt party that Adv wishes to abort in this round, Sim instructs
the corresponding party. For each honest and each fail-corrupt party not yet instructed to
abort, Pi, Sim does the following:

1. Run TMFHE.DistSetup(1λ, 1d, 1N , i) to compute paramsi.

2. Run TMFHE.KeyGen(1λ) to compute (pki, ski).

3. Run ExtGen(1λ) to compute (crsi, τi, ξi).

4. Give (paramsi, pki, crsi) as Pi’s round 1 message to Adv.

For each semi-honest corrupt party Pi ∈ ASh, Sim does the following:
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1. Sample randomness rDistSetup
i and rKeyGeni to be used by the TMFHE.DistSetup and

TMFHE.KeyGen algorithms, respectively.

2. Run ExtGen(1λ) to compute (crsi, τi, ξi).

3. Give (rDistSetup
i , rKeyGeni , crsi) as Pi’s round 1 randomness (note that this forces Pi to

output crsi as its CRS, as the CRS is uniform).

Sim then receives round 1 messages from Adv on behalf of every party in the sets AMal and
ASh. Let Scrs denote the set of honest parties, semi-honest parties, and fail-corrupt parties
that sent a message in round 1.

• Round 2: For every fail-corrupt party that Adv wishes to abort in this round, Sim instructs
the corresponding party. Then, Sim parses the message (if one was sent) from party Pj
as (paramsj , pkj , crsj). Let S1 ⊆ [N ] be the set of parties that sent a message in round
1. It truncates each paramsj to the appropriate size for |S1| parties and sets params as the
concatenation of the truncated paramsj ’s for all j ∈ S1. Let PK denote {pkj}j∈S1 . Let CRS
denote {crsj}j∈S1 . Let A′ be the access structure induced by restricting A to the parties in
S1. Let S2

hon be the set of honest and fail-corrupt parties that send a message in round 2. Let
T = {τj}j∈Scrs . Let E = {ξj}j∈Scrs . Let S1

corr be the set of corrupted (malicious or semi-honest)
parties that sent a message in round 1. Sim does the following:

1. Run Sim1(params,PK,A′, S1
corr, S

2
hon) to obtain ({cti}i∈S2

hon
, state), where Sim1 is the first

algorithm of the TMFHE simulator.

2. For each honest and fail-corrupt party not yet instructed to abort, Pi, run SimProve(CRS, T, yi)
to compute πi where yi is the statement that there exists some input x and randomness
r such that
TMFHE.Encrypt(params,PK,A′, x; r) = cti.

3. Give (cti, πi) as Pi’s round 2 message to Adv for i ∈ S2
hon.

Sim then receives round 2 messages from Adv on behalf of every party in the sets AMal and
ASh.

• Query to Ideal Functionality:

1. Parse the round 2 message (if one was sent) from Pj as (ctj , πj) and check that
NIZK.Verify(CRS, yj , πj) = 1. Let S2 ⊆ S1 be the set of parties that sent a round
2 message that passed verification. For semi-honest parties Pj in S2, Sim receives the
input xj used by Adv and sends it to the trusted party. For the fail-corrupt and malicious
parties that already aborted, Sim sends 0λ to the trusted party. For malicious parties Pj
in S2, Sim runs Ext(CRS, E, yj , πj) to extract a witness (xj , rj) used by Adv and sends
xj to the trusted party as Pj ’s input.

2. Sim receives the output b from the trusted party.

• Round 3: For every fail-corrupt party that Adv wishes to abort in this round, Sim instructs
the corresponding party. Let CT = {ctj}j∈S2 . Let C ′ be the circuit induced by hardcoding
the inputs to C corresponding to parties not in S2 as 0λ. Let S2

corr be the set of corrupted
parties that sent a round 2 message that passed verification. Let S3

hon be the set of honest
and fail-corrupt parties that have not yet been told to abort in round 3 by Adv. Sim does the
following
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1. Run Sim2(state, b, ĉt, S1
corr, S

2
hon, {(xi, ri)}i∈S2

corr
) to obtain {pj}j∈S2

hon
, where Sim2 is the

second algorithm of the modified TMFHE simulator that uses the (xi, ri)’s of the cor-
rupted parties round 2 messages to simulate and ĉt is the evaluated ciphertext obtained
by evaluating C ′ on the ciphertexts in CT .

2. For j ∈ S3
hon, run SimProve(CRS, T, zj) to compute π′j where zj is the statement that

there exists some randomness r, r′ such that
TMFHE.KeyGen(1λ; r) = (pkj , sk) and TMFHE.PartDec(j, sk, ĉt; r′) = pj .

3. For j ∈ S3
hon, give (pj , π

′
j) as Pj ’s round 3 message to Adv.

Security with respect to this simulator follows from the properties of the simulation-extractable
multi-string NIZK and the security of the underlying TMFHE scheme with respect to Sim1, Sim2.

Reusability. Reusability follows from the following:

1. The reusability of the protocol in Section 6.1.

2. The NIZK in round 3 can be generated afresh for different invocations of the protocol while
preserving security.

7 Multi-String NIZKs

In this section, we build a simulation-extractable multi-string NIZK argument system (Appendix A.4)
for NP based on the learning with errors (LWE) assumption. We first show how to build a multi-
string non-interactive witness indistinguishable argument system (NIWI) from LWE. We then give
a transformation from multi-string NIWI to multi-string simulation-extractable NIZK that follows
along the lines of the work of Groth and Ostrovsky [GO07]. Formally, we show the following results:

Theorem 7. Assuming LWE, there exists a multi-string non-interactive witness indistinguishable
argument system for NP.

Theorem 8. Assuming LWE, there exists a multi-string simulation-extractable NIZK argument
system for NP.

One of the key tools in our constructions is a Sigma protocol (Appendix A.6). Before we describe
the construction of our multi-string NIWI protocol, in the next subsection, we describe a specific
trapdoor commitment scheme that we will use to instantiate the Sigma protocol with, in the multi-
string NIWI protocol. In the following subsection, we give the construction and security proof of
our multi-string NIWI protocol and in the final subsection, we describe the generic transformation
from multi-string NIWI to multi-string NIZK.

7.1 Commitment Scheme

In this section, we construct a new non-interactive commitment scheme (Setup, Commit,Decom) in
the CRS model assuming LWE. In addition to the standard properties of a commitment scheme,
we require that the scheme has a trapdoor td such that given the commitment string, the trapdoor
can be used to efficiently generate the decommitment information with overwhelming probability.
Furthermore, we additionally have the feature that even if the adversary generates some portion of
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the CRS, the scheme still remains hiding and binding as long as a majority of the components are
honestly generated. We elaborate more on this after the construction.

The construction and properties of the scheme are below. Let λ be the security parameter.
Let PKE = (PKE.Setup,PKE.Enc,PKE.Dec) be a semantically secure public key encryption scheme
based on LWE. Let (Share,Recon) be a (bn/2c+1)−out-of-n threshold secret sharing scheme [Sha79].

1. Setup(1λ, 1n): For each i ∈ [n], compute (pki, ski)← PKE.Setup(1λ). Set crs = (pk1, . . . , pkn).

2. Commit(crs = pk1, ..., pkn,msg) : The commitment algorithm does the following:

• Compute m1, ....,mn ← Share(msg) - that is, they are the shares upon secret sharing the
input msg.

• For each i ∈ [n], compute cti ← PKE.Enc(pki,mi; ri) where ri is uniformly generated.

• Output ct = (ct1, ..., ctn).

3. Decom(ct) : The decommitment algorithm outputs the tuples of values {(mi, ri)}i∈[n] where
mi is the share of the message and ri is the randomness used to encrypt mi. The verifier
outputs 1 if:

• For each i ∈ [n], cti = PKE.Enc(mi, pki; ri).

• Recon(m1, . . . ,mn) 6= ⊥.

We now list some properties of the commitment scheme. For both hiding and binding, we
consider the stronger scenario where there exists a set S ⊂ [n] of size (bn/2c+ 1), where {pki}i∈S
are generated honestly using PKE.Setup and pki for i ∈ [n] \ S are chosen by a PPT adversary on
seeing {pki}i∈S . That is, the adversary gets to pick part of the CRS. This will be crucial in the
application of our commitment scheme to the Multi-String NIWI protocol.

Hiding: Since an honest majority of the public key-secret key pairs in the CRS were honestly
generated, from the security of the public key encryption scheme and the threshold secret sharing
scheme, it is easy to see that the commitment scheme satisfies hiding.

Binding: Now, for any commitment string ct = (ct1, ...., ctn), with overwhelming probability
over the choice of the randomness used to honestly generate pki for i ∈ S, there exists at most one
message m such that there exists mi, ri for i ∈ [n] satisfying:

1. m1, ...,mn forms a secret sharing of m.

2. cti = PKE.Enc(pki,mi; ri) for i ∈ [n].

Thus, the scheme satisfies binding.

Trapdoor: Note that given a set of secret keys {ski}i∈S where |S| > n
2 and a commitment string

ct = (ct1, . . . , ctn), the message committed can be recovered efficiently as follows: for each i ∈ S,
compute mi = PKE.Dec(ski, cti). Then, recover the message committed as msg = Recon({mi}i∈S).
Thus, given a CRS (pk1, . . . , pkn), the associated trapdoor td = ({ski}i∈S) for any set S with
|S| > n

2 where ski is the secret key corresponding to the public key pki.
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7.2 Multi-String NIWI

We now describe our construction of a multi-string non-interactive witness indistinguishable ar-
gument system below. Let λ de the security parameter which also denotes the size of the input
instances x. Let L be the NP language under consideration. Let Σ be a Sigma protocol as defined
in Appendix A.6 which can be based on LWE (due to the commitment scheme). Let m be the
number of parallel repetitions used inside the protocol Σ. Let n denote the maximum number of
parties in the system. Consider a relation family R = {Rλ}λ∈Z defined as follows: Rλ consists
of tuples ((x, a), y) where: |x| = λ, |a| = size of the first message of protocol Σ, |y| = m = size
of the second message of protocol Σ and given (x, a), y can be efficiently computed by a circuit
of size equal to the size of the circuit computing the second message of the Sigma protocol. Let
` denote the size of representing any relation in Rλ. Let H be a correlation intractable function
(Appendix A.5) for the relation family R. Peikert and Shiehian [PS19] recently constructed such a
hash function based on LWE. Let PKE = (PKE.Setup,PKE.Enc,PKE.Dec) be a semantically secure
public key encryption scheme based on LWE.

1. Setup(1λ, 1n) : The setup algorithm takes as input the security parameter λ (which also fixes
the length of the instances) and the maximum number of parties n and does the following.

• Sample (pk, sk)← PKE.Setup(1λ)

• Sample K ← H.Setup(1λ, 0`) where ` is defined before the construction.

• Output crs = (pk,K).

2. Prove(CRS, x, w) : The prove algorithm takes as input CRS = (crs1, ..., crsn) where each crsi =
(pki,Ki) and does the following:

• For each index i ∈ [n], compute ai = (ci,1, ci,2) where ci,1 and ci,2 are commitments
computed according to the first message of the Σ protocol for the statement x ∈ L
by running the algorithm Commit from the previous section with the input crs being
(pk1, . . . , pkn).

• Compute H.Eval(Ki, x, ai)→ ei.

• For each i ∈ [n], use ai, ei and the witness w to compute the third message zi of the Σ
protocol for the statement x ∈ L.

• Output ({ai, ei, zi}i∈[n]) as the proof.

3. Verify(CRS, x, σ) : Parse σ = ({ai, ei, zi}i∈[n]), CRS = (crs1, ..., crsn) where each crsi =
(pki,Ki). For each i ∈ [n], do:

• Check if H.Eval(Ki, x, ai) = ei.

• Check if ai, ei, zi verifies according to the Σ protocol.

Output 1 if all the above verifications pass.

Completeness. Completeness of the protocol can be easily observed from the correctness of the
underlying primitives: the protocol Σ and the hash function H.
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7.2.1 Security Proof

Soundness. Consider an adversary A and a challenger Ch. We now prove computational sound-
ness of the protocol above. We do so via a pair of hybrids where the first hybrid corresponds to
the real soundness experiment.

• Hyb0 : This hybrid corresponds to the honest soundness experiment.

– First, the adversary A declares a set S ⊂ [n] of size (bn/2c+ 1).

– For each i ∈ S, Ch generates a string crsi as follows.

∗ Compute (pki, ski)← PKE.Setup(1λ).

∗ Compute Ki ← H.Setup(1λ, 0`).

∗ Set crsi = (Ki, pki).

– On input {crsi}i∈S , adversary computes crsj for each j /∈ S.

– Finally, A outputs the remaining part of the CRS {crsj}j /∈S together with the statement
x∗ and proof ({a∗i , e∗i , z∗i }i∈[n]).

– The adversary wins if x∗ /∈ L and the proof verifies.

• Hyb1 : This hybrid is the same as the previous hybrid except that for each i ∈ S, Ki is
generated as follows. Ki ← H.Setup(1λ, R∗i ) where the relation R∗i consists of tuples of the
form ((x∗, a∗i ), y

∗
i ) where y∗i is as follows: Consider function fbad,λ,m,{ski}i∈S that takes as input

(x∗, a∗i ) and computes the string ebad,i such that there exists zbad,i and (a∗i , ebad,i, zbad,i) verifies
according to the Sigma protocol. y∗i = (ebad,i). Recall that if x∗ /∈ L, then there exists at
most one such string ebad,i for any a∗i .

We now complete the proof of soundness with the following claims.

Lemma 7. Assuming the statistical indistinguishability of hash keys property of the correlation in-
tractable hash function, for any polynomial time adversary A, Pr[A wins in Hyb1] ≥ Pr[A wins in Hyb0]−
negl

Proof. The only difference between the two hybrids is that for each i ∈ S, Ki is generated differently.
It is generated as H.Setup(1λ, 0`) in Hyb0, whereas it is generated as H.Setup(1λ, fbad,λ,m,{ski}i∈S ) in
Hyb1. From the statistical indistinguishability of hash keys property of the correlation intractable
hash function, the two hybrids are statistically indistinguishable and this proves the claim.

Lemma 8. Assuming the computational correlation intractable property of the hash function, for
any polynomial time adversary A, Pr[A wins in Hyb1] ≤ negl(λ).

Proof. This claim is true due to the computational correlation intractable property of the hash
function H. If the adversary breaks soundness then with non-negligible probability, by the sound-
ness property of the underlying Sigma protocol, it must hold that fbad,λ,m,{ski}i∈S (x∗, ai) = e∗i for
each i ∈ S where e∗i is the message output by A as the second round message of the Σ protocol.
Therefore, we can build a reduction that uses the adversary A to compute y∗i = e∗i for each i ∈ S
such that ((x∗, a∗i ), y

∗
i ) ∈ R∗i , thus breaking the correlation intractable property of the hash function

H, which is a contradiction.

This completes the proof.
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Witness Indistinguishability. Let A denote the adversary and Ch denote the challenger. Let
x be the challenge instance of length λ and w0 and w1 be the corresponding witness. We prove
witness indistinguishability via a sequence of computationally indistinguishable hybrids where the
first hybrid corresponds to the witness w0 being used and the last hybrid correspond to witness w1

being used.

• Hyb0 : This hybrid is described as follows:

1. A declares a set S of size bn/2c+ 1.

2. Ch generates crsi for i ∈ S as follows.

– Generate (pki, ski)← PKE.Setup(1λ).

– Generate Ki ← H.Setup(1λ, 0`).

– Set crsi = (Ki, pki).

3. On input crsi for i ∈ S, A computes crsi for i ∈ [n] \ S. Set CRS = (crs1, ..., crsn)

4. Then, the challenger Ch uses wb to generate proof honestly (x, a1, ..., an, , e1, ...., en,
z1, ..., zn).

• Hybj for each (j ∈ [n]) : This hybrid is the same as Hybj−1 except that now, for index i = j,
the tuple (ai, ei, zi) in the proof is generated using witness w1. Note that Hybn corresponds
to the experiment where the challenger runs the honest prover algorithm using witness w1.

We now complete the proof by arguing that every pair of hybrids are computationally indistin-
guishable.

Lemma 9. For all j ∈ [n], Hybj is computationally indistinguishable from Hybj−1 assuming the
witness indistinguishability property of Blum’s Sigma protocol.

Proof. The only difference between the two hybrids is in how the tuple (aj , ej , zj) is generated in
the proof. In Hybj−1, it is generated using witness w0 whereas in Hybj , it is generated using witness
w1. Before proceeding to the proof, we first set up some notation. Recall from the description of
the Sigma protocol that we in fact have m parallel repetitions of Blum’s protocol. Therefore, let’s
denote aj = (aj,1, . . . , aj,m), ej = (ej,1, . . . , ej,m), zj = (zj,1, . . . , zj,m). We now prove this lemma via
a sequence of computationally indistinguishable sub-hybrids below where Sub.Hyb0 corresponds to
Hybj−1 and Sub.Hybm corresponds to Hybj .

• Sub.Hyb0 corresponds to Hybj−1.

• Sub.Hybk for k ∈ [m]: Is identical to the previous sub-hybrid Sub.Hybk−1 except that the
tuple (aj,k, ej,k, zj,k) is now computed using witness w1.

From the witness indistinguishability property of the underlying Blum’s Sigma protocol, it is easy
to observe that Sub.Hybk is indistinguishable from Sub.Hybk−1 for all k ∈ [m]. Thus, this completes
the proof.
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7.3 Multi-String NIZK from Multi-String NIWI

We now describe the transformation from a multi-string NIWI argument system to a multi-string
simulation-extractable NIZK argument system. Let λ be the security parameter which also denotes
the size of the input instances x. Let L be the NP language under consideration and R be the
corresponding relation. Let n denote the maximum number of parties in the system. Let MSNIWI =
(MSNIWI.Setup, MSNIWI.Prove,MSNIWI.Verify) be a multi-string NIWI argument system based
on LWE from the previous section. Let G be a length doubling pseudorandom generator that
takes a seed of length λ as input. Let PKE = PKE.Setup,PKE.Enc,PKE.Dec) be a CCA secure
encryption scheme. Let (Share,Recon) be a (bn/2c+ 1)−out-of-n threshold secret sharing scheme.
The construction of the multi-string simulation-extractable NIZK is described below.

1. Setup(1λ, 1n) : The setup algorithm takes as input the security parameter λ (which also fixes
the length of the instances) and the maximum number of parties n and does the following.

• Compute crs′ ← MSNIWI.Setup(1λ, 1n).

• Pick a string r of length 2 · λ uniformly at random.

• Compute (pk, sk)← PKE.Setup(1λ).

• Output crs = (crs′, r, pk).

2. Prove(CRS, x, w) : The prove algorithm takes as input CRS = (crs1, ..., crsn) where each crsi =
(crs′i, ri, pki) and does the following:

• Compute w1, ...., wn ← Share(w).

• Compute ct = (ct1, . . . , ctn) where for each i ∈ [n], cti = PKE.Enc(pki, wi; rwi).

• Compute π ← MSNIWI.Prove(CRS′ = (crs′1, . . . , crs
′
n), y = (x, ct, r1, . . . , rn), w′) for the

statement y ∈ L1 using witness w′ = (w, rw1, . . . , rwn,⊥) where the NP language L1 is
defined by the following relation R1:
statement: y = (x, ct, r1, . . . , rn)
witness: w′ = (w, rw1, . . . , rwn, s1, . . . , sn)
R1(y, w′) = 1 iff

– cti = PKE.Enc(pki, wi; rwi) for each i ∈ [n] such that Recon(w1, . . . , wn) = w and
(x,w) ∈ R (OR)

– ∃ a set S of size (bn2 c+ 1) such that for each i ∈ S, G(si) = ri.

• Output (x, π, ct).

3. Verify(CRS, x, (π, ct)) : Output MSNIWI.Verify(CRS′ = (crs′1, . . . , crs
′
n), y = (x, ct, r1, . . . , rn), π)

for the language L1.

Completeness. Completeness of the protocol can be easily observed from the correctness of the
underlying primitives: the multi-string NIWI protocol MSNIWI, the encryption scheme PKE and
the pseudorandom generator G.
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7.3.1 Security Proof

Soundness. Consider an adversary A that breaks the soundness property - that is, A outputs
a statement x /∈ L and a proof (π, ct) such that Verify(CRS, x, (π, ct)) = 1 with non-negligible
probability. First, observe that from the soundness of the underlying multi-string NIWI argument
system, since the proof verifies successfully, the statement y = (x, ct, r1, . . . , rn) ∈ L1. Hence, one
of the two statements in the relation R1 must be true. However, since at least (n2 +1) of the strings
ri were chosen uniformly at random by the Challenger, the probability that any of them would
be the output of the pseudorandom generator is negligible. Thus, the probability that the second
statement in relation R1 is true is negligible. Therefore, the first statement in R1 must be true
which implies that x ∈ L which is a contradiction. This proves that the multi-string NIZK system
is sound.

Zero Knowledge We now prove the zero knowledge property for our construction. The descrip-
tion of the simulator Sim is given below.

1. Setup(1λ, 1n) : For each honest party, the simulator does the following:

• Compute crs′ ← MSNIWI.Setup(1λ, 1n).

• Pick a string s of length λ uniformly at random and compute r = G(s).

• Compute (pk, sk)← PKE.Setup(1λ).

• Output crs = (crs′, r, pk).

2. Prove(CRS, x) : The simulator’s prove algorithm takes as input CRS = (crs1, ..., crsn) where
each crsi = (crs′i, ri) and does the following:

• Denote set S = {si} of size at least (n2 + 1) where for each i ∈ S, G(si) = ri. These
are the PRG seeds chosen by the simulator in the setup phase on behalf of the honest
parties.

• Compute ct = (ct1, . . . , ctn) where for each i ∈ S, cti = PKE.Enc(pki, 0; rwi) and for
each i 6∈ S, cti = PKE.Enc(pki, wi; rwi) where wi is picked uniformly at at random.

• Compute π ← MSNIWI.Prove(CRS′ = (crs′1, . . . , crs
′
n), y = (x, ct, r1, . . . , rn), w′) for the

statement y ∈ L1 using witness w′ = (⊥, {si}i∈S) for the trapdoor statement.

• Output (x, π, ct).

We now prove that the real and ideal worlds are computationally indistinguishable via a sequence
of hybrids. Consider a simulator SimHyb. The first hybrid Hyb0 corresponds to the real world where
SimHyb behaves as an honest prover who has both (x,w) in its interaction with the adversary and
the last hybrid corresponds to the ideal world where SimHyb behaves as the simulator Sim who has
access only to the statement x in its interaction with the adversary.

• Hyb0 : This hybrid corresponds to the real world where the adversary interacts with an honest
prover.

• Hyb1: In this hybrid, in the setup phase, on behalf of each honest party, the simulator SimHyb
picks r as done in the ideal world as follows: pick a string s of length λ uniformly at random
and compute r = G(s).
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• Hyb2: In this hybrid, the simulator SimHyb computes the proof using the trapdoor statement
of the multi-string NIWI by relying on the knowledge of the pre-images to the pseudorandom
generator {si}i∈S where S denotes the set of honest parties. This is identical to how the proof
is computed in the ideal world.

• Hyb3: In this hybrid, SimHyb computes ct = (ct1, . . . , ctn) where for each i ∈ S, cti =
PKE.Enc(pki, 0; rwi).

• Hyb4: In this hybrid, SimHyb computes ct = (ct1, . . . , ctn) where for each i ∈ [n]/S, cti =
PKE.Enc(pki, wi; rwi) where wi is picked uniformly at at random and not as secret shares of
the witness w. This hybrid is identical to the ideal world.

We now prove that every pair of consecutive hybrids is computationally indistinguishable and
this completes the proof of zero knowledge.

Lemma 10. Assuming the security of the pseudorandom generator G, Hyb0 is computationally
indistinguishable from Hyb1.

Proof. The only difference between the two hybrids is that in Hyb0, the values r in the CRS are
generated uniformly at random while in Hyb1, they are generated as output of the pseudorandom
generator G. Thus, if there exists an adversary A that can distinguish these two hybrids with non-
negligible probability, we can use A to break the security of the pseudorandom generator which is
a contradiction.

Lemma 11. Assuming the witness indistinguishability property of the multi-string NIWI argument
system, Hyb1 is computationally indistinguishable from Hyb2.

Proof. The only difference between the two hybrids is that in Hyb1, the proof π is generated using
the first statement in the multi-string NIWI while in Hyb2, π is generated using the trapdoor
statement that requires knowledge of the pseudorandom generator pre-images. Thus, if there
exists an adversary A that can distinguish these two hybrids with non-negligible probability, we
can use A to break the witness indistinguishability property of the multi-string NIWI which is a
contradiction.

Lemma 12. Assuming the semantic security of the public key encryption scheme, Hyb2 is compu-
tationally indistinguishable from Hyb3.

Proof. The only difference between the two hybrids is that for each i ∈ S, in Hyb2, the values cti
are computed as encryptions of the shares of the witness w while in Hyb3, they are computed as
encryption of 0. Observe that only the public key is given to the adversary. Thus, if there exists
an adversary A that can distinguish these two hybrids with non-negligible probability, we can use
A to break the semantic security of the encryption scheme which is a contradiction.

Lemma 13. Assuming the security of the secret sharing scheme, Hyb3 is computationally indis-
tinguishable from Hyb4.

Proof. The only difference between the two hybrids is that for each i /∈ S, cti = PKE.Enc(pki, wi; rwi)
where in Hyb3, wi is a secret share of the witness w while in Hyb4, wi is picked uniformly at random.
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Since the size of the set S is at least (n2 + 1), the number of these wi values are lesser than the
threshold for the secret sharing scheme. Thus, if there exists an adversary A that can distinguish
these two hybrids with non-negligible probability, we can use A to break the security of the secret
sharing scheme which is a contradiction.

Simulation Extractability We now prove that the above scheme is simulation extractable -
that is, there exists an extractor Ext that, on input a successful proof produced by the adversary
A for any statement x can extract a corresponding witness w for x ∈ L, even when A has access to
an oracle that produces simulated proofs (as shown in the zero knowledge proof). We first describe
the extractor Ext below before proving the above property.

1. ExtGen(1λ, 1n) : For each honest party, the extractor’s setup algorithm generates the CRS
and the associated trapdoors as done by the simulator in the ideal world. That is, it does the
following:

• Compute crs′ ← MSNIWI.Setup(1λ, 1n).

• Pick a string s of length λ uniformly at random and compute r = G(s).

• Compute (pk, sk)← PKE.Setup(1λ).

• Output crs = (crs′, r, pk).

2. Ext(x, (π, ct)): On input a statement x and a proof (π, ct) from the adversary A, the extractor
does the following:

• Denote set S = {si} of size at least (n2 +1) where for each i ∈ S, Ext knows ski generated
as part of the setup phase.

• For each i ∈ S, compute wi = PKE.Dec(cti, ski).

• Compute and output w = Recon({wi}i∈S).

We now prove the simulation-extraction property by a series of hybrid arguments. For ease
of notation, lets denote the output of the hybrid to be 1 if in that hybrid, with non-negligible
probability, the extractor algorithm Ext fails to output a valid witness w but the adversary’s proof
verifies successfully. Very briefly, the proof follows the same structure as in the case of the zero
knowledge argument - we first go from the simulated world to the real world where the oracle
provides honestly generated proofs. We argue that the adversary’s advantage doesn’t change in
this transition. Finally, we argue that in the real world, the adversary’s advantage is negligible by
the same argument as in the soundness of the protocol.

• Hyb0: This corresponds to the ideal world experiment where the adversary has access to an
oracle that produces simulated proofs.

• Hyb1: In this hybrid, the simulator computes ct = (ct1, . . . , ctn) where for each i ∈ [n]/S,
cti = PKE.Enc(pki, wi; rwi) where wi are secret shares of the witness w.

• Hyb2: In this hybrid, the simulator computes ct = (ct1, . . . , ctn) where for each i ∈ S,
cti = PKE.Enc(pki, wi; rwi).
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• Hyb3: In this hybrid, the simulator SimHyb computes the NIWI using the witness w as done
by the honest prover algorithm.

• Hyb4: In this hybrid, in the setup phase, on behalf of each honest party, algorithm ExtGen
picks r uniformly at random as done in the real world.

Lemma 14. Assuming the security of the secret sharing scheme, |Pr[Hyb0 = 1]−Pr[Hyb1 = 1]| ≤
negl(λ).

Proof. This proof is identical to the proof of Lemma 13 in the zero knowledge proof. In particular,
if the adversary’s advantage changes between the two hybrids, we can use that to break the security
of the secret sharing scheme.

Lemma 15. Assuming the CCA security of the encryption scheme, |Pr[Hyb1 = 1] − Pr[Hyb2 =
1]| ≤ negl(λ).

Proof. This proof is somewhat similar to the proof of Lemma 12 in the zero knowledge proof. In
particular, if the adversary’s advantage changes between the two hybrids, we can use that to break
the CCA security of the public key encryption scheme. The only difference from that proof here is
that in the reduction to the CCA secure encryption scheme, we now need access to the decryption
oracle to run the extractor algorithm Ext which was not needed in the proof of Lemma 12.

Lemma 16. Assuming the witness indistinguishability property of the multi-string NIWI system,
|Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| ≤ negl(λ).

Proof. This proof is identical to the proof of Lemma 11 in the zero knowledge proof. In particular,
if the adversary’s advantage changes between the two hybrids, we can use that to break the witness
indistinguishability property of the multi-string NIWI argument system.

Lemma 17. Assuming the security of the pseudorandom generator, |Pr[Hyb3 = 1] − Pr[Hyb4 =
1]| ≤ negl(λ).

Proof. This proof is identical to the proof of Lemma 10 in the zero knowledge proof. In particular,
if the adversary’s advantage changes between the two hybrids, we can use that to break the security
of the pseudorandom generator.

Finally, we will argue that the probability that Hyb4 outputs 1 is negligible and this completes
the proof.

Lemma 18. Assuming the soundness of the multi-string NIWI argument, correctness of the CCA
secure encryption scheme and correctness of the secret sharing scheme, Pr[Hyb4 = 1] ≤ negl(λ).

Proof. As in the proof of soundness, we can observe from the soundness of the multi-string NIWI
argument system that if the adversary produces a statement x and a proof (π, ct) that verifies
successfully, then it must be the case that x ∈ L. Further, (x,w) ∈ R where R is the NP relation
for language L and ct = (ct1, . . . , ctn) where for each i ∈ [n], cti = PKE.Enc(wi, pki) and {wi}i∈[n]

is a secret sharing of the witness w. Therefore, by the correctness of the reconstruction algorithm
of the secret sharing scheme and the decryption algorithm of the encryption scheme, the extractor
outputs this witness w with overwhelming probability. Thus, the probability that the adversary A
outputs a statement x and a proof (π, ct) that successfully verifies but the extractor doesn’t output
a corresponding witness w for the statement x ∈ L is negligible and this completes the proof.
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Common Random String. Observe that if the CCA secure encryption scheme used in our
construction and the one underlying the multi-string NIWI has the property that the public keys
are statistically-close to uniform, then the CRS generated in the setup by each party is statistically-
close to uniform. We note that CCA secure encryption schemes with public keys statistically-close to
uniform exist from the LWE assumption [BCHK07,BGG+14]. To see that the CRS is statistically-
close to uniform, note that the CRS consists of the following components:

• Two public keys of a CCA-secure encryption scheme.

• A uniformly random string r.

• A hash key K for a correlation-intractable hash function family H, which is known from LWE
with hash keys statistically-close to uniform [PS19].

7.4 Semi-Honest Corruptions

We now observe another interesting property of our multi-string NIZK argument that is crucial in
its application the MPC protocol in the presence of a threshold mixed adversary. In particular, we
note that our multi-string simulation-extractable NIZK remains secure not only in the presence of
an honest majority but even in the following scenario: the adversary corrupts two sets of parties
(A1,A2) such that A1 consists of all parties maliciously corrupted with |A1| < n

2 as before, A2

consists of parties that are semi-honestly corrupted and in particular, follow the protocol behaviour
correctly, and |A1 ∪ A2| < n.

Protocol Description. First, we describe a slight modification to the above protocol. Observe
that if we ran the multi-string NIZK Setup algorithm, it would output CRSs that are statistically-
close to uniform. Instead, in our protocol, we have honest parties instead run a Setup′ algorithm,
which simply outputs a uniformly random string of the appropriate length. With overwhelming
probability, this will correspond to a CRS that could have been output by the “real” setup algorithm,
and all the required properties of the multi-string NIZK hold. It is only in the ideal world that we
will run the honest setup algorithm Setup as part of the simulated setup on behalf of every honest
party since the extractor Ext needs the secret keys sk to extract the adversary’s witness.

Proof. Now, in order to prove that our scheme is still secure, we are faced with the following
challenge: we now have a dishonest majority of corrupt parties unlike before which could break zero
knowledge or soundness. Lets focus on the set of parties in A2 that were corrupted in a semi-honest
manner. For each of these parties, the simulator will set its randomness appropriately to ensure
the following two things:

• The public key pk and the randomness r generated as part of the CRS by that party in round
1 are honestly generated.

• Furthermore, the simulator knows the corresponding secret key sk associated with that public
key and that r is the output of the pseudorandom generator G for which the simulator knows
the pre-image s.

Thus, as long as the number of maliciously corrupt parties A is of size less than n
2 , the simulator

will be able to both produce fake proofs (via the PRG preimages) and extract the witness from the
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adversary’s proofs (by running the Ext algorithm using knowledge of majority of the secret keys).
Additionally, the adversary will also not be able to cheat since it knows only less than half of the
simulation trapdoors that were generated by the maliciously corrupt parties. Therefore, our proofs
from before would work as is and this scheme still remains secure.
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A Deferred Preliminaries

A.1 Multi-Key FHE

We recall the definition of multi-key FHE in the plain model with distributed setup as found
in [BHP17].

Definition 3 (MFHE). A multi-key fully homomorphic encryption scheme is a tuple of PPT
algorithms

MFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec)

satisfying the following specifications:
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paramsi ← DistSetup(1λ, 1d, 1N , i): It takes as input a security parameter λ, a circuit depth d, the
maximal number of parties N , and a party index i. It outputs the public parameters paramsi
associated with the ith party, where paramsi ∈ {0, 1}poly(λ,d,N) for some polynomial poly. We
assume implicitly that all the following algorithms take the public parameters of all parties as
input, where we define params = params1|| . . . ||paramsN .

(pk, sk)← KeyGen(params): It takes as input the public parameters params and outputs a key pair
(pk, sk).

ct← Encrypt(pk,m): It takes as input a public key pk and a plaintext m ∈ {0, 1}λ and outputs a
ciphertext ct. Throughout, we will assume that all ciphertexts include the public key(s) that
they are encrypted under.

ĉt← Eval(C, ct1, . . . , ct`): It takes as input a boolean circuit C : ({0, 1}λ)` → {0, 1} ∈ Cλ of depth
≤ d and ciphertexts ct1, . . . , ct` for ` ≤ N . It outputs an evaluated ciphertext ĉt.

pi ← PartDec(i, sk, ĉt): It takes as input an index i, a secret key sk and an evaluated ciphertext ĉt
and outputs a partial decryption pi.

µ̂← FinDec(p1, . . . , p`): It takes as input partial decryptions p1, . . . , p` and deterministically outputs
a plaintext µ̂ ∈ {0, 1,⊥}.

We require that for any parameters {paramsi ← Setup(1λ, 1d, 1N , i)}i∈[N ], any key pairs {(pki, ski)←
KeyGen(params)}i∈[N ], any plaintexts m1, . . . ,m` ∈ {0, 1}λ for ` ≤ N , any sequence I1, . . . , I` ∈ [N ]

of indices, and any boolean circuit C : {0, 1}` → {0, 1} ∈ Cλ of depth ≤ d, the following is satisfied:

Correctness. Let cti = Encrypt(pkIi ,mi) for 1 ≤ i ≤ `, ĉt = Eval(C, ct1, . . . , ct`), and pi =
PartDec(i, skIi , ĉt) for all i ∈ [`]. With all but negligible probability in λ over the coins of
Setup, KeyGen, Encrypt, and PartDec,

FinDec(p1, . . . , p`) = C(m1, . . . ,m`).

Compactness of Ciphertexts. There exists a polynomial, poly, such that |ct| ≤ poly(λ, d,N) for
any ciphertext ct generated from the algorithms of MFHE.

Semantic Security of Encryption. Any PPT adversary A has only negligible advantage as a
function of λ over the coins of all the algorithms in the following game:

1. On input the security parameter 1λ, a circuit depth 1d, and the number of parties 1N ,
the adversary A outputs a non-corrupted party i.

2. Run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given paramsi.

3. The adversary outputs {paramsj}j∈[N ]\{i}.

4. params is set to params1|| . . . ||paramsN . Run KeyGen(params) → (pki, ski). The adver-
sary is given pki.

5. The adversary outputs two messages m0,m1 ∈ {0, 1}λ.

6. The adversary is given ct← Encrypt(pki,mb) for a random b ∈ {0, 1}.
7. The adversary outputs b′ and wins if b = b′.
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Simulation Security. There exists a stateful PPT algorithm Sim such that for any PPT adversary
A, we have that the experiments ExptA,Real(1

λ, 1d, 1N ) and ExptA,Sim(1λ, 1d, 1N ) as defined
below are statistically close as a function of λ over the coins of all the algorithms. The
experiments are defined as follows:

ExptA,Real(1
λ, 1d, 1N ):

1. On input the security parameter 1λ, a circuit depth 1d, and the number of parties
1N , the adversary A a non-corrupted party i.

2. Run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given paramsi.

3. The adversary outputs {paramsj}j∈[N ]\{i}.

4. params is set to params1|| . . . ||paramsN . Sample N − 1 key pairs KeyGen(params)→
(pkj , skj) for j ∈ [N ]\{i}. The adversary is given {(pkj , skj)}j∈[N ]\{i}.

5. The adversary outputs randomness rKeyGeni used to generate (pki, ski), m1, . . . ,m` ∈
{0, 1}λ, I1, . . . , I` ∈ [N ], and a set of circuits {Ck : ({0, 1}λ)` → {0, 1}}k∈[t] with
each Ck ∈ C for some ` ≤ N and some t = poly(λ, d,N).

6. Set (pki, ski)← KeyGen(params; rKeyGeni ). The adversary is given ctj ← Enc(pkIj ,mj)

for 1 ≤ j ≤ ` and the evaluated ciphertexts ĉtk ← Eval(Ck, ct1, . . . , ct`) for all k ∈ [t].

7. The adversary is given pi,k ← PartDec(i, ski, ĉtk) for all k ∈ [t].

8. A outputs out. The output of the experiment is out.

ExptA,Sim(1λ, 1d, 1N ):

1. On input the security parameter 1λ, a circuit depth 1d, and the number of parties
1N , the adversary A a non-corrupted party i.

2. Run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given paramsi.

3. The adversary outputs {paramsj}j∈[N ]\{i}.

4. params is set to params1|| . . . ||paramsN . Sample N − 1 key pairs KeyGen(params)→
(pkj , skj) for j ∈ [N ]\{i}. The adversary is given {(pkj , skj)}j∈[N ]\{i}.

5. The adversary outputs randomness rKeyGeni used to generate (pki, ski), m1, . . . ,m` ∈
{0, 1}λ, I1, . . . , I` ∈ [N ], and a set of circuits {Ck : ({0, 1}λ)` → {0, 1}}k∈[t] with
each Ck ∈ C for some ` ≤ N and some t = poly(λ, d,N).

6. Set (pki, ski)← KeyGen(params; rKeyGeni ). The adversary is given ctj ← Enc(pkIj ,mj)

for 1 ≤ j ≤ ` and the evaluated ciphertexts ĉtk ← Eval(Ck, ct1, . . . , ct`) for all k ∈ [t].

7. Define µk = Ck(m1, . . . ,m`). For all k ∈ [t], the adversary is given
pi,k ← Sim(µk, ĉt, i, {skj}j∈[N ]\{i}).

8. A outputs out. The output of the experiment is out.

A.2 Statistical Distance

In this section, we state results related to the statistical closeness of distributions that will be used
in the security proof of our TMFHE construction. This section was adapted from one in [JRS17],
and we defer the reader to their paper for the proofs of these results.

Definition 4 (Statistical Distance). Let E be a finite set, Ω a probability space, and X,Y : Ω→ E
random variables. We define the statistical distance between X and Y to be the function ∆ defined
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by

∆(X,Y ) =
1

2

∑
e∈E

∣∣∣∣Pr
X

(X = e)− Pr
Y

(Y = e)

∣∣∣∣ .
Proposition 1 ( [JRS17]). Let E be a finite set, Ω a probability space, and let {Xb

s}s∈S,b∈{0,1} be

a family of random variables Xb
s : Ω → E indexed by an element s ∈ S and a state b ∈ {0, 1}.

Further, assume that for every s ∈ S we have ∆(X0
s , X

1
s ) ≤ δ. Now, for a stateful PPT algorithm

A, define the following experiment:

ExptA,b,m :

• The algorithm A issues m queries. Each query is an element si ∈ S and after each
query, A receives in return xi ← Xb

si sampled independently of the other samples.

• The output of the experiment is (s1, x1), . . . , (sm, xm).

Then ∆(ExptA,0,m,ExptA,1,m) ≤ mδ.

Another useful lemma is the following, which demonstrates a technique to “smudge” or hide the
presence of error (e1 in the lemma) by adding a much larger error. While no values are specifically
given in the statement of the lemma, B1 is meant to be negligible compared to B2 such that the
statistical distance between the two distributions is negligible.

Lemma 19 (Smudging Lemma [MW16]). Let B1, B2 ∈ N. For any e1 ∈ [−B1, B1] let E1 and E2

be independent random variables uniformly distributed on [−B2, B2] and define the two stochastic
variables X1 = E1 + e1 and X2 = E2. Then ∆(E1, E2) < B1/B2.

A.3 Secret Sharing

Throughout this paper we will use secret sharing terminology and techniques. This section provides
an introduction to the basic terms, notation, and concepts that will be needed later. Large portions
of this section were taken verbatim from [JRS17].

A.3.1 Secret Sharing Basics.

We assume that the reader is familiar with the notion of a information theoretic secret sharing
scheme and, in particular, the Shamir secret sharing scheme. We now describe concepts about
access structures and specific secret sharing schemes that we consider in this paper. We adapt
some definitions from [LW11].

Definition 5 (Monotone Access Structure). Let P = {P1, . . . , PN} be a set of parties. A collection
A ⊆ P(P ) is monotone if whenever we have sets B,C satisfying B ∈ A and B ⊆ C ⊆ P then
C ∈ A. A monotone access structure on P is a monotone collection A ⊆ P(P ) \ ∅. The sets in A
are called the valid sets and the sets in P(P ) \ A are called the invalid sets.

Definition 6 (Restriction of Access Structure). Let P = {P1, . . . , PN} be a set of parties and A be
an access structure over these parties. Let PS ⊆ P be a subset of these parties. We say that A′ is
the access structure induced by restricting A to the parties in PS if A′ is an access structure on PS
such that a set A ∈ A′ for some A ⊆ PS if and only if A ∈ A.
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For ease of notation, we will generally identify a party with its index. Further, since this
presentation will only consider monotone access structures, the terms monotone access structure
and simply access structure will be used interchangeably throughout the text. Let P = {P1, . . . , PN}
be a set of parties and let S be a subset of P . We denote by XS the vector XS = (x1, . . . , xN )
where xi = 1 if Pi ∈ S and xi = 0 otherwise.

Definition 7 (Efficient Access Structure). Let P = {P1, . . . , PN} be a set of parties and A ⊆ P(P )
a monotone access structure on P . We say that A is efficient if there exists a polynomial size circuit
fA : {0, 1}N → {0, 1} such that for all S ⊆ P , fA(XS) = 1 if and only if S ∈ A.

Definition 8 (Class of Monotone Access Structures). Let P = {P1, . . . , PN} be a set of parties. A
class of monotone access structures is a collection S = {A1, . . . ,At} ⊆ P(P(P )) of monotone access
structures on P .

Being interested in secret sharing, we will only consider efficient access structures in this work.
One of the most canonical classes of access structures is the t-out-of-n class.

Definition 9 (t-out-of-n secret sharing). Let P = {P1, . . . , PN} be a set of parties. An access
structure A is a t-out-of-n access structure if for every S ⊆ P , S ∈ A if and only if |S| ≥ t.

A more general form of secret sharing is linear secret sharing.

Definition 10 (Linear Secret Sharing Scheme (LSSS)). Let P = {P1, . . . , PN} be a set of parties.
The class of access structures LSSS (or LSSSN to emphasize the number of parties) consists of all
access structure A such that there exists a secret sharing scheme Π satisfying:

1. For a prime p, the share of each party Pi is a vector ~wi ∈ Znip for some ni ∈ N.

2. There exists a matrix M ∈ Z`×np , ` =
∑N

i=1 ni called the share matrix for Π with size poly-
nomial in the number of parties and such that for a secret s, the shares are generated as
follows. Values r2, . . . , rn ∈ Zp are chosen at random and the vector ~v = M · (s, r2, . . . , rn)T

is generated. Now, denote by Ti ⊆ [`], 1 ≤ i ≤ N a partition of [`] such that Ti has size
|Ti| = ni and is associated with party Pi. The share of Pi is the vector ~wi = (vi)i∈Ti.

3. For any set S ⊆ P , S ∈ A if and only if

(1, 0, . . . , 0) ∈ span({M [i]}i∈⋃j∈S Tj )
over Zp where M [i] denotes the ith row of M .

We denote by LSSSN the class of linear secret sharing schemes on N parties.

Note that keeping with the notation of the LSSS definition above, any set of parties S ⊆ P such
that S ∈ A can recover the secret by finding coefficients {ci}i∈⋃j∈S Tj satisfying∑

i∈
⋃
j∈S Tj

ciM [i] = (1, 0, . . . , 0).

Given such coefficients, the secret can be recovered simply by computing

s =
∑

i∈
⋃
j∈S Tj

civi.
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Since such coefficients can be found in time polynomial in the size of M using linear algebra, LSSS
is a class of efficient access structures [Bei96]. Further, LSSS has the property that it information
theoretically hides the value s, i.e. for any secrets s0 and s1, it holds that the distributions of shares
{~wi}i∈S for a set S 6∈ A, are identical.

In our application of linear secret sharing, we will always be sharing a vector over Zp, ~s ∈ Znp
instead of just a single element of Zp. Simply linearly secret sharing each entry of the vector ~s
using fresh randomness for each entry yields shares ~s1, . . . , ~s` ∈ Znp . It is easy to see that the secret
~s ∈ Znq can now be reconstructed as a linear combination of the shares ~si using the same coefficients
as for a single field element. Further, information theoretical hiding is maintained.

A.3.2 {0, 1}-LSSS and {0, 1}-LSSSD.

For the purposes of this paper, we will need a more restricted class of access structures. The
access structures of the class {0, 1}-LSSS are those that can be realized as LSSS schemes such that
each party only has one share and such that it always is possible to only use recovery coefficients
ci ∈ {0, 1}.

Definition 11 ({0, 1}-Linear Single Share Scheme ({0, 1}-LSSS)). Let P = {P1, . . . , PN} be a set
of parties. The set {0, 1}-LSSSN ⊆ LSSSN is the collection of access structures A ∈ LSSSN such
that there exists an efficient linear secret sharing scheme Π for A satisfying the following:

1. For a prime p, the share of each party Pi consists of a single element wi ∈ Zp.

2. Let s be a secret and let wi ∈ Zp be the share of party Pi for each i. For every valid set S ∈ A,
there exist a subset S′ ⊆ S such that s =

∑
i∈S′ wi.

In our application, we will need {0, 1}-LSSS schemes that work over a certain prime q corre-
sponding to the modulus of an FHE scheme. The constructions of later sections will be designed in
a way that allows for the access structure to work over any modulus, but for now we will denote
by {0, 1}-LSSSq the set of access structures contained in {0, 1}-LSSS that can be realized as secret
sharing schemes by a share matrix over Zq.

That every access structure A ∈ {0, 1}-LSSS is efficient follows directly from the efficiency of
the LSSS class. However, it is not obvious that the set S′ of the above definition can be found
efficiently given any S ⊆ P . To see that this is indeed the case, we first establish a lemma.

Definition 12 (Maximal Invalid Share Set). Let P = {P1, . . . , PN} be a set of parties and A be
a monotone access structure on P . A set S ⊆ P is a maximal invalid share set if S 6∈ A but for
every p ∈ P \ S, S ∪ {p} ∈ A.

Definition 13 (Minimal Valid Share Set). Let P = {P1, . . . , PN} be a set of parties and A be a
monotone access structure on P . A set S ⊆ P is a minimal valid share set if S ∈ A and for every
S′ ( S, S′ 6∈ A.

Although the following lemma is trivial to show it will turn out to be a useful observation both
for the efficiency of reconstruction of {0, 1}-LSSS and for our construction.

Lemma 20 ( [JRS17]). Let P = {P1, . . . , PN} be a set of parties, A ∈ {0, 1}-LSSS, and Π be
a linear secret sharing scheme as specified in the definition of {0, 1}-LSSS. Let s be a secret, let
wi ∈ Zp be the share of party Pi for each i, and let S ⊆ P be a minimal valid share set of A. Then
s =

∑
i∈S wi.
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Finally, the following lemma shows that given a linear secret sharing scheme Pi for A ∈
{0, 1}-LSSS, we can find recovery coefficients efficiently. However, it is worth noting that this
does not mean that deciding whether an access structure belongs to {0, 1}-LSSS is feasible. In our
applications we will instead specifically construct secret sharing schemes that belong to {0, 1}-LSSS.

Lemma 21 ( [JRS17]). Finding recovery coefficients ci ∈ {0, 1} in a linear secret sharing scheme
Π for an access structure A ∈ {0, 1}-LSSS can be done efficiently.

In applications, we will need the following access structure, which removes the constraint on
the number of shares per party, but retains the overall property of the shares.

Definition 14 (Derived {0, 1}-LSSS ({0, 1}-LSSSD)). Let P = {P1, . . . , PN} be a set of parties. We
denote by {0, 1}-LSSSDN the class of access structures A ∈ LSSSN such that there exists an ` ∈ N
polynomial in N and an access structure B ∈ {0, 1}-LSSS`n for parties P ′ = {P ′1, . . . , P ′N`} such
that we can associate the party Pi ∈ P with the parties P ′`(i−1), P

′
`(i−1)+1, . . . , P

′
`i ∈ P ′ as follows.

For every S ⊆ [N ], S ∈ A if and only if the set S′ of parties of P ′ associated with a party in S,
S′ ∈ B. More precisely, for every S ⊆ [N ],⋃

i∈S
{Pi} ∈ A if and only if

⋃
i∈S
{P ′`(i−1), P

′
`(i−1)+1, . . . , P

′
`i} ∈ B.

In other words, a {0, 1}-LSSSD scheme is a secret sharing scheme where the shares satisfy a
{0, 1}-LSSS scheme, but each party receives multiple shares.

Theorem 9 ( [JRS17]). The class of access structures {0, 1}-LSSSDN contains all those induced
by monotone boolean formulas, which, in turn contains all t out of N threshold access structures.

In this work, all access structures will be those in the class {0, 1}-LSSSD.

A.4 Multi-String NIZK

We adapt the definition from [GO07]. Let R be an efficiently computable binary relation and L an
NP-language of statements x such that (x,w) ∈ R for some witness w.

Definition 15 (Multi-String NIZK). A multi-string NIZK using N strings for a language L is a
tuple of PPT algorithms

NIZK = (Gen,Prove,Verify)

satisfying the following specifications:

crs← Gen(1λ): It takes as input the security parameter λ and outputs a uniformly random string
crs.

π ← Prove(CRS, x, w): It takes as input a set of N random strings CRS, a statement x, and a
witness w. It outputs a proof π.

{0, 1} ← Verify(CRS, x, π): It takes as input a set of N random strings CRS, a statement x, and
a proof π. It outputs 1 if it accepts π and 0 if it rejects it.

We require that the algorithms satisfy the following properties for all non-uniform PPT adver-
saries A:
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Perfect Completeness.

Pr

[
S := ∅; (CRS, x, w)← AGen;π ← Prove(CRS, x, w) :

Verify(CRS, x, π) = 0 and (x,w) ∈ R

]
= 0,

where Gen is an oracle that on a query q outputs crsq ← Gen(1λ) and sets S := S ∪ {crsq}.
Note that this says that even if the adversary arbitrarily picks all the random strings, perfect
completeness still holds.

Soundness.

Pr

[
S := ∅; (CRS, x, π)← AGen :

Verify(CRS, x, π) = 1 and x 6∈ L and |CRS ∩ S| > N/2

]
≤ negl(λ),

where Gen is an oracle that on a query q outputs crsq ← Gen(1λ) and sets S := S ∪ {crsq}.
Note that this says that as long as at least half of the random strings are honestly generated,
the adversary cannot forge a proof except with negligible probability.

Composable Zero-Knowledge. There exist PPT algorithms SimGen, SimProve such that

Pr[crs← Gen(1λ) : A(crs) = 1] ∼=c Pr[(crs, τ)← SimGen(1λ) : A(crs) = 1]

and

Pr

[
S := ∅; (CRS, x, w)← ASimGen(1λ);π ← Prove(CRS, x, w) :

A(π) = 1 and (x,w) ∈ R and |CRS ∩ S| > N/2

]
∼=c

Pr

[
S := ∅; (CRS, x, w)← ASimGen(1λ);π ← SimProve(CRS, T, x) :

A(π) = 1 and (x,w) ∈ R and |CRS ∩ S| > N/2

]
,

where T is the set containing all simulation trapdoors τ generated by SimGen. Note that this is
saying that random strings with simulation trapdoors can be generated that are indistinguish-
able from honestly generated random strings and that using these trapdoors, it is possible to
simulate a proof that is indistinguishable from a real proof even to an adversary that possesses
all the simulation trapdoors.

In this work, we will deal with multi-string NIZKs that are simulation-extractable. Informally,
this means that it is possible to extract a witness from an adversary’s proof even if the adversary
is allowed to see many simulated proofs. Formally, we have the following definition from [GO07].

Definition 16 (Simulation-Extractable Multi-String NIZK). A simulation-extractable multi-string
NIZK is a multi-string NIZK with the following additional property.

Simulation-Extractability. There exist PPT algorithms ExtGen,Ext such that ExtGen(1λ) out-
puts (crs, τ, ξ), a random string, a simulation trapdoor, and an extraction key, such that the
output distribution (crs, τ) is identical to that of SimGen and

Pr


S := ∅;Q := ∅; (CRS, x, π)← AExtGen′,SimProve(1λ);

w ← Ext(CRS, E, x, π) :
(x, π) 6∈ Q and (x,w) 6∈ R and Verify(CRS, x, π) = 1

and |CRS ∩ S| > N/2

 ≤ negl(λ),
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where ExtGen′ is an oracle that runs ExtGen to generate (crs, τ, ξ), outputs (crs, τ) and sets
S := S ∪ {crs}, SimProve outputs a proof π for a statement x given the set of simulation
trapdoors and sets Q := Q ∪ {(x, π)}, and E is the set of the ξ’s generated by ExtGen.

A.5 Correlation Intractable Hash Functions

We adapt definitions of a correlation intractable hash function family from [PS19,CCH+19].

Definition 17. We say that a relation R ⊆ X ×Y is searchable in size S if there exists a function
f : X → Y that is implementable in a boolean circuit of size S, such that if (x, y) ∈ R then y = f(x).

Having defined efficiently searchable relation, we define correlation intractability for a class of
relations R.

Definition 18. Let R = {Rλ}λ∈Z be a relation family. A hash function family H = (Setup,Eval)
is correlation intractable (CI) if for every non-uniform polynomial-size adversary A, there exists a
negligible function such that for every R ∈ Rλ

Pr
K←H.Setup(1λ,R)

[A(K) = (x,H.Eval(K,x)) ∈ R] ≤ negl

We also require additional property which we refer to as statistical indistinguishability of hash
keys. This property states that for all large enough λ and R1, R2 ∈ Rλ, for any adversary A (even
unbounded),

| Pr
K←H.Setup(1λ,R1)

[A(K) = 1]− Pr
K←H.Setup(1λ,R2)

[A(K) = 1]| ≤ 2−λ
O(1)

The work of [PS19] showed how to construct correlation intractable for the family of circuits
given by all polynomial sized circuits of depth λ from LWE with subexponential approximation
factors.

A.6 Sigma-Protocol

In this section we recall the Σ protocol for Graph Hamiltonicity (which is an NP complete language)
by Blum [Blu86] that can be based on commitment schemes and one way functions. The Graph
Hamiltonicity language has as instance a graph G, which can be represented as an adjacency matrix

in {0, 1}(
λ
2) where λ is the number of nodes. Its witness is a subgraph H which forms a cycle in

G. The Σ protocol consists of three messages. For a complete description refer to [Blu86]. The
protocol is a parallel repetition of the following basic protocol between a prover P and verifier V .

• Prover send c1 = Com(π(G)) and c2 = Com(π) where π is a random permutation. Here Com
is a perfectly binding bit commitment scheme.

• Verifier chooses e← {0, 1} and sends it over to P .

• If e = 0, prover opens up both commitments c1, c2 to reveal π(G) and π. Otherwise it opens
up a cycle in c1.

Properties:
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• This protocol is a honest verifier zero-knowledge protocol with constant soundness error.

• We can consider a parallel repetition of the basic protocol to amplify the soundness guarantee
and reduce the error9. Such a protocol satisfies statistical soundness with soundness error
bounded by 2−m where m is the number of parallel repetitions. Thus, for every instance G not
admitting a hamiltonian cycle and first message {aj = (cj,1, cj,2)}j∈[m], there exists at most
one string e ∈ {0, 1}m for which there exists a third message {zj}j∈[m] such that (aj , ej , zj)
verifies with respect to the basic protocol for all j ∈ [m]. Also, string e can be computed by an
efficient function if the commitment scheme used to compute the first message has a trapdoor
sk10. Let this function be called fbad,λ,m,sk and it is parameterized by the number of nodes in
the graph λ, the number of parallel repetitions m, and the trapdoor sk for the commitment
scheme. The size of the circuit representing fbad,λ,m,sk is polynomial in (λ,m, |sk|).

• Note that the protocol satisfies standard witness indistinguishability against malicious veri-
fiers. In particular, parallel repetition of the constant soundness error protocol also retains
witness indistinguishability against malicious verifiers while reducing the soundness error.
That is, witness indistinguishability composes under parallel repetition.

B MPC with Threshold Mixed Adversaries: Definition

In this section, we formally define the notion of secure multiparty computation against a thresh-
old mixed adversary as defined in the works of Fitzi et al. [FHM98, FHM99]. Additionally, we
consider guaranteed output delivery. Recall that a (tMal, tSh, tFc)-threshold mixed adversary
A = (AMal,ASh,AFc) is one that corrupts a set of parties AMal maliciously, a set of parties
ASh in a semi-honest manner and a set of parties AFc in a fail-corrupt manner. It is required to
satisfy the threshold constraints: |AMal| ≤ tMal, |ASh| ≤ tSh, |AFc| ≤ tFc. While the former two
notions are quite standard, we recall that in a fail-corrupt corruption, the adversary can instruct
the corrupted party to stop its protocol execution at any point. Note that in the case of fail-corrupt
corruption, the adversary does not get to learn the internal state of the corrupted parties at any
point. For simplicity, we will omit the threshold constraints on the adversary for the rest of this
section and assume they are implicit. We now present the formal definition of an MPC proto-
col secure against a (tMal, tSh, tFc)-threshold mixed adversary A = (AMal,ASh,AFc) with static
corruption and guaranteed output delivery.

Syntax. A multi-party protocol is cast by specifying a random process that maps pairs of inputs
to pairs of outputs (one for each party). We refer to such a process as a functionality. The
security of a protocol is defined with respect to a functionality f . In particular, let N denote the
number of parties. A non-reactive N -party functionality f is a (possibly randomized) mapping of
N inputs to N outputs. A multiparty protocol with security parameter λ for computing a non-
reactive functionality f is a protocol running in time poly(λ) and satisfying the following correctness
requirement: if parties P1, . . . , PN with inputs (x1, . . . , xN ) respectively, all run an honest execution
of the protocol, then the joint distribution of the outputs y1, . . . , yN of the parties is statistically
close to f(x1, . . . , xN ). The above can also be extended to the setting of reactive functionalities.

9Note that such an amplification would not be possible against malicious verifiers as the zero knowledge property
doesn’t compose in that case.

10Recall that given the commitment a and the trapdoor sk, the decommitment can be efficiently generated.
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B.1 Defining Security

Informally, the security requirement is similar to that in standard multi-party computation where
we consider only a single adversary type - either malicious or semi-honest. The difference here
is that the adversary is additionally allowed to specify different sets (AMal,ASh,AFc) of parties
apriori that will respectively correspond to malicious/semi-honest/ fail-corrupt corruptions. Fur-
thermore, for each party in the fail-corrupt set, the adversary can adaptively decide when that
party would abort the computation. For simplicity, we will consider only static corruptions which
is the focus of this work.

Formally, the security of a multi-party computation protocol with guaranteed output delivery
against a threshold mixed adversary with respect to a functionality f is defined by comparing the
real-world execution of the protocol with an ideal-world evaluation of f by a trusted party. More
concretely, it is required that for every adversary Adv = (AMal,ASh,AFc), which attacks the real
execution of the protocol, there exists an ideal world adversary Sim, which can achieve the same
effect in the ideal-world. Let’s denote ~x = (x1, . . . , xn).

The real execution. In the real world execution of the n-party protocol Π for computing f ,
Π is executed in the presence of an adversary Adv. The honest parties follow the instructions of
Π. Initially, the Adv is given as input the security parameter λ and some auxiliary information z.
Then, Adv outputs a tuple of sets AMal,ASh,AFc ⊆ [N ] of parties to corrupt and gets as input the
inputs of all the parties in the sets AMal and ASh. Adv sends all messages in place of corrupted
parties in the sets AMal and ASh. For each party in the set AMal, it may follow an arbitrary
polynomial-time strategy. For each party in the set ASh, the adversary is required to execute the
protocol honestly. For each party in the set AFc, the adversary can choose to instruct that party
to abort the execution at any point in the protocol. Once again, note that the adversary does not
learn the internal state of any fail-corrupt party.

The interaction of Adv in protocol Π defines a random variable REALΠ,Adv(z)(λ, ~x), where
~x = (x1, . . . , xN ), whose value is determined by the coin tosses of the adversary and the hon-
est parties. This random variable contains the output of the adversary (which may be an ar-
bitrary function of its view subject to the restriction on the semi-honest parties’ behaviour) as
well as the outputs of the honest parties. We let REALΠ,Adv(z) denote the distribution ensemble
{REALΠ,Adv(z)(λ, ~x)}λ∈N,~x∈({0,1}λ)N ,z∈{0,1}∗ .

The ideal execution. In the ideal execution of the n-party protocol Π for computing function
f , an ideal world adversary Sim interacts with a trusted party. The ideal execution proceeds as
follows.

• Adversary picks corrupted sets: Sim is given the security parameter λ and an auxiliary
input z and outputs a tuple of sets AMal,ASh,AFc ⊆ [N ] of parties to corrupt.

• Parties send inputs to the trusted party: The parties send their inputs to the trusted
party, and we let x′i denote the value sent by Pi. Note that for each party Pi in ASh, the
adversary is required to send its actual input xi. For each party Pk in AFc, the adversary
can decide whether Pk should send its input or not but the adversary can’t change the input.
For each party in AMal, the adversary is free to interact as it wishes.
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• Trusted party sends output: For every party Pi whose input it did not receive, the trusted
party sets yi to 0λ. For other parties that did send their inputs, the trusted party sets yi = x′i.
The trusted party outputs f(y1, . . . , yN ) to Sim and every honest party.

• Outputs: Sim outputs an arbitrary function of its view, and the honest parties output the
value obtained from the trusted party.

The interaction of Sim with the trusted party defines a random variable IDEALf,Sim(z)(λ, ~x).

Definition 19. Let λ be the security parameter. Let f be an N -party functionality and Π be an
N -party protocol for computing f .

• We say that Π securely computes f with guaranteed output delivery in the presence of threshold
mixed adversaries if for every PPT threshold mixed adversary Adv , there exists a PPT
simulator Sim such that for every PPT distinguisher D, the following quantity is negligible in
λ if S 6∈ A:

|Pr[D(REALΠ,Adv(z)(λ, ~x)) = 1]− Pr[D(IDEALf,Sim(z)(λ, ~x)) = 1]|

where ~x = {xi}i∈[N ] ∈ ({0, 1}λ)N and z ∈ {0, 1}∗.

B.2 Security against Semi-Malicious Mixed Adversaries

Semi-Malicious Adversary. We take the definition of a semi-malicious adversary almost ver-
batim from [AJLA+12]. A semi-malicious adversary is modeled as an interactive Turing machine
(ITM) which, in addition to the standard tapes, has a special witness tape. In each round of the
protocol, whenever the adversary produces a new protocol message m on behalf of some party Pi,
it must also write to its special witness tape some pair (x, r) of input x and randomness r that
explains its behavior. More specifically, all of the protocol messages sent by the adversary on be-
half of Pi up to that point, including the new message m, must exactly match the honest protocol
specification for Pi when executed with input x and randomness r. Note that the witnesses given
in different rounds need not be consistent. Also, we assume that the attacker is rushing and hence
may choose the message m and the witness (x, r) in each round adaptively, after seeing the protocol
messages of the honest parties in that round (and all prior rounds). Lastly, the adversary may also
choose to abort the execution on behalf of Pi in any step of the interaction.

Semi-Malicious Mixed Adversaries. We now consider a weaker adversarial setting when com-
pared to the mixed adversary called a semi-malicious mixed adversary. Here, the adversarial struc-
ture is similar to a mixed adversary except that it can not pick a set of parties to be malicious but
instead, those parties can only be semi-malicious. That is, for any semi-malicious mixed adversary
A = (ASm,ASh,AFc), ASm denotes the set of parties that are semi-maliciously corrupted, ASh

denotes the set of parties that are corrupted in a semi-honest manner and AFc denotes the set of
fail-corrupt corruptions.

Definition 20. Let λ be the security parameter. Let f be an N -party functionality and Π be an
N -party protocol for N ∈ N for computing f .
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• We say that Π securely computes f with guaranteed output delivery in the presence of semi-
malicious mixed adversaries if for every PPT semi-malicious mixed adversary Adv , there
exists a PPT simulator Sim such that for every PPT distinguisher D, the following quantity
is negligible in λ if S 6∈ A:

|Pr[D(REALΠ,Adv(z)(λ, ~x)) = 1]− Pr[D(IDEALf,Sim(z)(λ, ~x)) = 1]|

where ~x = {xi}i∈[N ] ∈ ({0, 1}λ)N and z ∈ {0, 1}∗.

C Multi-Key FHE Construction in [BHP17]

Since we frequently refer to the multi-key FHE construction in [BHP17], we give the construction
here. This section is taken verbatim from [BHP17].

A “Dual” LWE-Based Multi-Key FHE with Distributed Setup. For our protocol, we
use an adaption of the “dual” of the multi-key FHE scheme from [CM15, MW16]. Just like the
“primal” version, our scheme uses the GSW FHE scheme [GSW13], and its security is based on
the hardness of LWE.

Recall that the LWE problem is parametrized by integers n,m, q (with m > n log q) and a
distribution χ over Z that produces whp integers much smaller than q. The LWE assumption says
that given a random matrix A ∈ Zn×mq , the distribution sA + e with random s ∈ Znq and e ← χm

is indistinguishable from uniform in Zmq .
For the “dual” GSW scheme below, we use parameters n < m < w < q with m > n log q and

w > m log q, and two error distributions χ, χ′ with χ′ producing much larger errors than χ (but
still much smaller than q). Specifically, consider the distribution

χ′′ = {a← {0, 1}m, b← χm, c← χ′, output c− 〈a, b〉}.

We need the condition that the statistical distance between χ′ and χ′′ is negligible (in the security
parameter n). This condition holds, for example, if χ, χ′ are discrete Gaussian distributions around
zero with parameters p, p′, respectively, such that p′/p is super-polynomial (in n).

Distributed Setup paramsi ← MFHE.DistSetup(1κ, 1N , i): Set the parameters q = poly(N)nω(1)

(as needed for FHE correctness), m > (Nn + 1) log q + 2κ, and w = m log q.11 Sample and

output a random matrix Ai ∈ Z(m−1)×n
q .

Key Generation (pki, ski)← MFHE.KeyGen(params, i): Recall that params = {paramsi}i∈[N ] =
{Ai}i∈[N ]. The public key of party i is a sequence of vectors pki = {bi,j}j∈[N ] to be formally
defined below. The corresponding secret key is a low-norm vector ti ∈ Zmq .

We will define bi,j , ti such that for Bi,j =

(
Aj
−bi,j

)
, it holds that tiBi,j = bi,i− bi,j (modq) for

all j.

In more detail, sample a random binary vector si ← {0, 1}m−1, we set bi,j = siAj mod q.
Denoting ti = (si, 1), we indeed have tiBi,j = bi,i − bi,j (modq).

11Parameters q, n, w are global and fixed once at the onset of the protocol.
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Encryption C ← MFHE.Encrypt(pki, µ): To encrypt a bit µ under the public-key pki, choose a
random matrix R ∈ Zn×wq and a low-norm error matrix E ∈ Zm×wq , and set

C := Bi,iR+ E + µG mod q,

where G is a fixed m-by-w “gadget matrix” (whose structure is not important for us here).
Furthermore, as in [CM15,MW16], encrypt all bits of R in a similar manner. For our protocol,
we use more error for the last row of the error matrix E than for the top m−1 rows. Namely,

we choose Ê ← χ(m−1)×w and e′ ← χ′w and set E =

(
Ê
e′

)
.

Decryption µ := MFHE.Dec((sk1, . . . , skN ), C): The invariant satisfied by ciphertexts in the scheme,
similarly to GSW, is that an encryption of a bit µ relative to secret key t is a matrix C that
satisfies

tC = µ · tG+ e (modq)

for a low-norm error vector e, where G is the same “gadget matrix”. The vector t is the
concatenation of all ski = ti for all parties i participating in the evaluation.

This invariant holds for freshly encrypted ciphertexts since tiBi,i = 0 ( mod q), and so ti(Bi,iR+
E + µG) = µ · tiG + tiE (modq), where e = tiE has low norm (as both ti and E have low
norm).

To decrypt, the secret-key holders compute u = t · C mod q, outputting 1 if the result is
closer to tG or 0 if the result is closer to 0.

Evaluation C := MFHE.Eval(params, C, (c1, . . . , c`)): Since ciphertexts satisfy the same invariant
as in the original GSW scheme, then the homomorphic operations in GSW work just as well
for this “dual” variant. Similarly the ciphertext-extension technique from [CM15, MW16]
works also for this variant exactly as it does for the “primal” scheme (see below). Hence we
get a multi-key FHE scheme.

The ciphertext-expansion procedure. The “gadget matrix” G used for these schemes has the
property that there exists a low-norm vector u such that Gu = (0, 0, . . . , 0, 1). Therefore, for every
secret key t = (s|1), we have tGu = 1 (modq). It follows that if C is an encryption of µ wrt secret
key t = (s|1), then the vector v = Cu satisfies

〈t, v〉 = tCu = (µtG+ e)u = µtGu+ 〈e, u〉 = µ+ ε (modq)

where ε is a small integer. In other words, given an encryption of µ wrt t we can construct a vector
v such that 〈t, v〉 ≈ µ (modq). Let A1, A2 be public parameters for two users with secret keys

t1 = (s1|1), t2 = (s2|1), and recall that we denote bi,j = siAj and Bi,i =

(
Ai
−siAi

)
=

(
Ai
−bi,i

)
.

Let C = B1,1R + E + µG be fresh encryption of µ w.r.t. B1,1, and suppose that we also
have an encryption under t1 of the matrix R. We note that given any vector δ, we can apply
homomorphic operations to the encryption of R to get an encryption of the entries of the vector
ρ = ρ(δ) = δR. Then, using the technique above, we can compute for every entry ρi a vector xi
such that 〈t1, xi〉 ≈ ρi (modq). Concatenating all these vectors, we get a matrix X = X(δ) such
that t1X ≈ ρ = δR (modq).
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We consider the matrix C ′ =

(
C X
0 C

)
, where X = X(δ) for a δ to be determined later. We

claim that for an appropriate δ this is an encryption of the same plaintext µ under the concatenated
secret key t′ = (t1|t2). To see this, notice that

t2C = (s1|1)

((
A1

−s1A1

)
R+ E + µG

)
≈ (b2,1 − b1,1)R+ µt2G (modq),

and therefore setting δ = b1,1 − b2,1, which is value that can be computed from pk1, pk2 we get

t′C ′ = (t1C|t1X + t2C) ≈ (µt1G|(b1,1 − b2,1)R+ (b2,1 − b1,1)R+ µt2G)

= µ(t1G|t2G) = µ(t1|t2)

(
G

G

)
,

as needed. As in the schemes from [CM15,MW16], this technique can be generalized to extend the
ciphertext C into an encryption of the same plaintext µ under the concatenation of any number of
keys.
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