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1 Introduction

RSA [RSA78] is the oldest, publicly known, public key encryption scheme. This
scheme allows a server to generate a public/private key pair, s.t. any client
knowing the public key can use this to encrypt a message, which can only be
decrypted using the private key. Thus the server can disclose the public key and
keep the private key secret. This allows anyone to encrypt a message, which
only the server itself can decrypt. Even though RSA has quite a few years on its
back, it is still in wide use today such as in TLS, where it keeps web-browsing
safe through HTTPS. Its technical backbone can also be used to realize digital
signatures and as such is used in PGP. However, public key cryptography, RSA
in particular, is also a primitive in itself, widely used in more complex cryp-
tographic constructions such as distributed signature schemes [Sho00], (homo-
morphic) threshold cryptosystems [HMRT12] and even general MPC [CDN01].
Unfortunately, these complex applications are not in the client-server setting,
but in the setting of several distrusting parties, and thus require the private key
to be secretly shared between the parties. This is known as distributed key gener-
ation and in order to do this, without a trusted third party, is no easy feat. Even
assuming the parties act semi-honestly, and thus follow the prescribed protocol,
it is a slow procedure as the fastest known implementation takes 15 minutes for
2048 bit keys [HMRT12]. For the malicious setting we are unaware of previous
implementation. However, in many practical settings such a key sharing only
needs to be done once for a static set of parties, where the key pair is then used
repeatedly afterwards. Thus, a setup time of 15 minutes is acceptable, even if it
is not desirable. Still, there are concrete settings where this is not acceptable.

1.1 Motivation

In the world of MPC there are many cases where a setup time of more than a few
seconds is unacceptable. For example consider the case of a static server and a
client, with a physical user behind it, wishing to carry out some instant, ad-hoc
computation. Or the setting where several users meet and want to carry out an
auction of a specific item. In these cases, and any case where a specific set of
participating parties will only carry out few computations, it is not acceptable
for the users to wait more than 15 minutes before they start computing. In such
cases only a few seconds would be acceptable.

However, if a maliciously secure shared RSA key pairs could be generated in
a few seconds, another possible application appears as well: being able to gen-
erate public key pairs in an enterprise setting, without the use of a Hardware
Security Module (HSM). A HSM is a trusted piece of hardware pervasively used
in the enterprise setting to construct and store cryptographic keys, guaranteed
to be correct and leakage free. However, these modules are slow and expensive,
and in general reflects a single point of failure. For this reason several compa-
nies, such as Unbound and Sepior have worked on realizing HSM functionality
in a distributed manner, using MPC and secret-sharing. This removes the sin-
gle point of failure, since computation and storage will be distributed between

2



physically separated machines, running different operating systems and having
different system administrators. Thus if one machine gets fully compromised by
an adversary, the overall security of the generated keys will not be affected. This
has been done successfully for the generation of symmetric keys, which usually
does not need a specific mathematical structure. Unfortunately, doing this for
RSA keys is not so easy. However, being able to generate a key pair with the pri-
vate key secretly shared will realize this functionality. But for such a distributed
system to be able to work properly in an enterprise setting such generation tasks
must be completed in a matter of seconds.

In this paper we take a big step towards being able to generate a shared
RSA key between two parties in a matter of seconds, even if one of the parties is
acting maliciously and not following the prescribed protocol. Thus opening up
for realizing the applications mentioned above.

1.2 The Setting

We consider two parties P1 and P2 whose goal is to generate an RSA modulus of
a certain length, such that the knowledge of the private key is additively shared
among them. Namely, the parties wish to compute the following:

Common input: A parameter ` describing the desired bits of the primes
in an RSA modulus, and a public exponent e.
Common output: A modulus N of length 2` bits.
Private outputs: P1 learns outputs p1, q1, d1, and P2 learns outputs p2, q2, d2,

for which it holds that
– (p1 + p2) and (q1 + q2) are prime numbers of length ` bits.
– N = (p1 + p2) · (q1 + q2).
– e · (d1 + d2) = 1 mod φ (N).

(Namely, (d1 + d2) is the RSA private key for (N, e).)

Furthermore, we want the functionality to work (or abort) even if one of the
parties is not following the protocol. That is, in the malicious setting.

1.3 Distributed RSA Key Generation

It turns out that all prior work follows a common structure for distributed RSA
key generation. Basically, since there is no efficient algorithm for constructing
random primes, what is generally done is simply to pick random, odd numbers,
and hope they are prime. However, the Prime Number Theorem tells us that this
is not very likely. In fact, for numbers of the size needed for RSA, the probability
that a random odd number is prime is around one in 350. Thus to generate an
RSA key, many random prime candidates must be generated and tested in some
way. Pairs of prime candidates must then be multiplied together to construct
a modulus candidate. Depending on whether the tests of the prime candidates
involve ensuring that a candidate is prime except with negligible probability, or
only that it is somewhat likely to be prime, the modulus candidate must also
be tested to ensure that it is the product of two primes. We briefly outline this
general structure below:
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Candidate Generation: The parties generate random additive shares
of potential prime numbers. This may involve ensuring that a candidate is
prime except with negligible probability, insuring that the candidate does not
contain small prime factors, or simply that it is just an odd number.
Construct Modulus: Two candidates are multiplied together to con-

struct a candidate modulus.
Verify Modulus: This involves ensuring that the public modulus is the

product of two primes. However, this is not needed if the prime candidates
were guaranteed to be prime (except with negligible probability).
Construct Keys: Using the additive shares of the prime candidates, along

with the modulus, the shared RSA key pair is generated.

With this overall structure in mind we consider the chronology of efficient dis-
tributed RSA key generation.

1.4 Related Work

Work on efficient 4 distributed RSA key generation was started with the seminal
result of Boneh and Franklin [BF01]. A key part of their result is an efficient al-
gorithm for verifying biprimality of a modulus without knowledge of its factors.
Unfortunately, their protocol is only secure in the semi-honest setting, against
an honest majority. Several followup works handle both the malicious and/or
dishonest majority setting [PS98,FMY98,Gil99,ACS02,DM10,HMRT12,Gav12].
First Frankel et al. [FMY98] showed how to achieve malicious security against
a dishonest minority. Their protocol proceeds like Boneh and Franklin’s scheme
[BF01], but uses different types of secret sharing along with zero-knowledge ar-
guments to construct the modulus and do the biprimality test in a malicious
secure manner. Furthermore, for their simulation proof to go through, they also
require that all candidate shares are committed to using an equivocal commit-
ment. Poupard and Stern [PS98] strengthened this result to achieve security
against a malicious majority (specifically the two-party setting) using 1-out-
of-β OT, with some allowed leakage though. Later Gilboa [Gil99] showed how
to get semi-honest security in the dishonest majority (specifically two-party)
setting. Gilboa’s approach follows along the lines of Boneh and Franklin’s proto-
col [BF01], by using their approach for biprimality testing, but also introduces
three new efficient approaches for computing the modulus from additive shares:
one based on homomorphic encryption, one based on oblivious polynomial evalu-
ation and one based on oblivious transfer. Both Algesheimer et al. [ACS02] and
Damg̊ard and Mikkelsen [DM10] instead do a full primality test of the prime
candidates individually, rather than a biprimality test of the modulus. In par-
ticular the protocol of Algesheimer et al. [ACS02] is secure in the semi-honest
setting (but can be made malicious secure) against a dishonest minority, and ex-
ecutes a distributed Rabin-Miller primality test using polynomial secret sharing

4 In theory this could be achieved using any MPC protocol implementing regular RSA
key generation and simply additively sharing the secret key at the end. However,
this would be too inefficient in practice.

4



with Θ(log(N)) round complexity, where N is the public modulus. On the other
hand Damg̊ard and Mikkelsen’s protocol [DM10] is maliciously secure against
a dishonest minority and also executes a distributed Rabin-Miller test, using a
special type of verifiable secret sharing called replicated secret sharing which
allows them to achieve constant round complexity. Later Hazay et al. [HMRT12]
introduced a practical protocol maliciously secure against a dishonest majority
(in the two-party setting), which is leakage-free. More specifically their protocol
is based on the homomorphic encryption approach from Gilboa’s work [Gil99],
but adds zero-knowledge proofs on top of all the steps to ensure security against
malicious parties. However, they conjectured that it would be sufficient to only
prove correctness of a constructed modulus. This conjecture was confirmed cor-
rect by Gavin [Gav12]. In his work Gavin showed how to build a maliciously
secure protocol against a dishonest majority (the two-party setting) by having
black-box access to methods for generating a modulus candidate which might
be incorrect, but is guaranteed to not leak info on the honest party’s shares.
The protocol then verifies the execution for every failed candidate and for the
success modulus a variant of the Boneh and Franklin biprimality test [BF01] is
carried out in a maliciously secure manner by using homomorphic encryption
and zero-knowledge.

1.5 Contributions

We present two new protocols for distributed RSA key generation. One for the
semi-honest setting and one for the malicious setting. Neither of our protocols
rely on any specific number theoretic assumptions, but instead are based on
oblivious transfer (OT), which can be realized efficiently using an OT extension
protocol [KOS15,OOS17]. The malicious secure protocol also requires access to
an IND-CPA encryption scheme, coin-tossing, zero-knowledge and secure two-
party computation protocols. In fact, using OT extension significantly reduces
the amount of public key operations required by our protocols. This is also true
for the maliciously secure protocol as secure two-party computation (and thus
zero-knowledge) can be done black-box based on OT.

We show that our maliciously secure protocol is more than an order of mag-
nitude faster than its most efficient semi-honest competitor [HMRT12]. In par-
ticular, our eight threaded implementation takes on average less than 44 seconds
to generate a maliciously secure 2048 bit key, whereas the protocol of Hazay et
al. [HMRT12] on average required 15 minutes for a semi-honestly secure 2048
bit key. We achieve malicious security so cheaply mainly by executing a slightly
stronger version of our semi-honest protocol and adding a new, lightweight zero-
knowledge argument at the end, to ensure that the parties have behaved hon-
estly. This overall idea has been hypothesized [HMRT12] and affirmed [Gav12].
However, unlike previous approaches in this paradigm [DM10,Gav12] our ap-
proach does not require rerunning and verifying the honesty of candidates that
are discarded, thus increasing efficiency. We achieve this by introducing a new
ideal functionality which gives the adversary slightly more (yet useless) power
than normally allowed. This idea may be of independent interest as it is relevant

5



for other schemes where many candidate values are constructed and potentially
discarded throughout the protocol. We furthermore show how to eliminate much
computation in the malicious setting by allowing a few bits of leakage on the hon-
est party’s prime shares. We carefully argue that this does not help an adversary
in a non-negligible manner.

We also introduce a new and efficient approach to avoid selective failure
attacks when using Gilboa’s protocol [Gil99] for multiplying two large integers
together. We believe this approach may be of independent interest as well.

2 Preliminaries

Our protocols use several standard building blocks, namely oblivious transfer,
and for the maliciously secure protocol, coin-tossing, an IND-CPA encryption
scheme, a zero-knowledge protocol along with secure two-party computation. We
here formalize these building blocks.

Random OT. Our protocol relies heavily on random OT both in the candidate
generation and construction of modulus phases. The functionality of random
OT is described in Fig. 2.1. Specifically we suffice with a functionality that sam-
ples the sender’s messages at random and lets the receiver choose which one
of these random messages it wishes to learn. Random OTs of this form can be
realized highly efficiently based on an OT extension, which uses a small number
of “base” OTs to implement any polynomial number of OTs using symmetric
cryptography operations alone. OT extension was suggested by Beaver [Bea96],
followed by a practical construction by Ishai et al. [IKNP03]. Extremely ef-
ficient constructions in the semi-honest setting were described by Asharov et
al. [ALSZ13] and Kolesnikov and Kumaresan [KK13]. Several works designed
efficient protocols for 1-out-of-2 OT extension with security against malicious
adversaries [NNOB12,ALSZ15,KOS15]. We are interested in the more general
random 1-out-of-β OT extension, with security against malicious adversaries
(this level of security will be needed in Section 3.3). A protocol for this task
was described by Orrù et al. [OOS17], with an overhead which is just slightly
larger than in the semi-honest case. In some cases we need the sender to be
able to specifically choose its messages. However, this is easily achieved by us-
ing the random OT-model as a black box, as the sender can simply use the
random messages as one-time pads to its true messages. Thus if the sender has
chosen messages a0, . . . , aβ−1 and receives random messages m0, . . . ,mβ−1 from
the functionality. It simply sends the encryptions a0⊕m0, . . . , aβ−1⊕mβ−1. The
receiver can then decrypt the true message by computing ai = (ai ⊕mi)⊕mi.

We will sometimes abuse notation and assume that F`,βOT supports specific
messages, using the approach above, by allowing the sender to input the message
(transfer, a0, . . . , aβ−1), and the receiver receiving message (transfer, ai).

Finally we note that when β > 2 we do not need the receiver to learn all
possible random messages from the OT functionality, but rather only a single one
of his choice. This means that our protocol can use the 1-out-of-β OT extension
of Orrù et al. [OOS17]. This gives us sublinear complexity in β for each OT.
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FIGURE 2.1 (F`,βOT )

Functionality interacts with a sender snd and receiver rec. It is initialized with
the public values `, β ∈ N. It proceeds as follows:

– Upon receiving (transfer) from snd and (receive, i) from rec with
i ∈ {0, . . . , β − 1} the functionality picks uniformly random values
m0, . . . ,mβ−1 ∈ {0, 1}` and sends (transfer,m0, . . . ,mβ−1) to snd and
(transfer,mi) to rec.

– If a party is maliciously corrupted then it will receive its output first
and if it returns the message (deliver) then the functionality will give
the honest party its output, otherwise if the corrupted party returns the
message (abort), then output (abort) to the honest party.

Ideal functionality for random oblivious transfer

AES. Our maliciously secure scheme also requires usage of AES. However, any
symmetric encryption scheme will do as long as it is a block-cipher (with blocks
of at least κ bits) and can be assumed to be a pseudo-random permutation
(PRP) and used in a mode that is IND-CPA secure. We will denote this scheme
by AES : {0, 1}κ × {0, 1}∗ → {0, 1}∗ and have that AES−1

K (AESK(M)) = M
when K ∈ {0, 1}κ,M ∈ {0, 1}∗.

Coin-tossing. We require a coin-tossing functionality several places in our mali-
ciously secure protocols. Such a functionality samples a uniformly random ele-
ment from a specific set and hands it to both parties. We formally capture the
needed functionality in Fig. 2.2.

FIGURE 2.2 (FCT)

Functionality interacts with P1 and P2. Upon receiving (toss,R) from both
parties, where R is a description of a ring, sample a uniformly random element
x ∈ R and send (random, x) to both parties.

Corruption: If a party is corrupt, then send (random, x) to this party first,
and if it returns the message (deliver) then send (random, x) to the other
party, otherwise if the corrupted party returns the message (abort) then
output (abort) to the honest party.

Ideal functionality for coin-tossing

Zero-Knowledge Argument-of-Knowledge. As part of the setup phase of our ma-
licious protocol we need both parties to prove knowledge of a specific piece of in-
formation. For this purpose we require a zero-knowledge argument-of-knowledge.
More formally, let L ⊂ {0, 1}∗ be a publicly known language in NP and ML be
a language verification function of this language i.e. for all x ∈ L there exist

7



a string w of length polynomial in the size of x s.t. ML(x,w) = > and for all
x 6∈ L,w ∈ {0, 1}∗ then ML(x,w) = ⊥. Thus this function outputs > if and only
if w is a string that verifies that x belongs to the language L. We use this to
specify the notion of a zero-knowledge argument-of-knowledge that a publicly
known value x ∈ L. Specifically one party, P the prover, knows a witness w and
wish to convince the other party, V the verifier, that ML(x,w) = > without
revealing any information on w.

We formalize this in Fig. 2.3 and note that such a functionality can be realized
very efficiently using garbled circuits [JKO13] or using the “MPC-in-the-head”
approach [IKOS09,GMO16].

FIGURE 2.3 (FMLZK )

Functionality interacts with two parties P and V . It is initialized on a de-
terministic polytime language verification function ML : {0, 1}∗ × {0, 1}∗ →
{>,⊥}. It proceeds as follows:

– On input (prove, x, w) from P and (verify, x′) from V . If x = x′ and
ML(x,w) = > output (>) to V , otherwise output (⊥).

Ideal functionality for zero-knowledge argument-of-knowledge

Two-party Computation. We use a maliciously secure two-party computation
functionality in our protocol. For completeness we here formalize the ideal func-
tionality we need for this in Fig. 2.4. Such a functionality can be implemented
efficiently in constant rounds using a garbled circuit protocol [Lin16].

FIGURE 2.4 (Ff2PC)

Functionality interacts with two parties P1 and P2. It is initialized on a de-
terministic polytime function f : {0, 1}n1+n2 → {0, 1}m1+m2 . It proceeds as
follows:

Input: On input (input, xI) from PI where xI ∈ {0, 1}nI , where no message
(input, ·) was given by PI before, store xI .

Output: After having received messages (input, ·) from both P1 and P2,
compute y1‖y2 = y = f(x) where x = x1‖x2 and y1 ∈ {0, 1}m1 , y2 ∈
{0, 1}m2 . Then return (output, y1) to P1 and (output, y2) to P2.

Corruption: If party PI is corrupt, then it is given yI from the functionality
before y3−I is given to P3−I . If PI returns the message (deliver) then
send y3−I to party PI , otherwise if P3−I returns the message (abort) then
output (abort) to PI .

Ideal functionality for two-party computation

8



Notation. We let κ be the computational security parameter and s the statistical
security parameter. We use ` to denote the amount of bits in a prime factor of an
RSA modulus. Thus ` ≥ κ. We use [a] to denote the list of integers 1, 2, . . . , a. We
will sometimes abuse notation and implicitly view bit strings as a non-negative
integer. Furthermore we abuse notation and assume that mod computes the
remainder when it is not in an equivalence.

3 Construction

This section details constructions of protocols for two-party RSA key genera-
tion. We first describe in Section 3.1 the general structure of our protocols. We
describe in Section 3.2 a protocol for the semi-honest setting which is consider-
ably more efficient than previous protocols for this task. Finally, we describe in
Section 3.3 our efficient protocol which is secure against a malicious adversary.

3.1 Protocol Structure

Following previous protocols for RSA key generation, as described in Section 1,
the key generation protocol is composed of the following phases:

Candidate Generation: In this step, the two parties choose random
shares p1 and p2, respectively, with the hope that p1 + p2 is prime. For our
maliciously secure protocol they also commit to their choices. The parties then
run a secure protocol, based on 1-out-of-β OT, which rules out the possibility
that p1 + p2 is divisible by any prime number smaller than some pre-agreed
threshold B1. We call this the first trial division.
If p1 + p2 is not divisible by any such prime then it passed on to the next
stage, otherwise it is discarded.
Construct Modulus: Given shares of two candidate primes p1, p2 and
q1, q2, the parties run a secure protocol, based on 1-out-of-2 OT, which com-
putes the candidate modulus N = (p1 +p2)(q1 + q2). The output N is learned
by both parties.
Verify Modulus: This step consists of two phases in our semi-honest

protocol and three phases in the malicious protocol. Both protocols proceeds
s.t. once N is revealed and in the open, the parties run a second trial division,
by locally checking that no primes smaller than a threshold B2 (B1 < B2) are
a factor of N . If N is divisible by such a number then N is definitely not a
valid RSA modulus and is discarded. For an N not discarded, the parties run
a secure biprimality test which verifies that N is the product of two primes. If
it is not, it is discarded. For the malicious protocol, a proof of honesty phase
is added to ensure that N is constructed in accordance with the commitments
from Candidate Generation and that N is indeed a biprime, constructed using
the “correct” shares, even if one party has acted maliciously.
Construct Keys: Up to this point, the parties generated the modulus
N . Based on the value Φ(N) mod e and their prime shares p1, q1, respec-
tively p2, q2, the parties can locally compute their shares of the secret key d1,
respectively d2 s.t. e · (d1 + d2) = 1 mod φ(N).
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In principle, the protocol could run without the first and second trial division
phases. Namely, the parties could choose their shares, compute N and run the
biprimality test to check whether N is the product of two primes. The goal of
the trial division tests is to reduce the overall run time of the protocol: Checking
whether p is divisible by β, filters out 1/β of the candidate prime factors, and
reduces, by a factor of 1−1/β, the number of times that the other phases of the
protocol need to run. It is easy to see that trial divisions provide diminishing
returns as β increases. The thresholds B1, B2 must therefore be set to minimize
the overall run time of the protocol.

The phases of the protocol are similar to those in previous work that was
described in Section 1.4. Our protocol has two major differences: (1) Almost
all cryptographic operations are replaced by the usage of OT extension, which
is considerably more efficient than public key operations was has been used
previously. (2) Security against malicious adversaries is achieved efficiently, by
observing that most of checks that are executed in the protocol can be run
while being secure only against semi-honest adversaries, assuming privacy is
kept against malicious attacks and as long as the final checks that are applied
to the chosen modulus N are secure against malicious adversaries.

3.2 The Semi-honest Construction

The protocol consists of the phases described in Section 3.1, and is described in
Fig. 3.2 and 3.3. These phases are implemented in the following way:

Candidate Generation: The parties P1 and P2 choose private random
strings p1 and p2, respectively, of length `−1 bits, subject to the constraint that
the two least significant bits of p1 are 11, and the two least significant bits of p2

are 0 (this ensures that the sum of the two shares is equal to 3 modulo 4).
The parties now check, for each prime number 3 ≤ β ≤ B1, that (p1 + p2) 6=

0 mod β. In other words, if we use the notation a1 = p1 mod β and a2 = −p2 mod
β, then the parties need to run a secure protocol verifying that a1 6= a2.

Previous approaches for doing this involved using a modified BGW pro-
tocol [BF01], Diffie-Hellman based public key operations (which have to be
implemented over relatively long moduli, rather than in elliptic-curve based
groups) [HMRT12], and using a 1-out-of-β OT [PS98]. We take our point of
departure in the latter approach, but improve the efficiency by having a lower
level of abstraction and using an efficient random OT extension. We describe
our approach by procedure Div-OT in Fig. 3.1.

The parties run this test for each prime 3 ≤ β ≤ B1 in increasing order (where
B1 is the pre-agreed threshold). Note that the probability that the shares are
filtered by the test is 1/β and therefore the test provides diminishing returns as
β increases. The threshold B1 is chosen to optimize the overall performance of
the entire protocol.

Construct Modulus: Once two numbers pass the previous test, the parties
have shares of two candidate primes p1, p2 and q1, q2. They then run a secure
protocol which computes the candidate modulus

N = (p1 + p2) (q1 + q2) = p1q1 + p2q2 + p1q2 + p2q1.
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FIGURE 3.1 (Div-OT)

The parties have common input β ∈ N and P1 has p1 ∈ N and P2 has p2 ∈ N.
The procedure returns ⊥ iff β|(p1 + p2), otherwise it returns >.

1. P2 inputs (transfer) to Fκ,βOT and learns random messages {mi}i∈[β].

2. P1 computes a1 = p1 mod β and inputs (receive, a1) to Fκ,βOT and gets
output (deliver,ma1).

3. P2 lets a2 = −p2 mod β and sends ma2 to P1.
4. P1 checks whether ma1 = ma2 and outputs ⊥ and sends it to P2 if this is

the case, otherwise it outputs > and sends this to P2.

The 1-out-of-β OT based trial division procedure

The multiplication p1q1 (resp. p2q2) is computed by P1 (resp. P2) by itself. The
other two multiplications are computed by running a protocol by Gilboa [Gil99],
which reduces the multiplication of `− 1 bit long numbers to `− 1 invocations
of 1-out-of-2 OTs, implemented using an efficient OT extension. The protocol
works as follows: Assume that the sender’s input is a and that the receiver’s input
is b, and that they must compute shares of a · b. Let the binary representation
of b be b = b`−1, . . . , b2, b1. For each bit the two parties run a 1-out-of-2 OT
protocol where the sender’s inputs are (ri, (ri + a) mod 22`), and the receiver’s
input is bi, where ri is a random 22` bit integer. Denote the receiver’s output as
ci = ri + a · bi mod 22`. It is easy to verify that

a · b =
(∑

i∈[`−1]2
i−1 · ci

)
+
(∑

i∈[`−1] − 2i−1 · ri
)
.

These will therefore be the two outputs of the multiplication protocol. The pro-
tocol can be implemented using random 1-out-of-2 OT:

1. The two parties run a random OT where the receiver’s input is bi. The
sender learns si,0, si,1. The receiver learns si,bi , where the strings si,0, si,1
are in [0, 22` − 1].

2. The sender sends the string ŝ = si,0 + si,1 + a mod 22` to the receiver.
3. The sender defines ri = si,0.
4. If bi = 0 then the receiver learns si,0 and sets its output to be ci = si,0.
5. If bi = 1 then the receiver learns si,1 and sets its output to be ci = ŝ −
si,1 mod 22`. Note that this value is equal to a+ si,0 mod 22`.

The communication overhead of this protocol is that of the random OT
protocol, plus sending a 2`-bit string from the sender to the receiver. Since we
run this protocol for each bit, we implement it using random OT extension.

After constructing the modulus, the parties verify that the public exponent
e will work with this specific modulus. I.e. that gcd(φ(N), e) = 1. Namely, that
gcd(N − p − q + 1, e) = 1. This is done in the same manner as Boneh and
Franklin [BF01], where P1 computes w1 = N + 1 − p1 − q1 mod e and P2

computes w2 = p2 + q2 mod e. The parties exchange the values w1 and w2 and
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PROTOCOL 3.2 (Semi-honest Key Generation ΠRSA-semi - Part 1)

Candidate Generation

1. P1 picks a uniformly random value p̃1 ∈ Z2`−3 and defines p1 = 4·p̃1+3.
2. P2 picks a uniformly random value p̃2 ∈ Z2`−3 and defines p2 = 4p̃2.
3. Let B = {β ≤ B1|β is prime}. The parties execute procedure Div-OT

in Fig. 3.1 for each β ∈ B, where P1 uses input p1 and P2 input p2. If
any of these calls output ⊥, then discard the candidate pair p1, p2.

Construct Modulus
Let p1, q1, p2, q2 be two candidates that passed the generation phase above,
where P1 knows p1 = 4 · p̃1 + 3, q1 = 4 · q̃1 + 3 and P2 knows p2 = 4 · p̃2, q2 =
4 · q̃2.

1. The parties execute the following steps for each α ∈ {p, q} and i ∈
[`− 1]:

(a) P2 chooses a uniformly random value rα,i ∈ Z22` and sets c0,α,i =
rα,i and

c1,α,i =

{
rα,i + q2 mod 22` if α = p

rα,i + p2 mod 22` if α = q

(b) P2 invokes F2`,2
OT with input (transfer, c0,α,i, c1,α,i).

(c) P1 inputs (receive, α1,i) to F2`,2
OT , α1,i is the i’th bit of α1. P1 thus

receives the message (deliver, cα1,i,i) from F2`,2
OT for i ∈ [`− 1].

2. P1 computes zα1 =
∑
i∈[`−1] cα1,i,i · 2i−1 mod 22` and P2 computes

zα,i2 = −
∑
i∈[`−1] rα,i · 2

i−1 mod 22`.

3. P2 computes a2 = p2q2 + zp2 + zq2 mod 22` and sends this to P1.
4. P1 computes a1 = p1q1 + zp1 + zq1 mod 22` and sends this to P2.
5. P1 and P2 then compute (p1 + p2)(q1 + q2) = N = (a1 + a2 mod P)

mod 22`.
6. P1 computes w1 = N+1−p1−q1 mod e and sends this to P2. Similarly

P2 computes w2 = p2 + q2 mod e and sends this to P1.
7. P1 and P2 checks if w1 = w2. If this is the case they discard the can-

didate N and its associated shares p1, q1, p2, q2. Otherwise they define
the value w = w1 − w2 mod e for later use.

Protocol for semi-honestly secure RSA key generation in the FOT-hybrid model

then verify that w1 6= w2. If instead w1 = w2 it means that e is a factor of φ(N)
and the parties discard the candidate shares.

Verify Modulus: As previously mentioned, for our semi-honest protocol the
verification of the modulus consists of two phases in a pipelined manner; first a
trial division phase and then a full biprimality test. Basically, the full biprimality
test is significantly slower than the trial division phase, thus, the trial division
phase weeds out unsuitable candidates much cheaper than the biprimality test.
Thus, overall we expect to execute the biprimality test much fewer times when
doing trial division first.

12



PROTOCOL 3.3 (Semi-honest Key Generation ΠRSA-semi - Part 2)

Trial Division
Let B = {B1 < p ≤ B2|p is prime} for some previously decided B2. P2 then
executes trial division of the integers up to B2. If a factor is found then
send ⊥ to P1 and discard N and its associated prime shares p1, q1, p2, q2.
Otherwise send > to P1.

Biprimality Test
The parties execute the biprimality test described in Fig. 3.4 and discard
the candidate N if the test fails.

Generate Shared Key

1. Both parties use the value w computed in 7 in Construct Modulus
associated with the candidate N to compute b = w−1 mod e, and
then finally P1 computes d1 = b−b·(N+1−p1−q1)+1

e
c. If e| − p2 − q2 then

P2 computes d2 = 1 + b−b·(−p2−q2)
e

c, otherwise P2 computes d2 =

b−b·(−p2−q2)
e

c.
2. P1 outputs (N, p1, q1, d1) and P2 outputs (N, p2, q2, d2).

Protocol for semi-honestly secure RSA key generation in the FOT-hybrid model

The trial division phase itself is very simple: since both parties know the
candidate modulus N , one party simply try to divide it by all primes numbers
in the range B1 < β ≤ B2. If successful, then N is discarded.

If N passes the trial division, we must still verify that it is in fact a biprime,
except with negligible probability. To do this we use a slightly modified version
of the biprimality suggested by Boneh and Franklin [BF01], which relies on
number-theoretic properties of N = pq where p = 3 mod 4 and q = 3 mod 4.
(Note that in the prime-candidate generation, p and q were guaranteed to have
this property.) The test is described in Fig. 3.4. By slightly modified, we mean
that step 2), which ensures that gcd(p + q − 1, N) = 1, is computed without
the need of doing operations in the group (ZN [x]/(x2 + 1))∗/Z∗N . Specifically we
leverage the steps of “Construct Modulus” for doing oblivious multiplication by
computing an additive secret sharing s1, s2 of s = r · (p + q − 1) for a random
r ∈ ZN modulo 23`. It is then possible for the parties to check gcd(s,N) = 1 in
plain which is sufficient to ensure gcd(p + q − 1, N) = 1. An issue is however,
that if r · (p + q − 1) is not reduced modulo N , then even for a large r, the
value s might leak information about p+ q. But it is not possible for the parties
to simply reduce their shares modulo N before exchanging them since s is a 3`
bit number and thus (s1 mod N)+(s2 mod N) 6=

(
s1 + s2 mod 23`

)
mod N

since 23` > N . Fortunately this is easy to handle; by simply ensuring that the
secret sharing of s is over an s-bit bigger domain than needed for computing the
product r · (p+ q − 1). In this case it will hold that s1 + s2 > 23`+s except with
probability 2−s. This is because s1 + s2 mod 23`+s < 23` and since s1 and s2 is
a random sharing we get that the probability that the s most significant bits of,
say s1, are all 0 is at most 2−s. If these bits are not all 0 we are necessarily in the
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FIGURE 3.4 (Biprimality test [BF01])

1. The parties execute following test s times.
(a) P1 samples a random value γ ∈ Z×N with Jacobi symbol 1 over N .
(b) P1 sends γ to P2.

(c) P1 computes γ1 = γ
N+1−p1−q1

4 mod N and sends this value to P2.

(d) P2 checks if γ1 ·γ
−p2−q2

4 mod N 6= ±1. In this case P2 sends ⊥ to P1

and the parties break the loop and discard the candidate N .
2. The parties verify that gcd(N, p+ q − 1) = 1. a

(a) P1 chooses a random number r̄1 ∈ ZN and P2 chooses a random
r̄2 ∈ ZN . (The parties will verify that gcd((r̄1 + r̄2) · (p + q − 1)
mod N,N) = 1.)

(b) The parties run a multiplication protocol (the first steps of “Construct
Modulus” using modulo 23`+s+2) where they compute shares α1, α2

(known to P1, P2 respectively) of r̄1 · (p2 + q2 − 1) mod 23`+s+2, and
shares β1, β2 of r̄2 · (p1 + q1) mod 23`+s+2.

(c) P1 sends to P2 the value s1 = r̄1(p1 + q1) + (α1 + β1 mod 23`+s+2)−
23`+s+2 mod N .

(d) P2 sends to P1 the value s2 = r̄2(p2 +q2−1)+
(
α2 + β2 mod 23`+s+2

)
mod N .

(e) The parties verify that gcd(s1 +s2, N) = 1. If this is not the case then
they discard the candidate N .

a This test is required in order not to run additional tests over the group
TN = (ZN [x]/(x2 + 1))×/Z×N , which proved to be very slow. See [BF01]
Sect. 4.1.

The biprimality test inspired by Boneh and Franklin [BF01]

case where s1 + s2 > 23`+s as otherwise the inequality s1 + s2 mod 23`+s < 23`

cannot hold. Thus by computing s1 − 23`+s over the integers, we get an integer
sharing of r · (p+ q − 1) which is then possible to reduce modulo N 5. The idea
of turning a modular secret sharing into an integer secret sharing was previously
explained by Algesheimer et al. [ACS02].

Construct Keys: This phase is a simplified version of what is done by
Boneh and Franklin [BF01]. Using the values w1 and w2 defined in construct
modulus the parties compute w = w1 − w2 mod e and then b = w−1 mod e.

P1 defines its share of the private key as d1 = b−b·(N+1−p1−q1)+1
e c. P2 defines

its share of the private key as d2 = 1 + b−b·(−p2−q2)
e c or d2 = b−b·(−p2−q2)

e c or
depending on whether e|p2 + q2 or not.

We formally describe the full semi-honest protocol in Fig. 3.2 and 3.3.

Ideal functionality. The exact ideal functionality, FRSA-semi, our semi-honest pro-
tocol realizes is expressed in Fig. 3.5. The functionality closely reflects the specific

5 We note that for technical reasons our protocol will do the sharing over 3` + s + 2
bits instead of just 3`+ s bits.

14



construction of the modulus and the shares of the private key of our protocol.
In particular, we notice that both primes of the public modulus are congruent
to 3 modulo 4, which is needed for the Boneh and Franklin biprimality test to
work. Based on these shared primes, the shares of the private keys are gener-
ated and handed to the parties. This part of the functionality closely follows the
previous literature [BF01,Gil99,ACS02,DM10,Gav12]. First notice using primes
congruent to 3 modulo 4 does not decrease security. This follows since all primes
suitable for RSA are odd this means that only about half of potential primes are
not used. Thus the amount of possible moduli are reduced by around 75%. How-
ever, this is similar to all previous approaches. Furthermore, this does not give
an adversary any noticeable advantage in finding primes used in key generation.

Next notice that the value φ(N) mod e is leaked. This leakage comes implic-
itly from how the shares d1 and d2 are constructed (although it is made explicit
in the ideal functionality). We note that since we use the method of Boneh and
Franklin [BF01] for this computation, this leakage is also present in their work
and any other protocol that uses this approach to generate the shared keys.
Specifically this means that at most log(e) bits of information on the honest
party’s secret shares are leaked. Thus when e is small, this does not pose any
issue. However, using the common value of e = 216 +1 this could pose a problem.
We show how to avoid leaking φ(N) mod e in our maliciously secure protocol.

FIGURE 3.5 (FRSA-semi)

Functionality interacts with parties P1 and P2. Upon query of an integer ` ∈ N
and a prime e from both parties the functionality proceeds as follows:

– Sample random values p1, p2, q1, q2 of ` − 1 bits each s.t. p1 ≡ q1 ≡ 3
mod 4 and p2 ≡ q2 ≡ 0 mod 4, p = p1 + p2 and q = q1 + q2 are prime,
and gcd((p− 1)(q − 1), e) = 1.

– Compute d = e−1 mod (p − 1)(q − 1), let b = ((p − 1)(q − 1))−1 mod e

and set d2 = b−b·(−p2−q2)
e

c and d1 = d− d2.
– Output (N = pq, b, p1, q1, d1) to P1 and (N = pq, b, p2, q2, d2) to P2.

Ideal functionality for generating a shared RSA key semi-honestly

Using this functionality we get the following theorem:

Theorem 3.6. The protocol ΠRSA-semi in Fig. 3.2 and 3.3 securely realizes the
ideal functionality FRSA-semi in Fig. 3.5 against a static and semi-honest adver-
sary in the F ·,·OT-hybrid model.

We will not prove this theorem directly. The reason being that the following
section will make it apparent that all steps of the semi-honest protocol is also
part of the malicious protocol. Now remember that a simulator for a semi-honest
protocol receives the output of the corrupt party. In our protocol this will in
particular mean the prime shares. Thus our semi-honest simulator will proceed
like the malicious one for the same steps, using the corrupt party’s prime shares.

15



3.3 Malicious construction

The malicious protocol follows the semi-honest one with the following exceptions:

– The underlying OT functionality must be maliciously secure. 6

– An extractable commitment to each party’s choice of shares is added to the
construct candidate phase. This is needed since the simulator must be able
to extract the malicious party’s choice of shares in order to construct mes-
sages indistinguishable from the honest party, consistent with any cheating
strategy of the malicious party.

– A new and expanded version of the Gilboa protocol is used to compute a
candidate modulus. This is done since a malicious P2 (the party acting as the
sender in the OTs) might launch a selective failure attack (details below).

– We use OT to implement an equality check of w1 = N+1−p1−q1 mod e and
w2 = p2 +q2 mod e to ensure that gcd(φ(N), e) = 1 without leaking w1 and
w2, and thus avoid leaking φ(N) mod e which is leaked in the semi-honest
protocol.

– A proof of honesty step is added to the verify modulus phase, which is used
to have the parties prove to one another that they have executed the protocol
correctly.

– The private key shares are randomized and computed using a secure protocol.

For OT we simply assume access to any ideal functionalities as described in
Section 2. Regarding the commitments, the expanded Gilboa protocol and the
proof of honesty, we give further details below.

AES-based commitments. We implement these “commitments” as follows: Be-
fore Candidate Generation, in a phase we will call Setup each party “commits”
to a random AES key K by sending c = AESAESr(K)(0) for a random r (chosen
by coin-tossing). This unusual “double encryption” ensure that c is not only
hiding K, through the encryption, but also binding to K. The key K is then
used to implement a committing functionality. This is done by using K as the
key in an AES encryption, where the value we want to commit to is the message
encrypted. However, for our proof to go through we require this “commitment”
to be extractable. Fortunately this is easily achievable if the simulator knows
K and to ensure this we do a zero-knowledge argument of knowledge of K s.t.
c = AESAESr(K)(0). By executing this zero-knowledge argument the simulator
can clearly extract K (assuming the zero-knowledge argument is an ideal func-
tionality).

Expanded Gilboa Protocol. The usage of OT in the malicious setting is infamous
for selective failure vulnerabilities [KS06,MF06] and our setting is no different.
Specifically, what a malicious P2 can do is to guess that P1’s choice bit is 0 (or

6 This is in fact not strictly necessary. It is sufficient to only retain privacy under a
malicious attack. However, for simplicity we simply assume that is fully maliciously
secure.
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1) in a given step of the Gilboa protocol. In this case, P2 inputs the correct
message for choice 0, i.e. the random string r. But for the message for a choice
of 1 it inputs the 0-string. If P2’s guess was correct, then the protocol executes
correctly. However, if its guess was wrong, then the result of the Gilboa protocol,
i.e. the modulus, will be incorrect. If this happens then the protocol will abort
during the proof of honesty. Thus, two distinct and observable things happen
dependent on whether P2’s guess was correct or not and so P2 learns the choice
bit of P1 by observing what happens. In fact, P2 can repeat this as many times as
it wants, each time succeeding with probability 1/2 (when P1’s input is randomly
sampled). This means that with probability 2−x it can learn x of P1’s secret input
bits.

To prevent this attack we use the notion of noisy encodings. A noisy encoding
is basically a linear encoding with some noise added s.t. decoding is only possible
when using some auxiliary information related to the noise. We have party P1

noisily encode its true input to the Gilboa protocol. Because of the linearity it
is possible to retrieve the true output in the last step of the Gilboa protocol
(where the parties send their shares to each other in order to learn the result
N) without leaking anything on the secret shares of P1, even in the presence of
a selective failure attack.

In a bit more detail, we define a 2−s-statistically hiding noisy encoding of a
value a ∈ Z2`−1 as follows:

– Let P be the smallest prime larger than 22`.

– Pick random values h1, . . . , h2`+3s, g ∈ FP and random bits d1, . . . , d2`+3s

under the constraint that g +
∑
i∈[2`+3s] hi · di mod P = a.

– The noisy encoding is then (h1, . . . , h2`+3s, g) and the decoding info is (d1, . . . ,
d2`+3s).

Now for each of its shares, p1 and q1, P1 noisily encodes as described and
sends the noisy encodings (hp,1, . . . , hp,2`+3s, gp) and (hq,1, . . . , hq,2`+3s, gq) to
P2. Next, when they execute the OT steps, P1 uses the decoding info (dp,1, . . . ,
dp,2`+3s) and (dq,1, . . . , dq,2`+3s) of p1 and q1 respectively and uses this as input
the OTs instead of the bits of p1 and q1. For each such bit of p1, P2 inputs to the
OT a random value c0,p,i = ri and the value c1,p,i = ri + q2 (and also operates
in a similar way for q). P1 then receives the values cdp,i,p,i, cdq,i,q,i ∈ ZP and P2

holds the values c0,p,i, c1,p,i, c0,q,i, c1,q,i ∈ ZP . It turns out that leaking at most s
bits of (dp,1, . . . , dp,2`+3s) and (dq,1, . . . , dq,2`+3s) to P2 does not give more than a
2−s advantage in finding the value encoded. Thus, even if P2 launches s selective
failure attacks it gains no significant knowledge on P1’s shares.

After having completed the OTs, the parties compute their shares of the
modulus N by using the linearity of the encodings. Specifically P1 computes

a1 = p1q1 +

 ∑
i∈[2`+3s]

cdq,i,q,i · hq,i

+

 ∑
i∈[2`+3s]

cdp,i,p,i · hp,i

 mod P
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and P2 computes

a2 = p2q2+gpq2+gqp2−

 ∑
i∈[2`+3s]

c0,q,i · hq,i

−
 ∑
i∈[2`+3s]

c0,p,i · hp,i

 mod P

The parties then exchange their values a1 and a2 and now the modulus N =
a1 + a2 mod P. We believe that this approach to thwart selective failure at-
tacks, when multiplying large integers, could be used other settings as well. In
particular, we believe that for certain choices of parameters our approach could
make a protocol like MASCOT [KOS16] more efficient since it would be possible
to eliminate (in their terminology) the combining step.

Proof of Honesty. The proof of honesty has three responsibilities: First, to verify
that the modulus is constructed from the values committed to in candidate
generation. Second; to generate a random sharing of the private key. Finally,
to do a maliciously secure execution of the full biprimality test of Boneh and
Franklin [BF01]. The proof of honesty is carried out twice. Once where party P1

acts as the prover and P2 the verifier, and once where P2 acts the prover and
P1 the verifier. Thus each party gets convinced of the honesty of the other party
and learns their respective shares of the private key.

To ensure that the modulus was constructed from the values committed to,
a small secure two-party computation is executed which basically verifies that
this is the case. Since the commitments are AES-based, this can be carried out
in a very lightweight manner. Furthermore, to ensure that the values used in the
maliciously secure biprimality test are also consistent with the shares committed
to, we have the prover commit to the randomization values as well and verify
these, along with their relation to the shares.

To compute the shares of the secret key we let the proving party input some
randomness which is used to randomize the verifying party’s share of the private
key.

To ensure a correctly executed biprimality test, two checks are performed:
First to ensure correct execution of step 1) of Fig. 3.4 a typical zero-knowledge
technique is used, where coin-tossing is used to sample public randomness and
the prover randomizes its witness along with the statement to prove. The verifier
then gets the option to decide whether he wants to learn the value used for
randomizing or the randomized witness. This ensures that the prover can only
succeed with probability 1/2 in convincing the verifier if it does not know a
witness. Second, to ensure correct execution of step 2) of Fig. 3.4 we verify that
the parties executed the multiplication subprotocol correctly and sent the correct
values s1 and s2 and in step c and d. This reduces to verifying the correctness of
the computation s1 +s2 ≡ (r̄1 + r̄2)·(p1 +p2 +q1 +q2−1) mod N . Unfortunately
we cannot simply release the value (r̄1 + r̄2) · (p1 + p2 + q1 + q2− 1) in plain as it
might leak some information about p1, p2, q1, q2 when it is not reduced modulo
N . To fix this we introduce a new trick: The prover picks a large, random pad
r̂P , and the verifier a smallish random pad r̂V . We then secure compute the value
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δ = r̂P + r̂V ((r̄1 + r̄2) · (p1 + p2 + q1 + q2 − 1)− s1 − s2) and open this towards
the verifier. Now the verifier can compute the modulo N operation in plain on
δ, and the prover can do the same on r̂P and send the remainder to the verifier.
The verifier can then check that r̂P = δ mod N . If the values s1, s2 have been
correctly construct it must hold that s1 + s2 ≡ (r̄1 + r̄2) · (p1 + p2 + q1 + q2 − 1)
mod N and hence r̂V ((r̄1 + r̄2) · (p1 + p2 + q1 + q2 − 1)− s1 − s2) ≡ 0 mod N .
Thus a random pad on either side of the congruence will give the same remainder
when reduced modulo N .

In a bit more detail, letting P denote the prover and V the verifier, the proof
of honesty proceeds as follows, keeping in mind that p1 = 4p̃1, q1 = 4q̃1 and
p2 = 4p̃2 + 3, q2 = 4q̃2 + 3:

– Run the step 1) of biprimality test in Fig. 3.4 using a coin-tossing protocol
to sample the random values γi.

– P picks s random values t1, . . . , ts ∈ Z2`+s−2 and computes an AES encryp-
tion of each of these.

– Based on each of the random values γi from the biprimality test, P computes
all s2 combinations γ

tj
i mod N and sends these to V .

– The parties use coin-tossing to pick s bits b1, . . . , bs ∈ {0, 1}.
– For each j ∈ [s], if bj is 0 then P sends tj ∈ Z2`+s−2 to V , otherwise it sends
−p̃P − q̃P + tj ∈ Z2`+s−2 .

– Using the values from the biprimality test V verifies that γ
tj
i mod N or

γ
−p̃P−q̃P+tj
i mod N (depending on its choice bj) is as expected.

– Finally they use the two-party computation to verify the multiplication
carried out in step 2) of the biprimality test in Fig. 3.4, along with the
AES-based commitments of p̃P , q̃P , r̄P , r̄V , tj for j ∈ [s] and that φ(N)
mod e 6= 0.7 This two-party computation furthermore computes a random
sharing of the secret key d and gives each party their share.

– If any checks above fails then V aborts.

We formally describe the full protocol in Fig. 3.7, 3.8,3.9 and 3.10.

Ideal Functionality. We express the ideal functionality that our protocol real-
izes in Fig. 3.12. When there is no corruption the functionality simply proceeds
almost as the semi-honest functionality in Fig. 3.5. That is, making a shared key
based on random primes congruent to 3 modulo 4, but where the shares of the
secret key are sampled at random in the range between −22`+s and 22`+s. This
means that the value φ(N) mod e is not leaked. When a party is corrupted the
adversary is allowed certain freedoms in its interaction with the ideal function-
ality. Specifically the adversary is given access to several commands, allowing
it and the functionality to generate a shared RSA key through an interactive
game.

The functionality closely reflects what the adversary can do in our protocol.
Specifically we allow a malicious party to repeatedly query the functionality to

7 This means that gcd(e, φ(N)) = 1 since e is prime. This is done to ensure that it is
possible to compute the private key.
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PROTOCOL 3.7 (Malicious Key Generation ΠRSA - Part 1)

Setup

1. The parties call (toss, {0, 1}κ) on FCT twice to sample uniformly ran-
dom bitvectors r1, r2 ∈ {0, 1}κ. (Note that these outputs are known to
both parties.)

2. For I ∈ {1, 2} party PI picks a uniformly random value KI ∈ {0, 1}κ,
computes and sends AESAESrI (KI)(0) = cI to P3−I .

3. Let ML be the function outputting > on input ((rI , cI),KI) if and
only if AESAESrI (KI)(0) = cI . For I ∈ {1, 2} party PI inputs

(prove, (rI , cI),KI) on FMLZK and party P3−I inputs (verify, (rI , cI)).
(The simplest way of implementing these proofs is probably using gar-
bled circuits [JKO13].)

4. If any of these calls output (⊥) then the parties abort. Otherwise they
continue.

Candidate Generation

1. P1 picks a uniformly random value p̃1 ∈ Z2`−3 , defines p1 = 4 · p̃1 + 3,
computes and sends Hp̃1 = AESK1(p̃1) to P2.

2. P2 picks a uniformly random value p̃2 ∈ Z2`−3 and defines p2 = 4 · p̃2,
computes and sends Hp̃2 = AESK2(p̃2) to P1.

3. Let B = {β ≤ B1|β is prime}. The parties execute procedure Div-OT
in Fig. 3.1 for each β ∈ B, where P1 uses input p1 and P2 input p2. If
any of these calls output ⊥, then discard the candidate pair p1, p2.

Protocol for maliciously secure RSA key generation.

learn a random modulus, based on its choice of prime shares. This is reflected
by commands sample and construct. Sample lets the adversary input its desired
share of a prime and the functionality then samples a random share for the
honest party s.t. the sum is prime. This command also ensures that the primes
work with the choice of public exponent e. I.e., that gcd(e, (p − 1)(q − 1)) = 1.
Specifically it verifies that the gcd of e and the prime candidate minus one is equal
to one. This implies that no matter which two primes get paired to construct a
modulus, it will always hold that gcd(e, φ(N)) = 1. Construct lets the adversary
decide on two primes (of which it only knows its own shares) that should be
used to construct a modulus and generate shares of the secret key in the same
manner as done by Boneh and Franklin [BF01]. Finally, the adversary can then
decide which modulus it wishes to use, which is reflected in the command select.

However, the functionality does allow the adversary to learn a few bits of
information of the honest party’s prime shares. In particular, the trial division
part of our candidate generation phase, allows the adversary to gain some knowl-
edge on the honest party’s shares, as reflected in command leak. Specifically the
adversary gets to guess the remainder of the honest party’s shares modulo β,
for each β ∈ B and is informed whether its guess was correct or not. In case the
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PROTOCOL 3.8 (Malicious Key Generation ΠRSA - Part 2)

Construct Modulus
Let p1, q1, p2, q2 be two candidates that passed the generation phase above,
where P1 knows p1 = 4p̃1 + 3, q1 = 4q̃1 + 3 and Hp̃2 , Hq̃2 and P2 knows
p2 = 4p̃2, q2 = 4q̃2 and Hp̃1 , Hq̃1 . Furthermore, let P be the smallest prime
number greater than 22`.

1. For each α ∈ {p, q} party P1 picks a list of values
hα,1, . . . , hα,2`+3s, gα ∈ ZP and a list of bits dα,1, . . . , dα,2`+3s ∈ {0, 1}
uniformly at random under the constraint that gα+

∑
i∈[2`+3s] hα,i ·dα,i

mod P = α1.
2. The parties execute the following steps for each α ∈ {p, q} and i ∈

[2`+ 3s]:

(a) P2 chooses a uniformly random value rα,i ∈ ZP and sets

c0,α,i = rα,i and c1,α,i =

{
rα,i + q2 mod P if α = p

rα,i + p2 mod P if α = q
.

(b) P2 invokes F2`,2
OT with input (transfer, c0,α,i, c1,α,i).

(c) P1 inputs (receive, dα,i) to F2`,2
OT . P1 thus receives the message

(deliver, cdα,i,i) from F2`+3s,2
OT .

3. P1 sends the values hα,1, . . . , hα,2`+3s, gα to P2 for α ∈ {p, q}.
4. P1 computes zα1 =

∑
i∈[2`+3s] cdα,i,i · hα,i mod P and P2 computes

zα2 = −
∑
i∈[2`+3s] rα,i · hα,i mod P.

5. P2 computes a2 = p2q2 + zp2 + gp · q2 + zq2 + gq · p2 mod P and sends
this to P1.

6. P1 computes a1 = p1q1 + zp1 + zq1 mod P and sends this to P2.
7. P1 and P2 then compute N = (a1 + a2 mod P) mod 22`.
8. P1 computes w1 = N + 1− p1 − q1 mod e and similarly P2 computes

w2 = p2 + q2 mod e.
9. P2 inputs (transfer) to Fκ,dlog(e)e

OT and learns r0, . . . , rβ−1 ∈ {0, 1}κ.
10. P1 inputs (receive, w1) and thus learns rw1 .
11. P2 sends rw2 to P1.
12. If rw1 = rw2 then P1 informs P2 of this and they both discard the

candidate N and its associated shares p1, q1, p2, q2.

Protocol for maliciously secure RSA key generation.

malicious party is P2 then if any of its guesses for a particular prime is wrong,
the adversary loses the option of selecting the modulus based on this prime.

The functionality keeps track of the adversary’s queries and what was leaked
to it, through the set J and dictionary C. Basically the set J stores the unique
ids of primes the simulator has generated and which the adversary can use to
construct an RSA modulus. Thus the ids of primes already used to construct
a modulus are removed from this set. The same goes for primes a malicious
P2 have tried to learn extra bits about, but failed (as reflected in leak). The
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PROTOCOL 3.9 (Malicious Key Generation ΠRSA - Part 3)

Trial Division
Let B = {B1 < p ≤ B2|p is prime}. P2 then executes trial division of the
integers up to B2. If a factor is found then send ⊥ to P1 and discard N and
its associated prime shares p1, q1, p2, q2. Otherwise send > to P1.

Biprimality Test
The parties execute the biprimality test described in Fig. 3.4 using 3` +
4s+ 2 calls to F3`+s+2,2

OT where PI acts as the receiver in all the OTs when
it has input r̄I ∈ ZN when computing “Construct Modulus”. After step 2.a
PI sends Hr̄I = AESKI (r̄I).

Proof of Honesty
The parties call (toss,Z×N ) on FCT enough times to get s distinct random
elements, denoted by γi ∈ Z×N s.t. JN (γi) = 1 for i ∈ [s].
(Recall that p̃ denotes p� 2, i.e. p shifted to the right two steps.) Execute
the following steps where P = P1, V = P2 with p̃P = p̃1 and p̃V = p̃2 and
where P = P2, V = P1 with p̃P = p̃2 and p̃V = p̃1. Similarly for q̃1, q̃2:

1. For each i ∈ [s], P computes γi,P = γ
N−5

4
−p̃P−q̃P

i mod N
2. P sends γ1,P , . . . , γs,P to V .
3. For each i ∈ [s], V then verifies that γ−p̃V −q̃Vi · γi,P ≡ ±1 mod N .
4. If any of the checks do not pass then V sends ⊥ to P , outputs ⊥ and

aborts.
5. For each j ∈ [s], P picks a random value tj ∈ {0, 1}`−2+s. It then

computes AESKP (tj) = Htj and sends this to V .

6. For each i, j ∈ [s], P then sends the values γ̄i,j = γ
tj
i mod N to V .

7. The parties call (toss, {0, 1}) on FCT s times to sample uniformly ran-
dom bits b1, . . . , bs ∈ {0, 1}.

8. For each j ∈ [s], P then sends vj = bj · (−p̃P − q̃P ) + tj to V .
9. For each i, j ∈ [s] V checks that

γ
vj
i mod N =? γ̄i,j · γ

bj
i,P · γ

−bj ·N−5
4

i mod N

If this is not the case then it sends ⊥ to P , outputs ⊥ and aborts.

Protocol for maliciously secure RSA key generation.

dictionary C on the other hand, maps prime ids already used to construct an
RSA modulus, into this modulus. This means that once two primes have been
used, using construct, to construct a modulus, their ids are removed from J
and instead inserted into C. After the construction we furthermore allow the
adversary PI to pick a value w′I ∈ [0, e[ and learn if w′I = w3−I when w3−I is
constructed according to the protocol using the honest party’s shares. However,
if the corrupt party is P2 and it guesses correctly then it won’t be allowed to use
the candidate.
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PROTOCOL 3.10 (Malicious Key Generation ΠRSA - Part 4)

Proof of Honesty (continued)

11. P picks uniformly at random a value ρP ∈ {0, 1}2`+s.
12. P picks a random value r̂P ∈ {0, 1}3`+2s+2 and V picks a ran-

dom value r̂V ∈ {0, 1}s. The parties define the following function
f , where P gives private input (p̃P , q̃P ,KP , r̄P , ρP , r̂P ), V gives pri-
vate input (p̃V , q̃V ,KV , r̄V , r̂V ). Let σ = sP + sV mod N , based
on the values from step 2 of the biprimality test. They both give
public input (N, e, cP , rP , cV , rV , σ,Hp̃P , Hq̃P , Hr̄P , Hp̃V , Hq̃V , Hr̄V ,
{bj , vj , Htj}i∈[s]):

δ : = r̂P + r̂V · ((r̄P + r̄V ) · (4(p̃1 + p̃2 + q̃1 + q̃2) + 5)− σ)

w : = N − 5− 4(p̃P + q̃P + p̃V + q̃V ) mod e ,

χ : = (Hp̃P =? AESKP (p̃P )) ∧ (Hq̃P =? AESKP (q̃P ))

∧ (cP =? AESAESrP (KP )(0)) ∧ (Hr̄P =? AESKP (r̄P ))

∧ (Hp̃V =? AESKV (p̃V )) ∧ (Hq̃V =? AESKV (q̃V ))

∧ (cV =? AESAESrV (KV )(0)) ∧ (Hr̄V =? AESKV (r̄V ))

∧ (∀j ∈ [s] : AESKP (vj + bj · (p̃P + q̃P )) =? Htj )

∧ (N =? (4(p̃V + p̃P ) + 3) · (4(q̃V + q̃P ) + 3))

∧ w 6= 0

if V = P1 : dV :=

⌊
−(w−1 mod e) · (N − 5− 4p̃1 − 4q̃1) + 1

e

⌋
else : dV :=

⌊
−(w−1 mod e) · (−4p̃2 − 4q̃2)

e

⌋
if χ = 1 : d̄V := dV − ρP

else : d̄V = ⊥, δ = ⊥
Output (χ, δ, d̄V ) to V and (⊥) to P

13. The parties then use F2PC to compute the output of f and abort if
χ = 0.a

14. P sends δ̂ = r̂P mod N to V .
15. V checks that δ̂ ≡ δ mod N

Generate Shared Key

1. P1 computes and outputs d1 = d̄1 + ρ1.
2. If e| − 4p̃2 − 4q̃2 then P2 computes and outputs d2 = d̄2 + ρ2, else it

computes and outputs d2 = d̄2 + ρ2 + 1.

a This step must be done in parallel for both the cases where P1 is the prover
and P1 the verifier.

Protocol for maliciously secure RSA key generation.
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Finally we have the command abort which allows an adversary to abort the
functionality at any point it wishes, as is the norm in maliciously secure dishonest
majority protocols.

Security. If there is no corruption we have the same security as described for the
semi-honest protocol in Section 3.2, except that φ(N) mod e is not implicitly
leaked by party’s secret key share. Next we see that allowing the adversary to
query the functionality for moduli before making up its mind does not influ-
ence security. Since the adversary is polytime bounded, it can only query for
polynomially many moduli. Furthermore, as the honest party’s shares are ran-
domly sampled by the functionality, and since they are longer than the security
parameter (e.g. 1021 vs. 128) the adversary will intuitively not gain anything
from having this ability. Arguments for why this is the case have been detailed by
Gavin [Gav12]. We note that if desired, it is possible to force the most significant
bit, of the prime shares, to be 1. Thus guaranteeing that the most significant or
second to most significant bit of the 2` bit modulus N is 1 as well. Remember
that we suffice with semi-honest execution for most of our protocol and that we
force correctness through the zero-knowledge argument in proof of honesty. Thus
forcing the most significant bit of the shares to be 1 comes down to simply also
checking this in the function f computed by F2PC.

Regarding the allowed leakage we show in Appendix C.2 that (for standard
parameters) at most log2(e/(e−1))+2 log2(B1/2) bits are leaked to a malicious
party without the protocol aborting, no matter if P1 or P2 is malicious. If P2 is
malicious it may choose to try to learn (1 + ε)x bits of the honest party’s prime
shares for a small ε ≤ 1 with probability at most 2−x. However, if it is unlucky
and does not learn the extra bits then it will not be allowed to use a modulus
based on the prime it tried to get some leakage on.

We now argue that this leakage is not an issue, neither in theory nor in
practice. For the theoretical part, assume learning some extra bits on the hon-
est party’s prime shares would give the adversary a non-negligible advantage in
finding the primes of the modulus. This would then mean that there exists a
polytime algorithm breaking the security of RSA with non-negligible probabil-
ity by simply exhaustively guessing what the leaked bits are and then running
the adversary algorithm on each of the guesses. Thus if the amount of leaked
bits is O(polylog(κ)), for the computational security parameter κ, then such an
algorithm would also be polytime, and cannot exist under the assumption that
RSA is secure. So from a theoretical point of view, we only need to argue that
the leakage is O(polylog(κ)). To do so first notice that B1 is a constant tweaked
for efficiency. But for concreteness assume it to be somewhere between two con-
stants, e.g., 31 and 3181.8 Since B1 is a constant it also means that the leakage
is constant and thus O(1) ∈ O(polylog(κ)).

However, if the concrete constant is greater than κ this is not actually saying
much, since we then allow a specific value greater than 2κ time to be polynomial

8 We find it unrealistic that the a greater or smaller choice will be yield a more efficient
execution of our protocol.

24



in κ. However, it turns out that for B1 = 31 the exact leakage is only 3.4 bits
and for B1 = 3181 it is 5.7 bits. 9

Formally we prove the following theorem in Appendix C.2.

Theorem 3.11. The protocol ΠRSA in Fig. 3.7, 3.8, 3.9 and 3.10 securely re-
alizes the ideal functionality FRSA in Fig. 3.12 against a static and malicious
adversary in the F ·,·OT-, FCT-, FZK-,F2PC-hybrid model assuming AES is IND-
CPA and a PRP on the first block per encryption.

FIGURE 3.12 (FRSA)

Upon query of bitlength 2` and public exponent e from parties P1 and P2

proceed as functionality FRSA-semi in Fig. 3.5. Otherwise, letting PI for I ∈
{1, 2} denote the corrupt party, the functionality initializes an empty set J
and a dictionary C mapping IDs to a tuple of elements. Allow the adversary
to execute any combination of the following commands:

Sample. On input (j, pI,j) where j 6∈ J , pI,j ≤ 2`−1 and pI,j ≡ 3 mod 4
if I = 1 or pI,j ≡ 0 mod 4 if I = 2: select a random value p3−I,j of `− 1
bits, under the constraint that pj = p1,j + p2,j ≡ 3 mod 4 is prime and
gcd(e, pj − 1) = 1. Add j to J .

Leak. For each j ∈ J and for each β ≤ B1 where β is prime, let PI input
a value aj,β and if I = 1 return a bit indicating if aj,β 6= −p2,j mod β. If
I = 2 return a bit indicating if aj,β 6= p1,j mod β and set J = J\{j} if
aj,β = p1,j mod β.

Construct. On input (j, j′, w′I) from PI where j, j′ ∈ J but j, j′ 6∈ C then
compute
d = e−1 mod (pj − 1)(pj′ − 1). Pick a random integer d1 ∈ [22`+s] and set
d2 = d − d1. Return (N = pj · pj′ , pI , dI) to PI and set C[j] = C[j′] =
(N, d3−I , j, j

′) and J = J\{j, j′}. If PI returns a value w′I,j,j′ ∈ [0, e − 1],
proceed as follows: If I = 1 notify P1 whether w′1,j,j′ = p2,j + p2,j′ mod e
or not. If instead I = 2 then notify P2 whether w′2,j,j′ = N+1−(p1,j+p1,j′)
mod e or not. Furthermore, if I = 2 and > was returned set C = C\{j, j′}.

Select. On the first input (j, j′) with j, j′ ∈ C from PI , where C[j] =
(N, d3−I , j, j

′) send (N, p3−I,j , q3−I,j , d3−I) to P3−I and stop accepting
commands.

Abort. If PI inputs ⊥ at any time then output ⊥ to both parties and abort.

Ideal functionality for generating shared RSA key

3.4 Outline of Proof

Efficient malicious security One of the reasons we are able to achieve ma-
licious security in such an efficient manner is because of our unorthodox ideal

9 These values were calculated using the calculation done in the proof of Lemma C.1.
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functionality. In particular, by giving the adversary the power to discard some
valid moduli, we can prove our protocol secure using a simulation argument
without having to simulate the honest party’s shares of potentially valid moduli
discarded throughout the protocol. This means, that we only need to simulate
for the candidate N and its shares p1, q1, p2, q2 that actually get accepted as an
output of the protocol.

Another key reason for our efficiency improvements is the fact that almost
all of the protocol is executed in a “strong” semi-honest manner. By this we
mean that only privacy is guaranteed when a party is acting maliciously, but
correctness is not. This makes checking a candidate modulus N much more
efficient than if full malicious security was required. At the end of the protocol,
full malicious security is ensured for a candidate N by the parties proving that
they have executed the protocol correctly.

The simulator. With these observations about the efficiency of the protocol in
mind, we see that the overall strategy for our simulator is as follows, assuming
w.l.o.g. that PI is the honest party and P3−I is corrupted.

For the Setup phase the simulator simply emulates the honest party’s choice
of key KI by sampling it at random. The reason this is sufficient is that because
AES is a permutation and KI is random, thus AESrI (KI) is random in the view
of the adversary. The crucial thing to notice is that nothing is leaked about this
when using it as key in the second encryption under the PRP property. We do
strictly need the second encryption since the encryption key rI is public, thus if
we didn’t have the second encryption an adversary could decrypt and learn KI !
Regarding the zero-knowledge proof we notice that the simulator can extract
the adversary’s input K ′3−I . We notice that the simulator can emulate FML

ZK by
verifying K ′3−I in the computation of c3−I . Again we rely on AES being a PRP
to ensure that if K ′3−I is not the value used in computing c3−I then the check
will always fail because it would require the adversary to find K ′3−I 6= K3−I s.t.
AESr3−I (K ′3−I) = AESr3−I (K3−I). Thus the adversary is committed to some
specific key K3−I extracted by the simulator.

For Candidate Generation the simulator starts by sampling a random value
p̃I and extracts the malicious party’s share p̃3−I from its “commitment” Hp̃3−I ,
since the simulator knows the key K3−I . Furthermore, since we use AES in a
mode s.t. it is IND-CPA secure the adversary cannot distinguish between the
values Hp̃I simulated or the values sent in the real protocol.

Next see that if 4(p̃1 + p̃2)+3 is not a prime, then the simulator will emulate
the rest of the protocol using the random value it sampled. This simulation will
be statistically indistinguishable from the real world since the simulator and the
honest party both sample at random and follow the protocol. Furthermore, since
the shares don’t add up to a prime, any modulus based on this will never be
output in the real protocol since the proof of honesty will discover if N is not a
biprime.

On the other hand, if the shares do sum to a prime then the simulator
uses sample on the ideal functionality FRSA to construct a prime based on the
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malicious party’s share p̃3−I . It then simulates based on the value extracted from
the malicious party. Specifically for the OT-based trial division, the simulator
extracts the messages of the malicious party and uses these as input to leak on
the ideal functionality. This allows the simulator to learn whether the adversary’s
input to the trial division plus the true and internal random value held by the
ideal functionality is divisible by β.

To simulate construction of a modulus, we first consider a hybrid functional-
ity, which is the same as FRSA, except that a command full-leak is added. This
command allows the simulator to learn the honest party’s shares of a prime
candidate, under the constraint that it is not used in the RSA that key the
functionality outputs. It is easy to see that adding this method to the function-
ality does not give the adversary more power, since it can only learn the honest
party’s shares of primes which are independent of the output.

With this expanded, hybrid version of FRSA in place, the simulator emulates
the construction of a modulus by first checking if one of the candidate values
were prime and the other was not. In this case it uses full-leak to learn the
value that is prime and then simulates the rest of the protocol like an honest
party. This will be statistically indistinguishable from the real execution since
the modulus will never be used as output since it is not a biprime and so will be
discarded, at the latest, in the proof of honesty phase.

However, if both candidate values are marked as prime the simulator simu-
lates the extended Gilboa protocol for construction of the modulus. It does so
by extracting the malicious party’s input to the calls to Fκ,βOT . Based on this it
can simulate the values of the honest party. This is pretty straightforward, but
what is key is that no info on the honest party’s prime shares is leaked to the
adversary in case of a selective failure attack (when the adversary is the sender

in Fκ,βOT ). To see this, first notice that selecting h1, . . . , h2`+2s, g at random and
computing g +

∑
i∈[2`+2s] hi · di mod P is in fact a 2-universal hash function.

This implies, using some observations by Ishai et al. [IPS09], that whether these
values are picked at random s.t. they hash to the true input or are just random,
is 2−s indistinguishable. Thus extending the function with h2`+2s+1, . . . g2`+3s,
allows the adversary to learn s of the bits di without affecting the indistinguish-
able result. Since s is the statistical security parameter and each di is picked at
random, this implies that the adversary cannot learn anything non-negligible.

The proof of security of the remaining steps is quite straightforward. For trial
division the simulator basically acts as an honest party since all operations are
local. For the biprimality test the simulation is also easy. For step 1, it is simply
following the proof by Boneh and Franklin [BF01], for step 2, simulation can
be done using the same approach as for the Gilboa protocol. Regarding proof of
honesty the simulation follows the steps for the simulation of the biprimality test
and uses the emulation of the coin-tossing functionality to learn what challenge
it needs to answer and can thus adjust the value sent to the verifier that will
make the proof accept. Finally the key generation is also unsurprising as all the
computations are local.
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4 Instantiation

Optimizations.

Fail-fast. It is possible to limit the amount of tests carried out on composite
candidates, in all of the OT-based trial division, the second trial division and
the biprimality test, by simply employing a fail-fast approach. That is, to simply
break the loop of any of these tests, as soon as a candidate fails. This leads to
significantly fewer tests, as in all three tests a false positive is more likely to be
discovered in the beginning of the test. (For example, a third of the candidates
are likely to fail in the first trial division test, which checks for divisibility by 3.)

Maximum runtime. In the malicious protocol an adversary can cheat in such
a way that a legitimate candidate (either prime or modulus) gets rejected. In
particular this means that the adversary could make the protocol run forever.
For example, if he tries to learn 1024 bits of the honest party’s shares by cheating
then we expect to discard 21023 good candidate moduli! Thus, tail-bounds for
the choice of parameters should be computed s.t. the protocol will abort once
it has considered more candidate values than would be needed to find a valid
modulus e.w.p. 2−s. In fact, it is strictly needed in order to limit the maximum
possible leakage from selective failure attacks.

Synchronous execution. To ensure that neither party P1 nor party P2 sits idle at
any point in time of the execution of the protocol, we can have them exchange
roles for every other candidate. Thus, every party performs both roles, but on
two different candidates at the same time, throughout the execution of the pro-
tocol. For example, while Alice executes as P1 in the candidate generation on
one candidate, she simultaneously executes the candidate generation as P2 for
another candidate. Similarly for Bob. The result of this is that no party will
have to wait for the other party to complete a step as they will both do the
same amount of computation in each step.

Leaky two-party computation. We already discussed in Section 3.3 how leaking a
few bits of information on the honest party’s prime shares does not compromise
the security of the protocol. Along the same line, we can make the observation
that learning a predicate on the honest party’s share will in expectation not
give more than a single bit of information to the adversary. In particular it can
learn at most x bits of information with probability at most 2−x. This is the
same leakage that is already allowed to P2, and thus allowing this would not
yield any significant change to the leakage of our protocol. This means that it
can suffice to construct only two garbled circuits to implement F2PC by using
the dual-execution approach [MF06]. This is compared to the s garbled circuits
needed in the general case where no leakage is allowed [Lin16]. In effect of this
optimization the ideal functionality must be expanded slightly, since now any
malicious party can pick an arbitrary predicate to be executed on both its and
the honest party’s prime shares. This is reflected by allowing the adversary to
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give this as input in the select command. In this way the simulator can emulate
a 1-bit leaked two-party computation by passing the predicate of the adversary
onto the ideal functionality and thus achieve an indistinguishable simulation.

Constant rounds. We note that the way our protocols ΠRSA-semi and ΠRSA are
presented in Fig. 3.2 and Fig. 3.3, respectively Fig. 3.7, Fig. 3.8, Fig. 3.9 and
Fig. 3.10 does not give constant time. This is because they are expressed it-
eratively s.t. candidate primes are sampled until a pair passing all the tests is
found. However it is possible to simply execute each step of the protocols once
for many candidates in parallel. This is because, based on the Prime Number
Theorem, we can find the probability of a pair of candidates being good. This
allows us to compute the amount of candidate values needed to ensure that a
good modulus is found, except with negligible probability. Unfortunately this
will in most situations lead to many candidate values being constructed unnec-
essarily. For this reason it is in practice more desirable to construct batches of
candidates in parallel instead to avoid doing a lot of unnecessary work, yet still
limit the amount of round of communication.

Efficiency Comparison. We here try to compare the efficiency of our protocol
with previous work. This is done in Table 1.

With regards to more concrete efficiency we recall that both our protocols
and previous work have the same type of phases, working on randomly sampled
candidates in a pipelined manner. Because of this feature, all protocols limit
the amount of unsuitable candidates passing through to the expensive phases,
by employing trial division. This leads to fewer executions of expensive phases
and thus to greater concrete efficiency. In some protocols this filtering is ap-
plied both to individual prime candidates and to candidate moduli, leading to
minimal executions of the expensive phases. Unfortunately this is not possible
in all protocols. For this reason we also show in Table 1 which protocols man-
age to improve the expected execution time by doing trial division of the prime
candidates, respectively the moduli.

To give a proper idea of the efficiency of the different protocols we must also
consider the asymptotics. However, because of the diversity in primitives used in
the previous protocols, and in the different phases, we try to do this by comparing
the computational bit complexity. Furthermore to make the comparison as fair
as possible we assume the best possible implementations available today are used
for underlying primitives. In particular we assume an efficient OT extension is
used for OTs [KOS15].

Based on the table we can make the following conclusions regarding the
efficiency of our protocols. First, considering the semi-honest protocol; we see
that the main competition lies in the protocols of Boneh and Franklin [BF01],
Gilboa [Gil99], and Algesheimer et al. [ACS02]. With regards to Boneh and
Franklin, the asymptotics are comparable and both schemes support trial divi-
sion of both the individual candidates and the modulus. However, Boneh and
Franklin require an honest majority and thus cannot be realized in the essential

29
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candidates

Candidate
generation

Construct
modulus

(Bi)primality
test

Leakage

Our result∗
IND-CPA,
FOT, FCT

X X X X O(1)O(1)O(1) O(`2/ log2(`)) O(`)O(`)O(`) O(`2)O(`2)O(`2) O(s · `3) τ + 2

[BF01] None 7 7 X X O(1)O(1)O(1) O(`2/ log2(`)) O(`)O(`)O(`) O(`2)O(`2)O(`2) O(s · `3) 2

[FMY98] DL 7 X 7 X O(1)O(1)O(1) O(`2/ log2(`)) O(`3) O(`3) O(s2 · `3) 2

[PS98]† FOT X X X X O(1)O(1)O(1) O(`2/ log2(`)) O(`)O(`)O(`) O(`2)O(`2)O(`2) ? τ + 2

[Gil99] PRG, FOT X 7 7 X O(1)O(1)O(1) O(`2/ log2(`)) O(`)O(`)O(`) O(`2)O(`2)O(`2) O(s · `3) 2

[ACS02] None 7 7 X 7 O(`) O(`/ log(`))O(`/ log(`))O(`/ log(`)) O(`)O(`)O(`) O(`2)O(`2)O(`2) O(s · `3) 2

[DM10]
CRS, Strong

RSA
7 X X X O(1)O(1)O(1) O(`2/ log2(`)) O(`3) O(`3) o(s · `3)o(s · `3)o(s · `3) 2

[HMRT12] DCR, DDH X X X X O(1)‡ O(`2/ log2 `) O(`3) O(`3) O(s · `3) 2

Table 1. Comparison of the different protocols for distributed RSA key generation. The best possible values are highlighted in bold.
All values assume a constant, and minimal, amount of participating parties; i.e. 2 or 3. The column Amount of candidates expresses the
expected amount of random candidates that must be generated before finding a suitable modulus. The column Candidate generation
expresses the computational bit complexity required to construct a single candidate prime. The column Construct modulus expresses the
computational bit complexity required to construct a single potential modulus, based on two prime candidates. The column (Bi)primality
test expresses the computational bit complexity required to verify that a single prime candidate is prime except with negligible probability
or (depending on the protocol) to verify that a single modulus is the product of two primes except with negligible probability. The column
Leakage expresses how many bits of information of the honest party’s shares of the primes that is leaked to the adversary. Here τ means

that
∑
β∈B1

log
(

β
β−1

)
bits can be leaked to a malicious adversary. Furthermore, the adversary is allowed to pick a probability x with

which it learns (1+ ε)x extra bits. However, if the adversary does not learn the extra bits then the honest party learns that the adversary
has acted maliciously.
∗: For the malicious protocol O(s2 · `3) operations are executed once per successful key pair generation.
†: The authors do not describe how to ensure biprimality in case of a malicious adversary.
‡: Constant round on average.



two-party setting. Gilboa supports a dishonest majority. Unfortunately it does
not have the option of trial division on the prime candidates and thus requires
testing more candidates. However our semi-honest protocol is very similar to one
of the protocols introduced by Gilboa in [Gil99], but with the addition of effi-
cient OT-based trial division of the prime candidates. Our greatest competition
for the semi-honest protocol is with Algesheimer et al. as they expect to test
asymptotically fewer prime candidates than us. However, this comes at the price
of a large amount of rounds requires, making it challenging to use efficiently over
the Internet. Furthermore, unlike our protocol, they require an honest majority
making it possible for them to leverage efficient information theoretic construc-
tions.

The only protocols relevant for malicious security are those of Frankel et
al. [FMY98], Damg̊ard and Mikkelsen [DM10], Poupard and Stern [PS98], and
Hazay et al. [HMRT12]. Of these protocols only the latter two are secure against
a dishonest majority. Comparing to Damg̊ard and Mikkelsen we see that even
though they have the most efficient primality test, they unfortunately require
a very large computation for every potential candidate, even before trial divi-
sion. This, along with the fact that it requires an honest majority, limits its
desirability.

Next we see that on the surface Poupard and Stern looks very competitive
to our scheme. However, there are two issues with that protocol that are not
reflected in the table: First, they don’t provide a full maliciously secure protocol.
In particular they do not describe how to do a biprimality test secure against
a malicious and dishonest majority. Second, the constants in constructing a
modulus are significantly larger than ours. The reason is that they must compute
several 1-out-of-m OT for different primes m to multiply two prime candidates.
Since they need this to be a specific, rather than random, OT, it means that
something must be communicated for each possible option.

With this discussion in mind we see that the only competition in the setting
of a malicious dishonest majority is the protocol by Hazay et al. This is also
the newest of the schemes and is considered the current state-of-the-art in this
setting. However, this protocol requires asymptotically more operations for every
step compared to our maliciously secure protocol.

Finally, we also consider the protocol of Gavin [Gav12]. This paper does not
give a concrete protocol but instead assumes access to different functionalities
with certain requirements along with zero-knowledge arguments. Because of the
lack of a concrete realization we have not been able to include it in the table.
Using these abstract functionalities and arguments the author shows how to com-
pile a “strong” semi-honest scheme into a scheme secure in the malicious model
against a dishonest majority. His overall idea is the same as ours; construct a,
possibly incorrect modulus and prove that is is correct in the end of the pro-
tocol. However, unlike our approach, where we ensure that the other party has
used the same candidates in the proof as used to compute the modulus, Gavin
instead requires opening and verifying the computation of each failed candi-
date. This leads to about a factor 2 overhead in the entire protocol. However,
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the zero-knowledge argument the author presents uses the Boneh and Franklin
biprimality test and thus has s iterations of a constant amount of expensive op-
erations. However, each iterations also requires a zero-knowledge argument. No
concrete implementation is given but it seems that a zero-knowledge argument
presented by Hazay et al. can be used. However, this requires O(s) expensive
operations. Thus giving a total complexity of O(s2) expensive operations, like
in our malicious protocol.

Implementation. Below we outline the concrete implementation choices we
made. We implement AES in counter mode, using AES-NI, with κ = 128 bit
keys. For 1-out-of-2 OT (needed during the Construct Modulus phase) we use
the maliciously secure OT extension of Keller et al. [KOS15]. For the base OTs
we use the protocol of Peikert et al. [PVW08] and for the internal PRG we use
AES-NI with the seed as key, in counter mode. For the random 1-out-of-β OT
we use the protocol of Naor and Pinkas [NP99]. For the coin-tossing we use the
standard “commit to randomness and then open” approach.

In the Construct Modulus phase, instead of having each party sample the
values hα,1, . . . , hα.2`+3s, gα ∈ ZP and send them to the other party, we instead
have it sample a seed and generate these values through a PRG. The party then
only needs to send the seed to the other party. This saves a large amount of
communication complexity without making security compromises.

Our implementation implemented OT extension in batches of 8912 OTs.
Whenever a batch of OTs is finished, the program calls a procedure which gen-
erates a new block of 8192 OTs. Most of the cryptographic operations were
implemented using OpenSSL, but big-integer multiplication was implemented in
assembler instead of using the OpenSSL implementation for efficiency reasons.

We did not yet implement the zero-knowledge argument or the two-party
computation since they can be efficiently realized using existing implementations
of garbled circuits (such as JustGarble [BHKR13] or TinyGarble [SHS+15]) by
using the protocol of Jawurek et al. [JKO13] for zero-knowledge and the dual-
execution approach [MF06] for the two-party computation. These protocols are
only executed once in our scheme and thus, as is described later in this section,
we can safely estimate that the effect on the total run time is marginal.

Experiments. We implemented our maliciously secure protocol and ran ex-
periments on Azure, using Intel Xeon E5-2673 v.4 - 2.3Ghz machines with 64Gb
RAM, connected by a 40.0 Gbps network.

We used the code to run 50 computations of a shared 2048 bit modulus, and
computed the average run time. The results are as follows:

– With a single threaded execution, the average run time was 134 seconds.
– With four threads, the average run time was 39.1 seconds.
– With eight threads, the average run time was 35 seconds.

The run times showed a high variance (similar to the results of the imple-
mentation reported by Hazay et al. [HMRT12] for their protocol). For the single
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thread execution, the average run time was 134 seconds while the median run
time was 84.9 seconds (the fastest execution took 8.2 sec and the slowest execu-
tion took 542 sec).

Focusing on the single thread execution, we measured the time consumed by
different major parts of the protocol. The preparation of the OT extension tables
took on average 12% of the run time, the multiplication protocol computing N
took 66%, and the biprimality test took 7%. (These percentages were quite
stable across all executions and showed little variance.) Overall these parts took
85% of the total run time. The bulk of the time was consumed by the secure
multiplication protocol. In that protocol, most time was spent on computing
the values zα1 , z

α
2 (line 4 in Fig. 3.8). This is not surprising since each of these

computations computes 2`+ 3s = 2168 bignum multiplications.

Note that these numbers exclude the time required to do the zero-knowledge
argument of knowledge in Setup and the two-party computation in Proof of Hon-
esty. The zero-knowledge argument of knowledge requires about 12,000 AND
gates (for two AES computations), and our analysis in Appendix A shows that
the number of AND gates that need to be evaluated in the circuits of the honesty
proof is at most 6.8 million. Since we use dual execution, and both parties need
to execute the circuit, we get a total of 13.6 million AND gates that must be con-
structed and evaluated per party. We also measured a throughput of constructing
about 3.2 million AND gates in Yao’s protocol on the machines that we were us-
ing. Since construction takes longer than evaluation, we therefore estimate that
implementing these computations using garbled circuits will contribute at most
8.4 wall-clock seconds to the total time.

Comparing to previous work, the only other competitive protocol (for 2048
bit keys) with implementation work is the one by Hazay et al. [HMRT12]. Un-
fortunately their implementation is not publicly available and thus we are not
able to make a comparison on the same hardware. However, we do not that the
fastest time they report is 15 min on a 2.3 GHz dual-core Intel desktop, for their
semi-honestly secure protocol.
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A The Size of the Circuit for the Proof of Honesty

The circuit that is evaluated in the honesty proof contains the following compo-
nents:

– AES computation: Four AES encryptions of single blocks (for verifying the
commitments to the keys in Step 2), 4 encryptions of ` bits (for the prime
shares), s encryptions of values of length ` + s bits (for step 1 of the mali-
ciously secure biprimality tests) and 2 encryptions of 2` bits (for step 2 of
the maliciously secure biprimality test). For ` = 1024 bits (RSA with a 2048
bit modulus) this translates to 412 AES blocks. With an AES circuit of size
6000 AND gates, this translates to 2.5M gates.

– Multiplications: The circuit computes one multiplication (for computing N)
where each of the inputs is ` bits long. For ` = 1024 using Karatsuba mul-
tiplication this takes 0.542M gates [Sch12]. We have another multiplication
where the inputs are at most 2` bits (the computation of δ) which gives
at most 1.692M gates using Karatsuba, unoptimized for inputs of uneven
length. Finally the computation of δ also requires another multiplications of
a 3` bit number with a s bit number; thus at most 0.122M gates using the
school book method.

– Division: The circuit computes a division of an 2` bit value by e = 216 + 1.
For ` = 1024 the size of this component is about 900K AND gates.

– Computing the inverse of an 2` bit number modulo e: This operation is done
by first reducing the number modulo e and then raising the result to the
power of e − 2 modulo e. The first step takes about 900K AND gates, and
the second step takes 64K AND gates.

– Comparisons, additions, and multiplications by small numbers (smaller than
e): These operations are implemented with a number of gates that is linear
in the size of their inputs, and is therefore quite small. We estimate an upper
bound of 100K for the number of AND gates in all these operations.

The total size of the circuit is therefore less than 6.8M AND gates. The hon-
esty proof should be carried out by each of the parties, and dual execution
requires computing the circuit twice. Therefore the total number of AND gates
constructed is less than 27M.

B The Running Times of the Different Components

Let us analyze the number of times that each phase of the protocol needs to be
run, and the expected overhead. These values are obviously dependent on the
parameters B1, B2 which define the number of tests in the first and second trial
division phases.

The fraction of prime numbers. First, we recall that the number of primes less
thanB, denoted π(B) is bounded by 0.922 < π(B)/(B/ lnB) < 1.105 [HD03].We
are actually interested in the fraction of primes, namely the probability that a
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random integer is a prime. Denote this probability as Prprime = π(B)/B. Thus,
we have 0.922/ lnB < Prprime = π(B)/B < 1.105/ lnB. Setting B = 21024 we
have that lnB ≈ 709 and so

1

769
< Prprime <

1

642
.

This means that in a naive run of the protocol, the expected number of runs until
we obtain a single prime is between 642 and 769. Since the protocol verify that
all numbers that are checked are odd, the expected number of trials is halved.
The effective value of Prprime is therefore between 321 and 385. Note, however,
that the vast majority of these will fail in the first trial division.

Passing the first trial division phase. The first trial division phase verifies that a
candidate number is not divisible by any prime number up to a threshold value
B1. Let pi be the sequence of prime numbers starting with p1 = 3. The Chinese
Remainder Theorem implies that a candidate odd number passes the first trial
division phase with probability

Pr1 =
∏

pi≤B1

(
1− 1

pi

)
.

The cost of the first trial division phase. The “fail-fast” optimization suggests
terminating the first trial division phase as soon as any trial division fails. There-
fore, with probability 1/3 the phase terminates after the first trial division, with
probability (2/3) · (1/5) it fails after the second trial division, etc. The expected
number of trial divisions in a single run of this phase is therefore

T1 =
∑
pi≤B1

i−1∏
j=1

(
1− 1

pj

)
· pi · i .

(This is a simplification of the run time since we know that in the last iteration
of this phase all trial divisions were computed.) The first trial division phase
terminates after finding two numbers which pass the test. The total run time of
the test until this success is about

Tphase 1 = 2 · T1 · (1/Pr1) .

Note that Tphase 1 is a function of B1.

The cost of the second trial division phase. Once two numbers pass the first trial
division phase the protocol constructs the modulus candidate N and computes
trial divisions by all primes in the range ]B1, B2]. The exact expression for ex-
pected cost of a single run of this phase, T2, can be computed in exactly the
same way as T1. The value of T2 is a function of B1 and B2.

Let Pr2 be the probability that a prime candidate passes the second trial
division phase given that it passed the first trial division phase, namely Pr2 =
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∏
B1≤pi≤B2

(1− 1
pi

). The probability that a modulus candidate that entered the

second trial division phase passes it, is therefore (Pr2)2. In case of a failure the
protocol needs to choose new candidate primes and start again from computing
the first trial division phase.

The biprimality test. The probability that a number that passed the second trial
division phase is indeed the product of two primes, is Pr3 = Prprime/(Pr1Pr2)2.

The total runtime. Let us denote by Tbiprimality the overhead of running the
biprimality test, and by Tproof the overhead of computing and verifying the
proof along with the zero-knowledge argument (since they are both carried out
only once). The total expected runtime is therefore(

(Tphase 1 + T2) · 1

Pr2
+ Tbiprimality

)
· 1

Pr3
+ Tproof

The values of B1, B2 should be set to minimize this total run time. Increasing
B1 and B2 decreases the number of “false primes” which pass the trial divisions
but are not prime and therefore decreases the number of times the protocol is
repeated. On the other hand, increasing B1, B2 increases the run time of the
trial division phases and has diminishing returns.

B.1 The Overhead of Malicious Security

We argue that the malicious protocol can be realized with only a constant over-
head over the semi-honest protocol (and thus has the same asymptotic complex-
ity). First, we analyze the overhead of all phases up to the proof of honesty:

– Computing the zero-knowledge argument can be done using a single garbled
circuit implementing the verification function [JKO13]. To find the overall
complexity first see that the computation of an AES block requires a constant
amount of AND gates per block and each AND gate requires a constant
amount of calls to the hash function used in the garbling scheme. Each block
is bounded by O(κ), thus we get O(κ) complexity since the input-length is
2κ and we assume usage of OT extension.

– Computing the AES based commitments on each prime candidate only adds
a constant overhead of light operations.

– Next note that a malicious OT extension adds only a constant overhead over
the semi-honest one [KOS15,OOS17].

– The construction of the modulus uses a few more OTs. However, the number
of these OTs is only O(` + s), and since ` > s and we already do ` OTs in
the semi-honest protocol this is only a constant additional overhead.

– Coin-tossing can be implemented in the non-programmable random oracle
model using only a constant number of calls to a hash function and a PRG,
and thus does not add more than constant overhead.
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Finally, the proof of honesty requires a re-execution of the biprimality test,
thus O(s) exponentiations. Furthermore, since each of these tests gets challenged
s times, the parties need to actually do O(s2) exponentiations in total. However,
the amount of times the biprimality test is executed both in the semi-honest and
malicious protocols will be O(`2/ ln2(`)) (based on the discussion in Section B).
Notice that O(`) ∈ o(`2/ ln2(`)) and ` > s, thus the biprimality test phase will
be require Ω(s2) exponentiations and thus the addition of a single execution of
O(s2) exponentiations once will only yield a constant overhead.

However, the proof of honesty also requires the execution of a secure com-
putation. Concretely assume that a dual-execution garbled circuit approach is
used for this. That is, using the approach outlined in Section 4. Several com-
putations are done in this garbled circuit. To find the overall complexity first
see that the computation of AES requires a constant times the block length.
Assume that the block length is κ and thus that O(`/κ) blocks are required to
encrypt ` bits. Thus an AES encryption requires O(`) AND gates. Since O(s)
encryptions are computed, this gives O(` · s) AND gates. To verify the value
Htj the circuit must compute addition on ` bit values, which requires O(`) AND
gates. However, this is also done s times, thus requiring O(` ·s) AND gates. Next
see that we carry out a few multiplications of numbers of at most 2` bits, which
(conservatively) requires O(`2) gates. Finally the computation of the modulo e
operation along with integer division of e can be implemented using a constant
amount of multiplications over values in O(`), thus with O(`2) complexity in the
worst case.

Each AND gate in a garbled circuit requires a constant amount of symmetric
operations and since we use the dual execution approach, only a constant amount
of garbled circuits are constructed. Thus, since s < ` we get total complexity
of at most O(`2) symmetric operations for this execution. But since construct
modulus requires O(`) cheap operations and is executed O(`2/ ln2(`)) times we
see that asymptotically the secure computation is less than what is already done
and thus the overhead is only constant.

C Proof of Security

C.1 Correctness

We prove the correctness of the various parts of the protocol.

Candidate generation If the parties behave honestly then this phase con-
structs an additively shared ` − 1 bit number, p, which does not contain any
prime factor less than or equal to B1.

To see this notice that 2 is not factor of p, since p = p1 + p2 = 4p̃1 + 3 + 4p̃2

mod 2 = 1. Next see that if a1 6= a2, then β is not a factor for β ∈ B. This
follows since if ma1 = ma2 , then a1 = a2 ⇔ a1 − a2 = 0. Thus a1 − a2 = p1 + p2

mod β = p mod β. This means that if a1 − a2 = 0 then β is a factor of p. Also
note from the calculation that no p will be discarded if it does not have any
factor β ∈ B.
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Construct modulus If the parties behave honestly then this phase constructs
a product N = pq, of two additively shared values p and q. Furthermore, it will
verify that e is not be a factor of φ(N) (under the assumption that p and q are
primes).

For α = p we see that after step 4 it is the case that:

zp1 =
∑

i∈[2`+3s]

cdp,i,i · hp,i mod P =
∑

i∈[2`+3s]

hp,i · (rp,i + dp,i · q2) mod P

=

 ∑
i∈[2`+3s]

hp,i · rp,i

+

 ∑
i∈[2`+3s]

hp,i · dp,i · q2

 mod P

=

 ∑
i∈[2`+3s]

hp,i · rp,i

+ q2 ·

 ∑
i∈[2`+3s]

hp,i · dp,i

 mod P

and thus we have

zp1 + zp2 =

 ∑
i∈[2`+3s]

hp,i · rp,i

+ q2 ·

 ∑
i∈[2`+3s]

hp,i · dp,i


−

 ∑
i∈[2`+3s]

hp,i · rp,i

 mod P

= q2 ·

 ∑
i∈[2`+3s]

hp,i · dp,i

 mod P .

The case for α = q follows trivially.

Next consider the following computation:

a1 + a2 ≡ p1q1 + zp1 + zq1 + p2q2 + zp2 + gp · q2 + zq2 + gq · p2 mod P

≡ p1q1 + q2 ·

 ∑
i∈[2`+3s]

hp,i · dp,i

+ q2 · gp

+ p2q2 + p2 ·

 ∑
i∈[2`+3s]

hq,i · dq,i

+ gq · p2 mod P

≡ p1q1 + p1q2 + p2q1 + p2q2 mod P
≡ (p1 + p2)(q1 + q2) ≡ N mod P

Since p1, p2, q1, q2 < 2`−1 we have have that p1 + p2 < 2` and q1 + q2 < 2` and
thus (p1 + p2)(q1 + q2) < 22` and thus N < 22` < P, meaning (N mod P)
mod 22` = N .
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Next see that if p and q are primes, then

φ(N) = (p− 1)(q − 1) = (p1 + p2 − 1)(q1 + q2 − 1)

= p1q1 + p1q2 + p2q1 + p2q2 − p1 − q1 − p2 − q2 + 1

= N + 1− (p1 + q1)− (q1 + q2)

Next see that if N + 1 − (p1 + q1) − (q1 + q2) mod e = 0, then e is a factor of
N . Thus, if N + 1− (p1 + q1) ≡ p2 + q2 mod e then e|φ(N). In particular, since
w1 = N+1−(p1 +q1) mod e and w2 = p2 +q2 mod e, if w1 = w2 then e|φ(N).
We see that checking if rw1 = rw2 is equivalent to this since chance of collision
between two values ri and rj for i 6= j is negligible in the security parameter
since the values ri, rj are randomly sampled.

Trial division If the parties behave honestly then this phase ensures that N
does not contain any prime factor less than or equal to B2. In particular this
also ensures that p and q do not contain any prime factors less than or equal to
B2.

Biprimality test If the parties behave honestly then this phase ensures that
N is a product of two primes p and q, except with probability low probability.
Furthermore, the phase ensures that if N is a product of two primes, then it
will never be discarded. We will not go into correctness here, since this phase
implements exactly the biprimality check of Boneh and Franklin [BF01]. Thus,
we refer the reader to that paper for a proof of correctness. However, we note
that what they call step 4) (we call step 2) is the check that gcd(p+q−1, N) = 1.
This is not exactly the same as what is checked in their work, but in fact our
check, gcd(p + q − 1, N) = 1, is a generalization. The check (of Boneh and
Franklin [BF01]) is done to remove false positives passing step 1, which happens

when p = r
dp
p and q = r

dq
q for dp > 1 and q ≡ 1 mod r

dp−1
p . We see that if

this is the case then gcd(r
dp
p + r

dq
q − 1, r

dp
p r

dq
q ) = r

dp−1
p and thus it is sufficient

to verify that gcd(p + q − 1, N) = 1 as this will always be true when N = pq
and p and q are primes as p + q − 1 6= p 6= q. This check is implemented by
checking gcd(r(p+ q− 1) mod N,N) = 1 where r is a random number of 2`+ 1
bits. We first show that if gcd(r(p + q − 1), N) = 1, then it also holds that
gcd(r(p+ q − 1) mod N,N) = 1. To see this first consider writing r(p+ q − 1)
as a ·N + b where 0 ≤ b < N , then it is sufficient to show that if gcd(b,N) = c
then c|1 and hence c = 1. We notice that c|N and c|b and so c|(a ·N + b). This
implies that c|gcd(r(p+ q − 1), N) and hence c = 1 if gcd(r(p+ q − 1), N) = 1.
Next, it is easy to see that if p and q are primes then gcd(r(p + q − 1), N) = 1
except if r = p or r = q which only happens with negligible probability since
|p|, |q| = ` > s. Finally, we show that this is actually what gets computed by
the protocol. First see that r̄1(p2 + q2 − 1) < 23` since r̄1 ∈ ZN and thus less
than 22` and p2, q2 < 2`−1. Then notice that α1, α2 are additive secret shares of
r̄1(p2 + q2 − 1) over Z23`+s+2 by the “Construct Modulus” computation. Thus
considering a single of these values, say α1, will be a uniformly random value
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from Z23`+s+2 . This means that except with probability 2−s−2 it will hold that
α1 > 23`. However if that is the case we know that it holds that α2 > 23` as
well, since α1 + α2 mod 23`+s+2 = r̄1(p2 + q2 − 1) < 23`, meaning that the
only way the sum of α1 and α2 can be a share of a number less than 23` is if
a modular reduction occurs. Now since α1, α2 ∈ Z23`+s+2 we know that only a
single modular reduction happens. So we can conclude that α1 +α2−23`+s+2 =
r̄1(p2 +q2−1) except with probability at most 2−s−2. The same argument holds
for β1, β2 and thus we get that α1 + β1 mod 23`+s+2 is a sharing of the value
r̄1(p2 + q2 − 1) + r̄2(p1 + q1) < 23`+1. By using the same argument again we get
that

(
α1 + β1 mod 23`+s+2

)
+
(
α2 + β2 mod 23`+s+2

)
> 23`+s+2 except with

probability 2−s−1 + 2−s−1 = 2−s by the Union Bound. Thus we get that s1 + s2

mod N = (r̄1 + r̄2)(p1 + p2 + q1 + q2 − 1) = r(p + q1) for some value r except
with probability 2−s.

Proof of honesty If the parties behave honestly then this phase does exactly
the same as Biprimality Test (along with executing step 2) of the biprimality
test in Fig. 3.4, along with computing the private key shares using an ideal secure
computation.

To see correctness, we first notice that the first four steps are the same as in
Biprimality Test. To see this, first notice that N − 5 is divisible by 4:

N = (p1 + p2)(q1 + q2) = (4p̃1 + 3 + 4p̃2)(4q̃1 + 3 + 4q̃2)

= 16(p̃1q̃1 + p̃1q̃2 + p̃2q̃1 + p̃2q̃2) + 12(p̃1 + p̃2 + q̃1 + q̃2) + 9

Thus N−5
4 = 4(p̃1q̃1 + p̃1q̃2 + p̃2q̃1 + p̃2q̃2) + 3(p̃1 + p̃2 + q̃1 + q̃2) + 1. With this in

mind we see that the check performed in step 3 of Proof of Honesty is the same
as in Biprimality Test since the exponent of γi will take the value:

N + 1− p1 − q1 − p2 − q2

4
=
N + 1− 4p̃1 − 3− 4q̃1 − 3− 4p̃2 − 4q̃2

4

=
N − 5− 4p̃1 − 4q̃1 − 4p̃2 − 4q̃2

4

=
N − 5

4
− p̃1 − q̃1 − p̃2 − q̃2

Next we see that the checks performed in step 9 will always pass:

γ
vj
i ≡ γ̄i,j · γ

bj
j,P · γ

−bj ·N−5
4

j mod N

γ
bj ·(−p̃P−q̃P )+tj
i ≡ γtji ·

(
γ
N−5

4 −p̃P−q̃P
i

)bj
· γ−bj ·

N−5
4

j mod N

γ
bj ·(−p̃P−q̃P )+tj
i ≡ γtj+bj(

N−5
4 −p̃P−q̃P )−bj ·N−5

4

i mod N

γ
bj ·(−p̃P−q̃P )+tj
i ≡ γtj+bj(−p̃P−q̃P )

i mod N

Further, see that step 2) of Fig. 3.4 is verified by the computation

r̂P mod N = r̂P + r̂V · ((r̄P + r̄V ) · (4(p̃1 + p̃2 + q̃1 + q̃2) + 5)− σ) mod N .
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Where σ = (r̄P + r̄V ) · (4(p̃1 + p̃2 + q̃1 + q̃2) + 5) mod N . Thus ((r̄P + r̄V ) ·
(4(p̃1 + p̃2 + q̃1 + q̃2) + 5)− σ) mod N = 0 and hence r̂P mod N = r̂P + r̂V · 0
mod N .

Finally we see that if the parties have been honest and e is not a factor
of φ(N), then F2PC will always output χ = 1. To see this first notice that
vj + bj · (p̃P + q̃P ) = bj · (−p̃P − q̃P ) + tj + bj · (p̃P + q̃P ) = tj . Then see that
the rest of the function computes dV like in the semi-honest protocol by Boneh
and Franklin, just with the value dV subtractively randomized with a value ρP .
Specifically we notice the following:

d′1 + d2 = d̄1 + ρ1 + d̄2 + ρ2 = (d1 − ρ2) + ρ1 + (d2 − ρ1) + ρ2 = d1 + d2

Seeing that the shares are computed to add up to the same value as in the Boneh
and Franklin protocol.

Furthermore, it is trivial to see that if a party gives correct input then the
AES verifications done in F2PC will always be accepted.

Generate shared key In general, the correctness of the shares d1 and d2 follows
from Boneh and Franklin [BF01], as they are constructed through the same calcu-

lation, d1 = b−(w−1 mod e)·(N+1−p1−q1)+1
e c and d2 = b−(w−1 mod e)·(−p2−q2)+1

e c
respectively. However, this can results in an off-by-one error in the sum of the
shares because of the rounding. In the case of Boneh and Franklin, this is dis-
covered through a trial decryption. However, we argue that this is not necessary
and that the parties can locally discover if there is an off-by-one error. To see
this first notice that there will always be a rounding error if rounding occurs
when either computing d1 or d2. This is so since, by correctness. the sum of the
numerators in the computation of d1 and d2 must necessarily be divisible by e
(see page 715 in [BF01]). This implies that if e|−(w−1 mod e) ·(N+1−p1−q1)
and e| − (w−1 mod e) · (−p2 − q2) then there is no rounding error. However, if
e 6 |− (w−1 mod e) · (N +1−p1−q1) (or e 6 |− (w−1 mod e) · (−p2−q2)) then it
must necessarily hold that e 6 | − (w−1 mod e) · (N + 1−p1− q1) and e 6 | − (w−1

mod e) · (−p2 − q2) since the remainders of −(w−1 mod e) · (N + 1 − p1 − q1)
mod e and −(w−1 mod e) · (−p2−q2) mod e must sum together to e and there
will thus be an off-by-one. This means that if e| − (w−1 mod e) · (−p2 − q2)
there will never be an off-by-one error, but if e 6 | − (w−1 mod e) · (−p2 − q2)
there will always be an off-by-one error. Now, since we assume that e is prime
and since w−1 mod e is obviously less than e it must be the case that e|− (w−1

mod e) · (−p2− q2) iff e|−p2− q2. Substituting p1 with 4p̃1, q1 with 4q̃1, p2 with
4p2 + 3 and q2 with 4q2 + 3 correctness of the key generation follows.

C.2 Security

Proof. (of Theorem 3.11).
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Simulator To make the simulation and indistinguishability argument simpler
we consider an expanded version of FRSA. Specifically we assume that in the case
of corruption it has one more command:

Full-leak : On input j ∈ J from PI return p3−I,j to PI and set J = J\{j}.

We now show that this expanded FRSA functionality is statistically indistinguish-
able from the regular FRSA functionality. To see this, consider a simulator sitting
on top of the regular FRSA functionality, using this to emulate the full-leak com-
mand (passing all other commands directly through to the regular FRSA). It does
so by picking p3−I,j uniformly at random but consistent with the constraints of
the functionality and the info that might already be leaked.

To see that this simulator is sufficient, first notice that any leaked share from
full-leak, cannot be used in the construction of a modulus that is given as output
of the functionality. Next see that the prime shares in the regular FRSA are picked
uniformly at random (under the constraint that their sum is congruent to 3 mod
4). This means no environment can distinguish whether the random share it
receives from FRSA is the true, internal random share, or something sampled
from the same distribution. Furthermore, this holds even if the adversary has
already used the leak command on prime j. To see this notice that if P1 is corrupt
it is easy for the simulator to pick a random share consistent with what is leaked
when aj,β = −p2,j mod β, by plugging the leaked remainder into the Chinese
Remainder Theorem and simply choosing the rest uniformly at random.

We now continue with the simulation proof, assuming this expanded version
of the FRSA functionality.

We denote the corrupt P3−I by P̂3−I and construct a simulator SimI em-
ulating PI for I ∈ {1, 2}. The simulator emulates each of the steps in FRSA

as follows, inputting abort to FRSA if P̂3−I inputs this to any of the emulated
subfunctionalities at any point.

Corrupt P1 Consider the simulator Sim2:

Setup.

1. Emulate FCT twice by sampling r1, r2 ∈ {0, 1}κ uniformly at random.
2. I = 1: Receive the message from P̂1, c1.
2. I = 2: Pick K2 ∈ {0, 1}κ uniformly at random on behalf of of P2, compute

AESAESr2 (K2)(0) = c2 and send c2 to P̂1.

3. I = 1: Extract the input K1 from P̂1 and emulate FML

ZK correctly, by verifying
that AESAESr1 (K1)(0) = cI , and output ⊥ if that is not the case.

3. I = 2: Emulate FML

ZK by returning > to P̂1.
4. Output abort if ⊥ was returned in step 3.

Candidate Generation.

1. Receive the value Hp̃1 from P̂1. Use the key K1 extracted from FML

ZK to learn
the value encrypted p̃1 and define p1 = 4 · p̃1 + 3.
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2. Sim2 picks a uniformly random value p̃2 ∈ Z2`−3 . Define p1 = 4p̃1 + 3 and
p2 = 4p̃2. Sim2 computes the commitment Hp̃2 = AESK2

(p̃2) ∈ {0, 1}κ and

sends Hp̃2 to P̂1.
3. If p = p1 + p2 is a prime and gcd(e, p − 1) = 1 then it marks this shared

candidate prime, queries the Sample method of FRSA with p1 and proceeds
with the simulation by following the steps below of Div-OT for each β ∈ B.
Otherwise if p is not prime, or gcd(e, p − 1) 6= 1, then Sim2 proceeds with
the simulation of the rest of the protocol by executing like the true P2, using
the value p2.

1-2. Emulate random Fκ,βOT by extracting the input choice a′1 of P̂1 and re-
turning a random value ma′1

∈ {0, 1}κ.

3. Sim2 then uses Leak on FRSA to learn if (−p2 mod β 6=? a′1). If so, then
it picks a random value m ∈ {0, 1}κ and returns this to P̂1 (as the value
received from P2). Otherwise it returns ma′1

.

4. If P̂1 sends back ⊥ then the simulator breaks the loop and discards the
prime candidate p. If it instead sends back >, it continues.

Construct Modulus. Consider candidate values p and q constructed in the
previous phase, if none of them is marked as prime, then Sim2 simulates the rest
of the protocol like P2 using the shares p2 and q2 it constructed in the simulation
of Candidate Generation, and marks the resulting N bad. If one of the values
(assume w.l.o.g. p) is marked as prime and the other is not, then Sim2 uses Full-
Leak on FRSA to learn p2 and proceeds by simulating P2 using the p2 it received
from FRSA and the value q2 it constructed in Candidate Generation, and marks
the resulting N as bad. Finally, if both p and q are marked as prime, it proceeds
as below:

2. Sim2 executes the following steps for each α ∈ {p, q} and i ∈ [2`+ 3s]:
(a) Sim2 chooses a uniformly random value rα,i ∈ ZP and sets c0,α,i =

c1,α,i = rα,i.

(b-c) Sim2 emulates F2`+3s,2
OT , extracts the input dα,i ∈ {0, 1} of P̂1 and returns

the message cdα,i,α,i to P̂1.

3. Receive the values hα,i for α ∈ {p, q} and i ∈ [2`+ 3s] from P̂1.
4. Sim2 computes zα1 =

∑
i∈[2`+3s] cdα,i,α,i · hα,i mod P for α ∈ {p, q}. It then

uses the Construct method on FRSA to construct a modulus based on P̂1’s
shares p1 and q1, and thus receives (N, d1). It then uses N to compute:

a2 = N − (p1q1 + zp1 + zq1) mod P .

5. Sim2 sends a2 to P̂1.
6. Sim2 receives a′1 from P̂1.
7. Compute N̄ = (a′1 + a2 mod P) mod 22` = N̄ . If N̄ 6= N then Sim2 sets
N := N̄ , thus using the incorrect value N̄ in the rest of the simulation.

8-10. Sim2 extracts P̂1’s input to the OT, w′1. It then returns a uniformly random
value r′w1

∈ {0, 1}κ to P̂1.
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11. It inputs the value w′1 to the ideal functionality (still during the Construct
command) and learns if w′1 = p2 + q2 mod e. If this is the case then Sim2

returns r′w1
to P̂1, otherwise it returns a uniformly random value r ∈ {0, 1}κ.

12. If P̂2 asks to discard the candidate, then do so. Otherwise continue.

Trial Division: Sim2 locally executes the trial division like in the real protocol
and sends ⊥ and discards the candidate N if it finds a factor. If it doesn’t it
sends > to P̂1.

Biprimality Test:

1. Sim2 repeats the steps below s times:
a-c. Receive γ′, γ′1 from P̂1.

d. Sim2 verifies that γ′1 = ±γ
N+1−p1−q1

4 mod N , if this is not the case then
it sends ⊥ to P̂1, breaks the loop and discards the candidate N .

2. Sim2 does as follows:
(a) Store the value H ′r̄1 received from P̄1 and let r̄1 = AESK1

(H ′r̄1). Also

pick a random value r̄2 ∈ ZN and send Hr̄2 = AESK2(r̄2) to P̂1.
(b) Sim2 simulates the multiplication protocol by extracting the messages

P̂1 input to the F3`+s+2,2
OT functionality when the simulator is acting as

the receiver. When it is acting as the sender it picks a random value
p′2 + q′2−1 ∈ Z2` obeying the leaked bits on the p2 and q2 that is learned
from FRSA though under the constraint that gcd(N, p1+p′2+q1+q′2−1) =
1). Using this it emulates the OT messages an honest party would send.
It then computes the values α2 and β2 like an honest P2 would, using
these choices.

(c) Receive s′1 from P̂1.
(d) Sim2 computes s2 = r̄2 · (p′2 + q′2− 1) +

(
α2 + β2 mod 23`+s+2

)
mod N

and sends s2 to P̂1.
(e) If gcd(s′1 + s2, N) = 1.

Proof of Honesty. For each i ∈ [s] Sim2 picks random values xi ∈ Z×N and
ci ∈ {0, 1} and computes γi = (−1)ci · x2

i mod N . It then emulates FCT by

picking random values γ ∈ Z×N and sending each of these to P̂1. Before sending
a value γ it checks if

(
γ
N

)
= 1. If this is the case, it sends a γi instead of γ until

all s values γi have been sent to P̂1.
The simulator then completes the steps below, simulating both P and V .

Simulating P (P̂1 has the role of V ):

1. For each i ∈ [s], Sim2 computes the values γi,P = (−1)ci · γp̃1+q̃1
i mod N .

2. It sends γ1,P , . . . , γs,P to P̂1.

3-4. If P̂1 sends ⊥ then Sim2 inputs ⊥ to FRSA.
5. Internally emulate FCT to pick random bits b1, . . . , bs. For each j ∈ [s] Sim2

picks two random values tj , t
′
j ∈ {0, 1}

`−2+s
and sends Htj = AESK2

(tj)

to P̂1
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6. For each i, j ∈ [s], Sim2 sends the values γ̄i,j = γ
tj
i ·
(

(−1)ci · γ
N−5

4 −p̃1−q̃1
i

)bj
mod N to P̂1.

7. Output the random bits b1, . . . , bs to P̂1 emulated in step 5.
8. For each j ∈ [s] send vj = tj to V if bj = 0 and vj = t′j if bj = 1.

9. If P̂1 sends back ⊥ then Sim2 inputs ⊥ to FRSA and aborts.
10-11. Do nothing.
12-13. Extract the input (p̃′V , q̃

′
V ,K

′
V , r̄

′
V , r̂V ) of P̂1. If p̃′V 6= p̃V , q̃′V 6= q̃V , cV 6=

AESAESrV (K′V )(0), H ′r̄V 6= AESKV (r̄V ), or N is the not same value as
learned by Sim2 when it queried construct on FRSA in Construct Modulus
then output (χ = 0,⊥,⊥). Else, using the value d1 the simulator got from
FRSA in the construct command and ρ1 from P̂1’s input to the call to
F2PC. It then computes the value d1 − ρ1 = d̄1. Finally it picks a random
δ ∈ {0, 1}3`+2s+2

, emulates F2PC to output (χ = 1, δ, d̄V ).
14. Send δ mod N to P̂1.
Simulating V (P̂1 has the role of P ):

1-2. Receive γ′i,P from P̂1.

3-4. Sim2 verifies that γ′i,P = ±γ
N−5

4 −p̃1−q̃1
i mod N for each i ∈ [s]. If this is

not the case, then it sends ⊥ to FRSA and P̂1 and aborts.
5. Receive H ′tj from P̂1.

6. Receive the values γ̄′i,j from P̂1.
7. Sim2 emulates FCT to sample bits b1, . . . , bs uniformly at random.
8. For each j ∈ [s], Sim2 receives the value v′j .

9. For each i, j ∈ [s] Sim2 verifies that γ
v′j
i ≡ γ̄′i,j · γ′i,P

bj · γ−bj ·
N−5

4
i mod N .

If not it sends ⊥ to P̂1 and FRSA and aborts.
10-11. Do nothing.
12-13. Sim2 extracts P̂1’s input, (p̃′P , p̃

′
P , ρ

′
P ,K

′
P , r̄
′
P , r̂
′
P ) to F2PC. If p̃′P 6= p̃P ,

q̃′P 6= q̃P , cP 6= AESAESrP (K′P )(0), H ′r̄P 6= AESK′P (r̄P ), or H ′tj 6= H(v′j + bj ·
(p̃P + q̃P ) (using the value p̃P and q̃P defined in Candidate generation),
or N is the same value as learned by Sim2 when it queried construct on
FRSA in Construct Modulus then Sim2 emulates F2PC to output abort and
subsequently aborts the protocol. Otherwise it emulates F2PC to complete
successfully.

14-15. Receive δ̂ from P̂1 and abort if δ̂ 6= r̂′P mod N for the extracted r̂P or if
r̄′P · (4p̃′P + 4q̃′P + 6) + αP + βP mod N 6= σ − sV mod N .

Generate Shared Key: Use the select command on FRSA to accept the candidate
(N, d1, p1, q1).

Malicious P2 We construct a simulator Sim1:

Setup.

1. Emulate FCT twice by sampling r1, r2 ∈ {0, 1}κ uniformly at random.
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2. I = 1: Pick K1 ∈ {0, 1}κ uniformly at random on behalf of of P1, compute
AESAESr1 (K1)(0) = c1 and send c1 to P̂2.

2. I = 2: Receive the message from P̂2, c2.
3. I = 1: Emulate FML

ZK by returning > to P̂2.

3. I = 2: Extract the input K2 from P̂2 and emulate FML

ZK correctly, by verifying
that AESAESr2 (K2)(0) = c2, and output ⊥ if that is not the case.

4. Output abort if ⊥ was returned in step 3.

Candidate Generation:

1. Receive the value Hp̃2 from P̂2. Use the key K2 extracted from FML

ZK to learn
the value encrypted p̃2 and define p2 = 4 · p̃2.

2. Sim1 picks a uniformly random value p̃1 ∈ Z2`−3 . Define p1 = 4p̃1 + 3 and
p2 = 4p̃2. Sim1 computes the commitment Hp̃1 = AESK1(p̃1) ∈ {0, 1}κ and

sends Hp̃1 to P̂2.
3. If p = p1 + p2 is a prime and gcd(e, p − 1) = 1 then it marks this shared

candidate prime, queries the Sample method of FRSA with p2 and proceeds
with the simulation by following the steps below of Div-OT for each β ∈ B.
Otherwise if p is not prime, or gcd(e, p − 1) 6= 1, then Sim1 proceeds with
the simulation of the rest of the protocol by executing like the true P1, using
the value p1.

1-2. Emulate random Fκ,βOT by picking random values m1, . . . ,mβ ∈ {0, 1}κ

and giving these to P̂2.
3. Receive m′a2 from P̂2.
4. Ifm′a2 is not equal to one of the emulated values then return>. Otherwise

if m′a2 is equal to one of the values above, then recover the index a2.
Sim1 then uses Leak on FRSA to learn if p1 mod β 6=? a2. If it holds
then return > to P̂2. Otherwise return ⊥, break the loop and discard the
candidate p.

Construct Modulus: Consider candidate values p and q constructed in the pre-
vious phase, if none of them is marked as prime, then Sim1 simulates the rest
of the protocol like P1 using the shares p1 and q1 it constructed in simulation
of Candidate Generation. If one of the values (assume w.l.o.g. p) is marked as
prime and the other is not, then Sim1 uses Full-Leak on FRSA to learn p1 and
proceeds by simulating P1 using the p1 it received from FRSA and the value q1 it
constructed in Candidate Generation, and marks the resulting N as bad. Finally,
if both p and q are marked as prime, it uses the method Construct on FRSA and
receives (N, d2). It then proceeds as below:

1. Sim1 picks dα,i ∈ {0, 1} uniformly at random for α ∈ {p, q} and i ∈ [2`+ 3s].
2. For each α ∈ {p, q} and i ∈ [2` + 3s] Sim1 extracts the inputs c′1,α,i and

c′0,α,i = r′α,i from P̂2.
Define Ep to be the set of indexes in i ∈ [2`+3s] where c′1,p,i−c′0,p,i mod P 6=
q2. Define Eq similarly.
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3. For α ∈ {p, q} and i ∈ [2`+3s] Sim1 picks the values gα, hα,i ∈ ZP uniformly

at random and sends these to P̂2.
4. Sim1 computes z̄α2 = −

∑
i∈[2`+3s]\Eα c

′
0,α,i ·hα,i mod P for α ∈ {p, q} along

with:

a1 = N −

∑
i∈Ep

hp,i · dp,i · q2

−
∑
i∈Eq

hq,i · dp,i · p2


− (p2q2 + z̄p2 + gp · q2 + z̄q2 + gq · p2)

+

 ∑
α∈{p,q}

∑
i∈Eα

c′dα,i,α,i · hα,i

 mod P .

5. The simulator receives a′2 from P̂2.
6. Sim1 then sends a1 to P̂2.
7. Compute N̄ = (a1+a′2 mod P) mod 22`. If N̄ 6= N then Sim2 sets N := N̄ ,

thus using the incorrect value N̄ in the rest of the simulation.

8-9. Emulate random Fκ,dlog(e)e
OT by picking random values r0, . . . , rdlog(e)e ∈ {0, 1}

κ

and giving these to P̂2.
10-12. Receive a value r′w2

from P̂2. If r′w2
= ri for any i ∈ [0, dlog(e)e[ then give

i as input to FRSA as part of the Construct command and thus finds out
whether w2 = N + 1− p1 − q1 mod e or not. If the equality holds then the
simulator informs P̂2 of this and discard the candidate N .

Trial Division: Sim1 waits for P̂2 to input ν ∈ {>,⊥}. If ν = ⊥ then it discards
the candidate N . If instead ν = > it continues.

Biprimality Test:

1. Sim1 repeats the steps below s times:
(a) Sim1 picks a random x ∈ Z×N , a random bit b ∈ {0, 1}. It then computes

γ = (−1)b · x2 mod N .
(b) It then sends γ to P̂2.

(c) Sim1 then computes γ1 = (−1)b · γ
p2+q2

4 mod N and sends γ1 to P̂2.
(d) If P̂2 returns ⊥ then Sim1 breaks the loop and discards the candidate

N . Otherwise it continues.
2. Sim1 does as follows:

(a) Store the value H ′r̄2 received from P̂2 and let r̄2 = AESK2
(H ′r̄2).

(b) Sim1 simulates the multiplication protocol by extracting the messages P̂2

input to the F3`+s+2,2
OT functionality when the simulator is acting as the

receiver and picking a random input r̄1 ∈ ZN . When it is acting as the
sender it picks a random value p′1 +q′1 ∈ Z2`+1 obeying the leaked bits on
the p1 and q1 that is learned from FRSA though under the constraint that
gcd(N, p′1 +p2 +q′1 +q2−1) = 1). Using this it emulates the OT messages
an honest party would send. Next it picks a random input r̄1 ∈ ZN . It
then computes the values α1 and β1 like an honest P1 would, using these
choices.
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(c) Sim1 computes s1 = r̄1 · (p′1 + q′1) +
(
α1 + β1 mod 23`+s+2

)
− 23`+s+2

mod N and sends this to P̂2.
(d) Receive s′2 from P̂2.
(e) Discard the candidate N if gcd(s1 + s′2, N) 6= 1).

Proof of Honesty: Execute the simulation like Sim2 with the exception that
when simulating P , except in step 12 it outputs d2 − ρ2 − 1 = d̄2 instead of
d2 − ρ2 = d̄2.

Generate Shared Key: Use the select command on FRSA to accept the candidate
(N, p2, q2, d2).

Leakage Before continuing with the indistinguishability argument we need the
following Lemma, which intuitively shows that after SimI has completed the
Construct Modulus phase then, for a candidate N = (p1 + p2)(q1 + q2) which is
not marked as bad, the leakage on p1, q1 towards P̂2 and p2, q2 towards P̂1 is not
too much.

Lemma C.1. Assume 13 ≤ B1 ≤ 6000, 512 ≤ `, and 28 ≤ s and let N = (p1 +
p2)(q1 + q2) be a candidate modulus not marked as bad, then leakage on (p̃I , q̃I)
is at most 2 log2(B1/2) bits towards P3−I in phase Candidate Generation. If
I = 2 then the leakage on (p2, q2) in the view of P1 will further be increased by
at most 2 log2(β) bits with probability at most 2/(β − 1) for each β ∈ B used in
phase Candidate Generation.

Proof. First notice that both p̃I and q̃I are picked uniformly at random and
consists of `− 3 bits. Thus each of them have `− 3 bits of entropy to start with.
Furthermore see that pI and qI are computed as 4p̃I + 3, 4q̃I + 3 or 4p̃I , 4q̃I .
Thus they still have ` − 3 bits of entropy. Next, see that if I = 1 then the two
least significant bits of pI will always be 0 and if I = 2 they will always be 1,
the rest will be the same random values as p̃I , respectively q̃I .

Consider I = 1: See that the simulator Sim1 only gets leakage in Candidate
Generation when it learns if α1 mod β 6= a2 for all β ∈ B and α ∈ {p, q}.
However if it does not hold the candidate is rejected. Now since a2 ∈ [β] there are
β−1 possible values for which the inequality α1 mod β 6= a2 holds. This means
that what is leaked, could in the worst case, allow the adversary to reduce the set
of possible values of p1 from 2`−3 to β−1

β ·2
`−3 = 2`−3−log2(β−1/β). I.e. leaking at

most log2(β/(β−1)) bits. This means that in total at most
∑
β∈B log2(β/(β−1))

bits for each α ∈ {p, q}, so 2
∑
β∈B log2(β/(β − 1)) in total. Thus we have that

2
∑
β∈B

log2

(
β

β − 1

)
= 2 log2

∏
β∈B

β

β − 1


≤ 2 log2

 ∏
3≤β≤B1

β

β − 1

 ≤ 2 log2

(
B1

2

)
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Now consider I = 2: See that the simulator Sim2 only gets leakage in Can-
didate Generation to learn if −α̃2 mod β 6= a1 for all β ∈ B and α ∈ {p, q}.
See that if the inequality holds, then the same arguments go as when I = 1. If
the inequality does not hold, then notice that the set of possible values of α2

gets reduced by β, as there is only one case out of β when the inequality does
not hold, i.e. when −α2 mod β = a1 since a1 ∈ [β]. This means that what is
leaked, could in the worst case, allow the adversary to reduce the set of possible
values of p2 from 2`−3 to 1

β · 2
`−3 = 2`−3−log2(β). This means that in total at

most
∑
β∈B log2(β) bits for each α ∈ {p, q}, so 2

∑
β∈B log2(β) in total.

The adversary has no info on p̃2 and q̃2 a priori. Next see that p̃2 and q̃2

are randomly picked, it means that p̃2 mod β is “almost” uniformly randomly
distributed in [β]. There is a slight bias towards the numbers from 0 to 2`−3− 1
mod β. This means that in the most lucky case it is only 0 that is biased.
However, it only means that the probability is b(2`−3− 1)/βc/2`−3 for non-zero
choices and d2`−3/βe/2`−3 for 0. Thus the probability that the inequality does
not hold and so that the most information is leaked, is

d 2`−3

β e
2`−3

≤
2`−3+β

β

2`−3
=

2`−3

β+1

2`−3
= β−1 + 2−`+3

Furthermore, see that 2−`+3 ≤ 2−s ≤ 2− log(β). Thus we get β−1 + 2−`+3 =
2− log(β) + 2−`+3 ≤ 2− log((β−1)/2) = 2/(β − 1) since we assume ` ≥ 512 and
B1 < 6000.

Corollary C.2. The leakage on (pI , qI) towards P3−I is at most log2(e/(e −
1)) + 2 log2(B1/2). If I = 2 with probability at most 2−x, (1 + ε)x bits further
are leaked for ε ≤ 1 and x picked by P3−I .

Proof. From Lemma C.1 we get the value 2 log2(B1/2). However, 1/e bits are
further leaked. This leakage comes from the last couple of steps of Construct
Modulus as the parties will learn whether w1 = w2 or not. If they are not equal
the candidate is passed on, otherwise it is rejected. However, we notice that
nothings prevents a malicious party PI from probing equality on an arbitrary
w′I instead of wI . When this party is P1 it can at most learn that w2 6= w′1
which reduces the of possible values of w1 from e to e− 1, thus leaking at most
log2(e/(e − 1)) bits of information. Furthermore, notice that if w′1 = w2 then
the candidate is discarded by an honest P2 and thus the malicious P1 learns
nothing on the candidate that will eventually be used. If instead P2 is malicious
it will learn whether w′2 = w1, but will be allowed the option of continuing with
the candidate. In which case it learns at most log2(e) bits of information, but
with probability at most 1/e. Furthermore, for I = 2, we get from Lemma C.1
that with probability at most 2− log((β−1)/2), log(β) bits are leaked to P1. The
maximum payoff is for as small β > 2 as possible, i.e. β = 3. The adversary can
do this twice for each β, once for p̃2 and once for q̃2. Thus its optimal strategy
is to do this first for β = 3, then β = 5 and so on. In any case it is easy to
see that there exists some ε fulfilling the equation. In particular for β = 3 this
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ε = 1. Finally see that we can disregard the log2(e) bits that might be leaked
with probability 1/e since this gives a lower payoff as it reflects the case of ε = 1
since e ≥ 3.

Indistinguishability Using these simulators we prove security with a hybrid
argument. Intuitively we construct a series of hybrids. Based on these hybrids
we iteratively argue indistinguishability of each of the phases using the simulator
for P2, P1 respectively, until we have showed that the simulators can simulate
the honest parties in the protocol.

Our hybrid argument is based on the following hypothetical simulators work-
ing with the ideal functionality FRSA for I ∈ {1, 2}:

Sim0
I : Receive the internal randomness of PI as auxiliary input and use this to

generate all potential candidates, p̃I exactly like the real party PI . However,
let the simulator pick a uniformly random value K ′I ∈ {0, 1}

κ
and use this

instead of KI picked in setup in the entire protocol.

Sim1
I : Act like Sim0

I except that in Candidate Generation, if p is marked as prime
then execute Candidate Generation like SimI . Otherwise execute the rest of
the simulation like PI would, using its shares.

Sim2
I : Acts like Sim1

I except that it simulates phase Construct Modulus like SimI .

Sim3
I : Acts like Sim2

I except that it simulates all phases up to and including Bipri-
mality Test like SimI .

Sim4
I : Acts like Sim3

I except that it simulates all phases up to and including Proof
of Honesty like SimI and outputs ⊥ in the end of Proof of Honesty iff the
function f would output χ = 0 when queried by the extracted values from
the adversary and the true values of PI .

Sim5
I : Acts like Sim3

I except that it simulates all phases up to and including Gen-
erate Shared Key like SimI .

Setup - Sim0
I We now argue indistinguishability between the real execution and

Sim0
I . We start by noticing if the environment can distinguish between execution

in the real world and Sim0
I then it must necessarily mean that it can distinguish

between cI and c′I = AESAESrI (K′I)(0). However, since we assume AES is a PRP,

we have that AESrI (KI) = kI is indistinguishable from a random string if the
adversary was given this value since KI is uniformly random (remember the
simulator acts as the honest party). Thus the same goes for AESrI (K ′I) = k′I .
Now to argue that cI is also indistinguishable from random we see since AES is
a PRP then AESkI (0) = cI is indistinguishable from random since kI is. The
same for AESk′I (0) = c′I . Next see that the only place where KI is used (besides
as input to ideal functionalities) is as the encryption key. However, repeating
the same argument again, since both KI and K ′I are random (since they are
honestly picked) it means that the first block of the encryption of p̃I under two
different, random keys, would be indistinguishable from random and so we can
replace KI with K ′I .
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Setup - Sim1
I . We now argue indistinguishability between Sim0

I and Sim1
I . We

start by noticing that it is sufficient to only consider adversaries which compute
c3−I = AESAESr3−I (K3−I)(0) correctly and uses the same K3−I in the zero-

knowledge proof FML

ZK in Setup. To see this notice that if FML

ZK outputs > then it
must hold that cI = AESAESr3−I (K′3−I)(0) for some K ′3−I . However, if K ′3−I 6=
K3−I then AESr3−I (K3−I) 6= AESr3−I (K ′3−I) since AES is a PRP. Thus also
means that c3−I 6= c′3−I . This means that the value K3−I extracted by the

simulator from FML

ZK will match the double encryption when FML

ZK is emulated

to output > (if not the simulator makes FML

ZK output ⊥ just like in the real
execution).

Candidate Generation. In Candidate Generation we notice that for the value
p̃3−I the simulator decrypts from Hp̃3−I if p = 4(p̃1 + p̃2) + 3 is not marked
as prime then the execution will be indistinguishable to the execution with PI ,
since the simulation will directly execute like PI using its true randomness.
Next see that if p is marked as prime then Sim1

I will not use the true value p̃I
to compute Hp̃I = AESK′I (p̃I) but instead sample a random value p̃′I instead.
See that Hp̃′I

= AESK′I (p̃′I) is indistinguishable from Hp̃I follows directly from
the IND-CPA assumption as we have already argued that K ′I is unknown in the
view of the adversary and randomly sampled.

Next consider the first trial division:

For I = 1: Sim1
1 emulates Fκ,βOT exactly like the real world and the only

remaining message sent to P̂2 in Construct Candidate is ν = {>,⊥}. We know
that p is a prime (otherwise the simulation would exactly follow that of the
honest P1), so it follows from correctness that > should be returned to P̂2 for
each β ∈ B. Next, after receiving m′a2 sent in step b, Sim1

1 extracts the value a2,
by comparing m′a2 with the list m0, . . . ,mβ−1. First note that no two values mi,
mi′ for i 6= i′ are equal e.w.n.p. in κ, so m′a2 will match at most a single item. If

there is a match then Sim1
1 uses Leak on FRSA to learn whether a2 6= p1 mod β.

If this does not hold, then Sim1
1 returns ⊥. Otherwise it returns > exactly like

what would happen in the real execution. Thus > is returned even if m′a2 does

not match any of the messages in Fκ,βOT . However, this is exactly like it would
happen in the execution with P1.

For I = 2: Sim1
2 emulates Fκ,βOT by selecting a random value ma1 ∈ {0, 1}

κ

and returning this to P̂1 and extracting its input message a′1. This ma1 is clearly
distributed the same as in the real execution with P1, since this is also randomly
sampled. Next we notice that if a1 = −p2 mod β, then Sim1

2 returns the same
m = ma1 again, exactly like what would happen in the real execution. Otherwise
it returns a random m which is clearly indistinguishable from what would be
sent in the real execution since there it would also be a random value completely
unknown to P̂1.

Finally notice that no abort is issued by the honest party in Candidate Gen-
eration. Thus then abort probability remains the same between Sim1

I and the
real execution. Finally, notice that all further phases of the protocol is executed
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in exactly the same way, using exactly the same values, whether using Sim1
I or

PI .

Construct Modulus. First see that if both candidate values are not marked as
prime, then there is nothing to show. This follows since the simulator Sim2

I then
executes like PI using the simulated values, or one simulated value and one true
value (which it learns using Full-leak).

Before we continue to argue indistinguishability, we need the following defi-
nitions and helper lemma:

Definition C.3. Let H define a family of hash functions Hh1,...,hn,g : {0, 1}n →
ZP where g, hi ∈ ZP for i ∈ [n] and Hh1,...,hn,g(d) := g +

∑
i∈[n] hi · di mod P

where d ∈ {0, 1}n with di denoting the i’th bit of d.

Lemma C.4. The family of hash functions, H, is 2-universal.

Proof. Remember the definition of 2-universality says it must hold that for any
pair of two, distinct inputs and a randomly sampled hash function from the
family, the probability of collision is at most one over the size of the range. Or
more formally

∀x, y ∈ {0, 1}n, x 6= y : PrHh1,...,hn,g∈RH(Hh1,...,hn,g(x) = Hh1,...,hn,g(y)) ≤ P−1

We wish to show that this holds for H defined above in Def. C.3. First notice
that a collision occurs when g +

∑
i∈[n] hi · xi ≡ g +

∑
i∈[n] hi · yi mod P. In

particular this means that a collision occurs when
∑
i∈[n] hi · (xi − yi) ≡ 0

mod P. Since x 6= y there must be at least one position i ∈ [n] where xi 6= yi
and thus xi− yi 6= 0. If there is only one such position then the probability that∑
i∈[n] hi · (xi − yi) ≡ 0 mod P is at most P−1, since hi is sampled uniformly

at random from ZP . If there are more than 1 such position then we will have a
sum of uniformly random picked numbers of ZP . Thus the probability that they
sum to 0 (or any other value in ZP for that matter) is at most P−1. Hence it
follows that the hash function is 2-universal.

Next we define the following distribution reflecting the choice of P1 in the pro-
tocol:

Definition C.5. For x ∈ ZP let Dnx be the distribution induced by (h1, . . . , hn, g)
s.t. g+

∑
i∈[n] hi ·di mod P = x where di ∈ {0, 1} is a randomly picked pattern.

We can now prove the following:

Lemma C.6. Let n ≥ dlog2(P)e + 2s > log2(P) + 2s. Then, for all x ∈
{0, 1}dlog2(P)e+2s

the statistical distance between the distribution of Dnx and the
uniform distribution over H is at most 2−s.

Proof. For this proof we piggyback on the proof of Lemma 1 in [IPS09], as this
proves the same statement, but for a different hash function.
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First see that we have from Lemma C.4 that H in accordance with Def. C.3
is 2-universal. Thus the Leftover Hash Lemma tells us that:

SD(Hh1,...hdlog2(P)e+2s,g(x),Udlog2(P)e+2s) ≤ 2−s ,

when x is uniformly random sampled from {0, 1}dlog2(P)e+2s
. This follows since

the min-entropy of x is dlog2(P)e+ 2s and thus

log2(P) + 2 log(ε−1) ≤ dlog2(P)e+ 2s⇒ log2(P) + 2s ≤ dlog2(P)e+ 2s,

when ε = 2−s.

To finish the proof we must argue a symmetry between the different out-
comes of the hash function, since we need the distance to hold for all possible
inputs and not only a randomly sampled input. To do so, consider a family of
permutations {πa|a ∈ ZP} s.t. for all z ∈ ZP , Pr(z|Hh1,...,hdlog2(P)e+2s,g) = Pr(z+
a|πa(Hh1,...,hdlog2(P)e+2s,g)). Here Pr(z|Hh1,...,hdlog2(P)e+2s,g) means the probability
of getting output value z when applying the specific hash functionHh1,...,hdlog2(P)e+2s,g

on a randomly sampled input. More formally

Pr(z|Hh1,...,hdlog2(P)e+2s,g) := Prx∈R{0,1}dlog2(P)e+2s(Hh1,...,hdlog2(P)e+2s,g(x) = z) .

Next notice that we have πa(Hh1,...,hdlog2(P)e+2s,g′) = Hh1,...,hdlog2(P)e+2s,g for any
choice of h1, . . . , hdlog2(P)e+2s, g, g

′ ∈ ZP by simply defining a = g − g′ mod P.
Now observe the following:

SD((H, Hh1,...hdlog2(P)e+2s,g(·)), (H,Udlog2(P)e+2s)

=def 1

2

1

|H|
∑

Hh1,...,hdlog2(P)e+2s,g
∈H

∑
z∈ZP

|Pr(z|Hh1,...,hdlog2(P)e+2s,g)− Pr(z|U)|

=
1

2|H|
·

∑
Hh1,...,hdlog2(P)e+2s,g

∈H

∑
z∈ZP

(
|Pr(z|Hh1,...,hdlog2(P)e+2s,g)− P

−1|
)

=
P

2|H|
·
∑
z∈ZP

∑
Hh1,...,hdlog2(P)e+2s,g

∈H

(
|Pr(x|πx−z(Hh1,...,hdlog2(P)e+2s,g))− P

−1|
)

=
P

2|H|
·

∑
Hh1,...,hdlog2(P)e+2s,g

′∈H

(
|Pr(x|Hh1,...,hdlog2(P)e+2s,g′)− P

−1|
)

For the first step notice that the sum is multiplied with 1
|H| since the first part

of the two distributions we compare, the sampling of Hh1,...,hdlog2(P)e+2s,g ∈ H,
will be the same in both distributions. This means that the difference in prob-
ability of each possible value of z is counted |H| times, once for each pos-
sible Hh1,...hdlog2(P)e+2s,g ∈ H. So multiplying with |H|−1 gives us the aver-

age. By applying Bayes’ Theorem, Pr(x|H) = Pr(H|x)Pr(x)
Pr(H) , we then have that
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Pr(x|Hh1,...,hdlog2(P)e+2s,g) = Pr(Hh1,...,hdlog2(P)e+2s,g|x) · P|H| and thus:

P
2|H|

·
∑
z∈ZP

∑
Hh1,...,hdlog2(P)e+2s,g

′∈H

(
|Pr(x|Hh1,...,hdlog2(P)e+2s,g′)− P

−1|
)

=
1

2
·

∑
Hh1,...,hdlog2(P)e+2s,g

′∈H

(
|Pr(Hh1,...,hdlog2(P)e+2s,g′ |x)− |H|−1|

)
Now notice that this is in fact the statistical distance between distribution
Ddlog2(P)e+2s
x from Def. C.5 and U|H| (sampling a hash function from the family),

thus finishing the proof.

With this we can now argue indistinguishability. First considering the case of
I = 1:

Consider an intermediate hybrid where Sim1
1 picks dα,i for i ∈ [2` + 3s]

uniformly at random in step 1. Then in step 3 it picks hα,i ∈ ZP uniformly
at random for i ∈ Eα, where Eα is an arbitrary set of positions. Next it picks
hα,i, g ∈ ZP for i ∈ [2`+ 3s]\Eα uniformly at random under the constraint that
g+
∑
i∈[2`+3s]\Eα hα,i ·dα,i mod P = α1−

∑
i∈Eα hα,i ·dα,i mod P. It is easy to

see that this is clearly possible, for example by simply choosing g appropriately,
no matter what values of dα,i were picked. It is furthermore easy to see that the
intermediate hybrid is indistinguishable from the hybrid induced by Sim1

1 since
the values are still picked at random, under the same constraint as in Sim1

1.
Next assume that at most s bits are leaked on dp in the intermediate hybrid

and Sim2
1 (we show this in a moment). Split dp up into the bits which are leaked

and the bits which are not leaked, letting Ep denote the set of indexes of bits
leaked. Thus the bits dp,i for i ∈ [2`+3s]\Ep are uniformly random sampled and
completely unknown to the adversary in both hybrids. Thus, by Def. C.3 and
Lemma C.4 we have that hα,i, g for i ∈ [2`+3s]\Ep defines a two-universal hash
function from the family H where the digest will have value p1−

∑
i∈Ep hp,i ·dp,i

mod P in the intermediate hybrid. Thus from Lemma C.6 we get that the sta-
tistical distance between the output of this hash function in the intermediate
hybrid and the random one defined for Sim2

1 is 2−s indistinguishable from ran-
dom. This follows since in the intermediate hybrid the hash function is picked
to hit a = p1 −

∑
i∈Ep hp,i · dp,i mod P (and thus taken from the distribution

D2`+2s
a ) and in Sim2

1 it is simply picked uniformly at random.
Thus the last thing we need to argue to get the argument above to go through,

is that at most s bits on dα,i is leaked. To do so notice that it is only used to
compute zα1 and thus a1. Thus any leakage on dα,i will be on a1 as the OT
functionality is perfect. This follows from a standard selective failure attack
argument, as the adversary can guess x bits on (dp,1, dq,1) by sending incorrect
values for one of the choices in the OT. It will notice whether it guessed correct in
Proof of Honesty, since in this case N will be correct based on the hash digests.
Since they are random it can only succeed with probability 2−x and because we
assume statistical security s, it cannot succeed in guessing more than s positions
with probability greater than 2−s. Furthermore, since each bit is random and
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independent, this gives exactly s bits of entropy. This finishes the argument of
indistinguishability of the first 3 steps.

Next consider the values computed and sent in step 4-6. We must argue
that in step 4, the a1 value simulated by Sim2

1 is indistinguishable from the
true value a1 that P1 would send, i.e. what is sent by Sim1

1. First notice from
correctness that if |Ep| + |Eq| = 0 then z̄α2 = zα2

′ and so we have that pq =

N = p1q1 + z1
p + z1

q + p2q2 + zp2
′
+ gp · q2 + zq2

′
+ gq · p2 mod P. Thus setting

a1 = N−(p2q2 +zp2
′
+gp ·q2 +zq2

′
+gq ·p2) mod P means that a1 = p1q1 +zp1 +zq1

mod P, i.e. the same in both Sim1
1 and Sim2

1.

Now note that if c′1,p,i − c′0,p,i mod P = q2 then c′dp,i,p,i = r0,p,i + q2 · dp,i
mod P. Thus c′dp,i,p,i−c

′
0,p,i mod P = q2 ·dp,i. Thus if P̂2 sends correct messages

we have that for any subset Eα of [2`+ 3s], we can still simulate the value of P1.
We see from the following, by starting to consider the result of a1 + a′2, when
the positions in Eα are excluded by both parties:

N −

∑
i∈Ep

hp,i · dp,i · q2

−
∑
i∈Eq

hq,i · dq,i · p2


≡ (p1q1 + zp1 + zq1) + (p2q2 + zp2

′
+ gp · q2 + zq2

′
+ gq · p2)−∑

α∈{p,q}

∑
i∈Eα

hα,i · (c′dα,i,α,i − c
′
0,α,i) mod P

N − (p2q2 + zp2
′
+ gp · q2 + zq2

′
+ gq · p2)−

∑
i∈Ep

hp,i · dp,i · q2


−

∑
i∈Eq

hq,i · dq,i · p2

+

 ∑
α∈{p,q}

∑
i∈Eα

hα,i · (c′dα,i,α,i − c
′
0,α,i)


≡ p1q1 + zp1 + zq1 mod P

N − (p2q2 + z̄q2 + gp · q2 + z̄q2 + gq · p2)−

∑
i∈Ep

hp,i · dp,i · q2


−

∑
i∈Eq

hq,i · dq,i · p2


≡ p1q1 + z̄p1 + z̄q1 mod P

We here use the notation that z̄α1 =
∑
i∈[2`+3s]\Eα hα,i · c

′
1,α,i mod P and z̄α2 =∑

i∈[2`+3s]\Eα −hα,i ·c
′
0,α,i mod P. Notice that we have completely removed the

values c′0,α,i and c′1,α,i for i ∈ Eα, thus the above hold unconditionally of what

P̂2 sends. Next see that if we add
∑
α∈{p,q}

∑
i∈Eα hα,i · c

′
dα,i,α,i

mod P to both

sides we have the following, independent of whether P̂2 sends incorrect values or
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not:

N − (p2q2 + z̄p2 + gp · q2 + z̄q2 + gq · p2)−
∑
i∈Ep

hp,i · dp,i · q2 −
∑
i∈Eq

hq,i · dq,i · p2

+
∑

α∈{p,q}

∑
i∈Eα

hα,i · c′dα,i,α,i

≡ p1q1 + zp1 + zq1 ≡ a1 mod P

Which will then be exactly how a1 is computed in Sim2
1. In particular this means

that the value a1 + a′2 mod P will be the same value whether executing using
Sim1

1 or Sim2
1.

For the remaining steps 8-12, first notice that Sim1
1 emulates Fκ,dlog(e)e

OT ex-

actly like the real world and the only remaining message sent to P̂2 in these steps
is ν = {>,⊥}. > should be returned to P̂2 iff the value r′w2

reflects an index i

s.t. i = w1. Thus, after receiving r′w2
sent in step 11, Sim2

1 extracts the index
i, by comparing r′a=w2

with the list r0, . . . , rdlog(e)e−1. First note that no two
values ri, ri′ for i 6= i′ are equal e.w.n.p. in κ, so r′w2

will match at most a single

item. If there is a match then Sim2
1 inputs this to FRSA as part of the construct

candidate command to learn whether i 6= w1. If this does not hold, then Sim2
1

returns ⊥. Otherwise it returns > exactly like what would happen in the real
execution. Thus > is returned even if r′w2

does not match any of the messages in

Fκ,dlog(e)e
OT . However, this is exactly like it would happen in the execution with

P1. Notice that this candidate will never be used again in the simulation.
Consider the case of I = 2:
First see that rα,i is picked uniformly at random by Sim2

2 exactly as in Sim1
2.

Next, notice that by the ideal functionality of F2`,2
OT we have that P̂1 can only

learn a single value of the two messages in the OT. This means that whether P̂1

receives rα,i in Sim1
2 or rα,i+αi mod P in Sim2

2 (when it chooses message 1 in the
OT) it cannot distinguish as they are both randomly distributed. Furthermore,
we see that the only other value sent dependent on rα,i is a2. However, we see
that a2 is computed exactly like in Sim1

2 since a1 = p1q1 + zp1 + zq1 mod P and
a2 = N − a1 mod P ⇒ N = a1 + a2 mod P.

Next see that P̂1 can choose whatever it wants for the values hα,1, . . . , hα,2`+3s,
gα, dα and in particular that it can pick whatever it wants as input to the OTs.
Specifically, since dα is only used once (as input to the OT) we define P̂1’s choice
of these values from what the simulator extracts from the OTs.

In regards to step 8-12 we see that Sim2
2 emulates Fκ,βOT by selecting a random

value rw′1 ∈ {0, 1}
κ

and returning this to P̂1 and extracting its input message w′1.
This rw′1 is clearly distributed the same as in the real execution with P1, since this

is also randomly sampled. Sim2
2 then inputs w′1 to FRSA as part of the construct

candidate command to learn whether w′1 = w2. If this holds, then Sim2
2 sends

rw′1 to P̂1. If P̂1 asks the simulator to discard the candidate (i.e. if it behaves
honestly) then the candidate is discarded. Otherwise the candidate is passed
on to the next phase. Notice that even if P̂1 is sending incorrect messages he
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can at most make simulator discard a proper candidate, not not make it accept
an incorrect candidate. This follows since the ideal functionality ensures that
gcd(e, φ(N)) = 1 since φ(N) = (p− 1)(q1) and gcd(e, p− 1) = gcd(e, q − 1) = 1
and the primes are larger than e.

Trial Division. We see that Sim3
I and Sim2

I execute the trial division in the same
way. Specifically Sim3

1 waits for ν from P̂2 and discards the candidate iff ν = ⊥,
otherwise it continues, like Sim2

1. Sim3
2 does trial division on N , in the same way

in both the simulations.

Biprimality Test. Consider step 1:
First consider the case where I = 1: Notice that P̂2 does not send any

messages. Thus we only need to argue that the messages sent by Sim3
1 are indis-

tinguishable from the ones sent by Sim2
1. This is quite easy since we notice that

Sim3
1 simulates in the same way as in the proof of Boneh and Franklin [BF01],

with the exception of what they call “step 4”, thus we refer the reader to their
proof for arguments of indistinguishability of the messages sent. There is only
one slight difference which is that P̂2 returns a bit ν. However, in this case we
see that both Sim2

1 and Sim3
1 discard N iff ν = ⊥ and accepts its iff ν = >.

Next consider the case where I = 2: Again we piggyback on the proof of
Boneh and Franklin [BF01]. However, since P̂1 can supply possibly malicious
input, here we must also argue that the simulators proceed similarly if P̂1 sends
incorrect messages. In particular P̂1 could send incorrectly constructed values γ
and γ1 to the simulator. Now, we know that p and q are primes, meaning that if
P̂1 sends correct values then the test must always pass. Now see that Sim3

2 checks
whether

(
γ
N

)
= 1 and aborts if not (exactly like the real Sim2

2). Thus we can

assume
(
γ
p

)
=
(
γ
q

)
. From which it follows that γφ(N)/4 ≡ ±1 mod N [BF01].

This means that

γ
(p−1)·(q−1)

4 ≡ ±γ
N+1−p−q

4 mod N

≡ ±γ
N+1−p1−p2−q1−q2

4 mod N

≡ ±γ
N+1−p1−q1

4 mod N

≡ ±γ
−p2−q2

4 mod N

Using this we make the following observation based on the value γ1 that Sim3
2

receives from P̂1:

γ1 · γ
N+1−p1−q1

4 ≡ ±γ1 · γ
−p2−q2

4 mod N

γ1 · γ
N+1−p1−q1

4 ≡ ±1 mod N

This means that Sim2
2 will return > to P̂1 iff ±γ1 · γ

−p2−q2
4 ≡ ±1 mod N . Thus

the simulation is sound.
Consider step 2:
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First see that the AES encryptions sent are indistinguishable between Sim2
2

and Sim3
2 because of the IND-CPA assumption. Next notice that the simula-

tor emulates the OT functionality when doing multiplication as in “Construct
Modulus”. See each 0-message contains a 3` + s + 2 bit random value which is
the same as in the real execution and that the 1-message contains p′I + q′I (or
p′I + q′I − 1 if I = 2) added to the random value, modulo 3` + s + 2. However,
p′I + q′I and pI + qI are both picked at random (under the constraints given by
leakage) and thus both messages input to the OT are indistinguishable between
Sim2

2 and Sim3
2. We see that the since the leakage is constant, the simulator can

in constant time find random values p′I , q′I consistent with the leakage.

Because the OT messages are picked in the same way in the simulation
this also means that the value sI simulated is indistinguishable from the real
execution. This is seen first from the fact that 3` + 4s + 2 OT executions are
done on messages of at most 3`+ s+ 2 bits, following the same argument as in
“Construct Modulus”, i.e. Lemma C.6. Second, because sI is computed under
the same constraints and that the values dependent on p̃I and q̃I (which are
simulated by p̃′I and q̃′I in Sim3

2) will be statistically indistinguishable from the
true values used in Sim2

2 as r̄I will statistically hide them (argument below).
Furthermore since r̄I is only used for computing sI and picked uniformly at
random in both Sim2

2 and Sim3
2 this will be indistinguishable.

To argue that sI computed in Sim2
2 is indistinguishable from the value of

Sim3
2 we first observe that r̄I is random in ZN and so multiplying this with any

value modulo N will yield something random. Thus sI will also be random.

Finally we notice that the simulated check pass exactly in the cases as the
real check since we already know (as we are running this simulation) that N is
a biprime.

Proof of Honesty. First note that Boneh and Franklin [BF01] showed that
whether a random value γi with Jacobi symbol 1 over N is used (like in Sim3

I ,
or if it is simulated by squaring a random value and picking a random sign (like
in Sim4

I) is indistinguishable.

Proof of Honesty, simulating P . Next see that the values γi,P , whether computed
like in the real protocol by Sim3

I or simulated in Sim4
I using the malicious party’s

shares, are indistinguishable since N is always a biprime when Sim4
I simulates

following the same argument as above for Sim3
2. Thus whether P̂3−I returns ⊥ is

independent of whether it executes with Sim3
I or Sim4

I . We next see that when
bj = 0 the simulated values tj , Htj , γ̄i,j and vj are computed in exactly the

same way in both Sim3
I and Sim4

I since tj is randomly sampled from {0, 1}`−2+s

and Htj , γ̄i,j , and vj are computed based on this in the same way in both
simulations. For the cases where bj = 1 first see that the statistical difference
between −p̃P − q̃P + tj and a uniformly random string of ` − 2 + s bits is
at most 2−s, since tj is uniformly random and of ` − 2 + s bits. Let tj,3 be
the value picked in Sim3

I and consider tj,4 = tj,3 − p̃P − q̃P as the value in
Sim4
I instead of a uniformly random sampled value tj . These are clearly 2−s
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statistically indistinguishable. Next consider all the values where tj,4 is used:

γ̄i,j ≡ γ
tj,4
i · (−1)bi · γ

N−5
4 −p̃V −q̃V

i mod N

≡ γtj,3−p̃P−q̃Pi · (−1)bi · γ
N−5

4 −p̃V +q̃V
i mod N

≡ γtj,3i · (−1)2bi mod N ≡ γtj,3i mod N

Thus we see that the values sent in Sim4
I are indistinguishable from the ones

sent in Sim3
I .

Regarding Htj see that if the adversary can distinguish between the simula-
tions this means that it knows p̃P + q̃P , since this is used to verify whether the
digest is computed correctly from the value vj . However, by Lemma C.1 we have
that (p̃P , q̃P ) still has at least s bits of entropy. This in turn means that p̃P + q̃P
also has at least s bits of entropy and thus that the adversary cannot find this
value in polytime with non-negligible probability.

Next see that if V acts honestly it will accept the simulated values vj of Sim4
I

by the following equation based on the γi checks:

γ
vj
i ≡ γ̄i,j · γ

bj
i,P · γ

−bj ·N−5
4

i mod N

γ
tj
i ≡ (−1)bi · γtj+bj ·(

N−5
4 −p̃V −q̃V )

i · (−1)bi · γp̃V +q̃V
i · γ−bj ·

N−5
4

i mod N

γ
tj
i ≡ γ

tj+bj ·(N−5
4 −p̃V −q̃V −

N−5
4 +p̃V +q̃V )

i · (−1)2bi mod N

γ
tj
i ≡ γ

tj
i mod N

Finally Sim4
I emulates F2PC and aborts in exactly the same case as in Sim3

I
since it uses the true shares given as input of both the malicious party and the
true honest party.

Following the same argument as in the biprimality testing, we see that Sim4
I

accept the values sent by P̂3−i in step 2 iff Sim3
I would accept these.

Next we see that Sim4
I does not sample anything and performs the same

checks in the same way as in Sim3
I , the only exception being the value δ. However,

since r̂P ∈ {0, 1}3`+2s+2
and the other term of δ, r̂V · ((r̄P + r̄V ) · (4(p̃1 + p̃2 +

q̃1 + q̃2) + 5)− σ) ∈ {0, 1}3`+s+2
we see that the simulated δ is 2−s statistically

indistinguishable. Finally Sim4
I emulates F2PC and aborts in exactly the same

case as in Sim3
I since it uses the true shares input of both the true malicious

party and the true honest party.

Proof of Honesty, simulating V , Sim5
I . We need to argue that whether the sim-

ulation of Sim5
I is used to compute the output of F2PC or whether it is computed

using the true input p̃I , q̃I , ρI ,KI , like in Sim4
I , the output will be the same. We

know, from the sheer fact that we are executing Sim5
I that the true N is biprime

and not marked as bad. However it might be the case that N 6= (p1 +p2)(q1 +q2)
if the adversary cheated in Candidate Generation. However, in that case the sim-
ulator sets χ = 0 since it knows if this is the case from the simulation transcript
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and the value N it got from FRSA. This is also what would happen in the real
execution since the F2PC functionality verifies this directly. Thus we can assume
that the N in use is correctly computed.

First see that the simulation Sim5
I verifies that r̄′P · (4p̃′P +4q̃′P +6)+αP +βP

mod N = σ − sV mod N , where r̄′P = r̄P , p̃′P = p̃P and q̃′P = q̃P as these are
based on the extracted values; as in Sim4

I . Thus what gets checked in Sim4
I is

also checked in Sim5
I with the exception that sV and thus r̄V and p̃′V , q̃

′
V are

simulated in Sim5
I . Next we see that Sim5

I accepts iff δ′ = δ mod N whereas
Sim4
I might accept a δ′ 6= δ mod N . However for the adversary to find such a

δ′ it must guess (as a minimum) guess the 2s bit value r̂V . To see this notice
that to construct a δ′ 6= δ mod N that still gets accepted it must be the case
that δ′ = r̂P − ε where 0 6= ε = r̂V ((r̄P + r̄V ) · (4(p̃P + p̃V + q̃P + q̃V ) + 5)− σ)
mod N . However, since r̄V ∈ {0, 1}s there are 2s possible values and since r̂V is
random, and completely hidden to the adversary by the F2PC in both simulations
it cannot guess such a value with probability greater than 2−s.

Next see thatN−5−4(p̃P+q̃P+p̃V +q̃V ) mod e 6= 0 (i.e. that gcd(φ(N), e) =
1) when Hp̃P = AESKP (p̃P ), Hq̃P = AESKP (q̃P ), Hr̄P = AESKP (r̄P ) and cp =

AESAESrP (KP )(0). This means that if P̂P inputs the same values to F2PC as were
extracted in the beginning of the protocol then F2PC should output χ = 1,
otherwise χ = 0. When using Sim4

I , and thus executing like in the real protocol
(but with the same assumptions as above), we see then F2PC will output χ = 1
by correctness of the protocol. However, if they are not then it will output χ = 0.
This follows since we know that Hp̃P 6= AESK′P (p̃′P ), Hq̃P 6= AESK′P (q̃′P ),Hr̄P 6=
AESK′P (r̄P ) or cp 6= AESAESrP (K′P )(0) if K ′P 6= KP , p̃′P 6= p̃P , or q̃′P 6= q̃P
following the argument that AES is a PRP. In regards to vj and Htj we notice

that Sim5
I does exactly the same check as in Sim4

I .

Proof of Honesty, simulating P , Sim5
I . In the case where the simulator simulates

P we first see, using the same argument above, that Sim5
I will output χ = 0 if

the malicious verifier gives input p̃′V 6= p̃V , q̃′V 6= q̃V , K ′V 6= KV , r̄′V 6= r̄V or N
is not the one received from FRSA.

Regarding the output d̄V when χ = 1 see that the simulator gets the true
output share dV from FRSA as part of the construct command. Since the ma-
licious party adds ρV to the d̄V to get dV the simulator must subtract ρV to
ensure that it returns a value consistent with what will be the output of the
computation.

Furthermore we must argue that the shares d1, d2 output by Sim4
I are dis-

tributed the same as what is output by Sim5
I . To see this first notice that

dV ∈ [−22`, 2`[ since N ∈ Z22` , thus when V = P1 dV ∈ [−22`, 0] and when
V = P2 dV ∈ [2`]. Since ρP ∈ [22`+s we see that adding dV to rP results in a
number in [22`+s] e.w.p. 2−s. Furthermore, this number will be 2−s from a ran-
dom number in [22`+s]. Thus, the value d3−I output by the adversary (sent by
Sim5
I from F2PC) will be 2−s indistinguishable from the value output by the ad-

versary (sent by Sim4
I from F2PC) since FRSA gives Sim5

I a value d3−I randomly
sampled from the same range as what is returned in the real execution.
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However, when V = P̂2 there is a slight problem. Specifically, depending on
the private shares of the parties, the output of F2PC might be off-by-one and
need to be adjusted in Generate shared key. The simulated output of F2PC is
adjusted with an off-by-one error iff e|−4p̃2−4q̃2. Still, this is also what is done
in the real execution. Thus we see that the value from FRSA will be subtracted
by 1 exactly if there would be an off-by-one in the real execution.

Generate Shared Key. Both simulators input Select to FRSA to accept the candi-
date. It is clear that the candidate exists and is acceptable, since both simulators
only execute on N , constructed from two primes. However, we must still argue
that too much information on the honest party’s shares p̃I , q̃I have been leaked.
However, this follows directly from C.1 since no more calls have been made to
Leak after the Construct Modulus phase.

Sim5
I to SimI . Finally we argue that we can go from Sim5

I to SimI . We first argue
that the candidates used to construct N will be generated by FRSA that is, if N
is marked as bad or not a biprime and F2PC has output χ = 1. In particular the
latter can only occur by malicious behavior. We now see exactly what can make
this occur. First assume the adversary has the role of P in Proof of Honesty.
We can assume that the malicious P inputs p̃P and q̃P that were extracted,
otherwise F2PC will output 0. With that in mind we see that if N is marked as
bad then we know that N 6= (p1 + p2)(q1 + q2), or N + 1 − p1 − p2 − q1 − q2

mod e = 0, even if p1 + p2 and q1 + q2 were primes and thus F2PC will output
0. From this we see that P̂3−I must use values p̃′3−I and q̃3−I in the Proof of
Honesty phase, different from the values it encrypted in Generate Candidate,
otherwise the protocol would have aborted (by correctness of the biprimality
test). Next see, that we can also assume that vj = bj(−p̃P − q̃P ) + tj , otherwise
F2PC will always output 0. This follows since P is committed to its choices tj
by the AES encryption in step 5. In particular this means that each tj cannot
depend on any values he learned after step 5. Thus P must send at least one

value γi,P 6= γ
N−5

4 −p̃P−q̃P
i for i ∈ [s] s.t. γ−p̃V −q̃Vi · γi,P ≡ ±1 mod N . But since

we have not already aborted this means that

γ̄i,j · γ
bj
i · γ

−bj ·N−5
4

i ≡ γvji mod N

γ̄i,j · γ
bj
i · γ

−bj ·N−5
4

i ≡ γbj ·(−p̃P−q̃P )+tj
i mod N

If bj = 0 it means that

γ̄i,j ≡ γ
tj
i mod N

Similarly, if bj = 1 it means that

γ̄i,j · γi,P · γ
−N−5

4
i ≡ γ−p̃P−q̃P+tj

i mod N

γ̄i,j ≡ γ−1
i,P · γ

−p̃P−q̃P
i · γtji · γ

N−5
4

i ≡ γ−1
i,P · γ

−p̃P−q̃P+tj+
N−5

4
i mod N
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This means that for the adversary to be able to answer both queries of bj it must
hold that

γ
tj
i ≡ γ

−1
i,P · γ

−p̃P−q̃P+tj+
N−5

4
i mod N

1 ≡ γ−1
i,P · γ

−p̃P−q̃P+N−5
4

i mod N

γi,P ≡ γ
N−5

4 −p̃P−q̃P
i mod N

However, this is the value the honest party should have sent. Thus he must send
the correct value γi,P for each i ∈ [s] to be able to pass both choices of bj for

each j ∈ [s]. That is, for each γi,P 6= γ
N−5

4 −p̃P−q̃P
i mod N the adversary can

make the check pass for at most one value of bj for each j ∈ [s]. That is, with
probability at most 2−s.

The last thing to argue is that whether the values p̃I for the candidate values
that are discarded are sampled at random by SimI or as in the true protocol
like in Sim5

I is indistinguishable. This follows since these values are independent
from the N given as result and are sampled from the same, random, distribution
in both the real and simulated execution.
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