
Round-Optimal Secure Multiparty Computation
with Honest Majority

Prabhanjan Ananth1, Arka Rai Choudhuri2, Aarushi Goel2, and Abhishek
Jain2

1 Massachusetts Institute of Technology, USA,
prabhanjan@csail.mit.edu

2 Johns Hopkins University, USA,
{achoud,aarushig,abhishek}@cs.jhu.edu

Abstract. We study the exact round complexity of secure multiparty
computation (MPC) in the honest majority setting. We construct several
round-optimal n-party protocols, tolerating any t < n

2
corruptions.

1. Security with abort: We give the first construction of two round
MPC for general functions that achieves security with abort against
malicious adversaries in the plain model. The security of our protocol
only relies on one-way functions.

2. Guaranteed output delivery: We also construct protocols that
achieve security with guaranteed output delivery: (i) Against fail-
stop adversaries, we construct two round MPC either in the (bare)
public-key infrastructure model with no additional assumptions, or
in the plain model assuming two-round semi-honest oblivious trans-
fer. In three rounds, however, we can achieve security assuming only
one-way functions. (ii) Against malicious adversaries, we construct
three round MPC in the plain model, assuming public-key encryp-
tion and Zaps.
Previously, such protocols were only known based on specific learning
assumptions and required the use of common reference strings.

All of our results are obtained via general compilers that may be of
independent interest.

1 Introduction

The notion of secure multiparty computation (MPC) [31,20] is fundamental in
cryptography. Informally speaking, an MPC protocol allows mutually distrusting
parties to jointly evaluate a function over their private inputs in such a manner
that the protocol execution does not leak anything beyond the function output.

A fundamental measure of efficiency in MPC is round complexity, i.e., the
number of rounds of communication between the parties. Protocols with smaller
round complexity are more desirable so as to minimize the effect of network
latency, which in turn decreases the time complexity of the protocol. Over the
last three decades, the round complexity of MPC has been extensively studied
in various security models.

MPC with Honest Majority. In this work, we study the exact round com-
plexity of MPC in the honest majority setting, where an adversary may corrupt
up to t parties out of n = 2t+1 total parties. We seek to construct round-optimal
protocols in the plain model without any trusted setup assumptions.

The study of MPC in the honest majority model was initiated in the works
of [6,10]. We recall the main security notions that have been studied over the
years in this model:

• Security with Abort: In this notion, an adversary may learn the function
output but prevent the honest parties from doing so by prematurely aborting
the protocol. This is the most well-studied notion in the dishonest majority
setting, where four rounds are known to be necessary for security against
malicious adversaries [16,27]. Interestingly, this lower bound does not hold
in the honest majority setting, which opens doors to achieving this notion
in fewer rounds.

• Guaranteed Output Delivery: This notion guarantees that the honest
parties always learn the function output (computed over the inputs of “ac-
tive” parties) even if some parties prematurely abort the protocol. A relax-
ation of this notion, referred to as fairness, guarantees that either all the
parties learn the output or no one does.

It is well known that fairness and guaranteed output delivery are impossible
to realize for general functions in the dishonest majority setting [11]. In the
honest majority setting, however, these notions are indeed possible (see, e.g.,
[6,12]).

Our Questions. We now summarize the state of the art results for the afore-
mentioned security notions and state our motivating questions. We refer the
reader to Section 1.2 for a more comprehensive survey of prior work.

We first focus on security with abort. Ishai et al. [26] constructed two round
protocols in a “super” honest majority model where a malicious adversary can
corrupt up to t 6 n

3 parties (see also [24,29] for efficiency improvements when
n = 3, t = 1). Their protocol achieves a weaker notion of selective security with
abort, where the adversary can choose which honest parties learn the output.
This is necessary since their protocol only uses private channels.

We ask whether it is possible to handle the optimal corruption threshold of
t < n

2 in two rounds (which are known to be optimal [23]), while also achieving
standard notion of security with abort (with the additional use of broadcast):

Q1: Does there exist a two round MPC protocol in the plain model that
achieves security with abort against any t < n

2 malicious corruptions?

For the case of semi-honest adversaries, Ishai and Kushilevitz [25] constructed
two-round MPC in the super honest majority model assuming only one-way
functions for general computations, and with unconditional security for NC1

computations. More recently, several new two-round MPC protocols have been
constructed (see [17,7] and references therein); however, these protocols neces-
sarily require at least semi-honest oblivious transfer since they can also handle

2

a dishonest majority of corruptions. We ask whether it is possible to construct
two-round (semi-honest) MPC with honest majority, from weaker assumptions:

Q2: Does there exist a two round MPC protocol for general computations in the
plain model against any t < n

2 corruptions, based only on one-way functions?

We next consider the stronger notion of guaranteed output delivery. In this
setting, Gennaro et al. [18] established the impossibility of two round protocols
against t > 2 malicious adversaries in the plain model. More recently, Gordon
et al. [21] established the impossibility of two round protocols over broadcast
channel (but no private channels) against fail-stop3 adversaries in the common
reference string (CRS) model. Put together, these works leave open the pos-
sibility of achieving guaranteed output delivery against fail-stop adversaries in
two rounds using private channels in the plain model or just using broadcast
channels in the bare public-key (BPK) model.4

Q3: Does there exist a two round MPC protocol that achieves guaranteed
output delivery against any t < n

2 fail-stop corruptions?

In the broadcast-only model, Gordon et al. [21] also constructed a three round
protocol with guaranteed output delivery tolerating t < n

2 fail-stop corruptions.5

Their protocol, however, requires the use of a CRS and its security is based on
the learning with errors assumption. To achieve security against malicious adver-
saries, they compile their protocol with non-interactive zero-knowledge (NIZK)
proofs [8,15]. Their work leaves open the possibility of constructing three round
protocols in the plain model, based on general assumptions:

Q3: Does there exist a three round MPC protocol over broadcast channel that
achieves guaranteed output delivery against any t < n

2 malicious corruptions
based on general assumptions, in the plain model?

1.1 Our Results

In this work, we resolve all of the aforementioned questions in the affirmative.
Below, we elaborate upon our results in more detail. Unless mentioned otherwise,
all of our results are in the plain model, and do not require any trusted setup.

Security with Abort. We construct two-round MPC for general computations
that achieves security with abort against any minority of malicious corruptions,
based on one-way functions.

3 A fail-stop adversary behaves like a semi-honest adversary, except that it may choose
to abort at any point (on all the communication channels) based on its view.

4 The BPK model was proposed in [9] where, prior to the start of the protocol, every
player is required to declare a public key and store it in a public file. Since no
assumptions are made on whether or not the public keys deposited are unique or
“bad”, this is considered a weaker model than the standard PKI model.

5 Assuming a special-purpose public-key infrastructure, their protocol can be collapsed
to two rounds.

3

Theorem 1 (Informal). Assuming one-way functions, there exists a two round
MPC protocol for general circuits that achieves security with abort against any
t < n

2 malicious corruptions.

We emphasize that our protocol in the above theorem only makes black-box
use of one-way functions. In order to prove the above theorem, we devise a gen-
eral compiler that “compresses” an arbitrary polynomial round MPC protocol
(that may use both broadcast and private point-to-point channels) that achieves
security with abort against any minority of malicious corruptions [10,6] into a
two round MPC protocol. Our compiler builds upon the recent beautiful work of
Garg and Srinivasan [17] who construct two-round UC secure MPC with dishon-
est majority from two-round UC secure oblivious transfer, in the CRS model.
Indeed, our compiler can be viewed as an honest-majority analogue of their work
(in the plain model).

Guaranteed Output Delivery. We next turn our attention to constructing
protocols with guaranteed output delivery. We first consider security against
fail-stop adversaries. In this case, we devise a round-preserving compiler that
accepts any two-round semi-honest MPC protocol with a “delayed-function”
property6 and outputs a new protocol that achieves guaranteed output delivery
against non-rushing fail-stop adversaries. If the underlying protocol tolerates
semi-malicious7 corruptions, then the resulting protocol achieves security against
rushing, semi-malicious fail-stop adversaries. Our compiler only requires the use
of one-way functions.

Theorem 2 (Informal). Assuming one-way functions, there exists a general
compiler that transforms any two round semi-honest (resp., semi-malicious)
MPC protocol with delayed-function property into a two-round protocol that achieves
guaranteed output delivery against non-rushing fail-stop (resp., rushing, semi-
malicious fail-stop) adversaries.

Our compiler yields the following two kinds of protocols: (i) Protocols in the
plain model that use only private channels, if the underlying protocol only uses
broadcast channels. (ii) Protocols in the (bare) public-key model that only use
broadcast channels, if the underlying protocol uses private channels. We note that
in the latter case, the use of BPK model is necessary due to the impossibility
result of [21].

By applying our compiler from theorem 2 on a variant of the protocol from
Theorem 1 that achieves delayed-function8 property, we obtain the following
result in the BPK model:

6 Roughly, a two-round MPC protocol satisfies the delayed-function property if the
first round messages of the honest parties are computed independent of the function
and the number of parties.

7 A semi-malicious adversary is similar to a semi-honest adversary, except that it may
choose its input and randomness arbitrarily [1].

8 In the technical sections, we describe a simply modification to achieve this property.
The same idea also works for the protocols of [17].

4

Corollary 1 (Informal). There exists a two round MPC protocol over broad-
cast channels in the BPK model that achieves guaranteed output delivery against
any t < n

2 (semi-malicious) fail-stop corruptions.

Furthermore, the above protocol can also be easily modified to obtain a three
round protocol in the plain model based only on one-way functions .

Next, by applying the compiler from Theorem 2 on a delayed-function variant
of the semi-honest protocol from [17] (that only uses broadcast channels, unlike
the protocol in Theorem 1), we get the following result:

Corollary 2 (Informal). Assuming the existence of semi-honest (resp., semi-
malicious), two-round oblivious transfer, there exists a two round MPC protocol
over private channels that achieves guaranteed output delivery against any t < n

2
fail-stop (resp., semi-malicious fail-stop) corruptions in the plain model.

We next consider security against malicious adversaries. We devise another
compiler that accepts any two-round MPC protocol with guaranteed output de-
livery against semi-malicious fail-stop adversaries and outputs a three-round pro-
tocol that achieves guaranteed output delivery against malicious adversaries. The
main tool used in our compiler is a new notion of multi-verifier zero-knowledge
(MVZK) proofs, which may be of independent interest. Briefly, an MVZK pro-
tocol is a multiparty interactive protocol between a single prover and multiple
verifiers where the soundness and zero knowledge properties only hold when a
majority of the parties are honest. An MVZK must also achieve a strong com-
pleteness property such that the honest verifiers always accept the proof given
by an honest prover even if some of the verifiers (who constitute a minority) are
dishonest.

Theorem 3 (Informal). Assuming public-key encryption and two round delayed-
input9 multi-verifier zero-knowledge arguments, there exists a general compiler
that transforms any two round MPC protocol with guaranteed output delivery
against semi-malicious fail-stop adversaries into a three round protocol with
guaranteed output delivery against malicious adversaries.

Our compiler only requires broadcast channels, and is therefore optimal in
the number of rounds, in keeping with the impossibility result of [21]. We next
give a simple construction of delayed-input MVZK arguments based on Zaps [14]
(i.e., two round witness indistinguishable proofs), following the construction of
NIZKs in the multi-CRS model [22]. Then, applying our compiler on the protocol
from Corollary 1, we obtain the following result:

Corollary 3 (Informal). Assuming Zaps and public-key encryption, there ex-
ists a three round MPC protocol over broadcast channels that achieves guaranteed
output delivery against any t < n

2 malicious corruptions.

9 Delayed-input property for MVZK is defined in the same manner as two-party in-
teractive proofs [28], namely, by allowing the prover to choose the instance after the
first round of the protocol.

5

1.2 Related Work

Concurrent Work. We were notified of a concurrent and independent work [3]
who also investigate the problem of round-optimal MPC with guaranteed out-
put delivery. They construct three-round protocols against malicious adversaries
based on LWE, dense cryptosystems and Zaps.

Prior Work. Over the years, the round complexity of MPC has been ex-
tensively studied both in the honest majority and dishonest majority settings.
Here, we focus on the honest majority setting and refer the reader to [2] for a
comprehensive survey of the literature in the dishonest majority setting.

The study of constant-round MPC was initiated by Beaver et al. [4]. They
constructed such protocols against malicious adversaries in the honest majority
setting using pseudorandom generators (PRGs). Damg̊ard and Ishai [13] later
achieved a similar result by making only black-box use of PRGs.

In a seminal work, Ishai and Kushilevitz [25] constructed two round and three
round semi-honest MPC protocols that tolerate t 6 n

3 and t < n
2 corruptions, re-

spectively. Subsequently, Ishai et al. [26] constructed two round protocols against
t 6 n

3 malicious corruptions, achieving selective security with abort. More re-
cently, Ishai et al. [24] and [29] constructed simpler two round protocols for n = 3
parties that tolerate any single, malicious corruption.

While the work of [6] already achieved fairness, several subsequent works also
achieve guaranteed output delivery (see, e.g., [12] for references). We highlight
a few results in this regime. Damg̊ard and Ishai [13] constructed a three round
MPC protocol with guaranteed output delivery for t < n

5 . Ishai et al. [26] con-
structed a two round protocol with guaranteed output delivery using only private
channels for the special case of t = 1, n > 5. Further, they also constructed a
two-round protocol in the client server model, with n clients and m > 2 servers,
that tolerates a single corrupted client and t 6 n

5 colluding servers. Subsequently,
Asharov et al. [1] constructed five round protocols with guaranteed delivery for
t < N/2, assuming learning with errors (LWE) and NIZKs. More recently, Ishai
et al. [24] constructed several protocols with guaranteed output delivery for the
case of t = 1 and n = 4: a two round statistically secure protocol for linear
functionalities, a two round computationally secure protocol for general func-
tionalities with guaranteed output delivery from injective one-way functions,
and a two round unconditionally secure protocol for general functionalities with
guaranteed output delivery in the preprocessing model. Gordon et al. [21] con-
structed a three round protocol with guaranteed output delivery in the CRS
model with broadcast-only messages assuming LWE and NIZKs.

Gennaro et al. [18] established a lower bound for achieving guaranteed output
delivery against malicious adversaries. They ruled out the existence of two round
protocols in the plain model that achieve guaranteed output delivery against
t > 2 malicious parties. More recently, Gordon et al. [21] established a stronger
lower bound for protocols that only use broadcast channels. Specifically, they
ruled out the existence of two round protocols over broadcast channels that

6

achieve guaranteed output delivery against (non-rushing) fail-stop adversaries
in the CRS model.

2 Preliminaries

In our constructions, we make use of some well studied primitives like garbled
circuits [31] and threshold secret sharing [30]. While garbled circuits with selec-
tive security suffice for our application in section 4, we require adaptive garbled
circuits in section 5. An adaptively secure garbled circuit is one where the ad-
versary first gets to see a garbling for any circuit of his choice. After seeing this
garbled circuit, he can adaptively choose an input and obtain labels correspond-
ing to that input. For our application, the online complexity (i.e., size of input
wire labels) is not important; as such it suffices to use one-time pads with Yao’s
garbled circuits as suggested in the work of Bellare et al. [5] to obtain adaptively
secure garbled circuits from one-way functions. We refer the reader to [5] or the
full version of our paper for a formal definition of this primitive.

We use various notions of security for secure multiparty computation (MPC)
in our constructions. Apart from the standard notion of security with abort that
guarantees correctness of output of the honest parties (when the adversary does
not prematurely abort), we also consider a relaxed notion of security called
privacy with knowledge of output [26]. The only difference from the definition
for security with abort is that in the ideal world, on receiving outputs from
the trusted party, the adversary can choose the output it wants to send to the
honest parties. It is easy to see that this is a weaker notion since the correctness
of output for the honest parties is no longer guaranteed. A formal definition of
this can be found in the full version of our paper, or in [26]. We also consider
security with guaranteed output delivery against both fail-stop and malicious
adversaries.

For our application in section 5, we also consider MPC protocols with a
delayed function property, i.e., protocols where the first round messages of all
parties are independent of the function and the number of parties in the protocol.

3 Definitions

In this section, we define some new notions that we consider in this work.

3.1 Multiparty Oblivious Transfer Protocol

A multiparty oblivious transfer (OT) protocol consists of n-parties, where one
of the parties Pn is the receiver and every other party P1, . . . , Pn−1 is a sender.
Sender Pi has inputs mi,0,mi,1 and the receiver R has a private input σ1. At
the end of this protocol every party learns only {mi,σ1

}i∈[n−1].
Before proceeding we note that every player gets the output. Therefore, on

completion of the protocol there is no receiver security. For our applications this

7

is completely fine. On the other hand, we will insist that if the second round of
the protocol is not executed the receiver privacy is maintained. We should also
point out that we have given a general definition, but this can be appropriately
modified to let only the receiver obtain the output by setting every other party’s
output to be ⊥.

We consider protocols that have both broadcast and private messages mB

and mpriv. But for convenience of notation we denote this as m := (mB ,mpriv).
When we say such a message is sent, we indicate that mB is sent by broadcast
and mpriv is sent privately.

We consider a variant of the multiparty OT protocol, which we shall denote
as multiparty homomorphic oblivious transfer protocol. In this variant there is a
special designated sender Ŝ (=Pn−1) with an additional input σ2. At the end of
the protocol, every party learns only {mi,σ1⊕σ2

}i∈[n−1]. The regular multi-party
OT can be thought of as a special mode of the homomorphic oblivious transfer
where the additional input from this special designated sender is ignored (or set
to 0). Hence, it is convenient to formally define the homomorphic notion of the
multiparty OT, but we shall use both these notions:

Definition 1 (Multiparty Homomorphic OT Protocol). A two round 1-

out-of-2 multiparty homomorphic oblivious transfer protocol OT =
(
OTR1 ,OT

Ŝ
1 ,

OTS1 ,OT2,OT3

)
is an interactive protocol between n parties, where one of the

parties is the receiver, one of the parties is a special designated sender and the
others are senders. The sender parties Pi for i ∈ [n− 1] have inputs mi,0,mi,1 ∈
{0, 1}λ, the receiver party Pn has an input bit σ1 ∈ {0, 1}, and the special desig-
nated sender Pn−1 has an additional input σ2 ∈ {0, 1}.

First round. The parties compute their first round messages as follows:

– Receiver:
{
otn[j]1→n,n−1

}
j∈[n] ← OTR1 (σ1) where otn[j]1→n,n−1 refers to the

message that the party j receives from the receiver (party Pn). The subscript
→ n, n − 1 denotes that the designated special sender is Pn−1 while the
receiver is Pn.

– Special sender:
{
otn−1[j]1→n,n−1

}
j∈[n] ← OTŜ1 ((mn−1,0,mn−1,1) , σ2). The

notation is almost identical to the previous case, but the notation here iden-
tifies this as a message from the special sender (party Pn−1).

– Senders: Each party i ∈ [n−2] computes
{
oti[j]

1
→n,n−1

}
j∈[n] ← OTS1 (mi,0,mi,1).

The notation is almost identical to the previous case, but the notation here
identifies this as the message from the corresponding sender (party Pi).

Each party sends Pj its corresponding message. Thus, at the end of the first
round each party Pj has

{
oti[j]

1
→n,n−1

}
i∈[n]

Second Round. Each party Pi computes their second round message

oti[⊥]2→n,n−1 ← OT2

({
otj [i]

1
→n,n−1

}
j∈[n]

)
. Here by ⊥ we denote that the mes-

sage is broadcast to every party.

8

Output Computation. Every party computes the output as follows(
{m̃i}i∈[n−1]

)
:= OT3

({
oti[⊥]2→n,n−1

}
i∈[n]

)
We require the following properties from the protocol:

1. Correctness: For every σ1, σ2 ∈ {0, 1}, and sender input messages ∀i ∈
[n], b ∈ {0, 1} mi,b ∈ {0, 1}λ, Pr

[
∀i ∈ [n − 1] m̃i = mi,σ1⊕σ2

]
= 1 where

the randomness is over the coins used to compute the first and second round
messages of the protocol.

2. Security: We consider two notions of security depending on whether or not
the second round of the protocol is executed:
– Privacy. If the protocol terminates at the end of the first round, then

the notion of privacy is satisfied;
– Privacy with Knowledge of Outputs against Malicious Minor-

ity: If the second round is executed (by the honest parties at least), then
for any PPT adversary A controlling a minority set of the parties, there
exists a PPT simulator Sim = (SimOT,ExtOT) satisfying the security no-
tion of privacy with knowledge of outputs (defined in 2).
The role of the extractor ExtOT is to extract the adversary’s input from
its first round messages. On the other hand, the role of the SimOT is to
generate the transcript for the protocol.

Instantiation. The multiparty homomorphic oblivious transfer protocol with
inputs ({mi,b[`]}i∈[n−1],b∈{0,1},`∈[λ] , σ1, σ2), where σ1, σ2,mi,b[`] ∈ {0, 1}, can be

thought of as a vector of degree 2 polynomials in F2: ∀i ∈ [n−1], ` ∈ [λ] mi,0[`] ·
(1 +σ1 +σ2) +mi,1[`] · (σ1 +σ2). The work of Ishai, Kushilevitz and Paskin [26]
gives us an explicit construction for such a degree 2 polynomial computation
protocol:

Theorem 4 ([26]). For n = 2t+ 1, where t is the number of corrupted parties,
there exists a 2 round protocol that computes a vector of polynomials of degree 2
and satisfies statistical t-privacy with knowledge of outputs.

We note that the original stated lemma in [26] requires |F| > n, but this
condition can be relaxed to computing polynomials in F2 if we can construct a
2-multiplicative (2t+ 1, t) linear secret sharing scheme that is pairwise verifiable
(see [26] for details). In fact, [26] discusses how to construct such a scheme, which
in turn suffices for our notion of the multiparty homomorphic OT.

3.2 Multi-Verifier Zero Knowledge Proof System

A multi-verifier zero-knowledge proof system consists of a prover P and n ver-
ifiers V1, . . . , Vn. The prover and the verifiers share a statement x that belongs
to an NP-language. The prover additionally holds a private input w. If w is a
valid witness for the statement x, all honest verifiers must be able to output 1.
If x does not belong to the NP-language, honest verifiers should not output 1

9

with a very high probability. The verifiers should not learn anything about w in
either case.
Consider n verifiers, where t can be corrupted. For completeness, t 6 n, for
soundness, t 6 n − 1, and for ZK, t 6 n. Note that in the extreme case, the
definition subsumes the standard ZK definition since all the verifiers can be
combined into one. In our constructions, we will focus on the honest-majority
case, where for soundness, t 6 n−1

2 and for ZK, t 6 n
2 . For our constructions, we

require a two round multi-verifier zero knowledge protocol that satisfies delayed
input property, i.e., first round messages of both the prover and verifier and
second round messages of verifier are independent of the statement.
A formal definition of this primitive is as follows:

Definition 2 (Two Round Multi-Verifier Zero Knowledge). A two round
multi-verifier zero-knowledge proof system associated with an NP relation R is
an interactive zero-knowledge protocol with a prover P and n verifiers V1, . . . , Vn.
The prover and the verifiers hold an instance x of the language L(R) defined by

the relation R. The prover also holds a string w ∈ {0, 1}λ. It can be defined as
a tuple of PPT algorithms mvzk := (P1

mvzk,V
1
mvzk,P

2
mvzk,V

2
mvzk,Verifymvzk).

– pMsg1 ← P1
mvzk(1

λ): P1
mvzk takes the security parameter λ as input and out-

puts first round messages of the prover.
– vMsg1i ← V1

mvzk(1
λ, i): V1

mvzk takes the security parameter λ and index i of
the verifier as input and outputs first round messages of the verifier.

– pMsg2 ← P2
mvzk(trans

1
mvzk, x, w): P2

mvzk takes the first round transcript of
mvzk, trans1mvzk := (pMsg1, {vMsg1i }i∈[n]), the statement x and the witness w
as input and outputs second round messages of the prover.

– vMsg2i ← V2
mvzk(i, trans

1
mvzk): V

2
mvzk takes index i of the verifier and the first

round transcript of mvzk, trans1mvzk := (pMsg1, {vMsg1i }i∈[n]) as input and
outputs second round messages of the verifier.

– b := Verifymvzk(i, {transrmvzk}r∈[2], x): Verifymvzk takes index i of the verifier,
the entire transcript of the protocol and the statement x as input and outputs
a bit b.

We want the multi-verifier zero-knowledge proof system to satisfy the following
properties:

1. Completeness: For every n.u. PPT adversary A that corrupts up to t ver-
ifiers, let H ⊂ [n] be the set of honest verifiers, then for every x ∈ L(R) and
for all honest verifiers Vi, where i ∈ H,

Pr[Verifymvzk(i, {transrmvzk}r∈[2], x) = 1] = 1

2. Soundness: For every adversary A controlling the prover (P ∗) and upto t
verifiers, let H ⊆ [n] be the set of honest verifiers, then for every x /∈ L(R)
and for all honest verifiers Vi where i ∈ H,

Pr[Verifymvzk(i, {transrmvzk}r∈[2], x) = 1] 6 µ(λ)

for some negligible function µ.

10

We require a slightly stronger notion of soundness, where soundness holds,
even if an adversarial prover is allowed to choose the statement after looking
at the first round messages of honest verifiers.

3. Zero-Knowledge: For every n.u. PPT adversary A, that corrupts upto
t verifiers, let H ⊆ [n] be the set of honest verifiers, then there exists a
PPT Simulator Simmvzk := (Sim1

mvzk,Sim
2
mvzk), s.t., for every x ∈ L(R), w ∈

R(x), z ∈ {0, 1}∗ and a negligible function µ(.),

|Pr[ExpZKA,Simmvzk
(1λ, 0) = 1]− Pr[ExpZKA,Simmvzk

(1λ, 1) = 1]| 6 µ(λ)

where the experiment ExpZKA,Simmvzk
(1λ, b) is defined as follows:

(a) The adversary A gets (pMsg1, {vMsg1i }i∈H), which are computed as fol-
lows:
– If b = 0: pMsg1 ← P1

mvzk(1
λ), {vMsg1i }i∈H ← {V1

mvzk(1
λ, i)}i∈H

– If b = 1: (pMsg1, {vMsg1i }i∈H)← Sim1
mvzk(1

λ, H).
(b) The adversary A sends {vMsg1i }i/∈H and specifies x,w and gets

(pMsg2, {vMsg2i }i∈H), which are computed as follows:
– If b = 0: pMsg2 ← P2

mvzk(trans
1
mvzk, x, w), {vMsg2i }i∈H ←

{V2
mvzk(i, trans

1
mvzk)}i∈H .

– If b = 1: (pMsg2, {vMsg2i }i∈H)← Sim2
mvzk(H, trans

1
mvzk, x).

(c) The adversary outputs a bit b′, which is the output of the experiment.

If the soundness property only holds against polynomial-time adversaries,
then we refer to the above system as an argument system.

In the full version, we provide a construction of multi-verifier ZK arguments
based on Zaps. Our protocol is based on the multi-CRS NIZK construction of
[22], with some changes to achieve the strong completeness property.

4 Security with Abort against Malicious Adversaries

Overview. We start by providing an overview of our construction. Our starting
point is the recent beautiful work of Garg and Srinivasan [17].

Recap of [17]. Garg and Srinivasan [17] constructed two-round maliciously secure
MPC against dishonest majority based on any two-round OT in the CRS model
with some specific security properties (that we discuss below). At a high level,
their protocol works by compiling a multi-round maliciously secure protocol of
a very specific syntactic structure (where each round only consists of a single
bit broadcast by one party to all the other parties), which they refer to as a
conforming protocol, into a two round protocol using OT.

The compiler of Garg and Srinivasan uses a two-round OT protocol in the
CRS model with the following properties: (1) simulation-based security against
malicious receivers (which implies that the simulator can extract the input bit
from a malicious receiver); and (2) equivocation of the honest receiver bit. Un-
fortunately, in two rounds, these properties can only be achieved in the common
random string (CRS) model in the dishonest majority setting.

11

At a high level, OT is used to transmit garbled circuit labels for a single
input (that corresponds to a message in the underlying conforming protocol) to
an evaluator. Loosely speaking, a “speaker” party in any round of the under-
lying conforming protocol sends a receiver’s OT message in the first round of
the two-round protocol. The receiver’s message is computed using as input the
bit b which is supposed to be broadcast in the underlying protocol. Note that
these messages are not actually known in the first round, so the “speaker” party
actually prepares multiple OT messages. Every other party (unaware of this bit
ahead of time) computes the OT protocol message with the two labels for its
own garbled circuit as its sender input. At a later point, when the message bit
is broadcast, the OT receiver also reveals the randomness used to compute the
appropriate first OT message. This enables an evaluator, different from the re-
ceiver, to obtain the appropriate labels for each garbled circuit and then evaluate
them correctly.

However, this release of the randomness used to compute the OT receiver
messages creates a problem during simulation against a rushing adversary since
a simulator, who computes an OT receiver message on behalf of an honest party,
does not know what inputs to use. For this reason, the compiler in [17] requires
the ability to equivocate receiver’s randomness.

Challenges. We face some challenges in adopting the template of [17] to achieve
our goal of constructing a maliciously secure two-round MPC protocol in the
honest majority setting from one-way functions. We highlight a couple of them
below.

– Issue #1. Replacing Oblivious Transfer: If we have any hope of basing our
construction on one-way functions, we first need to figure out how to replace
the oblivious transfer protocols in [17] for the honest majority setting. Note
that the oblivious transfer protocols are used in two places in [17]: (i) in the
interactive secure MPC protocol and, (ii) in the transformation of conforming
protocols into two-round secure MPC protocols. We handle both (i) and (ii)
separately.

– Issue #2. Private Channels: We first handle (i) by starting with a interactive
secure MPC protocol in the honest majority setting. The existence of such
a protocol achieving perfect security is known in literature [10,6]. However
such protocols, in addition to broadcast channels, inherently use private
channels – every pair of parties has a channel designated to them such that
any communication on this channel cannot be observed by an external entity.
However, the approach of [17] starts with an interactive secure MPC protocol
that uses only broadcast channels. Hence, we need to modify their approach
that will enable us to handle private channels in the underlying interactive
secure MPC protocol.

Multiparty Homomorphic Oblivious Transfer. Towards solving both the above
issues, we introduce the notion of multiparty homomorphic oblivious transfer.
For simplicity, we first focus on achieving the weaker goal of semi-honest secure
two-round MPC in the honest majority setting.

12

As the name suggests, this notion is a multiparty protocol where only three
of the parties have inputs and the rest of the parties have no inputs. These three
parties are termed as sender, receiver and designated sender. The sender10, has
inputs (m0,m1), receiver has input a bit σ1 and the designated sender has input
a mask σ2. At the end of the protocol, every party receives the output mσ1⊕σ2

.
We can also consider a weaker notion where the designated sender does not
supply any input and we term such a notion as multiparty OT (in particular,
not homomorphic). In this case, every party receives mσ1

.
We can use this protocol to replace the oblivious transfer protocols in the

transformation from conforming protocols to two-round secure MPC protocols.
Moreover this protocol can be instantiated from two-round perfectly secure MPC
protocols for quadratic polynomials [10,6]11. To see how this can be used to
solve the issue of private channels, we make the following modifications to the
framework of [17].

– We start with an interactive perfectly secure MPC protocol that uses only
broadcast channels in the pre-processing setting. By pre-processing, we mean
that the parties can exchange information with each other over private chan-
nels before seeing any input. Once pre-processing phase is over, the parties
receive the inputs in the online phase and during this phase, they perform
secure computation only using broadcast channels. Such a protocol can be
achieved by starting with an perfectly secure protocol without pre-processing
but using private channels: the parties can exchange one-time pads (of suit-
able length) in the pre-processing phase to emulate the private channels in
the online phase. In particular, whenever a party Pi has to send a message to
another party Pj , it encrypts its message using the one-time pad Pj sent to
Pi during the online phase. We transform such a interactive MPC protocol
into a conforming protocol in the pre-processing setting.

– To transform a conforming protocol in the pre-processing setting into a
two-round protocol, the main challenge we encounter is to get rid of the
pre-processing phase. Specifically, every party in the two-round protocol is
required to commit to all its actions (corresponding to the conforming pro-
tocol) in the first round. This is not possible if we start with a conforming
protocol in the pre-processing setting since the actions of the parties depend
on the output of the pre-processing phase which cannot be computed before
the first round in the two-round protocol. This is where we crucially use the
homomorphism property of the multiparty homomorphic OT protocol.

Malicious Security. While the use of multiparty homomorphic OT protocol can
be used to achieve a semi-honest secure two-round MPC protocol in the honest
majority setting, we need additional mechanisms to prove security against mali-

10 For simplicity, we explain the main ideas using just a single sender. We use a gener-
alized version with multiple senders.

11 Note that [10,6] dealt with computations over large fields while we need to securely
compute quadratic polynomials over boolean fields. By suitably using extension fields
in [6] we can solve this issue.

13

cious adversaries. We start by incorporating the equivocation mechanism inside
our multiparty homomorphic protocol.

Equivocation Instead of using an OT protocol that explicitly allows for ran-
domness equivocation, we achieve a similar effect from the fact that an honest
receiver’s input in the multiparty OT protocol is not fixed in the adversary’s
view when it can corrupt only a minority of parties.

Given a maliciously secure multiparty homomorphic OT protocol satisfying
these properties, one could obtain the required compiler following the above
strategy. However, we do not know of such a protocol in only two rounds.

Towards this, we note that the work of Ishai, Kushilevitz and Paskin [26]
construct a two round protocol for degree 2 polynomial computation, in the
honest majority setting. While their protocol does not achieve full malicious
security, it achieves a weaker notion they refer to as privacy with knowledge of
outputs. Roughly, this notion is similar to standard malicious security, except
that it does not guarantee correctness of outputs received by the honest parties.
In particular, the adversary can explicitly set the output of the honest parties to
any value of its choice (in this sense, it “knows” the honest party outputs). Since
a multi-party OT can be represented as a degree 2 polynomial computation, a
two-round multi-party OT protocol achieving this weaker security notion can be
obtained from [26].

Our main insight is that this weaker notion of multiparty homomorphic OT
can still be used to obtain our desired compiler. In the protocol by Garg and
Srinivasan [17] , it is essential that OT security holds against malicious receivers
that attempt to equivocate their receiver bit. It would seem that in our weaker
model, since the adversary can set the output to be a value of its choice, it could
potentially change the output from say mb to m1−b, where b was its input to the
OT protocol. This would completely break simulation since the adversary could
essentially equivocate its input, and thus the guarantees of the protocol in [17]
would no longer apply. This is where we use the knowledge of output property
of the protocol, i.e. the output that the honest parties receive is known to the
adversary. In the case of the OT protocol, when the sender is honest, an ideal
world adversary receives only mb and m1−b remains hidden. Thus the output of
honest parties forced by the adversary are independent of m1−b. This does not
stop the adversary to from setting it to a random value. However, since messages
mb and m1−b correspond to wire keys of a garbled circuit, we can rely on the
security of the garbling scheme which ensures that a garbled circuit cannot be
evaluated unless the evaluator has one of the keys.

4.1 Conforming Protocols

Let Φ be an n-party deterministic MPC protocol with honest majority. Let
P = {P1, . . . , Pn} be the set of parties in the protocol with inputs x1, . . . , xn
respectively. A conforming protocol can be defined by a tuple of 3 functions
(pre, comp, post).

14

Pre-processing Phase: For each (i ∈ [n]) ,party Pi computes the following:
(zi, v̂i)← pre(1λ, i, xi). The randomized algorithm pre takes as input, the index

i of the party, its input xi and outputs zi ∈ {0, 1}`/n and v̂i ∈ {0, 1}`. v̂i is
private information, that it retains with itself. We require that v̂i[k] = 0 for all
k ∈ [`] \ {(i − 1)`/n, · · · , i`/n}. zi is a public value that is broadcast to every
other party in the protocol.

Each party Pi additionally samples masks rk→i for all k ∈ [n] \ {i} of ap-
propriate length (to be discussed shortly). The mask rk→i is sent privately to
Pk.

Computation Phase: The computation phase can be viewed as a series of
T actions Φ1, . . . , ΦT . Each action Φr, for t ∈ [T], can be parsed as tuple of 5
indices, Φt = (i∗, j∗, f, g, h), where i∗ ∈ [n], j∗ ∈ [n]∪{⊥}, and f, g, h ∈ [`]. Since
Φ is a deterministic protocol, Φ1, . . . , ΦT , are known to each party in advance.

– For all j ∈ [n] \ {i}, Ij→i = {h | Φ·(j, i, ·, ·, h)}, and Ii := ∪j∈[n]\{i}Ij→i12.

Hence, for each k ∈ [n]\{i}, rk→i ∈ {0, 1}|Ik→i|. From each rk→i, we want to
refer to the bit in rk→i that is associated with the index h. This is achieved
by defining the following function rk→i(h) := rk→i[ρ(h)], where ρ(h) is the
index of h in Ik→i. We are able to do so because we are treating as an ordered
set.

– We now create the vector v ∈ {0, 1}` from v̂ and masks rk→i.

vi[k] :=

v̂[k] if k ∈ {(i− 1)`/n, · · · , i`/n}
rπ(k)→i[k] if k ∈ Ii
0 otherwise

where π(k) is j such that k ∈ Ij→i. We simply update v̂ to include the mask
bits at the appropriate position. It is important to note that these updates make
sense only if for every i the sets Ij→i are disjoint. This will indeed be enforced
in the conforming protocol (see below).

Let For each i ∈ [n], party Pi does the following:
Sets, sti = (z1|| . . . ||zn)⊕ vi
For each t ∈ {1, . . . , T},

1. Parse Φt as (i∗, j, f, g, h)
2. If i = i∗, compute sti[h] = NAND(sti[f], sti[g])⊕ri→j(h) (where ri→j(h) = 0

if j =⊥) and broadcast sti[h]⊕ vi[h] to all other parties.
3. Else, updates sti[h] to the bit value received from Pi∗ .

We require each action Φt, for t ∈ [T], to update a unique position h in the
state. More specifically, ∀t, t′ ∈ [T] such that t 6= t′, if Φt = (., ., ., ., h) and
Φt′ = (., ., ., ., h′), then h 6= h′. Additionally, for every party Pi we require that
a bit at index h sent privately to a party Pj is not used as a input to a NAND
computation by Pi. Formally, ∀t ∈ [T] if Φt = (i, j, ·, ·, h) where j 6=⊥ then

12 We abuse notation slightly and consider each Ij→i to be an ordered set, ordered
increasingly by h.

15

@t′ ∈ [t, T] such that Φt′ = (i, ·, h, ·, ·) or Φt′ = (i, ·, ·, h, ·). We denote Ai ⊂ [T]
be set of rounds in which party Pi sends a bit.

We note that the non-repetition of h ensures that for every i, k the sets Ii→k
are disjoint.

Output Phase: For each i ∈ [n], party Pi outputs post(sti)

Transformation to a Conforming Protocol. Let Π be an n-party determin-
istic MPC protocol with honest majority. Let P = {P1, . . . , Pn} be the parties
in the protocol Π. Let each party Pi have input xi ∈ {0, 1}m. We want to trans-
form this protocol Π to a conforming protocol Φ, while preserving its security
and correctness. We allow the protocol Π to use both broadcast and private
channels.

We can assume w.l.o.g. that only a single bit is communicated by one party
in each round of Π. This can trivially be achieved by increasing the round
complexity of the protocol. As discussed, this bit can be broadcast or sent to
a specific party. Since only a single bit is communicated in each round by one
party, the message complexity in this case is equivalent to the round complexity.
Let the message/round complexity of Π after increasing the round complexity
be p. Let Cr be the circuit computed in round r ∈ [p]. Again we can assume
without loss of generality that this circuit is only composed of NAND gates with
fan-in two and each Cr is composed of q NAND gates.

We now describe how to transform Π into a conforming protocol Φ. There
are T = pq rounds in Φ. Let ` = mn+ pq and `′ = pq/n

– pre(1, xi) :

1. Samples ri ← {0, 1}m and si ← ({0, 1}g−1||0)p/n.
2. Output zi := xi ⊕ ri||0`

′
and vi := 0`/n|| . . . ||ri||si|| . . . ||0`/n

– comp := {Φ1, . . . , ΦT } : As specified in the transformation above, each round
r ∈ [p] in Π is expanded into q actions in Φ. Each of these actions {Φt}t,
where t ∈ {(r−1)q+1, . . . , rq} is a single NAND computation. For each t, Φt
is set as (i∗, j∗, f, g, h). f, g are the locations in sti∗ that the tth NAND gate
in Cr is computed on. h is the first location in sti∗ amongst the locations
(i∗ − 1)`/n + m + 1 to i`/n that has not been updated before. For t ∈
{(r−1)q+ 1, . . . , rq−1}, j∗ :=⊥, and for t = rq, j∗ is set to be the recipient
of the bit in the round r of Π. If the bit is to be broadcast in round r of Π,
j∗ is set to ⊥.

– post(i, sti) Party Pi gathers messages sent by other parties in Π from the
final sti and runs the output phase of Π to output the output.

To ensure the global invariant property (defined shortly) when there are
private channels involved, we require the second property described in the con-
forming protocol. Namely, if a player Pi sends a bit in index h over a private
channel, Pi cannot subsequently use the index h as an input to a NAND gate.
This is easily fixed by “copying” the bit at index h by recomputing the bit to
a new position h′ in the subsequent round of Pi. This increases the number of
NAND gate in each round by 1, and does not affect the transformation above.

16

The changes in the conforming protocol, and the transformation is to ac-
commodate underlying protocols that use both broadcast and private channels.
The conforming protocol in [17] relies on the underlying protocol to use only
broadcast channels.

4.2 Our Compiler

Building Blocks. The main primitives required in this construction are:

1. A maliciously secure conforming protocol Φ with honest majority.
2. A garbling scheme (Garble,Eval) for circuits.
3. A 2 round Multiparty Homomorphic Oblivious Transfer Protocol that works

in the honest majority setting.

Theorem 5. Assuming maliciously secure conforming protocol Φ, secure gar-
bling scheme (Garble,Eval) and a 2 round multiparty homomorphic OT protocol
the two round protocol Π described below achieves security with abort against
any t < n

2 malicious corruptions.

We instantiate the underlying MPC protocol with an information-theoretic
honest majority MPC protocol such as [10,6]. Further, our compiler makes only
black-box use of one-way functions.

While we describe our complier for malicious adversaries using both broad-
cast and private channels, it is easy to see that our protocol is secure against
semi-honest adversaries that use only private channels.

Protocol. Let P = {P1, . . . , Pn} be the set of parties in the protocol and let
{x1, . . . , xn} and {r̃1, . . . , r̃n} be their respective inputs and randomness. Next,
we describe the protocol Π in detail:

Round 1. Each party Pi does the following:

1. Run the pre-computation phase to compute (zi, vi): (zi, v̂i,)← pre(1λ, i, (xi, r̃i)).
Sample masks {rj→i}j∈[n]\{i} of appropriate length and construct vi as in

the conforming protocol (see subsection 4.1). Broadcast zi and send each
rj→i to Pj .

2. For each round t ∈ [T]:

– Parse Φt as (i∗, j∗, f, g, h)
– If Pi is the speaker, i.e., i = i∗, we compute the first round OT receiver

messages. Specifically, for each α, β ∈ {0, 1}:{
oti[j]

1,t,α,β
→i∗,j∗

}
j∈[n]

← OTR1 (vi,h ⊕ NAND (vi,f ⊕ α, vi,g ⊕ β)) .

In the case that j∗ =⊥, this is the regular OT (without the special
designated sender). Send Pj its corresponding message.

– Else (if i 6= i∗),

17

– it computes the sender OT messages. First, it generates labels for

the t-th round:
{
labi,tk,0, lab

i,t
k,1

}
k∈[`]

← Gen(1λ). Next, it computes

the OT messages: ∀α, β ∈ {0, 1}
– if i = j∗,{

oti[j]
1,t,α,β
→i∗,j∗

}
j∈[n]

← OTŜ1

(
labi,th,ri∗→i(h), lab

i,t
h,1⊕ri∗→i(h)

, ri∗→i(h)
)

13

– else,
{
oti[j]

1,t,α,β
→i∗,j∗

}
j∈[n]

← OTS1

(
labi,th,0, lab

i,t
h,1

)
where h is the index specified by Φt.

Send
{
oti[j]

1,t,α,β
→i∗,j∗

}
α,β∈{0,1}

to party Pj .

Round 2. Each party Pi does the following:

1. Set state. The local state is defined as sti := (z1|| . . . ||zi|| . . . ||zn)⊕ vi
2. For each t from T to 1,

(a) Parse Φt as (i∗, j∗, f, g, h)
(b) Compute the second round OT messages as follows:

∀α, β ∈ {0, 1}, oti[⊥]2,t,α,β→i∗,j∗ ← OT2

({
otj [i]

1,t,α,β
→i∗,j∗

}
j∈[n]

)
(c) Compute the garbled circuit as

P̃i,t ← Garble

(
P

[
i, Φt, vi,

{
oti[⊥]2,t,α,β→i∗,j∗

}
α,β∈{0,1}

, lab
i,t+1

, {ri→j}j∈[n]\{i}

]
,{

labi,tk,b

}
k∈[`],b∈{0,1}

)
.

where the program P is defined in Figure 1.
3. Broadcast the garbled program, and the keys to the first circuit:(

{P̃i,t}t∈[T],
{
labi,1k,sti,k

}
k∈[`]

)
to every other party.

Evaluation. To compute the output of the protocol, each party Pi does the
following:

1. For each j ∈ [n], let l̃ab
j,1

:=
{
labj,1k

}
k∈[`]

be the labels received from party

Pj at the end of Round 2.
2. For each t from 1 to T do:

(a) Parse Φt as (i∗, j∗, f, g, h)
(b) Evaluate the t-th garbled circuit received from party i∗(

(α, β, γ), l̃ab
i∗,t+1

, oti∗ [⊥]2,t→i∗,j∗

)
:= Eval

(
P̃i
∗,t, l̃ab

i∗,t
)

13 The labels are ordered such that when σ1 ⊕ σ2 = ri∗→i(h) ⊕ γ, the selected label
would be labi,th,γ

18

(c) Update the h-th bit in the local state: sti,h := γ ⊕ vi,h.
(d) Evaluate the t-th garbled circuits for each other party.

For each j 6= i∗ compute:({
labj,t+1

k

}
k∈[`]\{h}

, otj [⊥]2,t→i∗,j∗

)
:= Eval

(
P̃j,t, l̃ab

j,t)
(e) To compute the label of the h-th input wire, of the (t + 1)-th garbled

circuit, for each party other than i∗, we apply the OT output function
OT3. Recover({

labj,t+1
h

}
j∈[n]\{i∗}

)
:= OT3

({
otj [⊥]2,t→i∗,j∗

}
j∈[n]

)
For each j 6= i∗ set l̃ab

j,t+1
:=
{
labj,t+1

k

}
k∈[`]

.

3. Compute the output as post(i, sti).

Program P .

Input. sti
Hardcoded. The index i of the party, the action Φt = (i∗, j∗, f, g, h), the se-

cret value vi, the OT messages
{
oti[⊥]2,t,α,β→i∗,j∗

}
α,β∈{0,1}

, a set of labels lab
i,t+1

=

{labi,t+1
k,0 , labi,t+1

k,1 }k∈[`] and masks {ri→j}j∈[n]\{i}.

1. If i = i∗ then:
(a) Compute sti[h] := ri∗→j∗(h) ⊕ NAND (sti[f], sti[g]) , α := sti[f] ⊕ vi[f], β :=

sti[g]⊕ vi[g] and γ := sti[h]⊕ vi[h].

(b) Output

(
(α, β, γ),

{
labi,t+1

k,sti[k]

}
k∈[`]

,
{
oti[⊥]2,t,α,β→i∗,j∗

}
j∈[n]\{i}

)
2. Else:

(a) Output

({
labi,t+1

k,sti[k]

}
k∈[`]\{h}

, oti[⊥]
2,t,sti[f],sti[g]
→i∗,j∗

)

Fig. 1: Program P

Correctness. An important property of the protocol is that ∀i, j ∈ [n] and
k ∈ `, we have sti[k] ⊕ vi[k] = stj [k] ⊕ vj [k]. This is denoted by a value st∗,
which we shall refer to as the global invariant. In addition, the transcript of the
execution in the computation phase is denoted by Z ∈ {0, 1}T . Correctness of
the protocol in [17] follows from this global invariant property and the structure
of vi.

From the correctness of the multiparty homomorphic OT, the difference from
the protocol in [17] arises when there exists t ∈ [T] such that Φt = (·, j, ·, ·, h)
such that j 6=⊥. Or in other words, when there is a private message to be sent.

19

In this case, every Pi for i ∈ [n] \ {j} sets their respective state sti[h] to be
ri→j ⊕ δ where δ is the computation of the NAND functionality, and ri→j is the
mask selected by Pj . From the structure of vi, for every i ∈ [n] \ {j}, vi[h] = 0.
On the other hand, Pj updates its state to be stj [h] = δ, but from the structure
of vj , we have vj [h] = ri→j . Thus this maintains the global invariant, ∀i, j ∈ [n]
and k ∈ `, we have sti[k]⊕ vi[k] = stj [k]⊕ vj [k].

In addition, since Pj knows vj [h] in the first round, it can compute the OT
receiver message in the first round to subsequently use position h in the protocol.
But this is not true for Pi, which is why we incorporate the process of “copying”
the bit sent to get around this issue (see subsection 4.1).

The proof of our construction can be found in the full version of our paper.

4.3 Achieving Function-Delayed Property

A conforming protocol Φ is defined by computation steps or actions Φi, . . . , ΦT
where T is the total number of rounds of this conforming protocol. The pre-
processing phase in [17] depends only on T , and is otherwise independent of Φ.
We shall leverage this fact to construct protocols for functions that require at
most T rounds in the conforming protocol. The function itself can be decided
after the pre-processing phase, but must be fixed prior to the computation phase.

An action for a given round t is denoted by a five-tuple (i, f, g, h), where
i ∈ [n], j ∈ [n] ∪ {⊥}f, g, h ∈ [`]. Given that the state is of length `14, there can
be at most n · (n + 1) · `3 actions. While there are further restrictions on the
choices of (f, g, h), we are satisfied with a loose upper bound. When we compress
the protocol, as in [17] , we seem to run into a problem since we send messages
for the computation phase in the first round of the compressed protocol, prior
to the function being decided.

To account for this, we compute first round OT messages for all possible
actions in each round.

For instance, party Pi computes receiver OT messages as follows: ∀j ∈ [n] ∪
{⊥}, f, g, h ∈ [`], ∀α, β ∈ {0, 1} oti,j,f,g,h1,t,α,β ← OTR1 (vi,h ⊕ NAND (vi,f ⊕ α, vi,g ⊕ β))
Similarly Pi computes the first round OT messages when it takes the roles of
the special designate sender, and the sender. These OT messages are indexed by
the tuple (i, j, f, g, h). Thus for each round t, there are 4 · n · (n + 1) · `3 (poly-
nomially many) first round OT messages that are computed. These are sent to
the respective parties in the first round.

By the second round, when the parties are creating the garbled circuit they
are aware of the function Φ being computed. Let the action in the t-th round be
(̂i, ĵ, f̂ , ĝ, ĥ). Thus, when party Pi is preparing its garbled circuit, it will compute
its second round OT message accordingly.

While we have described how to achieve the function delayed property in
our protocol, the same ideas hold for the protocol in [17]. In fact, we will use
the function delayed property of both our protocol, and that of [17] to achieve

14 It is typically polynomial in the security parameter.

20

subsequent results. Further discussion, and the security sketch can be found in
the full version.

5 Guaranteed Output Delivery: Fail-Stop Adversaries

In this section we describe a general compiler to get a two-round MPC proto-
col with guaranteed output delivery against semi-malicious fail stop adversaries,
from any 2 round semi-malicious MPC protocol that satisfies the delayed func-
tion property and only uses broadcast channels.

Overview. A semi-malicious fail stop adversary may choose to abort at any
point in the protocol. To achieve security with guaranteed output delivery, we
want to implement a mechanism that enables the honest parties to continue
the execution, even if some parties abort prematurely. In a two-round protocol,
a corrupted party might choose to abort either in the first round or in the
second round. If a party aborts in the first round, the honest parties should be
able to alter the functionality and continue execution while ignoring its input.
However, if a party only aborts in the second round, we cannot ignore its input
because such a protocol would clearly not be secure.15 Let us say that a party is
“active”, if it does not abort in the first round. In order to achieve guaranteed
output delivery, we need to make sure that the honest parties have sufficient
information about the input of all the active parties (in some encoded manner)
by the end of the first round, so that even if an active party aborts in the second
round, the honest parties can still include its input in the computation of the
output.

Let us first focus on adversaries who only abort in the first round. In order to
give the honest parties enough liberty to modify the functionality in case some
parties abort, a secure protocol with guarantee of output must have a delayed
function property, namely, where the first round message of an honest party is
independent of the function and the number of parties. Indeed, for this reason,
our starting point is a two-round semi-malicious protocol with delayed function
property.

In order to handle adversaries who abort in the second round, our main idea
is to require each party to send, in the first round itself, a garbled circuit of an
augmented second-round next-message function. This augmented next-message
function takes a list of active and inactive parties as input and computes second
round messages for the appropriate functionality (namely, where the inputs of
the inactive parties are set to some default values). To enable the honest parties
to continue execution in the second round, we also require each party to send
(t+1, n) secret shares of all the labels for its garbled circuit over private channels
(in particular, each party only receives one of the shares for each label). At the
end of the first round, each party prepares of list of active and inactive parties
based on who aborted the protocol. In the second round, each party simply

15 Indeed, such a protocol would allow an adversary to “ignore” the input of one or
more honest parties and learn multiple outputs, which would clearly break security.

21

broadcasts the appropriate shares for each garbled circuit, based on its list of
active and inactive parties. Since we use a (t+ 1, n) secret sharing scheme, even
if some parties abort in the second round, the honest parties have sufficient
information to compute the output.

Finally, we remark that our techniques can be seen as a generalization of the
techniques used by Gordon et. al. in [21], who constructed a three round protocol
with guaranteed output delivery using threshold fully homomorphic encryption
with special properties. In contrast, we develop a general compiler using only
one-way functions.

5.1 Our Construction

Building Blocks. The main primitives required in this construction are:

1. A two-round semi-malicious MPC protocol Φ, with delayed function property
that only uses broadcast channels.

2. An adaptive garbling scheme (AdapGarble,AdapEval) for circuits.
3. A threshold secret sharing scheme. We denote this by SS(Share,Reconstruct).

Next, we establish some notations that are used in our construction.

Active Parties. For any two-round semi-malicious protocol Φ, we say that a
party is ’active’ in an execution of Φ, if it does not abort in the first round. Let
active ∈ {0, 1}n be an n−bit binary string that denotes which parties are active
in the last round of the protocol. For each i ∈ [n], we set activei := 1, if party
Pi is active and activei := 0 otherwise.

Augmented Next Message Function. Let Φ be a 2 round MPC protocol
that supports delayed function property (i.e, where the first round messages of
each honest party is independent of the function). Let MsgjΦ(i, xi, trans

j−1
Φ ; ri) be

the next message function for round j. It takes as input, party index i, it’s input
xi, previous round transcripts transj−1Φ and randomness ri. Delayed function
property ensures that Msg1Φ(·, ·, ·; ·) is independent of the function F that the
MPC computes and only Msg2Φ(·, ·, ·; ·) depends on it.
We define an ’augmented’ second round next message function, that additionally
takes a list of active parties (active) in the protocol as input, and computes the
second round messages. More specifically, this augmented next message function
has the function F and default inputs for all parties hard coded inside it. Given
a list active, it substitutes the actual input of an inactive party with this default
input in F and computes the second round messages. We denote this augmented
second round next message function by AugMsg2Φ(i, xi, trans

1
Φ, active; ri).

Theorem 6. Let Φ be any two-round semi-honest (resp., semi-malicious) broad-
cast channel MPC protocol with delayed function property, (AdapGarble, AdapEval)
be an adaptively secure garbling scheme for circuits and SS(Share, Reconstruct)
be a threshold secret sharing scheme. There exists a general compiler that trans-
forms Φ into a two-round protocol that achieves guaranteed output delivery against
non-rushing fail-stop (resp., rushing, semi-malicious fail-stop) adversaries.

22

A few corollaries of the above theorem are in order:

• The protocol from theorem 5 (with the function-delayed property) can be
easily transformed into a protocol that only uses broadcast channels in the
BPK model [9]. Applying the compiler from theorem 6 to this protocol,
we obtain a two-round broadcast-channel MPC protocol in the BPK model
that achieves guaranteed output delivery against any t < n

2 (semi-malicious)
fail-stop corruptions.

• The semi-honest construction from [17] can be modified to support the
function-delayed property as discussed in section 4.3. Applying the com-
piler from theorem 6 to this modified construction, we obtain a two round
MPC protocol over private point to point channels, that achieves guaran-
teed output delivery against any t < n

2 non-rushing fail-stop (resp., rushing,
semi-malicious fail-stop) corruptions in the plain model, based on two round
semi-honest oblivious transfer.

We now describe our protocol in detail. For simplicity, we describe a compiler
that uses both broadcast and private channels. But since this protocol is only
secure against fail-stop adversaries, it can be easily modified to work only using
private channels in the plain model. If the underlying protocol works in the
(bare) public key model, then the compiler can be modified to work only using
broadcast channels. We specify these modifications in the protocol description.

Protocol. Let P = {P1, . . . , Pn} be the set of parties in the protocol. Let
{x1, . . . , xn} be their respective inputs and {r1, . . . , rn} be their respective ran-
domness used in the underlying protocol Φ. If the underlying program assumes
existence of the BPK model, then let {pk1, . . . , pkn} and {sk1, . . . , skn} be the
respective public and secret keys of the parties. Let λ be the security parameter.

Round 1. Each party Pi does the following in the first round:

1. Computes the first round message Φ1
i using its input xi and randomness ri,

i.e., Φ1
i := Msg1Φ(i, xi,⊥; ri)

2. Computes an adaptive garbling of the augmented second round next message
function AugMsg2Φ[i, xi; ri](·, ·) with it’s index i, input xi and randomness
ri hardcoded inside it. This function only takes the first round transcript
(trans1Φ) and the list active as input, i.e.,

(ÑMFi, {labw,bi }w∈[inp],b∈{0,1})← AdapGarble(1λ,AugMsg2Φ[i, xi; ri]),

where inp is the length of input to AugMsg2Φ[i, xi; ri].
3. Uses a threshold secret sharing scheme to compute (t+1, n) shares of the in-

put labels, i.e., {labw,bi,1 , . . . , lab
w,b
i,n }w∈inp,b∈{0,1} ← Share(1λ, {labw,bi }w∈inp,b∈{0,1})

4. Broadcasts M1
i := (Φ1

i , ÑMFi) to all other parties.

5. Sends {labw,bi,j }w∈inp,b∈{0,1} to party Pj (for j ∈ [n]\{i}) over private channels.
(In the BPK model, the message for party Pj is encrypted under pkj and
then sent over the broadcast channel.)

At the end of Round 1. Each party Pi does the following:

23

1. For j from 1 to n:

(a) If party Pj sent its first round messages, parse M1
j as (Φ1

j , ÑMF
j
) and

set activej := 1
(b) If party Pj aborts in the first round, set Φ1

j := 0`, where ` is the length
of each party’s first round message in Φ and set activej := 0

2. Sets trans1Φ := {Φ1
j}j∈[n].

3. In the BPK model, it decrypts the encrypted labels sent by other parties
using its secret key ski.

Round 2. Each party Pi does the following in the second round:

1. It sets z = trans1Φ||active.
2. For each garbled circuit {ÑMFj}j∈[n], it sends shares for the key and the

labels corresponding to active and trans1Φ i.e., M2
i := {labw,z[w]

j,i }w∈[inp],j∈[n].
We assume that lab

trans1Φ||active
j,i = ⊥ for a party Pj that aborts in the second

round.

Output Phase. Let Y be the set of any t+1 parties that send first and second
round. messages. Each party Pi does the following:

1. For j ∈ Y :
(a) Parse M2

j as {labw,z[w]
k,j }w∈[inp],k∈[n]

(b) If activej = 1, reconstruct the input labels and evaluate the garbled

circuit, i.e., {labw,z[w]
j }w∈[inp] := {Reconstruct({labw,z[w]

j,k }k∈Y)}w∈[inp] and

Φ2
j := AdapEval(ÑMFj , {labw,z[w]

j }w∈[inp])
2. Let A be the set of ‘active’ parties in the protocol.
3. Runs the output phase of Φ, OutΦ({Φ2

j}j∈A) to learn the output.

Remark. The above compiler can also be modified to get a three-round pro-
tocol in the plain model only assuming one-way functions. This main idea is to
divide the first round messages of the above compiler into two. More specifically,
the parties exchange their first round messages of Φ (which may include private
channel messages) in the first round. In the second round, each party Pi com-
putes an adaptive garbled circuit on the augmented second round next message
function AugMsg2Φ[i, xi, trans

1
Φ,i; ri](.) of Φ, that has it’s index i, input xi, it’s

first round transcript trans1Φ,i and randomness ri hard wired inside it. Since the
first round messages are already hard-wired, this garbled circuit only takes the
list of ‘active’ parties as input. Each party also secret shares all the input labels
to this garbled circuit. The third round proceeds similar to the second round in
the above compiler, with the only difference that all the parties who participate
in the first two rounds constitute the list of ‘active’ parties. Instantiating this
modified compiler with the protocol from theorem 5 (with the function-delayed
property), we get the following corollary:

Corollary 4. Assuming one-way functions, there exists a three round MPC pro-
tocol that achieves guaranteed output delivery against any t < n

2 (semi-malicious)
fail-stop corruptions.

24

6 Guaranteed Output Delivery: Malicious Adversaries

In this section we describe a general compiler to get a three-round malicious
MPC protocol with guaranteed output delivery in the plain model from our two
round semi-malicious MPC protocol with guaranteed output delivery.

Overview In order to compile our semi-malicious protocol from the previous
section into a maliciously secure one, we use the standard “commit-and-prove”
methodology of [20], where the adversary initially commits to his input and ran-
domness and then gives a zero-knowledge proof of “honest behavior” together
with each round of the underlying semi-malicious protocol. We note, however,
that implementing this methodology in the setting of guaranteed output de-
livery requires extra care. In particular, we need to ensure that all the honest
parties have a consistent view of which parties aborted in a given round since the
behavior of an honest party in the next round depends upon this view.

Note that if the underlying semi-malicious protocol uses private channels,
then a party may need to prove different statements to different parties in order
to establish honest behavior, and in particular, the statement being proven by
party i to party j may not be known to another party k. This presents a problem
in ensuring that the honest parties have consistent views (of the form as discussed
above). Therefore, as a first step, we transform the two-round semi-malicious
protocol into a three-round protocol that only uses broadcast channels, using
public-key encryption. However, if the underlying semi-malicious protocol works
in the (bare) public key model and only uses broadcast channels, we can trans-
form this two-round semi-malicious protocol into a three-round semi-malicious
protocol in the plain model by exchanging public keys in the first round.

Next we note that zero-knowledge proofs with black-box simulation are known
to require at least four rounds [19]. To overcome this lower bound, and in or-
der to obtain a three round maliciously secure protocol, we leverage the fact
that we are in the honest majority setting. Towards this, we define a new no-
tion of multi-verifier zero-knowledge (MVZK) proofs. Briefly, an MVZK proof
system is an interactive multiparty protocol between a prover and multiple ver-
ifiers. Similar to standard ZK, we require MVZK to achieve soundness and zero
knowledge properties. In particular, we require the soundness property to hold
as long as the honest verifiers constitute a majority. Similarly, we require ZK
property to hold as long as the honest prover and the honest verifiers, together
constitute a majority. In order to use MVZK in our setting, we also require
a “strong completeness” property which guarantees that any set of dishonest
verifiers (who constitute a minority) cannot prevent the honest verifiers from
accepting a proof from an honest prover.

We implement our compiler using two-round MVZK arguments with a de-
layed input property, namely, where the first round messages of the honest parties
are independent of the statement. We note that while our two-round MPC pro-
tocol from Section 4 can be used to construct a two-round MVZK without the
aforementioned strong completeness property; therefore it does not suffice here.
Instead, in the full version, we give a construction of two round delayed-input

25

MVZK (that achieves strong completeness) from Zaps, following the construc-
tion of multi-CRS NIZKs by Groth and Ostrovsky [22]. We then use this MVZK
to implement our compiler.

6.1 Our construction

Building Blocks. The main primitives required in this construction are:

1. A two-round MPC protocol Π that achieves guaranteed output delivery
against semi-malicious fail-stop adversaries. Let MsgjΠ(i, xi, {transkΠ}k∈[j−1]; ri)
be the next message function for round j. It takes as input, index i of the
party, it’s input xi, previous round transcripts {transkΠ}k∈[j−1] and random-
ness ri.

2. A threshold secret sharing scheme. We denote this by SS := (Share,Reconstruct).
3. Two-round delayed-input multi-verifier zero-knowledge arguments

mvzk := (P1
mvzk,V

1
mvzk,P

2
mvzk,V

2
mvzk,Verifymvzk).

4. A public-key encryption scheme E := (Gen,Enc,Dec)

Theorem 7. Let Π be a two-round MPC protocol with guaranteed output de-
livery against semi-malicious fail-stop adversaries, (AdapGarble,AdapEval) be an
adaptively secure garbling scheme, mvzk := (P1

mvzk,V
1
mvzk,P

2
mvzk,V

2
mvzk,Verifymvzk)

be a delayed-input MVZK argument system and E := (Gen,Enc,Dec) be a PKE
scheme. Then there exists a general compiler that transforms Π into a three
round protocol with guaranteed output delivery against malicious adversaries.

Applying the compiler from theorem 7 to the two-round BPK model protocol
from Section 5, we get a three round protocol based on Zaps and public-key
encryption. Next, we describe the protocol in detail:

Protocol. Let P = {P1, . . . , Pn} be the set of parties in the protocol and let
{x1, . . . , xn} be their respective inputs. Let λ be the security parameter.

Round 1. Each party Pi does the following in the first round:

1. Generates a key pair for the public key encryption scheme, i.e., (pki, ski) :=
Gen(1λ; qi)

2. Computes the first round prover message of MVZK and verifier messages for
all other parties, i.e., pMsg1,i ← Pmvzk(1

λ) and
{vMsg1,ji }j∈[n]\i ← {Vmvzk(1

λ, i)}j∈[n]\i
3. Broadcasts M1

i := (pki, pMsg1,i, {vMsg1,ji }j∈[n]\i) to all other parties.

At the end of Round 1. Each Party Pi for i ∈ [n] does the following:

1. For j from 1 to n:
(a) If Party Pj sends its first round messages, parse M1

j as

(pkj , pMsg1,j , {vMsg1,kj }k∈[n]\j)
(b) Else, set pMsg1,j := ⊥ and {vMsg1,kj }k∈[n]\j := ⊥

26

2. For j from 1 to n, set trans1,jmvzk := (pMsg1,j , {vMsg1,jk }k∈[n]\j).

Round 2. Each party Pi does the following in the first round:

1. Computes the first round message Π1
i using its input xi and randomness ri,

i.e., Π1
i := Msg1Π(i, xi,⊥; ri)

2. Uses a threshold secret sharing scheme to compute (t+ 1, n) shares of Xi =
(xi, ri), i.e., {Xi,1, . . . , Xi,n} := Share(1λ, Xi; si)

3. For each j ∈ [n], it encrypts the share Xi,j under public key pkj , i.e., ci,j :=
Enc(pkj , Xi,j ; ti,j)

4. Proves the following:
(a) The public key pki was honestly generated AND
(b) Each ciphertext ci,j is an honestly computed encryption AND
(c) The first round messages of Π are computed honestly using the input xi

and randomness ri that were honestly secret shared and each of these
shares were honestly encrypted.

Using the language:

L ={(Π1
i , {pkj}j∈[n], {ci,j}j∈[n]) | ∃(xi, ri, si, qi, {ti,j}j∈[n])

s.t. ((pki, ·) = Gen(1λ; qi)) AND (Π1
i = Msg1Π(i, xi,⊥; ri))

AND ({Xi,j , . . . , Xi,n} := Share(1λ, Xi; si))

AND ({ci,j}j∈[n] := {Enc(pkj , Xi,j ; ti,j)}j∈[n]))}

It computes second round prover messages of mvzk as follows:
Let Yi = (Π1

i , {pkj}j∈[n], {ci,j}j∈[n]) and Wi = (xi, ri, si, qi, {ti,j}j∈[n]), i.e.,

pMsg2,i ← Pmvzk(trans
1,i
mvzk, Yi,Wi)

5. Computes second round verifier messages of mvzk for all other parties for
the same language, i.e., {vMsg2,ji }j∈[n]\i ← {Vmvzk(i, trans

1,j
mvzk)}j∈[n]\i

6. Computes another set of first round prover message of MVZK and verifier

messages for all other parties, i.e., p̃Msg
1,i
← Pmvzk(1

λ) and {ṽMsg
1,j

i }j∈[n]\i ←
{Vmvzk(1

λ, i)}j∈[n]\i
7. Broadcasts M2

i := (Π1
i , {ci,j}j∈[n], pMsg2,i, {vMsg2,ji }j∈[n]\i, p̃Msg

1,i
,

{ṽMsg
1,j

i }j∈[n]\i) to all other parties.

At the end of Round 2. Each party does the following:

1. For j from 1 to n:
(a) If Party Pj sent its first and second round messages, parse M2

j as

(Π2
i , {cj,k}j∈[n], pMsg2,j , {vMsg2,ki }k∈[n]\j , p̃Msg

1,j
, {ṽMsg

1,k

i }k∈[n]\j)

(b) Else set pMsg2,j , p̃Msg
1,j

:= ⊥ and {vMsg2,kj , ṽMsg
1,k

j }k∈[n]\j := ⊥
2. For j from 1 to n:

(a) Set Yj := (Π1
j , {pkk}k∈[n], {cj,k}k∈[n])

(b) If Verifymvzk(i, {trans
r,j
mvzk}r∈[2], Yj)=1, decrypt cj,i, i.e.,mj,i := Dec(ski, cj,i)

and parse mj,i as Xj,i

27

(c) Else:
i. Set Π1

j := 0`, where ` is the length first round messages in Π.

ii. Set p̃Msg
1,j

:= ⊥ and {ṽMsg
1,k

j }k∈[n]\j := ⊥

3. For j from 1 to n, set trans1,j
m̃vzk

:= (p̃Msg
1,j
, {ṽMsg

1,j

k }k∈[n]\j).
4. Set trans1Π := {Π1

j }j∈[n].

Round 3. Each party Pi does the following in the third round:

1. Computes second round messages of Π, i.e., Π2
i := Msg2Π(i, xi, trans

1
Π ; ri)

2. Proves that the second round message Π2
i was computed honestly using the

language L = {(Π2
i , trans

1
Π) | ∃(xi, ri) s.t. Π2

i := Msg2Π(i, xi, ri, trans
1
Π)}.

It computes second round prover messages of mvzk as follows; Let Zi =

(Π2
i , trans

1
Π) and Wi = (xi, ri), i.e., p̃Msg

2,i
← Pmvzk(trans

1,i

m̃vzk
, Zi,Wi)

3. Computes second round verifier messages of mvzk for all other parties for

the same language, i.e., {ṽMsg
2,j

i }j∈[n]\i ← {Vmvzk(i, trans
1,j

m̃vzk
)}j∈[n]\i

4. Broadcasts M3
i := (Π2

i , p̃Msg
2,i
, {ṽMsg

2,j

i }j∈[n]\i) to all other parties.

Output Phase. Each party Pi does the following:

1. For j from 1 to [n]
(a) If party Pj sent a message in the third round, parse M3

i as

(Π2
j , p̃Msg

2,j
, {ṽMsg

2,k

j }k∈[n]\j)

(b) Else set Π2
j := ⊥, p̃Msg

2,j
:= ⊥ and {ṽMsg

2,k

j }k∈[n]\j := ⊥
2. For j from 1 to n:

(a) Set Zj := (Π2
j , trans

1
Π)

(b) If Verifymvzk(i, {trans
r,j

m̃vzk
}r∈[2], Zj) = 0, set Π2

j := ⊥
3. Set trans2Π = {Π2

j }j∈[n] and run the output phase ofΠ, OutΠ(trans1Π , trans
2
Π)

to learn the output.

Acknowledgments. This research was supported in part by a DARPA/ARL
Safeware Grant W911NF-15-C-0213, and a subaward from NSF CNS-1414023.
We thank Yuval Ishai, Sanjam Garg and Akshayaram Srinivasan for pointing
out the limitations in adapting our MPC protocol based on one-way functions
in Section 4 to the information-theoretic setting. The second author would like
to thank Ignacio Cascudo for helpful discussions.

References

1. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (Apr 2012)

28

2. Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.:
Promise zero knowledge and its applications to round optimal mpc. In: CRYPTO
(2018), https://eprint.iacr.org/2017/1088

3. Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: Secure MPC: laziness leads
to GOD. IACR Cryptology ePrint Archive 2018, 580 (2018), https://eprint.

iacr.org/2018/580

4. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC. pp. 503–513. ACM Press (May 1990)

5. Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (Dec 2012)

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC. pp. 1–10. ACM Press (May 1988)

7. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivi-
ous transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 500–532. Springer, Heidelberg
(Apr / May 2018)

8. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC. pp. 103–112. ACM Press (May
1988)

9. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: 32nd ACM STOC. pp. 235–244. ACM Press (May 2000)

10. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th ACM STOC. pp. 11–19. ACM Press (May 1988)

11. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: 18th ACM STOC. pp. 364–369. ACM Press (May 1986)

12. Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure mul-
tiparty computation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II.
LNCS, vol. 8874, pp. 466–485. Springer, Heidelberg (Dec 2014)

13. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (Aug 2005)

14. Dwork, C., Naor, M.: Zaps and their applications. In: 41st FOCS. pp. 283–293.
IEEE Computer Society Press (Nov 2000)

15. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: 31st FOCS. pp. 308–317.
IEEE Computer Society Press (Oct 1990)

16. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round complex-
ity of secure computation. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016,
Part II. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (May 2016)

17. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II.
LNCS, vol. 10821, pp. 468–499. Springer, Heidelberg (Apr / May 2018)

18. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty
computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 178–193.
Springer, Heidelberg (Aug 2002)

19. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof sys-
tems. SIAM J. Comput. 25(1), 169–192 (1996), https://doi.org/10.1137/

S0097539791220688

29

https://eprint.iacr.org/2017/1088
https://eprint.iacr.org/2018/580
https://eprint.iacr.org/2018/580
https://doi.org/10.1137/S0097539791220688
https://doi.org/10.1137/S0097539791220688

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC. pp. 218–229. ACM Press (May 1987)

21. Gordon, S.D., Liu, F.H., Shi, E.: Constant-round MPC with fairness and guarantee
of output delivery. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II.
LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (Aug 2015)

22. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (Aug
2007)

23. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: Computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (Aug 2011)

24. Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure com-
putation with minimal interaction, revisited. In: Gennaro, R., Robshaw, M.J.B.
(eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 359–378. Springer, Heidelberg
(Aug 2015)

25. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In: 41st FOCS. pp. 294–304.
IEEE Computer Society Press (Nov 2000)

26. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal
interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594.
Springer, Heidelberg (Aug 2010)

27. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (Aug 2004)

28. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.
In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO’90. LNCS, vol. 537, pp. 353–365.
Springer, Heidelberg (Aug 1991)

29. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:
The garbled circuit approach. In: Ray, I., Li, N., Kruegel:, C. (eds.) ACM CCS 15.
pp. 591–602. ACM Press (Oct 2015)

30. Shamir, A.: How to share a secret. Communications of the Association for Com-
puting Machinery 22(11), 612–613 (Nov 1979)

31. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS. pp. 162–167. IEEE Computer Society Press (Oct 1986)

30

	Round-Optimal Secure Multiparty Computation with Honest Majority

