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Abstract. Secure computations on big data call for protocols that have
sublinear communication complexity in the input length. While fully ho-
momorphic encryption (FHE) provides a general solution to the problem,
employing it on a large scale is currently quite far from being practical.
This is also the case for secure computation tasks that reduce to weaker
forms of FHE such as “somewhat homomorphic encryption” or single-
server private information retrieval (PIR).

Quite unexpectedly, Aggarwal, Mishra, and Pinkas (Eurocrypt 2004),
Brickell and Shmatikov (Asiacrypt 2005), and shelat and Venkitasubra-
maniam (Asiacrypt 2015) have shown that in several natural instances of
secure computation on big data, there are practical sublinear communi-
cation protocols that only require sublinear local computation and mini-
mize the use of expensive public-key operations. This raises the question
of whether similar protocols exist for other natural problems.

In this paper we put forward a framework for separating “practical”
sublinear protocols from “impractical” ones, and establish a methodol-
ogy for identifying “provably hard” big-data problems that do not admit
practical protocols. This is akin to the use of NP-completeness to sepa-
rate hard algorithmic problems from easy ones. We show that while the
previous protocols of Aggarwal et al., Brickell and Shmatikov, and she-
lat and Venkitasubramaniam are indeed classified as being “practical”
in this framework, slight variations of the problems they solve and other
natural computational problems on big data are hard.

Our negative results are established by showing that the problem at
hand is “PIR-hard” in the sense that any secure protocol for the prob-
lem implies PIR on a large database. This imposes a barrier on the local
computational cost of secure protocols for the problem. We also iden-
tify a new natural relaxation of PIR that we call semi-PIR, which is
useful for establishing “intermediate hardness” of several practically mo-
tivated secure computation tasks. We show that semi-PIR implies slightly
sublinear PIR via an adaptive black-box reduction and that ruling out
a stronger black-box reduction would imply a major breakthrough in
complexity theory. We also establish information-theoretic separations
between semi-PIR and PIR, showing that some problems that we prove
to be semi-PIR-hard are not PIR-hard.
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1 Introduction

Protocols for secure multi-party computation (MPC) enable mutually distrusting par-
ties to jointly evaluate a function on their private inputs, without revealing any infor-
mation beyond the prescribed function outputs [Yao82, GMW87, BGW88, CCD88].

An important efficiency metric of MPC protocols is the required communication
between parties. A great deal of research focus has gone towards minimizing the asymp-
totic communication complexity of MPC, as well as improving the practical efficiency
of MPC. Our work proposes a theoretical framework for capturing the intersection.
This framework can be used to provide a crude distinction between tasks that admit
“practical” sublinear-communication protocols and ones that do not, akin to the use
of NP-completeness to separate hard algorithmic problems from easy ones.

Secure computation on big data calls for MPC protocols that have sublinear com-
munication complexity in the input size. The line of work on sublinear-communication
MPC started with works on private information retrieval (PIR) [CKGS98, KO97] and
related primitives, and culminated in the constructions of fully homomorphic encryp-
tion (FHE) [Gen09] schemes. FHE gives a general solution to the problem in that it
essentially closes the gap between secure and insecure communication complexity.

The main concrete bottleneck of current FHE schemes, which makes them slow
in practice, is their computational complexity. Even in the case of PIR, which can be
viewed as the simplest instance of “somewhat-homomorphic encryption,” local com-
putation on the server side is by far the most significant cost. Indeed, PIR protocols
without preprocessing provably require linear computational complexity, and all known
PIR protocols on a database of length N require at least N “public-key operations”
(comparable to the amortized cost of encrypting a bit in an underlying public-key
encryption scheme). Consequently, the computational cost of such protocols is signifi-
cantly higher than that of protocols that process a similar amount of information using
only symmetric encryption. Moreover, unlike the case of OT-based protocols, little can
be done for amortizing the cost of PIR or for pushing it to an input-independent pre-
processing phase. Despite recent advances on the concrete cost of PIR [MBFK16] and
the asymptotic cost of PIR with preprocessing [BIPW17, CHR17], performing a single
instance of PIR on an N -bit database is more expensive in terms of local computation
than, say, securely evaluating a boolean circuit of size N by relying on efficient OT
extension techniques.

Notable exceptions to the above state of affairs are the work of Aggarwal et
al. [AMP10] on medians, the work of Brickell and Shmatikov [BS05] on certain graph
problems, and the work of shelat and Venkitasubramaniam [SV15] that vastly gen-
eralizes them. These works show that for certain natural and practically motivated
problems, including several central combinatorial optimization problems, one can enjoy
the best of both worlds: sublinear communication complexity with low computational
overhead, both asymptotically and concretely. These works leave several interesting
open questions. In particular, it is not clear how robust the positive results are to
natural variations of the functionality and whether they extend to other optimization
problems.

1.1 Our Results

Towards addressing the above open questions in a systematic way, we propose a clean
formal framework to capture the feature of the protocols of [AMP10, BS05, SV15] that
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distinguishes them from more generic alternatives based on FHE or PIR. Concretely,
we consider a model of secure two-party computation with input-independent prepro-
cessing in the form of correlated randomness. (The latter can be used to implement
oblivious transfer unconditionally.) We distinguish between:

– “Easy” problems, namely ones admitting sublinear-communication secure pro-
tocols that may rely on input-independent correlated randomness and oblivious
transfer, and

– “PIR-hard” problems, for which any sublinear-communication protocol implies a
nontrivial PIR protocol on a large database.

Given the current state of the art, PIR-hard problems are unlikely to be shown “easy,”
and any protocol for such problems is likely to have poor concrete efficiency.

PIR-Hardness of Combinatorial Problems. We then revisit a class of combinatorial
optimization problems for which “easy” protocols have been demonstrated. (In par-
ticular, all of the protocols from [AMP10, BS05, SV15] are easy in the above sense.)
We show that, while the original formulation of the problem yields lightweight proto-
cols, certain natural and useful variants of the same problems are in fact PIR-hard.
We first demonstrate this for the case of one-sided variants—in which only one party
learns the function output—for an assortment of combinatorial problems with different
structures:

– Median. The median functionality accepts a list of numerical inputs from each
party and outputs the median of the combined list.

– Convex Hull. The 2-dimensional convex hull functionality accepts a set of points
in 2-space from each party and outputs the subset of those points on the convex
hull of the combined set.

– Single-Source Shortest Distance. The SSSD functionality accepts a set of
weighted edges from each party (on n fixed vertices) with distinguished vertex v∗

and outputs the lengths of n − 1 shortest paths from v∗ to each v 6= v∗ in the
combined graph (taking parallel edges).

– Approximate Set Cover. The approx set cover functionality refers to the output
of the polynomial-time greedy algorithm for polynomial time approximation of
set cover (which iteratively selects the set that contains the largest number of
uncovered elements).

We prove that the one-sided variant of each of the above problems is PIR-hard. This
further implies that any secret-shared variant of the problems, in which the parties
compute secret shares of the corresponding functionality output, is additionally PIR-
hard. (Indeed, existence of an “easy” protocol for the latter directly yields an analogous
protocol for the former, by having party 2 send his secret share to party 1). This
may indicate that lightweight protocols for these problems cannot be effectively used
“within” other larger MPC computations.

We remark that the previous “easy” protocol constructions for the above combi-
natorial problems frequently provide security within a promise setting, where certain
restrictions are assumed to hold on parties’ inputs (e.g., that parties’ inputs are dis-
joint). Our negative results are each within the respective promise settings.

Our PIR-hardness results can be interpreted as imposing a barrier on the local com-
putational cost of secure protocols for the problem. This barrier applies both asymptoti-
cally (linear computation is necessary without preprocessing) and concretely (achieving
sublinear communication comes at a high computational cost given the current state
of the art on PIR).
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Semi-PIR-Hardness. We then identify a new natural relaxation of PIR that we call
semi-PIR, which is useful for establishing “intermediate hardness” of several practically
motivated secure computation tasks. Semi-PIR is defined analogously to PIR, except
that the privacy requirement is relaxed to guarantee privacy of the client’s query index
i ∈ [n] only if it holds that the corresponding database value zi is equal to 1. This
notion may be independently motivated by settings where there is natural asymmetry
in privacy concerns for 0 versus 1 values (e.g., database of patients with and without
some disease).

We show that semi-PIR with polylogarithmic communication complexity implies
slightly sublinear PIR via an adaptive black-box reduction. Thus, semi-PIR-hardness
can have a similar interpretation as PIR-hardness from a crude asymptotic perspec-
tive. Our reduction from PIR to semi-PIR makes use of query-efficient locally decodable
codes (LDC). Correspondingly, ruling out a stronger black-box reduction would imply
a major breakthrough in complexity theory, concerning existence of LDCs with poly-
nomial rate and low query complexity.

Theorem 1 (Informal). Suppose there is an efficient q-query LDC C : {0, 1}n →
{0, 1}N . Then, there exists a protocol that implements PIR on a database z ∈ {0, 1}n
by using an expected O(2q) (adaptive) calls to semi-PIR on a database z′ ∈ {0, 1}N
and no additional interaction.

The reduction effectively attempts to reconstruct the desired database value zi,
i ∈ [n] by accessing positions j1, . . . , jq in the encoded database j` ∈ [N ], each time
to either the direct bit value or a negated version (so that the read value will be 0
with probability 1/2). At any point in which the queried location stores a 0, this query
index is no longer hidden, and the reduction will restart with a freshly sampled set
of q-queries. The smoothness of the LDC guarantees that revealing any single query
index reveals nothing about the ultimate desired index i. Note the inherent adaptivity
of this approach.

We also establish information-theoretic separations between semi-PIR and PIR.
These imply that some problems that we prove to be semi-PIR-hard are provably not
PIR-hard in a strong sense, suggesting that semi-PIR captures the true complexity
of some natural secure computation tasks rather than being an artifact of our proof
techniques.

Our semi-PIR-hardness results apply to natural two-sided functions, whose output
is revealed to both parties. A broad class of such examples is “optimal selection from a
short-list,” where a Receiver has a small list of candidate indices, and both parties learn
the identity of the candidate with the maximum/minimum/most desired value. Situ-
ations of secure computation of such problems can be motivated by real-life scenarios
in which the identity of the winning candidate (selected job applicant, purchased item,
travel destination) is public information that cannot be hidden, yet one is interested
in hiding the runner-ups or the choice criteria.

One such concrete problem is the Two-Sided Nearest Neighbor problem. Here a
server holds a large database of points (xi, yi) in the Euclidean plane, say a list of
restaurant locations, and a client holds a point (x, y), say representing its own location.
The output of both parties is the point (xi, yi) which is closest to (x, y). As discussed
above, the reason we consider here a two-sided output is that the selected restaurant
can be publicly observed. And while this output may reveal a lot of partial information
about the client’s input, it is easy to imagine situations in which the client may wish
to hide the exact location (x, y) from which the search has been conducted.
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Two-sided versus one-sided functionalities. Unlike secure protocols realizing two-
sided functionalities, secure protocols for one-sided functionalities must reveal no in-
formation about the output to one of the parties. This rules out iterative approaches
in which partial information about the output is gradually revealed to both parties,
allowing them to minimize the local computation by accessing only relevant portions
of the input. However, as we show in this work, some natural two-sided functionalities
exhibit an intermediate form of hardness captured by Semi-PIR. In such cases, both
parties get the output, but one of the parties receives additional information only if
some condition on the output is met.

Hardness Combinatorial Problems

Easy Two-Sided Locally Compressible Minimum Spanning Tree
Two-Sided Locally Compressible High-Order Median Predicates

Protocols from [AMP10, BS05, SV15]

Semi-PIR Hard Two-Sided Single Source Single Destination Shortest Path
Two-Sided Nearest Neighbor

Two-Sided Closest Destination Problem
Two-Sided Short-List Selection

PIR Hard One-Sided Median
One-Sided Approximate Set Cover

One-Sided Convex Hull
One-Sided Single Source Shortest Distances

Two-sided Median Predicate

Table 1. Sample of our hardness results for combinatorial problems

Local Compressibility. On the positive side, we identify a generic local compressibility
property of combinatorial problems that directly permits efficient secure protocols for
the problem, as well as any sufficiently “close” variant.

Loosely speaking, we say that a functionality F : {0, 1}N × {0, 1}N → {0, 1}m ×
{0, 1}m is locally compressible if there exists a preprocessing function Pre : {0, 1}N →
{0, 1}n for some n � N , for which it holds that F (X,Y ) = F (Pre(X),Pre(Y )). In
such a case, an “easy” sublinear protocol for securely computing F can be achieved by
first performing the local preprocessing, and then executing an arbitrary MPC for the
circuit/program on the compressed inputs. This generality allows us to extend beyond
the core functionality F itself, to provide an “easy” sublinear protocol for any composed
function G ◦ F for which the circuit size of G is not too complex. This includes, for
example, one-sided variants.

We demonstrate this local compressibility property in two example settings:

– Minimum Spanning Tree. The MST functionality accepts a set of weighted
edges from each party (on n fixed vertices) and outputs the minimum spanning
tree of the combined graph.
A lightweight protocol for MST was given by [SV15] for the promise setting where
all edge weights are distinct, as the corresponding MST promise problem falls
within their “greedy-compatible” protocol framework. We observe that, within a
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similar promise setting, the MST of the combined graph is preserved when parties
compute the MST of their local graphs first and then submit the resulting tree
as their input to the MST functionality (i.e., Pre(X) = MST (X)). Our approach
thus yields “easy” protocols with sublinear communication for MST and related
variants.

– “High-Order” Median Predicates. For any predicate function P that depends
only on the highest-order bits of its input, we show that the median predicate func-
tionality P ◦Med is locally compressible. More specifically, consider the median
problem for n inputs, and suppose P depends only on the ` ∈ o(logn) most-
significant bits of its input. Then a party’s list of n input values can be compressed
to a succinct 2` ∈ o(n)-size count vector corresponding to the number of occur-
rences of each length-` prefix within the list. Since the high-order prefix of the
median is equal to the median of the corresponding high-order prefixes, this short
count vector carries sufficient information to evaluate the desired functionality.

1.2 Organization of the Paper

Section 2 contains useful preliminaries. In section 3 we present our formal notion of
PIR-hardness, and PIR-hardness results for various combinatorial problem variants.
Section 4 contains the definition and results pertaining to the notion of semi-PIR.
Section 5 contains our positive local-compressibility results.

2 Preliminaries

Notation. We denote the security parameter by κ. We say that a function µ : N→ N
is negligible if for every positive polynomial p(·) and all sufficiently large κ’s it holds
that µ(κ) < 1

p(κ)
. We often use [n] to denote the set {1, . . . , n}. Moreover, we use

d ← D to denote the process of sampling d from the distribution D or, if D is a set,
a uniform choice from it. If D1 and D2 are two distributions, then we denote that
they are statistically close by D1 ≈s D2; we denote that they are computationally
indistinguishable by D1 ≈c D2; and we denote that they are identical by D1 ≡ D2.

Two-Party Computation. We assume familiarity with standard cryptographic
primitives. For notational purposes, we recall here the basic working definitions. We
refer to e.g. [Can01] for the formal definitions. A two-party protocol is cast by specifying
a random process that maps pairs of inputs to pairs of outputs (one for each party).
We refer to such a process as a functionality and denote it by F : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ × {0, 1}∗ where F = (F1, F2). That is, for every pair of inputs (x, y), the
output-pair is a random variable (F1(x, y), F2(x, y)) ranging over pairs of strings. The
first party (with input x) wishes to obtain F1(x, y) and the second party (with input
y) wishes to obtain F2(x, y). The aim of a secure two-party protocol is to protect an
honest party against dishonest behavior by the other party. In this paper, we consider
semi-honest static adversaries which strengthens our impossibility results.

The security of a protocol is analyzed by comparing what an adversary can do in
the protocol to what it can do in an ideal scenario that is secure by definition. This
is formalized by considering an ideal computation involving an incorruptible trusted
third party to whom the parties send their inputs. The trusted party computes the
functionality on the inputs and returns to each party its respective output. Loosely
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speaking, a protocol is secure if any adversary interacting in the real protocol (where
no trusted third party exists) can do no more harm than if it was involved in the
above-described ideal computation.

Protocols in the Preprocessing or Correlated Randomness Model. We
will also consider protocols for the preprocessing model. In the preprocessing model, the
specification of a protocol also includes a joint distribution PR1···Rn over R1× . . .×Rn,
where the Ri’s are finite randomness domains. This distribution is used for sampling
correlated random inputs (r1, . . . , rn) ← PR1···Rn received by the parties before the
execution of the protocol. Therefore, the preprocessing is independent of the inputs.
The actions of a party Pi in a given round may in this case depend on the private
random input ri received by Pi from the distribution PR1···Rn and on its input xi and
the messages received in previous rounds. In addition, the action might depend on
the statistical security paramenter κ which is given as input to all parties along with
xi and ri. Using the standard terminology of secure computation, the preprocessing
model can be thought of as a hybrid model where the parties have one-time access to
an ideal randomized functionality P (with no inputs) providing them with correlated,
private random inputs ri.

2.1 Private Information Retrieval

A (single-server) Private Information Retrieval (PIR) [CKGS98, KO97] protocol allows
a client to retrieve a data item from a database held by a server while hiding which
item it is after. More specifically, the database is modeled as an n-bit string z out of
which the client retrieves the i-th bit zi, while giving the server no information about
the index i. The communication complexity of such a protocol is denoted by c(n). A
trivial PIR protocol would have the server sending the entire data string to the client
(i.e. c(n) = n), thus satisfying the PIR privacy requirement in an information-theoretic
way. We assume by default that any PIR protocol should be nontrivial in the sense
that c(n) < n, and only consider computational security against semi-honest (passive)
servers. We denote by ViewS(z, i)) the view of the PIR server in its interaction with
the client on local inputs z, i and public input n = |z|, and by OutC(z, i) the output of
the client. Our definition treats the database size n as a public parameter that is also
used as a security parameter.

Definition 1 (PIR). Let (S,C) be an interactive protocol between a server S and a
client C, where both S and C are PPT algorithms. We say that (S,C) is a private
information retrieval (PIR) protocol if there exists a negligible function ν(n) such that:

– Correctness: For every n ∈ N, i ∈ [n], and z = (z1, . . . , zn) ∈ {0, 1}n,

Pr [OutC(z, i) = zi] ≥ 1− ν(n).

– Security: For every non-uniform polynomial time distinguisher D, n ∈ N, i, j ∈
[n], and z = (z1, . . . , zn) ∈ {0, 1}n, it holds that |pi − pj | ≤ ν(n), where

pi := Pr [D(1n,ViewS(z, i)) = 1] ,

pj := Pr [D(1n,ViewS(z, j)) = 1] .

– Efficiency: The communication complexity c(n) on a database z ∈ {0, 1}n is al-
ways required to be at most n− 1. We say that PIR protocol is slightly sublinear if
c(n) = O(n/ logγ n) for every positive integer γ, and that it is polylogarithmic if
c(n) = O(logγ n) for some positive integer γ.
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We note that polylogarithmic single-server PIR protocols exist under (subexpo-
nential versions of) standard cryptographic assumptions [CMS99, Lip05, BV14]. On
the other hand, PIR provably requires linear server computation in the database
size [BIM04], and all known protocols make an intensive use of public key cryptog-
raphy. Even in the fastest existing implementations of PIR [MBFK16], maximizing the
speed of server (which is still at least an order of magnitude slower than a symmetric
encryption of the entire database) has a high cost in communication.

Additional evidence for the hardness of PIR comes from the impossibility of re-
alizing PIR information-theoretically in the OT-hybrid model or even using general
correlated randomness [IKM+13]. This gives evidence against the possibility of using
input-independent preprocessing or fast OT extension techniques [IKNP03] for amor-
tizing the cost of PIR-based protocols, and should be contrasted with the fact that
without the sublinear communication requirement, information-theoretic protocols ex-
ist in these models.

3 The PIR-Hardness Framework

We put forth a framework for separating “practical” sublinear computation protocols
from “impractical” ones, by means of a notion of PIR hardness. PIR serves as an appeal-
ing benchmark metric for measuring protocol computation complexity in the sublinear
communication regime: The functionality is natural and convenient to reduce to. And,
since all known constructions make use of heavy public-key computations, this gives
an indication that for any functionality which reduces to it, an analogous level of com-
putation may be required. The high-level interpretation is thus that (given the current
state of the art on PIR) saying that f is PIR-hard implies that evaluating f with a
low communication complexity has a high computational cost. Even further, this com-
putational cost cannot be amortized or moved to an input-independent preprocessing
phase.

Definition 2 (PIR Hardness). Let f : {0, 1}N ×{0, 1}N → {0, 1}m(N)×{0, 1}m(N)

be a two-party functionality.

– We say that f is (n(N), τ(N))-PIR-hard if there is a single-server PIR protocol
that makes τ(N) (expected) oracle calls to f on inputs of length N , where the PIR
database size is n(N) and, in addition to the oracle calls there is no additional
communication.

– We say that f is non-interactively n(N)-PIR-hard if it is (n(N), 1)-PIR-hard,
and that f is PIR-hard if it is non-interactively n(N)-PIR-hard for some n(N) =
Ω̃(N) = N/polylog(N).

Most (but not all) of the PIR hardness results obtained in this paper are of the
simpler non-interactive type, namely the PIR protocol only applies a local mapping
to the input of each party and then makes a single invocation of f with no additional
interaction. The parameter n(N) and τ(N) should be interpreted as a lower bound on
the amount of expensive computation (which cannot be amortized or moved to a pre-
processing phase) that is required for a sublinear-communication secure computation
of f .

More concretely, we have the following easy corollary of PIR-hardness.
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Claim. Suppose f : {0, 1}N × {0, 1}N → {0, 1}m(N) × {0, 1}m(N) is PIR-hard and has
a protocol Π with O(Nβ) bits of communication for some β < 1. Then there is a
nontrivial PIR protocol which on a database of size n makes a single invocation of Π
on inputs of length N = O(n) and uses no further interaction or assumptions.

The following remarks on our notion of PIR-hardness are in place:

Remark 1.

1. The above definition can be extended to allow extra sublinear communication
beyond the f -oracle calls; however, our PIR-hardness results do not use this ex-
tension.

2. In the case of combinatorial problems involving graphs or other natural objects,
the parameter N denotes the bit-length of a binary representation of the input for
f . For example, in the case of a graph on ` nodes with polynomially bounded edge
weights, we have N = O(`2 log `). The polylogarithmic slackness in our default
notion of PIR-hardness is meant to reduce the sensitivity of this notion to the way
inputs are represented.

In the remainder of this section, we explore a general condition on functionalities
which imply PIR hardness. We first consider functionalities f with one-sided output, i.e.
where f : {0, 1}N ×{0, 1}N → {⊥}×{0, 1}m(N) delivers output only to one of the two
parties. We observe that in this setting, PIR hardness is tightly related to a combina-
torial VC-dimension-style measure of complexity. We then extend this to demonstrate
a sufficient condition for PIR-hardness of two-sided predicate functionalities.

3.1 VC-Dimension and Non-Interactive PIR-Hardness

In the case of one-sided output functionalities, where only one of the two parties re-
ceives output, the privacy property of PIR can be obtained immediately (namely, the
server will play the role of the party who receives no output). PIR hardness of such a
functionality then translates to a sufficient “combinatorial richness,” capturing that the
input-output behavior of the functionality is enough to encode the information of an
entire database. We draw a connection between this property and a form of “efficient
VC-dimension.”

VC Dimension. We next define the Vapnik Chervonenkis (VC) dimension of a class
of functions F . The VC dimension gives a measure for the ‘richness’ of F , which is
useful in learning theory and computational complexity. We assume in the following
that all functions in F are defined over the same input domain.

Definition 3 (VC-Dimension [VC71]). Let F be a class of functions from some
input domain D to {0, 1}. We say that F shatters a point set I ⊂ D, if for every
function g : I → {0, 1}, there is a function f ∈ F which agrees with g on I. The
VC-dimension of F , denoted by VC(F), is the size of the largest point set I, that is
shattered by F .

The VC-dimension can be extended to a class F of non-boolean functions from D
to E. In this case, the set I is shattered if there exists a universal boolean (single-
bit output) decoder γ : E → {0, 1} such that I is shattered in the above sense by
F ′ = {γ(f(·)) : f ∈ F}.
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For the generalization of VC dimension to functions with multi-bit outputs, a num-
ber of notions have been considered in the literature (e.g., [NAT89, BIKO12]). In this
work, we handle multi-bit outputs applying a universal boolean decoder on the out-
put of non-boolean functions, as was previously suggested in [BIKO12]. The work of
[BIKO12] uses the relation between PIR and VC dimension to construct PIR protocols.
We further develop this relation and use it to establish PIR-harndess.

Essentially, the VC-dimension of a multi-bit output function class is the maxi-
mum VC-dimension of the boolean function class γ ◦ F over the choice of the boolean
“decoder” function γ.

We observe that for a one-sided functionality f : {0, 1}N × {0, 1}N → {⊥} ×
{0, 1}m(N), non-interactive PIR hardness of f coincides directly with the following
notion of efficiently computable VC-dimension of the induced function class F =
{f(x, ·)}x∈{0,1}N . Explicitly, a non-interactive construction of PIR of database size
n from f corresponds directly to efficient procedures for: identifying a shattering set
I ⊆ {0, 1}N for F (dictating how the client maps his query index i to an input y to
f), finding the appropriate function f(x, ·) to yield the desired output string on the n
inputs in I (dictating how the server maps his n-size database to an input x to f), and
determining and evaluating the universal decoder γ (for converting the output of f to
an output of the PIR query). Privacy of the resulting PIR scheme follows immediately,
since the functionality does not output anything to the first party (server). Correctness
of the PIR holds because this gives a mapping from x ∈ {0, 1}N to a function f(x, ·)
and i ∈ [N ] to an input y for which f(x, y) = xi.

Below is a proof of equivalence for non-interactive reductions for the case of boolean
functionalities.

Theorem 2. Let f : {0, 1}N × {0, 1}N → {⊥} × {0, 1} be a one-sided functionality
with inputs x, y ∈ {0, 1}κ and a bit output. Let Fκ = {fκ(x, ·)} for x ∈ {0, 1}κ. Then
the set S = {Fκ}κ∈N has efficiently computable VC-dimension h, where h(κ) = κ, if
and only if fκ is (κ, 1)-PIR-hard.

Proof. If VC(Fκ) ≥ h(κ) then for every κ both parties in the PIR protocol have access
to shattered set I.1 Then, the server given the database, which is an assignment of
I, computes x for the function fκ that satisfies the assignment. More specifically, if
VC(Fκ) ≥ h(κ) then ∃y = (y1, . . . , yκ) such that for every assignment (b1, . . . , bκ) of
y, ∃ x such that for every i, fκ(x, yi) = bi. It is easy to see that both parties can run
the PIR protocol on input x and yi from the server and the client, respectively, such
that only the client receives the i-th bit of the database bi.

For the other direction, we need to show that given a PIR-hard function fκ then
VC(Fκ) ≥ h(κ). Based on the fact that the deterministic reduction of PIR on a κ-bit
database is non-interactive and that the client has no information about the database
the claim follows. In particular, since the client has no access to the database then for
the i-th bit of the database the client will use the same yi and the server will use the
same x based on the database acting as the assignment. Therefore, VC(Fκ) ≥ h(κ)
since PIR holds for all databases/assignments.

Two-Sided Predicates. The above additionally gives an approach for showing
PIR-hardness of two-sided predicate functionalities, as we now describe.

1 The shattered set must be exactly the same between the client and the server of the
PIR protocol.
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Theorem 3. Suppose the one-sided functionality f : {0, 1}N ×{0, 1}N → {⊥}×{0, 1}
is (n(N), 1)-PIR-hard. Then the corresponding two-sided functionality f ′ : {0, 1}N ×
{0, 1}N → {0, 1} × {0, 1} that delivers the same output predicate f to both parties is
(bn(N)/2c, 1)-PIR-hard.

Proof. By definition of (n(N), 1)-PIR-hardness, there exists an efficient non-interactive
construction of single-server PIR on a n(N)-size database using a single execution of
f . This corresponds to three efficient algorithms: (1) a mapping C : [n] → {0, 1}N
taking the client’s index i ∈ [n] to some input x ∈ {0, 1}N to submit to f , (2) a
mapping S : {0, 1}n → {0, 1}N taking the server’s database z ∈ {0, 1}n to some input
y ∈ {0, 1}N to submit to f , and (3) a reconstruction procedure R (which may depend
on state from the execution of C) translating the output bit of f to the queried value
zi.

Note that by the correctness of the existing PIR scheme for any database z (in
particular, for a randomly chosen z), it must be that the output bit of f on inputs
(C(i), S(z)) provides a full bit of entropy of information about the value of zi. That is,
the output bit of f must be either the value zi or its negation, and the choice of which
cannot be dependent on x (as this is unknown to the client).

We provide a construction of PIR on a bn(N)/2c-size database using a single execu-
tion of f ′, corresponding to (C′, S′, R′). For notational simplicity, assume bn/2c = n/2.

The transformation is as follows:

– C′: The client encodes his input i ∈ [n/2] as follows. First, sample a random bit
b← {0, 1}. Then execute C(i+ b · n/2).

– S′: The server encodes his database z ∈ {0, 1}n/2 by executing S(z||z̄); i.e., on the
n-bit value formed by concatenating z with the bitwise negation of z.

– R′: Given output w from the execution of f ′, output b⊕ w.

Correctness follows directly from the correctness of the underlying PIR (C, S,R).
Security holds because the output bit w is distributed uniformly given the view of the
server (i.e., given x).

A general version of Theorem 3 that applies to functionalities f with very short
(sub-logarithmic length) outputs appears in the full version.

3.2 PIR-Hardness of Natural Combinatorial Problems

We demonstrate that in many cases even close variants of problems which admit prac-
tical sublinear protocols can be PIR-hard. In the following subsections, we consider
variants of the Median, Convex Hull, Single-Source Shortest Path, and Approximate
Set Cover problems.

Each of our reductions follows the approach and notation of the “efficient” VC-
dimension connection described above, including the identification of shattered set I of
the client’s input space, and a universal decoder γ for converting the (possibly multi-
bit) output of f to the output of the PIR. For each case, the corresponding mappings
will indeed be efficiently computable, as required.

Revisiting the Median Protocol. For a subset S ⊂ U of a totally ordered uni-
verse set U , the ρth-ranked element is the value x ∈ S that is ranked ρ when the set S
is sorted in increasing order. The median is the element with rank ρ = d|S|/2e. Given
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two parties A and B with input sets XA, YB ⊂ U , respectively, we consider the problem
of privately computing the ρth-ranked element of XA ∪ YB . Aggarwal et al. [AMP10]
described protocols for the median function with sublinear communication and compu-
tation overhead. Specifically, in the two-party case, let the size of U be polynomial in
N (so that elements are described by polylog(N) bits), and let |XA|, |YB | = N be the
total number of the input elements. Then, the protocol of Aggarwal et al. [AMP10] for
securely evaluating the median entails a communication cost of Õ(logN). We remark
that the protocol of Aggarwal et al. [AMP10] finds the median on simplified input
instances XA and YB where XA ∩ YB = ∅ and |XA| = |YB |.

The median two-party and multi-party protocols of [AMP10] are in the two-sided
model, where both parties receive an output. Moreover, the security of their proto-
cols relies on the fact that partial information is only leaked via the function output.
We now show that secure protocols for the one-sided setting cannot enjoy such effi-
cient sublinear-communication properties: namely, the one-sided median functionality
is PIR-hard.

One-sided Median Functionality In this one-sided model, given two parties A and
B, only the first party A receives the output of the function while party B should not
learn any information about the input of party A.

Definition 4 (One-sided Med functionality). Let N ∈ N. We define the two-

party functionality Med : {0, 1}Õ(N) × {0, 1}Õ(N) → {⊥} × {0, 1}Õ(logN) by (X,Y ) 7→
(⊥,median(X ∪Y )) which on input two sets X,Y ⊂ Zpoly(N), from the sender and the
receiver, respectively, outputs ⊥ to the sender and the median of X ∪Y to the receiver.

Theorem 4. The one-sided functionality Med : {0, 1}Õ(N) × {0, 1}Õ(N) → {⊥} ×
{0, 1}Õ(logN) is PIR-hard.

Proof. We define a universal encoder γ that on input a bit-string outputs its Least-
Significant Bit (LSB). We are going to find the point set I of size N , that is shattered
by F ′Med = {γ(Med(X, ·))}X∈Zpoly(N)

.
Let (max,min) denote the maximum and the minimum element of Zpoly(N), respec-

tively. Moreover, for each i ∈ [N ] let MINi (respectively, MAXi) denote the multiset of
size |MINi| = i (resp, |MAXi| = i) where each entry is equal to min (resp., max), re-
spectively. Define I = {Y1, . . . , YN} such that Yi = {MINN−i∪MAXi} for all i ∈ [N ].
We will show that F ′Med shatters I. In particular, for each g : I → {0, 1} we will show
that ∃X such that for every Yi ∈ I, γ(Med(X,Yi)) = g(Yi).

Let g : I → {0, 1}. Define X = {x1, . . . , xN} such that xi = (i)2||10 · · · 0||g(Yi) ∈
Zpoly(N) where (i)2 denotes the bit representation of i. More specifically, xi is defined
by concatenating a unique logN -length prefix to each bit of g(Yi) to ensure that the
resulting elements are sorted, and appending the binary representation of N + 1 (i.e.,
logN + 1 bits) to ensure the existence of N distinct integers smaller than all the
resulting values.2

It holds that ∀i ∈ [N ], γ(Med(X,Yi)) = g(Yi) since Med(X,Yi) = xi and γ(Med(X,Yi)) =
LSB(xi) = g(Yi). That said, it follows that V C(F ′Med) ≥ N . Since all mappings are
efficiently computable, it follows that Med is PIR-hard.

2 For the case where the set Y has to be distinct then MINj = {min,min +
1, . . . ,minj−1}, MAXj = {max,max + 1, . . . ,maxj−1}. Furthermore, in such a
case ∀I ∈ [N ] compute xi = (i)2||min||10 · · · 0||g(Yi) ∈ Z2`
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Revisiting the Convex Hull Protocol. In the convex hull algorithm, two par-
ties securely compute the convex hull M of the union of their input sets of points GA
and GB in an euclidian plane. Each element consists of two integers that represent the
X and Y coordinates of the point. We are interested in cases where the convex hull has
description size that is sublinear in the input size (as otherwise sublinear communica-
tion protocols are unachievable). We thus consider a promise problem variant of the
functionality CH, defined as follows:

Definition 5 (One-sided CH functionality). Let N ∈ N. Define the two-party

(promise problem) convex hull functionality CH : {0, 1}Õ(N) × {0, 1}Õ(N) → {⊥} ×
{0, 1}o(logN) by CH(GA, GB) = (⊥, convexhull(GA ∪ GB)), which on input two sets
GA, GB of N points on the 2-dimensional euclidean plane, from party A and party B,
respectively, outputs ⊥ to party A and the convex hull of GA ∪GB to party B.

An efficient sublinear-communication protocol for the two-sided convex hull promise
problem was given by [SV15] (as it fits into their “greedy compatible” framework),
assuming slight additional promise restrictions on the inputs (namely, no two points
have the same X or Y coordinate and no three-points are collinear). We prove that the
one-sided convex hull problem is PIR-hard.

Theorem 5. The one-sided functionality CH : {0, 1}Õ(N) × {0, 1}Õ(N) → {⊥} ×
{0, 1}Õ(logN) is PIR-hard.

Proof. We define a universal encoder γ that on input a convex hull of four nodes
identifies the longest edge and rotates it such that: (1) the longest edge is parallel to
the X axes and (2) the shortest edge is above the longest edge. The encoder outputs
0 if the node of the shortest edge, which is closer to the longest edge, is the left one,
otherwise output 1. We are going to find the point set I of size N , that is shattered by
F ′CH = {γ(CH(G, ·))}G⊂S .

Let Cr be a circle with center the origin of the axes (with arbitrary radius) on the
euclidian plane. Set ψ = 2π/2N = π/N . Let us define I = {Y1, . . . , YN} for all i ∈ [N ].
Consider the two points on the circle with angle φi = (2i) ·ψ and angle φi = (2i+1) ·ψ.
Then, define by τ1 and τ2 the tangents of these two points, respectively. Tangents τ1
and τ2 intersect at point Pi. Consider the line ei passing through the center of the
circle and the point Pi. Denote the intersection points of the line ei with the circle by
Qi, Q

′
i such that point Qi is closer to point Pi. Next, consider the tangent τ3 of the

point Q′i and define by Ri, Si the points created by the intersection of τ1, τ3 and τ2, τ3,
respectively. The set Yi includes points Qi, Ri, Si.

We will show that F ′CH shatters I. In particular, for each g : I → {0, 1} we will show
that ∃G such that for every Yi ∈ I, γ(CH(G,Yi)) = g(Yi). Let g : I → {0, 1} then for
all i ∈ {0, . . . , N −1}, assign each g(Yi) to the point Ti with angle φi = (2i+ g(Yi)) ·ψ.
Then, G consists for all points assigned to g(Yi).

It holds that ∀i ∈ [N ], γ(CH(G,Yi)) = g(Yi). In particular, the convex hull in each
case contains the points (Qi, Ri, Si, Ti). By construction, the longest edge is drawn by
nodes Ri, Si and the shortest edge by nodes Ti, Qi and point Qi is closer to the longest
edge. If g(Yi) is 0 then Qi is closer to Ri and γ outputs 0. Thus, since each of the above
mappings is efficiently computable, it follows that CH is PIR-hard.

ut
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Revisiting the Single-Source Shortest Distance Protocol. In the Single
Source Shortest Distance (SSSD) protocol, two parties securely compute the shortest
path distances from a source vertex s to all other vertices in a joint weighted graph.
More specifically, let GA and GB be the two parties’ respective weighted graphs. As-
sume that GA = (VA, EA, wA) and GB = (VB , EB , wB) are complete graphs on the
same set of vertices. Let wA(e) and wB(e) represent the weight of edge e in GA and
GB , respectively.3 The goal is to output the list M which contains the shortest path
distances from the source vertex s to all other vertices. If the input graphs (which may
have quadratically many edges) are describable in Õ(N) bits, the output (which must
have at most linearly many items) can be described by Õ(

√
N) bits.

Definition 6 (One-sided SSSP functionality). Define the two-party functionality

SSSP : {0, 1}Õ(N)×{0, 1}Õ(N) → {⊥}×{0, 1}Õ(
√
N) by SSSP(GA, GB) = (⊥, shortestpaths(GA, GB))

which takes as input from A and B two complete, weighted graphs GA, GB respectively,
on the same set of vertices. Then, it outputs ⊥ to A and the list of shortest path dis-
tances from a source vertex s to all other vertices in the joint weighted directed graph
to B.

An efficient sublinear-communication protocol was given by [SV15] for the two-sided
version of a related problem, of single-source all-destinations (SSAD), which outputs
the list of shortest paths from s to each other node, as opposed to just the distance
of these paths. (This follows from their “greedy compatible” framework, via Dijkstra’s
algorithm.)

We prove the one-sided SSSP problem is PIR-hard. As the information of one-sided
SSSP can be directly inferred from the information of one-sided SSAD, this further
implies PIR-hardness of the one-sided SSAD problem.

Theorem 6. The one-sided functionality SSSP : {0, 1}Õ(N) × {0, 1}Õ(N) → {⊥} ×
{0, 1}Õ(

√
N) is PIR-hard.

Proof. We define a universal encoder γ that on input N integers and an index i outputs
0 if the ith integer is even, or 1 otherwise. We are going to define a set I of size
N(N − 1)/2, that is shattered by F ′SSSP = {γ(SSSP(G, ·))}G.

Let us define I = {Y1, . . . , YN} for all i ∈ [N ]. For each edge i = (u, v) in the graph
Yi proceed as follows. The edge between the starting note s to u is set to the minimum
weight i.e. wYi

(
(s, u)

)
= 0 and there is no weight assignment for (s, v). For every other

edge w 6= {u, v} connected to s, the weight on the edge (s, w) is assigned to N2 i.e.
wYi

(
(s, w)

)
= N2.

We will show that F ′SSSP shatters I. In particular, for each g : I → {0, 1} we will
show that ∃G such that for every Yi ∈ I, γ(SSSP(G,Yi)) = g(Yi). Let g : I → {0, 1}
then enumerate all the nodes from 1 up to N and for every edge j ∈

(
N
2

)
in the graph

G assign each weight to 2N2 + 2j+ g(Yi) (For the special case where the edge includes
the starting point s there is no weight assignment).

It holds that ∀i ∈ [N ], γ(SSSP(G,Yi)) = g(Yi). By construction the distance
from the starting point s to v for i = (u, v) is equal to wYi

(
u, v
)

which is equal to
2N2 + 2j + g(Yi). If g(Yi) = 0 then wYi is even. ut

3 Note that we can also consider incomplete graphs and graphs that include disjoint
edges by setting appropriate special values of w(e) for the given edges e.
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Revisiting the Approximate Set Cover Protocol. Given a collection S of sets
over a universe U , a set cover C ⊆ S is a subcollection of the sets whose union is U . The
set cover problem allows two parties A and B to securely find a minimum-cardinality
set cover given SA and SB . While this problem is NP hard to solve exactly, it yields a
natural greedy approximation algorithm. Namely, in each iteration, the algorithm takes
the set of those remaining which contains the largest number of uncovered elements.

In what follows, the “Approximate Set Cover” functionality will refer to the output
generated by running this greedy algorithm. As with previous problems, we will restrict
our attention to a promise version of the problem, where the description size of the
output set cover is sublinear in the input description size (as otherwise sublinear-
communication protocols will not be possible).

Definition 7 (One-sided Approximate Set Cover SC functionality). Let N ∈
N. Given a universe U , we define the two-party functionality SC : {0, 1}Õ(N)×{0, 1}Õ(N) →
{⊥}×{0, 1}o(N) by SC(SA, SB) = (⊥, C) which on input finite sets SA ⊆ U and SB ⊆ U
from party A and party B, respectively, outputs the result C ⊆ SA ∪ SB of the greedy
set cover algorithm to party B.

An efficient sublinear-communication protocol for the two-sided greedy approximate
set cover promise problem was given by [SV15], following their “greedy compatible”
framework. We prove the corresponding one-sided problem is PIR-hard.

Theorem 7. The one-sided functionality SC : {0, 1}Õ(N) × {0, 1}Õ(N) → {⊥} ×
{0, 1}o(N) is PIR-hard.

Proof. We define a universal encoder γ that on input two sets outputs the minimum
element that resides in both sets. We are going to define a set I of size Θ(N), that is
shattered by F ′SC = {γ(SC(S, ·))}S .

Let |U | = ` + 2 where
(
`
`/2

)
≥ N . In particular, let U = {0, 1, u1, . . . , u`}. Let

V = {{0, 1}`}N be a vector with all bit-strings of length ` with hamming weight 1/2
in lexicographical order. Denote by Vi,j the bit of the j-th position of the i-th element
of V .Define I = {Y1, . . . , YN} such that Yi = {0, 1} ∪j∈` {uj |Vi,j = 0} for all i ∈ [N ].

We will show that F ′SC shatters I. In particular, for each g : I → {0, 1} we will
show that ∃S = {S1, . . . , SN} such that for every Yi ∈ I, γ(SC(S, Yi)) = g(Yi). Let
g : I → {0, 1} then for all i ∈ [N ], set Si = {g(Yi)} ∪j∈` {uj |Vi,j = 1}.

It holds that ∀i ∈ [N ], γ(SC(S, Yi)) = g(Yi). By construction the output collection
consists of two sets, i.e., Si and Yi. If g(Yi) = 0 then the common minimum element
in both sets is 0. ut

4 Intermediate Hardness via Semi-PIR

There are natural two-sided functionalities that are provably not PIR-hard, but which
instead imply the following notion of semi-PIR. Intuitively, semi-PIR is a relaxed ver-
sion of PIR where the server is allowed to learn the output zi and can furthermore learn
the client’s actual selection i only if zi = 0. Note that a semi-PIR protocol with only
two messages is necessarily a PIR protocol, but it is easy to convert any 2-message PIR
protocol into (an artificial) 3-message semi-PIR protocol which is not a PIR protocol
by having the client send i to the server if and only if zi = 0.
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The semi-PIR primitive is formally defined by making the following small change
in the security requirement of PIR from Definition 1: instead of requiring indistin-
guishability between any i, j ∈ [n], the requirement is only made for i, j such that
zi = zj = 1.

One can roughly think of a semi-PIR protocol as a low-communication (passively)
secure protocol for the functionality 1

2
PIR that maps (z, i) to (y, zi), where y = i if

zi = 0 and y = ⊥ otherwise. Indeed, any semi-PIR protocol as above can be converted
into a protocol for this functionality by having the client send y to the server in the
end of the protocol.

4.1 Does Semi-PIR Imply PIR?

In this section we study the relation between semi-PIR and PIR. We show that a strong
form of semi-PIR implies a weak form of PIR. Interestingly, this result is shown via
an inherently adaptive reduction, which also exhibits some unusual tradeoffs between
communication and computation. We then show that the semi-PIR functionality does
not satisfy the default notion of PIR-hardness from Definition 2. In other words, one
cannot construct a PIR protocol via a single non-interactive call to 1

2
PIR. While we

leave open the possibility of constructing polylogarithmic PIR from polylogarithmic
semi-PIR, we show that ruling out such a construction would imply a breakthrough in
the achievable complexity of locally decodable codes.

Obtaining weak PIR from semi-PIR. We start by showing how to use a single
invocation of semi-PIR to build a probabilistic PIR functionality that (on every selec-
tion i) leaks i to the server with probability 1/2 (and lets the client know that leakage
occurred), but otherwise reveals nothing to the server. We denote this probabilistic
functionality by Rand 1

2
PIR.

Lemma 1. There exists a protocol for Rand 1
2
PIR that, on a database z ∈ {0, 1}n, uses

a single invocation of 1
2
PIR on a database z′ ∈ {0, 1}2n and no additional interaction.

Proof. The Rand 1
2
PIR protocol proceeds as follows. The server maps z to z′ = (z, z̄).

The client picks a random mask r ∈ {0, 1} and maps i to i′ = i+ rn. The parties then
invoke the 1

2
PIR oracle on inputs (z′, i′). The client’s output in the Rand 1

2
PIR protocol

is z′i′ ⊕ r, where z′i′ is the output of the 1
2
PIR. It is easy to check that the output

is correct, and that the server learns nothing about i if z′i′ = 0, which happens with
probability 1/2 and is detectable by the client. ut

Given Lemma 1, it suffices to reduce PIR to Rand 1
2
PIR. Our reduction relies on the

following strong form of locally decodable codes (LDCs), which can be viewed as 1-
round multi-server PIR protocols with uniform queries of logarithmic size and a single
answer bit. Using a general transformation of LDC to multi-server PIR from [KT00],
such codes are implied by standard LDCs by allowing a small decoding error probability.
For simplicity, we define here only the perfect notion which is satisfied by the best
known LDC constructions.

Definition 8 (Perfect LDC). We say that an encoding function C : {0, 1}n →
{0, 1}N is a q-query perfect LDC, if there exists a probabilistic decoder algorithm D(i)
which probes q bits of the encoding such that the following properties hold:

– Correctness: For every z ∈ {0, 1}n and i ∈ [n], we have Pr[DC(z)(i) = zi] = 1.
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– Uniform queries: Letting (i1, . . . , iq) ∈ [N ]q be the sequence of indices read by
D(i), it holds that for every j ∈ [q] the index ij is uniformly distributed over [N ].

Our construction of PIR from 1
2
PIR encodes the PIR database using a perfect

LDC, and applies a “cautious” decoding strategy by repeatedly (and adaptively) using
Rand 1

2
PIR to simulate the LDC decoder while ensuring that at most one query from

each decoding attempt is leaked. This strategy yields the following theorem.

Theorem 8. Let n(N) and q(N) be functions such that there is a q(N)-query perfect
LDC C : {0, 1}n(N) → {0, 1}N in which both the encoder and the decoder can be
implemented in time poly(N). Then, there exists a protocol that, given a parameter N ,
implements in time poly(N) PIR on a database z ∈ {0, 1}n(N) by using an expected
O(q(N) · 2q(N)) (adaptive) calls to 1

2
PIR on a database z′ ∈ {0, 1}N and no additional

interaction.

Proof. Let q = q(N). The PIR protocol will make at most q · 2q expected calls to
Rand 1

2
PIR, which using Lemma 1 can be implemented using q · 2q+1 expected calls to

1
2
PIR. The protocol starts with the server encoding the PIR database z ∈ {0, 1}n into

a codeword Z ∈ {0, 1}N . The client and the server then repeatedly apply the following
procedure until zi is successfully recovered.

1. The client invokes the LDC decoder D(i) to generate query indices (i1, . . . , iq).
2. For j = 1, . . . , q (sequentially), the client and the server invoke Rand 1

2
PIR with

client input ij and server input Z. The protocol restarts at Step 1 if ij leaks
(which occurs with probability 1/2), otherwise it continues to the next j. If all
indices Zij have been successfully retrieved, the client invokes D to recover zi.

Since the leakage events in different invocations of Rand 1
2
PIR are independent, the

expected number of attempts until decoding is fully successful is 2q, and so the expected
number of Rand 1

2
PIR invocations is q · 2q. The (perfect) security of the protocol follows

from the fact that in any invocation of D, at most a single index ij is leaked. By the
definition of perfect LDC, this index is uniformly distributed independently of i. ut

Alternatively, one can implement a worst-case variant of the above reduction that
runs σ copies in parallel, each with a constant failure probability. This results in a PIR
to semi-PIR reduction that has 2−Ω(σ) error probability and makes O(q(N) · 2q(N))
rounds of calls to 1

2
PIR with a total number of O(σ · q(N) · 2q(N)) of 1

2
PIR calls.

One can instantiate Theorem 8 by using known LDC constructions in several ways.
In particular, using Reed-Muller LDCs with q(N) = Θ(logN), one gets PIR with
good communication complexity but super-polynomial computational complexity. To
get slightly sublinear PIR with polynomial computational complexity, we rely on best
constant-query LDC constructions from [Efr09].

Corollary 1 (polylogarithmic semi-PIR ⇒ slightly sublinear PIR). The exis-
tence of a polylogarithmic semi-PIR protocol implies the existence of a slightly sublinear
PIR protocol. Moreover, if the semi-PIR protocol has constant round complexity then
so does the PIR protocol.

Proof. The LDC construction from [Efr09] is in fact a perfect LDC according to our
definition, with the following parameters. For any positive integer α, there is a constant
q = q(α), such that there is a q-query perfect LDC with N(n) = exp(exp(log1/α n)), or
n(N) = exp((log logN)α)). Note that n(N) is bigger than any polylogarithmic function
in N . A slightly sublinear PIR is obtained by chopping a database of size N into blocks
of size n(N) and running the protocol guaranteed by Theorem 8 on each block. ut
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We note that the existence of “dream LDC” with q = O(1) queries and polynomial
length N(n) would imply a stronger reduction that constructs polylogarithmic PIR
from polylogarithmic semi-PIR. Thus, ruling out such a reduction would imply ruling
out such dream LDC, which would be considered a breakthrough in complexity theory.

Separating semi-PIR from PIR. On the other hand, we show that semi-PIR
is not PIR hard. More broadly, we demonstrate limitations in the possibility of non-
adaptive reductions from PIR to semi-PIR.

We begin by showing that with a single call to semi-PIR one cannot achieve secure
PIR even with small non-trivial correctness.

Theorem 9. There cannot exist any reduction from n-bit PIR to 1
2
PIR with correctness

better than 0.6 which makes a single call to 1
2
PIR.

Proof. Suppose towards a contradiction that there exists a reduction from PIR to 1
2
PIR

via a single call with correctness 0.6. This corresponds to a (randomized) encoding EDB

from x ∈ {0, 1}n to x̂ ∈ {0, 1}n̂ and Eindex from i ∈ [n] to j ∈ [n̂], where the client
learns x̂j and the server learns j iff x̂j = 1 via 1

2
PIR. Since correctness is 0.6, there

must exist i 6= i′ ∈ [n] for which the distributions {j ← Eindex(i)} and {j′ ← Eindex(i
′)}

are statistically far. By the privacy requirement, this means the resulting index j or
j′ cannot be revealed except with negligible probability. In turn, this implies x̂j = 0
except with negligible probability over EDB, Eindex. However, this implies that on a
random database x the client has a negligible advantage in guessing xi, yielding a
contradiction. ut

We next build atop this result to further rule out the possibility of a reduction
making two non-adaptive calls.

Theorem 10. There cannot exist any reduction from PIR to 1
2
PIR which makes two

parallel calls to 1
2
PIR.

Proof. Consider any reduction achieving n-bit PIR, making 2 parallel calls to 1
2
PIR.

This corresponds to a (randomized) encoding EDB from x ∈ {0, 1}n to x̂ ∈ {0, 1}n̂
and Eindex from i ∈ [n] to (i1, i2) ∈ [n̂]2. By correctness, for every i ∈ [n] there exists
i′ ∈ [n] for which the distributions {(i1, i2) ← Eindex(i)} and {(i′1, i′2) ← Eindex(i

′)}
are statistically far. Because of this, for each index i, it must be that the read values
(x̂i1 , x̂i2) take value (1, 1) with negligible probability over EDB, Eindex. Correctness of
the final scheme implies that the values of (x̂i1 , x̂i2) must have a full bit of entropy
over a random database x; in particular, the value (0, 0) can occur with probability at
most 1/2. Then either x̂i1 or x̂i2 must equal 1 with probability at least 1/4, without
loss of generality say x̂i1 .

Consider, then, the following reduction which makes a single call to 1
2
PIR and

achieves correctness 1/2 + 1/8− negl(n).

1. The server samples x̂← EDB(x) and submits x̂ to 1
2
PIR.

2. The client samples (i1, i2)← Eindex(i) and submits i1 to 1
2
PIR.

3. The 1
2
PIR execution outputs x̂i1 to the client and i1 or ⊥ to the server (depending

on x̂i1).
4. If x̂i1 = 1 then the client executes the decoding procedure for the original reduction

on input (1, 0). Otherwise, he outputs a random bit.
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Privacy of this construction follows from privacy of the original reduction. In the
case that x̂i1 = 1, then with overwhelming probability we know that x̂i2 = 0, and thus
the client computes the correct output. This means correctness of the overall scheme
will hold with probability at least 1/4+3/4·1/2−negl(n), contradicting Theorem 9. ut

Because of the degradation in parameters, extending this separation to additional
parallel queries will seem to require new ideas (e.g., for three queries ruling out (1, 1, 1)
gives a smaller boost in correctness when reducing to the two query case, which is
insufficient to directly derive a contradiction). However, as a final note, we return to
the Rand 1

2
PIR functionality (used as an intermediate step in the earlier construction of

PIR from 1
2
PIR), in which the input index is revealed with probability 1/2. This setting

yields a direct analysis, and we observe that even O(logn) parallel calls to Rand 1
2
PIR

cannot yield PIR.

Proposition 1. There cannot exist any reduction from PIR to Rand 1
2
PIR making c ∈

O(logn) parallel calls to Rand 1
2
PIR with negligible correctness error.

Proof. Consider any reduction achieving n-bit PIR, making c ∈ O(logn) parallel calls
to Rand 1

2
PIR. This corresponds to a (randomized) encoding EDB from x ∈ {0, 1}n to

x̂ ∈ {0, 1}n̂ and Eindex from i ∈ [n] to (i1, . . . , ic) ∈ [n̂]c. By correctness, there exists
i 6= i′ ∈ [n] for which the distributions {(i1, . . . , ic) ← Eindex(i)} and {(i′1, . . . , i′c) ←
Eindex(i

′)} are statistically far. However, with noticeable probability 2−c ∈ n−O(1), all
executions of Rand 1

2
PIR will reveal the queried index, thus revealing the entire vector

query (i1, . . . , ic), violating privacy of the scheme. ut

4.2 Examples of Semi-PIR-Hard Problems

In this section we provide several natural examples for (two-sided) semi-PIR hard
functionalities. The results of the previous section imply that any polylogarithmic
protocol for these functionalities would imply a slightly sublinear PIR.

Definition 9 (Two-sided Single Source Single Destination Shortest Path).

Let N ∈ N. Define the two-party functionality SSSDs,t : {0, 1}Õ(N2) × {0, 1}Õ(N2) →
{0, 1}logN ×{0, 1}logN by SSSDs,t(GA, GB) = (shortestpath(GA, GB)) that expects as
input from A and B two directed, complete, weighted graphs GA, GB respectively, on
the same set of N vertices where each weight is in N. The functionality outputs the
shortest path from the source vertex s to the destination vertex t in the joint weighted
directed graph to both A and B.

Theorem 11. Let N ∈ N. The two-sided Single Source Single Destination shortest

Path function SSSDs,t : {0, 1}Õ(N2) × {0, 1}Õ(N2) → {0, 1}logN × {0, 1}logN is semi-
PIR hard.

Proof. We construct a semi-PIR protocol ΠSSSD, by calling functionality SSSD. Let Z
be the server’s input set of size Õ(N2) where each element is a bit, and let i be the
client’s index. Moreover, let (GA, GB) be the two weighted input graphs provided to
the SSSD functionality by the server and the client, respectively. Protocol ΠSSSD(Z, i)
proceeds as follows:

Input Phase:
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1. We split the nodes of GA into two sets and the weight of each edge within
each set is equal to infinity. Essentially, we form a complete bipartite graph
with two extra vertices s, t. The source vertex s is connected to the vertices
on the left side and a target vertex t connected to the vertices on the right
side of the bipartite graph. We also consider an edge connecting s and t. The
Server encodes the database Z on O(N2) edges of the bipartite graph in GA.
In particular, the server assigns to edge j the weight 2Zj . The weight of the
edge connecting s and t is set to 1.

2. The client sets up his graph GB such that for the edge of interest i = (u, v)
the weight is set to wB

(
i) = 2 and wB

(
(s, u)) = 0 and wB

(
(v, t)) = 0. The

weights of all other edges are set to infinity.

Evaluation and Output Phase:
Invoke the two-sided SSSD functionality ΠSSSD(GA, GB) that outputs the shortest
path. If the shortest path contains the edge connecting s and t then Zi = 1,
otherwise Zi = 0.
If Zi = 1 then the i’th edge weight is 2, and shortest path will consist of the single
edge connecting s and t, hiding the identity of i. If Zi = 0, the shortest path
contains edge i revealing the index i to the Server.

Definition 10 (Two-sided Closest Destination Problem ). Let N ∈ N. Define

the two-party functionality CDP : {0, 1}Õ(N)×{0, 1}Õ(logN) → {0, 1}logN ×{0, 1}logN
by CDP(G, (s, t1, t2)) = (ClosestDest(G, (s, t1, t2))) that expects as input a (sparse)

graph GA with size Õ(N) description from party A and a source vertex s along with

two target vertices t1, t2 with description size Õ(logN) from party B. Then, it out-
puts the identity of the closest destination from s to the one-out-of-two target vertices
dist(s, tb) ≤ dist(s, t1−b) to both A and B while t1−b remains hidden.

Theorem 12. The two-sided Closest Destination Problem function CDP : {0, 1}Õ(N)×
{0, 1}Õ(logN) → {0, 1}logN × {0, 1}logN is semi-PIR hard.

Proof. We construct a semi-PIR protocol ΠCDP, calling functionality fGA,(s,t1,t2)B . Let

Z be the server’s input set of size Õ(N) where each element is a bit, and let i be the
client’s index. Moreover, let GA, (s, t1, t2)B be the inputs to the CDP functionality by
the server and the client, respectively. ΠCDP proceeds as follows:

Input Phase:

1. Without loss of generality the Server encodes the database Z on O(N) edges
of a star graph GA with N + 2 vertices where the node s is connected to the
other N + 1 vertices. The server enumerates all these N + 1 vertices from 1 up
to N + 1 and for j ∈ [N ] assigns the weight of the edge connecting s and j to
2Zj and the edge connecting s to N + 1 to 1.

2. The client chooses vertices s, i and N + 1.

Evaluation and Output Phase:
Invoke the two-sided protocol ΠCDP that outputs a target destination. If the target
is vertex i then Zi = 0 and if the target is vertex N + 1 then Zi = 1.
If Zi = 1 then the output is independent of the index i and thus the identity of i
is hidden.

Definition 11 (Two-sided Nearest Neighbor Problem). Define the two-party

functionality NN : {0, 1}Õ(N)×{0, 1}Õ(logN) → {0, 1}O(logN)×{0, 1}O(logN) by NN(D, loc)
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that expects as input a list D (of size N) of locations on the 2-dimensional euclidean
plane from party A and a single location loc on the same plane from party B. Then, it
outputs to both parties the location (x, y) in D that is nearest to location locA.

Theorem 13. The two-sided Nearest Neighbor function NN : {0, 1}Õ(N)×{0, 1}Õ(logN) →
{0, 1}O(logN) × {0, 1}O(logN) is semi-PIR hard.

Proof. We construct a semi-PIR protocol ΠNN, calling functionality NN. Let Z ∈
{0, 1}N be the server’s input database, and let i be the client’s index. Moreover, let
(D, loc) be the inputs to the NN functionality by the server and the client, respectively.
Protocol ΠNN proceeds as follows:

Input Phase:

1. For j ∈ [N ], let (a, b)j be evenly spaced points on a circle with center c and
radius r in the Euclidean plane. The Server generates his input D to NN with
respect to these points in the following way. If Zj = 0 then set the jth location
(x, y)j = (a, b)j . If Zj = 1 set the location (x, y)j arbitrary outside the circle.
In addition, he includes the center point c.

2. The client outputs the location loc that intersects the line crossing from the
centre c and location (a, b)i and the circle with center c and radius r/2.

Evaluation and Output Phase: Invoke the two-sided protocol ΠNN that outputs
the nearest location to loc. If Zi = 0 then the output is (a, b)i. If Zi = 1 then the
output is the centre c which is independent of the index i. That said, in this case
the identity of i is not leaked.

Definition 12 (Two-sided Short-List Selection). Define the two-party functional-

ity SLS : {0, 1}Õ(N)×{0, 1}Õ(logN) → {0, 1}2 logN ×{0, 1}2 logN by SLS(L, (idx0, idx1))
that expects as input a list L of size N and input domain [N ] from party A and two
indices (idx0, idx1) from party B. The output is idx0 if Lidx0 < Lidx1 , idx1 if Lidx0 > Lidx1

or both idx0, idx1 if Lidx0 = Lidx1 .

Theorem 14. The two-sided Short-List Selection function SLS : {0, 1}Õ(N)×{0, 1}Õ(logN) →
{0, 1}2 logN × {0, 1}2 logN is semi-PIR hard.

Proof. We construct a semi-PIR protocol ΠSLS, calling functionality SLS. Let Z be
the server’s input set of size N where each element is a bit, and let i be the client’s
index. Moreover, let (L, idx0, idx1) be the inputs to the SLS functionality. Protocol
ΠSLS proceeds as follows:

Input Phase:

1. The Server generates the list L of size N + 1 as follows. For j ∈ [N ], Lj = Zj
and LN+1 = 0.

2. The client chooses indices i and N + 1.

Evaluation and Output Phase:
Invoke ΠSLS that outputs the index of the smallest entry or both indices in case of
ties. If Zi = 0 then the indices i and N + 1 are revealed. If Zi = 1 only the N + 1
index is revealed which is independent of i.

Next, we observe that this problem is not PIR-hard by demonstrating it is implied
by 1

2
PIR (which is separated from PIR in the above results).
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Theorem 15. If there exists a Semi-PIR protocol for a database of size O(N) that runs
in k-rounds, then for every constant c > 0 there exists a protocol for the two-sided Short-

List Selection function SLS : {0, . . . , c}Õ(N)×{0, 1}Õ(logN) → {0, 1}2 logN×{0, 1}2 logN

that runs in O(c · k) rounds.

Proof. Let Π be the Semi-PIR protocol. Let L be the input list of fSLS. Modify L such
that each element is in its unary representation with c+1 bits. In particular, a number
n < c in the database is represented in unary by n ones. The rest of the c + 1 − n
most significant bits are set to 0. Construct the semi-PIR database D by storing all
N(c+ 1) bits of L in such a way that the element with index (idx, `) is the `-th bit of
the element of L with index idx. Let (idx0, idx1) be the input indices of party B to SLS.
Then party A and party B run at most c sequential rounds, each one consisting of two
parallel calls to Π. In the `-th round, where ` ∈ [1, c], party B makes the following two
parallel queries for every b ∈ {0, 1}.

Π
(
D, (idxb, `)

)
=


(
⊥,
(
(idxb, `), Didxb,`

))
, if Didxb,` = 1((

idxb, `
)
,
(
(idxb, `), Didxb,`

))
, if Didxb,` = 0


If for some `, b, Didxb,` = 0 the protocol completes and there are no more adaptive

calls. For the case where Didxb,` 6= Didx1−b,` and Didxb,` = 0 then Lidx1−b > Lidxb and
both parties receive idxb. If Didxb,` = Didx1−b,` then Lidx1−b = Lidxb and both parties
receive (idxb, idx1−b).

Combining Theorem 14 with Theorem 15, we obtain the following corollary:

Corollary 2 (Short-List Selection is not PIR-hard). The two-sided Short-List

Selection function SLS : {0, 1}Õ(N) × {0, 1}Õ(logN) → {0, 1}2 logN × {0, 1}2 logN is not
PIR-hard.

5 Low Communication Locally Compressible Problems

In this section, we show that it is actually possible to achieve semi-honest security for
one-sided problems and beyond if the problem satisfies the following notion of input
compressibility.

Definition 13 (Locally Compressible Inputs). We say that a functionality F :
{0, 1}N × {0, 1}N → {0, 1}m × {0, 1}m has locally compressible inputs if there exists
a preprocessing function Pre : {0, 1}N → {0, 1}N

α

with α < 1 for which F (X,Y ) =
F (Pre(X),Pre(Y )).

Local compressibility of the inputs can yield semi-honest secure non PIR-hard
(“easy”) protocols with reduced communication complexity by first executing the local
preprocessing and then calling a generic two-party protocol on the preprocessed input
data.

In the following section we show that two optimization problems that satisfy the
above property admit low communication complexity and are not PIR-hard. The first
problem is the minimum spanning tree and the second one is the median protocol for
a certain predicate on the output specified in Section 5.2.
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5.1 Revisiting the Minimum Spanning Tree Protocol

A Minimum Spanning Tree (MST) of an edge-weighted graph is a spanning tree whose
weight is no larger than the weight of any other spanning tree. More formally, given a
connected, undirected graph G = (V,E), a spanning tree is an acyclic subset of edges
T ⊆ E that connects all the vertices together. Assuming that each edge e=(u,v) of G
has a numeric weight or cost, w(e), we define the cost of a spanning tree T to be the
sum of edges in the spanning tree

w(T ) =
∑

(u,v)∈T

w(u, v).

MST is a spanning tree of minimum weight. Note that the MST may not in general
be unique, but it is true that if all the edge weights are distinct, then the MST will be
unique.

Definition 14 (MST functionality). Let N ∈ N. We define the two-party func-
tionality fMSTN (GA, GB) = (T, T ) which on input two connected, unidirected graphs
GA = (VA, EA, wA) and GB = (VB , EB , wB) of size N with distinct edges where
VA = VB and wA(e), wB(e) represent the weight of edge e in GA and GB, outputs
a subset of edges T ⊆ EA ∪EB that connect all the vertices together with the minimum
weight w(T ) =

∑
(e)∈T w(e).

An efficient sublinear-communication protocol for two-sided MST was given in [SV15].

Two-Sided Locally Compressible MST. In the sequel, we show that the MST
protocol has locally compressible inputs and admits “easy” low communication secure
protocols. Beyond the results of [SV15], this approach enables such protocols for secure
computation of functions of the MST (whereas the [SV15] protocol only supports MST
itself).

Theorem 16. Let n ∈ N, and let {0, 1}` be the input domain of edge weights. Then

for any function g : {0, 1}2`·n → {0, 1}n
′

with circuit size o(N), there exists a secure

two-party computation protocol ΠMST for the functionality g ◦ fMST
n2 : {0, 1}`·n

2

×
{0, 1}`·n

2

→ {0, 1}n
′

which achieves statistical security in the preprocessing model,

with communication complexity Õ(n) ∈ o(N) (where N = ` · n2).

Proof. We proceed by constructing an MST protocol ΠMST, as per Definition 14, calling

the preprocessing function Pre : {0, 1}n
2

→ {0, 1}n as per definition 13. Let (GA, GB)
be the connected, unidirected graphs provided to the ΠMST protocol by party A and
party B, respectively.
Protocol ΠMST(GA, GB):

Input Phase:
The preprocessing function Pre on input a graph G outputs its MST, denoted by

MST(G). In this phase each party locally computes Pre(GA) and Pre(GB) to obtain
MST(GA) and MST(GB), respectively.

Evaluation and Output Phase:
Given two graphs G1 = (V1, E1, w1) and G2 = (V2, E2, w2) we denote by G1 & G2

the graph G = (V,E,w) with V = V1, E = E1 ∪ E2 and for each edge e ∈ E,
w(e) = min(w1(e), w2(e)).

23



Let Π denote a generic two-party protocol in the RAM computation model. Such
a protocol is run in order to compute and output MST((MST(GA) & MST(GB))
to both parties.

In order to prove correctness of the above protocol ΠMST, we need to prove that the
local compressibility does not alter the final output. More specifically, we need to show
that ∀e ∈MST(GA & GB) it is implied that e ∈MST((MST(GA) & MST(GB)).

Suppose for contradiction that there is an edge e inGB that is in the MST(GA &GB)
but not in MST(GB). Consider the cut C of vertices (created by drawing a line that
intersects the middle of the edge e), that contains only the edge e of MST(GA & GB)
(it exists since by definition there no cycles in the MST). It must be the case that e
is the lightest edge of GA & GB in this cut C, otherwise we can swap it out with a
lighter edge and contradict the minimality of MST(GA & GB). A swap is defined by
adding in e, forming a cycle in the graph, therefore removing the other edge in this cut
and cycle, which is by assumption strictly heavier.

However, all edge weights in GA & GB are smaller or equal to the weights in GB ,
since we take the minimum weight at every edge. This means that e must also be
the lightest edge of GB in this cut. But this contradicts minimality of MST(GB)
since we could always swap some edge of MST(GB) in this cut with e to get a
strictly cheaper MST. Finally, since without loss of generality we can consider dis-
joint edges and connected graphs the edge e must also be included in the final tree
MST((MST(GA) & MST(GB)). This concludes the proof.

Security of the protocol ΠMST follows immediately from the security of the Π proto-
col. Furthermore, it is clear that the communication complexity of the ΠMST(GA, GB)

in the RAM model is Õ(n) since after the local compressibility the input size to the
generic two-party protocol Π is reduced to O(n), making use of a generic statistically
secure ORAM-based protocol.

ut

5.2 Revisiting the Two-Sided Median Predicates Protocol

In the sequel, we focus on the case of predicates on the output of the median protocol
and in particular on the high-order bits of their input.

Theorem 17. Let N ∈ N and let {0, 1}` be the input domain. For any predicate
P : {0, 1}` → {0, 1} which depends only on the o(logN) most significant bits of the in-
put, there exists a secure two-party computation protocol Π

pMEDP
`

N

for the functionality

pMedPN which achieves statistical security in the preprocessing model, with communi-
cation complexity o(N).

Proof. We proceed by constructing the Π
pMEDP

`
N

protocol, calling the preprocessing

function Pre : {0, 1}N → {0, 1}o(N) as per definition 13. Let X,Y ⊂ ({0, 1}`)N be two
input sets from party A and party B, respectively, sorted in increasing order such that
|X ∪ Y | = 2N . Protocol Π

pMEDP
`

N

(X,Y ) proceeds as follows:

Input Phase:
The preprocessing function Pre on input a set S outputs a compressed output Pre(S)

of 2` ∈ o(N)-size, denoted by `′-size, count vector corresponding to the number of
occurrences of each length-`′ prefix within the elements of the set. More specifically,
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since there are 2`
′

different representations for the `′ most significant bits, party
A computes a counter vector cA = (cA1 , . . . c

A
2`
′ ) counting the appearance of each

possible representation in the most significant bits of each element in the set X.
Respectively, party B computes his counter vector cB = (cB1 , . . . c

B
2`
′ ).

Evaluation and Output Phase:
Let Π denote a generic two-party protocol Π(cA, cB) which on input the sets
cA, cB , outputs to both parties the predicate result. For our purposes, protocol Π
is computing the median of the prefixes as encoded by the counter vectors cA, cB .

Correctness of the above protocol Π
pMEDP

`
N

follows from the correctness of the Π,

which does output the correct output predicate guaranteed by the structure of cA, cB .
More specifically, since the high-order prefix of the median is equal to the median of the
corresponding high-order prefixes, this short count vector carries sufficient information
to evaluate the desired output predicate. Security follows immediately from the security
of the protocol Π. The communication complexity of the Π

pMEDP
`

N

(X,Y ) protocol

is o(N) since after the local compressibility the input size to the generic two-party
protocol Π is set to o(N). ut

6 Concluding Remarks and Open Problems

Our work initiates an effort to design a rigorous complexity framework for identifying
“hard” tasks, to which previous techniques for low-complexity sublinear MPC cannot
possibly apply, making the first broad strokes of classifying natural problems as “hard”
or “potentially easy.” The framework we propose is not perfect, and indeed, problems
that are “potentially easy” are not necessarily easy. This is also the case for the theory
of NP-completeness, where some problems that are conjectured not to be NP-hard
(such as integer factorization) are also conjectured to be not easy. However, again
like NP-completeness, our framework does provide meaningful and useful separations
between different flavors of natural problems that would otherwise look very similar.
This can help understand and guide MPC solutions over big data.

There are many questions left to be studied. Whereas for one-sided functionalities,
VC-dimension gives a good combinatorial characterization for PIR-hardness (restricted
to deterministic, non-interactive reductions), the situation for two-sided functionalities
is not as well understood unless the output is very short. Is there a natural analogue of
VC-dimension that captures PIR-hardness and semi-PIR-hardness of two-sided func-
tionalities? What about multi-party functionalities, or two-party functionalities that
deliver different outputs to the two parties? What about extending our framework to
the setting of security against malicious parties?

The relation between semi-PIR to PIR is also only partially understood. While we
show that strong semi-PIR implies weak (but nontrivial) PIR, it is not clear that our
reduction is the best possible. In particular, our reduction makes use of non-trivial
machinery of locally decodable codes, it requires multiple rounds of calls to the semi-
PIR oracle, and exhibits a tradeoff between communication and local computation. Are
these nonstandard features inherent? For instance, can we rule out parallel reductions
of this type, or prove that any reduction that makes few (sequential) calls to the semi-
PIR oracle implies a locally decodable code with related parameters?

As discussed above, problems that escape our notions of hardness are not necessarily
easy. It would be interesting to identify natural candidate problems of this kind and
try to refine our hardness notions to capture them.
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Finally, is there a useful hierarchy of hardness classes beyond PIR-hardness and
Semi-PIR-hardness? For instance, one could try to capture different levels of “some-
what homomorphic encryption” that are more expensive to implement than PIR, say,
corresponding to the circuit depth or algebraic degree.
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