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Abstract

We consider the problem of protecting general computations against constant-rate random leakage.
That is, the computation is performed by a randomized boolean circuit that maps a randomly encoded
input to a randomly encoded output, such that even if the value of every wire is independently leaked
with some constant probability p > 0, the leakage reveals essentially nothing about the input.

In this work we provide a conceptually simple, modular approach for solving the above problem,
providing a simpler and self-contained alternative to previous constructions of Ajtai (STOC 2011) and
Andrychowicz et al. (Eurocrypt 2016). We also obtain several extensions and generalizations of this
result. In particular, we show that for every leakage probability p < 1, there is a finite basis B such that
leakage-resilient computation with leakage probability p can be realized using circuits over the basis B.

We obtain similar positive results for the stronger notion of leakage tolerance, where the input is not
encoded, but the leakage from the entire computation can be simulated given random p′-leakage of input
values alone, for any p < p′ < 1. Finally, we complement this by a negative result, showing that for
every basis B there is some leakage probability p < 1 such that for any p′ < 1, leakage tolerance as above
cannot be achieved in general.
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1 Introduction

Ishai, Sahai, and Wagner [ISW03] introduced the fundamental notion of a leakage-resilient circuit com-
piler, which in its simplest form is defined as follows. The compiler consists of a triple of algorithms
(Compile,Encode,Decode). Given any circuit C, the compiled version of the circuit Ĉ = Compile(C) takes
a randomly encoded input x̂ = Encode(x) and (using additional fresh randomness) produces an encoded
output ŷ such that C(x) = Decode(ŷ). Furthermore, suppose each wire in the compiled circuit Ĉ leaks its
value1 with some probability p > 0, independently for each wire. Then, informally speaking, we require that
the leaked wire values reveal essentially nothing about the input x to the circuit.

The above notion of resilience to random leakage can be seen as a natural cryptographic analogue of
the classical notion of fault-tolerant computation due to von Neumann [vN56] and Pippenger [Pip85], where
every gate in a circuit can fail with some constant probability. In addition to being of theoretical interest, the
random leakage model is motivated by the fact that resilience to a notion of “noisy leakage,” which captures
many instances of real-life side channel attacks, can be reduced to resilience to random leakage [DDF14].
The random leakage model is also motivated by its application to “oblivious zero-knowledge PCPs,” where
every proof symbol is queried independently with probability p, which in turn are useful for constructing
zero-knowledge proofs that only involve unidirectional communication over noisy channels [GIK+15].

We turn to discuss the state of the art on constructing leakage-resilient circuit compilers with respect
to leakage probability p. The original work of [ISW03] only achieved security for values of p that vanish
both with the circuit size and the level of security. Ajtai [Ajt11] achieved the first leakage-resilient circuit
compiler that tolerated some (unspecified) constant probability of leakage p. However, to say the least,
Ajtai’s result is quite intricate and poorly understood. A more recent work of Andrychowicz, Dziembowski,
and Faust [ADF16] obtained a simpler derivation of Ajtai’s result. However, their construction is still quite
involved and relies on heavy tools such as expander graphs (also used in Ajtai’s construction) and algebraic
geometric codes. The present work is motivated by the following, informally stated, question:

Is there a “simple” method of building leakage-resilient circuit compilers that can tolerate some constant
probability of leakage p > 0?

1.1 Our Contribution

Our main contribution is an affirmative answer to the above question. We present a conceptually simple,
modular approach for solving the above problem, providing a simpler and self-contained alternative to the
constructions from [Ajt11, ADF16]. In particular, our construction avoids the use of explicit constant-degree
expanders or algebraic geometric codes.

Roughly speaking, our construction uses a recursive amplification technique that starts with a constant-
size gadget, which only achieves a weak level of security, and amplifies security by a careful compo-
sition of the gadget with itself. The existence of the finite gadget, in turn, follows readily from re-
sults on information-theoretic secure multiparty computation (MPC), such as the initial feasibility results
from [BOGW88, CCD88]. We refer the reader to Section 1.2 for a more detailed overview of our technique.

We then extend the above result and generalize it in several directions, and also present some negative
results. Concretely, we obtain the following results regarding constant-rate random leakage:

• For every leakage probability p < 1, there is a finite basis B such that leakage-resilient computation
with leakage probability p can be realized using circuits over the basis B.

• We obtain a similar positive result for the stronger2 notion of leakage tolerance, where the input is not
encoded, but the leakage from the entire computation can be simulated given random p′-leakage of
input values alone, for any p < p′ < 1.

1The original model of [ISW03] considers the worst-case notion of t-private circuits, where the leakage consists of an adver-
sarially chosen set of t wires. We will discuss this alternative model later.

2Note that leakage-tolerance can be easily used to achieve leakage-resilience by letting the encoder apply to the input a
secret sharing scheme that tolerates a p′-fraction of leakage, where the compiler is applied to an augmented circuit that starts
by reconstructing the input from its shares.
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• Finally, we complement this by a negative result, showing that for every basis B there is some leakage
probability p = pB < 1 such that for any p′ < 1, leakage tolerance as above cannot be achieved in
general, where pB tends to 1 as B grows. The negative result is based on impossibility results for
information-theoretic MPC without an honest majority [CK91].

Our work leaves open two natural open questions. First, in the case of binary circuits, there is a huge
gap between the tiny leakage probability guaranteed by the analysis of our construction (roughly p = 2−14)
and the best one could hope for. This is the case even in the stronger model of leakage tolerance, where our
negative result only rules out constructions that tolerate p > 0.8 leakage probability.

A second question is the possibility of tolerating higher leakage probability (arbitrarily close to 1) for
the weaker notion of leakage-resilient circuits with input encoder. A partial explanation for the difficulty of
this question is the possibility of using the input encoder to generate correlated randomness that enables
information-theoretic MPC with no honest majority.3

We present our results formally in Section 3.3.

1.2 Technical Overview

In this section, we give a high level overview of the composition-based approach that we utilize to get our
main result.

In the composition-based approach, we start with a leakage-resilient circuit compiler CC0 secure against
p-random probing attacks and that has constant simulation error ε. By p-random probing attacks, we mean
that every wire in the compiled circuit is leaked with probability p. We refer to this leakage-resilient circuit
compiler as a base gadget. The goal is to recursively compose this base gadget to obtain a leakage-resilient
circuit compiler also secure against p-random probing attacks but the failure probability is negligible (in the
size of the circuit being compiled).

First Attempt. A naive approach to compose is as follows: to compile a circuit C, compute CC0.Compile(
· · ·CC0.Compile(C) · · · ). In the kth step, CC0.Compile is executed for k levels of recursion. Its easy to see that
leakage on the resulting compiled circuit cannot be simulated if it holds that the simulation of CC0.Compile
fails for every level of recursion. That is, the failure probability of the resulting circuit compiler is εk for
k levels of recursion. If we set k to be the size of C then we obtain negligible simulation error, as desired.
However, as the simulation error reduces with every recursion step, the size of the compiled circuit increases
with every recursion step. Even if the compiled circuit in the base gadget had constant overhead, the size
of the compiled circuit obtained after k steps grows exponential in k. This means that we need to devise
a composition mechanism where the error probability degrades much faster than the size growth of the
compiled circuit.

Our Approach: In a Nutshell. Our idea is to cleverly compose n gadgets, each with simulation error
ε, in such a way that the composed gadget fails only if at least t of the gadgets fail, for some parameters
t, n with t < n. Our composition mechanism ensures that the size of the composed gadget incurs a constant
blowup whereas the simulation error degrades exponentially in 1

ε .
To realize such a composition mechanism, we employ techniques from Cohen et al. [CDI+13]. Cohen et

al. showed how to employ player emulation strategy [HM00] to achieve a conceptually simpler construction
of secure MPC in the honest majority setting. While the goal of Cohen et al. is seemingly unrelated to the
problem we are trying to solve, we show that the player emulation strategy employed by their work can be
adapted to our context.

3Indeed, the technique of Beaver [Bea91] can be used to obtain resilience to an arbitrary leakage probability p < 1, but at the
cost of allowing the output of the input encoder to be bigger than the circuit size. In contrast, our definition of leakage-resilient
circuit compiler requires the output of the input encoder to be a fixed polynomial in the input length, independently of the size
of the circuit.
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We first recall their approach. They showed how to transform a threshold formula, composed solely of
threshold gates, into a secure MPC protocol. In more detail, they start with a T -out-N threshold formula
composed of t-out-n threshold gates. They then show how to transform a secure MPC protocol for n parties
tolerating t corruptions into a MPC protocol for N parties tolerating at most T corruptions (also written as
T -out-N secure MPC). At a high level, their transformation proceeds as follows: they replace the topmost t-
out-n threshold gate with a T -out-N secure MPC. That is, every input wire of the topmost gate corresponds
to a party in the secure MPC protocol. Moreover, every party in this MPC is emulated by a T -out-N secure
MPC. In other words, for every gate input to the topmost gate, the corresponding player is replaced with a
t-out-n secure MPC. For instance, if the topmost gate had exactly N gates as its children then the resulting
MPC has n2 number of parties and can tolerate at most t2 number of corruptions. This process can be
continued (for d steps, where d is the depth of the formula) as long as the secure MPC protocol still satisfies
polynomial efficiency.

Armed with their methodology, we show how to construct a leakage-resilient circuit compiler. We start
with a t-out-n secure MPC protocol Π in the passive security model. The functionality associated with this
protocol takes as input n shares of two bits (a, b) and outputs n shares of NAND(a, b)4. This secure MPC
protocol will be our base gadget for NAND; the security of MPC protocol can be invoked to prove that the
base gadget is secure with respect to constant probability of wire leakage and constant simulation error, call
it ε0. We then compose this base gadget recursively as follows: in the kth level of recursion, we start with Π
and emulate the computation of every gate in Π with the gadget computed using (k− 1) levels of recursion,
called the inner gadget. The protocol Π and the (k − 1)th level gadget offer two layers of protection for
the kth-level gadget. Why should this be secure? if all the inner gadgets can always be simulated (i.e, no
simulation error) then the resulting kth-level gadget can also always be simulated. Unfortunately, this is
not true since the simulator of the inner gadget does fail with probability εk−1. So far, we have used the
security of only layer of protection, we now will use the security of the second layer of protection; i.e., we will
invoke the security of Π. The insight here is that we can map the failure of inner gadgets to corrupting the
corresponding parties in Π. And thus, as long as at most t inner gadgets fail, we can invoke the simulator
of Π to simulate the composed gadget. We can show that the probability that at most t inner gadgets fail
degrades exponentially in 1

εk−1
, where εk−1 is the simulation error of the inner gadget. On the other hand,

the size of the composed gadget grows only by a constant factor. Expanding this out, we can conclude that
after k steps the size grows exponential in k whereas the simulation error degrades doubly exponential in k.
Substituting k to be logarithmic in the size of C, we attain the desired result. While the current discussion
focusses on the analysis for the random probing setting, similar (and a much simpler) analysis can also be
done for the worst-case probing setting. Specifically, we can show that after k levels of recursion, the circuit
compiler is secure against worst case probing attacks with leakage parameter tk.

Security Issues. Recall that the simulation of the composed gadget requires simulating all the inner gad-
gets. Since the inner gadgets are connected to each other, we need to ensure that these different simulations
are consistent with each other. To give an example, suppose there are two inner gadgets connected by a wire
w. The simulators for these two different inner gadgets could assign conflicting values to w. At its core, we
handle this problem by keeping a budget of wires “in reserve,” and define a notion of composable simulation
that can make use of this flexibility to resolve conflicts between simulators for components that share wires.
For example, if two simulators S1 and S2 “want to disagree” about a wire w, we will break the tie by allowing
simulator S1 to decide the value in wire w, and asking the other simulator S2 to use one of the reserve wires
to make up for the fact that S2 did not get its wish for the value of wire w. This is possible because of the
flexibility inherent in the secret sharing schemes underlying the MPC protocols of the base gadget. Similar
notions of composable leakage-resilient circuit compliers were considered in [BBD+16, BBP+16, BBP+17].

From NAND to arbitrary circuits. So far the above approach shows how to design a gadget for NAND
tolerating constant wire leakage probability and with negligible simulation error. The fact that we design
gadgets just for NAND gates is crucially used to argue that the size of the composed gadget blows up only

4We consider NAND gates because they are universal gates. In fact we can substitute NAND with any other universal basis.
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by a constant factor in each step. We show how to use this gadget to design a gadget for any circuit over
NAND basis: to compile C, we replace every gate in C with a gadget for NAND. We then show how to
stitch these different gadgets together to obtain a gadget for C.

Final Template. We now lay out our final template. We first define a special case of leakage-resilient
circuit compilers, called composable circuit compilers. This notion will incorporate the composition-friendly
simulation mechanism mentioned earlier.

• The first step is to design a composable circuit compiler for NAND tolerating constant wire leakage
probability and has constant simulation error.

• We then apply our composition approach to obtain a composable circuit compiler for NAND tolerating
constant wire leakage probability and has negligible simulation error.

• Finally, we show how to bootstrap a composable circuit compiler for NAND to obtain a composable
circuit compiler for any circuit. The resulting compiler still tolerates constant wire leakage probability
and has negligible simulation error.

A leakage tolerant circuit compiler can be constructed by additionally designing a leakage resilient input
encoder.

Organization. We first present the necessary preliminaries in Section 2. We then define the notion of
circuit compilers in Section 3. We define leakage resilience and leakage tolerance in the same section. The
notion of composable circuit compilers, that will be a building block for both leakage tolerant and leakage
resilient circuit compilers, is presented in Section 4.1. We present the construction of composable circuit
compilers in the following steps:

• We present the starting step (base case) in the composition step in Section 4.2.

• The composition step itself is presented in Section 4.3.

• The result of the composition step doesn’t quite meet our efficiency requirements and so we present
the exponential-to-polynomial transformation in Section 4.4.

• Finally, we combine all these steps to present the main construction of a composable circuit compiler
in Section 4.5.

Armed with a construction of composable circuit compiler, we present a construction of leakage tolerant
circuit compilers in Section 5. We also present negative results that upper bounds the leakage rate in the
random probing model in the same section.

We show implication of composable circuit compilers to leakage resilient circuit compilers in Section 6.

2 Preliminaries

We use the abbreviation PPT for probabilistic polynomial time. Some notational conventions are presented
below.

• Suppose A is a probabilistic algorithm. We use the notation y ← A(x) to denote that the output of
an execution of A on input x is y.

• Suppose D is a probability distribution with support V. We denote the sampling algorithm associated

with D to be Sampler. We denote by x
$←− Sampler if the output of an execution of Sampler is x. For

every x ∈ V, Sampler outputs x with probability px, as specified by D. Unless specified otherwise, we
only consider efficiently sampleable distributions. We also consider parameterized distributions of the
form D = {Daux}. In this case, there is a sampling algorithm Sampler defined for all these distributions.
Sampler takes as input aux and outputs an element in the support of Daux.
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• Consider two probability distributions D0 and D1 with discrete support V and let their associated
sampling algorithms be Sampler1 and Sampler2. We denote D0 ≈s,ε D1 if the distributions D0 and D1

are ε-statistically close. That is,


v∈V |Pr[v ← Sampler1]− Pr[v ← Sampler2]| ≤ 2ε.

Circuits. A deterministic boolean circuit C is a directed acyclic graph whose vertices are boolean gates
and whose edges are wires. The boolean gates belong to a basis B. An example of a basis is B =
{AND,OR,NOT}. We will assume without loss of generality that every gate has fan-in (the number
of input wires) at most 2 and fan-out5 (the number of output wires) at most 2. A randomized circuit is a cir-
cuit augmented with random-bit gates. A random-bit gate, denoted by RAND, is a gate with fan-in 0 that
produces a random bit and sends it along its output wire; the bit is selected uniformly and independently
of everything else afresh for each invocation of the circuit. We also consider basis consisting of functions
(possibly randomized) on finite domains (as opposed to just boolean gates). The size of a circuit is defined
to be the number of gates in the circuit.

2.1 Information Theoretic Secure MPC

We now provide the necessary background of secure multiparty computation. In this work, we focus on
information theoretic security. We first present the syntax and then the security definitions.

Syntax. We define a secure multiparty computation protocol Π for n parties P1, . . . , Pn associated with
an n-party functionality F : {0, 1}ℓ1 × · · ·× {0, 1}ℓn × {0, 1}ℓr → {0, 1}ℓy1 × · · ·× {0, 1}ℓyn . We denote ℓi to
be the length of the ith party’s input, ℓyi

to be the length of the ith party’s output and ℓr is the length of the
randomness input to F . In any given execution of the protocol, the ith party receives as input xi ∈ {0, 1}ℓi
and all the parties jointly compute the functionality F (x1, . . . , xn; r), where r ∈ {0, 1}ℓr is sampled uniformly
at random. In the end, party Pi outputs yi, where (y1, . . . , yn) = F (x1, . . . , xn; r).

We defined such n-party functionalities that additionally receive the randomness as input to be random-
ized functionalities. In this work we only consider randomized n-party functionalities and henceforth, the
input randomness will be implicit in the description of the functionality.

Semi-honest Adversaries. We consider the adversarial model where the adversaries follow the instruc-
tions of the protocol. That is, they receive their inputs from the environment, behave as prescribed by the
protocol and finally output their view of the protocol. Such type of adversaries are referred to as semi-honest
adversaries.

We define semi-honest security below. Denote RealΠF,S(x1, . . . , xn) to be the joint distribution over the
outputs of all the parties along with the views of the parties indexed by the set S.

Definition 1 (Semi-Honest Security). Consider a n-party functionality F as defined above. Fix a set of
inputs (x1, . . . , xn), where xi ∈ {0, 1}ℓi and let ri be the randomness of the ith party. Let Π be a n-party
protocol implementing F . We say that Π satisfies ε-statistical security against semi-honest adversaries
if for every subset of parties S, there exists a PPT simulator Sim such that:

{ ({yi}i/∈S , Sim ({yi}i∈S , {xi}i∈S)) } ≈s,ε


RealΠF,S(x1, . . . , xn)


,

where yi is the ith output of F (x1, . . . , xn). If the above two distributions are identical, then we say that Π
satisfies perfect security against semi-honest adversaries.

Starting with the work of [BOGW88, CCD88], several constructions construct semi-honest secure multi-
party computation protocol in the information-theoretic setting assuming that a majority of the parties are
honest.

5If a circuit has arbitrary fan-out, then this can be transformed into another circuit of fan-out 2 with a loss of logarithmic
factor in the depth.
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3 Circuit Compilers

We define the notion of circuit compilers. This notion allows for transforming an input x, a circuit C (See

Section 2 for a definition of circuits) into an encoded input x and a randomized circuit C such that evaluation

of C on x yields an encoding C(x). The decode algorithm then decodes C(x) to yield C(x).

Definition 2 (Circuit Compilers). A circuit compiler CC defined for a class of circuits C comprises of the
following algorithms (Compile,Encode,Decode) defined below:

• Circuit Compilation, Compile(C): It is a deterministic algorithm that takes as input circuit C and

outputs a randomized circuit C.

• Input Encoding, Encode(x): This is a probabilistic algorithm that takes as input x and outputs an
encoded input x.

• Output Decoding, Decode(y): This is a deterministic algorithm that takes as input an encoding y
and outputs the plain text string y.

The algorithms defined above satisfies the following properties:

• Correctness of Evaluation: For every circuit C ∈ C of input length ℓ, every x ∈ {0, 1}ℓ, it always
holds that y = C(x), where:

– C ← Compile(C).

– x ← Encode(x).

– y ← C(x).
– y ← Decode(y).

• Efficiency: Consider a parameter k ∈ N. We require that the running time of Compile(C) to be

poly(k, |C|), the running time of Encode(x) to be poly(k, |x|) and the running time of Decode(C(x)) to
be poly(k, |C(x)|). We emphasize that the encoding complexity only grow poly-logarithmically in terms
of the size of C. Typically, k will be set to poly(log(|C|)).

Few remarks are in order.

Remark 1. The standard basis we consider in this work is {AND,XOR}. Unless otherwise specified, all
the circuits considered in this work will be defined over the standard basis. Also unless otherwise specified,
the compiled circuit is over the same basis as the original circuit.

Remark 2. Later, we also consider circuit compilers with relaxed efficiency guarantees, where we allow for
the running time of the algorithms to be exponential in the parameter k.

Non-Boolean Basis. In this work, we also consider a setting where the compiled circuit is defined over
a basis that is different from the basis of the original circuit (before compilation). We define this formally
below.

Definition 3. Consider two collections of finite functions B′ and B. A circuit compiler CC = (Compile,Encode,Decode)
is defined over B′ (written CC over B′) for a class of circuits C over B if it holds that for every C ∈ C over

basis B, the compiled circuit C, generated as C ← Compile(C), is defined over basis B′.

We next define the security guarantees associated with circuit compilers.
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3.1 Leakage Resilience

We adopt the definition of leakage resilient circuit compilers from [GIM+16].

Definition 4. A circuit compiler CC = (Compile,Encode,Decode) for a class of circuits C is said to be
ε-leakage resilient against a class of randomized leakage functions L if the following holds:

There exists a PPT simulator Sim such that for every circuit C : {0, 1}ℓ → {0, 1} and C ∈ C, input

x ∈ {0, 1}ℓ, leakage function Lcomp ∈ L, the distribution Lcomp( C, x) is ε-statistically close to Sim (C),

where C ← Compile(C) and x ← Encode(x).

Informally, the above definition states that the leakage Lcomp on the computation of the compiled circuit C
on encoded input x reveals no information about the input x.

Remark 3. While the above notion considers leakage only on a single computation, this notion already
implies the stronger multi-leakage setting where there are multiple encoded inputs and a leakage function is
computed on every computation of C. This follows from a standard hybrid argument6.

p-Random Probing Attacks [ISW03, Ajt11, ADF16]. In this work, we are interested in the following

probabilistic leakage function: every wire in the computation of the compiled circuit C on the encoded input
x is leaked independently with probability p.

More formally, denote the leakage function Lp = {Lcomp}, where the probabilistic function Lcomp is
defined below.

Lcomp


C, x


: construct the set of leaked values SC

leak as follows. For every wire w (input wires included) in

C and value vw assigned to w during the computation of C on x, include (w, vw) with probability p in SC
leak.

Also, include (w′, vw) in SC
leak, if w

′ and w are two output wires of the same gate. Output SC
leak.

We define leakage resilient circuit compilers with respect to the leakage function defined above.

Definition 5 (Leakage Resilience Against Random Probing Attacks). A circuit compiler CC = (Compile,Encode,
Decode) for a family of circuits C is said to be (p, ε)-leakage resilient against random probing attacks if CC
is ε-leakage resilient against Lp. Moreover, we define the leakage rate of CC to be p.

3.2 Leakage Tolerance

Another notion we study is leakage tolerant circuit compilers. In this notion, unlike leakage resilient circuit
compilers, Encode is an identity function. Consequently, we need to formalize the security definition so that
the leakage on the computation of C on x can be simulated with bounded leakage on the input x.

Definition 6. A circuit compiler CC = (Compile,Encode,Decode) for a class of circuits C is said to be
ε-leakage tolerant against a class of leakage functions L if the following two conditions hold:

• Encode is an identity function.

• There exists a simulator Sim such that for every circuit C : {0, 1}ℓ → {0, 1} and C ∈ C, input

x ∈ {0, 1}ℓ, leakage function L = (Lcomp, Linp) ∈ L, the distribution Lcomp( C, x) is ε-statistically

close to Sim (C,Linp(x)), where C ← Compile(C) and x ← Encode(x).

Henceforth, we omit Encode algorithm and denote a leakage tolerant circuit compiler to consist of (Compile,Decode).

6Here we use the fact that the circuit compilation algorithm is deterministic.
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(p,p′)-Random Probing Attacks. As before, we are interested in the following probabilistic leakage

function: every wire in the computation of the compiled circuit C on the encoded input x is leaked indepen-
dently with probability p.

More formally, denote the leakage function Lp,p′ = {(Lcomp, Linp)}, where the probabilistic functions
Lcomp is as defined in Section 3.1 and Linp is defined below.

Linp(x): construct the set of leaked values SI
leak as follows. For every input wire w carrying the ith bit of x,

include (w, xi) in SI
leak with probability p′. If (w, xi) is included, also include (w′, xi) in SI

leak, where w′ is
the other input wire carrying xi. Output SI

leak.

We define leakage tolerance against random probing attacks below.

Definition 7 (Leakage Tolerance Against Random Probing Attacks). A circuit compiler CC = (Compile,
Decode) for a family of circuits C is said to be (p,p′, ε)-leakage tolerant against random probing attacks if
CC is ε-leakage tolerant against Lp,p′ . Moreover, we define the leakage rate of CC to be p.

3.3 Our Results

We state our results7 below.

Leakage Tolerance: Positive Results. We show the following results in Section 3.2.

Theorem 1 (Boolean Basis). There exist constants 0 < p < p′ < 1 such that there is a (p,p′, )-leakage
tolerant circuit compiler, where  is negligible in the circuit size.

Theorem 2 (Finite Basis). For any 0 < p < p′ < 1 there is a basis B over which there is a (p,p′, )-leakage
tolerant circuit compiler, where  is negligible in the circuit size.

Leakage Tolerance: Negative Result. The following theorem upper bounds the rate of a leakage
tolerant circuit compiler in the random probing model. We present this result in Section 3.2.

Theorem 3. For any basis B there is 0 < p < 1, such that for any 0 < p′ < 1, there is no (p,p′, 0.1)-leakage
tolerant circuit compiler over B.

Leakage Resilience: Positive Results. We demonstrate a construction of leakage resilient circuit com-
piler over boolean basis. Both the theorems below are shown in Section 6.

Theorem 4 (Boolean Basis). There is a constant 0 < p < 1 such that there is a (p, )-leakage resilient
circuit compiler and  is negligible in the circuit size.

In the same section, we present a construction of leakage resilient circuit compiler over finite basis.

Theorem 5 (Finite Basis). For any 0 < p < 1 there is a basis B over which there is a (p, )-leakage resilient
circuit compiler, where  is negligible in the circuit size.

4 Composition Theorem: Intermediate Step

We present a composition theorem, a key step in our constructions of leakage tolerant and leakage resilient
circuit compilers. We identify a type of circuit compilers satisfying some properties, that we call composable
circuit compilers. This notion will be associated with ‘composition-friendly’ properties.

Before we formally define the properties, we motivate the need for composable circuit compilers.

7Special thanks to Jean-Sébastien Coron for pointing out an error in our result on the randomness complexity of private
circuits (Theorem 1 of our conference version [AIS18]); we have retracted this result from the full version.
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• In our composition theorem, we need to ‘attach’ different circuit compiler gadgets. For instance, the
output wires of circuit compiler CC1 will be the input wires of another compiler CC2. In order to ensure
correctness, we need to make sure that the output encoding of CC1 is the same as the input encoding
of CC2. We guarantee this by introducing XOR encoding property that states that the input encoding
and output encoding are additive secret shares.

• While the above bullet resolves the issue of correctness, this raises some security concerns. In particular,
when we simulate CC1 and CC2 separately, conflicting values could be assigned to the wires that join
CC1 and CC2. These issues have been studied in the prior works, mainly in the context of worst
case leakage [BBD+16, BBP+16, BBP+17]. And largely, this was not formally studied for the random
probing setting. We formulate the following simulation definition to handle this issue in the probabilistic
setting: the simulator Sim = (Sim1, Sim2) (termed as partial simulator) will work in two main steps:

– In the first step, the simulator first determines the wires to be leaked. Then, Sim1 determines a
‘shadow’ of input and output wires that additionally need to be simulated.

– In the second step, the values for the input and output wires selected in the above step is assigned
values. Then Sim2 is executed to assign the internal wire values.

At a high level Sim works as follows: first CC1.Sim1 and CC2.Sim1 is executed to obtain the shadow
of input and output wires that need to be simulated. At this point, we take the union of the output
wires of CC1 and input wires of CC1 that need to be simulated. Then, we assign the values to all the
wires. Once this is done, we independently execute CC1.Sim2 and CC2.Sim2 to obtain the simulated
wire values in both CC1 and CC2, as desired.

4.1 Composable Circuit Compilers

The syntax of composable circuit compilers is the same as that of circuit compilers (Definition 2). In addition,
it is required to satisfy the properties stated next.

XOR Encoding Property. We start with XOR encoding property. This property states that the input
encoding (resp., output encoding) is an additive secret sharing of the inputs (resp., outputs).

Definition 8 (N -XOR Encoding). A circuit compiler (Compile,Encode,Decode) for a family of circuits C is
said to have N-XOR encoding property if the following always holds: for every circuit C ∈ C, x ∈ {0, 1}ℓ,

• Encode(x) computes XOR secret sharing of xi for every i ∈ [ℓ], where xi is the ith input bit of x. It
then outputs the concatenation of the XOR secret shares of all the bits of x.

It outputs x = (x1, . . . , xℓ) ∈ {0, 1}ℓN , where xi = ⊕N
j=1xi

j. That is, xi is a XOR secret sharing of

{xi
j}j∈[N ].

• Let x ← Encode(x) and C ← Compile(C). Upon evaluation, denote the output encoding to be y ← C(x).
Suppose C(x) = y ∈ {0, 1}ℓ′ and y = (y1, . . . , yℓ′) ∈ {0, 1}ℓ′N . We require that {yij} is a XOR secret

sharing of yi, i.e., yi = ⊕N
j=1y

j
i .

When N is clear from the context, we drop it from the notation.

Composable Security (Random Probing Setting). Next, we define the composable security property.
We first deal with the random probing setting. There are two parts associated with this security property.

• Partial simulation: This states that, conditioned on the simulator not aborting, the leakage of all the
wires in the compiled circuit can be perfectly simulated by the leakage of a fraction of values assigned
to the input and output wires alone.

11



• Simulation with Abort: We require that the simulator aborts with small probability.

Before stating the formal definition of composable security, we first set up some notation. We formalize
the leakage function Lcomp defined in the previous section in terms of the following sampler algorithm,
RPDistrwp (·, ·)8.

Sampler RPDistrwp ( C, x): Denote the set of wires in C as W. Consider the computation of C on input

encoding x. For every wire w ∈ W, denote val(w) to be the value assigned to w during the evaluation of C
on x.

We construct the set Sleak as follows: initially Sleak is assigned to be {}. For every w ∈ W, with probability
p, include (w,val(w)) in Sleak (i.e., with probability (1 − p), the pair (w,val(w)) is not included). Output
Sleak.

We define the notion of partial simulator below.

Definition 9 (Partial Simulator: Random Probing). A partial simulator Sim defined by a deterministic
polynomial time algorithm Sim1 and probabilistic polynomial time algorithm Sim2 executes as follows: On
input a circuit C,

• Denote W to be the set of wires in C. Construct a set Wlk as follows: include every wire w ∈ W in
the set Wlk with probability p.

• Sim1( C,Wlk) outputs (Winp,Wout, I). Winp is a subset of input wires, Wout is a subset of output
wires and I denotes a set of indices.

• For every wire w ∈ Winp, include (w, vw) ∈ Sinp such that vw is a bit sampled uniformly at random.
Similarly, construct the set Sout.

• Sim2


C,Wlk,Winp, Sinp,Wout, Sout, I


outputs Slk.

Finally, Sim outputs Slk.

We now define the notion of composable security in the random probing model.

Definition 10 (Composable Security: Random Probing). A circuit compiler CC = (Compile,Encode,
Decode) for C, consisting of circuits of input length ℓ, is said to be (p, ε)-composable secure against
random probing attacks if there exists a probabilistic polynomial time partial simulator Sim = (Sim1, Sim2)
such that the following holds:

• p-Partial Simulation: for every circuit C ∈ C, input x ∈ {0, 1}ℓ,

RPDistrwp


C, x


C←Compile(C),
x←Encode(x)

≡

Sim( C)

L←Sim( C)∧L ∕=⊥


C←Compile(C)
,

That is, conditioned on the simulator not aborting, its output distribution is identical to RPDistrwp ( C, x).

• ε-Simulation with Abort: For every C ∈ C, Sim( C) aborts with probability ε.

8The superscript w is used to signify leakage of wire values.

12



4.1.1 Main Definition

We now present the definition of composable circuit compiler for the random probing model.

Definition 11 (Composable Circuit Compilers: Random Probing). A circuit compiler CC = (Compile,
Encode,Decode) is said to be a (p, ε)-secure composable circuit compiler in the random probing model if CC
satisfies:

• XOR encoding property.

• (p, ε)-composable security.

We refer to CC as a secure composable circuit compiler and in particular, omit (p, ε) if this is clear from the
context.

L-efficient Composable CC. En route to constructing composable circuit compiler, we construct an
intermediate composable circuit compiler that produces exponentially sized compiled circuits. We define the
following notion to capture this step.

Definition 12 (L-efficient Composable CC). A circuit compiler CC = (Compile,Encode,Decode) is an L-

efficient composable circuit compiler for a class of circuits C if for every C ∈ C, we have | C| ≤ L(|C|), where
C ← Compile(C).

In particular, CC is a composable circuit compiler if L is a polynomial.

4.2 Base Case: Constant Simulation Error

We construct a composable circuit compiler CC = (Compile,Encode,Decode) for a class of circuits C. Let
Π be a perfectly semi-honest secure n-party computation protocol for an n-party randomized9 functionality
F = F [C] (defined in Figure 1) tolerating t number of corruptions with t ≥ 2.

n-party functionality, F [C]

Input: (x1
1|| · · · ||xℓ

1 ; · · · ; x1
n|| · · · ||xℓ

n), where ℓ is the input length of C.

• It then computes xi = ⊕n
j=1xi

j for every i ∈ [ℓ]. Denote x to be a bit string,
where the ith bit of x is xi.

• It then computes C(x) to obtain y. Let yi be the ith output bit of y. Let the
length of y be ℓy.

• Sample bits yi
j uniformly at random such that yi = ⊕n

j=1yi
j for every i ∈ [ℓy].

Set yi = (yi
1, . . . , yi

n), for every i ∈ [n]. Output (y1, . . . , yℓy ).

Figure 1: Functionality F [C], parameterized by a circuit C.

We describe the scheme below.

Circuit Compilation, Compile(C): This algorithm takes as input circuit C : {0, 1}ℓ → {0, 1}ℓ′ ∈ C. We
associate a boolean circuit CktΠ with Π such that the following holds:

• Protocol Π on input (x1; . . . ; xn), where xi is ith party’s input, outputs (y1; . . . ; yn) if and only if CktΠ
on input x1|| · · · ||xn outputs (y1; . . . ; yn).

9Recall that a randomized n-party functionality is one that in addition to taking n inputs, also takes as input randomness.
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• Furthermore, the gates of CktΠ can be partitioned into n sub-circuits such that the ith sub-circuit
implements the ith party in Π. Denote the ith sub-circuit to be Ckti. Also, denote the number of gates
in CktΠ to be Ng.

• The wires between the sub-circuits are analogous to the communication channels between the corre-
sponding parties.

Output C = CktΠ.

Input encoding, Encode(x): On input x ∈ {0, 1}ℓ, it outputs the encoding x = (x1; . . . ; xn), where

xj = (xj
1|| . . . ||x

j
ℓ) and xi = ⊕n

j=1x
j
i .

Output decoding, Decode(y): It takes as input encoding y = (y1, . . . , yn) and outputs y, where the ith

output bit of y is computed as yi = ⊕n
j=1y

j
i with yj = (yj1, . . . , y

j
ℓ′).

We first prove the correctness and efficiency properties of the above scheme.

Lemma 1. CC satisfies correctness of encoding and correctness of evaluation properties.

Proof. The correctness of encoding property follows from the correctness of the XOR secret sharing scheme.
The following bullets proves the correctness of evaluation property: consider an input x and a circuit

C : {0, 1}ℓ → {0, 1}ℓ′ .

• By construction, the input encoding is a XOR secret sharing of the input x.

• The correctness of protocol Π proves that the output of the evaluation of C on x is a XOR sharing of
C(x).

• Thus, by construction, the output of the decoding algorithm is reconstruction of the XOR sharing of
C(x).

Lemma 2. CC satisfies the efficiency property.

Proof. This follows from the fact that the total computational complexity of Π is polynomial in n, ℓ and
|C|.

Lemma 3. CC satisfies n-XOR encoding property.

Proof. The proof of this lemma follows from the construction of the encoding algorithm.

We now prove that CC is composable secure against random probing attacks.

Proposition 1. Let Π be a perfectly semi-honest secure n-party computation protocol for n-party function-
ality F (defined in Figure 1) tolerating t corruptions, with t ≥ 2. Then, CC is a (p, ε0)-secure composable
circuit compiler, where ε0 = (Ngp)

t+1.

Proof. We already proved the correctness and efficiency properties of CC earlier. It suffices to prove the
(p, ε0)-composable security of CC.

Consider a circuit C ∈ C with input length ℓ and let x ∈ {0, 1}ℓ. Let C ← Compile(C) and let x ←
Encode(x). Let Ckti denotes the sub-circuit that implements the ith party.

We first describe a partial simulator, denoted by Sim = (Sim1, Sim2). This will be defined along the lines
of partial simulator in the worst case setting.

Sim( C): It takes as input compiled circuit C and does the following: Let W be the set of wires in C. Con-
struct a set of leaked wires Wlk as follows: include every wire w ∈ Wlk with probability p. It then executes
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Sim1( C,Wlk), which is defined below.

Sim1( C,Wlk): It takes as input compiled circuit C and a set of leaked wires Wlk. The first step is to

calculate the set of sub-circuits of C that are compromised. Recall that C can be partitioned into sub-
circuits Ckt1, . . . , Cktn, where Ckti is the ith sub-circuit implementing the ith party Pi. Construct a set
I ⊆ [n]. Include i ∈ [n] in the set I if and only if there exists a wire w ∈ Ckti such that w ∈ Wlk.

Now construct the set of input and output wires that need to be additionally leaked to carry out the
simulation. Construct Winp as follows: include w ∈ W in the set Winp if and only if w is an input wire in
Ckti and i ∈ I. Similarly construct the set Wout.

Output the set (W,Winp,Wout, I).

Once Sim1 is executed, construct a set Sinp as follows: for every wire w ∈ Winp, sample a uniformly random
bit vw and include (w, vw) ∈ Sinp. Similarly, construct the set Sout.

Sim2( C,Wlk,Winp, Sinp,Wout, Sout, I): It first checks if |I| ≥ t+1 and if the check passes, it aborts. Other-
wise, define a probabilistic polynomial time semi-honest adversary AMPC for Π as follows: it corrupts party
Pi, for every i ∈ I. Upon termination of the protocol, it outputs the computation tableau of all parties Pi,
for i ∈ I . Now, the security of Π guarantees that there exists a simulator SimMPC such that it simulates
AMPC in the ideal world. The output of SimMPC are the simulated wire values of all the parties indexed by I.
We denote Sleak to consist of (w, vw), for every wire w ∈ Wlk and vw is the value assigned to w by SimMPC.

Finally, Sim outputs Sleak.

Now that we have described Sim, we prove that CC satisfies composable security property. That is, we prove:

•

RPDistrwp


C, x


≡


Sim( C)

L←Sim( C)∧L ∕=⊥


• Sim( C) aborts with probability ε0.

Consider the following hybrids.

Hyb1: The output of this hybrid is

RPDistrwp


C, x


.

Hyb2: The output of this hybrid is

Hyb.Sim


C


.

We define the following hybrid partial simulator Hyb.Sim = (Hyb.Sim1,Hyb.Sim2).

Hybrid Simulator, Hyb.Sim( C): It takes as input compiled circuit C and does the following: Let W be

the set of wires in C. Construct a set of leaked wires Wlk as follows: include every wire w ∈ Wlk with
probability p. It then executes Hyb.Sim1( C,Wlk), which is defined below.

Hyb.Sim1( C,Wlk): execute Sim1( C,Wlk) to obtain (W,Winp,Wout, I).

Once Sim1 is executed, construct a set Sinp as follows: for every wire w ∈ Winp, sample a uniformly random
bit vw and include (w, vw) ∈ Sinp. Similarly, construct the set Sout.

Hyb.Sim2( C,Wlk,Winp, Sinp,Wout, Sout, I): It first checks if |I| ≥ t + 1 and if so, it aborts. Otherwise,

execute C(x) honestly. Construct the set of leaked wire values Sleak as follows. For every wire w ∈ W, in-

clude (w, vw) ∈ Sleak, where vw is the value assigned to the wire w during the evaluation of C(x). Output Sleak.

Finally, Hyb.Sim outputs Sleak.
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Claim 1. The output distributions of hybrids Hyb1 and Hyb2 are ε0-close.

Proof. The output distributions of Hyb1 and Hyb2 differ only in the event when the number of leaked wires
(which is nothing but |I|) is at least t+1. Therefore, it suffices to upper bound the probability of |I| ≥ t+1.

We prove the following.

Pr

|I| ≥ t+ 1 : (Wlk,Winp,Wout, I) ← Hyb.Sim1( C,Wlk)


≤ ε0

Let X be the random variable that calculates the number of wires that leak. We have, µ = E[X] = Ngp.
Let δ be such that (1 + δ)µ = t+ 1. We use the following Chernoff bound.

Lemma 4 (Chernoff Bound [MU05]). Let X =
n

i=1 Xi be the sum of 0/1 independent random variables.
Then for any β > 0,

Pr [X > (1 + β)E[X]] ≤


eβ

(1 + β)(1+β)

E[X]

Using the above Chernoff bound, we bound the error below.

Pr

|I| ≥ t+ 1 : (Wlk,Winp,Wout, I) ← Hyb.Sim1( C,Wlk)


= Pr[X ≥ t+ 1]

= Pr[X ≥ (1 + δ)µ]

≤


eδ

(1 + δ)(1+δ)

µ

≤


eδµ

(1 + δ)(1+δ)µ


· eµ (∵ µ > 0)

=




et+1


t+1
µ

t+1





=


et+1

(t+ 1)
t+1


· µt+1

≤ µt+1 (∵ t ≥ 2)

= (Ngp)
t+1

This completes the proof.

Hyb3: The output of this hybrid is the output of simulator Sim.

Claim 2. The output distributions of Hyb2 and Hyb3 are identical.

Proof. The difference between the output distributions of Hyb2 and Hyb3 is in the simulation of wire values
of Ckti, for every i ∈ I. In particular, both Hyb2 and Hyb3 abort if |I| > t and if |I| ≤ t then Hyb2 assigns

wire values by executing C while Hyb3 assigns wire values by executing SimMPC. In the corresponding MPC
protocol Π, we view party Pi as being corrupted and there are less than t corruptions in Π. Thus, the claim
that the output distributions of Hyb2 and Hyb3 are identical follows from the perfect security of Π.

From the above claims, it follows that the output distributions of Hyb1 and Hyb3 are ε0-close. Moreover,

conditioned on Sim not aborting, we have that Sim( C) perfectly simulates the leakage on C(x)
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4.3 Composition Step

We present the main composition step in this section. It allows for transforming a composable circuit
compiler CCK satisfying (p, εK)-composable security into CCK+1 satisfying (p, εK+1)-composable security,
where εK+1 is (exponentially) smaller than εK . In terms of efficiency, the efficiency of CCK+1 degrades by a
constant factor. The main tool we use to prove the composition theorem is a perfectly secure MPC protocol
that tolerates at most t corruptions.

We first present the transformation of CCK into CCK+1. Let CCK = (CompileK ,EncodeK ,DecodeK) be
a composable circuit compiler. We now build CCK+1 as follows:

Circuit Compilation, CCK+1.Compile(C): It takes as input a circuit C and outputs a compiled circuit C.

There are two steps involved in the construction of C. In Step I, we first consider a MPC protocol Π10 for a
randomized functionality F and using this we construct a circuit CktΠ. In Step II, we convert CktΠ into an-
other circuit Ckt∗Π. In this step, we make use of the compiler CCK . The output of this algorithm is C = Ckt∗Π.

Step I: Constructing CktΠ. Consider a n-party functionality F = F [C]; see Figure 1.
Let Π denote a n-party information theoretically secure computation protocol for F . Construct CktΠ as

done in Section 4.2.

Step II: Transforming CktΠ into Ckt∗Π. Replace every gate in CktΠ with the CCK gadgets and then
show how to “stitch” all these gadgets together.

- Replacing Gate by CCK gadget: For every gateG in the circuit CktΠ, we execute the compiler CCK .Compile(G)

to obtain G.

- “Stitching” Gadgets: We created CCK gadgets for every gate in the circuit. Now we show how to connect
these gadgets with each other.

Let Gk be a gate in CktΠ. Let G
′
k and G′′

k be two gates such that the output wires from these two gates

are inputs to Gk. Let Gk ← CCK .Compile(Gk), G′
k ← CCK .Compile(G′

k) and
G′′
k ← CCK .Compile(G′′

k). We

connect the output of G′
k and G′′

k with the input of Gk. That is, the output encodings of G′
k and G′′

k form the

input encoding to Gk. Here, we use the fact that the output encoding and the input encoding are computed
using the same secret sharing scheme, and in particular we use the XOR secret sharing scheme.

We perform the above operation for every gate in CktΠ.

We denote the result of applying Step I and II to CktΠ to be the circuit Ckt∗Π. Furthermore, we denote Ckt∗i
to be the circuit obtained by applying Steps I and II to sub-circuits Ckti. Note that Ckt∗i is a sub-circuit of
CktΠ. Moreover, Ckt∗i takes as input XOR secret sharing of the ith party’s input and outputs XOR secret
sharing of the ith party’s output.

Output C = Ckt∗Π.

Input Encoding, CCK+1.Encode(x): On input x, compute (x1,1, . . . , xℓ,1), . . . , (x1,n, . . . , xℓ,n)), where xi =

⊕n
j=1xi,j . Compute xi,j ← CCK .Encode(xi,j), for every i ∈ [ℓ] and j ∈ [n]. Output


{xi,j}i∈[ℓ],j∈[n]


.

Output Encoding, CCK+1.Decode(y): On input

{yi,j}i∈[ℓ′],j∈[n]


, first compute CCK .Decode(yi,j) to ob-

tain yi,j , for every i ∈ [ℓ′], j ∈ [n]. It computes y, where the the ith bit of the output is computed as
yi = ⊕n

j=1yij . Output y = y1|| · · · ||yn.

10The parties in this protocol are equipped with randomness gates.

17



Properties of CCK+1: We show that CCK+1 satisfies the properties of a composable circuit compiler.

Lemma 5 (Correctness). Let CCK satisfy correctness of evaluation and correctness of encoding properties
and let Π satisfy correctness property. Then, CCK+1 satisfies correctness of evaluation and correctness of
encoding properties.

Proof. Let C ← CCK+1.Compile(C). The proof of the lemma follows from the observations below.

• From the correctness of Π, it follows that CktΠ computes the same functionality as circuit C.

• The correctness of CCK implies that the circuit Ckt∗Π takes as input XOR secret sharing of input x,
computes CktΠ (and hence, C) on x to obtain y and finally, computes the XOR secret sharing of y.

Recall that C = Ckt∗Π.

• The input encoding CCK+1.Encode(·) computes XOR secret sharing of the input. The output decoding
CCK+1.Encode(·) computes reconstruction of XOR secret sharing of the output.

Thus, CCK+1.Decode ( CCK+1.Compile (CCK+1)(CCK+1.Encode(·) )) is functionally equivalent to C.

Lemma 6 (Efficiency). Let L be the total computational complexity of Π for the functionality F . Suppose
it holds that |CCK .Compile(G)| ≤ LK for some gate G then it holds that |CCK+1.Compile(G)| ≤ LK+1.

Proof. Recall that CCK+1.Compile(·) was obtained by replacing every gate in Π with a gadget generated using
CCK .Compile(·). Thus, the size of CCK+1.Compile(·) is nothing but the product of the total computational
complexity of Π and the size of every gadget computed using CCK .Compile(·).

The following corollary is immediate from the above lemma.

Corollary 1. Suppose |CCbase.Compile(G)| is a constant, for some gate G. We have |CCK .Compile(G)| to
be a polynomial in N as long as K ≤ log(N).

Lemma 7. CCK+1 satisfies XOR encoding property.

Proof. This is immediate from the description of the compiler, CCK+1.

We now prove the security of CCK+1. We show that CCK+1 is secure against random probing attacks if CCK

is secure against random probing attacks.

Proposition 2 (Security). Let CCK satisfy (p, εK)-composable security property. Then, CCK+1 satisfies
(p, εK+1)-composable security property, where εK+1 = (NgεK)t+1.

Proof. We first construct a partial simulator SimK+1 for the (K + 1)th step. Let SimK = (Sim1
K , Sim2

K) be
a partial simulator associated with CCK such that CCK satisfies (p, ε)-composable security property with
respect to SimK . We also employ the simulator of Π – to define this, first we need to define the real world
adversary participating in Π. AMPC is a semi-honest adversary that corrupts a subset of the parties and
outputs its entire view after the execution of the protocol. That is, it outputs the set {(w, vw) : w ∈ Ckti∧i ∈
I}, where Ckti is the circuit implementation of party Pi and I consists of indices of all the parties that are
corrupted by A. Here, vw denotes the value carried by the wire w in the execution of the protocol. We
denote SimΠ

MPC to be the ideal world adversary corresponding to A.
Denote the partial simulator to be SimK+1 = (Sim1

K+1, Sim
2
K+1). We describe SimK+1 below.
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Partial Simulator, SimK+1( C). It takes as input compiled circuit C. Denote W to be the set of wires

in C. Construct a set Wlk as follows: include every wire w ∈ W in the set Wlk with probability p. We
next describe Sim1

K+1 and SimK+2; before that we establish some notation. Let CktΠ be the circuit obtained
by applying Step I on the circuit C. Recall that CktΠ can be partitioned into sub-circuits Ckt1, . . . , Cktn,
where Ckti implements the ith party in Π. Let Ckt∗Π be the circuit obtained by applying Step II on CktΠ.
Correspondingly, let Ckt∗1, . . . , Ckt∗n be the partitions of Ckt∗Π.

Sim1
K+1( C,Wlk): The goal is to determine the set of input and output wires of C that will be necessary for

the next stage. Looking ahead, values assigned to this set of wires will be necessary to simulate the internal
wire values of C. As a first step, we calculate the set of sub-circuits of C that cannot be simulated by the
simulator of CCK . Denote this set by I. Initialize I = ∅.

For every gate G ∈ CktΠ, do the following: let G ← CCK+1.Compile(G) and let WG ⊆ W be the set of

leaked wires in the gadget G. Execute SimK( G,WG) and if the execution fails, include i in the set I, where
G belongs to the sub-circuit Ckti.

We now construct the set Winp as follows:

• Consider the circuit Encode. Recall that Encode outputs a XOR secret sharing of the input. Every
output wire of Encode corresponds to a secret share of a input bit. That is, there is mapping ψ that
acts upon the output wire w and outputs ‘j’ if w corresponds to a secret share of the jth input bit.
Set Winp to consists of all wires w such that: (i) there is j ∈ [n] such that w is an input wire of Ckt∗j
and, (ii) j ∈ I.

Similarly construct the set Wout. That is, Wout consists of all the output wires w that satisfy the following
condition: w ∈ Ckt∗j for some j ∈ [n] and j ∈ I. Output (Wlk,Winp,Wout, I). This completes the descrip-

tion of Sim1
K+1.

Let (Wlk,Winp,Wout, I) be the output of Sim1
K+1. Construct the sets Sinp and Sout as follows. For every

wire w ∈ Winp, include (w, vw) in Sinp such that vw is a bit sampled uniformly at random. Similarly,
construct the set Sout.

Sim2
K+1( C,Wlk,Winp, Sinp,Wout, Sout, I): The goal is to compute the simulated values Slk for the leaked

wires in the set Wlk. If |I| > t then abort. Otherwise, initialize Slk = ∅. Recall that C can be partitioned
into sub-circuits {Ckt∗i }i∈[n]. We consider two cases below.

Simulation of Wire Values in {Ckt∗i }i∈I : Execute the simulator of the MPC protocol SimΠ
MPC(I, {S

inp
i }i∈[ℓ],

{Sout
i }i∈[ℓ′]) to obtain the set SMPC. The set SMPC simulates the wire values in the sub-circuits {Ckti}i∈I

(corresponding to the corrupted parties) of CktΠ. Using this, we construct the set S∗
MPC, which will consist

of the simulated wire values in the sub-circuits {Ckt∗i }i∈I of Ckt∗Π.
Since the output distributions of AMPC and SMPC are identically distributed, SMPC can be expressed as

∪i∈ITi and Ti consists of pairs of the form (w, vw) for every wire w ∈ Ckti and vw is the value carried by
w during the simulation. For every gate G ∈ Ckti, let w

inp
1 , winp

2 be the input wires and wout
1 , wout

2 be the

output wires of G. Let {vinpj , voutj }j∈{1,2} be such that (winp
j , vinpj ) ∈ SMPC and let (wout

j , voutj ) ∈ SMPC for

j ∈ {1, 2}. Generate the simulated values corresponding to the gadget G, where G ← Compile(G), as follows:

• Compute v ← Encode(vinp1 ||vinp2 )

• Compute the circuit G on the input encoding v.

• Initialize the set, SG
MPC = ∅. For every wire w ∈ G, if vw was the value carried by w in G(v) then

include the pair (w, vw) in SG
MPC.

We have computed the simulated wire values for all the gadgets in the sub-circuits {Ckt∗i }i∈I . Now, compute
the set S∗

MPC as: S∗
MPC = ∪G∈Ckt∗i ,i∈IS

G
MPC. Assign Slk = S∗

MPC.
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Simulation of Wire Values in {Ckt∗i }i/∈I : We now simulate the values for the leaked wires in the

sub-circuits that are not indexed by the set I. For every gadget G ∈ Ckt∗i for i /∈ I, do the following:

• Consider the set W lk
G = G ∩Wlk. That is, W lk

G is the set of wires in G that are leaked.

• Execute Sim1
K( G,W lk

G ) to obtain (W lk
G ,Winp

G ,Wout
G , IG).

Construct Sinp
G and Sout

G for every G ∈ Ckt∗i recursively as follows. If G is an input gate, then include (w, vw)

in Sinp
G for every w ∈ Winp

G , where vw is picked at random. Similarly construct Sout
G by including in Sout

G ,
pairs of the form (w, vw) for every w ∈ Wout

G and where vw is a bit picked uniformly at random. Suppose G
is not an input gate, then let G′ and G′′ be gates such that they are connected to the input wires of G. By
recursion, we have already constructed Sinp

G′ and Sinp
G′′ . Set S

inp
G = Sinp

G′ ∪ Sinp
G′′ . Construct Sout

G by including
in Sout

G , pairs of the form (w, vw) for every w ∈ Wout
G and where vw is a bit picked uniformly at random.

For every G ∈ Ckt∗i , execute Sim2
K(W lk

G ,Winp
G ,Wout

G , Sinp
G , Sout

G ) to obtain Slk
G . Include all the elements

of Slk
G in the set Slk.

Output the set of leaked values Slk. This completes the description of SimK+1.
We now argue that the simulated distribution of leaked wire values is statistically-close to the real distribution
of leaked wire values. We employ the standard hybrid argument to argue this.

Consider a circuit C ∈ C and inputs x ∈ {0, 1}ℓ, where ℓ is the input length of C. Let C ←
CCK+1.Compile(C) and let x ← CCK+1.Encode(x) for i ∈ [q]. We prove:

•

RPDistrwp


C, x


≡


SimK+1( C)

L←SimK+1( C)∧L ∕=⊥

,

• SimK+1( C) aborts with probability ε

We state the hybrids below.

Hybrid Hyb1: The output of this hybrid is:


RPDistrwp


C, x



That is, the output of this hybrid is the distribution of leaked wire values in the evaluation of C on x, for
every i ∈ [q].

Hybrid Hyb2: We define a hybrid simulator denoted by Hyb2.SimK+1 = (Hyb2.Sim
1
K+1,Hyb2.Sim

2
K+1)

below. The output of this hybrid is, 
Hyb2.SimK+1


C, x



Description of Hyb2.SimK+1. It takes as input compiled circuit C and input x. Denote W to be the set of

wires in C. Construct a set Wlk as follows: include every wire w ∈ W in the set Wlk with probability p. We
next describe Sim1

K+1 and Sim2
K+1; before that we establish some notation. Let CktΠ be the circuit obtained

by applying Step I on the circuit C. Recall that CktΠ can be partitioned into sub-circuits Ckt1, . . . , Cktn,
where Ckti implements the ith party in Π. Let Ckt∗Π be the circuit obtained by applying Step II on CktΠ.
Correspondingly, let Ckt∗1, . . . , Ckt∗n be the partitions of Ckt∗Π.

Hyb2.Sim
1
K+1( C,Wlk): It executes Sim1

K+1( C,Wlk) to obtain (Wlk,Winp,Wout, I). This completes the de-

scription of Hyb2.Sim
1
K+1.

Let (Wlk,Winp,Wout, I) be the output of Hyb2.Sim
1
K+1. Construct the sets Sinp and Sout as follows. For

every wire w ∈ Winp, include (w, vw) in Sinp such that vw is a bit sampled uniformly at random. Similarly,
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construct the set Sout.

We describe Hyb2.Sim
2
K+1 below. The two differences between Sim1

K+1 and Hyb2.Sim
1
K+1 are (i) the simu-

lator will not abort if I ≥ t and, (ii) instead of simulating the sub-circuits indexed by I using the simulator
SimMPC we instead use the values obtained in the real execution of the MPC protocol Π.

Hyb.Sim2
K+1( C, x,Wlk,Winp, Sinp,Wout, Sout, I): The goal is to compute the simulated values Slk for the

leaked wires in the set Wlk. Initialize Slk = ∅. Recall that C can be partitioned into sub-circuits {Ckt∗i }i∈[n].
We consider two cases below.

Simulation of Wire Values in {Ckt∗i }i∈I : Evaluate the compiled circuit C on x. For every wire w ∈ Ckt∗i
such that w ∈ Wlk, include (w, vw) in Slk if and only if vw is the value carried by the wire w in the evaluation

of C(x).
Simulation of Wire Values in {Ckt∗i }i/∈I : This is identical to the analogous step in the description of
SimK+1.

Output the set of leaked values Slk.

Lemma 8. Assuming εK-simulation with abort property of CCK , the output distributions of hybrids Hyb1
and Hyb2 are identical.

Proof. We argue that RPDistrwp ( C, x) is identically distributed to Hyb.SimK+1( C, x). Once we show this, the
proof of lemma follows from standard hybrid argument.

The distribution of leaked wires Wlk in RPDistrwp is identical to that of Hyb2.Sim. Let {Ckt∗i }i∈[n] be the

sub-circuits in C. The set of simulated wire values for the sub-circuits {Ckt∗i }i∈I , where I is as constructed
in Hyb2.SimK+1, is the same for both RPDistrwp and Hyb2.SimK+1.

We now focus on the leaked wire values in the sub-circuits {Ckt∗i }i/∈I . We use the security of CCK to

argue this. For every i /∈ I, for every gadget G ∈ Ckt∗i , let Dlk
G denote the distribution of leaked wire

values in G as generated in Hyb2.SimK+1. From the description of Hyb2.SimK+1, it follows that Dlk
G is

identical to the output distribution of SimK( G). Moreover, SimK( G) does not abort. Otherwise, i would
have been included in the set I. Thus, we can apply the security of CCK to argue that Dlk

G is identically

distributed with the leaked wire values of the gadget G in the distribution RPDistrwp ( C, x). Since the wire
values are independently leaked, we can then use hybrid argument to argue that the distribution of the
leaked wire values in {Ckt∗i }i/∈I is identical in both RPDistrwp and Hyb2.SimK+1. Thus, the proof of the
lemma follows.

Hybrid Hyb3: As before, we define a hybrid simulator Hyb3.SimK+1 = (Hyb3.Sim
1
K+1,Hyb3.Sim

2
K+1). The

output of this hybrid is, 
Hyb3.SimK+1


C, x



Description of Hyb3.SimK+1. This simulator is identical to the previous hybrid simulator Hyb2.SimK+1,
except that this simulator aborts if |I| > t (specifically, Hyb3.Sim

2
K+1 aborts).

Lemma 9. The output distributions of hybrids Hyb2 and Hyb3 are εK+1-close.

Proof. To prove this lemma, it suffices to consider the indistinguishability of hybrids Hyb2 and Hyb3 when
there is only one input (instead of q inputs). In this case, let I be as computed in Hyb3.SimK+1. Observe
that the probability that |I| > t is the same as the distinguishing advantage between hybrids Hyb2 and Hyb3.
We calculate the probability that |I| > t below. For the general case, when there are q inputs, we apply the
hybrid argument and incur a security loss of q.
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Claim 3. Let W be the set of wires in C. For every wire w ∈ W, include it in Wlk with probability p. We
have,

Pr

|I| > t : (Wlk,Winp,Wout, I) ← Hyb2.Sim

1
K+1( C,W)


≤ εK+1,

where εK+1 is as defined in the statement of the lemma.

Proof. Let X be the random variable that calculates the number of instantiations of SimK that fail. We
have, µ = E[X] = NgεK . We use Chernoff bound (Lemma 4) to calculate εK+1. Let (δ + 1)µ = t+ 1.

Pr[At least (t+ 1) instantiations of SimK+1 fail] = Pr[X ≥ t+ 1]

= Pr[X ≥ (1 + δ)µ]

≤


eδ

(1 + δ)(1+δ)

µ

≤


eδµ

(1 + δ)(1+δ)µ


· eµ (∵ µ > 0)

=




et+1


t+1
µ

t+1





=


et+1

(t+ 1)
t+1


· µt+1

≤ µt+1 (∵ t ≥ 2)

= (NgεK)t+1

This completes the proof.

Hyb4: The output of this hybrid is, 
SimK+1


C


Lemma 10. Assuming the perfect security of Π, hybrids Hyb3 and Hyb4 are identically distributed.

Proof. The only difference between Hyb3 and Hyb4 is in the simulation of the wires in the sub-circuits indexed
by I. For simplicity, we consider the case when there is only one input x1 (i.e, q = 1). The general case,
when q is arbitrary, follows from standard hybrid argument.

• We perform the following operations in Hyb3:

– Apply Step I to circuit C to obtain the circuit CktΠ. Recall that CktΠ is a circuit representation
of the protocol Π. It is divided into sub-circuits Ckt1, . . . , Cktn, with Ckti representing party
Pi. Then, apply Step II on CktΠ to obtain Ckt∗Π. The corresponding partitions are denoted by
Ckt∗1, . . . , Ckt∗n.

– Let W be the total set of wires in C. Denote by Wlk, the set of leaked wires computed by including
every wire w ∈ W in Wlk with probability p.

– Compute Hyb3.SimK+1( C,Wlk) (note that both Hyb3.SimK+1 and Hyb4.SimK+1 are identical).
Let the output of this step be (Wlk,Winp,Wout, I). The simulator aborts if |I| > t.

– The values for the leaked wires in the sub-circuits not indexed by I are simulated using SimK .

– The values for the leaked wires in the sub-circuits indexed by I, {Ckt∗i }i∈I , are simulated as
follows: first compute Ckti on input x1, for i ∈ I, and then using the wire values generated
during this computation to generate values corresponding to leaked wires of {Ckt∗i }.
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• In Hyb4, except the last bullet above, all the other bullets are the same. In this case, generate values
for the leaked wires in the sub-circuits indexed by I, {Ckt∗i }i∈I , by first executing SimMPC to generate
wire values for {Ckti}i∈I and using this, generate wire values for {Ckt∗i }i∈I .

Hyb3 and Hyb4 abort, i.e., when |I| > t, with the same probability. When |I| ≤ t, we invoke the perfect
security of Π to argue that Hyb3 and Hyb4 are identically distributed.

From the above theorems, we have the following theorem.

Theorem 6. Suppose CCK is a composable circuit compiler satisfying LK-efficiency and (p, εK)-composable

security. Then, CCK+1 satisfies L
K+1-efficiency and (p, εK+1)-composable security, where εK+1 = (NgεK)

t+1
.

4.4 Stitching Transformation: Exp to Poly Efficiency

Consider a Lexp-efficient composable circuit compiler CCexp for a basis of gates B, where Lexp is a exponential
function. We construct a Lpoly-efficient composable circuit compiler CCpoly for a class of all circuits C over
the basis B, where Lpoly is a polynomial.

We describe the construction below.

Circuit compilation, CCpoly.Compile(C): It takes as input circuit C ∈ C. For every gate G in C, it com-

putes G ← CCexp.Compile(G) to obtain the gadget G. Once it computes all the gadgets, it then ‘stitches’ all
the gadgets together. The stitching operation is performed as follows: let Gk be a gate in C. Let G′

k and G′′
k

be two gates such that the output wires from these two gates are inputs to Gk. We connect the output of G′
k

and G′′
k with the input of Gk. That is, the output encodings of G′

k and G′′
k form the input encoding to Gk.

Here, we use the fact that the output encoding and the input encoding are computed using the same secret
sharing scheme, i.e., the XOR secret sharing scheme. Denote the resulting circuit obtained after stitching
all the gadgets together to be C. Output C.

Input Encoding, CCpoly.Encode(x): It takes as input x and then computes the XOR secret sharing of

every bit of x. Output the concatenation of the XOR secret shares of all the bits of x, denoted by x.

Output Decoding, CCpoly.Decode(y): On input y, parse it as ((y11 , . . . , y1n), . . . , (yℓ
′

1 , . . . , yℓ
′

n )). Reconstruct

the ith bit of the output as yi = ⊕n
j=1yij . Output y = y1|| · · · ||yn.

We prove that the above scheme satisfies the properties of a composable circuit compiler.

Lemma 11. CCpoly satisfies the following: (i) correctness of evaluation property, (ii) correctness of encoding
property and, (iii) correctness of n-XOR encoding property.

Proof. We argue correctness of evaluation property inductively. Consider a circuit C ∈ C and an input x.
Let C ← CCpoly.Compile(C) and x ← CCpoly.Encode(x). Consider the evaluation of C on x. We make

the following observation: for any gate G in the circuit C, if the input encoding of G encodes the value v
then the evaluation of G on the encoding of v yields an output encoding that encodes the value w, where
w = G(v). This observation follows from the correctness of CCexp. By applying this observation inductively,
the correctness of evaluation property of CCpoly follows.

Observe that (iii) follows by construction and moreover, (iii) implies (ii).

Lemma 12. CCpoly is Lpoly-efficient, where Lpoly is a polynomial.
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Proof. Let C ← CCpoly.Compile(C), for C ∈ C. We have C = |C| · max∀G∈C(| G|), where max∀G∈C(| G|)
denotes the maximum size of a gadget associated to any gate in C.

From Lexp-efficiency of CCexp and since the size of any gate is a constant, we have max∀G∈C(| G|) is a

constant. Thus, we have | C| = c · |C|, for some constant c.

Lemma 13. Let CCexp satisfies (p, εexp)-composable security. CCpoly, associated with circuits of size s,
satisfies (p, s · εexp)-composable security.

Proof. Let Simexp be a partial simulator such that CCexp satisfies composable security with respect to
Simexp = (Sim1

exp, Sim
2
exp). We use this to construct a partial simulator Simpoly = (Sim1

poly, Sim
2
poly).

Partial Simulator, Simpoly( C): Denote W to be the set of wires in C. Construct a set Wlk as follows:

include every wire w ∈ W in Wlk with probability p. Next compute Sim1
poly( C,Wlk).

Sim1
poly( C,Wlk): LetWlk = ∪G∈CWG

lk, whereWG
lk is a subset of the wires in the gadget G ← CCexp.Compile(G).

Observe that the sets WG1

lk and WG2

lk for two different gates G1 and G2 need not be distinct. For every gate

G ∈ C, compute Sim1
exp( G,WG

lk) to obtain (WG
lk,Winp,G,Wout,G, IG). Let Winp = ∪G∈CWinp,G. Similarly,

let Wout = ∪G∈CWout,G. Finally, set I = ∪G∈CI
G.

Output (Wlk,Winp,Wout, I).

For every wire w ∈ Winp, include (w, vw) ∈ Sinp such that vw is a bit sampled uniformly at random.
Similarly, construct the set Sout. Observe that Sinp can be decomposed as Sinp = ∪G∈CS

inp,G, where the
marginal distribution of Sinp,G is WG

lk. Similarly, Sout can be decomposed as Sout = ∪G∈CS
out,G.

Next, compute Sim2
poly as follows.

Sim2
poly


C,W,Winp, Sinp,Wout, Sout, I


: for every gateG in C, compute Sim2

exp( G,WG,Winp,G, Sinp,G,Wout,G,

Sout,G, IG), whereWG is the set of wires in the gadget G. If for any gate G, Sim2
exp(·) fails, abort. Else, denote

the output of Sim2
exp( G,WG,Winp,G, Sinp,G,Wout,G, Sout,G, IG) to be SG

leak. Output the set Sleak = ∪G∈CSG
leak.

This completes the description of Sim2
poly. We prove the following claim.

Claim 4. The following two properties are satisfied:

• p-Partial Simulation: for every circuit C ∈ C, input x ∈ {0, 1}ℓ,

RPDistrwp


C, x


≡


Simpoly( C)

L←Simpoly( C)∧L ∕=⊥

,

where, C ← Compile(C) and x ← Encode(x). That is, conditioned on the simulator not aborting, its
output distribution is identical to RPDistrwp .

• ε-Simulation with Abort: For every C ∈ C, x ∈ {0, 1}ℓ, Simpoly( C) aborts with probability s · ε.

Proof. First, we argue that the probability that Simpoly aborts is s · ε. To see this, note that the probability
that Simexp fails for every gate in the circuit is ε. Moreover, Simpoly fails only if Simexp fails for any gate.
By union bound, we have Simexp fails is at most s · ε.

We now argue p-partial simulation property. Let us condition on the event that none of Simexp aborts.
First, note that Simexp, for every gate, is executed independently. Moreover, conditioned on the event that

Simexp( G) does not abort for a gate G, its output is identically distributed to leakage on the computation

of G. Thus, the joint output distribution of Simexp on all the compiled gates in the circuits is identical to

the leakage on the computation of C. This proves the claim.
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From the above lemmas, we have the following theorem.

Theorem 7. Suppose CCexp is a composable circuit compiler satisfying Lexp-efficiency and (p, εexp)-composable
security. Then, CCpoly is a composable circuit compiler for C satisfying Lexp(k) · f -efficiency (p, s · εexp),
where s is the size of the circuit in C being compiled, k is a constant and f is a linear function.

That is, every circuit C compiled using CCpoly has efficiency at most Lexp(k) · f(|C|).

4.5 Main Construction: Formal Description

We now combine all the components we developed in the previous sections to obtain a construction of
composable circuit compiler. In particular, the main construction consists of the following main steps:

• Start with a secure MPC protocol Π for a constant number of parties.

• Apply the base case compiler to obtain a composable circuit compiler, which has constant simulation
error in the case of random probing model and tolerates constant threshold in the case of worst case
probing model.

• Recursively apply the composition step on the base compiler obtain from the above bullet. The resulting
compiler, after sufficiently many iterations, satisfies negligible error in the random probing setting and
satisfies a large threshold in the case of worst case probing model.

• The disadvantage with the compiler resulting from the previous step is that the size of the compiled cir-
cuit could be exponentially larger than the original circuit. To improve the efficiency from exponential
to polynomial, we apply the exponential-to-polynomial transformation.

We now present a construction (Figure 2) of composable circuit compiler for a class of circuits C over basis B
starting from a MPC protocol Π for the n-party functionality F that can tolerate t semi-honest adversaries.
We denote this construction by CCmain.

Proposition 3. Let K ∈ N. Consider a MPC protocol Π for a n-party functionality F and tolerating at
most t corruptions, with t ≥ 2.

Then, CCmain is a (p, cc
K

)-secure composable circuit compiler for all circuits satisfying (L1(k))
K · f -

efficiency, where:

• p = 1
N2

g
,

• L1(k) is a constant and f is a linear function,

• c is a constant,

• Ng is the number of gates in the circuit CktΠ

Proof. We prove that CCmain satisfies all the properties of a composable circuit compiler.

Lemma 14. The correctness of Π implies the correctness of CCmain.

Proof. It suffices to show that CC∗ satisfies the correctness property of a composable circuit compiler. From
Lemma 1, the correctness of Π implies the correctness of CCbase. From Lemma 5, the correctness of CCbase

implies the correctness of CCK . From Lemma 11, the correctness of CCK implies the correctness of CC∗.

Lemma 15. Let the total computational complexity of Π be L1. CCmain satisfies (L1(k))
K · f -efficiency,

where k is a constant and f is a linear function.

Proof. From Lemma 2, CCbase satisfies L1-efficiency. From Lemma 6, CCK satisfies LK
1 -efficiency. From

Lemma 12, CC∗ satisfies f · LK
1 -efficiency, where f is a linear function.
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Construction of CCmain

• Circuit compilation, CCmain.Compile(C): On input a circuit C, it executes
the following steps:

– It transforms Π into a composable circuit compiler CCbase satisfying
(p, ε1)-composable security, where ε1 = (Ngp)

t+1 and L1-efficiency.

– Set CC1 = CCbase. Repeat the following process for i = 1, . . . ,K − 1:
Using the composition step, it transforms CCi into a composable circuit
compiler CCi+1 satisfying (p, εi+1)-security.

– Using the exponential-to-polynomial transformation, it transforms CCK

into a composable circuit compiler CC∗ satisfying f ·LK
1 (k)-efficiency and

(p, s · εK)-composable security property, where f is a linear function.

– It finally executes CC∗(C) to obtain the compiled circuit C.

– Output C.

• Input encoding, CCmain.Encode(x): It computes the XOR secret sharing of
every bit of x. Output the concatenation of the XOR secret shares of all the
bits of x, denoted by x.

• Output encoding, CCmain.Decode(y): It reconstructs the XOR secret shar-
ing of every bit of y. Output y.

Figure 2: Construction of CCmain

Lemma 16. Let Π be perfectly secure. Then, CCmain satisfies (p, cc
K

)-composable security, for some con-
stant c.

Proof. Note that CCbase is (p, ε1)-composable secure, where ε1 =. From Proposition 2, CCK satisfies (p, εK)-
composable security, where εK = (NgεK−1)

t+1. From Theorem 13, CC∗ satisfies (p, s · εK)-composable
security.

Consider the following claim.

Claim 5. εK ≤ 1

NtK+1
g

Proof. We prove the following subclaim.

SubClaim 1. ε1 ≤ 1
Nt+1

g

Proof. Recall that ε1 ≤ (Ngp)
t+1

. Subtituting p = 1
N2

g
, we obtain the proof of the subclaim.

We prove the claim by induction. This is true for the base case from Subclaim 1. Assume that the statement
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of the claim is true for κ iterations. That is, εκ ≤ 1

Ntκ+1
g

. We prove the statement for (κ+ 1)th iteration.

εκ+1 ≤ (Ngεκ)
t+1

≤

Ng

1

Ntκ+1
g

t+1

≤ 1

N
tκ·(t+1)
g

≤ 1

Nt(κ+1)+1
g

This proves the claim.

Instantiation. We use a specific instantiation of the MPC protocol in the above proposition to get the
following result.

Proposition 4. There is a construction of a composable circuit compiler for C satisfying (p, negl)-composable
security, where p = 3× 10−8.

Proof. We prove this by instantiating Proposition 3 with a specific semi-honest secure multiparty compu-
tation protocol for n-party functionality F (Figure 1) tolerating at most t corruptions. In particular, we
instantiate this with the construction of [Mau02]. We recall the construction for completeness.

The protocol of [Mau02] proceeds as follows: suppose C is the circuit being securely computed. Let the
input of ith party be xi and let ℓx be the maximum size of the inputs of all the parties. Every party receives
an output bit at the end of the protocol.

• Secret Sharing Step: First, share xi additively into s1, . . . , sk shares, where k =

n
t


. Denote

{S1, . . . , Sk} to be all possible sets of size t. Party j receives a share si if and only if j /∈ Si. Note that
every party has ℓx


n−1
t


number of shares. Thus, to share a bit, we need k randomness gates and one

addition gate. The complexity of sharing is k + 1.

• Addition: Every party locally adds all his shares. The total complexity of this step is n

n−1
t


.

• Multiplication:

– Let {si} and {tj} be the set of shares. Consider the set S = {(i, j)}. Partition S into sets
U1, . . . , Un such that (i, j) ∈ Um if m ∈ Ti ∩ Tj . Party m computes rm =


(i,j)∈Um

sitj .

– Share rm among all the players.

The total computational complexity of this step is at most

n−1
t

2
+ 2n


n
t


.

• Output Recovery: At the end of the protocol, every party broadcasts its shares to all other parties.
Every party adds all the shares it receives. The complexity of this step is


n
t


.

Thus, the total computational complexity of this protocol is |C| · (

n−1
t

2
+ 2n


n
t


).

We now determine the complexity of the circuit representing the functionality F (Figure 1). We first
represent F = F [G] by the following circuit:

• It takes as input n shares of two bits and then reconstructs it to obtain bits a and b. This reconstruction
can be performed by a circuit of size 2(n− 1).
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• It then computes a gate G (with fan-in and fan-out being 2) on a and b to obtain the output c. The
complexity of this step is 1.

• Finally, it computes n additive shares of c twice. The complexity of this step is 2(n− 1).

Thus, the complexity of F is 4n − 3. Thus, we get the computational complexity of Π for F to be

(4n− 3) · (

n−1
t

2
+ 2n


n
t


).

Substituting the parameters n = 5, t = 2 (recall that t has to be at least 2), we get the total number
of gates to be Π is 5712. Thus, substituting Π and K = log(poly(log(s))) in Proposition 3, we obtain a
(p, negl(s))-secure composable circuit compiler for all circuits satisfying poly-efficiency (in particular, after
compiling a circuit of size s, we get a circuit of size s · poly(log(s))11), where p = 1

57122 = 3× 10−8.

Non-Boolean Basis. We present a construction of circuit compiler when the compiled circuit is over a
non-boolean basis. As a consequence, we can prove the security of our construction under better leakage rate
than the previous construction over boolean basis. For simplicity of analysis, we consider basis consisting of
randomized functions. With a modification of the current analysis, the functions can be derandomized.

Proposition 5. Let δ > 0. Suppose there is a construction of composable circuit compiler CCBool over B for
C over B satisfying (p, ε)-composable security. Then there is a construction of a composable circuit compiler
CCNB over B′ for C over B satisfying (pNB, ε)-composable security, where (i) B′ consists of all randomized
functions mapping 2ℓ inputs to 2ℓ outputs and, (ii) pNB = p1/ℓ.

Proof. We first present the construction of CCNB.

CCNB.Compile(C): On input circuit C, first compute CBool ← CCBool.Compile(C). Construct a circuit CBool

as follows: consider a gate G in C with input wires winp
1 , winp

2 and output wires wout
1 , wout

2 . Replace every

gate G in CBool with a function fG : {0, 1}2ℓ → {0, 1}2ℓ defined as follows:

• fG takes as input ℓ additive shares of values v1 (carried by w1) and v2 (carried by w2),

• reconstructs the values v1, v2,

• computes G(v1, v2) and,

• computes two sets of ℓ additive shares of G(v1, v2) (using fresh randomness) corresponding to the two
output wires of G.

In particular, every wire w in CBool will be split into corresponding ℓ wires in CNB. We denote a function φ
that maps w into a set of ℓ wires in CNB. If vw is the value carried by w during the computation of C then
correspondingly the ℓ wires in CNB will carry the additive shares of vw. Note that the output of computation
of CNB is a secret sharing of the output of CBool.

Output CNB.

CCNB.Decode(y): On input encoding y, first reconstruct the additive shares to obtain the output encoding

of CBool. By the XOR-encoding property, the output encoding of CBool is itself an additive sharing of y.
Reconstruct y from the encoding. Output y.

The correctness and efficiency properties of CCNB follows from the correctness and efficiency properties of
CCBool.

Lemma 17. (p, ε)-composable security of CCBool implies the (pNB, ε)-composable security of CCNB.

11Note that encoding of an input of length ℓ has size ℓ · poly(log(s)).
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Proof. Let SimBool = (Sim1
Bool, Sim

2
Bool) be the partial simulator such that CCBool satisfies (p, ε)-composable

security with respect to SimBool. We construct a simulator SimNB = (Sim1
NB, Sim

2
NB).

SimNB( CNB): On input circuit CNB, let WNB be the set of wires in CNB. Construct WNB
lk by including every

wire w ∈ WNB with probability p. Then compute the following.

Sim1
NB(WNB

lk ): Construct a set WBool
lk . For every wire w in C, check if all the wires in φ(w) is included in

WNB
lk . If so, include w ∈ WBool

lk . Compute Sim2
Bool(WBool

lk ) to obtain (WBool
lk ,WBool

inp ,WBool
out , I). Compute WNB

inp

and WNB
out as follows: for every wire w ∈ WBool

inp , include all the wires in φ(w) in WBool
inp . Similarly, for every

wire w ∈ WBool
out , include all the wires in φ(w) in WBool

out .
Output


WNB

lk ,WNB
inp,WNB

out, I

.

Construct sets SNB
inp and SNB

out. For every wire w ∈ WNB
inp, include (w, vw) ∈ SNB

inp for a bit vw picked uniformly

at random. For every wire w ∈ WNB
out, include (w, vw) ∈ SNB

out for a bit vw picked uniformly at random.

Sim2
NB(WNB

lk ,WNB
inp,SNB

inp,WNB
out,SNB

out, I): Construct the sets SBool
inp and SBool

out as follows. First re-compute

WBool
inp and WBool

out from WNB
inp and WNB

out, respectively. For every wire w ∈ WBool
inp , perform the following:

let (v1w, . . . , v
ℓ
w) be the values assigned to the set φ(w) in SNB

inp and let vw = ⊕ℓ
i=1v

i
w. Include (w, vw) ∈ SBool

inp .

Similarly, construct SBool
out . Compute Sim2

Bool(WNB
lk ,WNB

inp,SNB
inp,WNB

out,SNB
out, I) to obtain the set SBool

leak . If Sim
2
Bool

then Sim2
NB also aborts.

Construct the set SNB
leak as follows. For every wire w ∈ WBool

lk ,

• if all the wires in φ(w) are in WNB
lk then include all the pairs (w1, v

1
w), . . . , (wℓ, v

ℓ
w) in SNB

leak, where
φ(w) = {w1, . . . , wℓ} and v1w, . . . , v

ℓ
w are sampled uniformly at random subject to the constraint that

vw = ⊕ℓ
i=1v

i
w and (w, vw) ∈ SBool

leak .

• if all the wires in φ(w) are not in WNB
lk then let S be a proper subset of φ(w). For every wi ∈ S, include

(wi, v
i
w) ∈ SNB

leak, where viw is sampled uniformly at random.

Output SNB
leak.

Claim 6. ε-simulation with abort property of CCBool implies the ε-simulation with abort property of CCNB.

Proof. The probability that SimNB aborts is the same as the probability that SimBool aborts.

Claim 7. The p-partial simulation property of CCBool implies the pNB-partial simulation property of CCNB.

Proof. Consider a circuit C and input x. We argue that the leakage on the computation of CNB on x can
be simulated by SimNB. Denote the output of SimNB( C) to be SNB

leak. We consider the set Marg(Sleak) = {w :
∃ vw ∈ {0, 1}, (w, vw ∈ Sleak)}

To show this, we consider the following subset of wires NotAllLk in the circuit C. For every w in C, if
φ(w) ∕⊂ Marg(Sleak) then include w in NotAllLk.

for every wire w ∈ CBool,

• Case 1: If every wire in φ(w) is also (along with associated values) included in SNB
leak. The argument

proceeds in two steps:

• Case 2: If only a proper subset S of wires in φ(w) is (along with associated values) included in SNB
leak

then the simulation of the values for the wires in S is perfect.

We prove this by hybrid argument.

29



Hyb1: The output of this hybrid is the leakage on the computation of CNB on x. Denote this set by SNB,1
leak .

Hyb2: Let SNB,1
leak be the output of the leakage on the computation of CNB on x. For every wire w ∈ CBool

such that φ(w) ∕⊂ Marg(Sleak), do the following: for every wi ∈ φ(w) and (wi, v
i
w) ∈ Sleak for some viw, remove

(wi, v
i
w) from Sleak and include (wi, v

′) in Sleak for a freshly sampled random bit v′. Call the new set SNB,2
leak .

The new set SNB,2
leak is distributed identically to SNB,1

leak – this follows from the fact that any proper subset
of additive shares is distributed identical to uniform distribution.

Hyb3: The output of this hybrid is the output of SimNB( C), namely SNB,3
leak .

The only difference between this hybrid and the previous hybrid is the following: (i) for every wire in
C such that the simulation of values for the wires in φ(w) ⊆ Marg(SNB,2

leak ) is performed using the leakage of
C on x, (ii) for every wire in CBool such that the simulation of values for the wires in φ(w) ⊆ Marg(SNB,2

leak )

is performed using SimBool. In order to invoke the security of CCBool, we need to argue that the probability
that φ(w) ⊆ Marg(SNB,2

leak ) is p(= pℓ
NB). This in turn follows from the fact that φ(w) consists of ℓ wires and

all of them leak independently with probability pNB.

5 Leakage Tolerant Circuit Compilers

In this section, we present a construction of leakage tolerant circuit compiler with constant leakage rate.
Later, we present a negative result on the leakage rate of a leakage tolerant circuit compiler.

5.1 Construction

We prove the following proposition.

Proposition 6. Let CCcomp be a composable compiler for a class of circuits C satisfying (p, ε)-composable
security. Then, CCLT is a (p,p′, ε′)-leakage tolerant circuit compiler for C secure against random probing
attacks, where p′ = (1 + η)2


1− (1− p)6


and ε′ = ε+ 1

ec·n , for arbitrarily small constant η > 0.

Proof. We present the construction in Figure 3.
Consider the following claims.

Claim 8. The correctness of CCcomp implies the correctness of CCLT .

Proof. We need to show that C(x) = C(x), where C ∈ C and C ← CCcomp.Compile(C). Note that
C(x) = Ccomp(x), where Ccomp ← CCcomp.Compile(C) and x is the XOR secret sharing of x. Moreover,
CCLT .Decode = CCcomp.Decode.

From the correctness property of CCcomp we have that CCcomp.Decode

Ccomp(x)


= C(x). This proves

the claim.

Claim 9. The (p, ε)-composable security of CCcomp implies the (p,p′, ε′)-leakage tolerance of CCLT .

Proof. We first present the description of the simulator.

SimLT (C,SI
leak): It takes as input circuit C, leaked set SI

leak of input wires. Let n be the input length of C.
Consider the following observation: the ith bit of xi is hidden if (i) the two wires carrying xi are not

leaked, (ii) the two wires carrying ri1,0 are not leaked and, (iii) two wires carrying ri1,1 are not leaked. This
can be characterized as a binary string of length six. Define GoodSet = {000000} – the first two bits of
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Construction of CCLT

• Circuit compilation, CCLT .Compile(C): On input a circuit C, it constructs

a circuit C. On input x, the circuit C does the following:

– Phase I: For every ith bit in x, it computes two sets of XOR secret shares
of xi. Set x to be the concatenation of all the shares. In particular, the n
shares of xi is computed by first sampling bits ri1,b, . . . , r

i
n−1,b uniformly

at random for b ∈ {0, 1} and then computing,

rin,b =


· · · (xi
1,b ⊕ ri1,b)⊕ ri2,b · · ·


⊕ rin−1,b



Since there are two wires carrying xi, there are two sets of XOR shares
of xi, namely ri1,0, . . . , r

i
n,0 and ri1,1, . . . , r

i
n,1.

– Phase II: Generate C ← CCcomp.Compile(C). Compute Ccomp(x) to
obtain y.

– Output y.

Output C.

• Output encoding, CCLT .Decode(y): It reconstructs the XOR secret shares
of every bit of y. Output y.

Figure 3: Construction of CCLT

000000 indicates sub-case (i), third and forth bits indicates sub-case (ii) and fifth and sixth bits indicate
sub-case (iii) defined above. More generally, we can define a binary string b1 · · · b6 of length six to be one,
where b1 = 1 only if first input wire carrying xi is leaked, b2 = 1 indicates that the second bit is leaked
only if the second input wire of xi is leaked and so on. Let ℓ be the input length of x. Sample ℓ times,
with repetition, from the distribution D defined on set of all strings {0, 1}6. In more detail, the sampling
of a string in {0, 1}6 proceeds by running six independent trials, where in each trial 0 (denoting not leaked)
is sampled with probability 1 − p and 1 (denoting leaked) is sampled with probability p. The resulting
sampled strings are denoted by s1, . . . , sℓ. We emphasize that the strings s1, . . . , sℓ need not be distinct. If
|{s1, . . . , sℓ} ∩ GoodSet| ≤ 2ℓ − |SI

leak| then abort, where {s1, . . . , sℓ} is a multi-set. Otherwise, let φ be a
random permutation on [ℓ] subject to the constraint sφ(i) /∈ GoodSet if and only if (w, vw) ∈ SI

leak, where w

is the wire carrying the ith input bit.
The simulation proceeds in two steps: in the first step, Phase I is simulated, i.e., the leakage on the

encoding of the input bit is simulated. We sub-divide the set of the wires in Phase I into sets W1 and W2.
The set W1 consists of all wires w such that w carries either an input bit xi or it carries a random bit ri1,b,
for some i ∈ [ℓ] and b ∈ {0, 1}. The set W2 is the complement set of W1, i.e., it consists of all the wires in
Phase I that are already not present in W1.

Construct the set S1
leak consisting of simulated wire values in Phase I. But first we assign values to the

wires in Phase I. There are two cases:

• Case 1: Assigning values for wires in W1. For every i ∈ [ℓ], if sφ(i) /∈ GoodSet, assign the value vw to

the wire w carrying the ith input bit, where (w, vw) ∈ SI
leak. In this case, also assign a value vi1,b to the

wire carrying the random bit ri1,b for b ∈ {0, 1}, where vi1,b is a bit sampled uniformly at random.

• Case 2: Assigning values for wires in W2. For every wire w ∈ W2, assign vw, where vw is computed
as follows: (i) if w is either an input wire, vw is sampled uniformly at random, (ii) if w is the output
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wire of a gate whose both input wires are unassigned then vw is sampled uniformly at random, (iii)
otherwise, set vw to be the output of G on the values assigned to both the input wires.

Now, we construct S1
leak according to the two cases: for every wire w in Phase I,

• Case 1: w ∈ W1. We are only concerned with the case when w is assigned a value vw in the above
process. Let i ∈ [ℓ] be such that w carries one of the following variables: xi, r

i
1,0 or ri1,1. If w carries

the variable xi and if the corresponding bit in sφ(i) is set to 1, then include (w, vw) ∈ S1
leak. If the

corresponding bit is 0, don’t include. To illustrate, if w is the first wire that carries the variable xi and
if sφ(i) is of the form 1     then include (w, vw) in S1

leak. Similarly, if w is the second input wire
that carries the variable xi and sφ(i) is of the form 1     then include (w, vw) in S1

leak, and so on.
Note that if w is unassigned by the above process then it will be, by definition, not included in S1

leak.

• Case 2: w ∈ W2. Include (w, vw) in S1
leak with probability p, where vw is picked uniformly at random.

This concludes the simulation of wires in Phase I.
In the second step of the simulation, simulate the leakage on the computation of C. Let the partial

simulator of CCcomp be Simcomp = (SimSC
1 , SimSC

2 ). Include every internal or output wire w of C in Wlk

with probability p. For every input wire w of C, include w in Wlk if and only if (w, vw) ∈ Sleak for some bit
vw.

Compute SimSC
1 ( Ccomp,Wlk) to obtain (Wlk,Winp,Wout, I). Construct the set Sinp as follows. For every

w ∈ Winp, include (w, vw) in Sinp where (w, vw) ∈ Sleak, if not vw is sampled at random subject to the con-
dition that it is consistent with the other leaked values12. The set Sout is constructed by including (w, vw) ∈
Sout for every w ∈ Wout and vw is picked uniformly at random. Compute Sim2( C,W,Winp, Sinp,Wout, Sout, I)
to obtain the set SSC

leak. If Sim2 aborts then Sim also aborts.
Output of Sim is Sleak ∪ SSC

leak.

Conditioned on the event that Sim does not abort, the output distribution of Sim( C,Linp(x)) is identically

distributed to the leakage of C on x. This follows from the perfect simulation of the wires in the input
encoding sub-circuit and the (p, ε)-simulation with abort property of CCcomp that guarantees that the output
of Sim2 is identically distributed to the real leakage conditioned on Sim2 not aborting.

Claim 10. Suppose p′ = (1 + η)2(1− (1− p)6), for some arbitrarily small constant η > 0. The probability
that Sim aborts is ε′ ≤ ε+ 1

ec·n , for some constant c.

Proof. We note that Sim aborts under the following conditions:

• The simulator of CCcomp aborts.

• If |{s1, . . . , sn} ∩GoodSet| ≤ 2n− |SI
leak|.

Moreover, the above two events are independent. From the security of CCcomp, the probability that the
simulator of CCcomp aborts is ε. Thus, we need to calculate the probability that |{s1, . . . , sn} ∩GoodSet| ≤
2n−|SI

leak|. Rephrasing this, we need to calculate the probability that the cardinality of subset of {s1, . . . , sn},
that do not belong to GoodSet, is greater than the number of leaked inputs.

Define a random variable Xi for every i ∈ [n] such that Xi = 1 if there exists (w, vw) ∈ SI
leak such that the

wire w carries the ith bit of the input and for some bit vw. Otherwise, Xi = 0. Note that Pr[Xi = 1] = p′.
Define a random variable Yi for every i ∈ [n] such that Yi = 1 if sφ(i) /∈ GoodSet. Otherwise, Yi = 0. Note
that Pr[Yi = 1] = 1− (1− p)6.

Denote X =
n

i=1 Xi and Y =
n

i=1 Yi. Set t = n(1 + η)(1− (1− p)6). Set δ1 = η and δ2 = 1− 1
(1+η) .

12For instance, if w is the output wire of G and if the values to both the input wires of G are already assigned, then assign
the value to w to be the output of G.
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Pr[X−Y ≥ 0] ≥ Pr[X < t and Y > t]

= Pr[X < t] · Pr[Y > t]

= Pr[X < (1 + η)E[X]] · Pr[Y >
1

(1 + η)
E[Y]]

= Pr[X < (1 + δ1)E[X]] · Pr[Y > (1− δ2)E[Y]]

≥

1− 1

e
δ21E[X]

3


·

1− 1

e
δ22E[X]

2


(by Chernoff Bounds)

≥

1− 1

e
c1·n

3


·

1− 1

e
c2·n

2


(for some constants c1, c2)

≥ 1− 1

ec·n
(for some constant c)

We combine Propositions 4 and 6 to obtain the following proposition.
Combining with Proposition 4 obtain the following proposition.

Proposition 7. Consider a basis B. There is a construction of (p,p′, negl)-leakage tolerant circuit compiler
against random probing attacks for all circuits over B of size s, where p = 3× 10−8 and p′ = 2× 10−7.

Non-Boolean Basis. We show how to achieve a leakage tolerant compiler with leakage rate arbitrarily
close to 1 with the compiled circuit defined over a non-boolean basis. The starting point is a composable
circuit compiler where the compiled circuit with leakage rate arbitrarily close to 1 and over a large basis.

Proposition 8. Let δ > 0. Consider a basis B′ consisting of all randomized functions mapping n bits to n
bits. Suppose there is a construction of a composable circuit compiler CCNB over B′ for C over B satisfying
(p, ε)-composable security. Then there is a construction of (p,p′, ε′)-secure leakage tolerant circuit compiler
over B′ for C over B, where p′ = 1− ((1− p)2) · (1− pn)2) and ε′ = ε+ 1

ec·n , for some constant c.

Proof. The proof of this theorem follows the same template as Theorem 6. We describe the construction in
Figure 4.

Consider the following claims.

Claim 11. The correctness of CCcomp implies the correctness of CCLT .

The proof of the above claim is identical to the proof of Claim 8.

Claim 12. The (p, ε)-composable security of CCLT implies the (p,p′, ε′)-leakage tolerance of CCLT .

Proof. We first present the description of the simulator.

SimLT (C,SI
leak): It takes as input circuit C, leaked set SI

leak of input wires. Let n be the input length of C.
Consider the following observation: the ith bit of xi is hidden if all of the following conditions hold: (i) the

two wires carrying xi are not leaked, (ii) ∃j ∈ [n] such that the wire carrying rij,0 is not leaked, (iii) ∃j ∈ [n]

such that the wire carrying rij,1 is not leaked. As before, this can be characterized as binary strings of length
2n+ 2. Define GoodSet to consist of all strings of the following form: the first two bits is 00, followed by a
n-bit string containing at least one 0, which is followed by a n-bit string that also contains at least one 0.
Let ℓ be the input length of x. Sample ℓ times, with repetition, from the distribution D defined on set of
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Construction of CCLT

• Circuit compilation, CCLT .Compile(C): On input a circuit C, it constructs

a circuit C. On input x, the circuit C does the following:

– Phase I: For every ith bit in x, it computes two sets of XOR secret shares
of xi. Set x to be the concatenation of all the shares. In particular, a pair
of n shares of xi is denoted by (ri1,0, . . . , r

i
n,0) and (ri1,1, . . . , r

i
n,1) subject

to the constraint that xi = ⊕n
j=1r

i
j,0 and xi = ⊕n

j=1r
i
j,1. This can be

computed by two randomized functions in B′ mapping 1 bit to n bits.

– Phase II: Generate C ← CCcomp.Compile(C). Compute Ccomp(x) to
obtain y.

– Output y.

Output C.

• Output encoding, CCLT .Decode(y): It reconstructs the XOR secret shares
of every bit of y. Output y.

Figure 4: Construction of CCLT

all strings {0, 1}2n+2. The sampling of a string in {0, 1}2n+2 proceeds by running 2n+2 independent trials,
where in each trial 0 (denoting not leaked) is sampled with probability 1 − p and 1 (denoting leaked) is
sampled with probability p. The resulting sampled strings are denoted by s1, . . . , sℓ. We emphasize that the
strings s1, . . . , sℓ need not be distinct. If |{s1, . . . , sℓ}∩GoodSet| ≤ 2ℓ− |SI

leak| then abort, where {s1, . . . , sℓ}
is a multi-set. Otherwise, let φ be a random permutation on [ℓ] subject to the constraint sφ(i) /∈ GoodSet if

and only if (w, vw) ∈ SI
leak, where w is the wire carrying the ith input bit.

The simulation proceeds in two steps: in the first step, Phase I is simulated, i.e., the leakage on the
encoding of the input bit is simulated. Construct the set S1

leak as follows.

• For every wire w carrying the variable xi, include (w, vw) ∈ S1
leak, if it holds that (i) (w, vw) ∈ SI

leak

and, (ii) sφ(i) = 11  · · · .

• For every i ∈ [ℓ] and sφ(i) /∈ GoodSet, consider the following scenarios: (i) if sφ(i) = 1 · · · 1 · · · , i.e.,
every bit in the third position through the (n + 2)th position of sφ(i) is 1. Include (wi

j,0, v
i
j,0) ∈ S1

leak,

where wi
j is the wire carrying the variable rij,0 and vij,0 is sampled uniformly at random subject to the

condition that ⊕n
i=1v

i
j,0 = xi, (ii) if sφ(i) =   1 · · · 1, i.e., every bit in the (n + 3)th position through

the (2n+2)th position of sφ(i) is 1 and, (iii) otherwise, for every wire wi
j,0 carrying the variable rij,b, if

the (2 + b · n+ j)th bit of sφ(i) is set to 1 then include (wi
j,b, v) ∈ S1

leak for a randomly sampled bit v.

• For every i ∈ [ℓ] and sφ(i) ∈ GoodSet, for any wire wi
j,b carrying the variable rij,b, if the (2+ b ·n+ j)th

bit of sφ(i) is set to 1 then include (wi
j,b, v) ∈ S1

leak for a randomly sampled bit v.

This concludes the simulation of wires in Phase I.
In the second step of the simulation, simulate the leakage on the computation of Ccomp. Let the partial

simulator of CCcomp be Simcomp = (SimSC
1 , SimSC

2 ). Include every internal or output wire w of C in Wlk

with probability p. For every input wire w of C, include w in Wlk if and only if (w, vw) ∈ Sleak for some bit
vw.

Compute SimSC
1 ( Ccomp,Wlk) to obtain (Wlk,Winp,Wout, I). Construct the set Sinp as follows. For every

w ∈ Winp, include (w, vw) in Sinp where (w, vw) ∈ Sleak, if not vw is sampled at random subject to the con-
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dition that it is consistent with the other leaked values13. The set Sout is constructed by including (w, vw) ∈
Sout for every w ∈ Wout and vw is picked uniformly at random. Compute Sim2( C,W,Winp, Sinp,Wout, Sout, I)
to obtain the set SSC

leak. If Sim2 aborts then Sim also aborts.
Output of Sim is Sleak ∪ SSC

leak.

Conditioned on the event that Sim does not abort, the output distribution of Sim( C,Linp(x)) is identically

distributed to the leakage of C on x. This follows from the perfect simulation of the wires in the input
encoding sub-circuit and the (p, ε)-simulation with abort property of CCcomp that guarantees that the output
of Sim2 is identically distributed to the real leakage conditioned on Sim2 not aborting.

Claim 13. Suppose p′ = (1+ η)2(1− ((1−p)2) · (1−pn)2)), for some arbitrarily small constant η > 0. The
probability that Sim aborts is ε′ ≤ ε+ 1

ec·n , for some constant c.

Proof. We note that Sim aborts under the following conditions:

• The simulator of CCcomp aborts.

• If |{s1, . . . , sn} ∩GoodSet| ≤ 2n− |SI
leak|.

Moreover, the above two events are independent. From the security of CCcomp, the probability that the
simulator of CCcomp aborts is ε. Thus, we need to calculate the probability that |{s1, . . . , sn} ∩GoodSet| ≤
2n−|SI

leak|. Rephrasing this, we need to calculate the probability that the cardinality of subset of {s1, . . . , sn},
that do not belong to GoodSet, is greater than the number of leaked inputs.

Define a random variable Xi for every i ∈ [n] such that Xi = 1 if there exists (w, vw) ∈ SI
leak such that the

wire w carries the ith bit of the input and for some bit vw. Otherwise, Xi = 0. Note that Pr[Xi = 1] = p′.
Define a random variable Yi for every i ∈ [n] such that Yi = 1 if sφ(i) /∈ GoodSet. Otherwise, Yi = 0. Note
that Pr[Yi = 1] = (1− (1− p)2)(1− pn) + pn. Also, define the following events:

• OneWirei: one of the wires carrying xi is leaked.

• NotAllZeroi: Not all the wires carrying rij,0 are leaked.

• NotAllOnei: Not all the wires carrying rij,1 are leaked.

• Alli: For every j ∈ [ℓ], all the wires carrying rij,0 is leaked OR for every j ∈ [ℓ], all the wires carrying

rij,1 is leaked.

Consider the following quantity:

Pr[Yi = 1] = Pr [(OneWirei ∧ NotAllZeroi ∧ NotAllOnei) ∨ (Alli)]

= Pr[(OneWirei ∧ NotAllZeroi ∧ NotAllOnei)] + Pr[Alli]

= Pr[OneWirei] · Pr[NotAllZeroi] · Pr[NotAllOnei] + Pr[Alli]

= (1− (1− p)2) · (1− pn) · (1− pn) + (1− (1− pn)2)

= 1− ((1− p)2) · (1− pn)2)

Denote X =
n

i=1 Xi and Y =
n

i=1 Yi. Set t = n(1 + η)

1− ((1− p)2) · (1− pn)2)


. Set δ1 = η and

δ2 = 1− 1
(1+η) .

13For instance, if w is the output wire of G and if the values to both the input wires of G are already assigned, then assign
the value to w to be the output of G.
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Pr[X−Y ≥ 0] ≥ Pr[X < t and Y > t]

= Pr[X < t] · Pr[Y > t]

= Pr[X < (1 + η)E[X]] · Pr[Y >
1

(1 + η)
E[Y]]

= Pr[X < (1 + δ1)E[X]] · Pr[Y > (1− δ2)E[Y]]

≥

1− 1

e
δ21E[X]

3


·

1− 1

e
δ22E[X]

2


(by Chernoff Bounds)

≥

1− 1

e
c1·n

3


·

1− 1

e
c2·n

2


(for some constants c1, c2)

≥ 1− 1

ec·n
(for some constant c)

From the above proposition, we have the following theorem. As remarked earlier, we can achieve the above
theorem with deterministic basis with a simple modification of the above analysis 14.

Theorem 8. Consider any constant 0 < p < p′ < 1 and let B denote a basis. For some constant δ, there
is a construction of (p,p′, exp(−s))-leakage tolerant circuit compiler over basis B′ for all circuits of size s

over basis B, where B′ consists of all functions mapping 2 ·min(⌈ log(δ)
log(p)⌉, 2) bits to 2 ·min(⌈ log(δ)

log(p)⌉, 2) bits.

5.2 Negative Result

We present a negative result on the leakage rate of a leakage tolerant circuit compiler. Before that we
consider an alternative definition, where the gates are leaked instead of wire values. That is, for every gate
with probability p, both its input wire values and its output wire values are leaked. We term this as gate
probing attacks, which we formally define this below.

Step I: Gate Probing Attacks. Every gate in the computation of the compiled circuit C on input
encodings {x} is leaked independently with probability p.

More formally, denote the leakage function LG
p,p′ = {(Lcomp, Linp)}, where the probabilistic functions

Lcomp is as defined in Section 3.1 and Linp is defined below.

Lcomp( C, x): construct the set of leaked values SC
leak as follows. For every gateG in C and values (vw1

, vw2
, vw3

)
assigned to the input and output wires of G, include (G, vw1 , vw2 , vw3) in SC

leak with probability p. Output
SC
leak.

Linp(x): construct the set of leaked values SI
leak as follows. For every input wire w carrying the ith bit of x,

include (w, xi) in SI
leak with probability p′. Also, include (w′, xi) in SI

leak, where w′ is an input wire carrying
xi. Output SI

leak.

We define leakage tolerance against random probing attacks below.

14In particular, instead of having the function producing the secret shares, we can require that the function takes as input
all the random bits and outputs the XORed value.
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Definition 13 (Leakage Tolerance Against Random Gate Probing Attacks). A circuit compiler CC =
(Compile,Encode,Decode) for a family of circuits C is said to be (p,p′, ε)-leakage tolerant against random
gate probing attacks if CC is ε-leakage tolerant against LG

p,p′ .

Step II: From Wire to Gate Leakage Security. We show that any circuit compiler that is secure
against p-random wire probing attacks, is also secure against p∗-random gate probing attacks for some p∗.

Proposition 9. Consider a circuit compiler CC for C over boolean basis B that is (p,p′, ε)-leakage tolerant
against random (wire) probing attacks. Then, CC is (p∗,p′, ε)-leakage tolerant against random gate probing
attacks for C over B, where p∗ = p2(1− (1− p)2).

Proof. To prove this proposition, we first introduce some notation. We define the leakage distribution on
the computation of C on x to be RPDistrgp.

Sampler RPDistrgp∗( C, x): Denote the set of gates in C as G. Consider the computation of C on input
encoding x. For every gate G ∈ G, denote val(G) to be the set of values assigned to the input wires and the

output wires of G during the evaluation of C on x.
We construct set Sleak as follows: initially Sleak is assigned to be {}. For every G ∈ G, with probability

p∗, include (G,val(G) in Sleak. Output Sleak.

We also consider a hybrid distribution the following distribution that will be useful for the proof.

Sampler Dw
p ( C, x): Denote the set of wires in C as W15. Consider the computation of C on input encoding

x. For every wire w ∈ W, denote val(w) to be the value assigned to w during the evaluation of C on x.
We construct set S as follows: initially S is assigned to be {}. For every w ∈ W, with probability p, include

(w,val(w)) in S (i.e., with probability (1−p) the pair (w,val(w)) is not included). Construct the set of leaked
wire values Sleak as follows: for every gate G ∈ C with input wires winp

1 , winp
2 and one of the two output wires

wout, include (winp
1 , binp1 ), (winp

2 , binp2 ), (wout, bout) ∈ Sleak if and only if (winp
1 , binp1 ), (winp

2 , binp2 ), (wout, bout) ∈
S for some binp1 , binp2 , bout ∈ {0, 1}. Furthermore, if there exists wire w′ such that w′ carries the same value
as w (for instance, w′ and w are two output wires of the same gate) and if (w, vw) ∈ Sleak, then also include
(w′, vw) in Sleak.

Output Sleak.

It immediately follows that the distributions Dw
p and RPDistrgp∗ are identical: the probability p∗ that any

given gate is leaked is the same as the probability that both its input wires and one of its output wire is
leaked. Since, every wire is leaked independently, we have p∗ = 2p3(1− p) + p4.

p∗ = Pr [ℓin input wires of G are leaked ∧ one of two output wires of G is leaked]

= Pr [ℓin input wires of G are leaked] · Pr [one of output wires of G is leaked]

= p2 · (1− Pr [both the output wires of G are not leaked])

= p2 · (1− (1− p)2)

It remains to show that CC is secure with respect to the distribution Dw
p of wire probing attacks.

Suppose Simp is a PPT simulator that simulates the leakage Lp,p′ (Section 3.2). We construct a PPT
simulator Simg

p as follows: on input circuit C, it executes Simp to obtain the set of leaked wire values

S. Output a subset Sleak ⊆ S such that for every gate G with input wires winp
1 , winp

2 and wout, include

(winp
1 , binp1 ), (winp

2 , binp2 ), (wout, bout) in Sleak if and only if (winp
1 , binp1 ), (winp

2 , binp2 ), (wout, bout) ∈ S for some

binp1 , binp2 , bout ∈ {0, 1}. As before, include (w′, vw) in Sleak if (w, vw) ∈ Sleak and if w and w′ carry the same

value in C. The statistical distance between the output distributions of Simg
p and Dw

p is at most ε; this

15Suppose a gate has two output wires, then including one of the output wires in W means including also the other one.
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follows from the security of CC against p-random wire probing attacks. And thus, the statistical distance
between the output distributions of Simg

p and RPDistrgp′ is at most ε. This completes the proof.

We also consider a generalization of the above proposition for circuits over arbitrary basis (not necessarily
boolean).

Proposition 10. Consider a basis B such that every gate in this basis maps ℓin input bits to ℓout output
bits. Consider a circuit compiler CC for C over B that is (p,p′, ε)-leakage tolerant against random probing
attacks. Then, CC is (p∗,p′, ε)-leakage tolerant against random gate probing attacks for C over B, where
p∗ = pℓin · (1− (1− p)ℓout).

Proof. The proof of this proposition follows closely along the lines of Proposition 9. As before, we define the
following hybrid distribution.

Sampler Dw
p ( C, x): Denote the set of wires in C as W16. Consider the computation of C on input encoding

x. For every wire w ∈ W, denote val(w) to be the value assigned to w during the evaluation of C on x.
We construct set S as follows: initially S is assigned to be {}. For every w ∈ W, with probability p,

include (w,val(w)) in S (i.e., with probability (1 − p) the pair (w,val(w)) is not included). Construct the
set of leaked wire values Sleak as follows: for every gate G ∈ C with input wires winp

1 , . . . , winp
ℓin

and one of
the ℓout output wires w

out,

include (winp
1 , binp1 ), . . . , (winp

ℓin
, binpℓin

), (wout, bout) in Sleak

⇔ (winp
1 , binp1 ), . . . , (winp

ℓin
, binpℓin

), (wout, bout) ∈ S

Furthermore, if there exists wire w′ such that w′ carries the same value as w (for instance, w′ and w are the
output wires of the same gate) and if (w, vw) ∈ Sleak, then also include (w′, vw) in Sleak.

Output Sleak.

It immediately follows that the distributions Dw
p and RPDistrgp∗ (same as defined in the proof of the Propo-

sition 9) are identical: the probability p∗ that any given gate G is leaked is the same as the probability that
both its input wires and one of its output wires are leaked. Since, every wire is leaked independently, we
have

p∗ = Pr [ℓin input wires of G are leaked ∧ one of ℓout output wires of G is leaked]

= Pr [ℓin input wires of G are leaked] · Pr [all the output wires of G are not leaked]

= pℓin · (1− Pr [all the output wires of G are not leaked])

= pℓin · (1− (1− p)ℓout)

It remains to show that CC is secure with respect to the distribution Dw
p of wire probing attacks. This part

of the argument proceeds along the same lines as in the proof of Proposition 9.

Proposition 11. For any basis B, any constant ε, there does not exist any circuit compiler that is (p, ε)-
leakage tolerant against random gate probing attacks over basis B , where p ≥ 1

2 .

Proof. Suppose the proposition statement is true, then the following holds: there exists a circuit compiler CC
for a circuit C (defined below) that is (p, ε)-leakage tolerant against random gate probing attacks with pand
ε as defined in the proposition statement. Using this, we construct an information theoretically secure two
party computation protocol Π for two-party functionality F (which will correspond to the function computed
by C). By choosing F appropriately, we arrive at a contradiction by invoking the impossibility result of
information theoretically secure two party computation protocol for F by Chor and Kushilevitz [CK91].

16Suppose a gate has two output wires, then including one of the output wires in W means including also the other one.
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We define the two-party functionality F and the protocol Π for F next. To do that, first consider the
following: let C ← Compile(C). Since Compile is deterministic, C is uniquely defined given C. Let G be the

set of gates in C. Construct G′ by including in G′ every gate G ∈ G with probability p. Define Inp(G) to be
the set of input wires of gate G.

Define I ⊆ [n] as consisting of all indices i ∈ [n] such that there exists at least one wire w ∈ Inp(G′) for
some G ∈ G′ and also w carries the ith input bit.

Defining F . The two-party functionality F computes the same function as that represented by C. The
joint input length of F is the same as the input length of C. In more detail, F(y1, y2) = C(x), where y1||y2
is a permutation of bits of x. This permutation is specified by the index set I. Let I = {i1, . . . , iL} and let
I = {j1, . . . , jn−L}. Define y1 = xi1 || · · · ||xiL and y2 = xj1 || · · · ||xjn−L

.

Construction of Π. We now construct a two party computation protocol Π for F . Then we reduce the
security of Π to the security of CC.

Denote the two parties in Π to be P1 and P2. That is, they compute F(y1, y2), where xi is the input of

party Pi. The main idea behind the construction is to divide C (encoding of C w.r.t CC) into two circuits
that compute P1 and P2.

To do this we define the following partition function, Partition( C,G′). It takes as input C, subset of gates
G′ and outputs the description of the protocol Π = (P1, P2). For every gate G ∈ G′, assign G to P1 and

for every gate G /∈ G′, assign it to P2. Since C is a graph, this performs a partition of the vertices of G.
Observe that if G,G′ ∈ G′ and if the output wire of G is fed into G′ then this wire remains inside the circuit
computing P1. If there is G ∈ G′, G′ /∈ G′ and if the output wire of G is fed into G′ then this wire connects
P1 and P2.

It can be seen that the correctness of CC implies the correctness of Π. We prove the security below.

Lemma 18. The (p, ε)-leakage tolerance of CC against random gate probing attacks implies that Π satisfies
ε-statistical security against semi-honest adversaries.

Proof. We introduce some notation. Consider two sets A and B. Consider a set S ⊆ A × B. We define
Marg(S) = {a : ∃ b ∈ B, (a, b) ∈ S}. Consider a circuit C and let G be the set of gates in C. We write this
as G ⊆ C.

We prove the following claim.

Claim 14. Consider a circuit C ∈ C and an input x. Let C ← Compile(C) and let G∗ be any subset of the

gates in C. Let SimLT be the PPT simulator associated with the leakage tolerant circuit compiler CC. We
have, 

Sleak:Marg(Sleak)=G∗

Pr

Sleak ← RPDistrgp( C, x)


− Pr


Sleak ← SimLT ( C)

 ≤ ε

Proof. From the (p, ε)-leakage tolerance of CC, we have the following:



Sleak

Pr

Sleak ← RPDistrgp( C, x)


− Pr


Sleak ← SimLT ( C)

 ≤ ε



G′⊆ C






Sleak:Marg(Sleak)=G′

Pr

Sleak ← RPDistrgp( C, x)


− Pr


Sleak ← SimLT ( C)





 ≤ ε

Thus, for any G′ ⊆ C, it holds that,



Sleak:Marg(Sleak)=G′

Pr

Sleak ← RPDistrgp( C, x)


− Pr


Sleak ← SimLT ( C)

 ≤ ε

This proves the claim.
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Consider a circuit C ∈ C. Let C ← Compile(C) and let G be the set of gates in C. Construct G′ by including
every gate G ∈ G in G′ with probability p. The protocol Π = (P1, P2) and two-party functionality F is as

computed by Partition( C,G′). Define the following classes of simulators:

• SIM C,G′

A : it consists of all PPT simulators Sim such that G′ ← Marg(Sim( C)). That is, the marginal

distribution of the output of Sim( C) is always G′.

• SIM C,G′

B : it consists of all PPT simulators Sim such that (G\G′) ← Marg(Sim( C)). That is, the

marginal distribution of the output of Sim( C) is always G\G′.

Consider the following claims.

Claim 15. Consider a circuit C ∈ C. Suppose C ← CC and let G′ ⊆ C. Let F be a two-party functionality
as computed above. Let Π be a two-party computation protocol for F constructed from C and CC. Let (x1, x2)
be a pair of inputs in the input domain of F . Then the following holds:

• Let Sim ∈ SIM C,G′

A .
Sim(F (x1, x2), x1) ≈ε RealF,{1}(x1, x2),

• Let Sim ∈ SIM C,G′

B .
Sim(F (x1, x2), x1) ≈ε RealF,{2}(x1, x2),

where RealF,{1} is as defined in Definition 1.

The proof of the above claims follows from Claim 14. Moreover the above two claim prove the lemma.

We now state the main negative result.

Proposition 12. For any basis B there is 0 < p < 1, such that for any 0 < p′ < 1, there is no (p,p′, 0.1)-
leakage tolerant circuit compiler over B.

The proof of the above proposition follows from Propositions 10 and Proposition 11. In particular, for any
basis mapping ℓin bits to ℓout bits, we can choose the appropriate p such that (p)ℓin · (1− (1− p)ℓout) = 1

2 .
For this choosing of p, the above theorem is satisfied.

6 Leakage Resilient Circuit Compilers

In this section, we give upper bounds for leakage resilient circuit compilers. Note that any structural circuit
compiler for circuit class C is also a leakage resilient circuit compiler for C. Using this fact, we state the
following theorem.

Theorem 9. There is a construction of (p, exp(−s))-leakage resilient circuit compiler for all circuits over
B of size s, secure against random probing attacks, where p = 6.5× 10−5.

The proof of the above theorem follows from Proposition 4.

Theorem 10. Consider any constant 0 < p < 1 and let B be a basis. For some constant 1 > δ > 0, there
is a construction of (p, exp(−s))-leakage resilient circuit compiler over B′ for all circuits over B of size s,

secure against random probing attacks, where B′ consists of all functions mapping 2min(⌈ log(δ)
log(p)⌉, 2) bits to

2min(⌈ log(δ)
log(p)⌉, 2) bits.

The proof of the above theorem follows from Proposition 5.
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7 Randomness Encoders

We show that we can construct leakage resilient circuit compilers with rate p, where p tends to 1. To
achieve this, we relax the definition of circuit compilers and allow a randomness encoder that produces
freshly computed correlated distribution for every input encoding. We present the definition below.

Definition 14 (Randomness Encoder). A circuit compiler CC = (Compile,Encode,Decode) is said to be a
circuit compiler with randomness encoder if it has an additional PPT algorithm:

• REncoder(1n): On input 1n, it produces a correlated distribution µ.

such that the following holds: for every circuit C, input x,

Decode

Compile(C),Encode(x),REncoder(1|C|)


= C(x)

Remark 4. We remark that we don’t place any requirement on the size of the output produced by the
randomness encoder. In fact, the size of the correlated distribution produced by the randomness encoder
could be as large as the size of the circuit being compiled.

We prove the following proposition.

Proposition 13. For any constant 0 < p < 1, there is a construction of (p, ε)-secure leakage resilient circuit
compiler, where ε is negligible in the circuit size.

Proof Sketch. Consider a constant 0 < p < 1.
To compile a circuit C of size s, we proceed in the following steps.

1. (p, ε)-secure LRCC for AND with rand. encoder, for some constant 0 < ε < 1. We start with
the following MPC protocol for AND by Beaver [Bea91] in the correlated randomness model.

• Inputs: Additive shares [a] = ([a]1, . . . , [a]m) and [b] = ([b]1, . . . , [b]m) of secrets a, b ∈ F2.

• Outputs: Additive shares [c] = ([c]1, . . . , [c]m) of c = ab.

• Correlated randomness: Random additive shares [a′], [b′] of random and independent secrets
a′, b′ ∈ F2, and random additive shares [c′] of c′ = a′b′.

• Communication: Party i locally computes [∆a]i = [a]i − [a′]i and [∆b]i = [b]i − [b′]i and sends [∆a]i
and [∆b]i to all other parties.

• Computing output: Party i computes ∆a =
m

j=1[∆a]j and

∆b =
m

j=1[∆b]j , and outputs [c]i = ∆b[a]i +∆a[b]i + [c′]i −∆a∆b

We claim that the circuit representing the above protocol is a leakage resilient circuit compiler secure against
(p, ε)-random probing attacks.

2. (p, ε)-secure LRCC for AND with rand. encoder, where ε = exp (−s). This follows by repeatedly
composing the AND gadget with itself, along the same lines as done in the previous sections. In particular,
the composition step works even on circuit compilers augmented with randomness encoder.

3. (p, s · ε)-secure LRCC for C with rand. encoder, where ε = exp (−s). Note that we can similarly
obtain a (p, ε)-secure LRCC for XOR with rand. encoder, where ε = exp (−s). We can then stitch the
gadgets for all the AND and XOR gates in C to obtain the leakage resilient circuit compiler for C. If the
simulation error in each gadget is at most ε then the error incurred in simulating the whole compiled circuit
is at most s · ε.
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