Private Circuits: A Modular Approach*

Prabhanjan Ananth' Yuval Ishait Amit Sahai®
CSAIL, MIT Technion UCLA
Abstract

We consider the problem of protecting general computations against constant-rate random leakage.
That is, the computation is performed by a randomized boolean circuit that maps a randomly encoded
input to a randomly encoded output, such that even if the value of every wire is independently leaked
with some constant probability p > 0, the leakage reveals essentially nothing about the input.

In this work we provide a conceptually simple, modular approach for solving the above problem,
providing a simpler and self-contained alternative to previous constructions of Ajtai (STOC 2011) and
Andrychowicz et al. (Eurocrypt 2016). We also obtain several extensions and generalizations of this
result. In particular, we show that for every leakage probability p < 1, there is a finite basis B such that
leakage-resilient computation with leakage probability p can be realized using circuits over the basis B.

We obtain similar positive results for the stronger notion of leakage tolerance, where the input is not
encoded, but the leakage from the entire computation can be simulated given random p’-leakage of input
values alone, for any p < p’ < 1. Finally, we complement this by a negative result, showing that for
every basis B there is some leakage probability p < 1 such that for any p’ < 1, leakage tolerance as above
cannot be achieved in general.

*This is an extended and corrected full version of [AIS18].
Tprabhanjan@csail.mit.edu

T'yuvali@cs.technion.ac.il

$sahai@cs.ucla.edu

Contents

1

Introduction
1.1 Our Contribution e
1.2 Technical Overview o o e e e e e e e e

Preliminaries
2.1 Information Theoretic Secure MPC

Circuit Compilers

3.1 Leakage Resilience e
3.2 Leakage Tolerance L
3.3 Our Results e e
Composition Theorem: Intermediate Step
4.1 Composable Circuit Compilers e
4.1.1 Main Definition e e e e e
4.2 Base Case: Constant Simulation Error 0oL
4.3 Composition Step oL e e
4.4 Stitching Transformation: Exp to Poly Efficiency
4.5 Main Construction: Formal Description L 0 o

Leakage Tolerant Circuit Compilers
5.1 Constructiono e e e e
5.2 Negative Result e

Leakage Resilient Circuit Compilers

Randomness Encoders

30
30
36

40

41

1 Introduction

Ishai, Sahai, and Wagner [ISW03] introduced the fundamental notion of a leakage-resilient circuit com-
piler, which in its simplest form is defined as follows. The compiler consists of a triple of algorithms
(Compile, Encode, Decode). Given any circuit C, the compiled version of the circuit C = Compile(C) takes
a randomly encoded input & = Encode(z) and (using additional fresh randomness) produces an encoded
output ¢ such that C(z) = Decode(y). Furthermore, suppose each wire in the compiled circuit C leaks its
value! with some probability p > 0, independently for each wire. Then, informally speaking, we require that
the leaked wire values reveal essentially nothing about the input x to the circuit.

The above notion of resilience to random leakage can be seen as a natural cryptographic analogue of
the classical notion of fault-tolerant computation due to von Neumann [vN56] and Pippenger [Pip85], where
every gate in a circuit can fail with some constant probability. In addition to being of theoretical interest, the
random leakage model is motivated by the fact that resilience to a notion of “noisy leakage,” which captures
many instances of real-life side channel attacks, can be reduced to resilience to random leakage [DDF14].
The random leakage model is also motivated by its application to “oblivious zero-knowledge PCPs,” where
every proof symbol is queried independently with probability p, which in turn are useful for constructing
zero-knowledge proofs that only involve unidirectional communication over noisy channels [GIKT15].

We turn to discuss the state of the art on constructing leakage-resilient circuit compilers with respect
to leakage probability p. The original work of [ISW03] only achieved security for values of p that vanish
both with the circuit size and the level of security. Ajtai [Ajt11] achieved the first leakage-resilient circuit
compiler that tolerated some (unspecified) constant probability of leakage p. However, to say the least,
Ajtai’s result is quite intricate and poorly understood. A more recent work of Andrychowicz, Dziembowski,
and Faust [ADF16] obtained a simpler derivation of Ajtai’s result. However, their construction is still quite
involved and relies on heavy tools such as expander graphs (also used in Ajtai’s construction) and algebraic
geometric codes. The present work is motivated by the following, informally stated, question:

Is there a “simple” method of building leakage-resilient circuit compilers that can tolerate some constant
probability of leakage p > 07

1.1 Our Contribution

Our main contribution is an affirmative answer to the above question. We present a conceptually simple,
modular approach for solving the above problem, providing a simpler and self-contained alternative to the
constructions from [Ajt11, ADF16]. In particular, our construction avoids the use of explicit constant-degree
expanders or algebraic geometric codes.

Roughly speaking, our construction uses a recursive amplification technique that starts with a constant-
size gadget, which only achieves a weak level of security, and amplifies security by a careful compo-
sition of the gadget with itself. The existence of the finite gadget, in turn, follows readily from re-
sults on information-theoretic secure multiparty computation (MPC), such as the initial feasibility results
from [BOGWS88, CCD88|. We refer the reader to Section 1.2 for a more detailed overview of our technique.

We then extend the above result and generalize it in several directions, and also present some negative
results. Concretely, we obtain the following results regarding constant-rate random leakage:

e For every leakage probability p < 1, there is a finite basis B such that leakage-resilient computation
with leakage probability p can be realized using circuits over the basis B.

e We obtain a similar positive result for the stronger? notion of leakage tolerance, where the input is not
encoded, but the leakage from the entire computation can be simulated given random p’-leakage of
input values alone, for any p < p’ < 1.

IThe original model of [[SW03] considers the worst-case notion of t-private circuits, where the leakage consists of an adver-
sarially chosen set of t wires. We will discuss this alternative model later.

2Note that leakage-tolerance can be easily used to achieve leakage-resilience by letting the encoder apply to the input a
secret sharing scheme that tolerates a p’-fraction of leakage, where the compiler is applied to an augmented circuit that starts
by reconstructing the input from its shares.

e Finally, we complement this by a negative result, showing that for every basis B there is some leakage
probability p = pg < 1 such that for any p’ < 1, leakage tolerance as above cannot be achieved in
general, where pp tends to 1 as B grows. The negative result is based on impossibility results for
information-theoretic MPC without an honest majority [CK91].

Our work leaves open two natural open questions. First, in the case of binary circuits, there is a huge
gap between the tiny leakage probability guaranteed by the analysis of our construction (roughly p = 2714)
and the best one could hope for. This is the case even in the stronger model of leakage tolerance, where our
negative result only rules out constructions that tolerate p > 0.8 leakage probability.

A second question is the possibility of tolerating higher leakage probability (arbitrarily close to 1) for
the weaker notion of leakage-resilient circuits with input encoder. A partial explanation for the difficulty of
this question is the possibility of using the input encoder to generate correlated randomness that enables
information-theoretic MPC with no honest majority.>

We present our results formally in Section 3.3.

1.2 Technical Overview

In this section, we give a high level overview of the composition-based approach that we utilize to get our
main result.

In the composition-based approach, we start with a leakage-resilient circuit compiler CCy secure against
p-random probing attacks and that has constant simulation error €. By p-random probing attacks, we mean
that every wire in the compiled circuit is leaked with probability p. We refer to this leakage-resilient circuit
compiler as a base gadget. The goal is to recursively compose this base gadget to obtain a leakage-resilient
circuit compiler also secure against p-random probing attacks but the failure probability is negligible (in the
size of the circuit being compiled).

First Attempt. A naive approach to compose is as follows: to compile a circuit C, compute CCq.Compile(
... CCy.Compile(C) - --). In the k' step, CCy.Compile is executed for k levels of recursion. Its easy to see that
leakage on the resulting compiled circuit cannot be simulated if it holds that the simulation of CCy.Compile
fails for every level of recursion. That is, the failure probability of the resulting circuit compiler is ¥ for
k levels of recursion. If we set k to be the size of C' then we obtain negligible simulation error, as desired.
However, as the simulation error reduces with every recursion step, the size of the compiled circuit increases
with every recursion step. Even if the compiled circuit in the base gadget had constant overhead, the size
of the compiled circuit obtained after k steps grows exponential in k. This means that we need to devise
a composition mechanism where the error probability degrades much faster than the size growth of the
compiled circuit.

Our Approach: In a Nutshell. Our idea is to cleverly compose n gadgets, each with simulation error
€, in such a way that the composed gadget fails only if at least ¢ of the gadgets fail, for some parameters
t,n with t < n. Our composition mechanism ensures that the size of the composed gadget incurs a constant
blowup whereas the simulation error degrades exponentially in %

To realize such a composition mechanism, we employ techniques from Cohen et al. [CDIT13]. Cohen et
al. showed how to employ player emulation strategy [HMO0] to achieve a conceptually simpler construction
of secure MPC in the honest majority setting. While the goal of Cohen et al. is seemingly unrelated to the
problem we are trying to solve, we show that the player emulation strategy employed by their work can be
adapted to our context.

3Indeed, the technique of Beaver [Bea91] can be used to obtain resilience to an arbitrary leakage probability p < 1, but at the
cost of allowing the output of the input encoder to be bigger than the circuit size. In contrast, our definition of leakage-resilient
circuit compiler requires the output of the input encoder to be a fixed polynomial in the input length, independently of the size
of the circuit.

We first recall their approach. They showed how to transform a threshold formula, composed solely of
threshold gates, into a secure MPC protocol. In more detail, they start with a T-out-/N threshold formula
composed of t-out-n threshold gates. They then show how to transform a secure MPC protocol for n parties
tolerating ¢ corruptions into a MPC protocol for N parties tolerating at most T corruptions (also written as
T-out-N secure MPC). At a high level, their transformation proceeds as follows: they replace the topmost ¢-
out-n threshold gate with a T-out-N secure MPC. That is, every input wire of the topmost gate corresponds
to a party in the secure MPC protocol. Moreover, every party in this MPC is emulated by a T-out-N secure
MPC. In other words, for every gate input to the topmost gate, the corresponding player is replaced with a
t-out-n secure MPC. For instance, if the topmost gate had exactly N gates as its children then the resulting
MPC has n? number of parties and can tolerate at most #?> number of corruptions. This process can be
continued (for d steps, where d is the depth of the formula) as long as the secure MPC protocol still satisfies
polynomial efficiency.

Armed with their methodology, we show how to construct a leakage-resilient circuit compiler. We start
with a t-out-n secure MPC protocol II in the passive security model. The functionality associated with this
protocol takes as input n shares of two bits (a,b) and outputs n shares of NAND(a, b)*. This secure MPC
protocol will be our base gadget for NAND; the security of MPC protocol can be invoked to prove that the
base gadget is secure with respect to constant probability of wire leakage and constant simulation error, call
it 9. We then compose this base gadget recursively as follows: in the k" level of recursion, we start with II
and emulate the computation of every gate in IT with the gadget computed using (k — 1) levels of recursion,
called the inner gadget. The protocol II and the (k — 1) level gadget offer two layers of protection for
the kt"-level gadget. Why should this be secure? if all the inner gadgets can always be simulated (i.e, no
simulation error) then the resulting k*"-level gadget can also always be simulated. Unfortunately, this is
not true since the simulator of the inner gadget does fail with probability e;_;. So far, we have used the
security of only layer of protection, we now will use the security of the second layer of protection; i.e., we will
invoke the security of II. The insight here is that we can map the failure of inner gadgets to corrupting the
corresponding parties in II. And thus, as long as at most ¢ inner gadgets fail, we can invoke the simulator
of II to simulate the composed gadget. We can show that the probability that at most ¢ inner gadgets fail
degrades exponentially in $7 where €51 is the simulation error of the inner gadget. On the other hand,
the size of the composed gadget grows only by a constant factor. Expanding this out, we can conclude that
after k steps the size grows exponential in k whereas the simulation error degrades doubly exponential in k.
Substituting &k to be logarithmic in the size of C, we attain the desired result. While the current discussion
focusses on the analysis for the random probing setting, similar (and a much simpler) analysis can also be
done for the worst-case probing setting. Specifically, we can show that after k levels of recursion, the circuit
compiler is secure against worst case probing attacks with leakage parameter t*.

Security Issues. Recall that the simulation of the composed gadget requires simulating all the inner gad-
gets. Since the inner gadgets are connected to each other, we need to ensure that these different simulations
are consistent with each other. To give an example, suppose there are two inner gadgets connected by a wire
w. The simulators for these two different inner gadgets could assign conflicting values to w. At its core, we
handle this problem by keeping a budget of wires “in reserve,” and define a notion of composable simulation
that can make use of this flexibility to resolve conflicts between simulators for components that share wires.
For example, if two simulators S7 and Se “want to disagree” about a wire w, we will break the tie by allowing
simulator S; to decide the value in wire w, and asking the other simulator S; to use one of the reserve wires
to make up for the fact that Ss did not get its wish for the value of wire w. This is possible because of the
flexibility inherent in the secret sharing schemes underlying the MPC protocols of the base gadget. Similar
notions of composable leakage-resilient circuit compliers were considered in [BBD*16, BBP*16, BBP™17].

From NAND to arbitrary circuits. So far the above approach shows how to design a gadget for NAND
tolerating constant wire leakage probability and with negligible simulation error. The fact that we design
gadgets just for NAND gates is crucially used to argue that the size of the composed gadget blows up only

4We consider NAND gates because they are universal gates. In fact we can substitute NAND with any other universal basis.

by a constant factor in each step. We show how to use this gadget to design a gadget for any circuit over
NAND basis: to compile C, we replace every gate in C' with a gadget for NAND. We then show how to
stitch these different gadgets together to obtain a gadget for C.

Final Template. We now lay out our final template. We first define a special case of leakage-resilient
circuit compilers, called composable circuit compilers. This notion will incorporate the composition-friendly
simulation mechanism mentioned earlier.

e The first step is to design a composable circuit compiler for NAND tolerating constant wire leakage
probability and has constant simulation error.

e We then apply our composition approach to obtain a composable circuit compiler for NAND tolerating
constant wire leakage probability and has negligible simulation error.

e Finally, we show how to bootstrap a composable circuit compiler for NAND to obtain a composable
circuit compiler for any circuit. The resulting compiler still tolerates constant wire leakage probability
and has negligible simulation error.

A leakage tolerant circuit compiler can be constructed by additionally designing a leakage resilient input
encoder.

Organization. We first present the necessary preliminaries in Section 2. We then define the notion of
circuit compilers in Section 3. We define leakage resilience and leakage tolerance in the same section. The
notion of composable circuit compilers, that will be a building block for both leakage tolerant and leakage
resilient circuit compilers, is presented in Section 4.1. We present the construction of composable circuit
compilers in the following steps:

e We present the starting step (base case) in the composition step in Section 4.2.
e The composition step itself is presented in Section 4.3.

e The result of the composition step doesn’t quite meet our efficiency requirements and so we present
the exponential-to-polynomial transformation in Section 4.4.

e Finally, we combine all these steps to present the main construction of a composable circuit compiler
in Section 4.5.

Armed with a construction of composable circuit compiler, we present a construction of leakage tolerant
circuit compilers in Section 5. We also present negative results that upper bounds the leakage rate in the
random probing model in the same section.

We show implication of composable circuit compilers to leakage resilient circuit compilers in Section 6.

2 Preliminaries

We use the abbreviation PPT for probabilistic polynomial time. Some notational conventions are presented
below.

e Suppose A is a probabilistic algorithm. We use the notation y « A(z) to denote that the output of
an execution of A on input x is y.

e Suppose D is a probability distribution with support V. We denote the sampling algorithm associated

with D to be Sampler. We denote by x & Sampler if the output of an execution of Sampler is z. For
every x € V, Sampler outputs x with probability p,., as specified by D. Unless specified otherwise, we
only consider efficiently sampleable distributions. We also consider parameterized distributions of the
form D = {Dgy. }. In this case, there is a sampling algorithm Sampler defined for all these distributions.
Sampler takes as input aux and outputs an element in the support of Dy .

e Consider two probability distributions Dy and D; with discrete support V and let their associated
sampling algorithms be Sampler, and Sampler,. We denote Dy ~, . D; if the distributions Dy and D;
are e-statistically close. That is,) ., [Pr[v <= Sampler,] — Pr[v <— Sampler,]| < 2e.

Circuits. A deterministic boolean circuit C is a directed acyclic graph whose vertices are boolean gates
and whose edges are wires. The boolean gates belong to a basis B. An example of a basis is B =
{AND,OR,NOT}. We will assume without loss of generality that every gate has fan-in (the number
of input wires) at most 2 and fan-out® (the number of output wires) at most 2. A randomized circuit is a cir-
cuit augmented with random-bit gates. A random-bit gate, denoted by RAND, is a gate with fan-in 0 that
produces a random bit and sends it along its output wire; the bit is selected uniformly and independently
of everything else afresh for each invocation of the circuit. We also consider basis consisting of functions
(possibly randomized) on finite domains (as opposed to just boolean gates). The size of a circuit is defined
to be the number of gates in the circuit.

2.1 Information Theoretic Secure MPC

We now provide the necessary background of secure multiparty computation. In this work, we focus on
information theoretic security. We first present the syntax and then the security definitions.

Syntax. We define a secure multiparty computation protocol II for n parties P,..., P, associated with
an n-party functionality F : {0, 1} x --- x {0,1}% x {0, 1}% — {0,1}%1 x --- x {0,1}*»». We denote ¢; to
be the length of the i*" party’s input, £y, to be the length of the it" party’s output and £, is the length of the
randomness input to . In any given execution of the protocol, the i*" party receives as input z; € {0,1}%
and all the parties jointly compute the functionality F(z1,...,2,;7), where r € {0, 1} is sampled uniformly
at random. In the end, party P; outputs y;, where (y1,...,9n) = F(x1,...,Tn;7).

We defined such n-party functionalities that additionally receive the randomness as input to be random-
ized functionalities. In this work we only consider randomized n-party functionalities and henceforth, the
input randomness will be implicit in the description of the functionality.

Semi-honest Adversaries. We consider the adversarial model where the adversaries follow the instruc-
tions of the protocol. That is, they receive their inputs from the environment, behave as prescribed by the
protocol and finally output their view of the protocol. Such type of adversaries are referred to as semi-honest
adversaries.

We define semi-honest security below. Denote Realgs(:pl, ..., Zy) to be the joint distribution over the
outputs of all the parties along with the views of the parties indexed by the set S.

Definition 1 (Semi-Honest Security). Consider a n-party functionality F as defined above. Fiz a set of
inputs (x1,...,%,), where z; € {0,1}% and let 7; be the randomness of the it" party. Let TI be a n-party
protocol implementing F. We say that 11 satisfies e-statistical security against semi-honest adversaries
if for every subset of parties S, there exists a PPT simulator Sim such that:

{ Quitigs, Sim ({wities, {wi}ies)) } ~se {Reag,s(xh-wxn)},

where 1; is the it" output of F(x1,...,2,). If the above two distributions are identical, then we say that 11
satisfies perfect security against semi-honest adversaries.

Starting with the work of [BOGWS88, CCD8§], several constructions construct semi-honest secure multi-
party computation protocol in the information-theoretic setting assuming that a majority of the parties are
honest.

5If a circuit has arbitrary fan-out, then this can be transformed into another circuit of fan-out 2 with a loss of logarithmic
factor in the depth.

3 Circuit Compilers

We define the notion of circuit compilers. This notion allows for transforming an input x, a circuit C' (See
Section 2 for a definition of circuits) into an encoded input Z and a randomized circuit C such that evaluation

—

of C on 7 yields an encoding C/’(x\) The decode algorithm then decodes C(z) to yield C(z).

Definition 2 (Circuit Compilers). A circuit compiler CC defined for a class of circuits C comprises of the
following algorithms (Compile, Encode, Decode) defined below:

e Circuit Compilation, Compile(C): It is a deterministic algorithm that takes as input circuit C and
outputs a randomized circuit C.

e Input Encoding, Encode(z): This is a probabilistic algorithm that takes as input x and outputs an
encoded input T.

e Output Decoding, Decode(y): This is a deterministic algorithm that takes as input an encoding §
and outputs the plain text string y.

The algorithms defined above satisfies the following properties:

e Correctness of Evaluation: For every circuit C € C of input length £, every x € {0,1}¢, it always
holds that y = C(x), where:

— C + Compile(C).
— Z < Encode(x).
- 7« C@).

— y <+ Decode(7).

e Efficiency: Consider a parameter k € N. We require that the running time of Compile(C) to be

—

poly(k,|C|), the running time of Encode(z) to be poly(k, |z|) and the running time of Decode(C(x)) to
be poly(k, |C(x)|). We emphasize that the encoding complexity only grow poly-logarithmically in terms
of the size of C. Typically, k will be set to poly(log(]C])).

Few remarks are in order.

Remark 1. The standard basis we consider in this work is {AND,XORY}. Unless otherwise specified, all
the circuits considered in this work will be defined over the standard basis. Also unless otherwise specified,
the compiled circuit is over the same basis as the original circuit.

Remark 2. Later, we also consider circuit compilers with relaxed efficiency guarantees, where we allow for
the running time of the algorithms to be exponential in the parameter k.

Non-Boolean Basis. In this work, we also consider a setting where the compiled circuit is defined over
a basis that is different from the basis of the original circuit (before compilation). We define this formally
below.

Definition 3. Consider two collections of finite functions B' andB. A circuit compiler CC = (Compile, Encode, Decode)
is defined over B’ (written CC over B') for a class of circuits C over B if it holds that for every C € C over
basis B, the compiled circuit C, generated as C < Compile(C), is defined over basis B'.

We next define the security guarantees associated with circuit compilers.

3.1 Leakage Resilience
We adopt the definition of leakage resilient circuit compilers from [GIM*16].

Definition 4. A circuit compiler CC = (Compile, Encode, Decode) for a class of circuits C is said to be
e-leakage resilient against a class of randomized leakage functions L if the following holds:

There exists a PPT simulator Sim such that for every circuit C : {0,1}* — {0,1} and C € C, input
z € {0,1}%, leakage function Leomp € L, the distribution Lcomp(a, Z) is e-statistically close to Sim (C),
where C < Compile(C) and T « Encode(x).

Informally, the above definition states that the leakage Lcomp on the computation of the compiled circuit C
on encoded input Z reveals no information about the input x.

Remark 3. While the above notion considers leakage only on a single computation, this notion already
implies the stronger multi-leakage setting where there are multiple encoded inputs and a leakage function is
computed on every computation of C. This follows from a standard hybrid argumentS.

p-Random Probing Attacks [ISW03, Ajtll, ADF16]. In this work, we are interested in the following
probabilistic leakage function: every wire in the computation of the compiled circuit C on the encoded input
7 is leaked independently with probability p.

More formally, denote the leakage function £, = {Lcomp}, where the probabilistic function Leom, is
defined below.

Leomp (é, f): construct the set of leaked values S, as follows. For every wire w (input wires included) in

C

C and value vy, assigned to w during the computation of C on z, include (w, vy) with probability p in S,

Also, include (w’,v,,) in SG,,, if w’ and w are two output wires of the same gate. Output S, .

We define leakage resilient circuit compilers with respect to the leakage function defined above.

Definition 5 (Leakage Resilience Against Random Probing Attacks). A circuit compiler CC = (Compile, Encode,
Decode) for a family of circuits C is said to be (p,¢)-leakage resilient against random probing attacks if CC
is e-leakage resilient against Ly. Moreover, we define the leakage rate of CC to be p.

3.2 Leakage Tolerance

Another notion we study is leakage tolerant circuit compilers. In this notion, unlike leakage resilient circuit
compilers, Encode is an identity function. Consequently, we need to formalize the security definition so that
the leakage on the computation of C' on x can be simulated with bounded leakage on the input .

Definition 6. A circuit compiler CC = (Compile, Encode, Decode) for a class of circuits C is said to be
e-leakage tolerant against a class of leakage functions L if the following two conditions hold:

e Encode is an identity function.

o There exists a simulator Sim such that for every circuit C : {0,1}* — {0,1} and C € C, input
x € {0,1}¢, leakage function L = (Lecomp, Linp) € L, the distribution Leom,(C, T) is e-statistically
close to Sim (C, Liny,(x)), where C < Compile(C') and T < Encode(x).

Henceforth, we omit Encode algorithm and denote a leakage tolerant circuit compiler to consist of (Compile, Decode).

6Here we use the fact that the circuit compilation algorithm is deterministic.

(p,p’)-Random Probing Attacks. As before, we are interested in the following probabilistic leakage
function: every wire in the computation of the compiled circuit C on the encoded input 7 is leaked indepen-
dently with probability p.

More formally, denote the leakage function Lp p' = {(Lcomp, Linp)}, Where the probabilistic functions
Lcomyp is as defined in Section 3.1 and L;y,, is defined below.

Linp(z): construct the set of leaked values SE,, as follows. For every input wire w carrying the it" bit of x,
include (w,z;) in SL,, with probability p’. If (w,=;) is included, also include (w’,z;) in SL,,, where w’ is
the other input wire carrying ;. Output SL,,.

We define leakage tolerance against random probing attacks below.

Definition 7 (Leakage Tolerance Against Random Probing Attacks). A circuit compiler CC = (Compile,
Decode) for a family of circuits C is said to be (p,p’,)-leakage tolerant against random probing attacks if
CC is e-leakage tolerant against Ly pr. Moreover, we define the leakage rate of CC to be p.

3.3 Our Results

We state our results’ below.

Leakage Tolerance: Positive Results. We show the following results in Section 3.2.

Theorem 1 (Boolean Basis). There exist constants 0 < p < p’ < 1 such that there is a (p,p’,€)-leakage
tolerant circuit compiler, where € is negligible in the circuit size.

Theorem 2 (Finite Basis). For any 0 < p < p’ <1 there is a basis B over which there is a (p, p’, €)-leakage
tolerant circuit compiler, where € is negligible in the circuit size.

Leakage Tolerance: Negative Result. The following theorem upper bounds the rate of a leakage
tolerant circuit compiler in the random probing model. We present this result in Section 3.2.

Theorem 3. For any basis B there is 0 < p < 1, such that for any 0 < p’ < 1, there is no (p, p’,0.1)-leakage
tolerant circuit compiler over B.

Leakage Resilience: Positive Results. We demonstrate a construction of leakage resilient circuit com-
piler over boolean basis. Both the theorems below are shown in Section 6.

Theorem 4 (Boolean Basis). There is a constant 0 < p < 1 such that there is a (p,€)-leakage resilient
circuit compiler and € is negligible in the circuit size.

In the same section, we present a construction of leakage resilient circuit compiler over finite basis.

Theorem 5 (Finite Basis). For any 0 < p < 1 there is a basis B over which there is a (p, €)-leakage resilient
circuit compiler, where € is negligible in the circuit size.

4 Composition Theorem: Intermediate Step

We present a composition theorem, a key step in our constructions of leakage tolerant and leakage resilient
circuit compilers. We identify a type of circuit compilers satisfying some properties, that we call composable
circuit compilers. This notion will be associated with ‘composition-friendly’ properties.

Before we formally define the properties, we motivate the need for composable circuit compilers.

"Special thanks to Jean-Sébastien Coron for pointing out an error in our result on the randomness complexity of private
circuits (Theorem 1 of our conference version [AIS18]); we have retracted this result from the full version.

10

e In our composition theorem, we need to ‘attach’ different circuit compiler gadgets. For instance, the
output wires of circuit compiler CC; will be the input wires of another compiler CCy. In order to ensure
correctness, we need to make sure that the output encoding of CC; is the same as the input encoding
of CCy. We guarantee this by introducing XOR encoding property that states that the input encoding
and output encoding are additive secret shares.

e While the above bullet resolves the issue of correctness, this raises some security concerns. In particular,
when we simulate CC; and CCy separately, conflicting values could be assigned to the wires that join
CC; and CCy. These issues have been studied in the prior works, mainly in the context of worst
case leakage [BBD116, BBPT16, BBPT17]. And largely, this was not formally studied for the random
probing setting. We formulate the following simulation definition to handle this issue in the probabilistic
setting: the simulator Sim = (Simy, Simz) (termed as partial simulator) will work in two main steps:

— In the first step, the simulator first determines the wires to be leaked. Then, Sim; determines a
‘shadow’ of input and output wires that additionally need to be simulated.

— In the second step, the values for the input and output wires selected in the above step is assigned
values. Then Sims is executed to assign the internal wire values.

At a high level Sim works as follows: first CC;.Sim; and CCy.Sim; is executed to obtain the shadow
of input and output wires that need to be simulated. At this point, we take the union of the output
wires of CC; and input wires of CC; that need to be simulated. Then, we assign the values to all the
wires. Once this is done, we independently execute CC;.Simy and CC,.Simy to obtain the simulated
wire values in both CC; and CCsy, as desired.

4.1 Composable Circuit Compilers

The syntax of composable circuit compilers is the same as that of circuit compilers (Definition 2). In addition,
it is required to satisfy the properties stated next.

XOR Encoding Property. We start with XOR encoding property. This property states that the input
encoding (resp., output encoding) is an additive secret sharing of the inputs (resp., outputs).

Definition 8 (N-XOR Encoding). A circuit compiler (Compile, Encode, Decode) for a family of circuits C is
said to have N-XOR encoding property if the following always holds: for every circuit C € C,x € {0,1}¥,

e Encode(z) computes XOR secret sharing of x; for every i € [{], where x; is the it" input bit of x. It
then outputs the concatenation of the XOR secret shares of all the bits of x.
It outputs T = (z4,...,7%) € {0,1}*N, where z; = Oz, That is, z; is a XOR secret sharing of
{Z}sem)-

e Let 7 « Encode(z) and C + Compile(C). Upon evaluation, denote the output encoding to be j + C(%).
Suppose C(x) =y € {0,1}* and § = (§*,...,5") € {0,1}*N. We require that {y}} is a XOR secret
sharing of y;, i.e., y; = @;-Vzlﬁg.

When N is clear from the context, we drop it from the notation.

Composable Security (Random Probing Setting). Next, we define the composable security property.
We first deal with the random probing setting. There are two parts associated with this security property.

e Partial simulation: This states that, conditioned on the simulator not aborting, the leakage of all the
wires in the compiled circuit can be perfectly simulated by the leakage of a fraction of values assigned
to the input and output wires alone.

11

e Simulation with Abort: We require that the simulator aborts with small probability.
Before stating the formal definition of composable security, we first set up some notation. We formalize
the leakage function L.omp defined in the previous section in terms of the following sampler algorithm,

RPDistr? (-, -)®.

SAMPLER RPDistrg’(CA’, Z): Denote the set of wires in C' as W. Consider the computation of C' on input

encoding z. For every wire w € W, denote val(w) to be the value assigned to w during the evaluation of C
on Z.

We construct the set Sieak as follows: initially Sieak is assigned to be {}. For every w € W, with probability
p, include (w,val(w)) in Sk (i-e., with probability (1 — p), the pair (w, val(w)) is not included). Output
Sleak-

We define the notion of partial simulator below.

Definition 9 (Partial Simulator: Random Probing). A partial simulator Sim defined by a deterministic
polynomial time_algorithm Simy and probabilistic polynomial time algorithm Sima ezecutes as follows: On
imput a circuit C,

e Denote W to be the set of wires in C. Construct a set Wy, as follows: include every wire w € W in
the set Wiy, with probability p.

o Simi(C, Wyi,) outputs (WP Weut T). WinP s q subset of input wires, W' is a subset of output
wires and I denotes a set of indices.

e For every wire w € WP include (w,vy,) € S™P such that vy, is a bit sampled uniformly at random.
Similarly, construct the set S°4t.

e Simsy (6’, Wlk7Wi”p,S”LP7W"“t,S°“t,I) outputs Sy,

Finally, Sim outputs Syy,.
We now define the notion of composable security in the random probing model.

Definition 10 (Composable Security: Random Probing). A circuit compiler CC = (Compile, Encode,
Decode) for C, consisting of circuits of input length £, is said to be (p,e)-composable secure against
random probing attacks if there exists a probabilistic polynomial time partial simulator Sim = (Simq, Sims)
such that the following holds:

e p-Partial Simulation: for every circuit C € C, input x € {0, 1},

{RPDistry (C.7) } o compiecy, = {SIM(C)|esim@nzr)

~ .)
Z+—Encode(z) C+Compile(C)

That is, conditioned on the simulator not aborting, its output distribution is identical to RPDistrs (5, 7).

e c-Simulation with Abort: For every C € C, Sim(C) aborts with probability .

8The superscript w is used to signify leakage of wire values.

12

4.1.1 Main Definition
We now present the definition of composable circuit compiler for the random probing model.

Definition 11 (Composable Circuit Compilers: Random Probing). A circuit compiler CC = (Compile,
Encode, Decode) is said to be a (p,€)-secure composable circuit compiler in the random probing model if CC
satisfies:

e XOR encoding property.
e (p,e)-composable security.

We refer to CC as a secure composable circuit compiler and in particular, omit (p,€) if this is clear from the
context.

L-efficient Composable CC. En route to constructing composable circuit compiler, we construct an
intermediate composable circuit compiler that produces exponentially sized compiled circuits. We define the
following notion to capture this step.

Definition 12 (L-efficient Composable CC). A circuit compiler CC = (Compile, Encode, Decode) is an L-
efficient composable circuit compiler for a class of circuits C if for every C' € C, we have |5| < L(|C|), where
C « Compile(C).

In particular, CC is a composable circuit compiler if L is a polynomial.

4.2 Base Case: Constant Simulation Error

We construct a composable circuit compiler CC = (Compile, Encode, Decode) for a class of circuits C. Let
II be a perfectly semi-honest secure n-party computation protocol for an n-party randomized® functionality
F = F[C] (defined in Figure 1) tolerating ¢t number of corruptions with ¢ > 2.

n-party functionality, F[C]

Input: (Z1||---||75; -+ ; Zh]|---||7%), where £ is the input length of C.

e It then computes z; = @}_,7} for every i € [¢]. Denote x to be a bit string,
where the i*" bit of z is z;.

e It then computes C(z) to obtain y. Let y; be the i*" output bit of y. Let the
length of y be £,,.

e Sample bits @; uniformly at random such that y; = @;’:117;1 for every i € [£y].
Set §¢ = (7t,..., %), for every i € [n]. Output (§2,...,5%).

Figure 1: Functionality F[C], parameterized by a circuit C.

We describe the scheme below.

Circuit Compilation, Compile(C): This algorithm takes as input circuit C : {0,1}¢ — {0,1}¢ € C. We
associate a boolean circuit Cktyy with IT such that the following holds:

e Protocol IT on input (X';...;X"), where X’ is i'" party’s input, outputs (y';...;¥") if and only if Ckty
on input X!|| - - - ||X" outputs (¥!;...;3").

9Recall that a randomized n-party functionality is one that in addition to taking n inputs, also takes as input randomness.

13

e Furthermore, the gates of Ckty can be partitioned into n sub-circuits such that the i** sub-circuit
implements the i*" party in II. Denote the i*"* sub-circuit to be Ckt;. Also, denote the number of gates
in Cktrr to be Ng.

e The wires between the sub-circuits are analogous to the communication channels between the corre-
sponding parties.

Output C= Cktry.

Input encoding, Encode(z): On input = € {0,1}¢, it outputs the encoding Z = (X';...;X"), where
%/ = (@||...||7)) and z; = @7, 7.

Sl

Output decoding, Decode(y): It takes as input encoding y = (¥,...,¥") and outputs y, where the i*"

output bit of y is computed as y; = @}‘zlgjg with §7 = @{, e ,@z,).

We first prove the correctness and efficiency properties of the above scheme.
Lemma 1. CC satisfies correctness of encoding and correctness of evaluation properties.

Proof. The correctness of encoding property follows from the correctness of the XOR secret sharing scheme.
The following bullets proves the correctness of evaluation property: consider an input x and a circuit
C:{0,1}* — {0,1}*.

e By construction, the input encoding is a XOR secret sharing of the input x.

e The correctness of protocol II proves that the output of the evaluation of C on 7 is a XOR sharing of

C(x).

e Thus, by construction, the output of the decoding algorithm is reconstruction of the XOR sharing of
C(x).
O

Lemma 2. CC satisfies the efficiency property.

Proof. This follows from the fact that the total computational complexity of II is polynomial in n,¢ and
|C. O

Lemma 3. CC satisfies n-XOR encoding property.
Proof. The proof of this lemma follows from the construction of the encoding algorithm. O
We now prove that CC is composable secure against random probing attacks.

Proposition 1. Let IT be a perfectly semi-honest secure n-party computation protocol for n-party function-
ality F' (defined in Figure 1) tolerating t corruptions, with t > 2. Then, CC is a (p,eo)-secure composable
circuit compiler, where eg = (Ngp)'™1.

Proof. We already proved the correctness and efficiency properties of CC earlier. It suffices to prove the
(P, €0)-composable security of CC.

Consider a circuit C' € C with input length ¢ and let x € {0,1}*. Let C « Compile(C) and let T <
Encode(x). Let Ckt; denotes the sub-circuit that implements the i*" party.

We first describe a partial simulator, denoted by Sim = (Simq, Sims). This will be defined along the lines
of partial simulator in the worst case setting.

Sim(é’): It takes as input compiled circuit C and does the following: Let W be the set of wires in C. Con-
struct a set of leaked wires Wy, as follows: include every wire w € W with probability p. It then executes

14

Siml(a7 Wik), which is defined below.

Siml(a,Wlk): It takes as input compiled circuit C and a set of leaked wires Wjz. The first step is to
calculate the set of sub-circuits of C' that are compromised. Recall that C can be partitioned into sub-
circuits Ckty,...,Ckt,, where Ckt; is the i*" sub-circuit implementing the i*"* party P;. Construct a set
I C [n]. Include ¢ € [n] in the set I if and only if there exists a wire w € Ckt; such that w € Wi.

Now construct the set of input and output wires that need to be additionally leaked to carry out the
simulation. Construct WP as follows: include w € W in the set W™ if and only if w is an input wire in
Ckt; and i € I. Similarly construct the set WOu¢,

Output the set (W, Winp Weut [,

Once Sim; is executed, construct a set S™? as follows: for every wire w € WP, sample a uniformly random
bit v,, and include (w,v,,) € S"P. Similarly, construct the set S°u¢.

Simy(C, Wy, Winp_ginp yyout gout). Tt first checks if [I| > ¢+ 1 and if the check passes, it aborts. Other-
wise, define a probabilistic polynomial time semi-honest adversary Ampc for IT as follows: it corrupts party
P;, for every i € I. Upon termination of the protocol, it outputs the computation tableau of all parties P;,
for i € I . Now, the security of II guarantees that there exists a simulator Simpypc such that it simulates
Awmpc in the ideal world. The output of Simypc are the simulated wire values of all the parties indexed by I.
We denote Sieak to consist of (w, vy,), for every wire w € Wy, and v, is the value assigned to w by Simypc.

Finally, Sim outputs Sjeak.

Now that we have described Sim, we prove that CC satisfies composable security property. That is, we prove:

. {RPDistr}; (6%)} = {Sim(6)|LeSim(é)/\L¢L}
e Sim(C) aborts with probability .
Consider the following hybrids.
Hyb,: The output of this hybrid is {RPDistrg (é, f) }

Hyby: The output of this hybrid is {Hyb.Sim (5) }
We define the following hybrid partial simulator Hyb.Sim = (Hyb.Sim;, Hyb.Sims).

Hybrid Simulator, Hyb.Sim(é’): It takes as input compiled circuit C and does the following: Let W be
the set of wires in C. Construct a set of leaked wires W as follows: include every wire w € W with
probability p. It then executes Hyb.Sim;(C, Wj;), which is defined below.

Hyb.Sim1(C, Wii): execute Simy(C, Wyi,) to obtain (W, Winp Wout I).

Once Sim; is executed, construct a set S™? as follows: for every wire w € WP, sample a uniformly random
bit v,, and include (w,v,,) € S"P. Similarly, construct the set S°u¢.

Hyb.Sima(C, Wy, WinPp_ §inp yyeut gout 1) Tt first checks if |[I| > ¢ 4+ 1 and if so, it aborts. Otherwise,

~

execute C'(Z) honestly. Construct the set of leaked wire values Sieak as follows. For every wire w € W, in-
clude (w,vy) € Sieak, Where vy, is the value assigned to the wire w during the evaluation of C'(Z). Output Sjeak-

Finally, Hyb.Sim outputs Sjeak-

15

Claim 1. The output distributions of hybrids Hyb, and Hyb, are eq-close.

Proof. The output distributions of Hyb; and Hyb, differ only in the event when the number of leaked wires
(which is nothing but |I]) is at least t+ 1. Therefore, it suffices to upper bound the probability of |I| > t+1.
We prove the following.

Pri|I| >t+1 : Wy, W™ W I}« Hyb.Sim (C,Wi)| < &0
Let X be the random variable that calculates the number of wires that leak. We have, y = E[X] = Ngp.

Let 6 be such that (1 + d)p = ¢+ 1. We use the following Chernoff bound.

Lemma 4 (Chernoff Bound [MUO05]). Let X = Y"1 | X; be the sum of 0/1 independent random variables.
Then for any 5 > 0,

of E[X]
PrX > (1+ B)E[X]] < <(1+B)<1+ﬁ>)

Using the above Chernoff bound, we bound the error below.

This completes the proof.

Hyb,: The output of this hybrid is the output of simulator Sim.
Claim 2. The output distributions of Hyb, and Hybs are identical.

Proof. The difference between the output distributions of Hyb, and Hybs is in the simulation of wire values
of Ckt;, for every ¢ € I. In particular, both Hyb, and Hybs abort if |I| > ¢ and if |I| < ¢ then Hyb, assigns
wire values by executing C while Hyb; assigns wire values by executing Simupc. In the corresponding MPC
protocol II, we view party P; as being corrupted and there are less than ¢ corruptions in II. Thus, the claim
that the output distributions of Hyb, and Hyb; are identical follows from the perfect security of II. O

From the above claims, it follows that the output distributions of Hyb; and Hybs; are eg-close. Moreover,

conditioned on Sim not aborting, we have that Sim(C) perfectly simulates the leakage on C(Z)
|

16

4.3 Composition Step

We present the main composition step in this section. It allows for transforming a composable circuit
compiler CCx satisfying (p, £k)-composable security into CCx 41 satisfying (p,€x+1)-composable security,
where ek 1 is (exponentially) smaller than ex. In terms of efficiency, the efficiency of CCk 1 degrades by a
constant factor. The main tool we use to prove the composition theorem is a perfectly secure MPC protocol
that tolerates at most ¢ corruptions.

We first present the transformation of CCx into CCx 1. Let CCx = (Compileg, Encodeg, Decodek) be
a composable circuit compiler. We now build CCx as follows:

Circuit Compilation, CCx1.Compile(C): It takes as input a circuit C' and outputs a compiled circuit C.

There are two steps involved in the construction of C. In Step I, we first consider a MPC protocol II'? for a
randomized functionality F' and using this we construct a circuit Cktyy. In Step II, we convert Ckty into an-
other circuit Cktfj. In this step, we make use of the compiler CC. The output of this algorithm is C' = Cktf.

STEP I: CONSTRUCTING Cktr. Consider a n-party functionality F' = F[C]; see Figure 1.
Let IT denote a n-party information theoretically secure computation protocol for F. Construct Cktyy as
done in Section 4.2.

STEP II: TRANSFORMING Cktp INTO Cktf;. Replace every gate in Cktyp with the CCx gadgets and then
show how to “stitch” all these gadgets together.

- Replacing Gate by CCg gadget: For every gate G in the circuit Cktyy, we execute the compiler CCx.Compile(G)
to obtain G.

- “Stitching” Gadgets: We created CCx gadgets for every gate in the circuit. Now we show how to connect
these gadgets with each other.
Let Gy, be a gate in Cktyy. Let G}, and G be two gates such that the output wires from these two gates

are inputs to Gg. Let G, + CCrx.Compile(Gy), éi + CCk.Compile(G},) and (/?Z’ + CCk.Compile(GY). We
connect the output of G, and G/ with the input of é; That is, the output encodings of G}, and G/ form the

input encoding to G. Here, we use the fact that the output encoding and the input encoding are computed
using the same secret sharing scheme, and in particular we use the XOR secret sharing scheme.
We perform the above operation for every gate in Ckty.

We denote the result of applying Step I and II to Cktyy to be the circuit Ckty;. Furthermore, we denote Ckt}
to be the circuit obtained by applying Steps I and II to sub-circuits C'kt;. Note that C'kt} is a sub-circuit of
Cktrr. Moreover, Ckt takes as input XOR secret sharing of the i** party’s input and outputs XOR secret
sharing of the i*" party’s output.

Output C = Cktjy.

Input Encoding, CCk1.Encode(z): On input x, compute (£1,1,...,%¢1),---, (T1,n,---,Ten)), where z; =

®}_17; ;. Compute 7; ; +- CCx.Encode(z; ;), for every i € [{] and j € [n]. Output ({@}ie[é] je[n])'

Output Encoding, CCx;.Decode(y): On input ({y/i\d}ie[e'] je[n]>’ first compute CCx.Decode(y; ;) to ob-

tain y; j, for every i € [¢'],j € [n]. It computes y, where the the i*" bit of the output is computed as
yi = ®7_1y;. Output y = y1[| - [[yn.

10The parties in this protocol are equipped with randomness gates.

17

Properties of CCx1: We show that CCx 1 satisfies the properties of a composable circuit compiler.

Lemma 5 (Correctness). Let CCx satisfy correctness of evaluation and correctness of encoding properties
and let IT satisfy correctness property. Then, CCx 1 satisfies correctness of evaluation and correctness of
encoding properties.

Proof. Let C « CCx41.Compile(C). The proof of the lemma follows from the observations below.
e From the correctness of 11, it follows that Ckty; computes the same functionality as circuit C.

e The correctness of CCk implies that the circuit Cktf; takes as input XOR secret sharing of input =,
computes Cktry (and hence, C) on x to obtain y and finally, computes the XOR secret sharing of y.
Recall that C' = Cktf.

e The input encoding CCg 4 1.Encode(+) computes XOR secret sharing of the input. The output decoding
CCx1.Encode(-) computes reconstruction of XOR secret sharing of the output.

Thus, CCx41.Decode (CCx41.Compile (CCx41)(CCx11.Encode(+))) is functionally equivalent to C. O

Lemma 6 (Efficiency). Let L be the total computational complexity of 11 for the functionality F. Suppose
it holds that |CCx.Compile(G)| < LE for some gate G then it holds that |CCx 1 1.Compile(G)| < LE+L,

Proof. Recall that CC 11.Compile(-) was obtained by replacing every gate in IT with a gadget generated using
CCg.Compile(+). Thus, the size of CCk1.Compile(-) is nothing but the product of the total computational
complexity of IT and the size of every gadget computed using CCg.Compile(-). O

The following corollary is immediate from the above lemma.

Corollary 1. Suppose |CCpase-Compile(G)| is a constant, for some gate G. We have |CCx.Compile(G)| to
be a polynomial in N as long as K < log(N).

Lemma 7. CCg 1 satisfies XOR encoding property.
Proof. This is immediate from the description of the compiler, CCx 4. O

We now prove the security of CCx 1. We show that CCx 4 is secure against random probing attacks if CCg
is secure against random probing attacks.

Proposition 2 (Security). Let CCx satisfy (p,ex)-composable security property. Then, CCx 11 satisfies
(P, eKx+1)-composable security property, where g +1 = (Ngeg).

Proof. We first construct a partial simulator Simg 1 for the (K + 1)** step. Let Simg = (Simj, Sim%) be
a partial simulator associated with CCx such that CCx satisfies (p,e)-composable security property with
respect to Simg. We also employ the simulator of II — to define this, first we need to define the real world
adversary participating in II. Apmpc is a semi-honest adversary that corrupts a subset of the parties and
outputs its entire view after the execution of the protocol. That is, it outputs the set {(w,vy,) : w € Ckt; Ai €
I}, where Ckt; is the circuit implementation of party P; and I consists of indices of all the parties that are
corrupted by A. Here, v,, denotes the value carried by the wire w in the execution of the protocol. We
denote Sim{lﬂpc to be the ideal world adversary corresponding to .A.
Denote the partial simulator to be Simg 11 = (Sim}@r17 Simf(H). We describe Simg 41 below.

18

~

Partial Simulator, Simg1(C). It takes as input compiled circuit C. Denote W to be the set of wires
in C. Construct a set Wik as follows: include every wire w € W in the set W), with probability p. We
next describe Sim}(11 and Simg o; before that we establish some notation. Let Cktry be the circuit obtained
by applying Step I on the circuit C'. Recall that Ckty can be partitioned into sub-circuits Ckty, ..., Ckt,,
where Ckt; implements the i** party in II. Let Cktj; be the circuit obtained by applying Step IT on Ckty.
Correspondingly, let Ckt?, ..., Ckt’ be the partitions of Ckty.

Sim}, +1(6' , Wik): The goal is to determine the set of input and output wires of C that will be necessary for
the next stage. Looking ahead, values assigned to this set of wires will be necessary to simulate the internal
wire values of C'. As a first step, we calculate the set of sub-circuits of C' that cannot be simulated by the
simulator of CCx. Denote this set by I. Initialize I = 0.

For every gate G € Cktyy, do the following: let G < CCk1.Compile(G) and let W C W be the set of
leaked wires in the gadget G. Execute Sim K(CA?, We) and if the execution fails, include 7 in the set I, where
G belongs to the sub-circuit Ckt;.

We now construct the set WP as follows:

e Consider the circuit Encode. Recall that Encode outputs a XOR secret sharing of the input. Every
output wire of Encode corresponds to a secret share of a input bit. That is, there is mapping v that
acts upon the output wire w and outputs ‘j’ if w corresponds to a secret share of the j** input bit.
Set W' to consists of all wires w such that: (i) there is j € [n] such that w is an input wire of Ckt}
and, (i) j € I.

Similarly construct the set W4t. That is, W consists of all the output wires w that satisfy the following
condition: w € Ckt} for some j € [n] and j € I. Output (Wi, Wine Weout 'T). This completes the descrip-
tion of Sim}@rl.

Let (Wi, WP Weut) be the output of Sim}@rl. Construct the sets S™ and S°* as follows. For every
wire w € WP include (w,v,) in S such that v, is a bit sampled uniformly at random. Similarly,
construct the set S°%¢.

Simf(ﬂ(é, Wi, Wine Ginp yyout gout 'T). The goal is to compute the simulated values Sy, for the leaked

wires in the set Wy. If [I| > ¢ then abort. Otherwise, initialize Sj;, = (). Recall that C can be partitioned
into sub-circuits {Ckt} };c},). We consider two cases below.

SIMULATION OF WIRE VALUES IN {Ckt*};cr: Execute the simulator of the MPC protocol Simypc (I, {Sf”p}ie[g],
{Sf“t}ie[m) to obtain the set Supc. The set Supc simulates the wire values in the sub-circuits {Ckt; }icr
(corresponding to the corrupted parties) of Cktyy. Using this, we construct the set Sfypc, which will consist
of the simulated wire values in the sub-circuits {Ckt;};c; of Cktyy.

Since the output distributions of Ampc and Supc are identically distributed, Sypc can be expressed as
UierT; and T; consists of pairs of the form (w,wv,,) for every wire w € Ckt; and v,, is the value carried by
w during the simulation. For every gate G € Ckt;, let w;"", wy"" be the input wires and w{“, wg"* be the
output wires of G. Let {v;"",v9"'};c(1 9y be such that (™", v"") € Smpc and let (w"*,v3"") € Smpc for
j € {1,2}. Generate the simulated values corresponding to the gadget G, where G < Compile(G), as follows:

e Compute ¥ + Encode(v!"”||vs"?)

e Compute the circuit G on the input encoding .

e Initialize the set, SGpc = 0. For every wire w € é, if v, was the value carried by w in @(6) then
include the pair (w, v,) in SGpc-

We have computed the simulated wire values for all the gadgets in the sub-circuits {Ckt} };cr. Now, compute
the set S\pc as: Sypc = UGeth;,ieISﬁpc Assign Si, = Sypc-

19

SIMULATION OF WIRE VALUES IN {Ckt}};¢;: We now simulate the values for the leaked wires in the
sub-circuits that are not indexed by the set I. For every gadget G € Ckt} for i ¢ I, do the following:

e Consider the set Wg“ =Gn Wi. That is, ng is the set of wires in G that are leaked.
e Execute Sim}((@,Wg“) to obtain (WX, WP Wt I5).

Construct ng P and Sg'* for every Ge Ckt; recursively as follows. If G is an input gate, then include (w,v,,)
in S’g P for every w € Wé"p , where vy, is picked at random. Similarly construct SZ“ by including in SZ*t,
pairs of the form (w, v,,) for every w € W2 and where v,, is a bit picked uniformly at random. Suppose G
is not an input gate, then let G’ and G” be gates such that they are connected to the input wires of G. By
recursion, we have already constructed S¢/” and Sg7. Set Si¥ = SgP U SGY. Construct S by including
in SZ*, pairs of the form (w,v,,) for every w € Wg* and where v,, is a bit picked uniformly at random.
For every G € Ckt?, execute Sim% (W4, WP, Wekt | SeP, Sg) to obtain S¥. Include all the elements

of Sléf in the set S.

Output the set of leaked values Sj. This completes the description of Simg .

We now argue that the simulated distribution of leaked wire values is statistically-close to the real distribution

of leaked wire values. We employ the standard hybrid argument to argue this. R
Consider a circuit C € C and inputs x € {0,1}, where £ is the input length of C. Let C «

CCxy1.Compile(C) and let & + CCk1.Encode(z) for i € [g]. We prove:

. {RPDistrg (5,5{:\)} = {SimK+1(6)|L<—SimK+1(5)/\L7£J_} ,

~

e Simg1(C) aborts with probability e

We state the hybrids below.

Hybrid Hyb,;: The output of this hybrid is:

{RPDistry (C.7) }

That is, the output of this hybrid is the distribution of leaked wire values in the evaluation of C on z, for
every i € [q].

Hybrid Hyb,: We define a hybrid simulator denoted by Hyb,.Simgy1 = (Hyb,.Simj i, Hyb,.Sim%_ ;)
below. The output of this hybrid is,

{Hbe.SimKH (6 55)}

Description of Hyb,.Simy 1. It takes as input compiled circuit C and input z. Denote W to be the set of
wires in C. Construct a set Wi, as follows: include every wire w € W in the set W with probability p. We
next describe Sim}, 41 and Sim3, _1; before that we establish some notation. Let Cktyy be the circuit obtained
by applying Step I on the circuit C. Recall that Cktyy can be partitioned into sub-circuits Ckty,...,Ckt,,
where Ckt; implements the i*" party in II. Let Cktj; be the circuit obtained by applying Step I on Ckty.
Correspondingly, let Ckt?, ..., Ckt’ be the partitions of Ckty.

Hbe.Sim}(H(a, Wik): Tt executes Sim}(H(a, Wik) to obtain (W, WP, Weut T). This completes the de-
scription of Hbe.Sim}(H.

Let (W, WP, Wout T) be the output of Hbe.Sim}(H. Construct the sets S and S°% as follows. For
every wire w € WP include (w, v,,) in S such that v,, is a bit sampled uniformly at random. Similarly,

20

construct the set S°Ut.

We describe Hbe.Sim?KJrl below. The two differences between Sim}<+1 and Hyb2.SimilKJrl are (i) the simu-
lator will not abort if I > ¢ and, (ii) instead of simulating the sub-circuits indexed by I using the simulator
Simpypc we instead use the values obtained in the real execution of the MPC protocol II.

Hyb.Sim?(+1(a7§, Wy, Wine ginp yyout Gout 'T). The goal is to compute the simulated values Sy, for the

leaked wires in the set Wy;,. Initialize Sj, = 0. Recall that C can be partitioned into sub-circuits {Ckt} }ie[n]'
We consider two cases below.

SIMULATION OF WIRE VALUES IN {Ckt} }ic;: Evaluate the compiled circuit € on Z. For every wire w € Ckt}
such that w € Wy, include (w, v,,) in Sy if and only if v,, is the value carried by the wire w in the evaluation
of C(%).
SIMULATION OF WIRE VALUES IN {Ckt] };¢;: This is identical to the analogous step in the description of
SimK+1 .

Output the set of leaked values Sjx.

Lemma 8. Assuming € -simulation with abort property of CCx, the output distributions of hybrids Hyb,
and Hyby are identical.

Proof. We argue that RPDistr) (6’, Z) is identically distributed to Hyb.SimKH(é, Z). Once we show this, the
proof of lemma follows from standard hybrid argument.
The distribution of leaked wires Wy in RPDistry is identical to that of Hyby.Sim. Let {Ckt; }ic[n) be the

sub-circuits in C. The set of simulated wire values for the sub-circuits {Ckt}}ier, where I is as constructed
in Hyb,.Simg 1, is the same for both RPDistr;‘)’ and Hyb,.Simg 1.

We now focus on the leaked wire values in the sub-circuits {Ckt]};¢;. We use the security of CCx to
argue this. For every i ¢ I, for every gadget G e Ckt?, let D% denote the distribution of leaked wire
values in G as generated in Hyb,.Simg 1. From the description of Hyb,.Simg 1, it follows that DY is

identical to the output distribution of Simg (G). Moreover, Simg (G) does not abort. Otherwise, i would
have been included in the set I. Thus, we can apply the security of CCx to argue that Dlé“ is identically
distributed with the leaked wire values of the gadget G in the distribution RPDistrg(a7 Z). Since the wire
values are independently leaked, we can then use hybrid argument to argue that the distribution of the
leaked wire values in {Ckt]}i¢; is identical in both RPDistry and Hyb,.Simg ;. Thus, the proof of the
lemma follows. O

Hybrid Hyb,: As before, we define a hybrid simulator Hybs.Simg1 = (Hyb.Simj, 1, Hybs.Sim% ;). The
output of this hybrid is,
{Hyb3.SimK+1 (6, 3,‘\) }

Description of Hyb;.Simg 1. This simulator is identical to the previous hybrid simulator Hyb,.Simg 1,
except that this simulator aborts if || > ¢ (specifically, Hyb,.Sim% 41 aborts).

Lemma 9. The output distributions of hybrids Hyby and Hybs are e 1-close.

Proof. To prove this lemma, it suffices to consider the indistinguishability of hybrids Hyb, and Hyb; when
there is only one input (instead of ¢ inputs). In this case, let I be as computed in Hybs.Simg 1. Observe
that the probability that |I| > t is the same as the distinguishing advantage between hybrids Hyb, and Hyb,.
We calculate the probability that |I| > ¢ below. For the general case, when there are ¢ inputs, we apply the
hybrid argument and incur a security loss of gq.

21

Claim 3. Let W be the set of wires in C. For every wire w € W, include it in Wiy, with probability p. We
have,

Pr(|I| >t : Wy, WP WU T) < Hyby.Simk, (C, W) | < exia,
where €11 15 as defined in the statement of the lemma.

Proof. Let X be the random variable that calculates the number of instantiations of Simg that fail. We
have, p = E[X] = Ngex. We use Chernoff bound (Lemma 4) to calculate ex41. Let (6 +1)p =1t + 1.

Pr[At least (¢ + 1) instantiations of Simg 4 fail] = Pr[X >t 4 1]
= PrX>(1+4)y]
< (—<)“
= (1 +0)a+9)
edn

m) et (op>0)

IN

1
Z =
() —
o~
N~—" .
s
T .

Vv

[\
N—

This completes the proof. O

Hyb,: The output of this hybrid is,

fsmes ()
Lemma 10. Assuming the perfect security of II, hybrids Hybs and Hyb, are identically distributed.

Proof. The only difference between Hybs; and Hyb, is in the simulation of the wires in the sub-circuits indexed
by I. For simplicity, we consider the case when there is only one input z! (i.e, ¢ = 1). The general case,
when ¢ is arbitrary, follows from standard hybrid argument.

e We perform the following operations in Hyb;:

— Apply Step I to circuit C' to obtain the circuit Cktry. Recall that Cktyy is a circuit representation
of the protocol II. It is divided into sub-circuits Ckty,...,Ckt,, with Ckt; representing party
P;. Then, apply Step IT on Cktyy to obtain Cktj;. The corresponding partitions are denoted by
Ckty,...,Ckt}.

— Let W be the total set of wires in C. Denote by Wi, the set of leaked wires computed by including
every wire w € W in Wy with probability p.

— Compute Hyb3.SimK+1(a7Wlk) (note that both Hyb;.Simg .1 and Hyb,.Simg are identical).
Let the output of this step be (W, WP, Weut T). The simulator aborts if |I| > t.

— The values for the leaked wires in the sub-circuits not indexed by I are simulated using Simg.

— The values for the leaked wires in the sub-circuits indexed by I, {Ckt}}icr, are simulated as
follows: first compute Ckt; on input x!, for i« € I, and then using the wire values generated
during this computation to generate values corresponding to leaked wires of {Ckt}}.

22

e In Hyb,, except the last bullet above, all the other bullets are the same. In this case, generate values
for the leaked wires in the sub-circuits indexed by I, {Ckt}};cr, by first executing Simypc to generate
wire values for {Ckt;};c; and using this, generate wire values for {Ckt!};cy.

Hybs and Hyb, abort, i.e., when |I| > ¢, with the same probability. When |I| < ¢, we invoke the perfect
security of II to argue that Hyb; and Hyb, are identically distributed. O

O
From the above theorems, we have the following theorem.
Theorem 6. Suppose CCy is a composable circuit compiler satisfying L -efficiency and (p,) -composable
security. Then, CCr 1 satisfies L™ -efficiency and (p, € +1)-composable security, where g1 = (Ngek)tH.
4.4 Stitching Transformation: Exp to Poly Efficiency

Consider a Leyp-efficient composable circuit compiler CCeyp for a basis of gates B, where Ley, is a exponential
function. We construct a Lpoiy-efficient composable circuit compiler CCpq1y, for a class of all circuits C over
the basis B, where L1y is a polynomial.

We describe the construction below.

Circuit compilation, CC,.Compile(C): It takes as input circuit C' € C. For every gate G in C, it com-

putes G+ CCexp-Compile(G) to obtain the gadget G. Once it computes all the gadgets, it then ‘stitches’ all
the gadgets together. The stitching operation is performed as follows: let G}, be a gate in C'. Let G}, and G,
be two gates such that the output wires from these two gates are 1nputs to Gk We connect the output of G’
and G” with the input of Gk That is, the output encodings of G’ and G” form the input encoding to Gk
Here, we use the fact that the output encoding and the input encodlng are computed using the same secret

sharing scheme, i.e., the XOR secret sharing scheme. Denote the resulting circuit obtained after stitching
all the gadgets together to be C. Output C.

Input Encoding, CC,.y.Encode(z): It takes as input = and then computes the XOR secret sharing of
every bit of z. Output the concatenation of the XOR secret shares of all the bits of =, denoted by Z.

Output Decoding, CC,1y.Decode(y): On input g, parse it as (71, ..., U5); - - - » @f/, e 7@%’)). Reconstruct

the i*" bit of the output as y; = &7, 7% Output y =yl - [|yn.

We prove that the above scheme satisfies the properties of a composable circuit compiler.

Lemma 11. CC,qy satisfies the following: (i) correctness of evaluation property, (i) correctness of encoding
property and, (iii) correctness of n-XOR encoding property.

Proof. We argue correctness of evaluation property inductively. Consider a circuit C' € C and an input x.
Let C « CCholy.Compile(C) and z < CCpoly.Encode(z). Consider the evaluation of C on 2. We make
the following observation: for any gate G in the circuit C, if the input encoding of G encodes the value v
then the evaluation of GG on the encoding of v yields an output encoding that encodes the value w, where
w = G(v). This observation follows from the correctness of CCep,. By applying this observation inductively,
the correctness of evaluation property of CC,ly follows.

Observe that (iii) follows by construction and moreover, (iii) implies (ii). O

Lemma 12. CCyoly 5 Lpoly-efficient, where Lyoly is a polynomial.

23

Proof. Let C « CCpholy-Compile(C), for C' € C. We have C = |C| - maxygec(|G]), where maxvgeo(|G))
denotes the maximum size of a gadget associated to any gate in C. R

From Leyp-efficiency of CCeyp and since the size of any gate is a constant, we have maxvgec(|G]|) is a
constant. Thus, we have |C| = ¢ - |C|, for some constant c. O

Lemma 13. Let CCqyp satisfies (P, €exp)-composable security. CCpuoly, associated with circuits of size s,
satisfies (P, s - €exp)-composable security.

Proof. Let Sime, be a partial simulator such that CCep satisfies composable security with respect to
SiMexp = (SiméXp7 Simgxp). We use this to construct a partial simulator Simpely, = (Simrl)oly, Simf)oly).

Partial Simulator, Simiy (6’) Denote W to be the set of wires in C. Construct a set Wi as follows:

include every wire w € W in Wy, with probability p. Next compute Siméoly(a, Wik).

Simllmly (C,Wik): Let Wy, = Ugec WS, where WY is a subset of the wires in the gadget G+ CCexp.Compile(G).
Observe that the sets W' and W32 for two different gates G and G need not be distinct. For every gate

G € C, compute Simixp(@,Wg) to obtain (WS, Winp:G Wout-G 1G) Tet WP = Ugec WY, Similarly,

let Wout — UGECW(?ULG' Finally, set I = UGECIG-
Output Wik, W™, WO T).

For every wire w € WP include (w,v,) € S such that v, is a bit sampled uniformly at random.
Similarly, construct the set S°**. Observe that S**? can be decomposed as S = Ugec S ¢ where the
marginal distribution of S7¢ is W¢. Similarly, S°% can be decomposed as S = UgecSOUHC.

Next, compute Simf,oly as follows.

Sim? (5, W, Winp ginp ypout Gout I): for every gate G in C, compute Simgxp(@, We, Winp:G ginp,G Jpjout,G

poly
Sout:G G where W is the set of wires in the gadget G. If for any gate G, Simzxp(-) fails, abort. Else, denote
the output ofSimep(é, Wea, Winp:G | ginp.G yyout.G Gout,G | 1G) 46 he SC, . Output the set Sieak = Ugec Sy -
2

This completes the description of Sim We prove the following claim.

poly*

Claim 4. The following two properties are satisfied:

e p-Partial Simulation: for every circuit C € C, input x € {0,1}*,

{RPDistrg (5@)} = {Simpoly(a)|L<7$imp01y(é)/\L;£J_},

where, C + Compile(C) and T < Encode(x). That is, conditioned on the simulator not aborting, its
output distribution s identical to RPDistrg’.

e c-Simulation with Abort: For every C € C, z € {0,1}*, Simpoly(a) aborts with probability s - €.

Proof. First, we argue that the probability that Sim,;, aborts is s-e. To see this, note that the probability
that Simeyp, fails for every gate in the circuit is . Moreover, Simp, fails only if Simey, fails for any gate.
By union bound, we have Simey,, fails is at most s - €.

We now argue p-partial simulation property. Let us condition on the event that none of Simey,, aborts.
First, note that Simcyp,, for every gate, is executed independently. Moreover, conditioned on the event that

Simexp(@) does not abort for a gate G, its output is identically distributed to leakage on the computation
of G. Thus, the joint output distribution of Simex, on all the compiled gates in the circuits is identical to

the leakage on the computation of C. This proves the claim. O
O

24

From the above lemmas, we have the following theorem.

Theorem 7. Suppose CCeyxp is a composable circuit compiler satisfying Lexp-efficiency and (p, exp)-composable
security. Then, CCpholy is a composable circuit compiler for C satisfying Lexp (k) - f-efficiency (p,s - €exp),
where s is the size of the circuit in C being compiled, k is a constant and f is a linear function.

That is, every circuit C' compiled using CCpq1y has efficiency at most Lexp (k) - f(|C]).

4.5 Main Construction: Formal Description

We now combine all the components we developed in the previous sections to obtain a construction of
composable circuit compiler. In particular, the main construction consists of the following main steps:

e Start with a secure MPC protocol II for a constant number of parties.

e Apply the base case compiler to obtain a composable circuit compiler, which has constant simulation
error in the case of random probing model and tolerates constant threshold in the case of worst case
probing model.

e Recursively apply the composition step on the base compiler obtain from the above bullet. The resulting
compiler, after sufficiently many iterations, satisfies negligible error in the random probing setting and
satisfies a large threshold in the case of worst case probing model.

e The disadvantage with the compiler resulting from the previous step is that the size of the compiled cir-
cuit could be exponentially larger than the original circuit. To improve the efficiency from exponential
to polynomial, we apply the exponential-to-polynomial transformation.

We now present a construction (Figure 2) of composable circuit compiler for a class of circuits C over basis B
starting from a MPC protocol II for the n-party functionality F' that can tolerate ¢ semi-honest adversaries.
We denote this construction by CC,,qin-

Proposition 3. Let K € N. Consider a MPC protocol I1 for a n-party functionality F' and tolerating at
most t corruptions, with t > 2.

Then, CCpain 18 @ (p,cCK)-secure composable circuit compiler for all circuits satisfying (L1 (k))¥ - f-
efficiency, where:

|)—‘

.p:N

02 19|

7

o Li(k) is a constant and f is a linear function,
® c 1s a constant,
o N; is the number of gates in the circuit Ckty

Proof. We prove that CC,, 4, satisfies all the properties of a composable circuit compiler.

Lemma 14. The correctness of 11 implies the correctness of CCohain-

Proof. Tt suffices to show that CC* satisfies the correctness property of a composable circuit compiler. From
Lemma 1, the correctness of IT implies the correctness of CCp,se. From Lemma 5, the correctness of CChpase
implies the correctness of CCx. From Lemma 11, the correctness of CCy implies the correctness of CC*. [

Lemma 15. Let the total computational complexity of 11 be Ly. CCpain satisfies (L1(k))¥ - f-efficiency,
where k is a constant and f is a linear function.

Proof. From Lemma 2, CCpase satisfies Li-efficiency. From Lemma 6, CCx satisfies Li-efficiency. From
Lemma 12, CC* satisfies f - L¥-efficiency, where f is a linear function. O

25

Construction of CCp4in

e Circuit compilation, CC,,4in.Compile(C): On input a circuit C, it executes
the following steps:

— It transforms II into a composable circuit compiler CCpae satisfying
(p, €1)-composable security, where e; = (Ngp)'™* and L;-efficiency.

— Set CCy = CCpase- Repeat the following process for i = 1,..., K — 1:
Using the composition step, it transforms CC; into a composable circuit
compiler CC; 1 satisfying (p, €i4+1)-security.

— Using the exponential-to-polynomial transformation, it transforms CCg
into a composable circuit compiler CC* satisfying f - L (k)-efficiency and
(p, s - ex)-composable security property, where f is a linear function.
— Tt finally executes CC*(C) to obtain the compiled circuit C.
— Output C.
e Input encoding, CC,,qin.Encode(z): It computes the XOR secret sharing of

every bit of . Output the concatenation of the XOR secret shares of all the
bits of x, denoted by Z.

e Output encoding, CC,qin.Decode(y): It reconstructs the XOR secret shar-
ing of every bit of y. Output y.

Figure 2: Construction of CC,qin

Lemma 16. Let II be perfectly secure. Then, CCyhain Satisfies (p,ch)-composable security, for some con-
stant c.

Proof. Note that CCpage is (P, €1)-composable secure, where £; =. From Proposition 2, CCk satisfies (p, ek)-
composable security, where ex = (Ngex_1)"". From Theorem 13, CC* satisfies (p, s - £x)-composable
security.

Consider the following claim.

Claim 5. EK S W
Proof. We prove the following subclaim.

SubClaim 1. & < ﬁ
Proof. Recall that g1 < (ng)Hl. Subtituting p = <, we obtain the proof of the subclaim. O

2
NE

We prove the claim by induction. This is true for the base case from Subclaim 1. Assume that the statement

26

of the claim is true for k iterations. That is, e, < # We prove the statement for (x + 1)** iteration.
g

Ept1 < (Nggm)H—l

1 t+1
¢ ()
Né +1
< 1
= tr.(t+1)
Ng()
1
t(r+1)
NE

This proves the claim.

Instantiation. We use a specific instantiation of the MPC protocol in the above proposition to get the
following result.

Proposition 4. There is a construction of a composable circuit compiler for C satisfying (p, negl)-composable
security, where p = 3 x 1078,

Proof. We prove this by instantiating Proposition 3 with a specific semi-honest secure multiparty compu-
tation protocol for n-party functionality F' (Figure 1) tolerating at most ¢ corruptions. In particular, we
instantiate this with the construction of [Mau02]. We recall the construction for completeness.

The protocol of [Mau02] proceeds as follows: suppose C' is the circuit being securely computed. Let the
input of i*” party be z; and let £, be the maximum size of the inputs of all the parties. Every party receives
an output bit at the end of the protocol.

e Secret Sharing Step: First, share x; additively into si,..., s, shares, where k = (?) Denote

{S1,..., Sk} to be all possible sets of size t. Party j receives a share s; if and only if j ¢ S;. Note that
every party has £, (";1) number of shares. Thus, to share a bit, we need k randomness gates and one
addition gate. The complexity of sharing is k + 1.

e Addition: Every party locally adds all his shares. The total complexity of this step is n(";l).
e Multiplication:
— Let {s;} and {t;} be the set of shares. Consider the set S = {(i,j)}. Partition S into sets
Us,..., Uy such that (,) € Uy, if m € T; NT,. Party m computes r,,, = Z(i’j)eUm sit;.

— Share r,, among all the players.

2
The total computational complexity of this step is at most (";1) + 2n(’;)

e Output Recovery: At the end of the protocol, every party broadcasts its shares to all other parties.

Every party adds all the shares it receives. The complexity of this step is (7).

2
Thus, the total computational complexity of this protocol is |C/| - ((";1) +2n (’Z))
We now determine the complexity of the circuit representing the functionality F' (Figure 1). We first

represent F' = F[G] by the following circuit:

e It takes as input n shares of two bits and then reconstructs it to obtain bits a and b. This reconstruction
can be performed by a circuit of size 2(n — 1).

27

e It then computes a gate G (with fan-in and fan-out being 2) on a and b to obtain the output ¢. The
complexity of this step is 1.

e Finally, it computes n additive shares of ¢ twice. The complexity of this step is 2(n — 1).

Thus, the complexity of F' is 4n — 3. Thus, we get the computational complexity of II for F' to be
(4n —3)-(("7Y)" + 2n(2)).

Substituting the parameters n = 5, t = 2 (recall that ¢ has to be at least 2), we get the total number
of gates to be II is 5712. Thus, substituting II and K = log(poly(log(s))) in Proposition 3, we obtain a
(p, negl(s))-secure composable circuit compiler for all circuits satisfying poly-efficiency (in particular, after
compiling a circuit of size s, we get a circuit of size s - poly(log(s))!!), where p = ﬁ =3 x 1078, O
Non-Boolean Basis. We present a construction of circuit compiler when the compiled circuit is over a
non-boolean basis. As a consequence, we can prove the security of our construction under better leakage rate
than the previous construction over boolean basis. For simplicity of analysis, we consider basis consisting of
randomized functions. With a modification of the current analysis, the functions can be derandomized.

Proposition 5. Let § > 0. Suppose there is a construction of composable circuit compiler CCgoo over B for
C over B satisfying (p, €)-composable security. Then there is a construction of a composable circuit compiler
CCng over B’ for C over B satisfying (pns, €)-composable security, where (i) B’ consists of all randomized
functions mapping 2¢ inputs to 2¢ outputs and, (ii) png = pt/t.

Proof. We first present the construction of CCysg.

CCng-Compile(C): On input circuit C, first compute égod + CCpgool-Compile(C). Construct a circuit égod
as follows: consider a gate G in C' with input wires w;"?, wy"? and output wires w{“, wg**. Replace every

gate G in 6500. with a function fg : {0,1}2¢ — {0,1}%¢ defined as follows:
e fo takes as input ¢ additive shares of values v; (carried by wy) and ve (carried by ws),
e reconstructs the values vy, vg,
e computes G(v1,v2) and,

e computes two sets of ¢ additive shares of G(vy,v2) (using fresh randomness) corresponding to the two
output wires of G.

In particular, every wire w in 6300| will be split into corresponding ¢ wires in CA'NB. We denote a function ¢
that maps w into a set of £ wires in Cng. If v, is the value carried by w during the computation of C' then
correspondingly the £ wires in Cyg will carry the additive shares of v,,. Note that the output of computation
of C\g is a secret sharing of the output of Cgool-

Output Cyg.

CCnp.Decode(): On input encoding 7, first reconstruct the additive shares to obtain the output encoding
of Cgooi- By the XOR-encoding property, the output encoding of Cgee is itself an additive sharing of .
Reconstruct y from the encoding. Output y.

The correctness and efficiency properties of CCyg follows from the correctness and efficiency properties of
CCBool'

Lemma 17. (p,e)-composable security of CCpool implies the (Png, €)-composable security of CCyp.

I Note that encoding of an input of length £ has size £ - poly(log(s)).

28

Proof. Let Simpeol = (Simg,,,, Sima,.) be the partial simulator such that CCge satisfies (p, €)-composable
security with respect to Simgeo. We construct a simulator Simyg = (Simpyg, Simyg).-

SimNB(aNB): On input circuit GNB, let Wyg be the set of wires in éNB. Construct Wl'\,LB by including every
wire w € Wyg with probability p. Then compute the following.

Simng (WNB): Construct a set WS, For every wire w in C, check if all the wires in ¢(w) is included in
WNB_Tf so, include w € WE®'. Compute Sima,,,(WE) to obtain (W5 WBol yyBool 1) - Compute Wz!\ﬁ

inp

and WIE as follows: for every wire w € Wpo?', include all the wires in ¢(w) in Wi Similarly, for every

wire w € WEB! include all the wires in ¢(w) in WEo!.
Output (W{}‘CB,WNB WNB I).

wnp’ out»

Construct sets SiNn% and SNB. For every wire w € Wi'\:g,, include (w,v,) € 31"\7'3 for a bit v,, picked uniformly

at random. For every wire w € WNB | include (w,v,,) € SNE for a bit v, picked uniformly at random.

SimﬁB(Wl'\,iB,Wm%,sxl%,wyﬁ,‘syﬁ,]): Construct the sets 85{’;' and 8B as follows. First re-compute

WBeol and WEB from WNB and WNB respectively. For every wire w € W2 perform the following:

np out np out» np
let (vl,...,v%) be the values assigned to the set ¢(w) in Si'\igj and let v,, = ®¢_,v’,. Include (w,v,,) € 85?;|~
Similarly, construct SB%°'. Compute Simg,, (WNE, W She Wik, SO, I) to obtain the set SEP!. If Sima,q
then Simﬁ,B also aborts.
Construct the set SNE as follows. For every wire w € WE®®!
e if all the wires in ¢(w) are in WNB then include all the pairs (wq,v}),..., (we,v) in SNE, where
d(w) = {wy,...,we} and v}, ... v, are sampled uniformly at random subject to the constraint that

Bool

Uy = @levfﬂ and (w, vy,) € S

e if all the wires in ¢(w) are not in WHE then let S be a proper subset of ¢(w). For every w; € S, include
(w;,vl) € SNB | where v!, is sampled uniformly at random.

Output SNE.

Claim 6. e-simulation with abort property of CCgool implies the e-simulation with abort property of CCng.
Proof. The probability that Simyg aborts is the same as the probability that Simpee aborts. O
Claim 7. The p-partial simulation property of CCgoo implies the png-partial simulation property of CCng.-

Proof. Consider a circuit C' and input . We argue that the leakage on the computation of 6NB on T can
be simulated by Simyg. Denote the output of Simyg(C) to be SNE . We consider the set Marg(Sieax) = {w :
3 Vyw € {0’ 1}7 (U),’Uw S Sleak)}

To show this, we consider the following subset of wires NotAllLk in the circuit C. For every w in 6, if
¢(w) ¢ Marg(Sieak) then include w in NotAllLk.

for every wire w € Cgool,

NB

cox- The argument

e Case 1: If every wire in ¢(w) is also (along with associated values) included in S
proceeds in two steps:

NB

e Case 2: If only a proper subset S of wires in ¢(w) is (along with associated values) included in S

then the simulation of the values for the wires in S is perfect.

We prove this by hybrid argument.

29

SNB.1

leak

Hyb,: The output of this hybrid is the leakage on the computation of éNB on Z. Denote this set by

Hyb,: Let Sl';'i’l be the output of the leakage on the computation of Cng on 7. For every wire w € GBOO.

such that ¢(w) ¢ Marg(Sieak), do the following: for every w; € ¢(w) and (w;, vl,)) € Sieak for some v | remove

(wi, vl) from Sieak and include (w;,v') in Sieak for a freshly sampled random bit v’. Call the new set Sf:i’z
The new set S::i’z is distributed identically to S,':fk’l — this follows from the fact that any proper subset

of additive shares is distributed identical to uniform distribution.

Hyb,: The output of this hybrid is the output of SimNB(é), namely Sgi’g.

The only difference between this hybrid and the previous hybrid is the following: (i) for every wire in
C such that the simulation of values for the wires in ¢(w) C Marg(Sf:i’Q) is performed using the leakage of
C on Z, (i) for every wire in Cgool such that the simulation of values for the wires in ¢(w) C Marg(Sho?)

leak
is performed using SimB°°'. In order to invoke the security of CCgqol, we need to argue that the probability

that ¢(w) C Marg(Sho?) is p(= pig). This in turn follows from the fact that ¢(w) consists of ¢ wires and

leak

all of them leak independently with probability png-
O

5 Leakage Tolerant Circuit Compilers

In this section, we present a construction of leakage tolerant circuit compiler with constant leakage rate.
Later, we present a negative result on the leakage rate of a leakage tolerant circuit compiler.

5.1 Construction
We prove the following proposition.

Proposition 6. Let CCopmp be a composable compiler for a class of circuits C satisfying (p, €)-composable
security. Then, CCrr is a (p,p’,&’)-leakage tolerant circuit compiler for C secure against random probing
attacks, where p’ = (1+n0)? (1 — (1 = p)°) and &’ = e+ L=, for arbitrarily small constant n > 0.

Proof. We present the construction in Figure 3.
Consider the following claims.

Claim 8. The correctness of CCeomyp implies the correctness of CCpyp.

Proof. We need to show that C(z) = C(z), where C € C and C + CCromp-Compile(C). Note that

C(z) = Ceomp(T), where Ceomp < CCeromp-Compile(C) and Z is the XOR secret sharing of x. Moreover,
CCprr.Decode = CCqppyp.Decode.

From the correctness property of CCeopp we have that CCeopyp.Decode (CA'comp(i)> = C(z). This proves
the claim.

Claim 9. The (p,¢)-composable security of CCeomy tmplies the (p,p’,€’)-leakage tolerance of CCrp.

Proof. We first present the description of the simulator.
Simzr(C,SL,,): It takes as input circuit C, leaked set S, of input wires. Let n be the input length of C.

Consider the following observation: the i*" bit of x; is hidden if (i) the two wires carrying z; are not
leaked, (ii) the two wires carrying 7] 4 are not leaked and, (iii) two wires carrying 7 ; are not leaked. This
can be characterized as a binary string of length six. Define GoodSet = {000000} — the first two bits of

30

Construction of CCrr

e Circuit compilation, CCrr.Compile(C): On input a circuit C, it constructs
a circuit C'. On input z, the circuit C' does the following;:

— Phase I: For every i*" bit in z, it computes two sets of XOR secret shares
of ;. Set T to be the concatenation of all the shares. In particular, the n
shares of z; is computed by first sampling bits rib, ey T:L_1,b uniformly
at random for b € {0,1} and then computing,

Tnb = (((@1, ©T1p) Do) @Tn—l,b)
Since there are two wires carrying x;, there are two sets of XOR shares
of z;, namely i g,...,75 0 and 7 1,...,7p 1

— Phase II: Cenerate C « CCeomp-Compile(C). Compute domp(f) to
obtain g.

— Output 7.
Output C.

e Output encoding, CCrr.Decode(y): It reconstructs the XOR secret shares
of every bit of y. Output y.

Figure 3: Construction of CCpp

000000 indicates sub-case (i), third and forth bits indicates sub-case (ii) and fifth and sixth bits indicate
sub-case (iii) defined above. More generally, we can define a binary string b - - - bg of length six to be one,
where by = 1 only if first input wire carrying x; is leaked, b2 = 1 indicates that the second bit is leaked
only if the second input wire of x; is leaked and so on. Let ¢ be the input length of . Sample ¢ times,
with repetition, from the distribution D defined on set of all strings {0,1}°. In more detail, the sampling
of a string in {0, 1}% proceeds by running six independent trials, where in each trial 0 (denoting not leaked)
is sampled with probability 1 — p and 1 (denoting leaked) is sampled with probability p. The resulting
sampled strings are denoted by s1,...,s,. We emphasize that the strings si, ..., sy need not be distinct. If
[{s1,...,80} N GoodSet| < 2¢ — |SL,,| then abort, where {s1,...,s,} is a multi-set. Otherwise, let ¢ be a
random permutation on [/] subject to the constraint s, ;) ¢ GoodSet if and only if (w,v,) € SL.., where w
is the wire carrying the i*” input bit.

The simulation proceeds in two steps: in the first step, Phase I is simulated, i.e., the leakage on the
encoding of the input bit is simulated. We sub-divide the set of the wires in Phase I into sets W; and Ws.
The set W, consists of all wires w such that w carries either an input bit z; or it carries a random bit rib,
for some i € [¢] and b € {0,1}. The set Ws is the complement set of W, i.e., it consists of all the wires in
Phase I that are already not present in W;.

Construct the set S, consisting of simulated wire values in Phase 1. But first we assign values to the
wires in Phase I. There are two cases:

e Case 1: Assigning values for wires in Wy. For every i € [{], if s4(;) ¢ GoodSet, assign the value v,, to
the wire w carrying the " inpgt bit, where (w,v,,) € S,éak. In this case, also assign a value ’uzl"b to the
wire carrying the random bit r] , for b € {0,1}, where], 1s a bit sampled uniformly at random.

e Case 2: Assigning values for wires in W,. For every wire w € Ws, assign v,,, where v, is computed
as follows: (i) if w is either an input wire, v,, is sampled uniformly at random, (ii) if w is the output

31

wire of a gate whose both input wires are unassigned then v,, is sampled uniformly at random, (iii)
otherwise, set v,, to be the output of G on the values assigned to both the input wires.

Now, we construct S, according to the two cases: for every wire w in Phase I,

e Case 1: w € W;. We are only concerned with the case when w is assigned a value v,, in the above
process. Let i € [(] be such that w carries one of the following variables: x;, r} o or r} ;. If w carries
the variable x; and if the corresponding bit in sg; is set to 1, then include (w,vy) € Si,. If the
corresponding bit is 0, don’t include. To illustrate, if w is the first wire that carries the variable x; and
if s4(;) is of the form 1 % % %« then include (w,v,,) in Sk, Similarly, if w is the second input wire
that carries the variable x; and sy ;) is of the form %1 x % * x then include (w,v,) in S,y and so on.

Note that if w is unassigned by the above process then it will be, by definition, not included in S, .
e Case 2: w € Ws. Include (w,v,) in S, with probability p, where v,, is picked uniformly at random.

This concludes the simulation of wires in Phase I. R

In the second step of the simulation, simulate the leakage on the computation of C. Let the partial
simulator of CCcopmp be Simeomp = (Simfc, Simgc). Include every internal or output wire w of C in Wik
with probability p. For every input wire w of 5, include w in Wy, if and only if (w,v,,) € Sieak for some bit
Vg

Compute Sim? C(CA'C(,mp, Wii) to obtain W, WP Weut). Construct the set S as follows. For every
w € W include (w,v,,) in S where (w,v,,) € Sieak, if not vy, is sampled at random subject to the con-
dition that it is consistent with the other leaked values'?. The set S°%! is constructed by including (w, v,,) €
S°ut for every w € W and v, is picked uniformly at random. Compute Simg(a, W, Winp_ ginp yyout gout ')
to obtain the set S35, If Simsy aborts then Sim also aborts.

leak"

Output of Sim is Sieax U S5G

leak*

Conditioned on the event that Sim does not abort, the output distribution of Sim(C, Linp(x)) is identically
distributed to the leakage of C on . This follows from the perfect simulation of the wires in the input
encoding sub-circuit and the (p, €)-simulation with abort property of CCem,p that guarantees that the output
of Simy is identically distributed to the real leakage conditioned on Simy not aborting.

Claim 10. Suppose p’ = (1+n)%(1 — (1 — p)®), for some arbitrarily small constant n > 0. The probability
that Sim aborts is €' < e+ ec—l.", for some constant c.

Proof. We note that Sim aborts under the following conditions:
e The simulator of CCqopp aborts.
o If [{s1,...,s,} N GoodSet| < 2n — |SL,,|.

Moreover, the above two events are independent. From the security of CC.omyp, the probability that the
simulator of CCcopmp aborts is e. Thus, we need to calculate the probability that |{s1,..., sy} N GoodSet| <
2n—|S[L.,|. Rephrasing this, we need to calculate the probability that the cardinality of subset of {s1,...,s,},
that do not belong to GoodSet, is greater than the number of leaked inputs.

Define a random variable X; for every ¢ € [n] such that X; = 1 if there exists (w, v,,) € Séak such that the
wire w carries the i*" bit of the input and for some bit v,,. Otherwise, X; = 0. Note that Pr[X; = 1] = p’.
Define a random variable Y; for every i € [n] such that Y; = 1 if 5,(;) ¢ GoodSet. Otherwise, Y; = 0. Note
that Pr[Y; =1]=1— (1 — p)°.

Denote X =" X;and Y =", Y;. Set t =n(l+n)(1—(1—p)°). Set 6 =n and 6 =1 — ﬁ

12For instance, if w is the output wire of G and if the values to both the input wires of G are already assigned, then assign
the value to w to be the output of G.

32

PriX—-Y >0] > PriX<tandY >t
= PrX <t]-PrlY >{]
1
= PriX < (1+nE[X]]-Pr[Y > E[Y
[X < (1+n)E[X]] - Pr (1+77)[”
= PriX < (14 6)E[X]]-Pr[Y > (1 —6§2)E[Y]]
1 1
2 (1 — T[X]) . <1 — W{X]) (by Chernoﬁ Bounds)
e ez
1 1
> <1 - c1n> . (1 - W) (for some constants c¢q, ¢2)
e 3 e 2
> 1 — —— (for some constant c)

e“

We combine Propositions 4 and 6 to obtain the following proposition.
Combining with Proposition 4 obtain the following proposition.

Proposition 7. Consider a basis B. There is a construction of (p, p’, negl)-leakage tolerant circuit compiler
against random probing attacks for all circuits over B of size s, where p =3 x 1078 and p’ =2 x 1077.

Non-Boolean Basis. We show how to achieve a leakage tolerant compiler with leakage rate arbitrarily
close to 1 with the compiled circuit defined over a non-boolean basis. The starting point is a composable
circuit compiler where the compiled circuit with leakage rate arbitrarily close to 1 and over a large basis.

Proposition 8. Let 6 > 0. Consider a basis B’ consisting of all randomized functions mapping n bits to n
bits. Suppose there is a construction of a composable circuit compiler CCyg over B’ for C over B satisfying
(p, €)-composable security. Then there is a construction of (p,p’,e’)-secure leakage tolerant circuit compiler
over B’ for C over B, where p' =1— ((1 —p)?)- (1 —p")?) and e’ = + _L, for some constant c.

Proof. The proof of this theorem follows the same template as Theorem 6. We describe the construction in
Figure 4.
Consider the following claims.

Claim 11. The correctness of CCeomyp tmplies the correctness of CCrp.
The proof of the above claim is identical to the proof of Claim 8.

Claim 12. The (p,¢)-composable security of CCrr implies the (p,p’,&’)-leakage tolerance of CCpr.

Proof. We first present the description of the simulator.
Simzr(C,SL,,): It takes as input circuit C, leaked set S, of input wires. Let n be the input length of C.

Consider the following observation: the ' bit of z; is hidden if all of the following conditions hold: (i) the
two wires carrying x; are not leaked, (i) 3j € [n] such that the wire carrying r7 ; is not leaked, (iii) 3j € [n]
such that the wire carrying r;:’l is not leaked. As before, this can be characterized as binary strings of length
2n + 2. Define GoodSet to consist of all strings of the following form: the first two bits is 00, followed by a
n-bit string containing at least one 0, which is followed by a n-bit string that also contains at least one 0.
Let ¢ be the input length of x. Sample ¢ times, with repetition, from the distribution D defined on set of

33

Construction of CCrr

e Circuit compilation, CCrr.Compile(C): On input a circuit C, it constructs
a circuit C'. On input z, the circuit C' does the following;:

— Phase I: For every i*" bit in z, it computes two sets of XOR secret shares
of ;. Set Z to be the concatenation of all the shares. In particular, a pair
of n shares of z; is denoted by (rio, e 77“2'1,0) and (ri,l, cee r,il’l) subject
to the constraint that z; = @?:17"2-70 and z; = 65;‘:17";»,1. This can be
computed by two randomized functions in B’ mapping 1 bit to n bits.

— Phase II: Generate C' < CCeomp.Compile(C). Compute Ceomp(Z) to
obtain .

— Output 7.
Output C.

e Output encoding, CCrr.Decode(y): It reconstructs the XOR secret shares
of every bit of y. Output y.

Figure 4: Construction of CCpp

all strings {0, 1}?"*+2. The sampling of a string in {0, 1}2"*2 proceeds by running 2n + 2 independent trials,
where in each trial 0 (denoting not leaked) is sampled with probability 1 — p and 1 (denoting leaked) is
sampled with probability p. The resulting sampled strings are denoted by s, ..., s,. We emphasize that the
strings s1, ..., 8¢ need not be distinct. If |{s1,..., s} NGoodSet| < 2¢ —|SL,, | then abort, where {s1,..., s/}
is a multi-set. Otherwise, let ¢ be a random permutation on [{] subject to the constraint s4(;) ¢ GoodSet if
and only if (w,v,) € SL,, where w is the wire carrying the i‘" input bit.

The simulation proceeds in two steps: in the first step, Phase I is simulated, i.e., the leakage on the

encoding of the input bit is simulated. Construct the set SiL,, as follows.

e For every wire w carrying the variable z;, include (w,v,) € SL,,, if it holds that (i) (w,v,) € Sk,
and, (ii) sg) = 11 %+ *.

e For every i € [(] and s4(;) ¢ GoodSet, consider the following scenarios: (i) if s4(;) = **1---1x---x, i.e.,
every bit in the third position through the (n + 2)*" position of S4(i) is 1. Include (wé’o, ’U;‘,o) € Sk,
where wj is the wire carrying the variable r; ; and v} is sampled uniformly at random subject to the
condition that ®i:1%i‘,0 = x;, (ii) if sy = **1---1, i.e., every bit in the (n + 3)™ position through
the (2n 4 2)™ position of s is 1 and, (iii) otherwise, for every wire w! ; carrying the variable 7y if
the (2+b-n+ j)™ bit of s4(;) is set to 1 then include (w4, v) € Sty for a randomly sampled bit v.

leak

e For every i € [{] and s4(;) € GoodSet, for any wire w;’-,b carrying the variable r;-yb, if the (24+b-n+)"
bit of s4(;) is set to 1 then include (w?,,v) € S

leak for a randomly sampled bit v.

This concludes the simulation of wires in Phase I. N

In the second step of the simulation, simulate the leakage on the computation of Ceomp. Let the partial
simulator of CCeomyp be Simeomp = (Simfc7 Simgc). Include every internal or output wire w of C in Wik
with probability p. For every input wire w of c , include w in Wy, if and only if (w, vy) € Sieak for some bit
Vg -

Compute Simlsc (C'\comp, Wik) to obtain (W, WinP Weut T). Construct the set S as follows. For every
w € WP include (w,v,,) in SP where (w, vy,) € Skeak, if not vy, is sampled at random subject to the con-

34

dition that it is consistent with the other leaked values'®. The set S°“! is constructed by including (w, v,,) €
Seut for every w € WO and v,, is picked uniformly at random. Compute Simg(C, W, Winp ginp yyout Gout)
to obtain the set S35. If Simsy aborts then Sim also aborts.

leak*

Output of Sim is Sieax U S5G

leak*

Conditioned on the event that Sim does not abort, the output distribution of Sim(a, Linp(x)) is identically

distributed to the leakage of C on 7. This follows from the perfect simulation of the wires in the input
encoding sub-circuit and the (p, €)-simulation with abort property of CCcom,p that guarantees that the output
of Simy is identically distributed to the real leakage conditioned on Simy not aborting.

Claim 13. Suppose p’ = (1+1)?(1—((1-p)?)- (1 —p™)?)), for some arbitrarily small constant n > 0. The
probability that Sim aborts is €’ < e+ e%n, for some constant c.

Proof. We note that Sim aborts under the following conditions:
e The simulator of CCqpp aborts.
o If [{s1,...,s,} N GoodSet| < 2n — |SL,,|.

Moreover, the above two events are independent. From the security of CCcoyp, the probability that the
simulator of CCcopp aborts is e. Thus, we need to calculate the probability that |[{s1,...,s,} N GoodSet| <
2n—|SL.,|. Rephrasing this, we need to calculate the probability that the cardinality of subset of {s1,...,s,},
that do not belong to GoodSet, is greater than the number of leaked inputs.

Define a random variable X; for every i € [n] such that X; = 1 if there exists (w,v,,) € SL,, such that the
wire w carries the i*" bit of the input and for some bit v,,. Otherwise, X; = 0. Note that Pr[X; = 1] = p’.
Define a random variable Y; for every i € [n] such that Y; = 1 if s4(;) ¢ GoodSet. Otherwise, Y; = 0. Note
that Pr[Y; =1] = (1 — (1 — p)?)(1 — p") + p". Also, define the following events:

e OneWire;: one of the wires carrying x; is leaked.
e NotAllZero;: Not all the wires carrying T;,o are leaked.
e NotAllOne;: Not all the wires carrying 7“?1 are leaked.

e All;: For every j € [{], all the wires carrying r§70 is leaked OR for every j € [{], all the wires carrying

Z’ .
751 1s leaked.

Consider the following quantity:

PriY; =1] = Pr[(OneWire; A NotAllZero; A NotAllOne;) V (All;)]
= Pr[(OneWire; A NotAllZero; A NotAllOne;)] + Pr[All;]
= Pr[OneWire;] - Pr[NotAllZero;] - Pr[NotAllOne;] + Pr[All;]
= (1-(1-p)*)-(1-p")-1-p")+(1-(01-p"))
= 1-(1-p)*) 1-p")?)
Denote X =" X; and Y =31 | Y,. Set t =n(1+7) (1 - ((1—p)?)- (1 —p")?)). Set 1 = n and

— 1
0o =1— E=E

13For instance, if w is the output wire of G and if the values to both the input wires of G are already assigned, then assign
the value to w to be the output of G.

35

PriX—-Y >0] > PriX<tandY >t
= PrX <t]-PrlY >{]
1
= PriIX < (14+nE[X]]-PrlY > E[Y
(X < (1 +n)EX]] - Pr| (1+77)[”
= PriX < (14 6)E[X]]-Pr[Y > (1 —6§2)E[Y]]
1 1
> (1 - m) . (1 - W) (by Chernoff Bounds)
e 3 e 2
1 1
> <1 - c1n> . (1 - W) (for some constants c¢q, ¢2)
e 3 e 2
> 1- (for some constant c)
ec‘n
O
O
O

From the above proposition, we have the following theorem. As remarked earlier, we can achieve the above
theorem with deterministic basis with a simple modification of the above analysis 4.

Theorem 8. Consider any constant 0 < p < p’ < 1 and let B denote a basis. For some constant 8, there
is a construction of (p,p’,exp(—s))-leakage tolerant circuit compiler over basis B’ for all circuits of size s

over basis B, where B’ consists of all functions mapping 2 - min([llgg((i)ﬂ,Z) bits to 2 - min(ﬂgg((g)ﬂ ,2) bits.

5.2 Negative Result

We present a negative result on the leakage rate of a leakage tolerant circuit compiler. Before that we
consider an alternative definition, where the gates are leaked instead of wire values. That is, for every gate
with probability p, both its input wire values and its output wire values are leaked. We term this as gate
probing attacks, which we formally define this below.

Step I: Gate Probing Attacks. Every gate in the computation of the compiled circuit C on input
encodings {Z} is leaked independently with probability p.

More formally, denote the leakage function Es,p' = {(Lcomp, Linp) }, where the probabilistic functions
Lcomp is as defined in Section 3.1 and L;y,, is defined below.

Lcomp(é ,Z): construct the set of leaked values S, as follows. For every gate G in C and values (vy, , Uiy » Vusy)
assigned to the input and output wires of G, include (G, vy, , Vuy, Vuw;) in SG,, with probability p. Output
Sieak-

Linp(z): construct the set of leaked values SE,, as follows. For every input wire w carrying the it" bit of x,
include (w, x;) in S, with probability p’. Also, include (w’,z;) in SL,,, where w’ is an input wire carrying
x;. Output SE

leak*

We define leakage tolerance against random probing attacks below.

141n particular, instead of having the function producing the secret shares, we can require that the function takes as input
all the random bits and outputs the XORed value.

36

Definition 13 (Leakage Tolerance Against Random Gate Probing Attacks). A circuit compiler CC =
(Compile, Encode, Decode) for a family of circuits C is said to be (p,p’,e)-leakage tolerant against random
gate probing attacks if CC is e-leakage tolerant against L’g’p,.

Step II: From Wire to Gate Leakage Security. We show that any circuit compiler that is secure
against p-random wire probing attacks, is also secure against p*-random gate probing attacks for some p*.

Proposition 9. Consider a circuit compiler CC for C over boolean basis B that is (p,p’, €)-leakage tolerant
against random (wire) probing attacks. Then, CC is (p*,p’,¢)-leakage tolerant against random gate probing
attacks for C over B, where p* = p*(1 — (1 — p)?).

Proof. To prove this proposition, we first introduce some notation. We define the leakage distribution on
the computation of C' on Z to be RPDistry,.

Sampler RPDistrg*(é,E)z Denote the set of gates in C as G. Consider the computation of C on input
encoding Z. For every gate G € G, denote val(G) to be the set of values assigned to the input wires and the
output wires of G during the evaluation of C on 7.

We construct set Sieak as follows: initially Sieax is assigned to be {}. For every G € G, with probability
p*, include (G, val(G) in Sieak. Output Sieak-

We also consider a hybrid distribution the following distribution that will be useful for the proof.

Sampler DY (5 ,Z): Denote the set of wires in C as W', Consider the computation of C on input encoding

Z. For every wire w € W, denote val(w) to be the value assigned to w during the evaluation of C on 7.

We construct set S as follows: initially S is assigned to be {}. For every w € W, with probability p, include
(w,val(w)) in S (i.e., with probability (1—p) the pair (w, val(w)) is not included). Construct the set of leaked
wire values Sieak as follows: for every gate G € C with input wires wy"”, wy"” and one of the two output wires
w®", include (win?, VP, (Wi bSPY, (wort, bOU) € Siear if and only if (w!™, b"P), (whP, bE'P), (wOUt, b°Ut) e
S for some by"?, by"" b°“t € {0,1}. Furthermore, if there exists wire w’ such that w’ carries the same value
as w (for instance, w’ and w are two output wires of the same gate) and if (w, vy) € Sieak, then also include
(’LU/, ’Uw) in Sleak~

Output Sleak~

It immediately follows that the distributions Df and RPDistrf)* are identical: the probability p* that any
given gate is leaked is the same as the probability that both its input wires and one of its output wire is
leaked. Since, every wire is leaked independently, we have p* = 2p3(1 — p) + p*.

*

p* = Pr[l;, input wires of G are leaked A one of two output wires of G is leaked|
= Pr[l;, input wires of G are leaked] - Pr [one of output wires of G is leaked]
= p?- (1 —Prboth the output wires of G' are not leaked])

= p*-(1-(1-p)?)

It remains to show that CC is secure with respect to the distribution DY of wire probing attacks.
Suppose Simy, is a PPT simulator that simulates the leakage Ly (Section 3.2). We construct a PPT
simulator Simf) as follows: on input circuit C, it executes Simy to obtain the set of leaked wire values

np

S. Output a subset Sieax € S such that for every gate G with input wires winp ,wy'? and wot

C , include
(wi"p,lbinp), (wé”p, bé"p), (W% b°U) in Sieak if and only if (wi"p, bi”p), (wénp, bé"p), (wout beut) € S for some
b by bt € {0,1}. As before, include (w’, vy,) in Sieak if (W, V) € Sieak and if w and w’ carry the same
value in C. The statistical distance between the output distributions of Simi’) and Dy is at most ¢; this

15Suppose a gate has two output wires, then including one of the output wires in VW means including also the other one.

37

follows from the security of CC against p-random wire probing attacks. And thus, the statistical distance
between the output distributions of SimJ, and RPDistr“Z,, is at most €. This completes the proof. O

We also consider a generalization of the above proposition for circuits over arbitrary basis (not necessarily
boolean).

Proposition 10. Consider a basis B such that every gate in this basis maps £i, input bits to Loy output
bits. Consider a circuit compiler CC for C over B that is (p,p’,€)-leakage tolerant against random probing
attacks. Then, CC is (p*,p’,¢)-leakage tolerant against random gate probing attacks for C over B, where

p =p - (1—-(1—p)m).

Proof. The proof of this proposition follows closely along the lines of Proposition 9. As before, we define the
following hybrid distribution.

Sampler D;;’(@, 7): Denote the set of wires in C' as W'6. Consider the computation of C on input encoding

Z. For every wire w € W, denote val(w) to be the value assigned to w during the evaluation of C on 7.
We construct set S as follows: initially S is assigned to be {}. For every w € W, with probability p,

include (w, val(w)) in S (i.e., with probability (1 — p) the pair (w, val(w)) is not included). Construct the

set of leaked wire values Sieak as follows: for every gate G € C' with input wires w)"”, ..., w;"” and one of

the £,y output wires wo%,

include (wi™, b)), ..., (wznf, bZLf), (W, b°"") in Seak
& (Wi,), (w)P, b)), (w b € S

Furthermore, if there exists wire w’ such that w’ carries the same value as w (for instance, w’ and w are the
output wires of the same gate) and if (w, vy) € Sieak, then also include (w', vy,) in Sieak-
Output Sieak-

It immediately follows that the distributions D and RPDistrf)* (same as defined in the proof of the Propo-
sition 9) are identical: the probability p* that any given gate G is leaked is the same as the probability that
both its input wires and one of its output wires are leaked. Since, every wire is leaked independently, we
have

p* = Pr[l;, input wires of G are leaked A one of £,,; output wires of G is leaked]
= Pr[l;, input wires of G are leaked] - Pr [all the output wires of G are not leaked|
= p“" (1 — PrJall the output wires of G are not leaked))

_ pém S(1— (1 _ p)lfou,t)

It remains to show that CC is secure with respect to the distribution Dy of wire probing attacks. This part
of the argument proceeds along the same lines as in the proof of Proposition 9. O

Proposition 11. For any basis B, any constant e, there does not exist any circuit compiler that is (p,€)-
leakage tolerant against random gate probing attacks over basis B , where p > %

Proof. Suppose the proposition statement is true, then the following holds: there exists a circuit compiler CC
for a circuit C' (defined below) that is (p, €)-leakage tolerant against random gate probing attacks with pand
¢ as defined in the proposition statement. Using this, we construct an information theoretically secure two
party computation protocol II for two-party functionality F (which will correspond to the function computed
by C). By choosing F appropriately, we arrive at a contradiction by invoking the impossibility result of
information theoretically secure two party computation protocol for F' by Chor and Kushilevitz [CK91].

16Suppose a gate has two output wires, then including one of the output wires in W means including also the other one.

38

We define the two-party functionality F and the protocol II for F next. To do that, first consider the
following: let C' < Compile(C). Since Compile is deterministic, C' is uniquely defined given C'. Let G be the
set of gates in C. Construct G’ by including in G’ every gate G € G with probability p. Define Inp(G) to be
the set of input wires of gate G.

Define I C [n] as consisting of all indices ¢ € [n] such that there exists at least one wire w € Inp(G’) for
some G € G’ and also w carries the " input bit.

Defining F. The two-party functionality F computes the same function as that represented by C. The
joint input length of F is the same as the input length of C. In more detail, F(y1,y2) = C(x), where y1]|ya
is a permutation of bits of x. This permutation is specified by the index set I. Let I = {i1,...,ir} and let
I'={j1,...,jn-r}. Define y1 = ;|| [|z;, and yo =z} || - |[z;,_, .

Construction of II. We now construct a two party computation protocol II for . Then we reduce the
security of IT to the security of CC.

Denote the two parties in IT to be P, and P». That is, they compute F(y1,y2), where z; is the input of
party P;. The main idea behind the construction is to divide C (encoding of C' w.r.t CC) into two circuits
that compute P; and Ps. R R

To do this we define the following partition function, Partition(C, G’). It takes as input C, subset of gates
G’ and outputs the description of the protocol II = (P;, P»). For every gate G € G', assign G to P; and
for every gate G ¢ G’, assign it to P,. Since Cisa graph, this performs a partition of the vertices of G.
Observe that if G,G’' € G’ and if the output wire of G is fed into G’ then this wire remains inside the circuit
computing P;. If there is G € G, G’ ¢ G’ and if the output wire of G is fed into G’ then this wire connects
P1 and PQ.

It can be seen that the correctness of CC implies the correctness of II. We prove the security below.

Lemma 18. The (p,¢)-leakage tolerance of CC against random gate probing attacks implies that I1 satisfies
e-statistical security against semi-honest adversaries.

Proof. We introduce some notation. Consider two sets A and B. Consider a set S C A x B. We define
Marg(S) ={a : 3be B, (a,b) € S}. Consider a circuit C' and let G be the set of gates in C. We write this
as G CC.

We prove the following claim.

Claim 14. Consider a circuit C € C and an input x. Let C Compile(C) and let G* be any subset of the
gates in C'. Let Simpp be the PPT simulator associated with the leakage tolerant circuit compiler CC. We
have,

3 ’Pr [S.eak « RPDistrd,(C, a?)} — Pr [&eak — SimLT(a)] \ <e
Sieak:Marg(Sieak) =G*

Proof. From the (p, ¢)-leakage tolerance of CC, we have the following:

3]Pr [s.eak RPDistr%(C, 3)} —Pr [&eak “ SimLT(é)} . < e
‘Sleak
3 3 ’Pr [&eak “ RPDistrg(é,@] —Pr [sleak « SimLT(é)H < e
G'CC \Sieak:Marg(Sieak) =G’
Thus, for any G’ C 6, it holds that,
3 ’Pr [&eak « RPDistr%(C, f)} —Pr {&eak - SimLT(é)} ‘ <e
Sleak:Marg(Sleak):g/
This proves the claim. O

39

Consider a circuit C € C. Let C «+ Compile(C) and let G be the set of gates in C. Construct G’ by including
every gate G € G in G’ with probability p. The protocol II = (Py, P;) and two-party functionality F is as
computed by Partition(C,G’). Define the following classes of simulators:

. SIME’Q/: it consists of all PPT simulators Sim such that G’ < Marg(Sim(CA')). That is, the marginal

~

distribution of the output of Sim(C) is always G'.

o SIMg’g/: it consists of all PPT simulators Sim such that (G\G') + Marg(Sim(C)). That is, the

~

marginal distribution of the output of Sim(C) is always G\G'.
Consider the following claims.

Claim 15. Consider a circuit C € C. Suppose C+ CCandletG CC. Let F be a two-party functionality
as computed above. Let I1 be a two-party computation protocol for F' constructed from C and CC. Let (x1,x2)
be a pair of inputs in the input domain of F'. Then the following holds:

o Let Sim € STMGY .
Sim(F(xl,xz),xl) e ReaIFV{l}(xl,xg),

e Let Sim € SIMg’g/,
Sim(F(x1,22), 21) ~: Realp 2y (21, 22),

where Realp (1y is as defined in Definition 1.

The proof of the above claims follows from Claim 14. Moreover the above two claim prove the lemma.
O

We now state the main negative result.

Proposition 12. For any basis B there is 0 < p < 1, such that for any 0 < p’ < 1, there is no (p,p’,0.1)-
leakage tolerant circuit compiler over B.

The proof of the above proposition follows from Propositions 10 and Proposition 11. In particular, for any
basis mapping £, bits to £, bits, we can choose the appropriate p such that (p)f~ - (1 — (1 — p)feut) = %
For this choosing of p, the above theorem is satisfied.

6 Leakage Resilient Circuit Compilers

In this section, we give upper bounds for leakage resilient circuit compilers. Note that any structural circuit
compiler for circuit class C is also a leakage resilient circuit compiler for C. Using this fact, we state the
following theorem.

Theorem 9. There is a construction of (p,exp(—s))-leakage resilient circuit compiler for all circuits over
B of size s, secure against random probing attacks, where p = 6.5 x 1075,

The proof of the above theorem follows from Proposition 4.

Theorem 10. Consider any constant 0 < p < 1 and let B be a basis. For some constant 1 > § > 0, there
is a construction of (p,exp(—s))-leakage resilient circuit compiler over B’ for all circuits over B of size s,

secure against random probing attacks, where B’ consists of all functions mapping 2min([1°g(5)1,2) bits to

log(p)
2 min ([12(85],2) bits.

The proof of the above theorem follows from Proposition 5.

40

7 Randomness Encoders

We show that we can construct leakage resilient circuit compilers with rate p, where p tends to 1. To
achieve this, we relax the definition of circuit compilers and allow a randomness encoder that produces
freshly computed correlated distribution for every input encoding. We present the definition below.

Definition 14 (Randomness Encoder). A circuit compiler CC = (Compile, Encode, Decode) is said to be a
circuit compiler with randomness encoder if it has an additional PPT algorithm:

e REncoder(1™): On input 1™, it produces a correlated distribution p.

such that the following holds: for every circuit C', input x,
Decode (Compile(C’)7 Encode(z), REncoder(lm)) =C(x)

Remark 4. We remark that we don’t place any requirement on the size of the output produced by the
randomness encoder. In fact, the size of the correlated distribution produced by the randomness encoder
could be as large as the size of the circuit being compiled.

We prove the following proposition.

Proposition 13. For any constant 0 < p < 1, there is a construction of (p,e)-secure leakage resilient circuit
compiler, where ¢ is negligible in the circuit size.

Proof Sketch. Consider a constant 0 < p < 1.
To compile a circuit C' of size s, we proceed in the following steps.

1. (p,e)-secure LRCC for AND with rand. encoder, for some constant 0 < ¢ < 1. We start with
the following MPC protocol for AND by Beaver [Bea91] in the correlated randomness model.

e INPUTS: Additive shares [a] = ([a]1,...,[a]m) and [b] = ([b]1, ..., [b]m) of secrets a,b € Fa.
e OutpuTs: Additive shares [c] = ([c]1,- ., [¢]m) of ¢ = ab.

e CORRELATED RANDOMNESS: Random additive shares [a/],[b'] of random and independent secrets
a', b € Fy, and random additive shares [¢/] of ¢/ = a'V/.

e COMMUNICATION: Party i locally computes [Aal; = [a]; — [@']; and [Ab]; = [b]; — [b']; and sends [Aal;
and [Ab]; to all other parties.

o COMPUTING OUTPUT: Party i computes Aa = Y77 | [Aa]; and
Ab =377 [Ab];, and outputs [c]; = Abla]; + Aa[b]; + [¢]; — AaAb

We claim that the circuit representing the above protocol is a leakage resilient circuit compiler secure against
(p, e)-random probing attacks.

2. (p,e)-secure LRCC for AND with rand. encoder, where ¢ = exp (—s). This follows by repeatedly
composing the AND gadget with itself, along the same lines as done in the previous sections. In particular,
the composition step works even on circuit compilers augmented with randomness encoder.

3. (p, s-¢)-secure LRCC for C with rand. encoder, where ¢ = exp (—s). Note that we can similarly
obtain a (p,)-secure LRCC for XOR with rand. encoder, where ¢ = exp (—s). We can then stitch the
gadgets for all the AND and XOR gates in C' to obtain the leakage resilient circuit compiler for C. If the
simulation error in each gadget is at most € then the error incurred in simulating the whole compiled circuit

is at most s - €.
O

41

Acknowledgements. We thank Jean-Sébastien Coron, Stefan Dziembowski, and Sebastian Faust for help-
ful discussions. Special thanks to Jean-Sébastien Coron for pointing out an error in our result on the
randomness complexity of private circuits; we have retracted this result from the full version.

The second author was supported in part by ERC grant 742754, ISF grant 1709/14, NSF-BSF grant
2015782, and a grant from the Ministry of Science and Technology, Israel and Department of Science and
Technology, Government of India.

The third author was supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier Award
1413955, and NSF grant 1619348, BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty
Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This material
is based upon work supported by the Defense Advanced Research Projects Agency through the ARL under
Contract W911NF-15-C- 0205. The views expressed are those of the authors and do not reflect the official
policy or position of the Department of Defense, the National Science Foundation or the U.S. Government.

42

References

[ADF16]

[AIS18]

[Ajt11]

[BBD*16]

[BBP*16]

[BBP+17]

[Bea9l]

[BOGWSS]

[CCDSS]

[CDI+13]

[CK91]

[DDF14]

[GIK*15]

Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit compilers with
O(1/\log (n)) leakage rate. In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual
International Conference on the Theory and Applications of Cryptographic Techniques II, Vi-
enna, Austria, May 8-12, 2016, pages 586—615, 2016.

Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private circuits: A modular approach. In
Annual International Cryptology Conference, pages 427-455. Springer, 2018.

Miklos Ajtai. Secure computation with information leaking to an adversary. In Proceedings of
the forty-third annual ACM symposium on Theory of computing, pages 715-724. ACM, 2011.

Gilles Barthe, Sonia Belaid, Francois Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire,
Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and type-directed higher-
order masking. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 116-129. ACM, 2016.

Sonia Belaid, Fabrice Benhamouda, Alain Passelegue, Emmanuel Prouff, Adrian Thillard, and
Damien Vergnaud. Randomness complexity of private circuits for multiplication. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages
616—648. Springer, 2016.

Sonia Belaid, Fabrice Benhamouda, Alain Passelegue, Emmanuel Prouff, Adrian Thillard, and
Damien Vergnaud. Private multiplication over finite fields. In Annual International Cryptology
Conference, pages 397-426. Springer, 2017.

Donald Beaver. Efficient multiparty protocols using circuit randomization. In Annual Interna-
tional Cryptology Conference, pages 420-432. Springer, 1991.

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the twentieth annual
ACM symposium on Theory of computing, pages 1-10. ACM, 1988.

David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally secure protocols.
In Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 11-19.
ACM, 1988.

Gil Cohen, Ivan Bjerre Damgard, Yuval Ishai, Jonas Kolker, Peter Bro Miltersen, Ran Raz, and
Ron D Rothblum. Efficient multiparty protocols via log-depth threshold formulae. In Advances
in Cryptology-CRYPTO 20183, pages 185-202. Springer, 2013.

Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy. SIAM Journal on Discrete
Mathematics, 4(1):36-47, 1991.

Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models: From prob-
ing attacks to noisy leakage. In Adwvances in Cryptology - EUROCRYPT 201 - 33rd Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Copen-
hagen, Denmark, May 11-15, 2014. Proceedings, pages 423-440, 2014.

Sanjam Garg, Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography
with one-way communication. In Advances in Cryptology - CRYPTO 2015 - 85th Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, pages
191-208, 2015.

43

[GIM*16]

[HMOO]

[ISW03]

[Mau02]

[MUO5]

[Pip85]
[vN56]

Vipul Goyal, Yuval Ishai, Hemanta K Maji, Amit Sahai, and Alexander A Sherstov. Bounded-
communication leakage resilience via parity-resilient circuits. In Foundations of Computer Sci-
ence (FOCS), 2016 IEEE 57th Annual Symposium on, pages 1-10. IEEE, 2016.

Martin Hirt and Ueli Maurer. Player simulation and general adversary structures in perfect
multiparty computation. Journal of cryptology, 13(1):31-60, 2000.

Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing
attacks. In Annual International Cryptology Conference, pages 463—481. Springer, 2003.

Ueli Maurer. Secure multi-party computation made simple. In International Conference on
Security in Communication Networks, pages 14—28. Springer, 2002.

Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized algorithms and
probabilistic analysis. Cambridge university press, 2005.

Nicholas Pippenger. On networks of noisy gates. In FOCS, pages 30-38, 1985.

J. von Neumann. Probabilistic logics and synthesis of reliable organisms from unreliable com-
ponents. Automata Studies, 34:43-98, 1956.

44

