
Impossibility on Tamper-Resilient Cryptography

with Uniqueness Properties

Yuyu Wang1 ⋆, Takahiro Matsuda2, Goichiro Hanaoka2, and Keisuke Tanaka3

1 University of Electronic Science and Technology of China, Chengdu, China
wangyuyu@uestc.edu.cn

2 National Institute of Advanced Industrial Science and Technology (AIST), Tokyo,
Japan

t-matsuda@aist.go.jp, hanaoka-goichiro@aist.go.jp
3 Tokyo Institute of Technology, Tokyo, Japan

keisuke@is.titech.ac.jp

Abstract. In this work, we show negative results on the tamper-
resilience of a wide class of cryptographic primitives with uniqueness
properties, such as unique signatures, verifiable random functions, sig-
natures with unique keys, injective one-way functions, and encryption
schemes with a property we call unique-message property. Concretely,
we prove that for these primitives, it is impossible to derive their (even
extremely weak) tamper-resilience from any common assumption, via
black-box reductions. Our proofs exploit the simulatable attack paradigm
proposed by Wichs (ITCS ’13), and the tampering model we treat is the
plain model, where there is no trusted setup.

Keywords. black-box separation, simulatable attack, tamper-resilience,
uniqueness

1 Introduction

1.1 Background

Motivated by the fact that an adversary may maliciously modify the secret infor-
mation of a cryptographic scheme by executing tampering attacks (e.g., heating
up devices or injecting faults [12,13]) and observe the effect of the changes, Bel-
lare and Kohno [10] and Gennaro et al. [37] independently initiated the study
on tamper-resilient primitives. Bellare and Kohno proposed block-cipher against
restricted tampering attacks (i.e., the class of tampering functions used by the
adversary is restricted4), and gave a negative result showing that there exists
no tamper-resilient block-cipher against arbitrary tampering functions. In their
model (called the plain model in our paper), secret keys are potentially tampered
with and there is no trusted setup. Gennaro et al. treated primitives against

⋆ ORCID: 0000-0002-1198-1903. Research was conducted at Tokyo Institute of Tech-
nology.

4 Here, tampering functions mean functions used by adversaries that take as input
original keys and output tampered keys.

arbitrary tampering functions, whereas secret keys implicitly contain trusted
public keys in their model (called the on-line model in [35]). Although most
following works [7,8,49,11,53,67,23,24,62,34,28,35,17] did not adopt the on-line
model, they assumed the existence of trusted common reference strings (CRSs),
due to the difficulty of achieving tamper-resilience in the plain model. Amongst
them, several works [24,23,28,35,17] are secure even when tampering functions
could be arbitrary. Such strong security notions are worth considering since it
is hard to restrict the range of attacks in practice. However, it is not desirable
to put a strong trust on the entity that sets up public parameters in practice,
and the assumption that tamper-proof public parameters are available is very
strong. Especially, an adversary, who can execute fault attacks on secret keys,
should also be able to alter CRSs stored together with the keys in the device.
Therefore, it is desirable to understand what kind of primitives can be tamper-
resilient in the plain model. The research by Dziembowski et al. [27] showed
us a promising way to achieve tamper-resilience in the plain model, which uti-
lizes non-malleable codes. Indeed, combining non-malleable codes with standard
primitives can straightforwardly derive primitives (even with uniqueness prop-
erties) secure against (at least one-time) tampering attacks in the plain model.
However, this work requires restrictions on tampering functions (and so do the
following works (e.g., [29,30,46,18,6,22])). Another work by Ateniese et al. [4]
proved that unique signatures are secure against subversion attacks, which al-
low an adversary to maliciously modify signing algorithms and hence capture
tampering attacks. However, their results assume that the attacks meet an un-
detectability property or cryptographic reverse firewalls are available.

Up until now, all the (positive or negative) results on tamper-resilient primi-
tives against arbitrary tampering functions either assumed tamper-proof public
parameters (e.g., [49,23,24,28,35]), or focused on symmetric cryptography [10].
Hence, it remains unclear whether public key primitives can achieve (full)
tamper-resilience in the plain model. In this paper, we study public key cryp-
tography in this model and show broad negative results.

1.2 Our Results

We focus on the impossibility of proving the tamper-resilience of a wide class
of cryptographic primitives via black-box reductions, and show several negative
results. The type of black-box reduction we consider is the so-called fully black-
box reduction, which does not use the code of adversaries. Moreover, a reduction
algorithm should break the underlying assumption as long as the utilized adver-
sary successfully breaks the tamper-resilience, no matter how much computing
power the adversary has. We remark that most cryptographic primitives are
proved to be secure via such type of reductions. We detail our results below.

Impossibility on provable deterministic primitives (PDPs) and signa-
tures. At first, we consider a negative result on a class of primitives called
PDPs, which were firstly defined by Abe et al. [2]. A PDP evaluates a func-
tion by using a secret key and generates a proof for the input/output pair, and

2

it is required that there exist only one valid output for each input. The defi-
nition of PDPs captures various primitives such as verifiable random functions
(VRFs) [55,54,44], verifiable unpredictable functions (VUFs) [55,54], and unique
signatures [39,55,54]. The (perfect) uniqueness property of these primitives pre-
vents malicious signers from easily outputting many signatures on the same
input, and thus prevents a simple denial-of service attack on a verifier forced to
verify many outputs on the same input, even when the key pairs are selected by
the signer in a subtle way. Also, due to this property, PDPs can be viewed as
perfectly binding commitments to an exponential number of (perhaps random-
looking) outputs [54], and thus can play important roles in micropayments [57],
resettable zero-knowledge proofs [56], updatable zero-knowledge databases [52],
verifiable transaction escrow schemes [47], etc. On account of the wide usage of
PDPs, their security under tampering attacks is important and worth studying.

For these primitives, we show that it is impossible to achieve their tamper-
resilience via black-box reductions. More specifically, we show that if a PDP
is weakly unpredictable,5 then there exists no black-box reduction deriving its
tamper-resilience from any assumption captured by the notion of a cryptographic
game [40,38,68], where a (possibly inefficient) challenger interacts with a mono-
lithic adversary.6 Here, weak unpredictability only requires that any probabilistic
polynomial-time (PPT) adversary, neither allowed to make a query nor given a
public key, cannot come up with a valid input/output pair. It is clear that any
non-trivial PDP should satisfy such weak security. Furthermore, differently from
negative results in [37,35], we treat very weak tamper-resilience, where an ad-
versary only makes one tampering query and one computing query.7 Hence, our
result also captures tamper-resilient PDPs with self-destructive or key-updating
mechanism.8 We prove our result by using the simulatable attack paradigm pro-
posed by Wichs [68], which is discussed in more details in the next subsection.
By slightly modifying this proof, we can extend our negative result for a more
general notion called re-randomizable signatures [66,43].

As by-product results, we prove the same negative result on weakly unforge-
able unique-key signatures, in which there exists only one valid secret key for each
public key, and injective one-way functions (OWFs). Here, weak unforgeability
is defined in the same way as weak unpredictability, and up until now, a broad
class of existing signature schemes, e.g., ones where secret keys are discrete log-
arithms or factoring of public keys, or key pairs are in the Diffie-Hellman form,

5 Unless explicitly stated otherwise, when referring to weak unpredictability, we mean
computational weak unpredictability, not statistical weak unpredictability. The same
argument is made for other security notions.

6 By a monolithic adversary, we mean an adversary that is a single entity. Its antonym
is a “multi-stage” adversary that consists of two or more components among which
the state information cannot be passed freely [63].

7 When focusing on negative results, the defined tamper-resilience is desirable to be
as weak as possible.

8 Self-destructive mechanism prevents an adversary from learning information by mak-
ing further queries when tampering is detected, and key-updating mechanism allows
a device to update its secret information.

3

is captured by the notion of unique-key signatures (e.g., [36,21,51,66,45]). These
results not only show the reason why many existing schemes cannot be proven
tamper-resilient, but also indicate that when constructing signatures and OWFs
in the presence of tampering attacks, one should circumvent the unique-key prop-
erty and injectiveness. Note that there is no contradiction between our work and
tamper-resilient unique signatures (implicitly) implied by previous results on
non-malleable codes or subversion-resilient signatures [27,29,30,46,18,6,4], since
those results require either restrictions on tampering functions or reverse fire-
walls as mentioned before.

Impossibility on encryption schemes. Next, we give a negative result on a
class of public key encryption (PKE) schemes that we call unique-message PKE
schemes, where for a ciphertext (possibly outside the support of the encryption
algorithm), all the valid secret keys with respect to a public key (possibly outside
the support of the key generation algorithm) lead to the same decryption result.
More specifically, for a unique-message PKE scheme, in addition to ordinary
algorithms as a PKE scheme, we require that there be an algorithm that we
call the “plaintext-recovering” algorithm. Its syntax is exactly the same as the
ordinary decryption algorithm. We require that it satisfy the usual correctness as
the decryption algorithm. What makes it different from the ordinary decryption
algorithm is that for each public key and each ciphertext, it holds that the
decryption results are the same for all valid secret keys with respect to the public
key (see Definition 15 for the formal definition). We note that the plaintext-
recovering algorithm may be the original decryption algorithm, but in general it
need not be so.

Our negative result shows that if a unique-message PKE scheme is weakly
one-way, then there exists no black-box reduction deriving its tamper-resilience
from any assumption captured by the notion of a restricted cryptographic game
(i.e., any common falsifiable assumption [59,38]), where the challenger is re-
stricted to be PPT. Here, weak one-wayness is defined in the same way as stan-
dard one-wayness, except that we only treat adversaries that are not allowed
to see the public key. In other words, it only requires that any PPT adversary,
neither allowed to make decryption queries nor given a public key, cannot re-
cover the message from a randomly generated ciphertext. This is clearly a very
weak security notion, and should be satisfied by any non-trivial PKE scheme.
Furthermore, similarly to the cases of PDPs and signatures, we consider very
weak tamper-resilience, where an adversary only makes one tampering query and
one decryption query. Unlike our result for PDPs, this result does not capture
black-box reductions to non-falsifiable assumptions where challengers are com-
putationally unbounded, unless we assume that the PKE scheme is statistically
weakly one-way. However, statistical weak one-wayness is not necessarily implied
by (computational) one-wayness. We will give more details in Section 4.2. Here,
notice that [23] also shows a negative result with respect to adversaries mak-
ing a single tampering and decryption query. However, it only treats a strong
type of tampering queries called “post-challenge” tampering queries, which can
be dependent on the challenge ciphertext. Their negative result can be circum-

4

vented when considering challenge-independent tampering queries which capture
a-prior tampering attacks in practice. Moreover, their negative result holds only
for indistinguishability against chosen ciphertext attacks. It was unclear whether
tamper resilient one-wayness against (even weak) chosen ciphertext attacks is
achievable, while we give a partial but strong negative answer.

Although the definition of a unique-message PKE scheme has never
been formalized before, it captures many naturally constructed PKE schemes
(e.g., [64,36,20,15,41]). More specifically, since a PKE scheme is required to sat-
isfy correctness, all the valid ciphertexts (i.e., ones in the support of the encryp-
tion algorithm) should be decrypted to a unique message, while invalid cipher-
texts usually lead the decryption algorithm to abort, in order to prevent adver-
saries from learning useful information from the answers of decryption queries.
Hence, a ciphertext is typically decrypted to a unique message if the used secret
key is correct. However, due to possible difficulties of directly proving some im-
plementations to be a unique-message PKE scheme, instead of insisting that the
original decryption algorithm decrypt any ciphertext to a unique message, we
give a relaxation by introducing the notion of the plaintext-recovering algorithm
mentioned in the above paragraph. For ease of understanding the rationale be-
hind our definition, as an instance, we show how it captures the Cramer-Shoup
scheme [20] in Section E.1 in Supplementary Material. Furthermore, one can also
see that unique-key PKE schemes, where there exists only one valid secret key
for each public key, can be cast as unique-message PKE schemes (see Section E.2
in Supplementary Material). Similar to our negative results for signatures, our
results for PKE schemes clearly show the exact barrier when proving tamper-
resilience for existing schemes, and also give a guideline for future works on
tamper-resilient PKE schemes.

Remark on the plain model. Our research focuses on tamper-resilient prim-
itives in the plain model. This model might seem strong and assuming the ex-
istence of tamper-proof public parameters may be reasonable to some extent.
However, such an assumption is not always realistic since fault attacks allow
adversaries to maliciously modify CRSs stored in the devices. Besides, another
line of works on subversion-resilient non-interactive proof systems (e.g., [9,1,33])
also alerted the danger of trusting CRSs. Therefore, in addition to previous pos-
itive results mentioned before [27,29,30,46,18,6,4], it is desirable to deepen the
understanding of tamper-resilient primitives in the plain model. Moreover, we
believe that trying to circumvent our negative results is a good starting point
for future positive works, as we will mention in the open problems in Section 5.

1.3 High-Level Idea and Technique

Tamper-resilient primitives are secure against adversaries that try to tamper
with the secret key, make (computing, signing, or decryption) queries, and out-
put a forgery or recover a message. To prove the tamper-resilience of a primitive
under some cryptographic assumption via a (fully) black-box reduction, one

5

needs to construct a reduction algorithm that has access to any successful ad-
versary against the tamper-resilience and breaks the assumption. Therefore, to
show the impossibility on black-box reductions from tamper-resilience to com-
mon assumptions, what we need to do is to rule out the existence of reduction
algorithms which can obtain useful information from any successful adversary, in
any cryptographic game. Our basic idea for proving this is to show that any re-
duction algorithm cannot answer the queries made by some successful adversary,
or it cannot benefit from the outputs of the adversary.

Tamper-resilience model. Before describing how we achieve our goal,
we describe how we model a valid adversary against tamper-resilience in
more details. Such an adversary consists of three independent components
(Tamper,Break1,Break2), which are allowed to share states before the secu-
rity game but do not have communicating tapes once the game begins.9 Tamper
models a tampering function that on input the original secret key tries to out-
put some tampered key helpful to (Break1,Break2). Break1 makes a (com-
puting, signing, or decryption) query. On input the answer generated via the
tampered key, Break2 tries to output some forgery (or recover a message from
the challenge ciphertext). The model we consider captures the very weak type
of tampering attacks where the adversary can only make one selectively deter-
mined tampering query, which in turn makes our negative results very strong.
Notice that (Break1,Break2) learns no information on the secret key other
than the information leaked from the answer of the, say, computing query, since
(Break1,Break2) and Tamper (which sees the secret key) do not share any
state generated during the security game. It is the same as the case that an ad-
versary (Break1,Break2) determines the way to tamper with the secret key at
the beginning of the game and tries to benefit from the answer of the computing
query. We justify our model as follows.

Remark on our model. In our model, we define the tampering function as part
of the adversary and the reduction can only have black-box access to it, while in
previous works [24,23,28,35] considering arbitrary tamper attacks, the tampering
functions are defined as tampering queries made by the adversary. Therefore, one
may wonder whether the reductions considered by us are more restricted. We
stress that in the security proofs of all these works, the reductions also access the
functions in a black-box manner. Indeed, those reductions sometimes change the
functions by hard-wiring other functions or values in the tampering functions,
which make the functions seem “non-black-box”. However, such procedures can
be treated as changing the input of the functions rather than exploiting the
structure of the functions themselves. Therefore, such modification for tampering
functions is also allowed in our model. For instance, the reduction can query the
hard-wired function to its challenger and give the answer back to Tamper as
its input. As a result, our model does not make any additional restrictions on
the reduction.
9 We forbid the communication between Break1 and Break2 for simplicity, and such
restriction makes our results stronger since we focus on negative results.

6

We also stress that we can model an adversary in the way that
(Break1,Break2) sends a (selectively determined) tampering function Tamper
to modify a secret key sk to a tampered key Tamper(sk) as in previous works
(e.g., [24,23,28,35]), while for a fully black-box reduction, which only has black-
box access to Tamper, this does not make any difference. We define Tamper as
part of the adversary only for simplicity. Our model does not rule out reductions
exploiting the structures of arbitrary tampering functions (rather than restricted
ones), while it would be surprising if there would be any.

Our intuition. We now describe an intuition behind our proofs. For ease
of understanding, we talk about the case of unique signatures. Let R be a
reduction algorithm trying to attack some underlying assumption captured
by a typical cryptographic game with access to a successful adversary A =
(Tamper,Break1,Break2). To benefit from A, R has to answer the signing
query made by Break1. However, we observe that if R has not given Tamper
a valid secret key previously,10 it may have no idea what the tampered key is, in
which case answering the signing query is as difficult as breaking the underlying
security of the unique signature scheme for R. On the other hand, if R has given
a valid key to Tamper, then it is able to forge a signature by itself. In this case,
since a signature forged by Break2 must be the same as the one forged by R
due to uniqueness, it does little help to R. As a result, the access to A may not
benefit R in the cryptographic game, which gives us the conflict. Note that when
formally showing the existence of such a successful but “useless” adversary A,
we need to take care of more details (e.g., the way for A to check the validity of
a secret key without having a key checking algorithm), which we do not mention
here for simplicity.

The above intuition is also adopted to show negative results on VRFs, VUFs,
unique-key signatures, injective OWFs, and unique-message PKE schemes, while
in the case of unique-message PKE schemes, our proof exploits the difficulty of
answering decryption queries (instead of signing queries). Like the case of unique
signatures, the uniqueness properties of these primitives ensure that the outputs
of A and R are identical.

We formalize our intuition by using meta-reductions, which have appeared in
a great deal of previous works (e.g., [14,19,60,32,38,61,3,68,69,5,50,58,42,22,31]).
Roughly speaking, we firstly give an inefficient (but valid) adversary A break-
ing the tamper-resilience of a class of schemes, and then a PPT algorithm Sim
(which does not necessarily have the structure of a valid adversary) simulating
the action of A. For any black-box reduction R deriving the tamper-resilience of
these schemes from some cryptographic game G, we could obtain a PPT adver-
sary RSim breaking G with the same advantage as RA, which is infeasible if G is
hard to break. Hence, we can derive the non-existence of R. More specifically, we
give our proof under the simulatable attack paradigm, a meta-reduction method
proposed by Wichs [68]. Most negative results proved using meta-reductions

10 Here, a valid secret key means a secret key passing the key checking procedure
executed by Tamper.

7

implicitly fall under this paradigm, and recent works [16,26] explicitly used this
paradigm to show negative results on entropic search learning with errors and ex-
tractors for entropy extractor-dependent sources. What we have to do is to show
that any (possibly inefficient) oracle-access machine cannot distinguish A and
Sim. By doing this we can separate the tamper-resilience of our target schemes
from any cryptographic game G rather than some particular one. We remark
that when proving the impossibility result on unique-message PKE schemes, the
oracle-access machine is required to be efficient, in which case we separate the
tamper-resilience from any restricted cryptographic game. We refer the reader
to Sections 3.3 and 4.3 for the details of our adversaries and simulators and the
ideas behind their constructions.

Comparison with previous works. Finally, let us highlight the differences
between the work by Wichs and ours. In [68], Wichs showed that there is no black
box reduction for proving the security of leakage-resilient unique witness one-way
relations, leaky pseudo-entropy generators, entropy condensers, and correlation-
resilient OWFs from the assumptions captured by cryptographic games.11 His
negative results for the latter two primitives are vastly different stories, since
the adversaries are modeled in different ways, while those for the former two are
more related to our results, in the sense that both leakage-resilient and tamper-
resilient primitives prevent attacks on memory. However, it should be noticed
that leakage-resilience treats adversaries directly obtaining leaked information,
while tamper-resilience treats ones observing the effect of malicious modifica-
tions. Since the restrictions on adversaries are completely different, our results
and those by Wichs do not imply each other, and designing inefficient adversaries
and PPT simulators in our case is never easy. Furthermore, our proofs utilize a
new methodology that proves the indistinguishability between adversaries and
simulators based on computational security assumptions. This is quite different
from Wichs’ results since the proofs in his work do not use them.

Other related negative results on unique primitives. Coron [19] showed
impossibility on simple reductions deriving the tight security of unique sigan-
tures from non-interactive assumptions. Later Kakvi and Kiltz [48] fixed Coron’s
result by giving a stricter definition of unique signatures. Hofheinz et al. [43]
extended the negative results in [19,48] for the notion of re-randomizable signa-
tures, which is more general and hence captures more instantiations, such as the
Waters signature scheme [66] and its variant [43]. Recently, Morgan and Pass
[58] proposed an impossibility result by ruling out any linear-preserving black-
box reduction deriving the security of unique signatures from bounded-round
assumptions. In another line, Wang et al. [65] ruled out memory-tight black-box
reductions deriving the multi-challenge security of signatures from any compu-
tational assumption.

11 Interestingly, in [68], Wichs also mentioned a negative result on leakage-resilient
unique signatures.

8

1.4 Outline of This Paper

In Section 2, we recall the definitions of cryptographic games (and properties)
and simulatable attacks. In Section 3, we give our negative results on PDPs,
unique-key signatures, and injective OWFs. In Section 4, we give our negative
results on unique-message PKE schemes. In Section 5, we discuss open problems.

2 Preliminaries

In this section, we review several definitions and terminologies that are necessary
to describe our results.

Notation. negl denotes an unspecified negligible function. If X is a finite set,
then x← X denotes the process of uniformly sampling x at random from the set
X . If A is a deterministic (respectively, probabilistic) algorithm, then y = A(x)
(respectively, y ← A(x)) means thatA on input x outputs y. Letting the internal
randomness space of a probabilistic algorithm A be Ra, computing y ← A(x) is
equivalent to sampling r ←Ra and then computing y = A(x; r).

2.1 Cryptographic Game (Property)

In this subsection, we recall the definitions of a cryptographic game and a cryp-
tographic property.

Definition 1 (Cryptographic game [40]). A cryptographic game G con-
sists of a (possibly inefficient) random system (called the challenger) CH and
a constant c ∈ [0, 1). For some security parameter 1λ, CH(1λ) interacts with
some adversary A(1λ), and outputs a bit b. This interaction is denoted by
b ← (A(1λ) ⇌ CH(1λ)), and the advantage of A in G is AdvAG (λ) = Pr[1 ←
(A(1λ) ⇌ CH(1λ))]− c.

A cryptographic game G is secure if for any PPT adversary A, AdvAG (λ) ≤
negl(λ).

As noted in [38,68], all commonly used assumptions in cryptography fall under
the framework of cryptographic games.

A restricted version of the above definition, which only considers PPT chal-
lengers and captures most falsifiable assumptions [59,38], is given as follows.

Definition 2 (Restricted cryptographic game [38]). A restricted crypto-
graphic game is defined in exactly the same way as a cryptographic game, except
that we replace “(possibly inefficient) random system” with “PPT random sys-
tem”.

9

Cryptographic property. As noted by Wichs [68], although the definition
of a cryptographic game captures all common assumptions, it does not capture
some cryptographic properties against stateless adversaries consisting of multiple
independent components (e.g., leakage-resilience of one-way relations defined
in [68] and tamper-resilience of PDPs, signatures, and PKE schemes defined later
in our paper). Following [68], we give a very general definition of an arbitrary
cryptographic property P and use AdvAλ

P (λ) to denote the advantage of Aλ in
breaking a cryptographic property P , where λ is the security parameter. P is
said to be secure if for any PPT adversary A, AdvAλ

P
(λ) is negligible in λ.

2.2 Simulatable Attack

The simulatable attack paradigm is a meta-reduction method formalized by
Wichs [68]. Showing the existence of simulatable attacks on cryptographic prop-
erties is a general way to show the impossibility of deriving these properties from
common assumptions via black-box reductions. We now recall the definitions of
a black-box reduction and simulatable attack as follows. Our definition here is
based on [68].

Definition 3 (Black-box reduction). Let P be some cryptographic property
and G be some cryptographic game. An oracle-access PPT machine R(·) is said
to be a black-box reduction deriving the security of P from G, if for any (possibly
inefficient, non-uniform) adversary Aλ such that AdvAλ

P
(λ) = 1, there exists a

non-negligible function ǫ such that we have AdvR
Aλ

G (λ) ≥ ǫ(λ).

In the above definition, we require AdvAλ

P (λ) to be 1 (rather than non-
negligible), which makes the defined reduction very restrictive. Since our focus is
on a black-box separation, the more restricted the type of black-box reductions
is, the stronger our negative results become. Furthermore, the definition in [68] is
strengthened by requiring that a black-box reduction R have noticeable advan-
tage in breaking G, while we only require R to have a non-negligible advantage,
which is more common.12

A simulatable attack on a cryptographic property P consists of a valid but
possibly inefficient adversary A and a possibly invalid but efficient simulator
Sim.13 If A breaks P and is indistinguishable from Sim for any oracle-access
machine, then the existence of a black-box reductionR deriving the security of P
from some cryptographic game G implies that breaking the assumption captured
by G is not hard. This follows from the fact that the success of RA implies the
success of RSim in G.

Definition 4 (Simulatable attack [68]). A simulatable attack on a crypto-
graphic property P consists of: (a) an ensemble of (possibly inefficient) stateless

12 We note that as discussed in [68], all the proofs given by Wichs can be extended to
the case that the advantage of R is only required to be non-negligible.

13 In our case, a valid (respectively, invalid) adversary means a stateless (respectively,
stateful) adversary.

10

non-uniform adversaries {Aλ,f}λ∈N,f∈Fλ
where {Fλ}λ are some finite sets, and

(b) a PPT stateful simulator Sim. Furthermore, the following two properties are
required to hold.

– For all λ ∈ N and f ∈ Fλ, Adv
Aλ,f

P
(λ) = 1.

– For all (possibly inefficient) oracle-access probabilistic machines B(·) making
at most polynomially many queries to its oracle, we have

| Pr
f←Fλ

[1← BAλ,f (1λ)]− Pr[1← BSim(1λ)(1λ)]| ≤ negl(λ).

Definition 5 (Weak simulatable attack). A weak simulatable attack is de-
fined in exactly the same way as a simulatable attack, except that we replace
“(possibly inefficient) oracle-access probabilistic machines B(·)” with “oracle-
access PPT machines B(·)”.

Note that in the above definitions, Fλ is a set, and an adversary is modeled
as an ensemble of algorithms Aλ,f where each instance hardwires an element
f ∈ Fλ. Note also that the simulator Sim is only required to simulate the
behavior of adversaries Aλ,f in the situation where f is chosen uniformly at
random from Fλ. Like in [68], we set Fλ as a set of all functions with some specific
domain and range when showing our negative results. This ensures that the
outputs of f look like real randomness in the view of B, and they can be simulated
by Sim(1λ) by executing lazy sampling. We refer the reader to Sections 3.3
and 4.3 for the details.

The following theorem by Wichs [68] shows that the existence of a (weak)
simulatable attack on some cryptographic property P implies the impossibility
of deriving the security of P from any (restricted) cryptographic game G via
black-box reductions.

Theorem 1 ([68]). If there exists a simulatable attack (respectively, weak sim-
ulatable attack) on some cryptographic property P and a black-box reduction
deriving the security of P from the security of some cryptographic game (respec-
tively, restricted cryptographic game) G, then there exists some PPT adversary
A that has non-negligible advantage in G.

We refer the reader to [68] for the proof of Theorem 1. Notice that the original
proof in [68] did not show that a weak simulatable attack implies the black-
box separation with respect to restricted cryptographic games, and it asks the
reduction algorithm to have a noticeable advantage. However, extending it to
show the above theorem is straightforward.

3 Impossibility on Provable Deterministic Primitives and

Unique-Key Signatures

In this section, we give negative results on tamper-resilient PDPs (includ-
ing tamper-resilient VUFs, VRFs, and unique signatures as special cases) and
tamper-resilient unique-key signatures. Our results show that if a PDP or

11

unique-key signature scheme satisfies some “extremely” weak unpredictability
or unforgeability, then there exists no black-box reduction deriving its tamper-
resilience in the plain model from any commonly used assumption.

The rest of this section is organized as follows. In Section 3.1, we recall the
definitions of PDPs and signatures. In Section 3.2, we define several security
notions. In Section 3.3, we show the existence of simulatable attacks on the
tamper-resilience of PDPs and signatures. In Section 3.4, we summarize our
negative results.

3.1 Definitions of PDPs and Signatures

At first, we recall the definition of a PDP, which is formalized in [2] and captures
VUFs, VRFs, and unique signatures as special cases.

Definition 6 (Provable deterministic primitive (PDP) [2]). A PDP con-
sists of the polynomial-time (PT) algorithms (Gen,Comp,Prove,Verify). (a) Gen

is a probabilistic algorithm that takes as input 1λ, and returns a public/secret
key pair (pk, sk) ∈ {0, 1}p×{0, 1}s for some polynomials p = p(λ) and s = s(λ).
The set of all secret keys (output by Gen(1λ)) and the (internal) randomness
space of Gen are respectively denoted by SK and Rg. (b) Comp is a determinis-
tic algorithm that takes as input a secret key sk and x ∈ X , where X denotes
the domain, and returns some value y. (c) Prove is a probabilistic algorithm that
takes as input a secret key sk and x, and returns a proof π. The (internal) ran-
domness space of Prove is denoted by Rp. (d) Verify is a deterministic algorithm
that takes as input a public key pk, x, y, and a proof π, and returns 1 (accept)
or 0 (reject).

A PDP is required to satisfy uniqueness and correctness. Uniqueness is said
to be satisfied if for all λ ∈ N, all pk ∈ {0, 1}p (possibly outside the support
of Gen) and all x ∈ X , there exists no tuple (y, π, y′, π′) that simultaneously
satisfies y 6= y′ and Verifypk(x, y, π) = Verifypk(x, y′, π′) = 1. Correctness is said
to be satisfied if Verifypk(x,Compsk(x),Provesk(x)) = 1 holds for all λ ∈ N, all

(pk, sk)← Gen(1λ), and all x ∈ X .

The syntax of a PDP is exactly the same as that of a VRF and a VUF, and it also
captures unique signature schemes, which we discuss later in this subsection. No-
tice that the definition of uniqueness is different from that in [2], which addition-
ally requires the public parameter (including the bilinear group) to be correctly
generated since it treats structure-preserving constructions. Other than that we
do not consider public parameters separately or some other relaxed uniqueness
notions (e.g., uniqueness holding for most public keys), one can see that our
definition is equivalent to the original definitions of uniqueness in [55,54]. Such
original definitions prevent denial-of service attacks and provide perfect binding
properties when PDPs are used as a special type of commitments in their applica-
tions (e.g., micropayments [57], resettable zero-knowledge proofs [56], updatable
zero-knowledge databases [52], verifiable transaction escrow schemes [47]), even
in the presence of maliciously chosen CRSs and public keys.

We now recall the definition of a (digital) signature scheme.

12

Definition 7 (Digital signature). A signature scheme consists of the PT al-
gorithms (Gen, Sign,Verify). (a) Gen is a probabilistic algorithm that takes as
input 1λ, and returns a public/secret key pair (pk, sk) ∈ {0, 1}p × {0, 1}s for
some polynomials p = p(λ) and s = s(λ). The set of all secret keys (output by
Gen(1λ)) and the (internal) randomness space of Gen are respectively denoted by
SK and Rg. (b) Sign is a probabilistic algorithm that takes as input a secret key
sk and a message m ∈M, whereM is the message space, and returns a signa-
ture σ. The (internal) randomness space of Sign is denoted by Rs. (c) Verify is
a deterministic algorithm that takes as input a public key pk, a message m, and
a signature σ, and returns 1 (accept) or 0 (reject).

A signature scheme is required to satisfy correctness, which means that
Verifypk(m,σ) = 1 holds for all λ ∈ N, all (pk, sk) ← Gen(1λ), all m ∈ M,
and all σ ← Signsk(m).

We now recall the definition of a unique signature scheme, in which the
signing algorithm is deterministic and there exists only one valid signature for
each pair of public key (not necessarily output by Gen(1λ)) and message.

Definition 8 (Unique signature [54]). A signature scheme (Gen, Sign,Verify)
is said to be a unique signature scheme if (a) Sign is deterministic, and (b)
for all λ ∈ N, all pk ∈ {0, 1}p (possibly outside the support of Gen), and all
m ∈ M, there exists no pair (σ, σ′) that simultaneously satisfies σ 6= σ′ and
Verifypk(m,σ) = Verifypk(m,σ′) = 1.

One can easily see that a unique signature scheme can be cast as a PDP where
Comp is the signing algorithm and Prove always returns the empty string.

We now define unique-key signatures, where there exists only one valid secret
key for each public key (not necessarily output by Gen(1λ)).

Definition 9 (Unique-key signature). A signature scheme (Gen, Sign,Verify)
is said to be a unique-key signature scheme if there exists a deterministic PT
algorithm UKCheck such that (a) UKCheck(pk, sk) = 1 holds for all λ ∈ N and
all (pk, sk) ← Gen(1λ), and (b) for all λ ∈ N and all pk ∈ {0, 1}p (possibly
outside the support of Gen), there exists no pair (sk, sk′) ∈ {0, 1}s×{0, 1}s that
simultaneously satisfies sk 6= sk′ and UKCheck(pk, sk) = UKCheck(pk, sk′) = 1.

3.2 Security Notions for PDPs and Signatures

In this subsection, we define several security notions, called weak unpredictabil-
ity, weak unforgeability, and weak tamper-resilience, for PDPs and signatures.

In [2], two security notions were defined for PDPs: unpredictability and pseu-
dorandomness. A PDP satisfying the former (respectively, latter) security notion
is a VUF (respectively, VRF). Moreover, unpredictability is weaker than pseudo-
randomness (see [2, Lemma 5]). In this paper, we define weak unpredictability,
which is weaker than standard unpredictability. This security notion only guar-
antees that a PPT adversary, which is allowed to neither learn pk nor make
any query, cannot output a valid input/output pair.14 We also define a similar

14 Since we aim at proving the impossibility on tamper-resilience of primitives, we
would like to define their underlying security in a way as weak as possible.

13

security notion, called weak unforgeability, for signatures. Furthermore, we de-
fine two additional security notions, called statistical weak unpredictability and
statistical weak unforgeability, which treat possibly inefficient adversaries. We
also refer the reader to Section A in Supplementary Material for the standard
security of unpredictability and unforgeability.

Definition 10 ((Statistical) weak unpredictability). A PDP (Gen,Comp,
Prove,Verify) is said to be weakly unpredictable (respectively, statistically weakly
unpredictable), if for any PPT adversary (respectively, possibly inefficient ad-
versary) A, we have

Pr[(pk, sk)← Gen(1λ), (x∗, y∗)← A(1λ) : Compsk(x∗) = y∗] ≤ negl(λ).

Definition 11 ((Statistical) weak unforgeability). A signature scheme
(Gen, Sign,Verify) is said to be weakly unforgeable (respectively, statistically
weakly unforgeable), if for any PPT adversary (respectively, possibly inefficient
adversary) A, we have

Pr[(pk, sk)← Gen(1λ), (m∗, σ∗)← A(1λ) : Verifypk(m∗, σ∗) = 1] ≤ negl(λ).

One can easily see that weak unpredictability and weak unforgeability are much
weaker than standard unpredictability and unforgeability notions, respectively.
However, this does not straightforwardly mean that statistical weak unpre-
dictability and statistical weak unforgeability are also weak since they treat
possibly inefficient adversaries. Now we give two lemmas showing the equiva-
lence between weak unpredictability and statistical weak unpredictability, and
that between weak unforgeability and statistical weak unforgeability.

Lemma 1. A PDP satisfies weak unpredictability (against non-uniform adver-
saries) if and only if it satisfies statistical weak unpredictability.

Proof (of Lemma 1). Since it is straightforward that statistical weak unpre-
dictability implies weak unpredictability, we focus on the opposite direction.

If a PDP Φ = (Gen,Comp,Prove,Verify) is not statistically weakly unpre-
dictable, then there exists a (possibly inefficient) adversary A that, on input a
security parameter 1λ, can output x∗ and y∗ such that Pr[(pk, sk)← Gen(1λ) :
y∗ = Compsk(x∗)] is non-negligible. Therefore, we can hard-wire such (x∗, y∗)
in a (non-uniform) PPT adversary B, which can easily break the weak unpre-
dictability of Φ by outputting (x∗, y∗), on input 1λ. Hence, weak unpredictability
implies statistical weak unpredictability. ⊓⊔

Lemma 2. A signature scheme satisfies weak unforgeability (against non-
uniform adversaries) if and only if it satisfies statistical weak unforgeability.

We omit the proof of Lemma 2 since it is exactly the same except that we replace
the winning condition y∗ = Compsk(x∗) with Verifypk(x∗, y∗) = 1.

We now define weak tamper-resilience (WTR) for PDPs and signatures. An
adversary against such security notions consists of three independent components

14

(Tamper,Break1,Break2). Tamper models a tampering function which de-
termines a tampered secret key, on input a public/secret key pair. Break1 takes
as input a public key and makes a computing or signing query. On receiving the
answer generated by using the tampered secret key, Break2 tries to output a
valid forgery. For simplicity, we allow the adversary to make only one tampering
query and one signing query, and forbid the communication between Break1 and
Break2. These security notions are (strictly) extremely weak versions of the un-
forgeability under chosen message and tampering attacks defined in [28,35] and
there have already been several positive results satisfying them [24,23,28,35], ex-
cept that we treat the plain model. As explained before, the more restrictive the
adversary is, the stronger our negative results are. Here, notice that although
we treat Tamper as a component of the adversary, it is essentially a tamper-
ing query made by the adversary since (Break1,Break2) can neither learn its
inputs nor communicate with it. The formal definitions are as follows.

Definition 12 (Weak tamper-resilient (WTR) PDP). A PDP (Gen,
Comp,Prove,Verify) is said to satisfy WTR security, if for any PPT adversary
A = (Tamper,Break1,Break2), we have

Pr[(pk, sk)← Gen(1λ), sk′ ← Tamper(1λ, pk, sk), x← Break1(1λ, pk),

y = Compsk′(x), (x∗, y∗)← Break2(1λ, pk, y) :

x∗ 6= x ∧ sk′ ∈ SK ∧ y∗ = Compsk(x∗)] ≤ negl(λ).

The winning condition that sk′ ∈ SK follows [28]. It makes our results stronger
since the adversary is more restricted.

Definition 13 (Weak tamper-resilient (WTR) signature). A signature
scheme (Gen, Sign,Verify) is said to satisfy WTR security, if for any PPT ad-
versary A = (Tamper,Break1,Break2), we have

Pr[(pk, sk)← Gen(1λ), sk′ ← Tamper(1λ, pk, sk),m← Break1(1λ, pk),

σ ← Signsk′ (m), (m∗, σ∗)← Break2(1λ, pk, σ) :

m∗ 6= m ∧ sk′ ∈ SK ∧ Verifypk(m∗, σ∗) = 1] ≤ negl(λ).

Notice that when showing impossibility of black-box reductions for proving WTR
security, we need to consider reduction algorithms that can exploit an adversary
A = (Tamper,Break1,Break2) in any way they want, i.e., adaptively make
queries to Tamper, Break1, and Break2 in any order and for any times (on
condition that the total number of queries is polynomial in λ). This is an obstacle
we need to overcome in our formal proofs. Also, note that unlike previous works
treating arbitrary tampering attacks [24,23,28,35], we define Tamper as part of
the adversary. However, we do this only for simplicity and this does not make
any additional restriction on the reductions we consider. We refer the reader to
Section 1.3 for the remark on our model for a further discussion.

15

3.3 Simulatable Attacks for WTR Secure PDPs and Signatures

In this subsection, we focus on showing the existence of simulatable attacks on
the WTR security of PDPs and unique signatures, which implies the impossi-
bility of deriving their WTR security from any commonly used assumption via
black-box reductions, due to Theorem 1.

Simulatable attack for WTR secure PDPs. We start with giving a theo-
rem showing that if a PDP satisfies weak unpredictability, then there exists a
simulatable attack on its WTR security.

Theorem 2. For any weakly unpredictable PDP Φ = (Gen,Comp,Prove,Verify),
there exists a simulatable attack on the WTR security of Φ.

Overview and idea of the proof. Let Fλ be the set of all functions f :
{0, 1}p → Rg × Rp, and (x, x∗) be elements in X such that x 6= x∗. We firstly
construct an inefficient adversaryA, which is an ensemble of stateless algorithms
{Aλ,f = (Tamperλ,f ,Break1λ,f ,Break2λ,f)}λ∈N,f∈Fλ

. Each Aλ,f hard-wires
(x, x∗) and an element f in Fλ. We show that eachAλ,f breaks the WTR security
of Φ. Then we show the existence of a PPT stateful simulator Sim that can
simulate the behavior of Aλ,f , in the case that f is randomly chosen from Fλ

(and hence is a random function with domain {0, 1}p and range Rg ×Rp). We
design Aλ,f as follows.

Tamperλ,f (1λ, pk, sk) runs (rg, rp) = f(pk) and (pk′, sk′) = Gen(1λ; rg)
(where rp is an internal random coin of Prove that is used when checking the
validity of (pk, sk) which we will explain later). If (pk, sk) is valid, it out-
puts sk′ as the tampered key. Break1λ,f (pk) outputs x as the computing
query. Break2λ,f (pk, y) runs (rg, rp) = f(pk) and (pk′, sk′) = Gen(1λ; rg), and
checks whether y is a correct answer for x (i.e., whether y = Compsk′ (x)).
If the check works, it does an exhaustive search to find (y∗, π∗) such that
Verifypk(x∗, y∗, π∗) = 1, and outputs (x∗, y∗) as a forgery. Otherwise, it aborts.
One can see that Aλ,f breaks the WTR security of Φ due to correctness and
uniqueness.

Next we explain why we can have a PPT stateful simulator Sim which is
indistinguishable from Aλ,f (where f ← Fλ) in the view of any (possibly inef-
ficient) oracle-access machine B. To make Break2λ,f output a forgery (rather
than abort), B has to answer the query x made by Break1λ,f . However, with-
out having given Tamperλ,f a valid key pair (pk, sk) previously, B would learn
no information on (pk′, sk′). The reason is that B only has black-box access to
Tamperλ,f and cannot see the structure of f . When Tamperλ,f (pk, sk) aborts,
no information on f(pk) is revealed. In this case, B cannot answer x due to the
weak unpredictability of Φ. Therefore, we can construct Sim, who simulates the
outputs of f by executing lazy sampling (i.e., by randomly choosing (rg, rp) and
keeping them in its internal list), and outputs a forgery by using a valid key sk
having appeared in a Tamper query made by B previously.15 If such sk does

15 This is possible since Sim is stateful and can record the previously queried keys in
its internal list.

16

not exist, Sim aborts. Due to uniqueness, the final outputs of Break2λ,f and
Sim must be identical, which guarantees that the interactions with Aλ,f and
with Sim are indistinguishable in the view of B.

More specifically, we show the indistinguishability by giving hybrid machines
A0 and A1. A0 interacts with B in the same way as Aλ,f (where f ← Fλ) does,
except that it simulates the outputs of f by executing lazy sampling. A1 runs
in the same way as A0 does except that it aborts if B makes a Break2 query
(pk, y), where a valid secret key sk for pk has not appeared in a Tamper query
previously. The indistinguishability between Aλ,f and A0 follows from the fact
that the outputs of f look perfectly random in the view of B. Furthermore, A0

is indistinguishable from A1, since without having given A0 a valid key pair
(pk, sk) previously, all the Break2 queries including pk that B makes will lead
A0 to abort. Otherwise, we can construct an adversary breaking the statistical
weak unpredictability of Φ. However, since statistical weak unpredictability is
equivalent to (computational) weak unpredictability (see Lemma 1), such an
adversary cannot exist due to the weak unpredictability of Φ. At last, we need
to show thatA1 is indistinguishable from Sim. The only difference between them
is that to output a forgery, A1 does an exhaustive search, while Sim exploits
a valid secret key having appeared in a Tamper query previously. Due to the
uniqueness of Φ, their forgeries (with respect to the same pk) must be identical,
and hence B cannot distinguish the interactions with Aλ,f and with Sim.

Notice that we need to ensure that Tamperλ,f and Sim output a tampered
key only if they receive a valid key pair (pk, sk). Otherwise, Sim cannot simulate
the behavior of Aλ,f . Nevertheless, one may wonder how they check the validity,
since there seems to be no checking algorithm for key pairs. To deal with this
issue, we make them verify whether Verifypk(x∗,Compsk(x∗),Provesk(x∗; rp)) =
1 instead. Although such a procedure does not check the validity of (pk, sk)
directly, it guarantees that if (pk, sk) passes the verification, then Break2λ,f
can absolutely find a forgery for x∗ with respect to pk by using its brute force,
and Sim can output the same forgery by using sk.

Proof (of Theorem 2). For each λ ∈ N, let Fλ be the set of all functions
f : {0, 1}p → Rg × Rp, and x and x∗ be arbitrary elements in X such
that x 6= x∗. We define an inefficient class of stateless adversaries {Aλ,f =
(Tamperλ,f ,Break1λ,f ,Break2λ,f)}λ∈N,f∈Fλ

, where x and x∗ are hard-wired,
as follows.

Tamperλ,f (pk, sk):16

1. Compute (rg, rp) = f(pk).
2. Compute (pk′, sk′) = Gen(1λ; rg).
3. If Verifypk(x∗,Compsk(x∗),Provesk(x∗; rp)) = 1, return sk′. Otherwise, re-

turn ⊥.

Break1λ,f(pk):

1. Return x.

16 For simplicity, we omit the procedure of length-checking since the security parameter
is implicitly taken as input. The same argument is made for other algorithms.

17

Break2λ,f(pk, y):
1. Compute (rg, rp) = f(pk).
2. Compute (pk′, sk′) = Gen(1λ; rg).
3. If y = Compsk′(x), then do an exhaustive search to find the lexicographically

first pair (y∗, π∗) such that Verifypk(x∗, y∗, π∗) = 1, and return (x∗, y∗). If
y 6= Compsk′ (x) or such (y∗, π∗) does not exist, return ⊥.

It is clear that Verifypk(x∗, y∗, π∗) = 1 implies y∗ = Compsk(x∗) if (pk, sk)
is an honestly sampled key pair, due to the correctness and uniqueness of Φ.
Furthermore, the checks done by Tamperλ,f and Break2λ,f must work in a
WTR security game due to correctness, and we have x 6= x∗. Hence, for each
f ∈ Fλ, Aλ,f breaks the WTR security of Φ with advantage 1.

We now define the PPT stateful simulator Sim(1λ). It internally keeps a list
 L (which is initially empty) as a state, and answers queries as follows.
– On receiving a Tamper query (pk, sk):

1. Search (pk, sk, rg, rp) ∈ L.17 If the searching process failed (i.e., pk is
not currently in L), randomly choose (rg , rp) ← Rg × Rp, and add
(pk, sk, rg, rp) (where sk = ⊥) to L.

2. Compute (pk′, sk′) = Gen(1λ; rg).
3. If Verifypk(x∗,Compsk(x∗),Provesk(x∗; rp)) = 1, replace sk with sk in L

(if sk = ⊥), and return sk′. Otherwise, return ⊥.
– On receiving a Break1 query pk:

1. Return x.
– On receiving a Break2 query (pk, y):

1. Search (pk, sk, rg, rp) ∈ L. If the searching process failed or sk = ⊥,
return ⊥.

2. Compute (pk′, sk′) = Gen(1λ; rg).
3. If y = Compsk′ (x), compute y∗ = Compsk(x∗) and return (x∗, y∗). Oth-

erwise, return ⊥.
Let B(·) be any (possibly inefficient) oracle-access probabilistic machine

that makes at most polynomially many queries. We show that |Prf←Fλ
[1 ←

BAλ,f (1λ)]− Pr[1← BSim(1λ)(1λ)]| ≤ negl(λ) by giving hybrid machines.18

Hybrid machine A0: We define an inefficient stateful machine A0 as follows.
– On receiving a Tamper query (pk, sk):

1. Search (pk, sk, rg, rp) ∈ L (where L is initialized with ∅). If the search-
ing process failed, randomly choose (rg, rp) ← Rg × Rp, and add
(pk, sk, rg, rp) (where sk = ⊥) to L.

2. Compute (pk′, sk′) = Gen(1λ; rg).
3. If Verifypk(x∗,Compsk(x∗),Provesk(x∗; rp)) = 1, replace sk with sk in L

(if sk = ⊥), and return sk′. Otherwise, return ⊥.
– On receiving a Break1 query pk:

17 Searching processes succeed even if sk is ⊥.
18 Recall that during the execution of B

Aλ,f (1λ) or B
Sim(1λ)(1λ), B can adaptively

make Tamper, Break1, and Break2 queries in any order and for any times (on
condition that the total number of queries is polynomial in λ).

18

1. Return x.
– On receiving a Break2 query (pk, y):

1. Search (pk, sk, rg, rp) ∈ L. If the searching process failed, then randomly
choose (rg, rp)←Rg ×Rp, and add (pk,⊥, rg, rp) to L.

2. Compute (pk′, sk′) = Gen(1λ; rg).
3. If y = Compsk′ (x), then do an exhaustive search to find the lexicograph-

ically first pair (y∗, π∗) such that Verifypk(x∗, y∗, π∗) = 1, and return
(x∗, y∗). If y 6= Compsk′(x) or such (y∗, π∗) does not exist, return ⊥.

Lemma 3. Prf←Fλ
[1← BAλ,f (1λ)] = Pr[1← BA0(1

λ)(1λ)].

Proof (of Lemma 3). Since f (used by Aλ,f) is randomly sampled from Fλ, the
outputs of f are perfect randomness in the view of B. Moreover, what A0 does
is just simulating f by executing lazy sampling. Then this lemma follows from
the fact that the views of B in the interactions with Aλ,f (where f ← Fλ) and
with A0 are identical. ⊓⊔

Hybrid machine A1: We now define an inefficient stateful machine A1 which
is the same as A0, except that on receiving a Break2 query (pk, y), A1 aborts
if there is no valid secret key sk for pk stored in L. In other words, A1 aborts if
pk has not appeared in a Tamper query previously, the answer of which is not
⊥. Formally, on receiving a Break2 query (pk, y), A1 runs as follows. (Bellow,
the difference from A0 is only in Step 1, and is emphasized.)

1. Search (pk, sk, rg, rp) ∈ L. If the searching process failed or sk = ⊥, return
⊥.

2. Compute (pk′, sk′) = Gen(1λ; rg).
3. If y = Compsk′(x), do an exhaustive search to find the lexicographically

first pair (y∗, π∗) such that Verifypk(x∗, y∗, π∗) = 1, and return (x∗, y∗). If
y 6= Compsk′ (x) or such (y∗, π∗) does not exist, return ⊥.

Lemma 4. |Pr[1← BA1(1
λ)(1λ)]− Pr[1← BA0(1

λ)(1λ)]| ≤ negl(λ).

Proof (of Lemma 4). Let E be the event that during the execution of

BA0(1
λ)(1λ), B makes a Break2 query (pk, y) such that

– pk has not appeared in a valid Tamper query (the answer of which is not
⊥) previously, and

– the answer to this Break2 query is not ⊥.

If E does not occur during the execution of BA0(1
λ)(1λ), then the view of B

is identical to its view in the interaction with A1. Therefore, we have |Pr[1 ←

BA1(1
λ)(1λ)] − Pr[1 ← BA0(1

λ)(1λ)]| ≤ Pr[E]. It remains to show that Pr[E] is
negligible.

Claim 1 Let the total number of (all kinds of) queries made by B be q. Then
there exists an inefficient adversary E that breaks the statistical weak unpre-
dictability of Φ with probability at least Pr[E]/q2.

19

Proof idea of Claim 1. A tampered key is generated as (pk′, sk′) ←
Gen(1λ; rg) where rg is a randomness linked with a public key pk. If B does
not make a valid Tamper query (which does not lead A0 to output ⊥) in-
cluding pk, it would learn no information on (pk′, sk′).19 In this case, making
a Break2 query, such that pk is included in this query but A0 does not return
⊥, means forging a valid input/output pair under pk′, due to the check done at
the third step in the response to a Break2 query. Therefore, B can be used to
break the statistical weak unpredictability of Φ. The formal proof is as follows.

Proof (of Claim 1). The description of E is as follows.
The challenger samples (pk′, sk′) ← Gen(1λ) and gives 1λ to E . Then E

randomly chooses î, ĵ ← {1, · · · , q}, and interacts with B in the same way as A0

does (during the execution of BA0(1
λ)(1λ)), except that

1. From the îth query, every time when receiving a Tamper or Break2 query
including pk used in the îth query, E returns ⊥ to B (except for the ĵth
query).20

2. On receiving the ĵth query, if it is a Break2 query denoted by (pk, y), E
returns (x, y) to the challenger and terminates. Otherwise E aborts.
Now we argue that E returns (x, y) such that y = Compsk′ (x) with probability

at least Pr[E]/q2.

During the execution of BA0(1
λ)(1λ), when E occurs, B must have made a

Break2 query (pk, y), such that (a) there exists no entry (pk, sk, rg, rp) ∈ L such
that sk 6= ⊥, but (b) A0 does not return ⊥ as its answer. Therefore, for randomly
sampled î, ĵ ← {1, · · · , q} (not learnt by B), when E occurs, the probability that
– the ĵth query is the first Break2 query satisfying the above two conditions

(a) and (b), and
– the ĵth query includes pk, which is firstly used in the îth query,

is at least 1/q2. Since E perfectly simulates A0 in the interaction with B in
this case (till the termination), it returns (x, y) such that y = Compsk′(x) with
probability at least Pr[E]/q2. Notice that in this case, rg linked with pk (used

in the ĵth query) is not used by E , and we view (pk′, sk′) (generated by the
challenger and not learnt by E) as the key pair generated by using rg. This
completes the proof of Claim 1. ⊓⊔

Due to the equivalence between weak unpredictability and statistical weak unpre-
dictability (see Lemma 1) and the assumption that Φ is weakly unpredictable,
Pr[E]/q2 is negligible. Therefore, Pr[E] is negligible, completing the proof of
Lemma 4. ⊓⊔

Lemma 5. Pr[1← BSim(1λ)(1λ)] = Pr[1← BA1(1
λ)(1λ)].

Proof (of Lemma 5). The difference between Sim and A1 is that to return
a correct input/output pair, Sim computes y∗ = Compsk(x∗) while A1 does

19 As explained in the idea of the proof, since B only has black-box access toTamperλ,f
and cannot see the structure of f , when Tamperλ,f (pk, sk) aborts, no information
on f(pk) is revealed.

20
E may terminate before receiving the îth query.

20

an exhaustive search to find the lexicographically first pair (y∗, π∗) such that

Verifypk(x∗, y∗, π∗) = 1. One can see that during the execution of BA1(1
λ)(1λ)

and BSim(1λ)(1λ), Verifypk(x∗,Compsk(x∗),Provesk(x∗; rp)) = 1 holds for all

(pk, sk, rg, rp) ∈ L where sk 6= ⊥, due to the check done in the third step in
the response to a Tamper query. Furthermore, there exists only one y∗ such
that Verifypk(x∗, y∗, π∗) = 1 for some π∗, due to the uniqueness of Φ. Therefore,
the forgeries output by Sim and A with respect to the same pk are the same,
i.e., the views of B in the interactions with Sim and with A1 are identical. ⊓⊔

Due to Lemmas 3 to 5, we have |Prf←Fλ
[1 ← BAλ,f (1λ)] − Pr[1 ←

BSim(1λ)(1λ)]| ≤ negl(λ), completing the proof of Theorem 2. ⊓⊔

Simulatable attack for WTR secure unique-key signatures. Next we
give our negative result on tamper-resilient unique-key signatures.

Theorem 3. For any weakly unforgeable unique-key signature scheme Σ =
(Gen, Sign,Verify), there exists a simulatable attack on the WTR security of Σ.

We refer the reader to Section B in Supplementary Material for the adversaries
and simulator in this simulatable attack. Unlike those in the proof of Theorem 2,
the adversaries and simulator in this simulatable attack check the validity of a
key pair in a direct way by using the key checking algorithm UKCheck, and the
adversaries exhaustively search a secret key and forge a signature by using it. We
omit the proof of the indistinguishability between the adversaries and simulator
since it can be done by slightly modifying the proof of Theorem 2.

3.4 Summary of Negative Results on PDPs and Signatures

Since we have shown the existence of simulatable attacks on the WTR security of
any weakly unpredictable PDP and any weakly unforgeable unique-key signature
scheme, we obtain the following corollary, which is the first main result in our
paper. It directly follows from Theorems 1, 2, and 3.

Corollary 1 Let Φ (respectively, Σ) be a PDP (respectively, a unique-key signa-
ture scheme). If Φ (respectively, Σ) is weakly unpredictable (respectively, weakly
unforgeable), then there exists no black-box reduction deriving the WTR security
of Φ (respectively, Σ) from the security of any cryptographic game.

This corollary implies the impossibility of deriving the (even extremely weak)
tamper-resilience of PDPs and unique-key signatures from any common assump-
tion, via black-box reductions.

As explained before, VRFs, VUFs, and unique signatures can be cast as
PDPs. Furthermore, the security notions for VRFs and VUFs, called pseudo-
randomness and unpredictability respectively (see [2] for the formal definitions),
are stronger than weak unpredictability, and a weakly unforgeable unique sig-
nature scheme can be viewed as a weakly unpredictable PDP. Hence, we obtain
the following corollary derived from Corollary 1.

21

Corollary 2 Let Φ be a VRF, a VUF, or a weakly unforgeable unique signature
scheme. There exists no black-box reduction deriving the WTR security of Φ from
the security of any cryptographic game.

Negative result on injective OWFs. In [68], Wichs gave a negative result
on leakage-resilient unique-key one-way relations. One may also wonder whether
tamper-resilient injective OWFs are achievable. Indeed, Faonio and Venturi [28]
implicitly used a tamper-resilient OWF, and we can follow them to combine a
tamper-resilient injective OWF with the framework in [25] to obtain tamper-
resilient unique-key signatures in the CRS model, where it is assumed that
tamper-proof public parameters are available. However, a simplified version of
the proof of Theorem 2 can be adopted to show the non-existence of black-box
reductions deriving the tamper-resilience of OWFs from the security of any cryp-
tographic game. We refer the reader to Section C in Supplementary Material for
the definition, security notion, and simulatable attack for tamper-resilient injec-
tive OWFs. Notice that this negative result does not imply those on unique-key
signatures and encryption schemes, since a public/secret key pair is not neces-
sarily an output/input pair of an OWF, and a signature or a ciphertext does not
necessarily include public keys.

Negative result on re-randomizable signatures. In [43], Hofheinz et al.
extended the negative results on tight security of unique signatures, which was
firstly proved by Coron [19] and then fixed by Kakvi and Kiltz [48], for the notion
of re-randomizable signatures. This notion is more general and hence captures
more instantiations, such as the Waters signature scheme [66] and its variant [43].
We argue that such an extension can also be adopted in our case. Namely, by
slightly changing the proof of Theorem 2, we can prove the impossibility on re-
randomizable signatures with tamper-resilience. Intuitively, like the uniqueness
of a PDP, which guarantees that the outputs of the adversary and the simulator
are the same, the re-randomizability guarantees that their (re-randomized) out-
puts are indistinguishable in the view of any (possibly inefficient) distinguisher.
We refer the reader to Section D in Supplementary Material for the definition of
re-randomizable signatures and the simulatable attack on their WTR security.
We omit the formal proof since it can be done by slightly modifying the proof
of Theorem 2.

We can also extend the negative result on unique-key signatures for signa-
tures with key re-randomization [5], and the same extension can be adopted for
the above mentioned result on injective OWFs and our result on PKE schemes
introduced in the next section. These extensions are similar to the above one
and hence we omit the details.

Remark on self-destructive and key-updating mechanisms. The tamper-
resilience notions of many constructions are guaranteed by self-destructive or
key-updating mechanism (e.g., [37,27,49,23,35]). The former allows a device to
erase all internal data when tampering is detected, so that an adversary cannot
obtain any information from further queries. The latter allows a device to update

22

its secret information. Since we treat adversaries that only make one tampering
query and one computing query, our results (in both this section and the next
section) capture tamper-resilient primitives with these two mechanisms as well.

4 Impossibility on Unique-Message PKE Schemes

In this section, we give a negative result on unique-message PKE schemes. Our
result shows that if a unique-message PKE scheme satisfies some “extremely”
weak security, then there exists no black-box reduction deriving its tamper-
resilience in the plain model from any commonly used falsifiable assumption.

The rest of this section is organized as follows. In Section 4.1, we give the
definition of a unique-message PKE scheme. In Section 4.2, we define several
security notions. In Section 4.3, we show the existence of a weak simulatable
attack on the tamper-resilience of unique-message PKE schemes. In Section 4.4,
we summarize our negative result.

4.1 Definition of PKE Schemes

We now give the definition of a PKE scheme.

Definition 14 (Public key encryption (PKE)). A PKE scheme consists of
the PT algorithms (Gen,Enc,Dec). (a) Gen is a probabilistic algorithm that takes
as input 1λ, and returns a public/secret key pair (pk, sk) ∈ {0, 1}p × {0, 1}s for
some polynomials p = p(λ) and s = s(λ). The set of all secret keys (output by
Gen(1λ)) and the (internal) randomness space of Gen are denoted by SK and
Rg, respectively. (b) Enc is a probabilistic algorithm that takes as input a public
key pk and a message m ∈ M, where M is the message space, and returns a
ciphertext ct ∈ {0, 1}c for some polynomial c = c(λ). The (internal) randomness
space of Enc is denoted by Re. (c) Dec is a deterministic algorithm that takes as
input a secret key sk and a ciphertext ct, and returns a message m ∈M or ⊥.

A PKE scheme is required to satisfy correctness, which means that Decsk(ct)
= m holds for all λ ∈ N, all (pk, sk) ← Gen(1λ), all m ∈ M, and all ct ←
Encpk(m).

We now define unique-message PKE schemes. For a unique-message PKE
scheme, there exists a plaintext-recovering algorithm which can correctly de-
crypt a ciphertext, and it is required that when using it to decrypt a ciphertext
(possibly outside the support of Enc), all valid secret keys with respect to a pub-
lic key (possibly outside the support of Gen) should lead to the same decryption
result.

Definition 15 (Unique-message PKE). A PKE scheme (Gen,Enc,Dec) is
said to be a unique-message PKE scheme if there exist two deterministic PT al-
gorithm (UMCheck,Rec) such that (a) UMCheck(pk, sk) = 1 holds for all λ ∈ N

and all (pk, sk)← Gen(1λ), (b) (Gen,Enc,Rec) satisfies correctness, and (c) for
all λ ∈ N, all pk ∈ {0, 1}p, and all ct ∈ {0, 1}c (possibly outside the support

23

of Gen and Enc respectively), there exists no pair (sk, sk′) ∈ {0, 1}s × {0, 1}s

that simultaneously satisfies UMCheck(pk, sk) = UMCheck(pk, sk′) = 1 and
Recsk(ct) 6= Recsk′ (ct).

For ease of understanding the rationale behind the above definition, as an in-
stance, we show how it captures the Cramer-Shoup scheme [20] in Section E.1 in
Supplementary Material. Furthermore, we argue that this definition captures all
the unique-key PKE schemes, which are defined in the same way as unique-key
signatures, namely, there exists only one valid secret key for each public key
(not necessarily output by Gen(1λ)). We refer the reader to Section E.2 in Sup-
plementary Material for the formal definition and the proof that all unique-key
PKE schemes fall under the definition of unique-message PKE schemes.

4.2 Security Notions for PKE Schemes

In this subsection, we define weak one-wayness and WTR security for PKE
schemes.

At first, we give the definition of weak one-wayness. Such security only guar-
antees that an adversary, which is allow to neither learn pk nor make any de-
cryption query, cannot recover a message from a randomly generated ciphertext.

Definition 16 (Weak one-wayness). A PKE scheme (Gen,Enc,Dec) is said
to be weakly one-way, if for any PPT adversary A, we have

Pr[(pk, sk)← Gen(1λ),m←M, ct← Encpk(m),

m′ ← A(1λ, ct) : m = m′] ≤ negl(λ).

Remark. We can also define statistical weak one-wayness by replacing “PPT
adversary” with “(possibly inefficient) adversary”. However, unlike the cases of
unpredictability and unforgeability notions defined for PDPs and signatures,
statistical weak one-wayness is not necessarily implied by weak one-wayness.
Specifically, for a one-way PKE scheme, one can see that its security does not
change if we put the public key into the ciphertext. The one-way security of
the original PKE scheme implies the weak one-wayness of this modified scheme.
However, if the public key is part of the ciphertext, the scheme cannot be sta-
tistically weakly one-way because an inefficient adversary can find a secret key
corresponding to the public key and decrypt the challenge ciphertext.

We now define WTR security for PKE schemes. Like WTR security for sig-
natures, an adversary in the security game consists of three independent compo-
nents (Tamper,Break1,Break2). Tamper determines a tampered secret key,
on input a public/secret key pair. Break1 takes as input a public key and makes
a decryption query. On receiving the answer generated by using the tampered
secret key and a challenge ciphertext, Break2 tries to decrypt the challenge
ciphertext. Similarly to WTR security for signatures, we allow the adversary
to make only one tampering query and one decryption query, and forbid the

24

communication between Break1 and Break2. If the message space is super-
polynomially large, one may consider this security notion as an extremely weak
version of the indistinguishability under chosen ciphertext attacks and tamper-
ing attacks defined in [28,35], except that we treat the plain model. As noted
before, the more restrictive the adversary is, the stronger our negative result is.
The formal definition is as follows.

Definition 17 (Weak tamper-resilient (WTR) PKE). A PKE scheme
(Gen,Enc,Dec) is said to satisfy WTR security, if for any PPT adversary
A = (Tamper,Break1,Break2), we have

Pr[(pk, sk)← Gen(1λ), sk′ ← Tamper(1λ, pk, sk), ct← Break1(1λ, pk),

m = Decsk′ (ct),m∗ ←M, ct∗ ← Encpk(m∗),m′ ← Break2(1λ, pk,m, ct∗) :

sk′ ∈ SK ∧m′ = m∗] ≤ negl(λ).

4.3 Weak Simulatable Attack for WTR Secure Unique-Message
PKE Schemes

Next we give a theorem showing the existence of a weak simulatable attack on
the WTR security of unique-message PKE schemes satisfying weak one-wayness.
The basic idea of the proof is similar to that of Theorem 2. The main difference
is that in this case, the indistinguishability between the inefficient adversary
A and the PPT simulator Sim follows from the fact that without making a
valid Tamper query (which does not lead A to output ⊥), the distinguisher
cannot answer a decryption query (rather than a signing query). Similarly to the
simulatable attack for Theorem 3 (see Section B in Supplementary Material),
A and Sim check the validity of a key pair in a direct way, by using the key
checking algorithm UMCheck.

Theorem 4. For any weakly one-way unique-message PKE scheme Π =
(Gen,Enc,Dec), there exists a weak simulatable attack on its WTR security.

We give the overview and idea of the proof of Theorem 4 as below, and refer the
reader to Section F in Supplementary Material for the full details.

Overview and idea of the proof of Theorem 4. Let UMCheck and Rec be
the key checking algorithm and plaintext-recovering algorithm of Π , respectively,
and Fλ be the set of all functions f : {0, 1}p → Rg × Re × M. We firstly
construct an inefficient adversaryA, which is an ensemble of stateless algorithms
{Aλ,f = (Tamperλ,f ,Break1λ,f ,Break2λ,f)}λ∈N,f∈Fλ

. Each Aλ,f hard-wires
an element f in Fλ. We show that each Aλ,f breaks the WTR security of Π ,
and there exists a PPT stateful simulator Sim that can simulate the behavior
of Aλ,f , in the case that f is chosen uniformly at random from Fλ (and hence
is a random function with domain {0, 1}p and range Rg ×Re ×M). We design
Aλ,f as follows.

Tamperλ,f (1λ, pk, sk) runs (rg , re,m) = f(pk) and (pk′, sk′) = Gen(1λ; rg).
If (pk, sk) is valid (i.e., UMCheck(pk, sk) = 1), it outputs sk′ as the tampered

25

key. Break1λ,f (pk) runs (rg, re,m) = f(pk) and outputs ct = Encpk′(m; re)
as the decryption query. Break2λ,f (pk,m′, ct∗) runs (rg, re,m) = f(pk) and
(pk′, sk′) = Gen(1λ; rg), and checks whether the answer of the decryption query
is correct (i.e., whether m′ = m). If the check works, it does an exhaustive
search to find a secret key sk such that UMCheck(pk, sk) = 1, and outputs
m∗ = Recsk(ct∗). Otherwise, it aborts. One can see that Aλ,f breaks the WTR
security of Π due to the correctness of Π and (Gen,Enc,Rec), and the unique-
message property of Π .

Next we explain why we can have a PPT stateful simulator Sim which is
indistinguishable fromAλ,f (where f ← Fλ) in the view of any oracle-access PPT
machine B. To make Break2λ,f recover ct∗ (rather than abort), B has to answer
the query ct made by Break1λ,f . However, without having given Tamperλ,f
a valid key pair (pk, sk) previously, ct is just a randomly generated ciphertext
in the view of B, and B learns no information on (pk′, sk′). The reason is that
B only has black-box access to Tamperλ,f and cannot see the structure of f .
When Tamperλ,f (pk, sk) aborts, no information on f(pk) is revealed. In this
case, B cannot answer ct due to the weak one-wayness of Π . Therefore, we can
construct Sim, who simulates the outputs of f by executing lazy sampling, and
decrypts ct∗ by using a valid key having appeared in a Tamper query made by B
previouly. If such a key does not exist, Sim aborts. Due to the unique-message
property, the final outputs of Break2λ,f and Sim must be identical, which
guarantees that the interactions with Aλ,f and with Sim are indistinguishable
in the view of B.

More specifically, we show the indistinguishability by giving hybrid machines
A0 and A1. A0 interacts with B in the same way as Aλ,f (where f ← Fλ)
does, except that it simulates the outputs of f by executing lazy sampling. A1

runs in the same way as A0 does except that on receiving a Break2 query
(pk,m′, ct∗) where m′ is a correct answer for the decryption query, if a valid
secret key sk for pk has appeared in a Tamper query previously, A1 directly
computes Recsk(ct∗). Otherwise, it exhaustively searches sk and then computes
Recsk(ct∗). The indistinguishability between Aλ,f and A0 follows from the fact
that the outputs of f look perfectly random in the view of B. Furthermore,
due to the unique-message property of Π , the decryption results output by A0

and A1 (with respect to the same pk and ct∗) must be identical. Hence, A0 is
indistinguishable from A1 in the view of B. At last, we need to show that A1

is indistinguishable from Sim. The only difference between them is that when
B makes a Break2 query (pk,m′, ct∗), where a valid secret key sk for pk has
not appeared in a Tamper query previously, A1 checks whether m′ is a correct
answer of the decryption query and exhaustively searches a secret key to decrypt
ct∗ (if the check works), while Sim just aborts. Then the indistinguishability
between A1 and Sim follows from the fact that without having given A1 a valid
key pair (pk, sk) previously, all the Break2 queries including pk that B makes
will lead A1 to abort. Otherwise, we can construct an adversary breaking the
weak one-wayness of Π .

26

Remark. By slightly modifying the above proof, we can also prove that if a
unique-message PKE scheme satisfies statistical weak one-wayness, then there
exists a simulatable attack on its WTR security.

Furthermore, it is clear that for any honestly generated ciphertext, any hon-
estly generated secret key should lead to the same decryption result, due to cor-
rectness. Therefore, we can slightly modify the proof of Theorem 4 to show that
for a weakly one-way (respectively, statistically weakly one-way) PKE scheme
(Gen,Enc,Dec), if there exists an algorithm that can efficiently check whether a
secret key and a ciphertext are in the support of Gen and Enc (with respect to
a public key) respectively, then there exists a weak simulatable attack (respec-
tively, (standard) simuatable attack) on its WTR security.

4.4 Summary of a Negative Result on Unique-Message PKE

Since we have shown the existence of a weak simulatable attack on the WTR
security of any weakly one-way unique-message PKE schemes in the last subsec-
tion, we obtain the following corollary, which is the second main result in our
paper. It follows directly from Theorems 1 and 4.

Corollary 3 Let Π be a unique-message PKE scheme. If Π is weakly one-way,
then there exists no black-box reduction deriving the WTR security of Π from
the security of any restricted cryptographic game.

This result implies the impossibility of deriving the (even extremely weak)
tamper-resilience of a large class of PKE schemes from any common falsifiable
assumption, via black-box reductions.

5 Open Problems

Primitives circumventing our results. Our impossibility results capture a wide
class of tamper-resilient cryptographic primitives in the plain model, while it
remains open whether achieving ones (against arbitrary tampering attacks) out-
side of the class is possible. One may try to circumvent our results by giving
a tamper-resilient PKE scheme, which is weakly one-way but not statistically
weakly one-way, under non-falsifiable assumptions. Furthermore, it might be
promising to combine such a PKE scheme with an NIZK proof system against
untrusted CRSs [9] to construct a tamper-resilient signature scheme, under the
framework proposed by Dodis et al. [25].

Impossibility on primitives in the CRS model. One may also wonder whether it
is possible to construct primitives captured by our negative results in the CRS
model (where the existence of tamper-proof public parameters is assumed). If
we strengthen the notions of statistical weak unpredictability and unforgeability,
and weak one-wayness by allowing the public parameter to be a maliciously
generated one (rather than an honestly sampled one), then our impossibility
results also hold in this model. However, it is apparent that such security notions

27

are not implied by standard ones. Studying PKE schemes satisfying standard
security but not satisfying ones against maliciously generated public parameters
might serve as a starting point.

Acknowledgement

A part of this work was supported by the National Natural Science Foun-
dation for Young Scientists of China under Grant Number 62002049, the
Fundamental Research Funds for the Central Universities under Grant Num-
bers ZYGX2020J017, ZYGX2020ZB020, ZYGX2020ZB019, the Sichuan Science
and Technology Program under Grant Numbers 2019YFG0506, 2020YFG0292,
2019YFG0505, 2020YFG0460, 2020YFG0462, Input Output Cryptocurrency
Collaborative Research Chair funded by IOHK, JST OPERA JPMJOP1612,
JST CREST JPMJCR14D6, JSPS KAKENHI JP16H01705, JP17H01695.

References

1. B. Abdolmaleki, K. Baghery, H. Lipmaa, and M. Zajac. A subversion-resistant
SNARK. In ASIACRYPT 2017.

2. M. Abe, J. Camenisch, R. Dowsley, and M. Dubovitskaya. On the impossibility of
structure-preserving deterministic primitives. In TCC 2014.

3. M. Abe, J. Groth, and M. Ohkubo. Separating short structure-preserving signa-
tures from non-interactive assumptions. In ASIACRYPT 2011.

4. G. Ateniese, B. Magri, and D. Venturi. Subversion-resilient signature schemes. In
ACM CCS 2015.

5. C. Bader, T. Jager, Y. Li, and S. Schäge. On the impossibility of tight crypto-
graphic reductions. In EUROCRYPT 2016.

6. M. Ball, D. Dachman-Soled, M. Kulkarni, and T. Malkin. Non-malleable codes for
bounded depth, bounded fan-in circuits. In EUROCRYPT 2016.

7. M. Bellare and D. Cash. Pseudorandom functions and permutations provably
secure against related-key attacks. In CRYPTO 2010.

8. M. Bellare, D. Cash, and R. Miller. Cryptography secure against related-key at-
tacks and tampering. In ASIACRYPT 2011.

9. M. Bellare, G. Fuchsbauer, and A. Scafuro. NIZKs with an untrusted CRS: security
in the face of parameter subversion. In ASIACRYPT 2016.

10. M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-
PRPs, RKA-PRFs, and Applications. In EUROCRYPT 2003.

11. M. Bellare, K. G. Paterson, and S. Thomson. RKA security beyond the linear
barrier: IBE, Encryption and Signatures. In ASIACRYPT 2012.

12. E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems.
In CRYPTO 1997.

13. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of eliminating
errors in cryptographic computations. J. Cryptology, 14(2).

14. D. Boneh and R. Venkatesan. Breaking RSA may not be equivalent to factoring.
In EUROCRYPT 1998.

15. X. Boyen, Q. Mei, and B. Waters. Direct chosen ciphertext security from identity-
based techniques. In ACM CCS 2005.

28

16. Z. Brakerski and N. Döttling. Hardness of LWE on general entropic distributions.
In EUROCRYPT 2020.

17. S. Chakraborty, M. Prabhakaran, and D. Wichs. Witness maps and applications.
In PKC 2020.

18. Y. Chen, B. Qin, J. Zhang, Y. Deng, and S. S. M. Chow. Non-malleable functions
and their applications. In PKC 2016.

19. J. Coron. Optimal security proofs for PSS and other signature schemes. In EU-
ROCRYPT 2002.

20. R. Cramer and V. Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput., 33(1).

21. R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption.
ACM Trans. Inf. Syst. Secur., 3(3).

22. D. Dachman-Soled and M. Kulkarni. Upper and lower bounds for continuous non-
malleable codes. In PKC 2019.

23. I. Damg̊ard, S. Faust, P. Mukherjee, and D. Venturi. Bounded tamper resilience:
How to go beyond the algebraic barrier. J. Cryptology, 30(1).

24. I. Damg̊ard, S. Faust, P. Mukherjee, and D. Venturi. The chaining lemma and its
application. In ICITS 2015.

25. Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. Efficient public-key cryp-
tography in the presence of key leakage. In ASIACRYPT 2010.

26. Y. Dodis, V. Vaikuntanathan, and D. Wichs. Extracting randomness from
extractor-dependent sources. In EUROCRYPT 2020.

27. S. Dziembowski, K. Pietrzak, and D. Wichs. Non-malleable codes. In ICS 2010.
28. A. Faonio and D. Venturi. Efficient public-key cryptography with bounded leakage

and tamper resilience. In ASIACRYPT 2016.
29. S. Faust, P. Mukherjee, J. B. Nielsen, and D. Venturi. Continuous non-malleable

codes. In TCC 2014.
30. S. Faust, P. Mukherjee, D. Venturi, and D. Wichs. Efficient non-malleable codes

and key derivation for poly-size tampering circuits. IEEE Trans. Information
Theory, 62(12).

31. M. Fischlin, P. Harasser, and C. Janson. Signatures from sequential-or proofs. In
EUROCRYPT 2020.

32. M. Fischlin and D. Schröder. On the impossibility of three-move blind signature
schemes. In EUROCRYPT 2010.

33. G. Fuchsbauer. Subversion-zero-knowledge SNARKs. In PKC 2018.
34. E. Fujisaki and K. Xagawa. Efficient RKA-secure KEM and IBE schemes against

invertible functions. In LATINCRYPT 2015.
35. E. Fujisaki and K. Xagawa. Public-key cryptosystems resilient to continuous tam-

pering and leakage of arbitrary functions. In ASIACRYPT 2016.
36. T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Trans. Information Theory, 31(4).
37. R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin. Algorithmic

tamper-proof (ATP) security: Theoretical foundations for security against hard-
ware tampering. In TCC 2004.

38. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In STOC 2011.

39. S. Goldwasser and R. Ostrovsky. Invariant signatures and non-interactive zero-
knowledge proofs are equivalent (extended abstract). In CRYPTO 1992.

40. I. Haitner and T. Holenstein. On the (im)possibility of key dependent encryption.
In TCC 2009.

29

41. K. Haralambiev, T. Jager, E. Kiltz, and V. Shoup. Simple and efficient public-key
encryption from computational Diffie-Hellman in the standard model. In PKC
2010.

42. J. Hesse, D. Hofheinz, and L. Kohl. On tightly secure non-interactive key exchange.
In CRYPTO 2018.

43. D. Hofheinz, T. Jager, and E. Knapp. Waters signatures with optimal security
reduction. In PKC 2012.

44. S. Hohenberger and B. Waters. Constructing verifiable random functions with
large input spaces. In EUROCRYPT 2010.

45. S. Hohenberger and B. Waters. Short and stateless signatures from the RSA
assumption. In CRYPTO 2009.

46. Z. Jafargholi and D. Wichs. Tamper detection and continuous non-malleable codes.
In TCC 2015.

47. S. Jarecki and V. Shmatikov. Handcuffing big brother: an abuse-resilient transac-
tion escrow scheme. In EUROCRYPT 2004.

48. S. A. Kakvi and E. Kiltz. Optimal security proofs for full domain hash, revisited.
In EUROCRYPT 2012.

49. Y. T. Kalai, B. Kanukurthi, and A. Sahai. Cryptography with tamperable and
leaky memory. In CRYPTO 2011.

50. E. Kiltz, D. Masny, and J. Pan. Optimal security proofs for signatures from iden-
tification schemes. In CRYPTO 2016.

51. D. W. Kravitz. Digital signature algorithm. US Patent 5,231,668.
52. M. Liskov. Updatable zero-knowledge databases. In ASIACRYPT 2005.
53. F. Liu and A. Lysyanskaya. Tamper and leakage resilience in the split-state model.

In CRYPTO 2012.
54. A. Lysyanskaya. Unique signatures and verifiable random functions from the DH-

DDH separation. In CRYPTO 2002.
55. S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. In FOCS

1999.
56. S. Micali and L. Reyzin. Soundness in the public-key model. In CRYPTO 2001.
57. S. Micali and R. L. Rivest. Micropayments revisited. In CT-RSA 2002.
58. A. Morgan and R. Pass. On the security loss of unique signatures. In TCC 2018.
59. M. Naor. On cryptographic assumptions and challenges. In CRYPTO 2003.
60. P. Paillier and D. Vergnaud. Discrete-log-based signatures may not be equivalent

to discrete log. In ASIACRYPT 2005.
61. R. Pass. Limits of provable security from standard assumptions. In STOC 2011.
62. B. Qin, S. Liu, T. H. Yuen, R. H. Deng, and K. Chen. Continuous non-malleable

key derivation and its application to related-key security. In PKC 2015.
63. T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with composition: Limita-

tions of the indifferentiability framework. In EUROCRYPT 2011.
64. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital

signatures and public-key cryptosystems (reprint). Commun. ACM, 26(1).
65. Y. Wang, T. Matsuda, G. Hanaoka, and K. Tanaka. Memory lower bounds of

reductions revisited. In EUROCRYPT (1).
66. B. Waters. Efficient identity-based encryption without random oracles. In EURO-

CRYPT 2005.
67. H. Wee. Public key encryption against related key attacks. In PKC 2012.
68. D. Wichs. Barriers in cryptography with weak, correlated and leaky sources. In

ITCS 2013.
69. J. Zhang, Z. Zhang, Y. Chen, Y. Guo, and Z. Zhang. Black-box separations for

one-more (static) CDH and its generalization. In ASIACRYPT 2014.

30

Supplementary Material

A Standard Definitions

In this section, we recall the standard definitions of unpredictability and un-
forgeability.

Definition 18 (Unpredictability). A PDP (Gen,Comp,Prove,Verify) is said
to be unpredictable if for any PPT adversary A, we have

Pr[(pk, sk)← Gen(1λ), (x∗, y∗)← ACompO(·)(1λ, pk) :

x∗ /∈ Qx ∧ Compsk(x∗) = y∗] ≤ negl(λ),

where CompO(·) on input x returns y = Compsk(x) to A and adds x to Qx

(initialized as ∅).

Definition 19 (Unforgeability). A signature scheme (Gen, Sign,Verify) is
said to be unforgeable, if for any PPT adversary A, we have

Pr[(pk, sk)← Gen(1λ), (m∗, σ∗)← ASignO(·)(1λ, pk) :

m∗ /∈ Qm ∧ Verifypk(m∗, σ∗) = 1] ≤ negl(λ).

where SignO(·) on input m returns σ ← Signsk(m) to A and adds m to Qm

(initialized as ∅).

B Simulatable Attack for Theorem 3

In this section, we show the constructions of the (inefficient) adversaries and
(PPT) simulator in the simulatable attack for Theorem 3.

Inefficient adversaries. Let UKCheck be the key checking algorithm of Σ. For
each λ ∈ N, let Fλ be the set of all functions f : {0, 1}p→Rg ×Rs, and m and
m∗ be arbitrary elements inM such that m 6= m∗. We define the inefficient class
of stateless adversaries {Aλ,f = (Tamperλ,f ,Break1λ,f ,Break2λ,f)}λ∈N,f∈Fλ

,
where m and m∗ are hard-wired, as follows.

Tamperλ,f (pk, sk):
1. If UKCheck(pk, sk) 6= 1, return ⊥.
2. Compute (rg, rs) = f(pk).
3. Compute (pk′, sk′) = Gen(1λ; rg).
4. Return sk′.
Break1λ,f(pk):
1. Return m.
Break2λ,f(pk, σ):
1. Compute (rg, rs) = f(pk).
2. Compute (pk′, sk′) = Gen(1λ; rg).

31

3. If Verifypk′ (m,σ) = 1, then do an exhaustive search to find sk such that
UKCheck(pk, sk) = 1, compute σ∗ = Signsk(m∗; rs), and return (m∗, σ∗). If
Verifypk′ (m,σ) 6= 1 or such sk does not exist, return ⊥.

It is straightforward that for each f ∈ Fλ, Aλ,f breaks the WTR security with
advantage 1, due to the correctness and the unique-key property of Σ.

Simulator. We now define the PPT stateful simulator Sim(1λ). It internally
keeps a list L (which is initially empty) as a state, and answers queries as follows.
– On receiving a Tamper query (pk, sk):

1. If UKCheck(pk, sk) 6= 1, return ⊥.
2. Search (pk, sk, rg, rs) ∈ L. If the searching process failed (i.e., pk is

not currently in L), randomly choose (rg , rs) ← Rg × Rs, and add
(pk, sk, rg, rs) to L.

3. Compute (pk′, sk′) = Gen(1λ; rg).
4. Return sk′.

– On receiving a Break1 query pk:
1. Return m.

– On receiving a Break2 query (pk, σ):
1. Search (pk, sk, rg, rs) ∈ L. If the searching process failed, return ⊥.
2. Compute (pk′, sk′) = Gen(1λ; rg).
3. If Verifypk′ (m,σ) = 1, compute σ∗ = Signsk(m∗; rs) and return (m∗, σ∗).

Otherwise, return ⊥.
As explained in the main body of this paper, the proof of the indistinguisha-

bility between the interactions with Aλ,f (where f ← Fλ) and with Sim, which
is based on the weak unforgeability and unique-key property of Σ, is similar to
that in the proof of Theorem 2.

Remark on more restricted tampering attacks. We can also extend the
above simulatable attack to one with respect to more restricted tampering at-
tacks, which only allow Tamper to take sk as input.21 Since security treat-
ing such attacks is weaker than WTR security, this extension helps us achieve
stronger negative results. The same argument is also made for the simulatable
attack for injective one-way functions in Section C in Supplementary Material.
We omit the details since the extensions are straightforward.

C Impossibility on Injective One-Way Functions

In this section, we give a negative result on tamper-resilient injective OWFs.
Our result shows that for an injective OWF, there exists no black-box reduc-
tion deriving its tamper-resilience in the plain model from any commonly used
assumption.

21 In this case, (rg, rs) is computed as (rg, rs) = f(sk) and Break2 exhaustively
searches sk at the first step. The adversary can still be simulated due to the unique-
key property.

32

C.1 Definition of WTR Secure Injective One-Way Functions

We now define WTR secure injective OWFs. An adversary against their secu-
rity consists of two independent components (Tamper,Break). Tamper de-
termines a tampered input value, on input an input/output pair of the function.
Break takes as input both a challenge instance and the output for a tampered
input, and tries to recover the preimage. Similarly to the cases of signatures and
PKE schemes, we allow the adversary to make only one tampering query.

Definition 20 (Weak tamper-resilient injective OWF). A function F :
{0, 1}s → {0, 1}p, where s = s(λ) and p = p(λ) are some polynomials, is said
to be a WTR secure injective OWF if (a) there exists no pair (x, x′) ∈ {0, 1}s×
{0, 1}s that simultaneously satisfies x 6= x′ and F(x) = F(x′), and (b) for any
PPT adversary A = (Tamper,Break), we have

Pr[x← {0, 1}s, x′ ← Tamper(1λ,F(x), x) : x← Break(1λ,F(x),F(x′))] ≤ negl(λ).

C.2 Simulatable Attacks for WTR Secure Injective OWFs

In this subsection, we give a negative result on WTR secure injective OWFs.

Theorem 5. For any WTR secure injective OWF F : {0, 1}s → {0, 1}p, there
exists a simulatable attack on the security of F.

Inefficient adversaries. For each λ ∈ N, let Fλ be the set of all functions f :
{0, 1}p → {0, 1}s. We define an inefficient class of stateless adversaries {Aλ,f =
(Tamperλ,f ,Breakλ,f)}λ∈N,f∈Fλ

as follows.

Tamperλ,f (y, x):
1. If F(x) = y, return x′ = f(y). Otherwise, return ⊥.
Breakλ,f (y, y′):
1. Compute x′ = f(y).
2. If y′ = F(x′), then do an exhaustive search to find x∗ such that F(x∗) = y,

and return x∗. If y′ 6= F(x′) or such x∗ does not exist, return ⊥.
It is clear that for each f ∈ Fλ, Aλ,f breaks the WTR security of F with advan-
tage 1.

Simulator. We now define the PPT stateful simulator Sim(1λ). It internally
keeps a list L (which is initially empty) as a state, and answers queries as follows.
– On receiving a Tamper query (y, x):

1. If F(x) = y, search (y, x, x′) ∈ L. If the searching process failed (i.e., y
is not currently in L), randomly choose x′ ← {0, 1}s, add (y, x, x′) to L,
and return x′. If F(x) 6= y, return ⊥.

– On receiving a Break query (y, y′):
1. Search (y, x, x′) ∈ L. If the searching process failed, return ⊥.
2. If y′ = F(x′), return x. Otherwise, return ⊥.

33

The proof of the indistinguishability between the interactions with Aλ,f

(where f ← Fλ) and with Sim is based on the fact that without having given
Tamperλ,f a valid output/input pair (y, x) previously, y′ = F(x′) = F(f(y)) is
information theoretically hidden (since F is injective), which implies that all the
Break queries including y will lead Breakλ,f to abort. Since the proof is just a
simplified version of the proofs of Theorems 2 and 3, we omit the full details.

Following from Theorems 1 and 5, we summarize our negative result on
injective OWFs as the following corollary.

Corollary 4 There exists no black-box reduction deriving the security of a WTR
secure injective OWF from the security of any cryptographic game.

D Impossibility on Re-Randomizable Signatures

In this section, we give the definition of re-randomizable signatures and the
simulatable attack on their WTR secuirty.

D.1 Definition of Re-Randomizable Signatures

We now recall the definition of a re-randomizable signature scheme, in which
signatures are efficiently re-randomizable.

Definition 21 (Re-randomizable signature [43]). A signature scheme
(Gen, Sign,Verify) is said to be re-randomizable if there exists a PPT algorithm
ReRand such that σ′ ← ReRand(pk,m, σ) is distributed uniformly over S(pk,m)
for all λ ∈ N, all pk ∈ {0, 1}p (possibly outside the support of Gen), all m ∈ M,
and all σ such that Verify(pk,m, σ) = 1. Here, S(pk,m) denotes the set of all σ
such that Verify(pk,m, σ) = 1, and the randomness space of ReRand is denoted
by Rr.

One can see that unique signatures can be treated as special cases of re-
randomizable ones, where Sign is deterministic, and |S(pk,m)| ≤ 1 holds for
all λ ∈ N, all pk ∈ {0, 1}p, and all m ∈M.

D.2 Simulatable Attack for WTR Secure Re-Randomizable
Signatures

We now give a negative result on re-randomizable signatures.

Theorem 6. For any weakly unforgeable re-randomizable signature scheme Σ =
(Gen, Sign,Verify), there exists a simulatable attack on the WTR security of Σ.

The constructions of the (inefficient) adversaries and (PPT) simulator in the
simulatable attack for Theorem 6 are as follows.

34

Inefficient adversaries. Let ReRand be the re-randomization algorithm of
Σ. For each λ ∈ N, let Fλ be the set of all functions f : {0, 1}p →
Rg × Rs × Rr, and m and m∗ be arbitrary elements in M such that
m 6= m∗. We define an inefficient class of stateless adversaries {Aλ,f =
(Tamperλ,f ,Break1λ,f ,Break2λ,f)}λ∈N,f∈Fλ

, where m and m∗ are hard-
wired, as follows.

Tamperλ,f (pk, sk):

1. Compute (rg, rs, rr) = f(pk).
2. Compute (pk′, sk′) = Gen(1λ; rg).
3. If Verifypk(m∗, Signsk(m∗; rs)) = 1, return sk′. Otherwise, return ⊥.

Break1λ,f(pk):

1. Return m.

Break2λ,f(pk, σ):

1. Compute (rg, rs, rr) = f(pk).
2. Compute (pk′, sk′) = Gen(1λ; rg).
3. If Verifypk′ (m,σ) = 1, then do an exhaustive search to find the lex-

icographically first σ∗ such that Verifypk(m∗, σ∗) = 1, compute σ∗r =
ReRand(pk,m∗, σ∗; rr), and return (m∗, σ∗r). If Verifypk′ (m,σ) 6= 1 or such
(m∗, σ∗) does not exist, return ⊥.

It is straightforward that for each f ∈ Fλ, Aλ,f breaks the WTR security with
advantage 1, due to the correctness and re-randomizability of Σ.

Simulator. We now define the PPT stateful simulator Sim(1λ). It internally
keeps a list L (which is initially empty) as a state, and answers queries as follows.

– On receiving a Tamper query (pk, sk):
1. Search (pk, sk, rg, rs, rr) ∈ L. If the searching process failed (i.e., pk is

not currently in L), randomly choose (rg, rs, rr) ← Rg × Rs × Rr, and
add (pk, sk, rg, rs, rr) (where sk = ⊥) to L.

2. Compute (pk′, sk′) = Gen(1λ; rg).
3. If Verifypk(m∗, Signsk(m∗; rs)) = 1, replace sk with sk in L (if sk = ⊥),

and return sk′. Otherwise, return ⊥.
– On receiving a Break1 query pk:

1. Return m.
– On receiving a Break2 query (pk, σ):

1. Search (pk, sk, rg, rs, rr) ∈ L. If the searching process failed or sk = ⊥,
return ⊥.

2. Compute (pk′, sk′) = Gen(1λ; rg).
3. If Verifypk′ (m,σ) = 1, compute σ∗ = Signsk(m∗; rs), σ∗r = ReRand

(pk,m∗, σ∗; rr), and return (m∗, σ∗r). Otherwise, return ⊥.

As explained in the main body of this paper, the proof of the indistinguisha-
bility between the interactions with Aλ,f (where f ← Fλ) and with Sim, which
is based on the weak unforgeability and re-randomizability of Σ, is similar to
that in the proof of Theorem 2.

Following from Theorems 1 and 6, we summarize our negative result on re-
randomizable signatures as the following corollary.

35

Corollary 5 Let Σ be a re-randomizable signature scheme. If Σ is weakly un-
forgeable, then there exists no black-box reduction deriving the WTR security of
Σ from the security of any cryptographic game.

E Instances of Unique-Message PKE

In this section, we give examples of unique-message PKE schemes. Specifically,
we show that the Cramer-Shoup scheme [20] and all the unique-key PKE schemes
fall under the definition of unique-message PKE schemes.

E.1 The Cramer-Shoup Scheme

In this subsection, we show that the Cramer-Shoup scheme is a unique-message
PKE scheme.

Let λ be the security parameter, G be a cyclic group of prime order p, and
{Hk : G3 → Zp}k∈K be a keyed collision resistant hash function. The Cramer-
Shoup scheme is as follows.
– Gen(1λ):

1. Randomly choose (g1, g2)← G2 and k ← K.
2. Randomly choose (x1, x2, y1, y2, z)← Z5

p.
3. Compute c = gx1

1 gx2

2 , d = gy1

1 gy2

2 , and h = gz1 .
4. Return (pk, sk), where pk = (k, c, d, h, g1, g2) and sk = (k, x1,

x2, y1, y2, z, g1, g2).
– Encpk(m):

1. Parse pk = (k, c, d, h, g1, g2).
2. Randomly choose r ← Zp.
3. Compute u1 = gr1, u2 = gr2, e = hrm, α = Hk(u1, u2, e), and v = crdrα.
4. Return ct = (u1, u2, e, v).

– Decsk(ct):
1. Parse sk = (k, x1, x2, y1, y2, z, g1, g2) and ct = (u1, u2, e, v).
2. Compute α = Hk(u1, u2, e).
3. If ux1

1 ux2

2 (uy1

1 uy2

2)α 6= v, return ⊥.
4. Return m = e/(uz

1).
One can easily verify the following lemma. We give its proof for completeness.

Lemma 6. The Cramer-Shoup scheme is a unique-message PKE scheme.

Proof. Let UMCheck be the checking algorithm, which takes as input pk =
(k, c, d, h, g1, g2) and sk = (k, x1, x2, y1, y2, z, g1, g2), and checks whether
(h, g1) ∈ G

2, z ∈ Zp, and h = gz1 . If the check works, it outputs 1. Oth-
erwise, it outputs 0. It is obvious that UMCheck(pk, sk) = 1 holds for all
(pk, sk)← Gen(1λ).

Let Rec be a plaintext-recovering algorithm which takes as input sk =
(k, x1, x2, y1, y2, z, g1, g2) and ct = (u1, u2, e, v), and checks whether (e, u1) ∈ G2.
If the check works, Rec outputs m = e/(uz

1). Otherwise, it outputs ⊥. Since Rec

is the same as Dec, except that it additionally checks whether (e, u1) ∈ G2, and

36

skips checking validity of ciphertexts (i.e., Steps 2 and 3 in Dec), (Gen,Enc,Rec)
satisfies correctness, due to the correctness of (Gen,Enc,Dec).

Furthermore, for all pk = (k, c, d, h, g1, g2) and sk = (k, x1, x2, y1, y2, z, g1, g2)
such that UMCheck(pk, sk) = 1, we have h = gz1 , and there exists no (z, z′)
such that h = gz1 = gz

′

1 and e/(uz
1) 6= e/(uz′

1). Hence, for any ct and pk,
there exists no pair (sk, sk′) that simultaneously satisfies UMCheck(pk, sk) =
UMCheck(pk, sk′) = 1 and Recsk(ct) 6= Recsk′ (ct). This completes the proof. ⊓⊔

E.2 Unique-Key PKE Scheme

In this subsection, we give the definition of a unique-key PKE scheme, which
captures many existing implementations (e.g., [64,36,15,41]). Then we show that
any unique-key PKE scheme can be viewed as a unique-message PKE scheme.

Definition 22 (Unique-key PKE). A PKE scheme (Gen,Enc,Dec) is said
to be a unique-key PKE scheme, if there exists a deterministic PT algorithm
UKCheck such that (a) UKCheck(pk, sk) = 1 holds for all λ ∈ N and all
(pk, sk) ← Gen(1λ), and (b) for all λ ∈ N and all pk ∈ {0, 1}p (possibly out-
side the support of Gen), there exists no pair (sk, sk′) ∈ {0, 1}s × {0, 1}s that
simultaneously satisfies sk 6= sk′ and UKCheck(pk, sk) = UKCheck(pk, sk′) = 1.

One can easily verify the following lemma. We give its proof for completeness.

Lemma 7. Any unique-key PKE scheme is a unique-message PKE scheme.

Proof. Let (Gen,Enc,Dec) be a unique-key PKE scheme whose key checking
algorithm is UKCheck. Since Dec is deterministic, for all ct ∈ {0, 1}c, sk = sk′

implies Decsk(ct) = Decsk′ (ct). Therefore, for all λ ∈ N, all pk ∈ {0, 1}p and all
ct ∈ {0, 1}c, there exists no pair (sk, sk′) ∈ {0, 1}s×{0, 1}s that simultaneously
satisfies UKCheck(pk, sk) = UKCheck(pk, sk′) = 1 and Decsk(ct) 6= Decsk′(ct).
Therefore, (Gen,Enc,Dec) is a unique-message PKE scheme, for which the key
checking algorithm is UKCheck and the plaintext-recovering algorithm is the
original decryption algorithm Dec. ⊓⊔

F Proof of Theorem 4

In this section, we give the full proof of Theorem 4.

Proof (of Theorem 4). Let UMCheck and Rec be the key checking algorithm and
the plaintext-recovering algorithm of Π , respectively. For each λ ∈ N, let Fλ be
the set of all functions f : {0, 1}p →Rg×Re×M. We define an inefficient class
of stateless adversaries {Aλ,f = (Tamperλ,f ,Break1λ,f ,Break2λ,f)}λ∈N,f∈Fλ

as follows.

Tamperλ,f (pk, sk):
1. If UMCheck(pk, sk) 6= 1, return ⊥.
2. Compute (rg, re,m) = f(pk).
3. Compute (pk′, sk′) = Gen(1λ; rg) and return sk′.

37

Break1λ,f(pk):
1. Compute (rg, re,m) = f(pk).
2. Compute (pk′, sk′) = Gen(1λ; rg).
3. Return ct = Encpk′(m; re).
Break2λ,f(pk,m′, ct∗):
1. Compute (rg, re,m) = f(pk).
2. If m = m′, do an exhaustive search to find the lexicographically first sk such

that UMCheck(pk, sk) = 1, and return m∗ = Recsk(ct∗). If m 6= m′ or such
sk does not exist, return ⊥.

It is straightforward that for each f ∈ Fλ, Aλ,f breaks the WTR security with
advantage 1, due to the correctness of Π and (Gen,Enc,Rec), and the unique-
message property of Π .

We now define the PPT stateful simulator Sim(1λ). It internally keeps a list
 L (which is initially empty) as a state, and answers queries as follows.
– On receiving a Tamper query (pk, sk):

1. If UMCheck(pk, sk) 6= 1, return ⊥.
2. Search (pk, sk, rg, re,m) ∈ L. If sk = ⊥, replace sk with sk. If the

searching process failed (i.e., pk is not currently in L), randomly choose
(rg , re,m)←Rg ×Re ×M, and add (pk, sk, rg, re,m) to L.

3. Compute (pk′, sk′) = Gen(1λ; rg) and return sk′.
– On receiving a Break1 query pk:

1. Search (pk, sk, rg, re,m) ∈ L. If the searching process failed, then ran-
domly choose (rg, re,m)← Rg ×Re ×M, and add (pk,⊥, rg, re,m) to
 L.

2. Compute (pk′, sk′) = Gen(1λ; rg).
3. Return ct = Encpk′ (m; re).

– On receiving a Break2 query (pk,m′, ct∗):
1. Search (pk, sk, rg, re,m) ∈ L. If the searching process failed or sk = ⊥,

return ⊥.
2. If m = m′, return m∗ = Recsk(ct∗). Otherwise, return ⊥.

Let B(·) be any oracle-access PPT machine. We show that |Prf←Fλ
[1 ←

BAλ,f (1λ)]− Pr[1← BSim(1λ)(1λ)]| ≤ negl(λ) by giving hybrid machines.

Hybrid machine A0: We define an inefficient stateful machine A0 as follows.
– On receiving a Tamper query (pk, sk):

1. If UMCheck(pk, sk) 6= 1, return ⊥.
2. Search (pk, sk, rg, re,m) ∈ L (where L is initialized with ∅). If sk =
⊥, replace sk with sk. If the searching process failed, randomly choose
(rg , re,m)←Rg ×Re ×M, and add (pk, sk, rg, re,m) to L.

3. Compute (pk′, sk′) = Gen(1λ; rg) and return sk′.
– On receiving a Break1 query pk:

1. Search (pk, sk, rg, re,m) ∈ L. If the searching process failed, then ran-
domly choose (rg, re,m)← Rg ×Re ×M, and add (pk,⊥, rg, re,m) to
 L.

2. Compute (pk′, sk′) = Gen(1λ; rg).
3. Return ct = Encpk′ (m; re).

38

– On receiving a Break2 query (pk,m′, ct∗):
1. Search (pk, sk, rg, re,m) ∈ L. If the searching process failed, then ran-

domly choose (rg, re,m)← Rg ×Re ×M, and add (pk,⊥, rg, re,m) to
 L.

2. If m = m′, do an exhaustive search to find the lexicographically first sk
such that UMCheck(pk, sk) = 1, and return m∗ = Recsk(ct∗). If m 6= m′

or such sk does not exist, return ⊥.

Lemma 8. Prf←Fλ
[1← BAλ,f (1λ)] = Pr[1← BA0(1

λ)(1λ)].

Proof (of Lemma 8). Since f (used by Aλ,f) is randomly sampled from Fλ, the
outputs of f are perfect randomness in the view of B. Moreover, what A0 does
is just simulating f by randomly sampling its outputs. Then this lemma follows
from the fact that the views of B in the interactions with Aλ,f (where f ← Fλ)
and with A0 are identical. ⊓⊔

Hybrid machine A1: We now define an inefficient stateful machine A1 which
is the same as A0, except that on receiving a Break2 query (pk,m′, ct∗), it runs
as follows. (Bellow, the difference from A0 is only in Step 2, and is emphasized.)
1. Search (pk, sk, rg, re,m) ∈ L. If the searching process failed, then randomly

choose (rg, re,m)←Rg ×Re ×M, and add (pk,⊥, rg, re,m) to L.
2. If m = m′, compute m∗ = Recsk(ct∗) (if sk 6= ⊥), or do an exhaustive

search to find the lexicographically first sk such that UMCheck(pk, sk) = 1
(if sk = ⊥), and return m∗ = Recsk(ct∗). If m 6= m′ or such sk does not
exist, return ⊥.

Lemma 9. Pr[1← BA0(1
λ)(1λ)] = Pr[1← BA1(1

λ)(1λ)].

Proof (of Lemma 9). This lemma follows from the fact that Recsk(ct∗) =
Recsk(ct∗) holds for all ct∗ ∈ {0, 1}c and all (sk, sk) such that UMCheck(pk, sk) =

UMCheck(pk, sk) = 1, due to the unique-message property of Π , and
UMCheck(pk, sk) = 1 holds for all (pk, sk, rg, re,m) ∈ L where sk 6= ⊥ dur-

ing the execution of BA0(1
λ)(1λ) and BA1(1

λ)(1λ), due to the check done in the
first step in the response to a Tamper query. ⊓⊔

Now we briefly recall the difference between Sim and A1. Taking as input a
Break2 query (pk,m′, ct∗), Sim runs in the same way as A1 does, except that
when searching (pk, sk, rg, re,m) ∈ L fails or sk = ⊥, Sim returns ⊥. Based on
this observation, we show the indistinguishability between the interactions with
Sim and with A1.

Lemma 10. |Pr[1← BSim(1λ)(1λ)]− Pr[1← BA1(1
λ)(1λ)]| ≤ negl(λ).

Proof (of Lemma 10). Let E be the event that during the execution of

BA1(1
λ

(1λ), B makes a Break2 query (pk,m′, ct∗) such that
– pk has not appeared in a valid Tamper query (the answer of which is not
⊥) previously, and

39

– the answer to this Break2 query is not ⊥.

If E does not occur during the execution of BA1(1
λ)(1λ), then the view of B is

identical to its view in the interaction with Sim. As a result, we have |Pr[1 ←

BSim(1λ)(1λ)]− Pr[1← BA1(1
λ)(1λ)]| ≤ Pr[E]. It remains to show that Pr[E] is

negligible.

Claim 2 Let the total number of (all kinds of) queries made by B be q. Then
there exists a PPT adversary E that breaks the weak one-wayness of Π with
probability at least Pr[E]/q2.

Proof idea of Claim 2. A tampered key is generated as (pk′, sk′) ←
Gen(1λ; rg) where rg is a randomness linked with a public key pk. If B does
not make a valid Tamper query (which does not lead A1 to output ⊥) includ-
ing pk, it would learn no information on (pk′, sk′). In this case, making a Break2
query, such that pk is included in this query but A1 does not output ⊥, means
decrypting a randomly generated ciphertext, due to the check done at the second
step in the response to a Break2 query. Therefore, B can be used to break the
weak one-wayness of Π . The formal proof is as follows.

Proof (of Claim 2). The description of E is as follows.
The challenger samples (pk′, sk′) ← Gen(1λ), chooses m ← M, com-

putes ct ← Encpk′(m), and gives (1λ, ct) to E . Then E randomly chooses

î, ĵ ← {1, · · · , q}, and interacts with B in the same way as A1 does (during

the execution of BA1(1
λ)(1λ)), except that

1. If E needs to do an exhaustive search, it returns ⊥ to B.
2. From the îth query, every time when receiving a Tamper or Break2 query

(respectively, a Break1 query) including pk used in the îth query, E returns
⊥ (respectively, ct) to B (except for the ĵth query).22

3. On receiving the ĵth query, if it is a Break2 query denoted by (pk,m′, ct∗),
E returns m′ to the challenger and terminates. Otherwise, E aborts.
Now we argue that E returns m′ such that m = m′ with probability at least

Pr[E]/q2.

During the execution of BA1(1
λ)(1λ), when E occurs, B must have

made a Break2 query (pk,m′, ct∗), such that (a) there exists no entry
(pk, sk, rg, re,m) ∈ L such that sk 6= ⊥, but (b) A1 does not return ⊥ as

its answer. Therefore, for randomly sampled î, ĵ ← {1, · · · , q} (not learnt by B),
when E occurs, the probability that
– the ĵth query is the first Break2 query satisfying the above two conditions

(a) and (b), and
– the ĵth query includes pk, which is firstly used in the îth query,

is at least 1/q2. Since E perfectly simulates A1 in the interaction with B in this
case (till the termination), it returns m′ such that m′ = m with probability at
least Pr[E]/q2. Notice that in this case, rg, re, and m linked with pk (used in

the ĵth query) are not used by E , and we view (pk′, sk′) and ct (where (pk′, sk′)

22
E may terminate before receiving the îth query.

40

and ct are generated by the challenger and (pk′, sk′) is not learnt by E) as the
key pair and ciphertext generated by using (rg, re,m). This completes the proof
of Claim 2. ⊓⊔

Due to the assumption that Π is weakly one-way, Pr[E]/q2 is negligible. There-
fore, Pr[E] is negligible, completing the proof of Lemma 10. ⊓⊔

Due to Lemmas 8 to 10, we have |Prf←Fλ
[1 ← BAλ,f (1λ)] − Pr[1 ←

BSim(1λ)(1λ)]| ≤ negl(λ), completing the proof of Theorem 4. ⊓⊔

41

Table of Contents

Impossibility on Tamper-Resilient Cryptography with Uniqueness Properties 1
Yuyu Wang, Takahiro Matsuda, Goichiro Hanaoka, and Keisuke Tanaka

1 Introduction . 1
1.1 Background . 1
1.2 Our Results . 2
1.3 High-Level Idea and Technique . 5
1.4 Outline of This Paper . 9

2 Preliminaries . 9
2.1 Cryptographic Game (Property). 9
2.2 Simulatable Attack . 10

3 Impossibility on Provable Deterministic Primitives and Unique-Key Signatures 11
3.1 Definitions of PDPs and Signatures . 12
3.2 Security Notions for PDPs and Signatures . 13
3.3 Simulatable Attacks for WTR Secure PDPs and Signatures 16
3.4 Summary of Negative Results on PDPs and Signatures 21

4 Impossibility on Unique-Message PKE Schemes . 23
4.1 Definition of PKE Schemes . 23
4.2 Security Notions for PKE Schemes . 24
4.3 Weak Simulatable Attack for WTR Secure Unique-Message PKE Schemes 25
4.4 Summary of a Negative Result on Unique-Message PKE. 27

5 Open Problems . 27
A Standard Definitions . 31
B Simulatable Attack for Theorem 3 . 31
C Impossibility on Injective One-Way Functions . 32

C.1 Definition of WTR Secure Injective One-Way Functions 33
C.2 Simulatable Attacks for WTR Secure Injective OWFs 33

D Impossibility on Re-Randomizable Signatures . 34
D.1 Definition of Re-Randomizable Signatures . 34
D.2 Simulatable Attack for WTR Secure Re-Randomizable Signatures 34

E Instances of Unique-Message PKE . 36
E.1 The Cramer-Shoup Scheme . 36
E.2 Unique-Key PKE Scheme . 37

F Proof of Theorem 4 . 37

	Impossibility on Tamper-Resilient Cryptography with Uniqueness Properties
	1 Introduction
	1.1 Background
	1.2 Our Results
	1.3 High-Level Idea and Technique
	1.4 Outline of This Paper

	2 Preliminaries
	2.1 Cryptographic Game (Property)
	2.2 Simulatable Attack

	3 Impossibility on Provable Deterministic Primitives and Unique-Key Signatures
	3.1 Definitions of PDPs and Signatures
	3.2 Security Notions for PDPs and Signatures
	3.3 Simulatable Attacks for WTR Secure PDPs and Signatures
	3.4 Summary of Negative Results on PDPs and Signatures

	4 Impossibility on Unique-Message PKE Schemes
	4.1 Definition of PKE Schemes
	4.2 Security Notions for PKE Schemes
	4.3 Weak Simulatable Attack for WTR Secure Unique-Message PKE Schemes
	4.4 Summary of a Negative Result on Unique-Message PKE

	5 Open Problems
	A Standard Definitions
	B Simulatable Attack for Theorem 3
	C Impossibility on Injective One-Way Functions
	C.1 Definition of WTR Secure Injective One-Way Functions
	C.2 Simulatable Attacks for WTR Secure Injective OWFs

	D Impossibility on Re-Randomizable Signatures
	D.1 Definition of Re-Randomizable Signatures
	D.2 Simulatable Attack for WTR Secure Re-Randomizable Signatures

	E Instances of Unique-Message PKE
	E.1 The Cramer-Shoup Scheme
	E.2 Unique-Key PKE Scheme

	F Proof of Theorem 4

