
Non-Interactive Zero-Knowledge Proofs for
Composite Statements

Shashank Agrawal1, Chaya Ganesh∗2, and Payman Mohassel3

1Visa Research, shaagraw@visa.com
2Aarhus University, ganesh@cs.au.dk
3Visa Research, pmohasse@visa.com

Abstract

The two most common ways to design non-interactive zero-knowledge (NIZK) proofs are
based on Sigma protocols and QAP-based SNARKs. The former is highly efficient for proving
algebraic statements while the latter is superior for arithmetic representations.

Motivated by applications such as privacy-preserving credentials and privacy-preserving
audits in cryptocurrencies, we study the design of NIZKs for composite statements that compose
algebraic and arithmetic statements in arbitrary ways. Specifically, we provide a framework for
proving statements that consist of ANDs, ORs and function compositions of a mix of algebraic
and arithmetic components. This allows us to explore the full spectrum of trade-offs between
proof size, prover cost, and CRS size/generation cost. This leads to proofs for statements of the
form: knowledge of x such that SHA(gx) = y for some public y where the prover’s work is 500
times fewer exponentiations compared to a QAP-based SNARK at the cost of increasing the proof
size to 2404 group and field elements. In application to anonymous credentials, our techniques
result in 8 times fewer exponentiations for the prover at the cost of increasing the proof size to
298 elements.

∗Work done as an intern at Visa Research.

1 Introduction

Zero-knowledge proofs provide the ability to convince a verifier that a statement is true without re-
vealing the secrets involved. Since their conception in the mid 1980s, zero-knowledge proofs have
emerged as a fundamental object in modern cryptography, with connections to the theory of compu-
tation [GMW86, For87, BOGG+90, Vad99]. Zero-knowledge proofs (ZKPs) have found numerous
applications as a building block in other cryptographic constructions such as identification schemes
[FFS87], group signature schemes [CS97], public-key encryption [NY90], anonymous credentials
[CL01], voting [CF85], and secure multi-party computation [GMW87]. Most recently, ZKPs have
been used as a core component in digital cryptocurrencies such as ZCash and Monero to make the
transactions private and anonymous [BCG+14, NMT].

Zero-knowledge proofs exist for all languages in NP [GMW86], but not all such constructions are
efficiently implementable. Indeed, a large body of work has been devoted to the design and imple-
mentation of efficient ZKPs for a variety of statements. In case of Non-Interactive Zero-Knowledge
(NIZK) proofs, which is the focus of this paper, the most practical approaches are based on (i) Sigma
protocols (with the Fiat-Shamir transform), (ii) zk-SNARKs and (iii) “MPC-in-the-head” techniques,
each with their own efficiency properties, advantages and shortcomings. While the MPC-in-the-head
technique [IKOS07] has led to (Boolean) circuit-friendly NIZKs [GMO16, CDG+17, AHIV17], this
line of work produces large proofs. In this paper we focus on Sigma protocols and zk-SNARKs, and
elaborate on these next.

Sigma Protocols. Many of the statements we prove in cryptographic constructions are efficiently
representable as algebraic functions over some group G, such as an elliptic-curve group where the
discrete-logarithm problem is hard. For example, Alice may want to convince Bob that she knows an
x such that gx = y for publicly known values g, y ∈ G (knowledge of discrete log), or she may like
to show that x lies between two public integers a and b (range proof).

Sigma protocol-based ZKPs are extremely efficient for such statements. They yield short proof
sizes, require a constant number of public-key operations, and do not impose trusted common refer-
ence string (CRS) generation [GQ88, Sch91, CDS94, PS96, GMY06, GK15]. Moreover, they can be
made non-interactive, i.e. only a single message from prover to verifier, using the efficient Fiat-Shamir
transformation [FS87].

While Sigma protocols are efficient for algebraic statements, they are significantly slower when
it comes to non-algebraic ones. Consider a cryptographic hash function or a block cipher represented
by a Boolean or arithmetic circuit C, and suppose Alice wants to show that she knows an input x
such that C(x) = y for some public y. Alice can treat each gate of C as an algebraic function and
provide a proof that the input and output wires of each gate satisfy the associated algebraic relation,
to show that she indeed knows x, but this would be prohibitively expensive. In particular, both the
proving/verification time and the proof size would grow linearly with the size of circuit which in case
of hash functions and block-ciphers can be tens of thousands of exponentiations and group elements.

zk-SNARKS. There has been a series of works on constructing zero-knowledge Succinct Non-
interactive ARguments of Knowledge (zk-SNARKs) [Gro10, Lip12, BCI+13, GGPR13, PHGR13,
BCG+13, Lip13, BCTV14]. Starting with the construction of Kilian [Kil92] based on probabilis-
tically checkable proofs (PCPs), made non-interactive by Micali [Mic00], there has been further
works [GLR11, BCCT12, DFH12] that construct succinct arguments by removing interaction in Kil-
ian’s PCP-based protocol. Despite these advances, PCPs remain concretely expensive and current
implementations along this line are not yet efficient. A more effective approach for proving state-

1

ments about functions represented as Boolean or arithmetic circuits is based on Quadratic Arithmetic
Programs (QAPs) [GGPR13] and throughout the paper, we will be concerned with QAP-based zk-
SNARK proofs. Such proofs are very short and have fast verification time. More precisely, the proofs
have constant size and can be verified in time that is linear in the length of the input x, rather than
the length of the circuit C. Thus, zk-SNARKs are better suited for proving statements about hash
functions or block ciphers than (non-interactive) Sigma protocols.

In principle, zk-SNARKs could also be used to prove algebraic statements, such as knowledge
of discrete-log in a cyclic group by representing the exponentiation circuit as a QAP. The circuit for
computing a single exponentiation is in the order of thousands or millions of gates depending on
the group size. In zk-SNARKs based on QAP, the prover cost is linear in the size of circuit and an
honestly generated common reference string (CRS) is needed, whose size also grows proportional to
the circuit size. This makes them extremely inefficient for algebraic statements. In contrast, Sigma
protocols can be used to prove knowledge of discrete-log with a constant number of exponentiations.

Another disadvantage of zk-SNARKs is that the CRS is generated with respect to a particular
circuit C and, in the most efficient instantiations, needs to be regenerated when proving a new
statement represented with a different circuit C ′. This is not desirable since in current applications
such as ZCash, where CRS is generated using an expensive secure multi-party computation (MPC)
protocol in order to guarantee soundness of the proof system [parb]. In contrast, Sigma protocols
have constant-size untrusted CRSs that can be used to prove arbitrary statements and can be generated
inexpensively (without an MPC).

1.1 Composite Statements and Applications

Composite statements that include multiple algebraic and arithmetic components appear in various
applications. We discuss three important cases here.

Proof of Solvency. Consider privacy-preserving proofs of solvency for Bitcoin exchanges [Wil,
DBB+15]. Here an exchange wants to prove to its customers that it has enough reserves to cover its
liabilities, or, in simple words, that it is solvent. A proof of reserves in the Bitcoin network amounts
to showing that the exchange has control over certain Bitcoin addresses. A Bitcoin address is a 160-
bit hash of the public portion of a public/private ECDSA keypair [bit], where the public portion is
derived from the private key by doing an exponentiation operation on the secp256k1 curve [sec]1.
Thus the exchange wants to show that it knows the private keys corresponding to some hashed public
keys available on the blockchain. Furthermore, the proof should not reveal the public keys themselves
otherwise an adversary would be able to track the movement of exchange’s funds.

In particular, the exchange wants to show that it knows a secret x such thatH(gx) = y whereH is
a hash function such as SHA-256. The statement has both algebraic (gx) and Boolean (hash function
H) parts. One can express the composite function (exponentiate then hash) as a purely algebraic or
Boolean function and then use a Sigma protocol or zk-SNARK respectively, but, in the former case,
the proof size and verification time will be quite large, while in the latter, the proof generation time
will increase substantially and a much larger CRS is needed. Ideally, one would like to use a Sigma
protocol for the algebraic part and a zk-SNARK for the Boolean part, and then combine the two
proofs so that no extra information about x is revealed (beyond the fact that H(gx) = y).

Thus any proof of solvency for a Bitcoin exchange must deal with a zero-knowledge proof
that combines both Boolean and algebraic statements. Existing proposals for proofs of solvency

1Most cryptocurrencies generate public/private keys and define an address in a similar manner. Apart from Bitcoin and
its fork Bitcoin Cash, Ethereum is another prominent example (see Appendix F in the yellow paper [Woo]).

2

get around this problem by assuming (incorrectly) that public keys themselves are available on the
blockchain so that Sigma protocols alone suffice [DBB+15]. As we will see later, our efficient tech-
niques allow designing NIZKs for proving knowledge of x given H(gx) that require roughly 500
times fewer exponentiations for the prover compared to proving the same statement using a QAP-
based SNARK.

Privacy-Preserving Credentials. Digital certificates (X.509) are commonly used to identify enti-
ties over the Internet. They include a message m that may contain various identifying information
about a user or a machine, and a digital signature (by a certificate authority) on the message attesting
to its authenticity. The signature can then be verified by anyone who holds the public verification key.
Typically, certificates reveal the messagem and hence the identity of their owner. Anonymous creden-
tials [Cha82] provide the same authentication guarantees without revealing the identifying message,
and are widely studied due to their strong privacy guarantees. A main ingredient for making digital
certificates anonymous is a ZKP of knowledge of a message m and a signature σ, where σ is a valid
signature on message m with respect to the verification key vk. The ZKP ensures that we do not
leak any information about m beyond the knowledge of a valid signature. A large body of work has
studied anonymous credentials, but only a handful of techniques can turn commonly used X.509 cer-
tificates into anonymous credentials. The main challenge is that the ZKP statement being proven is a
hybrid statement containing both algebraic (RSA or elliptic-curve operations) and Boolean functions
(hashing), since the message is hashed before being algebraically signed. The work of Delignat-
Lavaud et al. [DLFKP16] constructs a proof for such a hybrid statement using only zk-SNARKs
which, as discussed earlier, is inefficient for the algebraic component, while the work of Chase et al.
[CGM16] design such ZKP proofs in the interactive setting where the prover and verifier exchange
multiple messages. Efficient NIZK for composite statements based on both zk-SNARKs and Sigma
protocols would yield more efficient anonymous credential systems. Using our techniques for RSA
signature results in prover’s work that is about 8 times fewer group exponentiations compared to
Cinderella [DLFKP16].

zk-SNARKs with composable CRSs. Anonymous decentralized digital crypto-currencies such as
ZCash use zk-SNARKs to prove a massive statement containing many different smaller components.
For example, at a high level, one of the statement being proven in ZCash is of the form: I have
knowledge of xi’s such thatH(x1||H(x2|| . . . H(xn))) = y for a large value of n. The CRS generated
for proving this statement is extremely large (about a gigabyte for ZCash [para]) and cannot be reused
to prove any other statement. A better alternative is to generate a much smaller CRS for proving a
statement of the form: I have knowledge of x, y such that H(x||H(y)), combined with a technique
for composing many such proofs. More generally, one can envision a general system with CRSs for
small size statements C1, . . . , Cn that enables NIZKs for arbitrary composition of these statements
without having to generate new CRSs for each new composition. This yields a trade-off between
proof size and the CRS size (and its reusability).

1.2 Contributions

Motivated by the above applications, we study the design of NIZKs for composite statements that
compose algebraic and arithmetic statements in arbitrary ways. Specifically, we provide new proto-
cols for statements that consist of ANDs, ORs and function compositions of a mix of algebraic and
arithmetic components. In doing so, our goal is to maintain the invariant that algebraic components
are proven using Sigma protocols, and arithmetic statements using QAP-based zk-SNARKs. This

3

allows us to explore the full spectrum of trade-offs between proof size (verification cost), prover cost,
and CRS size (and cost of generation) for composite statements.

More precisely, we propose new NIZKs for proof of knowledge of x, x1, x2, y1, y2 such that

• f1(x1, f2(x2)) = z,

• f1(x, y1) = z1 AND f2(x, y2) = z2,

• f1(x, y1) = z1 OR f2(x, y2) = z2,

for public values z, z1, z2, and where f1 and f2 can be either algebraic or arithmetic. Given our NIZKs
for these compositions, it is easy to handle arbitrary composite statements. This is the first work that
directly addresses the question of non-interactive proofs for composite statements and how disparate
techniques can be used to prove them in zero-knowledge efficiently. We highlight two important
technical ingredients that enable our NIZKs for composite statements below. We note that in this
paper we primarily focus on elliptic curves as our algebraic group, as they are the most efficient for
instantiating both zk-SNARKs and Sigma protocols.

Sigma protocols for statements on algebraically committed inputs and outputs: We show tech-
niques for proving that the input/output used in a Sigma protocol for an algebraic statement are the
same as input/output committed to by an algebraic commitment scheme, say Com. This enables
using the output of an algebraic statement as an intermediate output in a composite statement. For
instance, we can prove knowledge of h, x1, x2 such that h = gx11 g

x22
2 given g1, g2, Com(h), Com(x1),

Com(x2). To enable such proofs, we commit to a point P on an elliptic curve E(Ft) by committing
to its coordinates, i.e. Com(P) = (Comq(Px),Comq(Py)) where P = (Px, Py) and q > t.

• Proof of addition of committed elliptic curve points. We show efficient techniques for prov-
ing knowledge of two committed elliptic curve points P,Q such that T = P + Q for a public
point T . To do so, we expand the elliptic curve addition/subtraction operation P +Q−T such
that T = P +Q holds if and only if two sets of equations of the form L(·) = R(·) hold, where
L and R are multivariate polynomials of degree 3 in the coordinates. Given commitments to
the coordinate values and the output of polynomials L and R, we prove the corresponding re-
lations between the committed values using Sigma protocols. For this to work, we address an
additional technical subtlety that the addition operation over elliptic curve points is defined over
Ft, while the commitment scheme maybe over a different group of size q. While this may be
addressed by using two different commitment schemes in groups of different orders, it would
require performing the Complex Multiplication method to choose an elliptic curve group of a
specific order which is a quite inefficient. The proof can be extended to the case where T is
also private and committed to.

• Double-discrete log proofs for elliptic-curve groups. We show efficient techniques for com-
mitting to a group element gx where g is a generator for an elliptic curve group, and proving
knowledge of x such that Com(gx) = y given a public y. Previous techniques for proving such
statements are limited to RSA groups [CS97, MGGR13] and hence are not usable in many ap-
plications including privacy-preserving audits for Bitcoin which uses elliptic curve groups. We
show how to securely reduce this problem to that of proving addition of committed EC points.

• Proof of equality of committed values over different groups. We show techniques for prov-
ing knowledge of x such that Comp(x) = y and Comq(x) = z for public values y, z where
Comp denotes an algebraic commitment over an elliptic curve group of size p (similarly, Comq).

4

This allows us to easily move from proof systems in one group to another by committing to the
shared values in both groups and invoking this proof. Existing techniques involve exponenti-
ations in an RSA group and are fairly expensive as the group order is hidden.

zk-SNARKs for statements on algebraically committed inputs and outputs: We show efficient
techniques for proving that the input/output used in a zk-SNARK for an arithmetic statement are the
same as the input/output committed to by an algebraic commitment scheme. This enables efficient
switching between the algebraic and arithmetic world, and helps hide intermediate outputs of an arith-
metic statement (by committing to it), when used in a composition. For example, this enables proving
knowledge of input x such that Com(x) = y and Com(H(x)) = z for public values y, z where H
is SHA2 and Com is a Pedersen commitment over an elliptic-curve group, or prove knowledge of x
such that Com(x) = y,Com(H(x)) = z, and H(H(x)) = w.

To design these new proofs, we dissect existing zk-SNARK constructions, and separately process
private input and output wires of the statement circuit during CRS generation, proof generation and
verification. We then ensure that the values for those input/output wires are consistent with corre-
sponding algebraic commitments to the same values using customized Sigma protocols.

2 Preliminaries

Notation. Throughout the paper, we use κ to denote the security parameter or level. A function is
negligible if for all large enough values of the input, it is smaller than the inverse of any polynomial.
We use negl to denote a negligible function. Let {Xκ}κ∈N and {Yκ}κ∈N be ensembles where Xκ
and Yκ are probability distributions over {0, 1}poly(κ) for some polynomial poly. We say X and Y are
computationally indistinguishable if for all PPT distinguishers D, there exists a negligible function
negl such that |Pr[D(Xκ) = 1] − Pr[D(Yκ) = 1]| ≤ negl(κ). We write Xκ ≡ Yκ to mean that the
distributions Xκ and Yκ are identical. We use [1, n] to represent the set of numbers {1, 2, . . . , n}. If
Alg is a randomized algorithm, we use y ← Alg(x) to denote that y is the output of Alg on x. We

write x R← X to mean sampling a value x uniformly from the set X .
We denote an interactive protocol between two parties A and B by 〈A,B〉. 〈A(x),B(y)〉 (z)

denotes a protocol where A has input x, B has input y and z is a common input. Also, viewA denotes
the “view” of A in an interaction with B, which consists of the input to A, its random coins, and the
messages sent by B (viewB is defined in a similar manner).

Bilinear groups. Let GroupGen be an asymmetric pairing group generator that on input 1κ, out-
puts description of three cyclic groups G, G̃, GT of prime order p = Θ(2κ) equipped with a non-
degenerate efficiently computable bilinear map e : G × G̃ → GT , and generators g and g̃ for G and
G̃ respectively. The discrete logarithm assumption is said to hold in G relative to GroupGen if for all
PPT algorithms A, Pr[x← A(G, p, g, h) | (G, G̃,GT)← GroupGen;x

R← Zp;h := gx] is negl(κ).
In this paper, we primarily consider elliptic curves as our algebraic group. Let E be an elliptic

curve defined over a field Ft. The set of points on the curve form a group under the point addition
operation, and we denote the group byE(Ft). For an element P ∈ E(Ft) of prime order p, Px and Py
represent the x and y co-ordinates of the point P respectively. In some constructions, we use additive
notation and write Q = αP for a scalar α ∈ Fp. The discrete logarithm assumption is believed to
hold in well chosen elliptic curve groups where group elements are represented with O(κ) bits. In
our constructions, we use asymmetric bilinear groups where G 6= G̃, and discrete logarithm is hard
in G. We also rely on q-type assumptions on bilinear maps, and describe them in Appendix G.

5

Zero-knowledge Proofs. LetR be an efficiently computable binary relation which consists of pairs
of the form (s, w) where s is a statement and w is a witness. Let L be the language associated with
R, i.e., L = {s | ∃w s.t. R(s, w) = 1}.

A zero-knowledge proof for L lets a prover P convince a verifier V that s ∈ L for a common
input s without revealing w. A proof of knowledge captures not only the truth of a statement s ∈ L,
but also that the prover “possesses” a witness w to this fact. We are concerned with non-interactive
proofs in this paper where P sends only one message to V , and V decides whether to accept or not
based on its input, the message, and any public parameters. We define them formally below.

2.1 Non-interactive Zero-knowledge Proofs

Non-interactive zero-knowledge (NIZK) proofs are usually studied in the common reference string
(CRS) model, wherein a string of a special structure is generated in a setup phase, and made available
to everyone to prove/verify statements.

Definition 2.1 (Non-interactive Zero-knowledge Argument [BFM88, FLS90]). A NIZK argument for
an NP relation R consists of a triple of polynomial time algorithms (Setup,Prove,Verify) defined as
follows.

• Setup(1κ) takes a security parameter κ and outputs a CRS Σ.

• Prove(Σ, s, w) takes as input the CRS Σ, a statement s, and a witness w, and outputs an
argument π.

• Verify(Σ, s, π) takes as input the CRS Σ, a statement s, and a proof π, and outputs either 1
accepting the argument or 0 rejecting it.

The algorithms above should satisfy the following properties.

1. Completeness. For all κ ∈ N, (s, w) ∈ R,

Pr

(
Verify(Σ, s, π) = 1 :

Σ← Setup(1κ)
π ← Prove(Σ, s, w)

)
= 1.

2. Computational soundness. For all PPT adversaries A, the following probability is negligible
in κ:

Pr

(
Verify(Σ, s̃, π̃) = 1

∧ s̃ 6∈ L :
Σ← Setup(1κ)

(s̃, π̃)← A(1κ,Σ)

)
.

3. Zero-knowledge. There exists a PPT simulator (S1,S2) such that S1 outputs a simulated CRS
Σ and trapdoor τ ; S2 takes as input Σ, a statement s and τ , and outputs a simulated proof π;
and, for all PPT adversaries (A1,A2), the following probability is negligible in κ:

∣∣∣∣∣∣Pr

 (s, w) ∈ R ∧
A2(π, st) = 1

:
Σ← Setup(1κ)

(s, w, st)← A1(1
κ,Σ)

π ← Prove(Σ, s, w)

 −
Pr

 (s, w) ∈ R ∧
A2(π, st) = 1

:
(Σ, τ)← S1(1κ)

(s, w, st)← A1(1
κ,Σ)

π ← S2(Σ, τ, s)

∣∣∣∣∣∣ .
6

Definition 2.2 (Non-interactive Zero-knowledge Argument of Knowledge). A NIZK argument of
knowledge for a relation R is a NIZK argument for R with the following additional extractability
property:
• Extraction. For any PPT adversaryA, random string r R← {0, 1}∗, there exists a PPT algorithm

Ext such that the following probability is negligible in κ:

Pr

Verify(Σ, s̃, π̃) = 1
∧R(s̃, w′) = 0

:
Σ← Setup(1κ)

(s̃, π̃)← A(1κ,Σ; r)
w′ = Ext(Σ, s̃, π̃; r)

 .

Definition 2.3 (zero-knowledge Succinct Non-interactive ARgument of Knowledge (zk-SNARK)).
A zk-SNARK for a relation R is a non-interactive zero-knowledge argument of knowledge for R with
the following additional property:
• Succinctness. For any s andw, the length of the proof π is given by |π| = poly(κ)·polylog(|s|+
|w|).

2.2 Sigma Protocols

Sigma protocols are two-party interactive protocols of a specific structure. Let P (the prover) and V
(the verifier) be two parties with common input s and a private input w for P . In a Sigma protocol, P
sends a message a, V replies with a random κ-bit string r, P then sends a message e, and V decides
to accept or reject based on the transcript (a, r, e). If V accepts (outputs 1), then the transcript is
called accepting.

Definition 2.4 (Sigma protocol [Dåm]). An interactive protocol between a prover P and a verifier V
is a Σ protocol for a relation R if the following properties are satisfied:

1. It is a three move public coin protocol.

2. Completeness: If P and V follow the protocol then Pr[〈P (w), V 〉 (s) = 1] = 1 whenever
(s, w) ∈ R.

3. Special soundness: There exists a polynomial time algorithm called the extractor which when
given s and two transcripts (a, r, e) and (a, r′, e′) that are accepting for s, with r 6= r′, outputs
w′ such that (s, w′) ∈ R.

4. Special honest verifier zero knowledge: There exists a polynomial time simulator which on
input s and a random r outputs a transcript (a, r, e) with the same probability distribution as
that generated by an honest interaction between P and V on (common) input s.

Fiat-Shamir transform. A Σ protocol can be efficiently compiled into a non-interactive zero-
knowledge proof of knowledge (in the random oracle model) through the Fiat-Shamir transform
[FS87]. Not only the transformation removes interaction from the protocol, but also makes it zero-
knowledge against malicious verifiers. At a high level, the transform works by having the prover
compute the verifier’s message by applying an appropriate hash function, modeled as a random ora-
cle in the security proof, to the prover’s first message to obtain a random challenge.

7

OR composition of Σ-protocols. In Cramer et al. [CDS94], the authors devise an OR composition
technique for Sigma protocols. Essentially, a prover can efficiently show ((x0 ∈ L) ∨ (x1 ∈ L))
without revealing which xi is in the language. More generally, the OR transform can handle two
different relations R0 and R1.

Theorem 2.5 (OR-composition [CDS94]). If Π0 is a Σ-protocol for R0 and Π1 a Σ-protocol for
R1, then there is a Σ-protocol ΠOR for the relation ROR given by {((x0, x1), w) : ((x0, w) ∈ R0) ∨
((x1, w) ∈ R1)}.

Pedersen commitment. Throughout the paper, we use algebraic commitment schemes that allow
proving linear relationships among committed values. The Pedersen commitment scheme [Ped92]
is one such example which gives unconditional hiding and computational binding properties based
on the hardness of computing discrete logarithm in a group G, say of order q. Given two random
generators g, h ∈ G such that logg h is unknown, a value x ∈ Zq is committed to by choosing r
randomly from Zq, and computing gxhr. We write Comq(x) to denote a Pedersen commitment to x
in a group of order q.

Sigma protocols are known in literature to prove knowledge of a committed value, equality of
two committed values, and so on, and these protocols can be combined in natural ways. In partic-
ular, linear relationships between Pedersen commitments can be shown through existing techniques
[Sch91, FO97, CS97, CM99]. For example, one could show that y = ax + b for some public values
a and b, given Comq(x) and Comq(y).

We use PK{(x, y, . . .) : statements about x, y, . . .} to denote a proof of knowledge of x, y, . . .
that satisfies statements [CS97]. Other values in statements are public.

2.3 SNARK Construction from QAP

The work of Gennaro et al. [GGPR13] showed how to encode computations as quadratic programs.
They show how to convert any Boolean circuit into a Quadratic Span Program (QSP) and any arith-
metic circuit into a Quadratic Arithmetic Program (QAP). In this work, we will only use the latter
definition. Even though QSPs are designed for Boolean circuits, arithmetic split gates defined in
Parno et al. [PHGR13] translate an arithmetic wire into binary output wires, and Boolean functions
may be computed using arithmetic gates. Parno et al. also note that such an arithmetic embedding
results in a smaller QAP compared to the QSP of the original Boolean circuit. In the rest of the paper,
we assume that Boolean functions are computed by a QAP defined over an arithmetic field, and hence
will only be concerned with QAP.

Definition 2.6 (Quadratic Arithmetic Program [GGPR13]). A quadratic arithmetic program (QAP)
Q over a field F consists of three sets of polynomials V = {vk(x) : k ∈ {0, . . . ,m}},W = {wk(x) :
k ∈ {0, . . . ,m}}, Y = {yk(x) : k ∈ {0, . . . ,m}} and a target polynomial t(x), all in F[X].

Let f : Fn → Fn′ be a function with input variables labeled 1, . . . , n and output variables labeled
m−n′+1, . . . ,m. A QAPQ is said to compute f if the following holds: a1, . . . , an, am−n′+1, . . . , am ∈
Fn+n′ is a valid assignment to the input and output variables of f (i.e., f(a1, . . . , an) = (am−n′+1,
. . . , am)) iff there exist (an+1, · · · , am−n′) ∈ Fm−n−n′ such that t(x) divides p(x), where

p(x) =

(
v0(x) +

m∑
k=1

akvk(x)

)
.

(
w0(x) +

m∑
k=1

akwk(x)

)
−

(
y0(x) +

m∑
k=1

akyk(x)

)
.

The size of the QAP Q is m, and degree is deg(t(x)).

8

The polynomials vk(x), wk(x), yk(x) have degree at most deg(t(x))−1, since they can be reduced
modulo t(x) without affecting the divisibility check. We review the QAP-based SNARK construction
of Parno et al. [PHGR13] in Appendix H.

3 NIZK on Committed IO for Algebraic Statements

In this section, we design Sigma protocols for knowledge of inputs and outputs of algebraic statements
where the inputs and outputs are committed to. In other words, we enable proof of knowledge of xi
given commitments Com(xi) to inputs and a commitment Com(Πg

Pi(xi)
i) to the output of an algebraic

function where gis are public generators in an elliptic curve group and Pis are public single-variable
polynomials. An important ingredient in this is a proof of knowledge of double discrete log which
we elaborate on next.

3.1 Proof of Knowledge of Double Discrete Logarithm

Our goal is to prove the equality of a committed value and the discrete logarithm of another com-
mitted value. When the commitments are in elliptic curve groups, the known techniques for double
discrete logarithm proofs will not work [CS97, MGGR13]. This is because a group element cannot
be naturally interpreted as a field element, as can be done in integer groups. Towards this end, we first
describe a protocol to prove that the sum of two elliptic curve points that are committed to, is another
public point on the curve.

In this section, we consider the family of curves E given by

y2 = x3 + ax+ b, (1)

where a, b ∈ Ft, but the techniques we describe below would extend to other curve families like
Edwards [Edw07]. The curve sec256k1 used by Bitcoin has the form of equation 1 with a = 0, b = 7.

The point addition relation is defined by the point addition equation specific to the curve family.
Let P = (x1, y1), Q = (x2, y2), P,Q ∈ E(Ft) for the family E above. For distinct P,Q, P 6= −Q,
(x3, y3) = P +Q is given by

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2, (2)

y3 =
y2 − y1
x2 − x1

(x1 − x3)− y1. (3)

We use addFormula(P,Q) to denote (x3, y3) computed in this way. When P = Q, the operation is
doubling of the point P , denoted by doubleFormula(P). In this case, (x3, y3) is given by

x3 =

(
3x21 + a

2y1

)2

− 2x1, (4)

y3 =
3x21 + a

2y1
(x1 − x3)− y1. (5)

We could prove the above relations for committed x1, x2, y1, y2 using known Sigma protocol
techniques. But since the point addition computation is over Ft, the commitments to the coordinates
have to be in a group of order t, which is not necessarily the same as p, the order of the group E(Ft).
The Complex Multiplication (CM) method could be used to find elliptic curve groups of a specific

9

order. However, it is quite inefficient for large orders and would make our protocols impractical . We
avoid the CM method by proposing a protocol that does not need to find a group of a given order.

We rewrite the point addition formula (equations 2 and 3) as

x3x
2
2 + x3x

2
1 + x31 + x32 + 2y1y2 = y22 + y21 + x21x2 + x1x

2
2 + 2x1x2x3, (6)

x2y3 + x3y2 + x2y1 = x1y2 + x3y1 + x1y3. (7)

Let Lx and Rx denote the left-hand side and right-hand side respectively of equation 6, and Ly and
Ry of equation 7. That is:

Lx(x1, y1, x2, y2) = x3x
2
2 + x3x

2
1 + x31 + x32 + 2y1y2,

Rx(x1, y1, x2, y2) = y22 + y21 + x21x2 + x1x
2
2 + 2x1x2x3,

Ly(x1, y1, x2, y2) = x2y3 + x3y2 + x2y1,

Ry(x1, y1, x2, y2) = x1y2 + x3y1 + x1y3.

We use Sigma protocols to prove that Lx, Rx, Ly and Ry satisfy the above relations using com-
mitted intermediate values. To do so, in addition to linear relationships, our protocol needs to prove
that a committed value is the product of two committed values: given C1 = Com(a) = gahr1 , C2 =
Com(b) = gbhr2 , C3 = Com(c) = gchr3 , prove c = ab. This can be done by proving knowledge
of b such that the discrete logarithm of C4 with respect to C1 is equal to the committed value in
C2, and the equality of committed values in C4 and C3, where C4 = Cb1. The prover computes and
sends C4 = Cb1 with the following proof: PK{(a, b, c, b′, c′, r1, r2, r3, r4) : C1 = gahr1 ∧ C2 =
gbhr2 ∧ C3 = gchr3 ∧ C4 = Cb

′
1 ∧ C4 = gc

′
hr4 ∧ b′ = b ∧ c′ = c}. In general, Sigma protocols for

polynomial relationships among committed values were given by Camenisch and Michels [CM99].
For completeness, we sketch the ideas in Appendix E.

Let G2 be an elliptic-curve group of order q such that q > 2t3, and P ′, Q′ be points in G2. We
commit to the coordinates and the intermediate values necessary for the proof in G2, and since the
largest intermediate value in equations 6 and 7 is cubic, the choice of q ensures there is no wrap
around when the computation is modulo q. Since all computation on committed values will now be
modulo q, and the addition equations are to be computed modulo t, we use division with remainder.
We prove equality of Lx and Rx modulo q, divide them by t taking away multiples of t, and prove
that the remainders are equal. When used together with appropriate range proofs to prove that the
remainder does not exceed the divisor, and that the committed coordinates are in the desired range,
we get equality modulo t. (There are several known techniques to build range proofs [Bou00, CCs08],
that is, to prove that x ∈ [0, S] for a public S and committed x, including the recent, very efficient
technique called Bulletproof [BBB+17].)

The protocol addition given in Figure 1 proves that the addition formula holds for committed
points P,Q and their sum T . We show that addition is secure in Appendix C.2. The protocol’s cost
is dominated by the range proofs in steps 4, 5, 6 and the proof for polynomial relationships in steps
2 and 3. addition roughly has a proof size of 75 + log log t elements, and prover’s work 60 + log t
exponentiations.

Let CP = Comq(P) = (Comq(Px),Comq(Py)) denote a commitment to a point P = (Px, Py).

Theorem 3.1. LetE(Ft) be an elliptic curve given by equation 1, T ∈ E and q > 2t3. Then, addition
in Figure 1 is a Σ-protocol for the relation R = {((T,CP ,CQ), (P,Q)) : CP = Comq(P) ∧ CQ =
Comq(Q) ∧ T = addFormula(P,Q) ∧ P,Q ∈ E}.

Using techniques similar to the above protocol addition, we obtain a protocol double to prove that
doubling formula holds, i.e. T = doubleFormula(P). Now, we can handle all cases of point addition

10

Given T = (Tx, Ty), C1 = Comq(Px),C2 = Comq(Py),C3 = Comq(Qx),C4 = Comq(Qy), prove that
T = P +Q, where P = (Px, Py), Q = (Qx, Qy), T ∈ E(Ft) and q > 2t3.

1. Let Lx(Px, Py, Qx, Qy) = k1t + r1, Rx(Px, Py, Qx, Qy) = k′1t + r′1, Ly(Px, Py, Qx, Qy) =
k2t+ r2, Ry(Px, Py, Qx, Qy) = k′2t+ r′2, for k1, k′1, k2, k

′
2 <

q
t and r1, r′1, r2, r

′
2 < t.

Compute and send commitments C4 = Comq(Lx),C5 = Comq(Rx),C6 = Comq(Ly),C7 =
Comq(Ry),C8 = Comq(k1),C9 = Comq(r1),C10 = Comq(k

′
1),C11 = Comq(r

′
1),C12 =

Comq(k2),C13 = Comq(r2),C14 = Comq(k
′
2),C15 = Comq(r

′
2).

2. Prove that (Px, Py), (Qx, Qy) and (Tx, Ty) satisfy the addition equation for the x-coordinate.
π1 : PK{(Px, Py, Qx, Qy, Lx, Rx) : C1 = Comq(Px)∧C2 = Comq(Py)∧C3 = Comq(Qx)∧C4 =
Comq(Qy)∧C4 = Comq(Lx)∧C5 = Comq(Rx)∧Lx = TxQ

2
x+TxP

2
x+P 3

x+P 3
y +2PyQy∧Rx =

Q2
y + P 2

y + P 2
xQx + PxQ

2
x + 2PxQxTx}

3. Prove that (Px, Py), (Qx, Qy) and (Tx, Ty) satisfy the addition equation for the y-coordinate.
π2 : PK{(Px, Py, Qx, Qy, Ly, Ry) : C1 = Comq(Px)∧C2 = Comq(Py)∧C3 = Comq(Qx)∧C4 =
Comq(Qy) ∧ C6 = Comq(Ly) ∧ C7 = Comq(Ry) ∧ Ly = QxTy + TxQy + QxPy ∧ Ry =
PxQy + TxPy + PxTy}

4. Prove that the coordinates are in the correct range.
π3 : PK{(Px, Py, Qx, Qy) : C1 = Comq(Px) ∧ C2 = Comq(Py) ∧ C3 = Comq(Qx) ∧ C4 =
Comq(Qy) ∧Qx < t ∧Qy < t ∧ Px < t ∧ Py < t}

5. Prove that Lx and Rx are equal modulo t, by dividing each side by t, showing correct range for the
quotients and the remainders, and proving the remainders are equal.
π4 : PK{(Lx, Rx, k1, k′1, r1, r′1) : C4 = Comq(Lx) ∧ C5 = Comq(Rx) ∧ C8 = Comq(k1) ∧ C9 =
Comq(r1)∧C10 = Comq(k

′
1)∧C11 = Comq(r

′
1)∧Lx = k1t+r1∧Rx = k′1t+r′1∧r1 < t∧r′1 <

t ∧ k1 < q
t ∧ k

′
1 <

q
t ∧ r1 − r

′
1 = 0}

6. Prove that Ly and Ry are equal modulo t, by dividing each side by t, showing correct range for the
quotients and the remainders, and proving the remainders are equal.
π5 : PK{(Ly, Ry, k2, k′2, r2, r′2) : C6 = Comq(Ly)∧C7 = Comq(Ry)∧C12 = Comq(k2)∧C13 =
Comq(r2)∧C14 = Comq(k

′
2)∧C15 = Comq(r

′
2)∧Ly = k2t+r2∧Ry = k′2t+r′2∧r2 < t∧r′2 <

t ∧ k2 < q
t ∧ k

′
2 <

q
t ∧ r2 − r

′
2 = 0}

Figure 1: addition : PK{(P = (Px, Py), Q = (Qx, Qy)) : T = (Tx, Ty) = addFormula(P,Q) ∧
C1 = Comq(Px) ∧ C2 = Comq(Py) ∧ C3 = Comq(Qx) ∧ C4 = Comq(Qy)}

11

through the following statement:

(P 6= Q ∧ P 6= −Q ∧ T = addFormula(P,Q))∨
(P = Q ∧ T = doubleFormula(P)) ∨ (P = −Q ∧ T = 0) .

This statement can be proved using OR composition of Sigma protocols: protocol addition for the
first part of the OR statement, protocol double for the second, and simple Sigma protocols for the last
component. We denote the proof of point addition of two committed points by pointAddition.

pointAddition : PK{(P,Q) : CP = Comq(P) ∧ CQ = Comq(Q) ∧ P,Q ∈ E∧
((P 6= Q ∧ P 6= −Q ∧ T = addFormula(P,Q))∨

(P = Q ∧ T = doubleFormula(P)) ∨ (P = −Q ∧ T = 0))}

For curves with a complete formula like Edwards, a point addition proof will not have different cases
based on the relationship between P and Q.

Theorem 3.2. Let E(Ft) be an elliptic curve given by equation 1, T ∈ E and q > 2t3. Then,
pointAddition is a Σ-protocol for the relationR = {((T,CP ,CQ), (P,Q)) : CP = Comq(P)∧CQ =
Comq(Q) ∧ T = P +Q ∧ P,Q ∈ E}.

We note that the protocol addition may be modified to prove point addition for a committed point
T in the following way. The proofs π1 and π2 are on committed coordinates (Tx, Ty), and the range
proof π3 also includes proving the range of coordinates of T . We denote the point addition proof
PK{(P,Q, T) : CP = Comq(P)∧CQ = Comq(Q)∧CT = Comq(T)∧T = P +Q∧P,Q, T ∈ E}
on all committed inputs by comPointAddition.

We now construct a protocol to prove the equality of a committed value and the discrete log-
arithm of another committed value using the point addition proof. The double discrete logarithm
proof is given in Figure 2. (See Appendix C.3 for a proof of security.) While the prover’s work is
dominated by the protocol pointAddition, we note that the range proofs for each challenge bit may be
batched [BBB+17]. For soundness 2−60, the protocol ddlog incurs proof size of about 2370+log log t
elements and prover’s work of 1800 + 30 log t exponentiations.

Theorem 3.3. Let E(Ft) be an elliptic curve given by equation 1, and P ∈ E be an element of prime
order p. Then, ddlog is a Σ-protocol for the relation R = {(P,C,Ch, (λ, h)) : C = Com(λ) ∧ Ch =
Com(h) ∧ h = λP, 0 < λ < p} with soundness 1/2.

3.2 Sigma Protocols on Committed Outputs

In this section, we construct Sigma protocols for committed output. First, we note a simpler con-
struction when the output is a single bit. (This simpler variant is used in our OR compositions.) In
particular, given an algebraic commitment to private input x, public y and an efficient Sigma protocol
to prove that f(x, y) = 1, we show how to construct an efficient Sigma protocol to prove f(x, y) = b,
for a committed bit b. Let f : Zn+mq → {0, 1}, and let C be a commitment to the input x. Let fcom
be the relation, fcom = {(y, (x, b)) : ((x, y) ∈ Lf ∧ b = 1) ∨ (b = 0)}. The Sigma protocol for the
relation fcom is given by the proof PK{(b, x) : f(x, y) = b ∧Db = gbhr1 ∧ C = gxhr}. Let G be a
group of order q, g a generator of G, and h a random element of G such that the discrete logarithm of
h with respect to g is unknown to the prover. Let Π be a Σ-protocol for the relation f . The Σ-protocol
for fcom is shown in Figure 3.

Theorem 3.4. If Π is a Σ-protocol for f , then comBitSigma is a Σ-protocol for fcom.

To generalize the above to the case where output is a group element and not a single bit, we need
one more building block.

12

Given C1 = Comp(λ),C2 = Comq(x),C3 = Comq(y), for q > 2t3, prove that (x, y) = λP , where
P ∈ E is an element of prime order p, 0 < λ < p, P ′, Q′, points in G2 of order q.

1. The prover computes the following values: a1 = Comp(α) = αP + β1Q, a2 = Comq(γ1) =
γ1P

′ + β2Q
′, a3 = Comq(γ2) = γ2P

′ + β3Q
′ where α ∈ Fp is chosen at random, and (γ1, γ2) =

αP . It sends a1, a2, a3 to the verifier.

2. The verifier chooses a random challenge bit c and sends it to the prover.

3. For challenge c,

• If c = 0, compute z1 = α, z2 = β1, z3 = β2, z4 = β3. Send the tuple (z1, z2, z3, z4)

• If c = 1, compute z1 = α − λ. Let T = z1P = (t1, t2). The prover uses pointAddition
(Figure 1) to prove that T = (γ1, γ2) − (x, y). Let π be PK{(x, y, γ1, γ2) : T = (γ1, γ2) −
(x, y)}. Send (z1, π).

4. Verification: Compute (t1, t2) = z1P . If c = 0, check if a1 = z1P +z2Q, a2 = t1P
′+z3Q

′, a3 =
t2P
′ + z4Q

′. If c = 1, verify proof π.

Figure 2: ddlog : PK{(λ, x, y, r, r1, r2) : Comp(λ) = λP + rQ ∧ Comq(x) = xP ′ + r1Q
′ ∧

Comq(y) = yP ′ + r2Q
′ ∧ (x, y) = λP}

Given y, C = Com(x), Db = Com(b), prove that f(x, y) = b.

• The prover uses the protocol Π for f , Σ-protocol for proving knowledge of committed values, and
the OR-transform to prove the following statement:

PK
{

(b, x) :
(
f(x, y) = 1 ∧ b = 1 ∧Db = gbhr1 ∧ C = gxhr

)
∨
(
b = 0 ∧Db = gbhr1 ∧ C = gxhr

)}

Figure 3: comBitSigma : PK{(b, x) : f(x, y) = b ∧Db = gbhr1 ∧ C = gxhr}

Proof of Point Addition and Discrete Log on Committed Points. Suppose we want to prove
that a committed point is the sum of two group elements. But the challenge is that the input group
elements are secret and are committed to, hence the prover also needs to prove knowledge of discrete
logarithms of the input points with respect to a public base. Specifically, our goal is to design a
protocol to prove knowledge of discrete logarithms of two committed points such that their sum is
another committed point which we do using comPointAddition. Let E be an elliptic curve defined
over Ft, and let P ∈ E be an element of prime order p. Let q > 2t3 be a prime. The protocol
comSum : PK{(γ, α, β, x1, x2) : γ = α + β ∧ α = x1P ∧ β = x2P} for 0 < x1, x2 < p is shown
in Figure 4.

When Committed Output is a Group Element. In the following discussion, similar to before, for
a group element α = (αx, αy), where αx, αy are the two coordinates of the elliptic curve point, the
commitment to the point is performed by committing to its two coordinates in the proper group, i.e.
Com(α) = (Com(αx),Com(αy)).

13

• The prover computes commitments c1 = Comp(x1), c2 = Comp(x2), c3 = Comq(α), c4 =
Comq(β), c5 = Comq(γ)

• The prover uses ddlog to give the following proof.
PK{(x1, α) : α = x1P ∧ c3 = Comq(α) ∧ c1 = Comp(x1)}

• The prover uses ddlog to give the following proof.
PK{(x2, β) : β = x2P ∧ c4 = Comq(β) ∧ c2 = Comp(x2)}

• The prover uses comPointAddition to give the following proof, given the commitments c3 =
(Comq(αx),Comq(αy)), c4 = (Comq(βx),Comq(βy)), c5 = (Comq(γx),Comq(γy)) and the
point addition formula for the elliptic curve that defines the group (Equations 6,7).
PK{(γ, α, β) : γ = α+ β ∧ c3 = Comq(α) ∧ c4 = Comq(β) ∧ c5 = Comq(γ)}

Figure 4: comSum : PK{(γ, α, β, x1, x2) : γ = α+ β ∧ α = x1P ∧ β = x2P}

We observe that given the above-mentioned building blocks i.e. ddlog and comSum, we can
construct Sigma protocol on a committed output group element for algebraic statements of the form
f(x1, . . . , xn) = Πg

Pi(xi)
i . We sketch the ideas at a high-level for some simple functions. Let

f : Znp → G, where G is a group E(Ft) of order p. When f(x) = gx, then this reduces to the
ddlog proof. For f(x1, x2) = gx11 g

x2
2 , it suffices to commit to gx11 and gx22 separately and call the

comSum proof. To consider higher degree polynomials in the exponent let us consider f(x) = gx
2
.

To construct a proof PK{(x, y) : gx
2

= y ∧ C1 = Com(x) ∧ C2 = Com(y)}, the prover computes
the commitments C1 = Comp(x), C2 = Comp(x

2) and C3 = Comq(k) = (Comq(kx),Comq(ky)),
where k = gx

2
= (kx, ky), for the choice of q as discussed in Section 3.1. Now, the prover gives the

following proofs. PK{(x2, k) : k = gx2 ∧ C2 = Comp(x2) ∧ C3 = Comq(k)} using ddlog, and a
Sigma protocol for PK{(x1, x2) : x2 = x21 ∧ C1 = Comp(x1) ∧ C2 = Comp(x2)}. Given the above
building blocks, it is easy to see that we can extend the techniques to devise proofs comSigma for
f(x1, . . . xn) = Πg

Pi(xi)
i .

4 NIZK on Committed IO for Non-Algebraic Statements

In this section we instantiate the following two building blocks which are critical for our NIZKs for
composite statements.

• zk-SNARK on committed input. Given an algebraic commitment C = gxhr, and a circuit f , a
zk-SNARK proof that f(x, z) = b.

• zk-SNARK on committed input and output. Given algebraic commitments C1 = gxhr, C2 =
gbhr, and a circuit f , a zk-SNARK proof that f(x, z) = b.

We first give a brief high-level description of our central ideas. Our starting point is a SNARK
where the proof consists of multi-exponentiation that resembles a Pedersen commitment. We identify
what part of the proof allows commitments to a private input (witness) and private output (for hiding
intermediate values of a larger computation) by suitably separating the input/output wires so there
are corresponding distinct proof elements in the SNARK. We then commit to the private input and
output of the SNARK proof independently using Pedersen commitment, and show equality of the
committed values and the values in the multi-exponentiation proof element. While this observation

14

has been used in prior works in verifiable computation [CFH+15, FFG+16], it has been in different
contexts and for different purposes. We briefly discuss how our ideas relate to two such ideas.

In [CFH+15], the authors present a verifiable computation scheme called Geppetto where the
prover can share state across proofs. They generalize QAPs to create MultiQAPs which allow one
to commit to data, and use it in many proofs. But crucially, all the proofs are for statements still
represented as circuits while we also utilize the commitment to switch to sigma protocol proofs.

In [FFG+16], certain proof elements of a SNARK act as “accumulated” value of inputs in the
context of large data size. The multi-exponentiations computed by the verifier in [FFG+16] act as a
hash on data and different computations may be performed (verifiably) on it. The verifier computes
the hash, and the proof verification involves checking the proof is consistent with the hash along with
checks that the computation was performed correctly on the data using only the hash that was com-
puted. On the other hand, in our setting, the multi-exponentiation is part of the proof, and computed
by the prover, whose consistency across proofs must be shown. Additionally, these proofs could be
different sigma protocols proving a variety of algebraic relations among some subset of the input used
in the SNARK. Though our idea of exploiting a proof element with a certain structure is similar to
the above works, we use it towards a different end.

For concreteness, we describe our protocol using the verifiable computation protocol Pinocchio
[PHGR13] (see Appendix H) as a starting point. But our techniques carry over to other SNARK
constructions as well. The key property we need from a SNARK construction is that the proof
contains a multi-exponentiation of the input/output. Given this, we separate the circuit wires and
obtain in a non-blackbox way, commitments as part of the SNARK proof.

Before giving the description of the above building blocks, we introduce an important ingredient:
a protocol for proving equality of the discrete logarithms (a1, . . . , an) in y =

∏n
i=1G

ai
i and individual

algebraic commitments to them.

4.1 Proof of Equality of Aggregated Discrete Logs & Commitments

Let G be a group of prime order q. Given y =
∏
Gaii and Ci = gaihri , where g,Gi are generators of

the group G, h is a random element of the group, and the prover does not know the discrete logarithm
of h with respect to g, and the discrete logarithms ofGis with respect to each other. We want to prove
equality of the discrete logarithms in y and the respective values committed to in Cis. Let k be the
statistical security parameter. We give a Sigma protocol, and following standard notation, we denote
the protocol by PK{(a1, . . . , an, r1, . . . , rn) : y =

∏n
i=1G

ai
i ∧ C1 = ga1hr1 ∧ · · · ∧ Cn = ganhrn}.

We show that the protocol in Figure 5 is correct, has a soundness error of 1/2k, and is honest
verifier zero knowledge in Appendix C.1.

4.2 zk-SNARK on Committed Inputs

Recall that at a high level, each polynomial of the quadratic program (Definition 2.6), say, vk(x) ∈
F[x] is mapped to an element in a bilinear group, gvk(s), where s is a secret value chosen during
CRS generation. Given these group elements and the values ai on the circuit wires which are the
coefficients of the quadratic program, the prover can compute “in the exponent” to obtain gv(s),
where v(s) =

∑
aivk(s). The verifier uses the bilinear map to verify that the divisibility check of

the QAP holds. We assume the computations are over large fields, that is, the QAP is defined over Fp
for a large p. The size of the field is exponential in the security parameter. We omit p in all further
descriptions of the field.

Let f : FN → Fn′ be a function with input/output values from F, computed by an arithmetic
circuit C with input wires labeled 1, . . . , N , output wires labeledm−n′+1, . . . ,m. LetQ be a QAP

15

Given y =
∏n
i=1G

ai
i and Ci = gaihri

1. The prover computes the following values: u =
∏n
i=1G

αi
i and vi = gαihRi for randomly chosen

αi, Ri ∈ Zq and sends u, vi to the verifier.

2. The verifier chooses a challenge c at random from Z2k for a fixed k, such that 2k < q, and sends it
to the prover.

3. For a challenge string c, prover computes and sends the tuple (si, ti)

si = αi − cai (mod q), ti = Ri − cri (mod q)

4. Verification: Check if u = yc
∏
Gsii and vi = (Ci)

cgsihti . The verifier accepts if checks succeed
for all i.

Figure 5: comEq : PK{(a1, . . . , an, r1, . . . , rn) : y =
∏n
i=1G

ai
i ∧C1 = ga1hr1∧· · ·∧Cn = ganhrn}

of size m and degree d corresponding to C. We separate the circuit wires I into private input, public
input, intermediate values, and output wires. Let Icom ⊆ {1, . . . , N} be the set of indices correspond-
ing to the private inputs a1, . . . , an, Ipub the indices for the public input wires, and Iout the indices
for the public output. Then let Imid = {1, . . . ,m}\ (Ipub∪Icom∪Iout) be the indices of the interme-
diate wires. This way there are separate CRS elements corresponding to the private input and public
input allowing the prover to compute corresponding proof elements. The divisibility check can still
proceed, and we include additional span checks for the new proof elements. Now, we bind the multi-
exponentiation corresponding to the private input in the proof to the value committed to in a Pedersen
commitment using the protocol comEq. Let Ci = gaihri be a Pedersen commitment to the ith in-
put ai. The construction comInSnark : PK{(a1, . . . , an, r1, . . . , rn) : f(a1, . . . an, z1, . . . , zN−n) =
(b1, . . . , bn′) ∧ C1 = ga1hr1 ∧ · · · ∧ Cn = ganhrn} is given in Figure 6.

Given commitments to private inputs Ci = gaihri for i ∈ [n], public inputs z1, . . . , zN−n, and public
outputs b1, . . . , bn′ .

1. CRS generation: Run GroupGen(1κ) to get (p,G, G̃,GT , g, g̃, e). Choose
rv, rw, αv, αw, αy, s, β, γ

R← F. Set ry = rvrw, gv = grv , gw = grw , g̃w = g̃rw , gy = gry .
Set the CRS to be:

crs =
(
{gvk(s)v }k∈Icom , {gvk(s)v }k∈Imid

, {g̃wk(s)
w }k∈Icom ,

{g̃wk(s)
w }k∈Imid

, {gyk(s)y }k∈Icom , {gyk(s)y }k∈Imid
, {gαvvk(s)

v }k∈Icom ,

{gαvvk(s)
v }k∈Imid

, {g̃αwwk(s)
w }k∈Icom , {g̃αwwk(s)

w }k∈Imid
,

{gαyyk(s)
y }k∈Icom , {gαyyk(s)

y }k∈Imid
, {gs

i

}i∈[d], {g̃s
i

}i∈[d],

{gαvs
i

}i∈[d], {g̃αvs
i

}i∈[d], {gαws
i

}i∈[d], {g̃αws
i

}i∈[d], {gαys
i

}i∈[d],

{g̃αys
i

}i∈[d], {gβvk(s)v gβwk(s)
w gβyk(s)y }k∈Icom , {gβvk(s)v gβwk(s)

w gβyk(s)y }k∈Imid

)
Set the short verification CRS to be:

shortcrs =
(
g, g̃, g̃αv , gαw , g̃αy , g̃γ , gβγ , g̃βγ , gt(s),

{gvk(s)v }k∈Icom , {gvk(s)v }k∈Ipub∪Iout
, {g̃wk(s)

w }k∈Ipub∪Iout
, {gyk(s)y }k∈Ipub∪Iout

)

16

2. Prove: On input z1, . . . , zN−n, witness a1, . . . , an, and crs, the prover evaluates the QAP to obtain
{ai}i∈[m]. (Equivalently, evaluates the circuit to obtain the values on the circuit wires). The prover
solves for the quotient polynomial h such that p(x) = h(x)t(x). Let vcom(x) =

∑
k∈Icom akvk(x),

vmid(x) =
∑
k∈Imid

akvk(x) and similarly define wcom(x), wmid(x), ycom(x) and ymid(x).

• The prover computes the proof π:(
gvcom(s)
v , gvmid(s)

v , g̃wcom(s)
w , g̃wmid(s)

w , gycom(s)
y , gymid(s)

y , g̃h(s),

g̃αvvcom(s)
v , g̃αvvmid(s)

v , gαwwcom(s)
w , gαwwmid(s)

w , g̃αyycom(s)
y , g̃αyymid(s)

y

gβvcom(s)
v gβwcom(s)

w gβycom(s)
y , gβvmid(s)

v gβwmid(s)
w gβymid(s)

y

)
• Prove input consistency with commitment: The prover uses the Sigma protocol comEq to

compute πin: PK{(a1, . . . , an, r1, . . . , rn) : y =
∏n
i=1G

ai
i ∧ C1 = ga1hr1 ∧ · · · ∧ Cn =

ganhrn}, for Gi = g
vi(s)
v , i ∈ Icom, and y = g

vcom(s)
v .

3. Verify:

• On input shortcrs, z, and proofs π, πin parse π as

π =
(
gVcom , gVmid , g̃Wcom , g̃Wmid , gYcom , gYmid , g̃H ,

g̃V
′
com , g̃V

′
mid , gW

′
com , gW

′
mid , g̃Y

′
com , g̃Y

′
mid , gZcom , gZmid

)
• Divisibility check. Compute gvio(s)v =

∏
k∈Ipub∪Iout

(g
vk(s)
v)ak . Similarly, compute g̃wio(s)

w

and gyio(s)y . Verify that

e
(
gv0(s)v gvio(s)v gVcomgVmid , g̃w0(s)

w g̃wio(s)
w g̃Wcom g̃Wmid

)
= e

(
gt(s), g̃H

)
· e
(
gy0(s)y gyio(s)y gYcomgYmid , g̃

)
.

• Verify that the linear combinations are in correct spans.

(a) e
(
gVcom , g̃αv

)
= e

(
g, g̃V

′
com

)
(b) e

(
gVmid , g̃αv

)
= e

(
g, g̃V

′
mid

)
(c) e

(
gW

′
com , g̃

)
= e

(
gαw , g̃Wcom

)
(d) e

(
gW

′
mid , g̃

)
= e

(
gαw , g̃Wmid

)
(e) e

(
gYcom , g̃αy

)
= e

(
g, g̃Y

′
com

)
(f) e

(
gYmid , g̃αy

)
= e

(
g, g̃Y

′
mid

)
• Verify same coefficients in all linear combinations.

(a) e
(
gZcom , g̃γ

)
= e

(
gVcomgYcom , g̃βγ

)
· e
(
gβγ , g̃Wcom

)
(b) e

(
gZmid , g̃γ

)
= e

(
gVmidgYmid , g̃βγ

)
· e
(
gβγ , g̃Wmid

)
• Verify input consistency with commitment: SetGi = g

vi(s)
v , i ∈ Icom, and y = gVcom . Verify

the proof πin.

17

Figure 6: comInSnark : PK{(a1, . . . , an, r1, . . . , rn) : f(a1, . . . an, z1, . . . , zN−n) = (b1, . . . , bn′) ∧
C1 = ga1hr1 ∧ . . . ∧ Cn = ganhrn}

Zero-knowledge. We make our construction zero-knowledge, and obtain zkcomInSnark, by ran-
domizing the elements in the proof π such that the checks verify and the proof is statistically indis-
tinguishable from random group elements. Specifically, the prover chooses random δv, δw, δy ← F,
and adds δvt(s) in the exponent to vcom(s), vmid(s); δwt(s) to wcom(s), wmid(s); and δyt(s) to
ycom(s), ymid(s). It is easy to see that the modified value of p(x) remains divisible by t(x). The
following terms are added to crs: gt(s)v , g̃t(s)w , gt(s)y , gαvt(s)

v , gαwt(s)
w , gαyt(s)

y , gβt(s)v , gβt(s)w , gβt(s)y

(gt(s)v is also added to shortcrs). Prover can now compute the new values in π from crs, and they
are verified in the same manner as before. The proof πin now proves a slightly different statement:
PK{(a1, . . . , an, δ, r1, . . . , rn) : y = Hδ

∏n
i=1G

ai
i ∧ C1 = ga1hr1 ∧ . . . ∧ Cn = ganhrn}. To verify

it, the verifier uses gt(s)v from shortcrs.

Theorem 4.1. If q-PDH, 2q-SDH and d-PKE assumptions hold for GroupGen for q ≥ 4d + 4, then
zk-comInSnark instantiated with a QAP of degree d is secure under Definition 2.2.

We prove the above theorem in Appendix B. Similarly, by separating the circuit wires into private
input, public input, intermediate values and private output, we obtain zk-SNARK on committed input
and output. This construction, comIOSnark, is presented in Appendix A. We state the theorem below.

Theorem 4.2. If q-PDH, 2q-SDH and d-PKE assumptions hold for GroupGen for q ≥ 4d + 4, and
discrete logarithm assumption holds in G, then zk-comIOSnark instantiated with a QAP of degree d
is secure under Definition 2.2.

5 Constructions for Compound Statements

In this section we use the building blocks we constructed in Sections 4 and 3, to devise proofs for
compound statements. In the following, we distinguish between functions that have an efficient al-
gebraic representation versus functions that are efficiently represented as an arithmetic circuit over a
field. Of course, any algebraic function can be written as a circuit over some field. But certain func-
tions, modular exponentiation for instance, have a large circuit size and hence it is more desirable to
not use a circuit in computing them. Therefore, when we say algebraic or arithmetic for functions
below, we really mean the efficient representation of the function for computation. We say a function
f is arithmetic if an arithmetic circuit is used to compute f , and say f is algebraic if it is represented
algebraically. In this section, we show how to prove compound statements involving function com-
positions, OR, and AND. In our compositions, the SNARK used for the circuit could use a group
whose order does not match with the group of the sigma protocol for the algebraic part. We construct
a building block Eq to prove equality of committed values in different groups, given in Appendix D,
which we use in our compositions.

5.1 Function Composition

We assume that the commitments we use in the following are in groups of correct order for the com-
putation, so as to focus on the ideas for the composition. Wlog., our compositions hold even when
the the scalar field of the elliptic curve group, the field the curve is defined over and the field of the
arithmetic circuit are all different, since we can prove equality of committed values in different groups

18

using the protocol Eq given in Figure 12. We present the interactive variant for ease of presentation
but note that all our constructions can be made non-interactive by running all the proofs in parallel and
invoking the standard Fiat-Shamir transform (see Section 2.1). The constructions below also easily
generalize to functions that have more input/output elements than shown, i.e. we can obtain construc-
tions for statements of the form PK{(x1, . . . , xn, y1, . . . , ym) : f1(x1, . . . , xn, f2(y1, . . . , ym)) = z}
where f1, f2 may each be arithmetic or algebraic. We give constructions composition by elaborating
on the four possible compositions next:

1. f1 and f2 are functions represented as arithmetic circuits. Let f1 : F2
p → Fp, and f2 : Fp → Fp,

and we want to prove knowledge of secrets x1, x2 such that f1(x1, f2(x2)) = z for a public
z. An example is proof of knowledge of x1 and x2 such that H(x1||H(x2)) = z where H is
a collision resistant hash function such as SHA256. Such a composition can help reduce the
size of CRS by composing the same or a few SNARK systems multiple times to obtain more
complex statements without an increase in CRS size.

• The prover commits to x1, x2 and x3 = f2(x2) by computing c1 = Comp(x1), c2 =
Comp(x2), c3 = Comp(x3). The prover sends c1, c2, c3 to the verifier.

• The prover uses zk-comIOSnark to give a proof that f2(x2) = x3, given c2 and c3.
PK{(x2, x3, r2, r3) : f2(x2) = x3 ∧ c2 = Comp(x2) ∧ c3 = Comp(x3)}.

• The prover uses zk-comInSnark to give a proof that f1(x1, x3) = z given c1, c3 and z.
PK{(x1, x3, r1, r3) : f1(x1, x3) = z ∧ c1 = Comp(x1) ∧ c3 = Comp(x3)}.

2. f1 is an arithmetic circuit and f2 is algebraic. Let f1 : F3
p → Fp, f2 : Zq → G and T : G → F2

p.
In this proof, we assume the algebraic function is over an elliptic curve group and assume
the natural transformation for mapping an elliptic curve point to a tuple of field elements, i.e.
its coordinates. Let G be an elliptic curve group of prime order q, and let T (k) = (kx, ky)
for k ∈ G, where (kx, ky) are the coordinates of the elliptic curve point. The following is a
protocol for PK{(x1, x2) : f1(x1, T (f2(x2))) = z}. An example is proving knowledge of x
such that H(gx) = z.

• The prover commits to x1, x2 and k = f2(x2) by computing c1 = Comp(x1), c2 =
Comq(x2), c3 = Comp(k) = (Comp(kx),Comp(ky)), and sends c1, c2, c3 to the verifier.

• The prover uses the protocols ddlog and the sigma protocol on committed group element comSigma
to give the following proof: PK{(x2, k, r2, r3) : f2(x2) = k ∧ c2 = Comq(x2) ∧ c3 = Comp(k)}.

• The prover uses zk-comInSnark to prove f1(x1, T (k)) = z given c1, c3, c4. PK{(x1, k, r1, r3) :
f1(x1, T (k)) = z ∧ c1 = Comp(x1) ∧ c3 = Comp(k)}.

3. f1 is algebraic, and f2 is an arithmetic circuit. Let f1 : Z2
q → G, f2 : Fp → Fp. Let Π be

a Σ-protocol for f1. The following is a protocol for PK{(x1, x2) : f1(x1, f2(x2)) = z}. An
example is proving knowledge of x such that gH(x) = z where H is a hash function. This
composition commonly appears when proving knowledge of a digitally signed message.

19

• The prover commits to x1, x2, x3 = f2(x2) by computing c1 = Comq(x1), c2 = Comp(x2), c3 =
Comq(x3), c′3 = Comp(x3). c3 is committed to twice, in groups of order p and q. The prover sends
c1, c2, c3, c

′
3 to the verifier.

• The prover uses zk-comIOSnark to give a proof that f2(x2) = x3, given c2 and c′3.
PK{(x2, x′3, r2, r′3) : f2(x2) = x′3 ∧ c2 = Comp(x2) ∧ c′3 = Comp(x

′
3)}.

• The prover uses the sigma protocol Π to give the following proof. PK{(x1, x3, r1, r3) :
f1(x1, x3) = z ∧ c1 = Comq(x1) ∧ c3 = Comq(x3)}.

• The prover uses the protocol Eq to prove that c′3 and c3 are commitments to the same value.
PK{(x3, x′3, r3, r′3) : x3 ≡ x′3 (mod q) ∧ c3 = Comq(x3) ∧ c′3 = Comp(x

′
3)}

4. f1 and f2 are algebraic. Let f1 : Z3
p → G1, f2 : Zq → G2, where G1 and G2 are elliptic

curve groups of prime order p and q respectively. Let T (k) = (kx, ky) for k ∈ G2, where
(kx, ky) are the coordinates of the elliptic curve point. Let Π1 be a Σ-protocol for f1. Let
x1 ∈ Zp, x2 ∈ Zq. An example is proving knowledge of x such that gT (g

x
2)

1 for generators
g1 and g2 for two different groups and a valid transformation T for mapping from one group
to another. These statements often occur in anonymous credential constructions or proving
statements about accumulators but the only previous constructions are for RSA groups.

• The prover commits to x1, x2 and k = f2(x2) by computing c1 = Comp(x1), c2 =
Comq(x2), c3 = Comp(k) = (Comp(kx),Comp(ky)), and sends c1, c2, c3 to the verifier.

• The prover uses the protocols ddlog and the sigma protocol on committed group element comSigma
for f2 to give the following proof: PK{(x2, k, r2, r3) : f2(x2) = k ∧ c2 = Comq(x2) ∧ c3 =
Comp(k)}.

• The prover uses the sigma protocol Π1 to give the following proof. PK{(x1, k, r1, r3) :
f1(x1, T (k)) = z ∧ c1 = Comp(x1) ∧ c3 = Comp(k)}.

Theorem 5.1 (Function Composition). The constructions composition are non-interactive zero-knowledge
arguments PK{(x1, . . . , xn, y1, . . . , ym) : f1(x1, . . . , xn, f2(y1, . . . , ym)) = z}, as per Definition 2.2,
for any f1, f2 ∈ {algebraic, arithmetic} assuming the security of zk-comInSnark, zk-comIOSnark,
ddlog, Eq.

5.2 OR Composition

Consider the OR composition where a prover wants to show that f1(x1, x2) = 1 or f2(x1, x3) = 1
but without revealing which one is true. We give constructions compoundOR : PK{(x1, x2, x3) :
f1(x1, x2) ∨ f2(x1, x3) = 1}, where the fis could have either an arithmetic or algebraic representa-
tion, and could have shared secret inputs.

1. f1 and f2 are functions represented as arithmetic circuits. Let f1 : F2
p → {0, 1}, and f2 :

F2
q → {0, 1}, q < p. An example is composing proofs for two SNARK systems that work over

different elliptic curve groups.

20

• The prover commits to the inputs by computing, c1 = Comp(x1), c′1 = Comq(x1), c2 =
Comp(x2), c3 = Comq(x3), and to the output bits b1 = f1(x1, x2), b2 = f1(x1, x3), c4 =
Comp(b1), c5 = Comq(b2), c′5 = Comp(b2). x1 and b2 are committed to in both groups of or-
der p and q.

• The prover uses zk-comIOSnark to give proofs.
PK{(x1, x2, b1, r1, r2, r4) : f1(x1, x2) = b1 ∧ c1 = Comp(x1) ∧ c2 = Comp(x2) ∧ c4 =
Comp(b1)}.
PK{(x′1, x3, b2, r′1, r3, r5) : f2(x′1, x3) = b2∧c′1 = Comq(x

′
1)∧c3 = Comq(x3)∧c5 = Comq(b2)}.

• The prover uses the protocol Eq to prove that c′1 and c1 are commitments to the same value.
PK{(x1, x′1r1, r′1) : x1 ≡ x′1 (mod q) ∧ c1 = Comp(x1) ∧ c′1 = Comq(x1)}

• The prover uses the protocol Eq to prove that c′5 and c5 are commitments to the same value.
PK{(b2, b′2, r5, r′5) : b2 ≡ b′2 (mod q) ∧ c5 = Comq(b2) ∧ c′5 = Comp(b

′
2)}

• The prover uses the Sigma protocol OR-transform to give the following proof.
PK{(b1, b2, r4, r5) : (b1 = 1 ∧ c4 = Comp(b1)) ∨ (b2 = 1 ∧ c′5 = Comp(b2))}

2. One of them is an arithmetic circuit and the other is an algebraic relation. Wlog., f1 is rep-
resented as an arithmetic circuit and f2 is an algebraic statement. Let f1 : F2

p → {0, 1}, f2 :
Z2
q → {0, 1}, q < p. Let Π be a Σ-protocol for f2. An example is proving knowledge of x

such that H(x) = y OR gx = z.

• The prover commits to the inputs, c1 = Comq(x1), c′1 = Comp(x1), c2 = Comp(x2), c3 =
Comq(x3). The prover computes the outputs b1 = f1(x1, x2), b2 = f1(x1, x3) and commits to
them by computing c4 = Comp(b1), c5 = Comq(b2), c′5 = Comp(b2).

• The prover uses comIOSnark to give the following proof.
PK{(x′1, x2, b1, r′1, r2, r4) : f1(x′1, x2) = b∧c′1 = Comp(x1)∧c2 = Comp(x2)∧c4 = Comp(b1)}.

• The prover uses the protocol Π and protocol comBitSigma (Figure 3) to prove the following.
PK{(x1, x3, b2, r1, r3, r5) : f2(x1, x3) = b2∧c1 = Comq(x1)∧c3 = Comq(x3)∧c5 = Comq(b2)}

• The prover uses the protocol Eq to prove that c′1 and c1 are commitments to the same value.
PK{(x1, x′1r1, r′1) : x1 ≡ x′1 (mod q) ∧ c1 = Comq(x1) ∧ c′1 = Comp(x1)}

• The prover uses the protocol Eq to prove that c′5 and c5 are commitments to the same value.
PK{(b2, b′2, r5, r′5) : b2 ≡ b′2 (mod q) ∧ c5 = Comq(b2) ∧ c′5 = Comp(b

′
2)}

• The prover uses the Sigma protocol OR-transform to prove the following.
PK{(b1, b2, r4, r5) : (b1 = 1 ∧ c4 = Comq(b1)) ∨ (b2 = 1 ∧ c5 = Comq(b2))}.

Let fOR be the relation given by fOR = {((f1, f2), (x1, x2, x3)) : ((x1, x2) ∈ Rf1)∨ ((x1, x3) ∈ Rf2)}.

Theorem 5.2 (OR Composition). The constructions compoundOR are non-interactive zero-knowledge
arguments PK{(x1, x2, x3) : f1(x1, x2)∨f2(x1, x3) = 1}, as per Definition 2.2, for the relation fOR,
for any f1, f2 ∈ {algebraic, arithmetic}, assuming the security of zk-comInSnark, zk-comIOSnark,
comBitSigma, Eq.

21

5.3 AND Composition

Techniques shown in Section 5.2 extend for proofs of the form, PK{(x1, x2, x3) : f1(x1, x2) ∧
f2(x1, x3) = 1} for all combinations of f1 and f2 being arithmetic and algebraic. In particular, to
prove the AND of multiple statements, we use our building blocks comInSnark for the arithmetic
part, Σ-protocol for the algebraic part, and Eq to switch between groups.

6 Applications

6.1 Privacy-preserving Audits of Bitcoin Exchanges

In this section, we show how to use our constructions for proving composite statements in zero-
knowledge to build a privacy-preserving proof of solvency for Bitcoin exchanges. A proof of solvency
demonstrates that an exchange controls sufficient reserves to settle each customer’s account. If the
exchange loses a large amount of money in an attack, it would not be able to provide such a proof.
Thus customers will find out about the attack very soon and take necessary actions.

A proof of solvency consists of three components:

• A proof of liabilities that allows customers to verify that their accounts are included in the total.

• A proof of assets which shows that the exchange has a certain amount of reserves.

• A proof that the reserves cover the liabilities to an acceptable degree.

Let g, h be fixed public generators of a group G of order q. For a Bitcoin public key y, x ∈ Zq
is the corresponding secret key such that y = gx. In the proof of assets below, for a group element
k = (kx, ky), we write Com(k) to mean a commitment to the coordinates of k, i.e. Com(k) =
(Com(kx),Com(ky)). The Bitcoin address corresponding to a key y is given by h = H(y), where H
hashes y to a more compact representation. We denote the balance associated with an address h by
bal(h).

6.1.1 Proof of assets

We give the proof of assets in Figure 7, which allows an exchange to generate a commitment to its
total assets along with a zero-knowledge proof that the exchange knows the private keys for a set
of Bitcoin addresses whose total value is equal to the committed value. The exchange creates a set
of hashes PK to serve as an anonymity set: PK = {h1, · · · , hn} from the public data available on
the blockchain. Let x1, · · · , xn be the corresponding secret keys, so that hi = H(gxi), si indicates
whether the exchange knows the ith secret key. The total assets can now be expressed as Assets =∑n

i=1 si · bal(hi). The public data available on the blockchain is hi = H(yi), pi = gbal(hi) for all
i ∈ [1, n].

6.1.2 Proof of liabilities

The proof of liabilities has the exchange commit to its total liability, and in addition, convince all its
customers of the inclusion of their balances in the commitment. Like in Provisions, each customer
is mapped to an entry on a liability list. Each customer is provided with an identifier useri (which
could potentially include username, email address, or account number), and the exchange uses a hash-
based commitment scheme to commit to the customer identifiers. To ensure that any included users
can only add to the exchange’s total liabilities, the protocol has the exchange give a proof that each

22

• The exchange computes the commitments. For i ∈ [1, n], commit to xi by publishing αi =
Comq(xi) = gxihri , and commit to yi by publishing βi = Comq(yi).

• The exchange commits to the balance in each address for the public keys he controls and to 0
otherwise, by publishing ui = Comq(si · bal(hi)) = gsi·bal(hi)hti , si ∈ {0, 1}, where si = 1 if the
exchange knows xi such that yi = gxi .

• The exchange uses protocols ddlog, comIOSnark and the constructions for function composition
and OR composition, composition and compoundOR respectively, to prove the following for each
i,

πi : PK{(xi, yi, si, ri, ai, bi, ti) :
(
αi = Comq(xi) ∧ βi = Comq(yi)∧

ui = Comq(si · bal(hi)) ∧ f1(f2(xi), hi) = si ∧ si = 1
)
∨
(
si = 0

)
}

where f2(x) = gx and

f1(y, h) =

{
1 if H(y) = h

0 otherwise.

• Compute and publish ZAssets =
∏n
i=1 ui.

Figure 7: Proof of assets

committed balance is in an interval between 0 and Max = 251. While Provisions achieves this range
proof by using bitwise commitments (which contributes to the bulk of the proof size), our comInSnark
protocol for zk-SNARK on committed input allows us to use a circuit to check the range instead. The
rest of the proof remains similar to Provisions, allowing the exchange to verifiably commit to its total
liabilities ZLiab, and convince clients of inclusion of their balances in ZLiab. We give the proof of
liabilities in Figure 8.

Given the proofs in Figures 7 and 8, the proof of solvency involves the exchange proving that
ZAssets/ZLiab is a commitment to 0, and is similar to the protocol for proof of solvency in Provi-
sions. For completeness, we include the proof in Figure 9. Zero-knowledge and soundness of the
proofs of assets and liabilities follow from properties of our constructions for compound statements
(Theorems 5.1, 5.2) and properties of the Sigma protocols used. We compare the trade-off between
proof size and prover’s work in our approach versus Provisions and a full SNARK solution in Table
1 in Appendix F.

6.2 Privacy-Preserving Credentials

Another application of our compositions for compound statements is in privacy-preserving verifica-
tion of credentials. A credential system allows a user to obtain credentials from an organization or
a Certificate Authority, and later prove to a verifier that she has been given appropriate credentials.
Typically, the user’s credentials will contain a set of attributes, and the verifier will require that the
user prove that the attributes in his credential satisfy certain policy. Many different constructions have
been proposed for anonymous credential systems built around sigma protocols. The signatures used,
therefore, are specially designed so that a sigma protocol can be used to prove knowledge of the signa-
ture on a committed message. If we want to base anonymous credentials on standard signatures, like
RSA signatures, we will need to prove a compound statement involving an algebraic relation (for the
exponentiation), and a circuit-based statement (for the hash function). The recent work of [DLFKP16]

23

• Let C be a circuit that takes as input m bit integers x1, · · · , xn and outputs 1 if xi < Max for all i
and 0 otherwise.

• The exchange commits to each customer Ci’s balance xi by publishing ci = Comq(xi) = gxihri

• The exchange uses the protocol comInSnark to prove that xi < Max for all customers.
π : PK{(xi, ri) : C(x1, · · · , xn) = 1 ∧ ci = Comq(xi)}.

• The exchange computes a customer identifier for each customer by choosing a random nonce and
computing

CIDi = H(useri||ni)

where ni ∈ {0, 1}512, useri is the ith customer’s username, and H is a collision resistant hash
function.

• The exchange publishes the liabilities list of all customers’ tuples.

ListLiab = (CID1, · · · ,CIDn, c1, · · · , cn, π)

• Each client is privately given (ri, ni)

– The client computes CID and verifies inclusion in the liabilities list.

– The client checks its own balance is included by computing ci = gbalihri .

– Verifies the proof π.

– Each client computes ZLiab =
∏n
i=1 ci.

Figure 8: Proof of liabilities

1. The exchange uses the proof of assets in Figure 7 and generates a commitment to its total assets
ZAssets.

2. The exchange uses the proof of liabilities in Figure 8 to generate a commitment to its total liabilities
ZLiab and a list of its liabilities, ListLiab.

3. The exchange gives a proof π : PK{(R) : Z = hR}, where Z = ZAssets · Z−1Liab.

Figure 9: Proof of solvency

achieves privacy-preserving verification of X.509 certificates by using zk-SNARKs, and this involves
representing the exponentiation in an RSA group as a circuit. Here, we use our composition construc-
tions to build an efficient proof avoiding expensive circuit representation of algebraic statements.

Given a SHA hash digest of a message m, a candidate RSA signature σ, and an RSA modulus
N , verification involves checking whether σe mod n = h, where h = padding(SHA(m)). The
construction given in Figure 10 achieves privacy-preserving verification for credentials based on RSA
signatures. We compare the trade off between the proof size and prover’s work in our approach versus
other methods in Table 2 in Appendix F. Our compositions and similar techniques extend to yield
efficient privacy-preserving verification for credentials based on existing infrastructure like standard
RSA-PSS, RSA-PKCS etc.

24

• The prover commits to the message m, the digest h, and the signature σ by computing c1 =
Comp(m), c2 = Comp(h), c3 = Comn(σ), c4 = Comn(h) for p < n.

• The prover uses zk-comIOSnark to give a proof that the hash digest is correct, given c1 and c2.
PK{(m,h, r1, r2) : padding(SHA(m)) = h ∧ c1 = Comp(m) ∧ c2 = Comp(h)}.

• The prover uses a sigma protocol to prove knowledge of e-th root of a committed value [CS97].
PK{(h, σ, r2, r3) : σe mod n = h ∧ c2 = Comn(h) ∧ c3 = Comn(σ)}.

• The prover uses the protocol Eq to prove that the commitments c2 and c4 are to the same value:
PK{(h, h′, r2, r4) : c2 = Comp(h) ∧ c4 = Comn(h′) ∧ h ≡ h′ mod p}.

Figure 10: RSA Signature Verification

References

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
Ligero: Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 17, pages
2087–2104. ACM Press, October / November 2017.

[Aho87] Alfred Aho, editor. 19th ACM STOC. ACM Press, May 1987.

[BBB+17] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Efficient range proofs for confidential transactions. Cryptology
ePrint Archive, Report 2017/1066, 2017. https://eprint.iacr.org/2017/
1066.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable col-
lision resistance to succinct non-interactive arguments of knowledge, and back again.
In Shafi Goldwasser, editor, ITCS 2012, pages 326–349. ACM, January 2012.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
SNARKs for C: Verifying program executions succinctly and in zero knowledge. In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 90–108. Springer, Heidelberg, August 2013.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from
bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 459–474. IEEE
Computer Society Press, May 2014.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Suc-
cinct non-interactive arguments via linear interactive proofs. In Amit Sahai, editor,
TCC 2013, volume 7785 of LNCS, pages 315–333. Springer, Heidelberg, March 2013.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-
interactive zero knowledge for a von neumann architecture. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 781–796, San Diego, CA, 2014. USENIX
Association.

25

https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2017/1066

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In 20th ACM STOC, pages 103–112. ACM Press,
May 1988.

[bit] Technical background of version 1 bitcoin addresses. https://en.bitcoin.it/
wiki/Technical_background_of_version_1_Bitcoin_addresses.

[BOGG+90] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Håstad, Joe Kilian, Silvio
Micali, and Phillip Rogaway. Everything provable is provable in zero-knowledge. In
Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 37–56. Springer,
Heidelberg, August 1990.

[Bou00] Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In Bart
Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 431–444. Springer,
Heidelberg, May 2000.

[CCs08] Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient protocols for set member-
ship and range proofs. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of
LNCS, pages 234–252. Springer, Heidelberg, December 2008.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher,
Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-
knowledge and signatures from symmetric-key primitives. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pages 1825–
1842. ACM, 2017.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In Yvo Desmedt, editor,
CRYPTO’94, volume 839 of LNCS, pages 174–187. Springer, Heidelberg, August
1994.

[CF85] Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryptographically secure
election scheme (extended abstract). In 26th FOCS, pages 372–382. IEEE Computer
Society Press, October 1985.

[CFH+15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter,
Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable com-
putation. In 2015 IEEE Symposium on Security and Privacy, pages 253–270. IEEE
Computer Society Press, May 2015.

[CGM16] Melissa Chase, Chaya Ganesh, and Payman Mohassel. Efficient zero-knowledge proof
of algebraic and non-algebraic statements with applications to privacy preserving cre-
dentials. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III,
volume 9816 of LNCS, pages 499–530. Springer, Heidelberg, August 2016.

[Cha82] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L.
Rivest, and Alan T. Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New
York, USA, 1982.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In Birgit Pfitzmann, editor, EU-
ROCRYPT 2001, volume 2045 of LNCS, pages 93–118. Springer, Heidelberg, May
2001.

26

https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses
https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses

[CM99] Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number is the
product of two safe primes. In Jacques Stern, editor, EUROCRYPT’99, volume 1592
of LNCS, pages 107–122. Springer, Heidelberg, May 1999.

[Cra12] Ronald Cramer, editor. TCC 2012, volume 7194 of LNCS. Springer, Heidelberg, March
2012.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups
(extended abstract). In Kaliski Jr. [Kal97], pages 410–424.

[Dåm] Ivan Dåmgard. On Sigma Protocols. http://www.cs.au.dk/˜ivan/Sigma.
pdf.

[DBB+15] Gaby G. Dagher, Benedikt Bünz, Joseph Bonneau, Jeremy Clark, and Dan Boneh.
Provisions: Privacy-preserving proofs of solvency for bitcoin exchanges. In Indrajit
Ray, Ninghui Li, and Christopher Kruegel:, editors, ACM CCS 15, pages 720–731.
ACM Press, October 2015.

[DF02] Ivan Damgård and Eiichiro Fujisaki. A statistically-hiding integer commitment scheme
based on groups with hidden order. In Yuliang Zheng, editor, ASIACRYPT 2002, vol-
ume 2501 of LNCS, pages 125–142. Springer, Heidelberg, December 2002.

[DFH12] Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation with
low communication. In Cramer [Cra12], pages 54–74.

[DLFKP16] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, and Bryan Parno. Cin-
derella: Turning shabby X.509 certificates into elegant anonymous credentials with the
magic of verifiable computation. In 2016 IEEE Symposium on Security and Privacy,
pages 235–254. IEEE Computer Society Press, May 2016.

[Edw07] Harold Edwards. A normal form for elliptic curves. Bulletin of the American Mathe-
matical Society, 44(3):393–422, 2007.

[FFG+16] Dario Fiore, Cédric Fournet, Esha Ghosh, Markulf Kohlweiss, Olga Ohrimenko, and
Bryan Parno. Hash first, argue later: Adaptive verifiable computations on outsourced
data. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. My-
ers, and Shai Halevi, editors, ACM CCS 16, pages 1304–1316. ACM Press, October
2016.

[FFS87] Uriel Feige, Amos Fiat, and Adi Shamir. Zero knowledge proofs of identity. In Aho
[Aho87], pages 210–217.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In 31st FOCS, pages 308–
317. IEEE Computer Society Press, October 1990.

[FO97] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove
modular polynomial relations. In Kaliski Jr. [Kal97], pages 16–30.

[For87] Lance Fortnow. The complexity of perfect zero-knowledge (extended abstract). In Aho
[Aho87], pages 204–209.

27

http://www.cs.au.dk/~ivan/Sigma.pdf
http://www.cs.au.dk/~ivan/Sigma.pdf

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194. Springer, Heidelberg, August 1987.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer,
Heidelberg, May 2013.

[GK15] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a secret
and spend a coin. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part II, volume 9057 of LNCS, pages 253–280. Springer, Heidelberg, April 2015.

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation with-
out rejection problem from designated verifier CS-Proofs. Cryptology ePrint Archive,
Report 2011/456, 2011. http://eprint.iacr.org/2011/456.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-knowledge
for boolean circuits. In 25th USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10-12, 2016., 2016.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design (extended abstract). In
27th FOCS, pages 174–187. IEEE Computer Society Press, October 1986.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Aho [Aho87], pages
218–229.

[GMY06] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge
protocols using signatures. Journal of Cryptology, 19(2):169–209, April 2006.

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge protocol
fitted to security microprocessor minimizing both trasmission and memory. In C. G.
Günther, editor, EUROCRYPT’88, volume 330 of LNCS, pages 123–128. Springer, Hei-
delberg, May 1988.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340.
Springer, Heidelberg, December 2010.

[IEE13] 2013 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, May
2013.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from
secure multiparty computation. In David S. Johnson and Uriel Feige, editors, 39th ACM
STOC, pages 21–30. ACM Press, June 2007.

[Kal97] Burton S. Kaliski Jr., editor. CRYPTO’97, volume 1294 of LNCS. Springer, Heidelberg,
August 1997.

28

http://eprint.iacr.org/2011/456

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings
of the twenty-fourth annual ACM symposium on Theory of computing, pages 723–732.
ACM, 1992.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In Cramer [Cra12], pages 169–189.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In Kazue Sako and Palash Sarkar, editors,
ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 41–60. Springer, Heidelberg,
December 2013.

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anony-
mous distributed E-cash from Bitcoin. In IEEE S&P 2013 [IEE13], pages 397–411.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing,
30(4):1253–1298, 2000.

[NMT] Shen Noether, Adam Mackenzie, and Monero Core Team. Ring confidential transac-
tions. https://lab.getmonero.org/pubs/MRL-0005.pdf.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In 22nd ACM STOC, pages 427–437. ACM Press, May 1990.

[para] Zcash 1.0 “Sprout” Guide. https://github.com/zcash/zcash/wiki/1.
0-User-Guide.

[parb] Zcash Parameter Generation. https://z.cash/technology/paramgen.
html.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–
140. Springer, Heidelberg, August 1992.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In IEEE S&P 2013 [IEE13], pages 238–252.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ueli M.
Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 387–398. Springer,
Heidelberg, May 1996.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptol-
ogy, 4(3):161–174, 1991.

[sec] Secp256k1. https://en.bitcoin.it/wiki/Secp256k1.

[Vad99] Salil Pravin Vadhan. A study of statistical zero-knowledge proofs. PhD thesis, Mas-
sachusetts Institute of Technology, 1999.

[Wil] Zooko Wilcox. Proving bitcoin reserves. https://iwilcox.me.uk/2014/
proving-bitcoin-reserves.

[Woo] Gavin Wood. Ethereum: A Secure Decentralised Generalised Transaction Ledger.
http://gavwood.com/paper.pdf.

29

https://lab.getmonero.org/pubs/MRL-0005.pdf
https://github.com/zcash/zcash/wiki/1.0-User-Guide
https://github.com/zcash/zcash/wiki/1.0-User-Guide
https://z.cash/technology/paramgen.html
https://z.cash/technology/paramgen.html
https://en.bitcoin.it/wiki/Secp256k1
https://iwilcox.me.uk/2014/proving-bitcoin-reserves
https://iwilcox.me.uk/2014/proving-bitcoin-reserves
http://gavwood.com/paper.pdf

A zk-SNARK on Committed Input/Output

We separate the circuit wires into private input, public input, intermediate values and private output.
Let Icom ⊆ {1, . . . ,m} be the set of indices corresponding to the private inputs a1, . . . , an, and Ipub
the indices for the public input wires. Let Iout be the set of indices corresponding to the outputs bi,
and Imid = {1, . . . ,m} \ Ipub ∪ Icom ∪ Iout. Let Ci = gaihri be a Pedersen commitment, to the
ith input ai and Di = gbihRi , commitment to the outputs. The construction comIOSnark is given in
Fig. 11.

Given Ci = gaihri , for all i ∈ [n], commitments to private inputs, Di = gbihRi , for all i ∈ [n′],
commitments to private outputs, and public input z.

1. CRS generation: Run GroupGen(1κ) to get (p,G, G̃,GT , g, g̃, e). Choose
rv, rw, αv, αw, αy, s, β, γ

R← F. Set ry = rvrw, gv = grv , g̃v = g̃rv , gw = grw , g̃w =
g̃rw , gy = gry , g̃y = g̃ry .
Set the CRS to be:

crs =
(
{gvk(s)v }k∈Icom , {gvk(s)v }k∈Iout

, {gvk(s)v }k∈Imid
,

{g̃wk(s)
w }k∈Icom , {g̃wk(s)

w }k∈Iout , {g̃wk(s)
w }k∈Imid

, {gyk(s)y }k∈Icom ,

{gyk(s)y }k∈Iout , {gyk(s)y }k∈Imid
, {g̃αvvk(s)

v }k∈Icom , {g̃αvvk(s)
v }k∈Iout ,

{g̃αvvk(s)
v }k∈Imid

, {gαwwk(s)
w }k∈Icom , {gαwwk(s)

w }k∈Iout , {gαwwk(s)
w }k∈Imid

,

{g̃αyyk(s)
y }k∈Icom , {g̃αyyk(s)

y }k∈Iout
, {g̃αyyk(s)

y }k∈Imid
, {gs

i

}i∈[d],

{g̃s
i

}i∈[d], {gβvk(s)v gβwk(s)
w gβyk(s)y }k∈Icom ,

{gβvk(s)v gβwk(s)
w gβyk(s)y }k∈Iout

, {gβvk(s)v gβwk(s)
w gβyk(s)y }k∈Imid

)
Set the short verification CRS to be:

shortcrs =
(
g, g̃, g̃αv , gαw , g̃αy , g̃γ , gβγ , g̃βγ , gt(s)y ,

{gvk(s)v }k∈Icom∪Iout
, {gvk(s)v }k∈Ipub

, {g̃wk(s)
w }k∈Ipub

, {gyk(s)y }k∈Ipub

)
2. Prove. On input z, witness a1, . . . , an, b1, . . . , bn′ , and crs, the prover evaluates the QAP to ob-

tain {ai}i∈[m]. (Equivalently, evaluates the circuit to obtain the values on the circuit wires).
The prover solves for the quotient polynomial h such that p(x) = h(x)t(x). Let vcom(x) =∑
k∈Icom akvk(x), vmid(x) =

∑
k∈Imid

akvk(x), vout(x) =
∑
k∈Iout

akvk(x) and similarly de-
fine wcom(x), wmid(x), wout(x), ycom(x), ymid(x) and yout(x).

• The prover computes the proof π:(
gvcom(s)
v , gvmid(s)

v , gvout(s)
v , g̃wcom(s)

w , g̃wmid(s)
w ,

g̃wout(s)
w , gycom(s)

y , gymid(s)
y , gyout(s)

y , g̃h(s), g̃αvvcom(s)
v , g̃αvvmid(s)

v ,

g̃αvvout(s)
v , gαwwcom(s)

w , gαwwmid(s)
w , gαwwout(s)

w , g̃αyycom(s)
y , g̃αyymid(s)

y ,

g̃αyyout(s)
y , gβvcom(s)

v gβwcom(s)
w gβycom(s)

y , gβvmid(s)
v gβwmid(s)

w gβymid(s)
y ,

gβvout(s)
v gβwout(s)

w gβyout(s)
y

)
• Prove input consistency with commitment. The prover uses sigma protocol comEq to com-

pute proof πin: PK{(a1, . . . , an, r1, . . . , rn) : y =
∏n
i=1G

ai
i ∧ C1 = ga1hr1 ∧ · · · ∧ Cn =

ganhrn}, for Gi = g
vi(s)
v , i ∈ Icom, and y = g

vcom(s)
v .

30

• Prove output consistency with commitment. The prover uses sigma protocol comEq to com-
pute proof πout: PK{(b1, . . . , bn′ , R1, . . . , Rn′) : y =

∏n′

i=1G
bi
m−n′+i ∧ D1 = gb1hR1 ∧

· · · ∧Dn′ = gbn′hRn′}, for Gj = g
vj(s)
v , j ∈ Iout, and y = g

vout(s)
v

3. Verify.

• On input shortcrs, y, and a proof π, parse it as

π =
(
gVcom , gVmid , gVout , g̃Wcom , g̃Wmid , g̃Wout , gYcom ,

gYmid , gYout , g̃H , g̃V
′
com , g̃V

′
mid , g̃V

′
out , gW

′
com ,

gW
′
mid , gW

′
out , g̃Y

′
com , g̃Y

′
mid , g̃Y

′
out , gZcom , gZmid , gZout

)
• Divisibility check. Compute gvpub(s)

v =
∏
k∈Ipub

(g
vk(s)
v)ak . Similarly, compute g̃wpub(s)

w and

g
ypub(s)
y . Check that,

e
(
gv0(s)v g

vpub(s)
v gVcom

v gVmid
v gVout

v , g̃w0(s)
w g̃

wpub(s)
w g̃Wcom

w g̃Wmid
w g̃Wout

w

)
= e

(
gt(s)y , g̃H

)
e
(
gy0(s)y g

ypub(s)
y gYcom

y gYmid
y gYout

y , g̃
)

• Verify that the linear combinations are in correct spans.

(a) e(gVcom , g̃αv) = e(g, g̃V
′
com)

(b) e(gVmid , g̃αv) = e(g, g̃V
′
mid)

(c) e(gVout , g̃αv) = e(g, g̃V
′
out)

(d) e(gW
′
com , g̃) = e(gαw , g̃Wcom)

(e) e(gW
′
mid , g̃) = e(gαw , g̃Wmid)

(f) e(gW
′
out , g̃) = e(gαw , g̃Wout)

(g) e(gYcom , g̃αy) = e(g, g̃
Y ′
com
y)

(h) e(gYmid , g̃αy) = e(g, g̃
Y ′
mid
y)

(i) e(gYout , g̃αy) = e(g, g̃
Y ′
out
y)

• Verify same coefficients in all linear combinations.

(a) e(gZcom , g̃γ) = e(gVcomgYcom , g̃βγ)e(gβγ , g̃Wcom)

(b) e(gZmid , g̃γ) = e(gVmidgYmid , g̃βγ)e(gβγ , g̃Wmid)

(c) e(gZout , g̃γ) = e(gVoutgYout , g̃βγ)e(gβγ , g̃Wout)

• Verify input consistency with commitment. Verify comEq proof πin. The verifier computes
Gi = g

vi(s)
v , i ∈ Icom, and sets y = gVcom from the proof π. The verifier checks that the

proof πin is a proof of knowledge of: PK{(a1, . . . , an, r1, . . . , rn) : y =
∏n
i=1G

ai
i ∧ C1 =

ga1hr1 ∧ · · · ∧ Cn = ganhrn}.
• Verify output consistency with commitment. Verify comEq proof πout. The verifier computes
Gi = g

vi(s)
v , i ∈ Iout, and sets y = gVout from the proof π. The verifier checks that the proof

πout verifies. PK{(b1, . . . , bn′ , R1, . . . , Rn′) : y =
∏n′

i=1G
bi
m−n′+i ∧D1 = gb1hR1 ∧ · · · ∧

Dn′ = gbn′hRn′}.

Figure 11: comIOSnark : PK{(a1, . . . , an, b1, . . . , bn′ , r1, . . . , rn, R1, . . . , Rn′) : f(a1, . . . an, z) =
(b1, . . . , bn′) ∧ Ci = gaihri ∧Di = gbihRi}

31

The construction comIOSnark is made zero-knowledge by randomizing the elements in the proof
π in a way similar to comInSnark and we obtain zk-comIOSnark. The proof of the above is omitted,
and follows from ideas similar to the proof of Theorem 4.1.

B Proof of Theorem 4.1

We recall a technical lemma from Gennaro et al. [GGPR13] below, on which we rely for soundness.

Lemma B.1 (Lemma 10, [GGPR13]). Let F[x](k) denote polynomials over F[x] of degree at most
k. Let F[x](¬k) denote polynomials over F[x] that have a zero coefficient for xk. For some d, let
U = {uk(x)} ⊂ F[x]d, and let span(U) denote the set of polynomials that can be generated as F-
linear combinations of the polynomials in U . Let a(x) ∈ F[x](d+1) be generated uniformly at random
subject to the constraint that {a(x) · uk(x) : uk(x) ∈ U} ⊂ F[x](¬(d+1)). Let s ∈ F∗. Then, for all
algorithms A

Pr[u(x)← A(U , s, a(s)) : u(x) ∈ F[x]d ∧ u(x) 6∈ span(U) ∧ a(x) · u(x) ∈ F[x](¬(d+1))] ≤ 1

|F|

Proof of Theorem 4.1.

Proof. Soundness. Assume there exists an adversary A who returns the proof of a false statement.
We use this adversary A along with the knowledge extractor that exists by the d-PKE assumption to
construct an adversary B to break either the q-PDH assumption or the 2q-SDH assumption. B is given
the description of a bilinear map, (p,G, G̃,GT , g, g̃, e), and the challenge gs, g̃s, · · · , gsq , g̃sq , gsq+2

,
g̃s

q+2
, · · · , gs2q , g̃s2q . A generates a function f that has a QAP Q = (t(x),V,W,Y) of size m and

degree d.
B first picks rv, rw, αv, αw, αy, s at random and sets ry = rvrw, gv = grvs

d+1
, gw = grws

2(d+1)
,

and gy = grys
3(d+1)

. Using these values, the final term in the proof π can be rewritten as

gβv(s)v gβw(s)w gβy(s)y = gβ(rvs
d+1v(s)+rws2(d+1)w(s)+rys3(d+1)y(s)). (8)

B sets β = sq−(4d+3)βpoly(s) where βpoly(x) is a polynomial of degree at most 3d + 3 sampled
uniformly at random such that βpoly(x) · (rvvk(x) + rwx

(d+1)wk(x) + ryx
2(d+1)yk(x)) has a zero

coefficient in front of x3d+3 for all k. Such a polynomial is guaranteed to exist by Lemma B.1.
Rewriting (8) by writing β in terms of s, we have

gs
q−3d−2rvβpoly(s)v(s)+s

q−2d−1rwβpoly(s)w(s)+s
q−dryβpoly(s)y(s)

= gs
q−3d−2βpoly(s)(rvv(s)+s

d+1rww(s)+s2d+2ryy(s)). (9)

Since βpoly(x) · (rvvk(x) + rwx
(d+1)wk(x) + ryx

2(d+1)yk(x)) has a zero coefficient in front of
x3d+3, the exponent in (9) has a zero in front of sq+1. The powers of q in the exponent go up to
(q − 3d − 2) + (3d + 3) + (2d + 2) + d = q + 3d + 3 ≤ 2q. Thus, B can efficiently generate the
terms in the CRS that contain β by using the elements in the challenge.
B picks γ′ uniformly at random from F and sets γ = γ′sq+2. B can generate gγ from the

challenge, since gs
q+2

is given. Note that βγ = sq−(4d+3)βpoly(s)γ
′sq+2 does not have the sq+1

term, and it has degree at most q − (4d+ 3) + (3d+ 3) + (q + 2) ≤ 2q (assuming d ≥ 2). Hence, B
can generate gβγ using the elements in its challenge.

32

Let (π̂, π̂in) be a cheating proof returned by A for the computation of f with public input and
public output {ck}k∈Ipub∪Iout . Let π̂ = (gVcom , gVmid , g̃Wcom , g̃Wmid , gYcom , gYmid , g̃H , gV

′
com , gV

′
mid ,

gW
′
com , gW

′
mid , gY

′
com , gY

′
mid , gZcom , gZmid). Since the verification holds, we have that e(gVcom , g̃αv) =

e(g, g̃V
′
com) and e(gVmid , g̃αv) = e(g, g̃V

′
mid). B can run the d-PKE extractor to recover polyno-

mials Vmid(x) and Vcom(x) of degree at most d such that Vmid = Vmid(s), Vcom = Vcom(s).
Note that the parameters received by A is a valid input for the d-PKE assumption from which all
the other terms in the CRS can be efficiently generated. That is, the d-PKE adversary receives
input (σ, z), where σ = (p,G1,G2,GT , g, g̃, {gs

i}i∈[0,d], {g̃s
i}i∈[0,d]), and the auxiliary input z

consists of all the other terms in the CRS. Note that the terms {gvk(s)v } can be efficiently gen-
erated from σ. A returns (V, V ′) such that e(V, g̃αv) = e(g, V ′). Thus, B can invoke the d-
PKE extractor χA to recover a polynomial Vcom(x) =

∑d
i=0 cix

i of degree at most d such that
V = gVcom(s). Similarly, B recovers polynomials Wmid(x),Wcom(x), Ymid(x), Ycom(x) such that
Wmid = Wmid(s),Wcom = Wcom(s), Ymid = Ymid(s), Ycom = Ycom(s). Now, B computes,

V (x) = v0(x) +
∑
k∈Ipub

ckvk(x) +
∑
k∈Iout

ckvk(x) + Vcom(x) + Vmid(x)

and similarly W (x) and Y (x), and sets H(x) = (V (x)W (x)− Y (x))/t(x)
Since the proof is of a false statement, either the extracted polynomials do not form a QAP

solution, or the co-efficients of the extracted com polynomials are not equal to the values committed
to in C1, . . . , Cn. There are the following cases:

• H(x) has a non-trivial denominator.

• The polynomial R(x) = rvx
d+1Vmid(x) + rwx

2(d+1)Wmid(x) + ryx
3(d+1)Ymid(x) is not in

the linear subspace generated by the polynomials {rk(x) = rvx
d+1vk(x) + rwx

2(d+1)wk(x) +
ryx

3(d+1)yk(x)}k∈Imid

• The polynomial S(x) = rvx
d+1Vcom(x) + rwx

2(d+1)Wcom(x) + ryx
3(d+1)Ycom(x) is not in

the linear subspace generated by the polynomials {rk(x) = rvx
d+1vk(x) + rwx

2(d+1)wk(x) +
ryx

3(d+1)yk(x)}k∈Icom

• By the soundness of the protocol comEq, there exists an extractor that extracts a1, . . . , an such
that Vcom(s) =

∑
k∈Icom akvk(s), Ci = gaihri . a1, · · · , an are different from the coefficients

ci of the polynomial Vcom extracted by the d-PKE extractor.

If none of the above cases hold, then V (x),W (x), Y (x) are a QAP solution, with input consistent
with commitments Ci.

Case 1 t(x) does not divide p(x) = V (x)W (x) − Y (x). Let (x − r) be a polynomial that divides
t(x) but not p(x), and let T (x) = t(x)/(x − r). Let d(x) = gcd(t(x), p(x)). t(x) has degree
at most d and p(x) has degree at most 2d. B can use the extended Euclidean algorithm to
find polynomials a(x), b(x) with degrees 2d − 1 and d − 1 respectively, such that a(x)t(x) +
b(x)p(x) = d(x). Now set A(x) = a(x) · (T (x)/d(x)) and B(x) = b(x) · (T (x)/d(x)).
A(x) and B(x) do not have any denominator since d(x) divides T (x). We have, A(x)t(x) +

B(x)p(x) = T (x). Dividing by t(x) we have, A(x) + B(x)H(x) =
1

(x− r)
. A(x) and

B(x) have degree at most 2d − 1 ≤ q; hence, B can use the terms in its challenge to compute
e(gA(s), g̃)e(gB(s), g̃H) = e(g, g̃)1/(s−r) which solves the 2q-SDH.

33

Case 2 There does not exist {ck}k∈Imid
such that Vmid(x) =

∑
k∈Imid

ckvk(x),Wmid(x) =
∑

k∈Imid
ckwk(x)

and Ymid(x) =
∑

k∈Imid
ckyk(x). By Lemma B.1, we have that xq−(4d+3)βpoly(x)(rvx

d+1vk(x)+

rwx
2(d+1)wk(x) + ryx

3(d+1)yk(x)) has a non-zero coefficient for the xq+1 term with high
probability. B can use gZmid = gs

q−(4d+3)βpoly(x)(s
d+1Vmid(s)+s

2(d+1)Wmid(s)+s
3(d+1)Ymid(s)) to

subtract off all elements of the form gs
j

for j 6= q+1, and obtain gs
q+1

. This breaks the q-PDH
assumption.

Case 3 Similar to Case 2 with Vcom polynomial, and using gZcom .

Case 4 This breaks the binding property of the multi-commitment y, since we have y =
∏
i∈Icom G

ai
i =∏

i∈Icom G
ci
i , ai 6= ci for some i ∈ Icom.

Zero-knowledge. We now show a simulator (S, Sim) such that S outputs a simulated crs and
trapdoor, and Sim outputs a simulated proof. S generates crs in the same way and sets the trapdoor τ to
be τ = (s, αv, αw, αy, β, γ). Sim, given the trapdoor τ picks polynomials v(x), w(x) at random such
that t(x) divides v(x)w(x). It sets h(x) to be the quotient polynomial. Now, it chooses polynomials
vcom(x), wcom(x) at random, and sets vmid(x) = v(x)− v0(x)− vio(x)− vcom(x), and wmid(x) =
w(x) − w0(x) − wio(x) − wcom(x). Given these polynomials, and s, α, β, γ from the trapdoor,
Sim can compute the encodings of Vmid = vmid(s), Vcom = vcom(s), and other elements of the
proof. Moreover, the simulated proof elements are statistically uniform, subject to the verification
constraints. By the zero-knowledge property of the protocol comEq, there exists a simulator that is
invoked by Sim to generate a simulated proof that is statistically indistinguishable from πin.

C Other Proofs

C.1 Protocol comEq

We show that the protocol comEq in Figure 5 is correct, has a soundness error of 1/2k for a challenge
length k and is honest verifier zero knowledge.

Proof. • Completeness: If the prover and the verifier behave honestly, it is easy to see that
verification conditions hold.

yc
∏

Gsii = (
∏

Gaii)c
∏

Gsii =
∏

Gaic+sii = u

(Ci)
cgsihti = (gaihri)cgsihti = gcai+sihcri+ti = vi

• Soundness: We show an extractor that computes a1, . . . an, r1, . . . , rn given two accepting
views with same commitments but different challenge strings. Say, we have two accepting
views: {(u, vi), c, (si, ti)} and {(u, vi), ĉ, (ŝi, t̂i)} for challenges c and ĉ 6= c. Since the views
are accepting, we have,

yc
∏

Gsii = yĉ
∏

Gŝii = u

yc−ĉ =
∏

Gŝi−sii

34

We can now compute (in Zq), ai = (ŝi−si)(c− ĉ)−1. The inverse of (c− ĉ) exists in Zq, since
c 6= ĉ by assumption.

Similarly,
(Ci)

cgsihti = (Ci)
ĉgŝiht̂i = vi

and we can compute
ri = (t̂i − ti)(c− ĉ)−1

The extractor succeeds in extracting a witness given two accepting transcripts. The prover can,
therefore, cheat only when he can answer exactly one challenge correctly, and the probability
of that challenge being chosen by the verifier is bounded by 1/2k where k is the length of the
challenge.

• Honest Verifier Zero-Knowledge: We show a simulator such that the output of the simulator
is statistically indistinguishable from the transcript of the protocol with a prover. The simulator
on input c, randomly chooses si, ti ∈ Zq and computes u = yc

∏
Gsii , and vi = (Ci)

cgsihti . It
is easy to verify that the transcript output by the simulator will pass the verification equations.
Moreover, the distribution of the output of the simulator is identical to the distribution of a
transcript produced by the protocol between the prover and the verifier.

C.2 Protocol pointAddition

We show that the protocol addition is honest verifier zero-knowledge, and sound with a soundness
error of 1

2k
, where k is the length of the challenge.

• Honest verifier zero-knowledge. The simulator invokes the simulator for the proofs π1, π2, π3,
π4, π5. Zero-knowledge follows from the zero-knowledge of these proofs.

• Soundness. We show an extractor that computes P = (Px, Py), Q = (Qx, Qy) such that
T = P+Q, given two accepting transcripts for two different challenge bits. Say, we have two
accepting views for challenge bits c and ĉ 6= c.

From the soundness of proofs π1, π3, π4, we can extract Px, Py, Qx, Qy such that Lx(Px, Py,
Qx, Qy) and Rx(Px, Py, Qx, Qy) satisfy the following.

Lx = k1t+ r1 mod q,Rx = k′1t+ r′1 mod q Now,

Lx mod t = ((k1t+ r1) mod q) mod t

= (k1t+ r1) (Since q > t3, k1 < q/t, r1 < t)

= r1 mod t (Since r1 < t)

= r′1 mod t (Since r1 = r′1 mod q, r′1 < t)

= Rx mod t (Since k′1 < q/t, r′1 < t)

Similarly, from soundness of π2, π3, π5 we get, Ly = Ry mod t

C.3 Protocol ddlog

Proof. We will show that the protocol ddlog is honest verifier zero-knowledge, and sound with a
soundness error of 1

2k
, where k is the length of the challenge.

35

• Honest verifier zero-knowledge. We can construct a simulator such that the output of the
simulator is statistically indistinguishable from the transcript of the protocol with a prover.
On input a bit c, the simulator does the following: if c = 0, the simulator randomly chooses
z1, z2 ∈ Zp, z3, z4 ∈ Zq, and computes a1 = z1P +z2Q, a2 = γ1P

′+z3Q
′, a3 = γ2P

′+z4Q
′

for (γ1, γ2) = z1P . It is easy to see that the output of the simulator is distributed identically
with the distribution of the protocol transcript. If c = 1, the simulator randomly chooses
z1 ∈ Zt and invokes the simulator for the proof pointAddition. Zero-knowledge follows from
the zero-knowledge of the proof π.

• Soundness. We show an extractor that computes λ, x, y given two accepting transcripts for two
different challenge bits. Say, we have two accepting views for challenge bits c and ĉ 6= c. We
have,

λ = z1 − ẑ1 mod t

From the soundness of proofs π, we can extract x, y, γ1, γ2 such thatLx(x, y, γ1, γ2) = Rx(x, y,
γ1, γ2), and Ly(x, y, γ1, γ2) = Ry(x, y, γ1, γ2). Thus, T = (γ1, γ2) − (x, y) = ẑ1P − λP .
Thus λP = (x, y).

D Proof of Equality of Committed Values across Groups

There are techniques known to prove that two committed values in different groups are equal. The
integer commitment technique of Damgård and Fujisaki [DF02] allows one to prove properties about
discrete logarithms in Z instead of modulo the order of the group. This technique could be fairly
expensive as the group order is hidden and exponentiations need to be computed in an RSA group
with large exponents. We give a protocol below for proving equality of committed values in different
groups without using integer commitments. Let G1 and G2 be two groups of order p and q respectively,
let g be a generator of G1, and G a generator of G2.

The protocol Eq in Figure 12 is honest verifier zero-knowledge, and sound with a soundness error
of 1

2k
, where k is the length of the challenge.

• Honest Verifier Zero-Knowledge. Zero-knowledge follows from the zero-knowledge of the
protocols for proofs π1, π2, π3, π4, πi1 and πi2.

• Soundness. We have two accepting transcripts for different challenges c, ĉ, c 6= ĉ. From the
response to c, we have si1, si2 for all i such that si1, si2 < p. From the response to ĉ, and the
soundness of the proofs πi,1, we extract b′i, s

′
i1, s

′
i2 such that zi1 = b′is

′
i1 + (1− b′i)s′i2 mod p,

and ui = Comp(b
′
i). Similarly from πi2, we extract b̂i, ŝi1, ŝi2 such that zi1 = b̂iŝi1+(1− b̂i)ŝi2

mod q, and vi = Comq(b̂i). By the soundness of the proof π3, π4, we extract bi ∈ {0, 1}. Since
we have si1, si2 < p < q, we have si1 = s′i1 = ŝi1, si2 = s′i2 = ŝi2. Therefore, bi = b′i = b̂i,
and by soundness of π1 and π2, x ≡ y mod p.

E Proof that a committed value is a polynomial of committed values

Linear relationship among committed values. Given C1 = Com(x) = gxhr1 , C2 = Com(y) =
gyhr2 , C3 = Com(z) = gzhr3 , we want to prove that z = ax + by for public a, b. The following
protocol, lin proves PK{(x, y, z) : C1 = Com(x) ∧ C2 = Com(y) ∧ C3 = Com(z) ∧ z = ax+ by}

36

Given C1 = Comp(x) = gxhr,C2 = Comq(y) = GxHR, p < q, prove that x ≡ y mod p

1. The prover commits to bits of x in both groups by computing ui = gbihri , vi = GbiHRi ,
for all i ∈ [0, n] where x =

∑n
i=0 2ibi, n = dlog pe. The prover sends {ui, vi} to the

verifier.

2. The prover proves that the bits combine to yield x and y by giving the following proofs
π1 and π2. π1 : PK{(x, r, b1, . . . , bn, r1, . . . , rn) : C1 = Comp(x) ∧ u1 = Comp(b1) ∧
· · ·un = Comp(bn) ∧ x =

∑
2ibi}, and π2 : PK{(y,R, b1, . . . , bn, R1, . . . , Rn) : C2 =

Comq(y) ∧ v1 = Comq(b1) ∧ · · · vn = Comq(bn) ∧ y =
∑

2ibi}

3. For each bit bi, the prover chooses random si1, si2 ∈ Fp, si1 6= si2, and computes commit-
ments to them in both groups. The prover computes ai1 = gsi1hαi1 , ai2 = gsi2gαi2 , ai3 =
Gsi1hβi1 , ai4 = Gsi2hβi2 , and sends {ai1, ai2, ai3, ai4} to the verifier.

4. The prover proves that ui and vi are commitments to bits in both groups by proving bi(1−
bi) = 0,∀i. The prover gives the following proofs. π3 : PK{(bi, ri) : ui = Comp(bi) ∧
bi(1− bi) = 0}, and π4 : PK{(bi, Ri) : vi = Comq(bi) ∧ bi(1− bi) = 0}

5. The verifier chooses a random challenge bit c and sends it to the prover.

6. For challenge c,

• If c = 0, set zi1 = si1, zi2 = si2, zi3 = αi1, zi4 = αi2, zi5 = βi1, zi6 = βi2, and send
(zi1, zi2, zi3, zi4, zi5, zi6) for all i.

• If c = 1, set zi1 = bisi1 + (1 − bi)si2, and send (zi1, πi1, πi2) for all i, where
πi1 = PK{(bi, si1, si2, ri, αi1, αi2) : zi1 = bisi1+(1−bi)si2∧ui = Comp(bi)∧ai1 =
Comp(si1) ∧ ai2 = Comp(si2)}, and πi2 = PK{(bi, si1, si2, Ri, βi1, βi2) : zi1 =
bisi1 + (1− bi)si2 ∧ vi = Comq(bi) ∧ ai3 = Comq(si1) ∧ ai4 = Comq(si2)}

7. Verification:

• If c = 0, verify zi1, zi2 < p, zi1 6= zi2, check that ai1 = gzi1hzi3 , ai2 =
gzi2hzi4 , ai3 = Gzi1Hzi5 , ai4 = Gzi2Hzi6 , for all i, and verify proofs π1, π2, π3, π4.

• If c = 1, verify proofs π1, π2, π3, π4, and proofs πi1, πi2 for all i.

Figure 12: Eq : PK{(x, r,R) : Comp(x) = gxhr ∧ Comq(x) = GxHR}

• The verifier computes C4 = Ca1C
b
2.

• The prover gives the following proof PK{(z, r3, r4) : C3 = gzhr3 ∧ C4 = gzhr4}

Multiplicative relationship of committed values. We would like to prove that committed values
satisfy a multiplicative relationship. Given C1 = Com(x) = gxhr1 , C2 = Com(y) = gyhr2 , C3 =
Com(z) = gzhr3 , prove that z = xy. The following protocol, mul proves PK{(x, y, z) : C1 =
Com(x) ∧ C2 = Com(y) ∧ C3 = Com(z) ∧ z = xy}

• The prover computes and sends C4 = Cy1 = gz
′
hr4

37

• The prover gives the following proof: PK{(y, r2) : C2 = gyhr2 ∧ C4 = Cy1}

• The prover gives the following proof: PK{(z, r3, r4) : C3 = gzhr3 ∧ C4 = gzhr4}

Polynomial relationship of committed values. Using standard techniques outlined above for prov-
ing linear relationships and product of committed values, we now sketch how to prove that a com-
mitted value is a polynomial P in variables that are committed to as well. Let P (x1, x2, . . . , xn) =
c1M1 + · · · ctMt be a degree d polynomial in n variables where each monomial can be written as
Mi = xd11 x

d2
2 · · ·xdnn ,

∑n
i=1 di ≤ d.

• The prover commits to each monomial CMi = Com(Mi)

• The prover commits to intermediate values, and proves that the monomial committed to is
computed correctly.

– For a degree d monomial Mi, it is written as product of two monomials Mi1 and Mi2 of
degree bd/2c and dd/2e respectively. The prover commits to Mi1 and Mi2. Given these
commitments, the prover invokes the protocol mul to prove Mi = Mi1Mi2:
PK{(Mi1,Mi2) : CMi1 = Com(Mi1) ∧ CMi2 = Com(Mi2) ∧Mi = Mi1Mi2}

– Now each of these monomialsMi1 andMi2 are proven to be correct using mul recursively
until the proof is for a degree two term involving commitment to the input variables xi.

• The above step is performed on every monomial Mi in P .

• The prover now proves linear relationship among committed monomials by invoking lin:

PK{(M1,M2, . . . ,Mt) : CM1 = Com(M1) ∧ · · · ∧ CMt = Com(Mt) ∧ P =
∑
ciMi}

F Efficiency

We briefly discuss the estimated cost of some of the building blocks. The ddlog proof is dominated
by the cost of the range proofs in steps 4, 5, 6 of pointAddition protocol in Figure 1. In a recent
work [BBB+17], it was shown how to prove that a committed value is in a range using only a number
of field elements that is logarithmic in the bit length of the range. Using these proofs to instantiate
all the necessary range proofs in protocol pointAddition, the prover’s work is 30 log t + 1800 group
exponentiations, the verifier’s work is 10 log t exponentiations, and the proof size is 2370 + log log t
elements where the proof is for a curve defined over Ft. The cost of comInSnark is the cost of the
comEq in addition to the cost incurred by separating the wires in the underlying SNARK construction.
The proof size of comInSnark is 15 group elements, and 2 field elements for every committed value
(input/output). In the case of our following applications, the proof size is 17 elements. The prover’s
work is the number of exponentiations for computing the SNARK proof and an additional 2 expo-
nentiations for the comEq proof. The verifier’s work is 2 exponentiations and 21 pairings. Similarly,
comIOSnark has proof size 26 elements, the prover’s work, in addition to the exponentiations for the
SNARK proof is 4 exponentiations and the verifier’s work is 4 exponentiations and 30 pairings.

Proof of solvency. In Table 1, we compare the proof size and prover’s work of Provisions with our
protocol and a solution that uses zk-SNARK for the entire statement. The proof size and prover’s
work are dominated by the range proofs; the numbers below give only the dominating terms ignoring
small constants and are assuming that the range proofs are realized using Bulletproofs.

38

zk technique Functionality Proof size (in elements) Prover
Provisions pay-to-pub 10n+ logm+ log c 5n+ 4mc exp.
SNARK pay-to-pub, pay-

to-hash
7 (|H|+ p3)n+ c exp.

Our composition
techniques

pay-to-pub, pay-
to-hash

2396n+ log p+ log n (|H| + 30p +
1800)n+ c exp.

Table 1: Comparison of prover work and proof sizes for proof of solvency using different methods. n is the
size of the anonymity set, c is the number of customer accounts, m is dlogMaxe = 51, p is the bit length of
the modulus for exponentiation (size of the field over which the the curve is defined). For n = 500, 000 and
c = 2 million, the proof size and prover’s work in Provisions is 5 ∗ 106 and 4 ∗ 107 respectively. For the same
parameters, our approach gives proof size of 109 and prover’s work 1010, while also achieving the additional
pay-to-hash functionality. A fully zk-SNARK solution requires prover’s work roughly 1013. (Exp. stands for
exponentiations.)

zk technique Feature Proof size Prover
Cinderella non-interactive 7 |H|+ additional 164,826 equations for

RSA (as optimized in Cinderella)
GC + Sigma
[CGM16]

interactive |H| |m|+ |h| exp. + |H| symmetric-key op-
erations

Our composition
techniques

non-interactive 42 + log p |H|+ log p+ 16 exp.

Table 2: Comparison of prover work and proof sizes for credential verification using different methods. p
is the order of the group in which commitments are computed, |m| is the bit length of the message. For
e = 65537, log p = 256, |H| = 23785, we note an 87% decrease in prover’s work compared to Cinderella at
the cost of increasing the proof size to 298 from 7 group elements. (Exp. stands for exponentiations.)

Privacy preserving credentials. In Table 2, we compare the proof size and prover’s work in
privacy-preserving credentials for Cinderella, the interactive protocol of [CGM16], and our com-
position.

G Assumptions on Bilinear maps

Assumption G.1 (q-PDH). The q-power Diffie-Hellman (q-PDH) assumption holds for GroupGen if
for all non-uniform probabilistic polynomial time algorithmA, the following probability is negligible
in the security parameter.

Pr

gsq+1

1 ← A(σ) :

(p,G1,G2,GT , g1, g2, e)← GroupGen(1κ),
σ1 = (p,G1,G2,GT , g1, g2, e)

s
R← Z∗p,

σ = (σ1, g1, g2, g
s
1, g

s
2, g

s2
1 , g

s2
2 , . . . , g

sq
1 , g

sq
2 , g

sq+2

1 , gs
q+2

2 . . . , gs
2q

1 , gs
2q

2)

 .

Assumption G.2 (q-PKE). The q power-knowledge of exponent (q-PKE) assumption holds for GroupGen
if for all non-uniform probabilistic polynomial time algorithm A, there exists a non-uniform proba-
bilistic polynomial time extractor χA such that the following probability is negligible in the security
parameter.

39

Pr

e(c, gα2) = e(g1, ĉ) ∧ c 6=
∏q
i=0 g

ais
i

1
:

(p,G1,G2,GT , g1, g2, e)← GroupGen(1κ),
σ1 = (p,G1,G2,GT , g1, g2, e),

α, s
R← Z∗p,

σ = (σ1, g1, g2, g
s
1, g

s
2, . . . , g

sq
1 , g

sq
2 , g

αs
1 , gαs2 , . . . , gαs

q

1 , gαs
q

2),
(c, ĉ; a0, . . . , aq)← (A||χA)(σ, z)

 .

In the above, z is auxiliary information generated independently ofα, and (x; y)← (A||χA)(σ, z)
denotes that on input σ, A outputs x, and χA given the same input σ, and A’s random tape, outputs
y.

Assumption G.3 (q-SDH). The q-strong Diffie-Hellman (q-SDH) assumption holds for GroupGen if
for all non-uniform probabilistic polynomial time algorithmA, the following probability is negligible
in the security parameter.

Pr

y = e(g1, g2)
1

s+c , c ∈ Z∗p :

(p,G1,G2,GT , g1, g2, e)← GroupGen(1κ),
σ1 = (p,G1,G2,GT , g1, g2, e),

s
R← Z∗p,

σ = (σ1, g1, g2, g
s
1, g

s
2, g

s2
1 , g

s2
2 , . . . , g

sq
1 , g

sq
2),

y ← A(σ)

 .

H SNARK Construction of Parno et al.

We review the construction of SNARK from QAP of Parno et al. [PHGR13] below. Let f be a
function that maps N elements from F to 0 or 1. Convert f into an arithmetic circuit C and build
a QAP Q = (V,W, Y, t(x)) for C of size m and degree d. We let the indices i ∈ [1, n] denote the
public input (the statement y) and i ∈ [n+ 1, N] denote the private input (the witness x).

1. CRS generation. Choose rv, rw, αv, αw, αy, s, β, γ
R← F. Set ry = rvrw, gv = grv , gw = grw ,

and gy = gry . Set the CRS to be:

crs =
(
{gvk(s)v }k∈[n+1,m], {gwk(s)

w }k∈[n+1,m], {gyk(s)y }k∈[n+1,m],

{gαvvk(s)
v }k∈[n+1,m], {gαwwk(s)

w }k∈[n+1,m], {g
αyyk(s)
y }k∈[n+1,m],

{gsi}i∈[d], {gβvk(s)v gβwk(s)
w gβyk(s)y }k∈[n+1,m]

)
.

Set the short verification CRS to be:

shortcrs =
(
g, gαv , gαw , gαy , gγ , gβγ , gt(s)y ,

{gvk(s)v }k∈{0}∪[n], {gwk(s)
w }k∈{0}∪[n], {gyk(s)y }k∈{0}∪[n]

)
.

2. Prove. On input statement y, witness x, and crs, the prover evaluates the QAP to obtain
{ai}i∈[m]. (Equivalently, evaluates C to obtain the values on the circuit wires). The prover
solves for the quotient polynomial h such that p(x) = h(x)t(x). Let vmid(x) =

∑
k∈[n+1,m] akvk(x),

40

and similarly define wmid(x) and ymid(x). The prover computes the proof π:(
gvmid(s)
v , gwmid(s)

w , gymid(s)
y , gh(s),

gαvvmid(s)
v , gαwwmid(s)

w , g
αyymid(s)
y ,

gβvmid(s)
v gβwmid(s)

w gβymid(s)
y

)
3. Verify. On input shortcrs, y, and a proof π = (gVmid

v , gWmid
w , gYmid

y , gH , g
V ′mid
v , g

W ′mid
w , g

Y ′mid
y , gZ):

• The verifier can compute a term representing the public input y, by representing them as
coefficients a1, . . . , an ∈ F, and computing

gvin(s)v =
∏
k∈[n]

(
gvk(s)v

)ak
Similarly, compute gwin(s)

w and gyin(s)y . Check whether,

e(gv0(s)v gvin(s)v gVmid
v , gw0(s)

w gwin(s)
w gWmid

w)

= e(gt(s)y , gH) · e(gy0(s)y gyin(s)y gYmid
y , g).

• Verify that e(gV
′
mid
v , g) = e(gVmid

v , gαv), e(gW
′
mid

w , g) = e(gWmid
w , gαw), and e(gY

′
mid
y , g) =

e(gYmid
y , gαy).

• Verify e(gZ , gγ) = e(gVmid
v gWmid

w gYmid
y , gβγ).

Output 1 if all the verifications succeed, else output 0.

41

	Introduction
	Composite Statements and Applications
	Contributions

	Preliminaries
	Non-interactive Zero-knowledge Proofs
	Sigma Protocols
	SNARK Construction from QAP

	NIZK on Committed IO for Algebraic Statements
	Proof of Knowledge of Double Discrete Logarithm
	Sigma Protocols on Committed Outputs

	NIZK on Committed IO for Non-Algebraic Statements
	Proof of Equality of Aggregated Discrete Logs & Commitments
	zk-SNARK on Committed Inputs

	Constructions for Compound Statements
	Function Composition
	OR Composition
	AND Composition

	Applications
	Privacy-preserving Audits of Bitcoin Exchanges
	Proof of assets
	Proof of liabilities

	Privacy-Preserving Credentials

	zk-SNARK on Committed Input/Output
	Proof of Theorem 4.1
	Other Proofs
	Protocol comEq
	Protocol pointAddition
	Protocol ddlog

	Proof of Equality of Committed Values across Groups
	Proof that a committed value is a polynomial of committed values
	Efficiency
	Assumptions on Bilinear maps
	SNARK Construction of Parno et al.

