
A preliminary version of this paper appears in CRYPTO 2018. This is the full, fixed version.

Optimal Channel Security Against Fine-Grained State
Compromise: The Safety of Messaging

Joseph Jaeger1 Igors Stepanovs2

August 2018

Abstract

We aim to understand the best possible security of a (bidirectional) cryptographic channel
against an adversary that may arbitrarily and repeatedly learn the secret state of either com-
municating party. We give a formal security definition and a proven-secure construction. This
construction provides better security against state compromise than the Signal Double Ratchet
Algorithm or any other known channel construction. To facilitate this we define and construct
new forms of public-key encryption and digital signatures that update their keys over time.

1 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive,
La Jolla, California 92093, USA. Email: jsjaeger@eng.ucsd.edu. URL: https://cseweb.ucsd.edu/~jsjaeger/.
Supported in part by NSF grants CNS-1717640 and CNS-1526801.

2 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive,
La Jolla, California 92093, USA. Email: istepano@eng.ucsd.edu. URL: https://cseweb.ucsd.edu/~istepano/.
Supported in part by NSF grants CNS-1717640 and CNS-1526801.

Contents
1 Introduction 2

2 Preliminaries 5

3 New asymmetric primitives 7
3.1 Key-updatable digital signature schemes . 7
3.2 Key-updatable public-key encryption schemes . 10

4 Bidirectional cryptographic channels 11

5 Security notion for channels 14
5.1 Channel interface game . 14
5.2 Optimal security of a channel . 17
5.3 Informal description of our security definition . 19

6 Construction of a secure channel 21
6.1 Our construction . 21
6.2 Security proof . 25

A Comparison to recent definitions 42

B Security implications of correctness notions 43

C Construction of key-updatable digital signatures 44

D Construction of key-updatable public-key encryption 47

1

1 Introduction

End-to-end encrypted communication is becoming a usable reality for the masses in the form of
secure messaging apps. However, chat sessions can be extremely long-lived and their secrets are
stored on end user devices, so they are particularly vulnerable to having their cryptographic secrets
exfiltrated to an attacker by malware or physical access to the device. The Signal protocol [34]
by Open Whisper Systems tries to mitigate this threat by continually updating the key used for
encryption. Beyond its use in the Signal messaging app, this protocol has been adopted by a number
of other secure messaging apps. This includes being used by default in WhatsApp and as part of
secure messaging modes of Facebook Messenger, Google Allo, and Skype.

WhatsApp alone has 1 billion daily active users [44]. It is commonly agreed in the cryptography
and security community that the Signal protocol is secure. However, the protocol was designed
without an explicitly defined security notion. This raises the questions: what security does it
achieve and could we do better?

In this work we study the latter question, aiming to understand the best possible security of
two-party communication in the face of state exfiltration. We formally define this notion of security
and design a scheme that provably achieves it.

Security against compromise. When a party’s secret state is exposed we would like both that the
security of past messages and (as soon as possible) the security of future messages not be dam-
aged. These notions have been considered in a variety of contexts with differing terminology. The
systemization of knowledge paper on secure messaging [43] by Unger, Dechand, Bonneau, Fahl,
Perl, Goldberg, and Smith evaluates and systematizes a number of secure messaging systems. In
it they describe a variety of terms for these types of security including “forward secrecy,” “back-
wards secrecy,” “self-healing,” and “future secrecy” and note that they are “controversial and
vague.” Cohn-Gordon, Cremers, and Garratt [17] study the future direction under the term of
post-compromise security and similarly discuss the terms “future secrecy,” “healing,” and “boot-
strapping” and note that they are “intuitive” but “not well-defined.” Our security notion intuitively
captures any of these informal terms, but we avoid using any of them directly by aiming generically
for the best possible security against compromise.

Channels. The standard model for studying secure two party communication is that of the (cryp-
tographic) channel. The first attempts to consider the secure channel as a cryptographic object
were made by Shoup [40] and Canetti [13]. It was then formalized by Canetti and Krawczyk [15]
as a modular way to combine a key exchange protocol with authenticated encryption, which covers
both privacy and integrity. Krawczyk [29] and Namprempre [33] study what are the necessary and
sufficient security notions to build a secure channel from these primitives.

Modern definitions of channels often draw from the game-based notion of security for stateful
authenticated-encryption as defined by Bellare, Kohno, and Namprempre [4]. We follow this con-
vention which assumes initial generation of keys is trusted. In addition to requiring that a channel
provides integrity and privacy of the encrypted data, we will require integrity for associated data
as introduced by Rogaway [37].

Recently Marson and Poettering [31] closed a gap in the modeling of two-party communication
by capturing the bidirectional nature of practical channels in their definitions. We work with
their notion of bidirectional channels because it closely models the behavior desired in practice
and the bidirectional nature of communication allows us to achieve a fine-grained security against
compromise.

2

Definitional contributions. This paper aims to specify and achieve the best possible security of a
bidirectional channel against state compromise. We provide a formal, game-based definition of
security and a construction that provably achieves it. We analyze our construction in a concrete
security framework [2] and give precise bounds on the advantage of an attacker.

To derive the best possible notion of security against state compromise we first specify a basic
input-output interface via a game that describes how the adversary interacts with the channel.
This corresponds roughly to combining the integrity and confidentiality games of [31] and adding
an oracle that returns the secret state of a specified user to the adversary. Then we specify several
attacks that break the security of any channel. We define our final security notion by minimally
extending the initial interface game to disallow these unavoidable attacks while allowing all other
behaviors. Our security definition is consequently the best possible with respect to the specified
interface because our attacks rule out the possibility of any stronger notion.

One security notion is an all-in-one notion in the style of [38] that simultaneously requires
integrity and privacy of the channel. It asks for the maximal possible security in the face of the
exposure of either party’s state. A surprising requirement of our definition is that given the state
of a user the adversary should not be able to decrypt ciphertexts sent by that user or send forged
ciphertexts to that user.

Protocols that update their keys. The OTR (Off-the-Record) messaging protocol [12] is an important
predecessor to Signal. It has parties repeatedly exchange Diffie-Hellman elements to derive new
keys. The Double Ratchet Algorithm of Signal uses a similar Diffie-Hellman update mechanism
and extends it by using a symmetric key-derivation function to update keys when there is no Diffie-
Hellman update available. Both methods of updating keys are often referred to as ratcheting (a term
introduced by Langley [30]). While the Double Ratchet Algorithm was explicitly designed to achieve
strong notions of security against state compromise with respect to privacy, the designers explicitly
consider security against a passive eavesdropper [23]; authenticity in the face of compromise is out
of scope.

The first academic security analysis of Signal was due to Cohn-Gordan, Cremers, Dowling,
Garratt, and Stebila [16]. They only considered the security of the key exchange underlying the
Double Ratchet Algorithm and used a security definition explicitly tailored to understanding its
security instead of being widely applicable to any scheme.

Work by Bellare, Camper Singh, Jaeger, Nyayapati, and Stepanovs [9] sought to formally under-
stand ratcheting as an independent primitive, introducing the notions of (one-directional) ratcheted
key exchange and ratcheted encryption. In their model a compromise of the receiving party’s secrets
permanently and irrevocably disrupts all security, past and future. Further they strictly separate
the exchange of key update information from the exchange of messages. Such a model cannot
capture a protocol like the Double Ratchet Algorithm for which the two are inextricably combined.
On the positive side, they did explicitly model authenticity in the face of compromise.

In [28], Günther and Mazaheri study a key update mechanism introduced in TLS 1.3. Their
security definition treats update messages as being out-of-band and thus implicitly authenticated.
Their definition is clearly tailored to understand TLS 1.3 specifically.

Instead of analyzing an existing scheme, we strive to understand the best possible security with
respect to both privacy and authenticity in the face of state compromise. The techniques we use to
achieve this differ from those underlying the schemes discussed above, because all of them rely on
exchanging information to create a shared symmetric key that is ultimately used for encryption.
Our security notion is not achievable by a scheme of this form and instead requires that asymmetric

3

primitives be used throughout.
Consequently, our scheme is more computationally intensive than those mentioned above. How-

ever, as a part of OTR or the Double Ratchet Algorithm, when users are actively sending messages
back and forth (the case where efficiency is most relevant), they will be performing asymmet-
ric Diffie-Hellman based key updates prior to most message encryptions. This indicates that the
overhead of extra computation with asymmetric techniques is not debilitating in our motivating
context of secure messaging. However, the asymmetric techniques we require are likely less efficient
than Diffie-Hellman computations so we do not currently know whether our scheme meets realistic
efficiency requirements.

Our construction. Our construction of a secure channel is given in Section 6.1. It shows how to gener-
ically build the channel from a collision-resistant hash function, a public-key encryption scheme,
and a digital signature scheme. The latter two require new versions of the primitives that we
describe momentarily.

The hash function is used to store transcripts of the communication in the form of hashes
of all sent or received ciphertexts. These transcripts are included as part of every ciphertext
and a user will not accept a ciphertext with transcripts that do not match those it has stored
locally. Every ciphertext sent by a user is signed by their current digital signature signing key
and includes the verification key corresponding to their next signing key. Similarly a user will
include a new encryption key with every ciphertext they send. The sending user will use the most
recent encryption key they have received from the other user and the receiving user will delete all
decryption keys that are older than the one most recently used by the sender.

New notions of public-key encryption and digital signatures. Our construction uses new forms of public-
key encryption and digital signatures that update their keys over time, which we define in Section 3.
They both include extra algorithms that allow the keys to be updated with respect to an arbitrary
string. We refer to them as key-updatable public-key encryption and key-updatable digital sig-
nature schemes. In our secure channel construction a user updates their signing key and every
decryption key they currently have with their transcript every time they receive a ciphertext.

For public-key encryption we consider encryption with labels and require an IND-CCA style
security be maintained even if the adversary is given the decryption key as long as the sequence of
strings used to update it is not a prefix of the sequence of strings used to update the encryption
key before any challenge queries. We show that such a scheme is can be obtained directly from
hierarchical identity-based encryption [25].

For digital signatures, security requires that an adversary is unable to forge a signature even
given the signing key as long as the sequence of strings used to update it is not a prefix of the
sequence of strings used to update the verification key. We additionally require that the scheme
has unique signatures (i.e. for any sequence of updates and any message an adversary can only
find one signature that will verify). We show how to construct this from a digital signature scheme
that is forward secure [5] and has unique signatures.

Related work. Several works [24, 11] extended the definitions of channels to address the stream-
based interface provided by channels like TLS, SSH, and QUIC. Our primary motivation is to build
a channel for messaging where an atomic interface for messages is more appropriate.

Numerous areas of research within cryptography are motivated by the threat of key compro-
mise. These include key-insulated cryptography [20, 21, 22], secret sharing [39, 32, 42], threshold
cryptography [18], proactive cryptography [35], and forward security [27, 19]. Forward security, in

4

particular, was introduced in the context of key-exchange [27, 19] but has since been considered
for a variety of primitives including symmetric [10] and asymmetric encryption [14] and digital sig-
nature schemes [5]. Green and Miers [26] propose using puncturable encryption for forward secure
asynchronous messaging.

In concurrent and independent work, Poettering and Rösler [36] extend the definitions of ratch-
eted key exchange from [9] to be bidirectional. Their security definition is conceptually similar
to our definition for bidirectional channels because both works aim to achieve strong notions of
security against an adversary that can arbitrarily and repeatedly learn the secret state of either
communicating party. In constructing a secure ratcheted key exchange scheme they make use of a
key-updatable key encapsulation mechanism (KEM), a new primitive they introduce in their work.
The key-updatable nature of this is conceptually similar to that of the key-updatable public-key
encryption and digital signature schemes we introduce in our work. To construct such a KEM
they make use of hierarchical identity-based encryption in a manner similar to how we construct
key-updatable public-key encryption. The goal of their work differs from ours; they only consider
security for the exchange of symmetric keys while we do so for the exchange of messages.

Errors in the proceedings version. The proceedings version of this paper contained a security flaw.
It used a weaker variant of key-updatable public-key encryption (called “key-updating” public-key
encryption). Because of this, only the oldest decryption key was updated when a ciphertext was
received, instead of all stored decryption keys being updated (the latter is done by the fixed scheme
presented in this version). This can be exploited to break the claimed security of the prior scheme
in a straightforward manner.

2 Preliminaries

Notation and conventions. Let N = {0, 1, 2, . . .} be the set of non-negative integers. Let ε denote
the empty string. If x ∈ {0, 1}∗ is a string then |x| denotes its length. If X is a finite set, we let
x←$ X denote picking an element of X uniformly at random and assigning it to x. By (X)n we
denote the n-ary Cartesian product of X. We let x1 ← x2 ← · · · ← xn ← v denote assigning the
value v to each variable xi for i = 1, . . . , n.

If mem is a table, we use mem[p] to denote the element of the table that is indexed by p.
By mem[0, . . . ,∞] ← v we denote initializing all elements of mem to v. For a, b ∈ N we let
v ← mem[a, . . . , b] denote setting v equal to the tuple obtained by removing all ⊥ elements from
(mem[a],mem[a+ 1], . . . ,mem[b]). It is the empty vector () if all of these table entries are ⊥ or
if a > b. A tuple x⃗ = (x1, . . .) specifies a uniquely decodable concatenation of strings x1, We
say x⃗ ⊑ y⃗ if x⃗ is a prefix of y⃗. More formally, (x1, . . . , xn) ⊑ (y1, . . . , ym) if n ≤ m and xi = yi for
all i ∈ {1, . . . , n}. If x⃗ = (x1, . . . , xn) is a vector and x ∈ {0, 1}∗ then we define the concatenation
of x⃗ and x to be x⃗ ∥x = (x1, . . . , xn, x).

Algorithms may be randomized unless otherwise indicated. Running time is worst case. If A
is an algorithm, we let y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . .

and assigning the output to y. Any state maintained by an algorithm will explicitly be shown
as input and output of that algorithm. We let y←$ A(x1, . . .) denote picking r at random and
letting y ← A(x1, . . . ; r). We omit the semicolon when there are no inputs other than the random
coins. We let [A(x1, . . .)] denote the set of all possible outputs of A when invoked with inputs
x1, Adversaries are algorithms. The instruction abort(x1, . . .) is used to immediately halt

5

Game CRAH

H

hk←$ H.Kg
(m0,m1)←$AH(hk)

y0 ← H.Ev(hk,m0)

y1 ← H.Ev(hk,m1)

Return (m0 ̸= m1) and (y0 = y1)

Figure 1: Game defining collision-resistance of function family H.

with output (x1, . . .).
We use a special symbol ⊥ ̸∈ {0, 1}∗ to denote an empty table position, and we also return it

as an error code indicating an invalid input. An algorithm may not accept ⊥ as input. If xi = ⊥
for some i when executing (y1, . . .)← A(x1 . . .) we assume that yj = ⊥ for all j. We assume that
adversaries never pass ⊥ as input to their oracles.

We use the code based game playing framework of [8]. (See Fig. 1 for an example of a game.)
We let Pr[G] denote the probability that game G returns true. In code, tables are initially empty.
We adopt the convention that the running time of an adversary means the worst case execution
time of the adversary in the game that executes it, so that time for game setup steps and time to
compute answers to oracle queries is included.

Function families. A family of functions H specifies algorithms H.Kg and H.Ev, where H.Ev is deter-
ministic. Key generation algorithm H.Kg returns a key hk, denoted by hk←$ H.Kg. Evaluation al-
gorithm H.Ev takes hk and an input x ∈ {0, 1}∗ to return an output y, denoted by y ← H.Ev(hk, x).

Collision-resistant functions. Consider game CR of Fig. 1 associated to a function family H and an
adversary AH. The game samples a random key hk for function family H. In order to win the game,
adversary AH has to find two distinct messages m0,m1 such that H.Ev(hk,m0) = H.Ev(hk,m1).
The advantage of AH in breaking the CR security of H is defined as AdvcrH (AH) = Pr[CRAH

H].

Digital signature schemes. A digital signature scheme DS specifies algorithms DS.Kg, DS.Sign and
DS.Vrfy, where DS.Vrfy is deterministic. Associated to DS is a key generation randomness space
DS.KgRS and signing algorithm’s randomness space DS.SignRS. Key generation algorithm DS.Kg

takes randomness z ∈ DS.KgRS to return a signing key sk and a verification key vk, denoted by
(sk, vk)← DS.Kg(z). Signing algorithm DS.Sign takes sk, a message m ∈ {0, 1}∗ and randomness
z ∈ DS.SignRS to return a signature σ, denoted by σ ← DS.Sign(sk,m; z). Verification algorithm
DS.Vrfy takes vk, σ, and m to return a decision t ∈ {true, false} regarding whether σ is a valid
signature of m under vk, denoted by t ← DS.Vrfy(vk, σ,m). The correctness condition for DS

requires that DS.Vrfy(vk, σ,m) = true for all (sk, vk) ∈ [DS.Kg], all m ∈ {0, 1}∗, and all σ ∈
[DS.Sign(sk,m)].

We define the min-entropy of algorithm DS.Kg as H∞(DS.Kg), such that

2−H∞(DS.Kg) = max
vk∈{0,1}∗

Pr [vk∗ = vk : (sk∗, vk∗)←$ DS.Kg] .

The probability is defined over the random coins used for DS.Kg. Note that the min-entropy is
defined with respect to verification keys, regardless of the corresponding values of the secret keys.

6

Game DSCORRC
DS

∆⃗← () ; ν←$ DS.KgRS
(sk, vk)← DS.Kg(ν)
CUpd,Sign(ν)

Return bad

Upd(∆) // ∆ ∈ {0, 1}∗

∆⃗← ∆⃗ ∥∆
sk←$ DS.UpdSk(sk,∆)

Return sk

Sign(m) // m ∈ {0, 1}∗

σ←$ DS.Sign(sk,m)

(vk∗, t)← DS.Vrfy(vk, σ,m, ∆⃗)

If not t then bad← true

Game PKECORRC
PKE

∆⃗← () ; ν←$ PKE.KgRS
(ek,dk)← PKE.Kg(ν)
CUpd,Enc(ν)

Return bad

Upd(∆) // ∆ ∈ {0, 1}∗

∆⃗← ∆⃗ ∥∆
dk←$ PKE.UpdDk(dk,∆)

Return dk

Enc(m, ℓ) // m, ℓ ∈ {0, 1}∗

(ek∗, c)←$ PKE.Enc(ek, ℓ,m, ∆⃗)

m′ ← PKE.Dec(dk, ℓ, c)
If m′ ̸= m then bad← true

Figure 2: Games defining correctness of key-updatable digital signature scheme DS and correctness
of key-updatable public-key encryption scheme PKE.

3 New asymmetric primitives

In this section we define key-updatable digital signatures and key-updatable public-key encryption.
Both allow their keys to be updated with arbitrary strings. While in general one would prefer the
size of keys, signatures, and ciphertexts to be constant, we will be willing to accept schemes for
which these grow linearly in the number of updates. As we will discuss later, these are plausibly
acceptable inefficiencies for our use cases.

We specify multi-user security definitions for both primitives, because it allows tighter reductions
when we construct a channel from these primitives. Single-user variants of these definitions are
obtained by only allowing the adversary to interact with one user and can be shown to imply the
multi-user versions by a standard hybrid argument. Starting with [1] constructions have been given
for a variety of primitives that allow multi-user security to be proven without the factor q security
loss introduced by a hybrid argument. If analogous constructions can be found for our primitives
then our results will give tight bounds on the security of our channel.

3.1 Key-updatable digital signature schemes

We start by formally defining the syntax and correctness of a key-updatable digital signature
scheme. Then we specify a security definition for it. We will briefly sketch how to construct such
a scheme, but leave the details to Appendix C.

Syntax and correctness. A key-updatable digital signature scheme is a digital signature scheme with
additional algorithms DS.UpdSk and DS.UpdVk, where DS.UpdVk is deterministic. Signing-key
update algorithm DS.UpdSk takes a signing key sk and a key update information ∆ ∈ {0, 1}∗ to
return a new signing key sk, denoted by sk←$ DS.UpdSk(sk,∆). Verification-key update algorithm
DS.UpdVk takes a verification key vk and a key update information ∆ ∈ {0, 1}∗ to return a new
verification key vk, denoted by vk ← DS.UpdVk(vk,∆).

Let ∆⃗ = (∆1,∆2, . . . ,∆n). For compactness, we sometimes write (vk, t)← DS.Vrfy(vk, σ,m, ∆⃗)

to denote updating the verification key via vk ← DS.UpdVk(vk,∆i) for i = 1, . . . , n and then

7

Game UNIQBDS

DS

(Λ,m, σ1, σ2, ∆⃗)←$ BNewUser
DS

(sk, vk)← DS.Kg(z[Λ])
(vk∗, t1)← DS.Vrfy(vk, σ1,m, ∆⃗)

(vk∗, t2)← DS.Vrfy(vk, σ2,m, ∆⃗)

Return σ1 ̸= σ2 and t1 and t2

NewUser(Λ) // Λ ∈ {0, 1}∗

If z[Λ] ̸= ⊥ then return ⊥
z[Λ]←$ DS.KgRS
Return z[Λ]

Figure 3: Game defining signature uniqueness of key-updatable digital signature scheme DS.

evaluating t← DS.Vrfy(vk, σ,m).
The key-update correctness condition requires that signatures must verify correctly as long

as the signing and the verification keys are both updated with the same sequence of key update
information ∆⃗ = (∆1,∆2, . . .). To formalize this, consider game DSCORR of Fig. 2, associated
to a key-updatable digital signature scheme DS and an adversary C. The advantage of an adver-
sary C against the correctness of DS is given by AdvdscorrDS (C) = Pr[DSCORRCDS]. We require that
AdvdscorrDS (C) = 0 for all (even unbounded) adversaries C. See Section 4 for discussion on game-based
definitions of correctness.

Signature uniqueness. We will be interested in schemes for which there is only a single signature
that will be accepted for any message m and any sequence of updates ∆⃗. Consider game UNIQ

of Fig. 3, associated to a key-updatable digital signature scheme DS and an adversary BDS. The
adversary BDS can call the oracle NewUser arbitrarily many times with a user identifier Λ and be
given the randomness used to generate the keys of Λ. The adversary ultimately outputs a user id
Λ, a message m, signatures σ1, σ2, and a key update vector ∆⃗. It wins if the signatures are distinct
and both verify for m when the verification key of Λ is updated with ∆⃗. The advantage of BDS in
breaking the UNIQ security of DS is defined as AdvuniqDS (BDS) = Pr[UNIQBDS

DS].

Signature unforgeability under exposures. Our main security notion for signatures asks that the ad-
versary not be able to create signatures for any key update vector ∆⃗ unless it acquired a signing
key for some key update vector ∆⃗′ that is a prefix of ∆⃗. The adversary can query an oracle to
receive a signature for one message with respect to each user’s secret key, but it cannot claim this
signature as a forgery. Consider game UFEXP of Fig. 4, associated to a key-updatable digital
signature scheme DS and an adversary ADS.

The adversary ADS can call the oracle NewUser arbitrarily many times, once for each user
identifier Λ, and be given the verification key for that user. Then it can interact with user Λ via
three different oracles. Via calls to Upd with a string ∆ it requests that the signing key for the
specified user be updated with ∆. Via calls to Sign with message m it asks for a signature of m
using the signing key for the specified user. When it does so, ∆⃗∗[Λ] is used to store the vector of
strings the key was updated with, and no more signatures are allowed for user id Λ.1 Via calls to

1We are thus defining security for a one-time signature scheme, because a particular key will only be used for one
signature. This is all we require for our application, but the definition and construction we provide could easily be
extended to allow multiple signatures if desired.

8

Game UFEXPADS

DS

out←$ANewUser,Upd,Sign,Exp
DS

(Λ, σ,m, ∆⃗)← out
forgery← (σ,m, ∆⃗)

trivial← (σ∗[Λ],m∗[Λ], ∆⃗∗[Λ])

t1 ← (forgery = trivial)
t2 ← (∆⃗′[Λ] ⊑ ∆⃗)

cheated← (t1 or t2)

vk ← vk[Λ]

(vk,win)← DS.Vrfy(vk, σ,m, ∆⃗)

Return win and not cheated

NewUser(Λ) // Λ ∈ {0, 1}∗

If sk[Λ] ̸= ⊥ then return ⊥
∆⃗s[Λ]← () ; ∆⃗∗[Λ]← ⊥ ; ∆⃗′[Λ]← ⊥
(sk[Λ], vk[Λ])←$ DS.Kg
Return vk[Λ]

Upd(Λ,∆) // Λ,∆ ∈ {0, 1}∗

If sk[Λ] = ⊥ then return ⊥
∆⃗s[Λ]← ∆⃗s[Λ] ∥∆
sk[Λ]←$ DS.UpdSk(sk[Λ],∆)

Return ⊥
Sign(Λ,m) // Λ,m ∈ {0, 1}∗

If sk[Λ] = ⊥ then return ⊥
If ∆⃗∗[Λ] ̸= ⊥ then return ⊥
σ←$ DS.Sign(sk[Λ],m)

(σ∗[Λ],m∗[Λ], ∆⃗∗[Λ])← (σ,m, ∆⃗s[Λ])

Return σ

Exp(Λ) // Λ ∈ {0, 1}∗

If sk[Λ] = ⊥ then return ⊥
If ∆⃗′[Λ] = ⊥ then ∆⃗′[Λ]← ∆⃗s[Λ]

Return sk[Λ]

Game INDEXPAPKE

PKE

b←$ {0, 1}
b′←$ANewUser,UpdEk,UpdDk,Enc,Dec,Exp

PKE

Return b = b′

NewUser(Λ) // Λ ∈ {0, 1}∗

If dk[Λ] ̸= ⊥ then return ⊥
∆⃗e[Λ]← () ; ∆⃗d[Λ]← ()

∆⃗′[Λ]← ⊥ ; S[Λ]← ∅
(ek[Λ],dk[Λ])←$ PKE.Kg
Return ek[Λ]

UpdEk(Λ,∆) // Λ,∆ ∈ {0, 1}∗

If dk[Λ] = ⊥ then return ⊥
ek[Λ]← PKE.UpdEk(ek[Λ],∆)

∆⃗e[Λ]← ∆⃗e[Λ] ∥∆
UpdDk(Λ,∆) // Λ,∆ ∈ {0, 1}∗

If dk[Λ] = ⊥ then return ⊥
dk[Λ]←$ PKE.UpdDk(dk[Λ],∆)

∆⃗d[Λ]← ∆⃗d[Λ] ∥∆
Enc(Λ,m0,m1, ℓ) // Λ,m0,m1, ℓ ∈ {0, 1}∗

If dk[Λ] = ⊥ then return ⊥
If |m0| ̸= |m1| then return ⊥
If ∆⃗′[Λ] ⊑ ∆⃗e[Λ] then return ⊥
c←$ PKE.Enc(ek[Λ], ℓ,mb)

S[Λ]← S[Λ] ∪ {(∆⃗e[Λ], c, ℓ)}
Return c

Dec(Λ, c, ℓ) // Λ, c, ℓ ∈ {0, 1}∗

If dk[Λ] = ⊥ then return ⊥
If (∆⃗d[Λ], c, ℓ) ∈ S[Λ] then return ⊥
m← PKE.Dec(dk[Λ], ℓ, c)
Return m

Exp(Λ) // Λ ∈ {0, 1}∗

If dk[Λ] = ⊥ then return ⊥
If ∃(∆⃗, c, ℓ) ∈ S[Λ] s.t. ∆⃗d[Λ] ⊑ ∆⃗ then

Return ⊥
If ∆⃗′[Λ] = ⊥ then ∆⃗′[Λ]← ∆⃗d[Λ]

Return dk[Λ]

Figure 4: Games defining signature unforgeability under exposures of key-updatable digital signa-
ture scheme DS, and ciphertext indistinguishability under exposures of key-updatable public-key
encryption scheme PKE.

Exp it can ask to be given the current signing key of the specified user. When it does so, ∆⃗′[Λ] is
used to store the vector of strings the key was updated with.

At the end of the game the adversary outputs a user id Λ, a signature σ, a message m, and
a key update vector ∆⃗. The adversary has cheated if it previously received σ as the result of
calling Sign(Λ,m) and ∆⃗ = ∆⃗∗[Λ], or if it exposed the signing key of Λ and ∆⃗′[Λ] is a prefix

9

of ∆⃗. It wins if it has not cheated and if σ verifies for m when the verification key of Λ is
updated with ∆⃗. The advantage of ADS in breaking the UFEXP security of DS is defined by
AdvufexpDS (ADS) = Pr[UFEXPADS

DS].
Construction. In Appendix C we use a forward-secure [5] key-evolving signature scheme with unique
signatures to construct a key-updatable signature scheme that is secure with respect to both of
the above definitions. Roughly, a key-evolving signature scheme is like a key-updatable digital
signature scheme that can only update with ∆ = ε. In order to enable updates with respect to
arbitrary key update information, we sign each update string with the current key prior to evolving
the key, and then include these intermediate signatures with our final signature.

3.2 Key-updatable public-key encryption schemes

We start by formally defining the syntax and correctness of a key-updatable public-key encryption.
Then we specify a security definition for it. We will briefly sketch how to construct such a scheme,
but leave the details to Appendix D. We consider public-key encryption with labels as introduced
by Shoup [41].
Syntax and correctness. A key-updatable public-key encryption scheme PKE specifies algorithms
PKE.Kg, PKE.Enc, PKE.Dec, PKE.UpdEk, and PKE.UpdDk. Associated to PKE is a key genera-
tion randomness space PKE.KgRS, encryption randomness space PKE.EncRS, and decryption-key
update randomness space PKE.UpdDkRS. Key generation algorithm PKE.Kg takes randomness
z ∈ PKE.KgRS to return an encryption key ek and a decryption key dk, denoted by (ek,dk) ←
PKE.Kg(z). Encryption algorithm PKE.Enc takes ek, a label ℓ ∈ {0, 1}∗, a message m ∈ {0, 1}∗,
and randomness z ∈ PKE.EncRS to return a ciphertext c, denoted by c ← PKE.Enc(ek, ℓ,m; z).
Deterministic decryption algorithm PKE.Dec takes dk, ℓ, c to return a message m ∈ {0, 1}∗, denoted
by m ← PKE.Dec(dk, ℓ, c). Deterministic encryption-key update algorithm PKE.UpdEk takes an
encryption key ek and key update information ∆ ∈ {0, 1}∗ to return a new encryption key ek,
denoted by ek ← PKE.UpdEk(ek,∆). Decryption-key update algorithm PKE.UpdDk takes a de-
cryption key dk, key update information ∆ ∈ {0, 1}∗, and randomness z ∈ PKE.UpdDkRS to return
a new decryption key dk, denoted by dk ← PKE.UpdDk(dk,∆; z).

Let ∆⃗ = (∆1,∆2, . . . ,∆n). For compactness, we sometimes write (ek, c)←$ PKE.Enc(ek, ℓ,m, ∆⃗)

to denote updating the key via ek ← PKE.UpdEk(ek,∆i) for i = 1, . . . , n and then evaluating
c←$ PKE.Enc(ek, ℓ,m).

The correctness condition requires that ciphertexts decrypt correctly as long as the encryp-
tion and decryption key are both updated with the same sequence of key update information
∆⃗ = (∆1,∆2, . . .). To formalize this, consider game PKECORR of Fig. 2, associated to a key-
updatable public-key encryption scheme PKE and an adversary C. The advantage of an adversary
C against the correctness of PKE is given by AdvpkecorrPKE (C) = Pr[PKECORRCPKE]. Correctness re-
quires that AdvpkecorrPKE (C) = 0 for all (even computationally unbounded) adversaries C. See Section 4
for discussion on game-based definitions of correctness.

Define the min-entropy of algorithms PKE.Kg and PKE.Enc as H∞(PKE.Kg) and H∞(PKE.Enc),
respectively, defined as follows:

2−H∞(PKE.Kg) = max
ek

Pr [ek∗ = ek : (ek∗, dk∗)←$ PKE.Kg] ,

2−H∞(PKE.Enc) = max
ek,ℓ,m,c

Pr [c∗ = c : c∗←$ PKE.Enc(ek, ℓ,m)] .

10

The probability is defined over the random coins used by PKE.Kg and PKE.Enc, respectively. Note
that min-entropy of PKE.Kg does not depend on the output value dk∗.

Ciphertext indistinguishability under exposures. Consider game INDEXP of Fig. 4, associated to a
key-updatable public-key encryption scheme PKE and an adversary APKE. Roughly, it requires
that PKE maintain CCA security [3] even if APKE is given the decryption key (as long as that
decryption key is no longer able to decrypt any challenge ciphertexts).

The adversary APKE can call the oracle NewUser arbitrarily many times with a user identifier
Λ and be given the encryption key of that user. Then it can interact with user Λ via five oracles. Via
calls to UpdEk or UpdDk with key update information ∆ it requests for the corresponding key to
be updated with that string. Variable ∆⃗e stores the sequence of update information used to update
the encryption key and ∆⃗d the sequence of update information used to update the decryption key.

Via calls to Enc with messages m0,m1 and label ℓ it requests that one of these messages be
encrypted using the specified label (which message is encrypted depends on the secret bit b). It
will be given back the produced ciphertext. Set S is used to store the challenge ciphertext, label,
and current value of ∆⃗e.

Via calls to Dec with ciphertext c and ℓ it requests that the ciphertext be decrypted with the
specified label. Adversary APKE is not allowed to make such a query with a pair (c, ℓ) obtained
from a call to Enc if ∆⃗d is the same as ∆⃗e was at the time of encryption.

Via calls to Exp it asks to be given the current decryption key of the user. It may not do so if
∆⃗d is a prefix of any ∆⃗e when a Enc query was made. Variable ∆⃗′ is used to disallow future calls
to Enc of this form.

At the end of the game the adversary outputs a bit b′ representing its guess of the secret bit b.
The advantage of APKE in breaking the INDEXP security of PKE is defined as AdvindexpPKE (APKE) =

2Pr[INDEXPAPKE
PKE]− 1.

Construction. In Appendix D we use a hierarchical identity-based encryption (HIBE) scheme to
construct a secure key-updatable encryption scheme. Roughly, a HIBE assigns a decryption key to
any identity (vector of strings). A decryption key for an identity I⃗ can be used to create decryption
keys for an identity of which I⃗ is a prefix. Security requires that the adversary be unable to learn
about encrypted messages encrypted to an identity I⃗ even if given the decryption key for many
identities as long as none of them were prefixes of I⃗. To create a key-updatable encryption scheme
we treat the vector of key updates as an identity. The security of this scheme then follows from the
security of the underlying HIBE in a fairly straightforward manner.

4 Bidirectional cryptographic channels

In this section we formally define the syntax and correctness of bidirectional cryptographic chan-
nels. Our notion of bidirectional channels will closely match that of Marson and Poettering [31].
Compared to their definition, we allow the receiving algorithm to be randomized and provide an
alternative correctness condition. We argue that the new correctness condition is more appropriate
for our desired use case of secure messaging. Henceforth, we will omit the adjective “bidirectional”
and refer simply to channels.

Syntax of channel. A channel provides a method for two users to exchange messages in an arbitrary
order. We will refer to the two users of a channel as the initiator I and the receiver R. There
will be no formal distinction between the two users, but when specifying attacks we follow the

11

Figure 5: The interaction between bidirectional cryptographic channel algorithms.

convention of having I send a ciphertext first. We will use u as a variable to represent an arbitrary
user and u to represent the other user. More formally, when u ∈ {I,R} we let u denote the sole
element of {I,R} \ {u}. Consider Fig. 5 for an overview of algorithms that constitute a channel
Ch, and the interaction between them.

A channel Ch specifies algorithms Ch.Init, Ch.Send, and Ch.Recv. Initialization algorithm Ch.Init

returns initial states stI ∈ {0, 1}∗ and stR ∈ {0, 1}∗, where stI is I’s state and stR is R’s state.
We write (stI , stR)←$ Ch.Init. Sending algorithm Ch.Send takes state stu ∈ {0, 1}∗, associated
data ad ∈ {0, 1}∗, and message m ∈ {0, 1}∗ to return updated state stu ∈ {0, 1}∗ and a ciphertext
c ∈ {0, 1}∗. We write (stu, c)←$ Ch.Send(stu, ad,m). Receiving algorithm takes state stu ∈ {0, 1}∗,
associated data ad ∈ {0, 1}∗, and ciphertext c ∈ {0, 1}∗ to return updated state stu ∈ {0, 1}∗∪{⊥}
and message m ∈ {0, 1}∗ ∪ {⊥}. We write (stu,m)←$ Ch.Recv(stu, ad, c), where m = ⊥ represents
a rejection of ciphertext c and stu = ⊥ represents the channel being permanently shut down from
the perspective of u (recall our convention regarding ⊥ as input to an algorithm). One notion of
correctness we discuss will require that stu = ⊥ whenever m = ⊥. The other will require that stu
not be changed from its input value when m = ⊥.

We let Ch.InitRS, Ch.SendRS, and Ch.RecvRS denote the sets of possible random coins for Ch.Init,
Ch.Send, and Ch.Recv, respectively. Note that for full generality we allow Ch.Recv to be randomized.
Prior work commonly requires this algorithm to be deterministic.

Correctness of channel. In Fig. 6 we provide two games, defining two alternative correctness require-
ments for a cryptographic channel. Lines labelled with the name of a game are included only in
that game. The games differ in whether the adversary is given access to an oracle Robust or to an
oracle Reject. Game CORR uses the former, whereas game CORR⊥ uses the latter. The advan-
tage of an adversary C against the correctness of channel Ch is given by AdvcorrCh (C) = Pr[CORRCCh]

in one case, and Advcorr⊥Ch (C) = Pr[CORR⊥CCh] in the other case. Correctness with respect to either
notion requires that the advantage is equal 0 for all (even computationally unbounded) adversaries
C.

Our use of games to define correctness conditions follows the work of Marson and Poettering [31]
and Bellare et. al. [9]. By considering unbounded adversaries and requiring an advantage of 0 we
capture a typical information-theoretic perfect correctness requirement without having to explicitly
quantify over sequences of actions. In this work we require only the perfect correctness because it
is achieved by our scheme; however, it would be possible to capture computational correctness by

12

Games CORRC
Ch,CORR⊥C

Ch

sI ← rI ← sR ← rR ← 0 ; ν←$ Ch.InitRS ; (stI , stR)← Ch.Init(ν)
CSend,Recv,Robust(ν) // CORRC

Ch

CSend,Recv,Reject(ν) // CORR⊥C
Ch

Return bad

Send(u, ad,m) // u ∈ {I,R}, (ad,m) ∈ ({0, 1}∗)2

su ← su + 1 ; z←$ Ch.SendRS ; (stu, c)← Ch.Send(stu, ad,m; z)

ctableu[su]← (c, ad) ; mtableu[su]← m ; Return z

Recv(u) // u ∈ {I,R}
If ctableu[ru + 1] = ⊥ then return ⊥
ru ← ru + 1 ; (c, ad)← ctableu[ru]

η←$ Ch.RecvRS ; (stu,m)← Ch.Recv(stu, ad, c; η)
If m ̸= mtableu[ru] then bad← true
Return η

Robust(st, ad, c) // (st, ad, c) ∈ ({0, 1}∗)3

(st′,m)←$ Ch.Recv(st, ad, c)
If m = ⊥ and st′ ̸= st then bad← true

Reject(st, ad, c) // (st, ad, c) ∈ ({0, 1}∗)3

(st′,m)←$ Ch.Recv(st, ad, c)
If m = ⊥ and st′ ̸= ⊥ then bad← true

Figure 6: Games defining correctness of channel Ch. Lines labelled with the name of a game are
included only in that game. CORR requires that Ch be robust when given an incorrect ciphertext
via oracle Robust. CORR⊥ requires that Ch permanently returns ⊥ when given an incorrect
ciphertext via oracle Reject.

considering a restricted class of adversaries.
Both games require that ciphertexts sent by any user are always decrypted to the correct

message by the other user. This is modeled by providing adversary C with access to oracles Send

and Recv. We assume that messages from u to u are received in the same order they were sent,
and likewise that messages from u to u are also received in the correct order (regardless Aof how
they are interwoven on both sides, since ciphertexts are being sent in both directions).

The games differ in how the channel is required to behave in the case that a ciphertext is
rejected. Game CORR (using oracle Robust) requires that the state of the user not be changed so
that the channel can continue to be used. Game CORR⊥ (using oracle Reject) requires that the
state of the user is set to ⊥. According to our conventions about the behavior of algorithms given
⊥ as input (see Section 2), the channel will then refuse to perform any further actions by setting
all subsequent outputs to ⊥. We emphasize that the adversary specifies all inputs to Ch.Recv when
making calls to Robust and Reject, so the behavior of those oracles is not related to the behavior
of the other two oracles for which the game maintains the state of both users.

Comparison of correctness notions. The correctness required by CORR⊥ is identical to that of Mar-
son and Poettering [31]. The CORR notion of correctness instead uses a form of robustness anal-
ogous to that of [9]. In Appendix B we discuss how these correctness notions have different im-
plications for the security of the channel. It is trivial to convert a CORR-correct channel to a
CORR⊥-correct channel and vice versa. Thus we will, without loss of generality, only provide a

13

Game INTERD
Ch

b←$ {0, 1}
sI ← rI ← sR ← rR ← 0

(stI , stR)←$ Ch.Init
(zI , zR)←$ (Ch.SendRS)2

(ηI , ηR)←$ (Ch.RecvRS)2

b′←$DSend,Recv,Exp

Return (b′ = b)

Send(u,m0,m1, ad)

// u ∈ {I,R}, (m0,m1, ad) ∈ ({0, 1}∗)3
If nextop ̸= (u, “send”)

and nextop ̸= ⊥ then return ⊥
If |m0| ̸= |m1| then return ⊥
(stu, c)← Ch.Send(stu, ad,mb; zu)

nextop← ⊥
su ← su + 1 ; zu←$ Ch.SendRS
ctableu[su]← (c, ad)

Return c

Recv(u, c, ad)

// u ∈ {I,R}, (c, ad) ∈ ({0, 1}∗)2
If nextop ̸= (u, “recv”)

and nextop ̸= ⊥ then return ⊥
(stu,m)← Ch.Recv(stu, ad, c; ηu)
nextop← ⊥ ; ηu←$ Ch.RecvRS
If m ̸= ⊥ then ru ← ru + 1

If b = 0 and (c, ad) ̸= ctableu[ru] then
Return m

Return ⊥
Exp(u, rand)

// u ∈ {I,R}, rand ∈ {ε, “send”, “recv”}
If nextop ̸= ⊥ then return ⊥
(z, η)← (ε, ε)

If rand = “send” then
nextop← (u, “send”) ; z ← zu

Else if rand = “recv” then
nextop← (u, “recv”) ; η ← ηu

Return (stu, z, η)

Figure 7: Game defining interface between adversary D and channel Ch.

scheme achieving CORR-correctness.

5 Security notion for channels
In this section we will define what it means for a channel to be secure in the presence of a strong
attacker that can steal the secrets of either party in the communication. Our goal is to give the
strongest possible notion of security in this setting, encompassing both the privacy of messages and
the integrity of ciphertexts. We take a fine-grained look at what attacks are possible and require
that a channel be secure against all attacks that are not syntactically inherent in the definition of
a channel.

To introduce our security notion we will first describe a simple interface of how the adversary
is allowed to interact with the channel. Then we show attacks that would break the security of
any channel using this interface. Our final security notion will be created by adding checks to
the interface that prevents adversary from performing any sequence of actions that leads to these
unpreventable breaches of security. We introduce only the minimal necessary restrictions preventing
the attacks, making sure that we allow all adversaries that do not trivially break the security as
per above.

5.1 Channel interface game

Consider game INTER in Fig. 7. It defines the interface between an adversary D and a channel
Ch. A secret bit b is chosen at random and the adversary’s goal is to guess this bit given access
to a left-or-right sending oracle, real-or-⊥ receiving oracle, and an exposure oracle. The sending
oracle takes as input a user u ∈ {I,R}, two messages m0,m1 ∈ {0, 1}∗, and associated data ad.
Then it returns the encryption of mb with ad by user u. The receiving oracle Recv takes as input

14

a user u, a ciphertext c, and associated data ad. It has user u decrypt this ciphertext using ad,
and proceeds as follows. If b = 0 holds (along with another condition we discuss momentarily) then
it returns the valid decryption of this ciphertext; otherwise it returns ⊥. The exposure oracle Exp

takes as input a user u, and a flag rand. It returns user’s state stu, and it might return random
coins that will be used the next time this user runs algorithms Ch.Send or Ch.Recv (depending on
the value of rand, which we discuss below). The advantage of adversary D against channel Ch is
defined by AdvinterCh (D) = 2Pr[INTERDCh]− 1.

This interface gives the adversary full control over the communication between the two users of
the channel. It may modify, reorder, or block any communication as it sees fit. The adversary is
able to exfiltrate the secret state of either party at any time.

Let us consider the different cases of how a user’s secrets might be exposed. They could
be exposed while the user is in the middle of performing a Ch.Send operation, in the middle of
performing a Ch.Recv operation, or when the user is idle (i.e. not in the middle of performing
Ch.Send or Ch.Recv). In the last case we expect the adversary to learn the user’s state stu, but
nothing else. If the adversary is exposing the user during an operation, they would potentially
learn the state before the operation, any secrets computed during the operation, and the state
after the operation. We capture this by leaking the state from before the operation along with
the randomness that will be used when the adversary makes its next query to Send or Recv.
This allows the adversary to compute the next state as well. The three possible values of rand are
rand = “send” for the first possibility, rand = “recv” for the second possibility, and rand = ε for
the third. These exposures represent what the adversary is learning while a particular operation
is occurring, so we require (via nextop) that after such an exposure it immediately makes the
corresponding oracle query. Without the use of the exposure oracle the game specified by this
interface would essentially be equivalent to the combination of the integrity and confidentiality
security notions defined by Marson and Poettering [31] in the all-in-one definition style of Rogaway
and Shrimpton [38].

The interface game already includes some standard checks. First, we require that on any query
(u,m0,m1, ad) to Send the adversary must provide equal length messages. If the adversary does
not do so (i.e. |m0| ̸= |m1|) then Send returns ⊥ immediately. This prevents the inherent attack
where an adversary could distinguish between the two values of b by asking for encryptions of
different length messages and checking the length of the output ciphertext. Adversary D1 in Fig. 8
does just that and would achieve AdvinterCh (D1) > 1/2 against any channel Ch if not for that check.

Second, we want to prevent Recv from decrypting ciphertexts that are simply forwarded to it
from Send. So for each user u we keep track of counters su and ru that track how many messages
that user has sent and received. Then at the end of a Send call to u the ciphertext-associated
data pair (c, ad) is stored in the table ctableu with index su. When Recv is called for user u it
will compare the pair (c, ad) against ctableu[ru] and if the pair matches return ⊥ regardless of the
value of the secret bit. If we did not do this check then for any channel Ch the adversary D2 shown
in Fig. 8 would achieve AdvinterCh (D2) = 1.

We now specify several efficient adversaries that will have high advantage for any choice of Ch.
For concreteness we always have our adversaries immediately start the actions required to perform
the attacks, but all of the attacks would still work if the adversary had performed a number of
unrelated procedure calls first. Associated data will never be important for our attacks so we will
always set it to ε. We will typically set m0 = 0 and m1 = 1. For the following we let Ch be any
channel and consider the adversaries shown in Fig. 8.

15

Adversary DSend,Recv,Exp
1

(st, z, η)← Exp(I, ε)
n← maxc∈[Ch.Send(st,ε,1)] |c|
m←$ {0, 1}n+2

c ← Send(I,m, 1, ε)

If |c| ≤ n then return 1
Return 0
Adversary DSend,Recv,Exp

2

c ← Send(I, 1, 1, ε)
m← Recv(R, c, ε)
If m = ⊥ then return 1
Return 0
Adversary DSend,Recv,Exp

3

(st, z, η)← Exp(I, ε)
(st, c)←$ Ch.Send(st, ε, 1)
m← Recv(R, c, ε)
If m = ⊥ then return 1
Return 0

Adversary DSend,Recv,Exp
3.1

(st, z, η)← Exp(I, ε)
(st, c)←$ Ch.Send(st, ε, 1)
m← Recv(R, c, ε)
(st, c)←$ Ch.Send(st, ε, 1)
m← Recv(R, c, ε)
If m = ⊥ then return 1
Return 0
Adversary DSend,Recv,Exp

3.2

(st, z, η)← Exp(I, ε)
(st, c)←$ Ch.Send(st, ε, 1)
m← Recv(R, c, ε)
c ← Send(R, 0, 1, ε)
(st,m)←$ Ch.Recv(st, ε, c)
If m = 1 then return 1
Return 0

Adversary DSend,Recv,Exp
4

c ← Send(I, 0, 1, ε)
(st, z, η)← Exp(R, ε)
(st,m)←$ Ch.Recv(st, ε, c)
If m = 1 then return 1
Return 0
Adversary DSend,Recv,Exp

5

(st, z, η)← Exp(R, ε)
c ← Send(I, 0, 1, ε)
(st,m)←$ Ch.Recv(st, ε, c)
If m = 1 then return 1
Return 0
Adversary DSend,Recv,Exp

6

(st, z, η)← Exp(I, “send”)
(st, c)← Ch.Send(st, ε, 1; z)
c′ ← Send(I, 0, 1, ε)
If c′ = c then return 1
Return 0

Figure 8: Generic attacks against any channel Ch with interface INTER.

Trivial Forgery. If the adversary exposes the secrets of u it will be able to forge a ciphertext that
u would accept at least until the future point in time when u has received the ciphertext that u

creates next. For a simple example of this consider the third adversary, D3. It exposes the secrets
of user I, then uses them to perform its own Ch.Send computation locally, and sends the resulting
ciphertext to R. Clearly this ciphertext will always decrypt to a non-⊥ value so the adversary can
trivially determine the value of b and achieve AdvinterCh (D3) = 1.

After an adversary has done the above to trivially send a forgery to u it can easily perform further
attacks on both the integrity and authenticity of the channel. These are shown by adversaries D3.1

and D3.2. The first displays the fact that the attacker can easily send further forgeries to u. The
second displays the fact that the attacker can now easily decrypt any messages sent by u. We have
AdvinterCh (D3.1) = 1 and AdvinterCh (D3.2) = 1.

Trivial Challenges. If the adversary exposes the secrets of u it will necessarily be able to decrypt
any ciphertexts already encrypted by u that have not already been received by u. Consider the
adversary D4. It determines what message was encrypted by user I by exposing the state of R,
and uses that to run Ch.Recv. We have AdvinterCh (D4) = 1.

Similarly, if the adversary exposes the secrets of u it will necessarily be able to decrypt any
future ciphertexts encrypted by u, until u receives the ciphertext that u creates next. Consider the
adversary D5. It is essentially the identical to adversary D4, except it reverses the order of the calls
made to Send and Exp. We have AdvinterCh (D5) = 1.

Exposing Randomness. If an adversary exposes user u with rand = “send” then it is able to compute
the next state of u by running Ch.Send locally with the same randomness that u will use. So in this
case the security game must act as if the adversary exposed both the current and the next state. In
particular, the attacks above could only succeed until, first, the exposed user u updated its secrets

16

and, second, user u updates its secrets accordingly (which can happen after it receives the next
message from u). But if the randomness was exposed, then secrets would need to be updated at
least twice until the security is restored.

Exposing user u with rand = “send” additionally allows the attack shown in D6. The adversary
exposes the state and the sending randomness of I, encrypts 1 locally using these exposed values
of I, and then calls Send to get a challenge ciphertext sent by I. The adversary compares whether
the two ciphertexts are the same to determine the secret bit. We have AdvinterCh (D6) = 1. More
broadly, if the adversary exposes the secrets of u with rand = “send” it will always be able to tell
what is the next message encrypted by u.

Exposing with rand = “recv” does not generically endow the adversary with the ability to do
any additional attacks.

5.2 Optimal security of a channel

Our full security game is obtained by adding a minimal amount of code to INTER to disallow
the generic attacks just discussed. Consider the game AEAC (authenticated encryption against
compromise) shown in Fig. 9. We define the advantage of an adversary D against channel Ch by
AdvaeacCh (D) = 2Pr[AEACDCh]− 1.

We now have a total of eight variables to control the behavior of the adversary and prevent it
from abusing trivial attacks. Some of the variables are summarized in Fig. 10. We have already
seen su, ru, nextop, and ctableu in INTER. The new variables we have added in AEAC are tables
forgeu and chu, number Xu ∈ N, and flag restrictedu ∈ {true, false}. We now discuss the new
variables.

The table forgeu was added to prevent the type of attack shown in D3. When the adversary
calls Exp on user u we set forgeu to “trivial” for the indices of ciphertexts for which this adversary
is now necessarily able to create forgeries. If the adversary takes advantage of this to send a
ciphertext of its own creation to u then the flag restrictedu will be set, whose effect we will describe
momentarily.

The table chu is used to prevent the types of attacks shown by D4 and D6. Whenever the
adversary makes a valid challenge query2 to user u we set chu[su] to “done”. The game will not
allow the adversary to expose u’s secrets if there are any challenge queries for which u sent a
ciphertext that u has not received yet. This use of chu prevents an attack like D4. To prevent
an attack like D6, we set chu[su + 1] to “forbidden” whenever the adversary exposes the state and
sending randomness of u. This disallows the adversary from doing a challenge query during its next
Send call to u (the call for which the adversary knows the corresponding randomness).

The number Xu prevents attacks like D5. When u is exposed Xu will be set to a number that is
1 or 2 greater than the current number of ciphertexts u has sent (depending on the value of rand)
and challenge queries from u will not be allowed until it has received that many ciphertexts. This
ensures that the challenge queries from u are not issued with respect to exposed keys of u.3

Finally the flag restrictedu serves to both allow and disallow some attacks. The flag is initialized
to false. It is set to true when the adversary forges a ciphertext to u after exposing u. Once u has
received a different ciphertext than was sent by u there is no reason to think that u should be able
to decrypt ciphertexts sent by u or send its own ciphertexts to u. As such, if u is restricted (i.e.

2We use the term challenge query to refer to a Send query for which m0 ̸= m1.
3The symbol X (chi) is meant to evoke the word “challenge” because it stores the next time the adversary may

make a challenge query.

17

Game AEACD
Ch

b←$ {0, 1} ; sI ← 0 ; rI ← 0 ; sR ← 0 ; rR ← 0

restrictedI ← false ; restrictedR ← false
forgeI [0 . . .∞]← “nontrivial” ; forgeR[0 . . .∞]← “nontrivial”
XI ← 0 ; XR ← 0 ; (stI , stR)←$ Ch.Init
(zI , zR)←$ (Ch.SendRS)2 ; (ηI , ηR)←$ (Ch.RecvRS)2

b′←$DSend,Recv,Exp

Return (b′ = b)

Send(u,m0,m1, ad) // u ∈ {I,R}, (m0,m1, ad) ∈ ({0, 1}∗)3

If nextop ̸= (u, “send”) and nextop ̸= ⊥ then return ⊥
If |m0| ̸= |m1| then return ⊥
If (ru < Xu or restrictedu or chu[su + 1] = “forbidden”) and m0 ≠ m1 then

Return ⊥
(stu, c)← Ch.Send(stu, ad,mb; zu)

nextop← ⊥ ; su ← su + 1 ; zu←$ Ch.SendRS
If not restrictedu then ctableu[su]← (c, ad)

If m0 ̸= m1 then chu[su]← “done”
Return c

Recv(u, c, ad) // u ∈ {I,R}, (c, ad) ∈ ({0, 1}∗)2

If nextop ̸= (u, “recv”) and nextop ̸= ⊥ then return ⊥
(stu,m)← Ch.Recv(stu, ad, c; ηu)
nextop← ⊥ ; ηu←$ Ch.RecvRS
If m = ⊥ then return ⊥
ru ← ru + 1

If forgeu[ru] = “trivial” and (c, ad) ̸= ctableu[ru] then
restrictedu ← true

If restrictedu or (b = 0 and (c, ad) ̸= ctableu[ru]) then
Return m

Return ⊥
Exp(u, rand) // u ∈ {I,R}, rand ∈ {ε, “send”, “recv”}
If nextop ̸= ⊥ then return ⊥
If restrictedu then return (stu, zu, ηu)

If ∃i ∈ (ru, su] s.t. chu[i] = “done” then
Return ⊥

forgeu[su + 1]← “trivial” ; (z, η)← (ε, ε) ; Xu ← su + 1

If rand = “send” then
nextop← (u, “send”) ; z ← zu ; Xu ← su + 2

forgeu[su + 2]← “trivial” ; chu[su + 1]← “forbidden”
Else if rand = “recv” then

nextop← (u, “recv”) ; η ← ηu
Return (stu, z, η)

Figure 9: Game defining AEAC security of channel Ch.

restrictedu = true) we will not add its ciphertexts to ctableu, we will always show the true output
when u attempts to decrypt ciphertexts given to it by the adversary (even if they were sent by u),
and if the adversary asks to expose u we will return all of its secret state without setting any of
the other variables that would restrict the actions the adversary is allowed to take.

18

Variable Set to x when y occurs Effect
nextopu (u, “send”) when zu is exposed − u must send next

(u, “recv”) when ηu is exposed − u must receive next
forgeu “trivial” when u is exposed − forgeries to u set restrictedu
chu “done” when challenge from u − prevents an exposure of u

“forbidden” when zu is exposed − prevents a challenge from u
Xu when u is exposed − prevents challenges until ru = Xu

restrictedu true when trivial forgery to u − prevents challenges from u
+ (c, ad) from u not added to ctableu
± show decryption of (c, ad) sent to u
+ Exp calls to u always allowed and
will not change other variables

Figure 10: Table summarizing some important variables in game AEAC. A “−” indicates a way
in which the behavior of the adversary is being restricted. A “+” indicates a way in which the
behavior of the adversary is being enabled.

The above describes how restrictedu allows some attacks. Now we discuss how it prevents attacks
like D3.1 and D3.2. Once the adversary has sent its own ciphertext to u we must assume that the
adversary will be able to decrypt ciphertexts sent by u and able to send its own ciphertexts to u

that will decrypt to non-⊥ values. The adversary could simply have “replaced” u with itself. To
address this we prevent all challenge queries from u, and decryptions performed by u are always
given back to the adversary regardless of the secret bit.

Informal description of the security game. In Section 5.3 we provide a thorough written description
of our security model to facilitate high-level understanding of it. For intricate security definitions
like ours there is often ambiguity or inconsistency in subtle corner cases of the definition when
written out fully in text. As such this description should merely be considered an informal aid
while the pseudocode of Fig. 9 is the actual definition.

Comparison to recent definitions. The three recents works we studied while deciding how to write
our security definition were [16], [9], and [28]. Their settings were all distinct, but each presented
security models that involve different “stages” of keys. All three works made distinct decisions in
how to address challenges in different stages. In Appendix A we discuss these decisions, noting
that they result in qualitatively identical but quantitatively distinct definitions.

5.3 Informal description of our security definition

We now attempt to provide an informal description of our security definition to facilitate high-level
understanding of it. The security experiment starts by choosing a challenge bit b. The channel’s
initialization algorithm Ch.Init is run to produce the initial state of users I and R. Then the
adversary is run and given the ability to ask either user to send a message or receive a ciphertext,
or to expose their state. The adversary is allowed to perform these actions in essentially any order
with a small restriction that we describe momentarily. Eventually the adversary must halt and
output a bit b′. If b′ = b, then the adversary is considered to have won, otherwise it has lost.

We first describe sending of messages and receiving of ciphertexts, without reference to the
restrictions that will be placed on these operations after the exposure of a user’s secrets. When the
adversary asks user u to send a message, it will provide two messages m0 and m1 of equal length,

19

together with associated data ad. Then algorithm Ch.Send will be run on input the state of u, mb,
and ad. The resulting ciphertext will be returned to the adversary. When the adversary asks user
u to receive a ciphertext, it will provide the ciphertext c and associated data ad. Then algorithm
Ch.Recv will be run on input the state of u, c, and ad. The adversary gets back ⊥ if the decryption
of c with ad helps adversary to trivially win the game (i.e. it is identical to the ciphertext sent by
u, and only if the last ciphertext sent by u was already accepted by u). If the decryption of the
provided ciphertext failed, the adversary gets ⊥ as the result. Otherwise the actual decryption will
be returned if b = 0, and ⊥ will be returned if b = 1.

We proceed to describe the effect of exposing a user, which introduces the majority of the
complexity of our model. When exposing the current state of user u the adversary will provide
an additional string rand that can equal ε, “send”, or “recv”. The flag rand indicates whether
the adversary is exposing the state of the user while they are “at rest”, while they are sending a
message, or while they are receiving a ciphertext. In the latter two cases the adversary is required
to follow up with a valid request that the specified user performs the specified action, and the
adversary will be proactively given back the randomness that will be used when this action is
performed. Additionally, the expose query to u is not allowed if it allows the adversary to trivially
win the game, which happens if u was asked to send a message to u (encrypting one of two challenge
plaintexts) that was not yet received by u.

After u’s state is exposed, the adversary cannot ask u to send one of two different messages
until u has received the next ciphertext that u sends. If u was exposed while they were sending
a message then this refers to the next ciphertext after the one that is about to be sent, and the
adversary is further not allowed to ask u to send one of two different messages for the current
sending operation. These are minimal necessary requirements that give user u a chance to recover
from exposure.

If the adversary exposes u and uses the exposed secrets to forge a ciphertext to u, then u

becomes “restricted,” which we will describe in the next paragraph. More precisely, the condition
is that the ciphertext that adversary sends to u is accepted after u has received the last ciphertext
that was sent by u (prior to u’s state getting exposed) but before u has received the next ciphertext
that u sends. If u is exposed while sending a message the next ciphertext just mentioned refers to
the next ciphertext after the one that is about to be sent.

When a user u is restricted a number of the statements we made above no longer hold. When a
restricted user is exposed, their current state, next randomness for sending, and next randomness
for receiving will be freely given to the adversary without placing any restrictions on its future
actions. Similarly, there is no longer any restriction on when u can be exposed (except if u is not
restricted then u cannot be exposed after u was exposed while performing an operation, until u
has finished performing the corresponding operation). The adversary is no longer allowed to ask u

to send one of two different messages. When u is asked to receive a ciphertext, the adversary will
only be given back ⊥ if the decryption failed, meaning the adversary always gets back the actual
output of Ch.Recv (no other conditions will trigger ⊥ to be returned). Finally, a query asking u

to accept a ciphertext no longer always returns ⊥ if this ciphertext was produced by querying a
restricted user u to send a message. Instead, if the previous message sent from u was accepted by
u, then the above query returns the actual output of Ch.Recv if b = 0, and ⊥ otherwise.

This concludes the description of our security model. The above description already contains
some ambiguity we are aware of in situations where a user sends a ciphertext that happens to be
identical to a ciphertext it has already sent. We do not attempt to resolve this ambiguity in text,

20

but again refer the reader to our pseudocode for the precise definition.

6 Construction of a secure channel

6.1 Our construction

We are not aware of any secure channels that would meet (or could easily be modified to meet) our
security notion. The “closest” (for some unspecified, informal notion of distance) is probably the
Signal Double Ratchet Algorithm. However, it relies on symmetric authenticated encryption for
both privacy and integrity so it is inherently incapable of achieving our strong notion of security.
Later, we describe an attack against a variant of our proposed construction that uses symmetric
primitives to exhibit the sorts of attacks that are unavoidable when using them. A straightforward
variant of this attack would also apply against the Double Ratchet Algorithm.

In this section we construct our cryptographic channel and motivate our design decisions by
giving attacks against variants of the channel. In Section 6.2 we will prove its security by reducing
it to that of its underlying components.

The idea of our scheme is as follows. Both parties will keep track of a transcript of the messages
they have sent and received, τs and τr . These will be included as a part of every ciphertext and
verified before a ciphertext is accepted. On seeing a new ciphertext the appropriate transcript is
updated to be the hash of the ciphertext (note that the old transcript is part of this ciphertext, so
the transcript serves as a record of the entire conversation). Sending transcripts (vector of τs) are
stored until the other party has acknowledged receiving a more recent transcript.

For authenticity, every time a user sends a ciphertext they authenticate it with a digital signature
and include in it the verification key for the signing key that they will use to sign the next ciphertext
they send. Any time a user receives a ciphertext they will use the new receiving transcript produced
to update their current signing key.

For privacy, messages will be encrypted using public-key encryption. With every ciphertext the
sender will include the encryption key for a new decryption key they have generated. Decryption
keys are stored until the other party has acknowledged receiving a more recent encryption key. Any
time a user receives a ciphertext they will use the new receiving transcript to produced to update
each of these keys. The encryption will use as a label all of the extra data that will be included
with the ciphertext (i.e. a sending counter, a receiving counter, an associated data string, a new
verification key, a new encryption key, a receiving transcript, and a sending transcript). The formal
definition of our channel is as follows.

Cryptographic channel SCH[DS,PKE,H]. Let DS be a key-updatable digital signature scheme, PKE
be a key-updatable public-key encryption scheme, and H be a family of functions. We build a
cryptographic channel SCh = SCH[DS,PKE,H] as defined in Fig. 11.

A user’s state stu, among other values, contains counters su, ru, r
ack
u . Here, su is the number of

messages that u sent to u, and ru is the number of messages they received back from u. The counter
racku stores the last value of ru in a ciphertext received by u (i.e. the index of the last ciphertext
that u believes u has received and acknowledged). This counter is used to ensure that prior to
running a signature verification algorithm, the vertification key vk is updated with respect to the
same transcripts as the signing key sk (at the time it was used to produce the signature). Note
that algorithm DS.Vrfy returns (vk′′, t) where t is the result of verifying that σ is a valid signature
for v with respect to verification key vk′′ (using the notation convention from Section 3).

21

Algorithm SCh.Init

(skI , vkR)←$ DS.Kg ; (ekI ,dkR[0])←$ PKE.Kg
(skR, vkI)←$ DS.Kg ; (ekR,dkI [0])←$ PKE.Kg
hk←$ H.Kg ; τr ← ε ; τ s[0]← ε ; s← r ← rack ← 0

stI ← (s, r, rack , skI , vkI , ekI ,dkI ,hk, τr , τ s)

stR ← (s, r, rack , skR, vkR, ekR,dkR,hk, τr , τ s)

Return (stI , stR)

Algorithm SCh.Send(st, ad,m)

(s, r, rack , sk, vk, ek,dk,hk, τr , τ s)← st ; s← s+ 1

(sk′, vk′)←$ DS.Kg ; (ek′,dk[s])←$ PKE.Kg
ℓ← (s, r, ad, vk′, ek′, τr , τ s[s− 1])

(ek′, c′)←$ PKE.Enc(ek, ℓ,m, τ s[r
ack + 1, . . . , s− 1])

v ← (c′, ℓ) ; σ←$ DS.Sign(sk, v)
c ← (σ, v) ; τ s[s]← H.Ev(hk, c)
st← (s, r, rack , sk′, vk, ek,dk,hk, τr , τ s)

Return (st, c)

Algorithm SCh.Recv(st, ad, c)

(s, r, rack , sk, vk, ek,dk,hk, τr , τ s)← st

(σ, v)← c ; (c′, ℓ)← v

(s′, r′, ad′, vk′, ek′, τ ′r , τ
′
s)← ℓ

If s′ ̸= r+ 1 or τ ′r ̸= τ s[r
′] or τ ′s ̸= τr or ad ̸= ad′ then return (st,⊥)

(vk′′, t)← DS.Vrfy(vk, σ, v, τ s[r
ack + 1, . . . , r′])

If not t then return (st,⊥)
r ← r + 1 ; rack ← r′ ; m← PKE.Dec(dk[rack], ℓ, c′)
τ s[0, . . . , r

ack − 1]← ⊥ ; dk[0, . . . , rack − 1]← ⊥
τr ← H.Ev(hk, c) ; sk←$ DS.UpdSk(sk, τr)
For i ∈ [rack , su] do dk[i]←$ PKE.UpdDk(dk[i], τr)
st← (s, r, rack , sk, vk′, ek′,dk,hk, τr , τ s)

Return (st,m)

Figure 11: Construction of channel SCh = SCH[DS,PKE,H] from function family H, key-updatable
digital signature scheme DS, and key-updatable public-key encryption scheme PKE.

Inefficiencies of SCh. A few aspects of SCh are less efficient than one would a priori hope. The
state maintained by a user u (specifically the tables dku and τ s,u) is not constant in size, but
instead grows linearly with the number of ciphertexts that u sent to u without receiving a reply
back. Additionally, when DS is instantiated with the particular choice of DS that we define in
Appendix C the length of the ciphertext sent by a user u and the amount of state it stores will
grow linearly in the number of ciphertexts that u has received since the last time they sent a
ciphertext. Such inefficiencies would be unacceptable for a protocol like TLS or SSH, but in our
motivating context of messaging is it plausible that they are acceptable. Each message is human
generated and the state gets “refreshed” regularly if the two users regularly reply to one another.
One could additionally consider designing an app to regularly send an empty message whose sole
purpose is state refreshing. We leave as interesting future work improving on the efficiency of our
construction.

Design decisions. We will now discuss attacks against different variants of SCh. This serves to
motivate the decisions made in its design and give intuition for why it achieves the desired security.

22

Adversary DSend,Recv,Exp
a

(st, z, η)← Exp(I, ε)
(st, c)← SCh1.Send(st, ε, 1)
c′ ← Send(I, 0, 1, ε)
If c = c′ then return 1
Return 0
Adversary DSend,Recv,Exp

b

(st, z, η)← Exp(I, ε)
(st, c)←$ Ch.Send(st, ε, 1)
m← Recv(R, c, ε)
c ← Send(I, 1, 1, ε)
c ← Send(R, 1, 1, ε)
m← Recv(I, c, ε)
If m = ⊥ then return 1
Return 0

Adversary DSend,Recv,Exp
c

(st, z, η)← Exp(I, ε)
(st, c)←$ Ch.Send(st, ε, 1)
m← Recv(R, c, ε)
c ← Send(I, 1, 1, ε)
(st, z, η)← Exp(R, ε)
(st, c)←$ Ch.Send(st, ε, 1)
m← Recv(I, c, ε)
If m = ⊥ then return 1 else return 0
Adversary DSend,Recv,Exp

d

(st, z, η)← Exp(I, ε)
c ← Send(I, 0, 1, ε)
(s, r, rack , sk, vk, ek,dk,hk, τr , τ s)← st

(σ, (c′, (s, r, ad, vk′, ek′, τr , τs)))← c

v ← (c′, (s, r, 1128, vk′, ek′, τr , τs))

σ←$ DS.Sign(sk, v)
m← Recv(R, (σ, v), 1128)
If m = 1 then return 1 else return 0

Figure 12: Attacks against variants of SCh.

Several steps in the security proof of this construction can be understood by noting which of these
attacks are ruled out in the process.

The attacks are shown in Fig. 12 and Fig. 13. The first several attacks serve to demonstrate
that Ch.Send must use a sufficient amount of randomness (shown in Da, Db, Dc) and that H needs
to be collision resistant (shown in Db, Dc). The next attack shows why our construction would be
insecure if we did not use labels with PKE (shown in Dd). Then we provide two attacks showing
why the keys of DS and PKE need to be updated (shown in De, Df). Then we show an attack
that arises if multiple valid signatures can be found for the same string (shown in Dg). Finally, we
conclude with attacks that would apply if we used symmetric instead of asymmetric primitives to
build SCh (shown in Dh, Di).

Scheme with insufficient sending entropy. Any scheme whose sending algorithm has insufficient en-
tropy will necessarily be insecure. For simplicity let SCh1 be a variant of SCh such that SCh1.Send

is deterministic (the details of how we are making it deterministic do not matter). We can attack
both the message privacy and the integrity of such a scheme.

Consider the adversary Da. It exposes I, encrypts the message 1 locally, and then sends a
challenge query to I asking for the encryption of either 1 or 0. By comparing the ciphertext it
produced to the one returned by Send it can determine which message was encrypted, learning the
secret bit. We have AdvaeacSCh1(Da) = 1. This attack is fairly straightforward and will be ruled out
by the security of PKE in our proof without having to be addressed directly.

The attacks against integrity are more subtle. They are explicitly addressed in the first game
transition of our proof. Let Ch = SCh1 and consider adversaries Db and Dc. They both start by
doing the same sequence of operations: expose I, use its secret state to encrypt and send message 1

to R, then ask I to produce an encryption of 1 for R (which will be the same ciphertext as above,
because SCh1.Send is deterministic). Now restrictedR = true because oracle Recv was called on a
trivially fogeable ciphertext that was not produced by oralce Send. But R has received the exact

23

same ciphertext that I sent. Different attacks are possible from this point.
Adversary Db just asks R to send a message and forwards it along to I. Since R was restricted

the ciphertext does not get added to ctableI so it can be used to discover the secret bit. We have
AdvaeacSCh1(Db) = 1. Adversary Dc exposes R and uses the state it obtains to create its own forgery
to I. It then returns 1 or 0 depending on whether Recv returns the correct decryption or ⊥. This
attack succeeds because exposing R when it is restricted will not set any of the variables that would
typically prevent the adversary from winning by creating a forgery. We have AdvaeacSCh1(Dc) = 1. We
have not shown it, but another message privacy attack at this point (instead of proceeding as Db or
Dc) could have asked for another challenge query from I, exposed R, and used the exposed state
to trivially determine which message was encrypted.

Scheme without collision-resistant hashing. If it is easy to find collisions in H then we can attack the
channel by causing both parties to have matching transcripts despite having seen different sequences
of ciphertexts. For concreteness let SCh2 be a variant of our scheme using a hash function that
outputs 0128 on all inputs. Let Ch = SCh2 and again consider adversaries Db and Dc. We no longer
expect the ciphertexts that they produce locally to match the ciphertexts returned by I. However,
they will have the same hash value and thus produce the same transcript τr,R = 0128 = τs,I .
Consequently, R still updates its signing key in the same way regardless of whether it receives
the ciphertext produced by I or the ciphertext locally generated by adversary. So the messages
subsequently sent by R will still be accepted by I. We have AdvaeacSCh2(Db) = 1 and AdvaeacSCh2(Dc) = 1.

Scheme without PKE labels. Let SCh3 be a variant of SCh that uses a public-key encryption scheme
that does not accept labels and consider adversary Dd. It exposes I and asks I for a challenge
query. It then uses the state it exposed to trivially modify the ciphertext sent from I (we chose to
have it change ad from ε to 1128) and sends it to R. Since the ciphertext sent to R has different
associated data than the one sent by I the adversary will be given the decryption of this ciphertext.
But without the use of labels this decryption by PKE is independent of the associated data and
will thus reveal the true decryption of the challenge ciphertext to I. We have AdvaeacSCh3(Dd) = 1.

Schemes without updatable keys. We will now show why it is necessary to define new forms of PKE
and DS for our construction.

Let SCh4 be a variant of SCh that uses a digital signature scheme that does not update its keys.
Consider adversary De. It exposes I, then queries Send for I to send a message to R, but uses
the exposed secrets to replace it with a locally produced ciphertext c. It calls Recv for R with
c, which sets restrictedR = true. Since the signing key is not updated in SCh4, the adversary now
exposes R to obtain a signing key whose signatures will be accepted by I. It uses this to forge a
ciphertext to I to learn the secret bit. We have AdvaeacSCh4(De) = 1.

Let SCh5 be a variant of SCh that uses a public-key encryption scheme that does not update its
keys. Consider adversary Df . It exposes I and uses this to send R a different ciphertext than is
sent by I (setting restrictedR = true). Since the decryption key is not updated, the adversary now
exposes R to obtain a decryption key that can be used to decrypt a challenge ciphertext sent by
I. We have AdvaeacSCh5(Df) = 1.

Scheme with non-unique signatures. Let SCh6 be a variant of our scheme using a digital signature
scheme that does not have unique signatures. For concreteness, assume that σ ∥ sk is a valid
signature whenever σ is. Then consider adversary Dg. It exposes I and has I send a challenge
ciphertext. Then it modifies the ciphertext by changing the signature and forwards this modified
ciphertext on to R. The adversary is given back the true decryption of this ciphertext (because

24

Adversary DSend,Recv,Exp
e

(st, z, η)← Exp(I, ε)
cI ← Send(I, 1, 1, ε)
(σ, (c′, (s, r, ad, vkI , ekI , τr , τs)))← cI
(st, c)←$ SCh4.Send(st, ε, 0)
m← Recv(R, c, ε)
(st, z, η)← Exp(R, ε)
(s, r, rack , sk, vk, ek,dk,hk, τr , τ s)← st

τr ← H.Ev(hk, cI)
st← (s, r, rack , sk, vkI , ekI ,dk,hk, τr , τ s)

(st, c)←$ SCh4.Send(st, ε, 1)
m← Recv(I, c, ε)
If m = ⊥ then return 1 else return 0
Adversary DSend,Recv,Exp

f

(st, z, η)← Exp(I, ε)
(σ, (c′, ℓ))← Send(I, 0, 1, ε)
(st, c)←$ SCh5.Send(st, ε, 0)
m← Recv(R, c, ε)
(st, z, η)← Exp(R, ε)
(s, r, rack , sk, vk, ek,dk,hk, τr , τ s)← st

m← PKE.Dec(dk[0], ℓ, c′)
If m = 1 then return 1 else return 0

Adversary DSend,Recv,Exp
g

(st, z, η)← Exp(I, ε)
(σ, v)← Send(I, 0, 1, ε)
(s, r, rack , sk, vk, ek,dk,hk, τr , τ s)← st

m← Recv(R, (σ ∥ sk, v), ε)
If m = 1 then return 1
Return 0
Adversary DSend,Recv,Exp

h

(st, z, η)← Exp(I, ε)
(s, r, rack , sk, vk, ek,dk,hk, τr , τ s)← st

st← (s, r, rack , vk, sk, ek,dk,hk, τr , τ s)

(st, c)←$ SCh7.Send(st, ε, 0)
m← Recv(I, c, ε)
If m = ⊥ then return 1
Return 0
Adversary DSend,Recv,Exp

i

(st, z, η)← Exp(I, ε)
(σ, (c′, ℓ))← Send(I, 0, 1, ε)
(s, r, rack , sk, vk, ek,dk,hk, τr , τ s)← st

m← PKE.Dec(ek, ℓ, c′)
If m = 1 then return 1
Return 0

Figure 13: Attacks against variants of SCh.

it was changed) which trivially reveals the secret bit of the game (here it is important that the
signature is not part of the label used for encryption/decryption). We have AdvaeacSCh6(Dg) = 1.

Scheme with symmetric primitives. Let SCh7 be a variant of our scheme that uses a MAC instead of
a digital signature scheme (e.g. vk = sk always, and vk is presumably no longer sent in the clear
with the ciphertext). Consider adversary Dh. It simply exposes I and then uses I’s vk to send
a message to I. This trivially allows it to determine the secret bit. Here we used that PKE will
decrypt any ciphertext to a non-⊥ value. We have AdvaeacSCh7(Dh) = 1.

Similarly let SCh8 be a variant of our scheme that uses symmetric encryption instead of public-
key encryption (e.g. ek = dk always, and ek is presumably no longer sent in the clear with the
ciphertext). Adversary Di exposes user I and then uses the corresponding ek to decrypt a challenge
message encrypted by I. We have AdvaeacSCh8(Di) = 1.

Stated broadly, a scheme that relies on symmetric primitives will not be secure because a user
will know sufficient information to send a ciphertext that they would themselves accept or to read
a message that they sent to the other user. Our security notion requires that this is not possible.

6.2 Security proof

The following theorem bounds the advantage of an adversary breaking the AEAC security of SCh
using the advantages of adversaries against the CR security of H, the UFEXP and UNIQ security
of DS, the INDEXP security of PKE, and the min-entropy of DS and PKE.

25

Theorem 6.1 Let DS be a key-updatable digital signature scheme, PKE be a key-updatable public-
key encryption scheme, and H be a family of functions. Let SCh = SCH[DS,PKE,H]. Let D be an
adversary making at most qSend queries to its Send oracle, qRecv queries to its Recv oracle, and
qExp queries to its Exp oracle. Then we can build adversaries AH, ADS, BDS, and APKE such that

AdvaeacSCh (D) ≤ 2 · (qSend · 2−µ + AdvcrH (AH) + AdvufexpDS (ADS) + AdvuniqDS (BDS)) + AdvindexpPKE (APKE) (1)

where µ = H∞(DS.Kg) + H∞(PKE.Kg) + H∞(PKE.Enc). Adversary ADS makes at most qSend + 2

queries to its NewUser oracle, qSend queries to its Sign oracle, and qExp queries to its Exp oracle.
Adversary BDS makes at most qSend + 2 queries to its NewUser oracle. Adversary APKE makes
at most qSend + 2 queries to its NewUser oracle, qSend ∗ (qRecv + 1) queries to its UpdEk oracle,
(qSend + 1) ∗ qRecv queries to its UpdDk oracle, qSend queries to its Enc oracle, qRecv queries to
its Dec oracle, and qSend + 2 queries to its Exp oracle. Adversaries AH, ADS, BDS, and APKE all
have runtime about that of D.

The proof broadly consists of two stages. The first stage of the proof (consisting of three game
transitions) argues that the adversary will not be able to forge a ciphertext to an unrestricted user
except by exposing the other user. This argument is justified by a reduction to an adversary ADS

against the security of the digital signature scheme. However, care must be taken in this reduction
to ensure that D cannot induce behavior in ADS that would result in ADS cheating in the digital
signature game. Addressing this possibility involves arguing that D cannot predict any output of
Send (from whence the min-entropy term in the bound arises) and that it cannot find any collisions
in the hash function H.

Once this stage is complete the output of Recv no longer depends on the secret bit b, so we
move to using the security of PKE to argue that D cannot use Send to learn the value of the
secret bit. This is the second stage of the proof. But prior to this reduction we have to make one
last argument using the security of DS. Specifically we show that, given a ciphertext (σ, v), the
adversary will not be able to find a new signature σ′ such that (σ′, v) will be accepted by the receiver
(otherwise since σ ̸= σ′, oracle Recv would return the true decryption of this ciphertext which
would be the same as the decryption of the original ciphertext and thus allow a trivial attack).
Having done this, the reduction to the security of PKE is follows.

Proof of Theorem 6.1: For the proof we use games G0, G1, G2, G3 defined in Fig. 14, games
G4, G5 defined in Fig. 17, and the adversaries defined in Fig. 15, 16, 18, 19.

The theorem follows immediately from the following seven claims. The first four claims correspond
to the first stage of the proof as discussed in Section 6.2. The rest correspond to the second stage.
For compactness we will let q = qSend throughout the proof.

1. Pr[G0] = Pr[AEACDSCh]

2. Pr[G0]− Pr[G1] ≤ q · 2−µ
3. Pr[G1]− Pr[G2] ≤ AdvcrH (AH)

4. Pr[G2]− Pr[G3] ≤ AdvufexpDS (ADS)

5. Pr[G3] = Pr[G4]

6. Pr[G4]− Pr[G5] ≤ AdvuniqDS (BDS)

7. Pr[G5] ≤ Pr[INDEXPAPKE
PKE]

Referring to the adversaries from Section 6.1 we can roughly think as follows. Claim 1 and Claim
2 will rule out attacks like Da, Db, and Dc. Claim 4 will rule out attacks like De and Dh. Claim 6
will rule out attacks like Dg. Claim 7 will rule out attacks like Dd, Df , and Di.

26

Then the relevant calculation is as follows

AdvaeacSCh (D) =2Pr[AEACDSCh]− 1 = 2Pr[G0]− 1

=2(Pr[G0]− Pr[G1] + Pr[G1]− Pr[G2] + Pr[G2]− Pr[G3]

+ Pr[G3]− Pr[G4] + Pr[G4]− Pr[G5] + Pr[G5])− 1

≤2(q · 2−µ + AdvcrH (AH) + AdvufexpDS (ADS) + 0 + AdvuniqDS (BDS))

+ 2Pr[INDEXPAPKE
PKE]− 1

=2(q · 2−µ + AdvcrH (AH) + AdvufexpDS (ADS) + AdvuniqDS (BDS)) + AdvindexpPKE (APKE).

To prove the first four claims we need to consider the sequence of games shown in Fig. 14. Lines
of code annotated with comments are only in the specified games, all other code is common to all
game. We used boxes to emphasize the lines of code annotated with comments. We use highlighting
to emphasize the areas of new code.

The first three game transitions (from G0 to G3) will show that any ciphertext sent to u by the
adversary can be rejected unless either it equals a ciphertext created by u, u is already restricted, or
the adversary has exposed u to steal the corresponding signing key. As part of this the transitions
from G0 to G2 will show roughly that setting a restricted flag results in the two users having differing
transcripts.

Claim 1, Pr[G0] = Pr[AEACDSCh]. Game G0 was created by hardcoding the code of SCh into AEACD,
flipping the position of the two if statements in Exp, and then adding some variables to help us
transition to future games, which we will describe momentarily. Rather than storing the state of
each user as a tuple we store the components of the state in separate variables with an underscript to
denote which user’s state they are from. None of these variables have any effect on the input-output
behavior of G0 so the first claim, Pr[G0] = Pr[AEACDSCh] is immediate.

Descriptions of games G1, G2, and G3. Variables t1 through t5 and ∆⃗e are temporary variables which
were added to make the code more compact. Their uses are not highlighted.

Variables rsentu and rrestu store indices corresponding to information about the ciphertexts that a
user has received. In rsentu we store the last value of ru that was included in a ciphertext sent by
u (i.e. the index of the last ciphertext that u has told u they have received). This variable has no
effect on the code, but will be useful for reasoning about its behavior. In rrestu we store the value
held by ru when restrictedu was first set or ∞ if this has not occurred.

The flag unchangedu will be initialized to true and will be set false the first time that the sequence
of ciphertexts received by u differs from the sequence of ciphertext sent by u while unrestricted
(i.e. the first time its view is “changed” from the correct view output by u). Once u is restricted
ctable would not be set on line 39, so a the corresponding tb in Recv would have to be false. This
flag is not the exact opposite of restrictedu because restrictedu only gets set to true if the changed
ciphertext was sent after an exposure. However, it is useful to note that restrictedu will always be
false when unchangedu is true.

Table rctableu stores the sequence of ciphertexts that have been received and accepted by u. Table
sctableu stores the sequence of ciphertexts that have been sent by u. This differs from the existing

27

Games G0,G1,G2,G3

1: b←$ {0, 1} ; rrestI ← rrestR ←∞
2: sI ← rI ← sR ← rR ← 0
3: restrictedI ← restrictedR ← false
4: forgeI [0 . . .∞]← “nontrivial”
5: forgeR[0 . . .∞]← “nontrivial”
6: XI ← XR ← 0 ; hk←$ H.Kg
7: (skI , vkR)←$ DS.Kg ; (skR, vkI)←$ DS.Kg
8: (ekI ,dkR[0])←$ PKE.Kg ; (ekR,dkI [0])←$ PKE.Kg
9: τ r,I [0]← τ r,R[0]← τ s,I [0]← τ s,R[0]← ε
10: rackI ← rackR ← rsentI ← rsentR ← 0
11: unchangedI ← unchangedR ← true
12: (zI , zR)←$ (Ch.SendRS)2

13: (ηI , ηR)←$ (Ch.RecvRS)2

14: b′←$DSend,Recv,Exp ; Return (b′ = b)

Send(u,m0,m1, ad)

15: If nextop ̸∈ {(u, “sent”),⊥} then return ⊥
16: If |m0| ̸= |m1| then return ⊥
17: t1 ← (ru < Xu) ; t2 ← restrictedu
18: t3 ← (chu[su + 1] = “forbidden”)
19: If (t1 or t2 or t3) and m0 ̸= m1 then
20: Return ⊥
21: (z1, z2, z3, z4)← zu ; su ← su + 1
22: (sk, vk)← DS.Kg(z1)
23: (ek,dku[su])← PKE.Kg(z2)
24: ℓ← (su, ru, ad, vk, ek, τ r,u[ru], τ s,u[su − 1])
25: ∆⃗e ← τ s,u[racku + 1, . . . , su − 1]
26: (ek′, c′)← PKE.Enc(eku, ℓ,mb, ∆⃗e; z3)
27: v ← (c′, ℓ)
28: σ ← DS.Sign(sku, v; z4) ; c ← (σ, v)
29: τ s,u[su]← H.Ev(hk, c) ; sku ← sk
30: rsentu ← ru ; nextop← ⊥ ; zu←$ Ch.SendRS
31: sctableu[su]← (c, ad)
32: If unchangedu and τ s,u[su] = τ r,u[su] then
33: If rctableu[su] = (c, ad) then
34: badpred ← true

35: abort(false) // G1,G2,G3

36: Else
37: badcoll ← true
38: abort(false) // G2,G3

39: If not restrictedu then ctableu[su]← (c, ad)
40: If m0 ̸= m1 then chu[su]← “done”
41: Return c

Recv(u, c, ad)

42: If nextop ̸∈ {(u, “recv”),⊥} then return ⊥
43: (η1, η2)← ηu ; nextop← ⊥ ; ηu←$ Ch.RecvRS
44: (σ, v)← c ; (c′, ℓ)← v
45: (s′, r′, ad′, vk′, ek′, τ ′r , τ

′
s)← ℓ

46: ∆⃗← τ s,u[racku + 1, . . . , r′]
47: (vk′′, t)← DS.Vrfy(vku, σ, v, ∆⃗)
48: t4 ← ((s′, τ ′r) ̸= (ru + 1, τ s,u[r′]))
49: t5 ← ((τ ′s , ad

′) ̸= (τ r,u[ru], ad)))
50: If not t or t4 or t5 then return ⊥
51: ta ← (forgeu[ru + 1] ̸= “trivial”)
52: tb ← ((c, ad) ̸= ctableu[ru + 1])
53: If unchangedu and ta and tb then
54: badforge ← true

55: abort(false) // G3

56: ru ← ru + 1 ; racku ← r′

57: m← PKE.Dec(dku[racku], ℓ, c′)
58: τ s,u[0, . . . , racku − 1]← ⊥
59: dku[0, . . . , racku − 1]← ⊥
60: τ r,u[ru]← H.Ev(hk, c)
61: sku ← DS.UpdSk(sku, τ r,u[ru]; η1)
62: vku ← vk′ ; eku ← ek′

63: For i ∈ [racku , su] do
64: dku[i]← PKE.UpdDk(dku[i], τ r,u[ru]; ηi2)
65: rctableu[ru]← (c, ad)
66: If tb then unchangedu ← false
67: If forgeu[ru] = “trivial” and tb then
68: restrictedu ← true ; rrestu ← min{ru, rrestu }
69: If unchangedu and τ r,u[rrestu] = τ s,u[r

rest
u] ̸= ⊥ then

70: badcoll ← true
71: abort(false) // G2,G3

72: If restrictedu or (b = 0 and tb) then
73: Return m
74: Return ⊥

Exp(u, rand)

75: If nextop ̸= ⊥ then return ⊥
76: If not restrictedu and ∃i ∈ (ru, su] s.t. chu[i] = “done” then return ⊥
77: st← (su, ru, sku, vku, eku,dku, hk, τ r,u[ru], τ s,u)
78: If restrictedu then return (st, zu, ηu)
79: forgeu[su + 1]← “trivial” ; (z, η)← (ε, ε) ; Xu ← su + 1
80: If rand = “send” then
81: nextop← (u, “send”) ; z ← zu
82: Xu ← su + 2 ; forgeu[su + 2]← “trivial”
83: chu[su + 1]← “forbidden”
84: Else if rand = “recv” then
85: nextop← (u, “recv”) ; η ← ηu
86: Return (st, z, η)

Figure 14: Games G1, G2, and G3 for security proof. Lines commented with the names of games
are only included in those games. Highlighting indicates new code.

28

table ctableu because it continues to store these values even after restrictedu has been set.

On every call to Recv, we use ∆⃗ as a temporary variable to store the sequence of transcripts used
to update the digital signature verification key.

We seek to argue that before the first time u’s view is changed, the adversary should not be able to
create any (c, ad) pairs that will be accepted by u unless the pair was output by u or the adversary
has done an appropriate exposure of u. This belief about (c, ad) pairs provided by the adversary
that should be rejected is encoded in the if statement in Recv on line 53 which checks if unchangedu,
forgeu[ru + 1] ̸= “trivial”, and (c, ad) ̸= ctableu[ru + 1]. Once we reach G3 we will simply abort
if this evaluates to true.

The first two game transitions (to games G1 and G2) are used to rule out the possibility that the
other user is restricted, but has receiving transcripts which match the sending transcripts of the
current user. This possibility is captured by the if statements on lines 32 and 69. Were this possible
then forgeries would be possible because after the other user is restricted the adversary can have
their secrets exposed without setting the appropriate entry of forgeu to “trivial”. This will be used
again at the end of the proof because if this were possible it would also lead to an attack against
the security provide by the encryption scheme.

Claim 2, Pr[G0]− Pr[G1] ≤ q · 2−µ. To start this argument consider the flag badpred. Games G0

and G1 are identical until badpred. So from the fundamental lemma of game playing [8] we
have Pr[G0] − Pr[G1] ≤ Pr[G0 sets badpred]. To establish the second claim we need to show that
Pr[G0 sets badpred] ≤ q · 2−µ. This will hold because an adversary can only cause badpred to be set
by predicting the output of Ch.Send before it is generated (which requires predicting the output of
DS.Kg, PKE.Kg, and PKE.Enc).

This flag gets set in Send when unchangedu, τ s,u[su] = τ r,u[su], and rctableu[su] = (c, ad) are
all true. Note that because unchangedu is true, it must hold that restrictedu is false. Thus an
exposure of the randomness used by the Send operation would set nextop to (u, “send”) and could
thus only happen immediately before the Send operation (and after the Recv operation during
which rctableu[su] was set). This means the adversary must have predicted the output of Send
before making the call. By the properties of min-entropy, the probability this happens from any
individual Recv call is at most 2−µ and then by a union bound we get the desired second claim.

Claim 3, Pr[G1]− Pr[G2] ≤ AdvcrH (AH). For the third claim note that games G1 and G2 are identical
until badcoll so Pr[G1]− Pr[G2] ≤ Pr[G1 sets badcoll].

When this flag is set in Send it must hold that sctableu[su] ̸= rctableu[su] yet τ s,u[su] = τ r,u[su].
So the corresponding ciphertexts must have formed a collision in H. (Note here that ciphertexts in-
clude the associated date, so sctableu[r

rest
u] ̸= rctableu[r

rest
u] implies the corresponding ciphertexts

are distinct.)

When want to argue that when this flag is set in Recv it must hold that rctableu[r
rest
u] ̸=

sctableu[r
rest
u] even though τ r,u[r

rest
u] = τ s,u[r

rest
u] ̸= ⊥. Not that unchangedu is true, so restrictedu

must be false. If τ r,u[r
rest
u] was set to a non-⊥ value first, then badcoll would have already been

set true in Send when τ s,u[r
rest
u] was set. So suppose τ s,u[r

rest
u] was set first and consider the

first time it was set. The variable tb was true at this time so we had rctableu[r
rest
u] = (c, ad) ̸=

ctableu[r
rest
u] = sctableu[r

rest
u]. (The last equality held because restrictedu is still false.) The same

reasoning as the previous paragraph implies that the corresponding ciphertexts must have formed

29

Adversary AH(hk)

87: b←$ {0, 1} ; rrestI ← rrestR ←∞ ; sI ← rI ← sR ← rR ← 0 ; restrictedI ← restrictedR ← false
88: forgeI [0 . . .∞]← forgeR[0 . . .∞]← “nontrivial” ; XI ← XR ← 0
89: (skI , vkR)←$ DS.Kg ; (skR, vkI)←$ DS.Kg
90: (ekI ,dkR[0])←$ PKE.Kg ; (ekR,dkI [0])←$ PKE.Kg
91: hk ← hk ; τ r,I [0]← τ r,R[0]← τ s,I [0]← τ s,R[0]← ε
92: unchangedI ← unchangedR ← true ; rackI ← rackR ← rsentI ← rsentR ← 0
93: (zI , zR)←$ (Ch.SendRS)2 ; (ηI , ηR)←$ (Ch.RecvRS)2

94: DSendSim,RecvSim,ExpSim ; Return (ε, ε)

SendSim(u,m0,m1, ad)

If nextop ̸∈ {(u, “sent”),⊥} then return ⊥
95: If |m0| ̸= |m1| then return ⊥
96: If (ru < Xu or restrictedu or chu[su + 1] = “forbidden”) and m0 ̸= m1 then return ⊥
97: (z1, z2, z3, z4)← zu ; su ← su + 1 ; (sk, vk)← DS.Kg(z1) ; (ek,dku[su])← PKE.Kg(z2)
98: ℓ← (su, ru, ad, vk, ek, τ r,u[ru], τ s,u[su − 1]) ; ∆⃗e ← τ s,u[racku + 1, . . . , su − 1]
99: (ek′, c′)← PKE.Enc(eku, ℓ,mb, ∆⃗e; z3) ; v ← (c′, ℓ) ; σ ← DS.Sign(sku, v; z4) ; c ← (σ, v)
100: τ s,u[su]← H.Ev(hk, c) ; sku ← sk ; rsentu ← ru ; nextop← ⊥ ; zu←$ Ch.SendRS
101: sctableu[su]← (c, ad)
102: If unchangedu and τ s,u[su] = τ r,u[su] then
103: If rctableu[su] = (c, ad) then abort(ε, ε)
104: Else (c, ad)← sctableu[su] ; (c

′, ad′)← rctableu[su] ; abort(c, c′)
105: If not restrictedu then ctableu[su]← (c, ad)
106: If m0 ̸= m1 then chu[su]← “done”
107: Return c

RecvSim(u, c, ad)

108: If nextop ̸∈ {(u, “recv”),⊥} then return ⊥
109: (η1, η2)← ηu ; nextop← ⊥ ; ηu←$ Ch.RecvRS ; (σ, v)← c ; (c′, ℓ)← v
110: (s′, r′, ad′, vk′, ek′, τ ′r , τ

′
s)← ℓ ; ∆⃗← τ s,u[racku + 1, . . . , r′] ; (vk′′, t)← DS.Vrfy(vku, σ, v, ∆⃗)

111: If not t or s′ ̸= ru + 1 or τ ′r ̸= τ s,u[r′] or τ ′s ̸= τ r,u[ru] or ad′ ̸= ad then return ⊥
112: tb ← ((c, ad) ̸= ctableu[ru + 1]) ; ru ← ru + 1 ; racku ← r′ ; m← PKE.Dec(dku[racku], ℓ, c′)
113: τ s,u[0, . . . , racku − 1]← ⊥ ; dku[0, . . . , racku − 1]← ⊥ ; τ r,u[ru]← H.Ev(hk, c)
114: sku ← DS.UpdSk(sku, τ r,u[ru]; η1) ; vku ← vk′ ; eku ← ek′ ; rctableu[ru]← (c, ad)
115: For i ∈ [racku , su] do dku[i]← PKE.UpdDk(dku[i], τ r,u[ru]; ηi2)
116: If tb then unchangedu ← false
117: If forgeu[ru] = “trivial” and tb then restrictedu ← true ; rrestu ← min{ru, rrestu }
118: If unchangedu and τ r,u[rrestu] = τ s,u[r

rest
u] ̸= ⊥ then

119: (c′, ad′)← rctableu[rrestu] ; (c, ad)← sctableu[rrestu] ; abort(c, c′)
120: If restrictedu or (b = 0 and tb) then return m
121: Return ⊥
ExpSim(u, rand)

// Identical to Exp in G1,G2

Figure 15: Adversary AH against collision resistance of H. Highlighting indicates the changes from
G1,G2.

a collision in H.

The adversary AH shown in Fig. 15 takes advantage of this to attack the collision-resistance of H.
It simulates the view of D and then (on line 104 or line 119) aborts and returns the collision when
badcoll would be set; otherwise it simply gives up and returns (ε, ε). The highlighted code shows
where the code of AH differs from that of G1 and G2. The code hk ← hk is included just to make
explicit that it uses the key to the hash function it was provided as input rather than sampling a
new key for itself. That AH perfectly simulates the view of D in G1 or G2 until badcoll is clear.
From our above analysis we then have that AH succeeds in CR whenever G1 would set badcoll so
Pr[G1 sets badcoll] ≤ Pr[CRAH

H] = AdvcrH (AH) as desired.

30

Adversary AUpd,Sign,Exp
DS

122: b←$ {0, 1} ; rrestI ← rrestR ←∞
123: sI ← rI ← sR ← rR ← 0
124: restrictedI ← restrictedR ← false
125: forgeI [0 . . .∞]← “nontrivial”
126: forgeR[0 . . .∞]← “nontrivial”
127: XI ← XR ← 0 ; hk←$ H.Kg
128: vkR ← NewUser((sI , I)) ; skI ← ⊥
129: vkI ← NewUser((sR,R)) ; skR ← ⊥
130: (ekI ,dkR[0])←$ PKE.Kg ; (ekR,dkI [0])←$ PKE.Kg
131: τ r,I [0]← τ r,R[0]← τ s,I [0]← τ s,R[0]← ε
132: unchangedI ← unchangedR ← true
133: rackI ← rackR ← rsentI ← rsentR ← 0
134: (zI , zR)←$ (Ch.SendRS)2

135: (ηI , ηR)←$ (Ch.RecvRS)2

136: DSendSim,RecvSim,ExpSim

137: Return (ε, ε, ε, (ε))

SendSim(u,m0,m1, ad)

138: If nextop ̸∈ {(u, “sent”),⊥} then return ⊥
139: If |m0| ̸= |m1| then return ⊥
140: t1 ← (ru < Xu) ; t2 ← restrictedu
141: t3 ← (chu[su + 1] = “forbidden”)
142: If (t1 or t2 or t3) and m0 ̸= m1 then return ⊥
143: (z1, z2, z3, z4)← zu ; su ← su + 1
144: If nextop ̸= (u, “sent”) then
145: vk ← NewUser((su, u)) ; sk ← ⊥
146: Else (sk, vk)← DS.Kg(z1)
147: (ek,dku[su])← PKE.Kg(z2)
148: ℓ← (su, ru, ad, vk, ek, τ r,u[ru], τ s,u[su − 1])
149: ∆⃗e ← τ s,u[racku + 1, . . . , su − 1]
150: (ek′, c′)← PKE.Enc(eku, ℓ,mb, ∆⃗e; z3)
151: v ← (c′, ℓ)
152: If sku = ⊥ then σ ← Sign((su − 1,u), v)
153: Else σ ← DS.Sign(sku, v; z4)
154: c ← (σ, v) ; τ s,u[su]← H.Ev(hk, c) ; sku ← sk
155: rsentu ← ru ; nextop← ⊥ ; zu←$ Ch.SendRS
156: sctableu[su]← (c, ad)
157: If unchangedu and τ s,u[su] = τ r,u[su] then
158: abort(ε, ε, ε, (ε))
159: If not restrictedu then ctableu[su]← (c, ad)
160: If m0 ̸= m1 then chu[su]← “done”
161: Return c

RecvSim(u, c, ad)

162: If nextop ̸∈ {(u, “recv”),⊥} then return ⊥
163: (η1, η2)← ηu ; nextop← ⊥
164: ηu←$ Ch.RecvRS
165: (σ, v)← c ; (c′, ℓ)← v
166: (s′, r′, ad′, vk′, ek′, τ ′r , τ

′
s)← ℓ

167: ∆⃗← τ s,u[racku + 1, . . . , r′]
168: (vk′′, t)← DS.Vrfy(vku, σ, v, ∆⃗)
169: t4 ← ((s′, τ ′r) ̸= (ru + 1, τ s,u[r′]))
170: t5 ← ((τ ′s , ad

′) ̸= (τ r,u[ru], ad)))
171: If not t or t4 or t5 then return ⊥
172: ta ← (forgeu[ru + 1] ̸= “trivial”)
173: tb ← ((c, ad) ̸= ctableu[ru + 1])
174: If unchangedu and ta and tb then
175: abort((ru, u), σ, v, ∆⃗)
176: ru ← ru + 1 ; racku ← r′

177: m← PKE.Dec(dku[racku], ℓ, c′)
178: τ s,u[0, . . . , racku − 1]← ⊥
179: dku[0, . . . , racku − 1]← ⊥
180: τ r,u[ru]← H.Ev(hk, c)
181: If sku = ⊥ then Upd((su,u), τ r,u[ru])
182: Else sku ← DS.UpdSk(sku, τ r,u[ru]; η1)
183: vku ← vk′ ; eku ← ek′

184: For i ∈ [racku , su] do
185: dku[i]← PKE.UpdDk(dku[i], τ r,u[ru]; ηi1)
186: rctableu[ru]← (c, ad)
187: If tb then unchangedu ← false
188: If forgeu[ru] = “trivial” and tb then
189: restrictedu ← true ; rrestu ← min{ru, rrestu }
190: If unchangedu and τ r,u[rrestu] = τ s,u[r

rest
u] ̸= ⊥ then

191: abort(ε, ε, ε, (ε))
192: If restrictedu or (b = 0 and tb) then
193: Return m
194: Return ⊥

ExpSim(u, rand)

195: If nextop ̸= ⊥ then return ⊥
196: If not restrictedu and ∃i ∈ (ru, su] s.t. chu[i] = “done” then return ⊥
197: If sku = ⊥ then sku ← Exp((su,u))
198: st← (su, ru, sku, vku, eku,dku,hk, τ r,u[ru], τ s,u)
199: If restrictedu then return (st, zu, ηu)
200: forgeu[su + 1]← “trivial” ; (z, η)← (ε, ε) ; Xu ← su + 1
201: If rand = “send” then
202: nextop← (u, “send”) ; z ← zu ; Xu ← su + 2 ; forgeu[su + 2]← “trivial”
203: chu[su + 1]← “forbidden”
204: Else if rand = “recv” then
205: nextop← (u, “recv”) ; η ← ηu
206: Return (st, z, η)

Figure 16: Adversary ADS attacking DS. Highlighting indicates changes from G2,G3

Claim 4, Pr[G2]− Pr[G3] ≤ AdvufexpDS (ADS). Finally we can give our reduction to the security of DS to
complete this stage of the proof. Game G2 and G3 are identical until badforge , so Pr[G2]−Pr[G3] ≤

31

Pr[G2 sets badforge]. The adversary ADS shown in Fig. 16 against the security of DS uses its oracles
to simulate the view of D and then (on line 175) aborts and returns the forgery if badforge would
ever be set. The highlighting shows where the code of ADS differs from that of games G2 and G3.
Below we verify that ADS correctly simulates the view of D in these games (until the time that it
aborts).

Now consider a call to RecvSim(u, ·, ·) by D that results in ADS aborting. Note that ADS uses
user identifiers of the form Λ = (s, v) for the key created by user v with the s-th ciphertext it
sends. We seek to argue that ADS wins UFEXP whenever it aborts, so we need to show that (1)
vk[(ru, u)] ̸= ⊥, (2) win = true, and (3) cheated = false. Then because ADS aborts whenever badforge
would be set we get Pr[G2 sets badforge] ≤ Pr[UFEXPADS

DS] = AdvufexpDS (ADS) as desired.

Successful aborts by ADS. First note that unchangedu is true because of line 174, so vku must equal
the verification key that was part of the ciphertext sent by u when su was equal to the current
value ru. This was output by NewUser((su,u)) on line 145 unless it held that nextop = (u, “sent”).
The only way the latter can hold is if nextop was just set in ExpSim, but then forgeu[su + 1] =

forgeu[ru+1] would have been set to “trivial” contradicting that ta holds in RecvSim. (Here note
that su was incremented at the start of the SendSim call, so su +2 during the exposure was equal
to the value of su+1 while sending.) So vku was output by NewUser((su,u)) and vk[(ru,u)] ̸= ⊥
in UFEXP. This is (1).

That win = true in UFEXP follows immediately from the above and the fact that t was true in
RecvSim (see line 171). This is (2).

We complete this argument by showing (3) that if cheated = true holds, then it must hold
that restrictedu is true and τ r,u[r

rest
u] = τ s,u[r

rest
u] which cannot be the case because of lines

158 and 191 and the fact that unchangedu is true. If cheated is true then either (σ, v, ∆⃗) =

(σ∗[(ru,u)],m
∗[(ru,u)], ∆⃗

∗[(ru,u)]) or ∆⃗′[(ru, u)] ⊑ ∆⃗ holds.

We start with the former case. The variables σ∗[(ru,u)], m∗[(ru,u)], and ∆⃗∗[(ru, u)] would have
been defined by the Sign call on line 152 when u was sending a ciphertext and su = ru + 1.
Variables σ∗[(ru,u)] and m∗[(ru, u)] thus uniquely define the ciphertext and associated data stored
in sctableu[su] on line 156 (note that the ad component is uniquely defined because it is included
as part of the ciphertext). So these variables equaling the σ and v returned by ADS when it aborts
means that sctableu[ru + 1] = (c, ad) ̸= ctableu[ru + 1] where the inequality is from tb holding in
RecvSim. This implies that restrictedu was true when sctableu[ru + 1] and ctableu[ru + 1] were
set on lines 156 and 159 (so, in particular, ctableu[ru+1] was not set). We will show the following
sequence of equalities holds τ r,u[r

rest
u] = ∆⃗∗[(ru,u)][r

rest
u −rsentu] = ∆⃗[rrestu −rsentu] = τ s,u[r

rest
u], where

∆⃗∗[(ru, u)] and ∆⃗ are indexed starting from 1. The latter two equalities are immediate from our
assumption that ∆⃗∗[(ru,u)] = ∆⃗ and the way ∆⃗ is defined on line 167. Because u was restricted
during the SendSim query that defined ∆⃗∗[(ru,u)] it must have held that rrestu was less than or
equal to the value of ru. It must also have held that rrestu was strictly greater than rsentu because u

was not restricted during their prior send operation (because u received this prior ciphertext and
unchangedu still holds). So during the receive operation that set restrictedu and all other receive
operations of u after they sent that prior ciphertext it could not have held that sku ̸= ⊥ because
that necessitates forgeu[ru + 1] = “trivial”, contradicting our assumption that ADS aborted. So
line 181 will have resulted in ∆⃗s[(ru, u)][1, . . . , r

rest
u − rsentu] = τ r,u[r

sent
u +1, . . . , rrestu]. Then the first

equality follows because ∆⃗∗[(ru,u)] is later set to equal ∆⃗s[(ru,u)] during the sending operation.

32

Consider the latter case that ∆⃗′[(ru, u)] ⊑ ∆⃗. Then ∆⃗′[(ru, u)] ̸= ⊥ so the adversary must have
exposed u when su was equal to the current value of ru. By assumption forgeu[ru + 1] ̸= “trivial”
so this exposure must have been done when restrictedu was true. The same arguments above
apply to give that ∆⃗s[(ru, u)][1, . . . , r

rest
u − rsentu] = τ r,u[r

sent
u + 1, . . . , rrestu]. Then later during the

exposure ∆⃗′[(ru, u)] is set to equal ∆⃗s[(ru,u)]. This results in the sequence of equalities τ r,u[r
rest
u] =

∆⃗′[(ru, u)][r
rest
u − rsentu] = ∆⃗[rrestu − rsentu] = τ s,u[r

rest
u] from the assumption that ∆⃗′[(ru,u)] ⊑ ∆⃗ and

how ∆⃗ is defined.

Now we show τ r,u[r
rest
u] = τ s,u[r

rest
u]. If ∆⃗′u[ru] ⊑ ∆⃗ holds, u must have been restricted before

∆⃗′u[ru] was set (because ta is true, so line 79 must not have been executed). Thus the upper bound
index used to set ∆⃗′u[ru] was at least rrestu . The lower bound index was equal to racku + 1; from the
argument about, rrestu is at least this large. So it must hold that τ r,u[r

rest
u] = τ s,u[r

rest
u].

Correct simulation by ADS. The correctness of ADS follows from the fact that none of ADS’s oracles
will abort early and return ⊥. Recall again that ADS uses user identifiers of the form Λ = (su,u).

Queries to NewUser are made in SendSim only after su has been incremented, so such queries
will never be made for which sk[Λ] ̸= ⊥. For other oracles, note that sk[(i, v)] = ⊥ will only
hold if i > sv or if nextop = (v, “send”) when the i-th ciphertext was sent by user v. The former
case never occurs because oracle queries are only made with i = su or i = su − 1. The latter
case corresponds to D having exposed the randomness underlying this sending call, so ADS simply
samples the signature keys for itself. Then sku ̸= ⊥ so ADS will not make any further oracle queries
with Λ = (i, v).

The last possibility is ADS making a query Sign(Λ,m) when ∆⃗∗[Λ] ̸= ⊥. As with NewUser,
queries to Sign are made in SendSim only after su has been incremented, so ADS will never make
two signing queries with the same Λ implying that this possibility will not occur.

Claim 5, Pr[G3] = Pr[G4]. To start the second stage of the proof consider games G4 and G5 shown
in Fig. 17. We claim that the input-output behavior of G4 is identical to G3. We made three types
of changes to G3 to create G4. First we generally cleaned things up by removing variables ∆⃗u,
rctableu, sctableu, and rsentu which had no effect on the code and by simplifying the code to just
abort when the if statements on lines 32, 53, or 69 evaluate to true, giving lines 224, 233, and 243.
Next, we added the lines 234 through 237 for the transition to game G5. Finally, we both replaced
unchangedu with (not restrictedu) and removed the unnecessary parts of the if statements on lines
67 and 72 to obtain lines 242 and 244. These last changes require some justification.

First we claim that in G3 when unchangedu gets set false during a call to Recv, restrictedu will
get set true during the same call. The converse is clear, so this establishes that they always have
opposite truth values. The first time unchangedu is set it must hold that (c, ad) ̸= ctableu[ru]

and that unchangedu was true at the beginning of the execution of Recv. Then because the if
statement on line 53 must have evaluated to false we have that forgeu[ru] = “trivial” on line 67 so
restrictedu will also be set.

For simplifying lines 67 and 72 note that if (c, ad) ̸= ctableu[ru] then either restrictedu = true

already held at the beginning of this execution of Recv or the if statement on line 53 implies that
forgeu[ru + 1] = “trivial” (before ru has been incremented) so restrictedu will be set. This allows
to simplify both if statements. Thus the fifth claim, Pr[G3] = Pr[G4], holds.

33

Games G4,G5

207: b←$ {0, 1} ; rrestI ← rrestR ←∞ ; sI ← rI ← sR ← rR ← 0 ; restrictedI ← restrictedR ← false
208: forgeI [0 . . .∞]← forgeR[0 . . .∞]← “nontrivial” ; XI ← XR ← 0
209: (skI , vkR)←$ DS.Kg ; (skR, vkI)←$ DS.Kg
210: (ekI ,dkR[0])←$ PKE.Kg ; (ekR,dkI [0])←$ PKE.Kg
211: hk←$ H.Kg ; τ r,I [0]← τ r,R[0]← τ s,I [0]← τ s,R[0]← ε ; rackI ← rackR ← 0
212: (zI , zR)←$ (Ch.SendRS)2 ; (ηI , ηR)←$ (Ch.RecvRS)2

213: b′←$DSend,Recv,Exp ; Return (b′ = b)

Send(u,m0,m1, ad)

214: If nextop ̸= (u, “send”) and nextop ̸= ⊥ then return ⊥
215: If |m0| ̸= |m1| then return ⊥
216: If (ru < Xu or restrictedu or chu[su + 1] = “forbidden”) and m0 ̸= m1 then
217: Return ⊥
218: (z1, z2, z3, z4)← zu
219: su ← su + 1 ; (sk, vk)← DS.Kg(z1) ; (ek,dku[su])← PKE.Kg(z2)
220: ℓ← (su, ru, ad, vk, ek, τ r,u[ru], τ s,u[su − 1])
221: (ek′, c′)← PKE.Enc(eku, ℓ,mb, τ s,u[racku + 1, . . . , su − 1]; z3)
222: v ← (c′, ℓ) ; σ ← DS.Sign(sku, v; z4) ; c ← (σ, v) ; τ s,u[su]← H.Ev(hk, c) ; sku ← sk
223: nextop← ⊥ ; zu←$ Ch.SendRS
224: If not restrictedu and τ s,u[su] = τ r,u[su] then abort(false)
225: If not restrictedu then ctableu[su]← (c, ad)
226: If m0 ̸= m1 then chu[su]← “done”
227: Return c

Recv(u, c, ad)

228: If nextop ̸= (u, “recv”) and nextop ̸= ⊥ then return ⊥
229: (η1, η2)← ηu ; nextop← ⊥ ; ηu←$ Ch.RecvRS
230: (σ, v)← c ; (c′, ℓ)← v ; (s′, r′, ad′, vk′, ek′, τ ′r , τ

′
s)← ℓ

231: (vk′′, t)← DS.Vrfy(vku, σ, v, τ s [racku + 1, . . . , r′])
232: If not t or s′ ̸= ru + 1 or τ ′r ̸= τ s,u[r′] or τ ′s ̸= τ r,u[ru] or ad′ ̸= ad then return ⊥
233: If not restrictedu and forgeu[ru + 1] ̸= “trivial” and (c, ad) ̸= ctableu[ru + 1] then abort(false)
234: ((σ′, v′), ad)← ctableu[ru + 1]
235: If not restrictedu and v = v′ and σ ̸= σ′ then
236: baduniq ← true
237: abort(false) // G5

238: ru ← ru + 1 ; racku ← r′ ; m← PKE.Dec(dku[racku], ℓ, c′)
239: τ s,u[0, . . . , racku − 1]← ⊥ ; dku[0, . . . , racku − 1]← ⊥ ; τ r,u[ru]← H.Ev(hk, c)
240: sku ← DS.UpdSk(sku, τ r,u[ru]; η1) ; vku ← vk′ ; eku ← ek′

241: For i ∈ [racku , su] do dku[i]← PKE.UpdDk(dku[i], τ r,u[ru]; ηi2)
242: If (c, ad) ̸= ctableu[ru] then restrictedu ← true ; rrestu ← min{ru, rrestu }
243: If not restrictedu and τ r,u[rrestu] = τ s,u[r

rest
u] ̸= ⊥ then abort(false)

244: If restrictedu then return m
245: Return ⊥
Exp(u, rand)

246: If nextop ̸= ⊥ then return ⊥
247: If not restrictedu and ∃i ∈ (ru, su] s.t. chu[i] = “done” then
248: Return ⊥
249: st← (su, ru, sku, vku, eku,dku, hk, τ r,u[ru], τ s,u)
250: If restrictedu then return (st, zu, ηu)
251: forgeu[su + 1]← “trivial” ; (z, η)← (ε, ε) ; Xu ← su + 1
252: If rand = “send” then
253: nextop← (u, “send”) ; z ← zu
254: Xu ← su + 2 ; forgeu[su + 2]← “trivial”
255: chu[su + 1]← “forbidden”
256: Else if rand = “recv” then
257: nextop← (u, “recv”) ; η ← ηu
258: Return (st, z, η)

Figure 17: Games G4 and G5 for security proof. Lines commented with the names of games are
only included in those games. Highighted codes indicates changes from G3.

34

Adversary BNewUser
DS

259: b←$ {0, 1} ; rrestI ← rrestR ←∞ ; sI ← rI ← sR ← rR ← 0
260: restrictedI ← restrictedR ← false
261: forgeI [0 . . .∞]← forgeR[0 . . .∞]← “nontrivial” ; XI ← XR ← 0
262: z1,I ← NewUser((sI , I)) ; z1,R ← NewUser((sR,R))
263: (skI , vkR)← DS.Kg(z1,I) ; (skR, vkI)← DS.Kg(z1,R)
264: (ekI ,dkR[0])←$ PKE.Kg ; (ekR,dkI [0])←$ PKE.Kg
265: hk←$ H.Kg ; τ r,I [0]← τ r,R[0]← τ s,I [0]← τ s,R[0]← ε ; rackI ← rackR ← 0
266: z1,I ← NewUser((sI , I)) ; z1,R ← NewUser((sR,R))
267: (z2,I , z3,I , z4,I)←$ PKE.KgRS× PKE.EncRS× DS.SignRS
268: (z2,R, z3,R, z4,R)←$ PKE.KgRS× PKE.EncRS× DS.SignRS
269: zI ← (z1,I , z2,I , z3,I , z4,I) ; zR ← (z1,R, z2,R, z3,R, z4,R)
270: (zI , zR)←$ (Ch.SendRS)2 ; (ηI , ηR)←$ (Ch.RecvRS)2

271: DSendSim,RecvSim,ExpSim ; Return (ε, ε, ε, ε, (ε))

SendSim(u,m0,m1, ad)

272: If nextop ̸= (u, “send”) and nextop ̸= ⊥ then return ⊥
273: If |m0| ̸= |m1| then return ⊥
274: If (ru < Xu or restrictedu or chu[su + 1] = “forbidden”) and m0 ̸= m1 then
275: Return ⊥
276: (z1, z2, z3, z4)← zu ; su ← su + 1
277: (sk, vk)← DS.Kg(z1) ; (ek,dku[su])← PKE.Kg(z2)
278: ℓ← (su, ru, ad, vk, ek, τ r,u[ru], τ s,u[su − 1])
279: (ek′, c′)← PKE.Enc(eku, ℓ,mb, τ s,u[racku + 1, . . . , su − 1]; z3)
280: v ← (c′, ℓ) ; σ ← DS.Sign(sku, v; z4)
281: c ← (σ, v) ; τ s,u[su]← H.Ev(hk, c) ; sku ← sk ; nextop← ⊥ ;
282: z1 ← NewUser((su, u)) ; (z2, z3, z4)←$ PKE.KgRS× PKE.EncRS× DS.SignRS
283: zu ← (z1, z2, z3, z4)
284: If not restrictedu and τ s,u[su] = τ r,u[su] then abort(ε, ε, ε, ε, (ε))
285: If not restrictedu then ctableu[su]← (c, ad)
286: If m0 ̸= m1 then chu[su]← “done”
287: Return c

RecvSim(u, c, ad)

288: If nextop ̸= (u, “recv”) and nextop ̸= ⊥ then return ⊥
289: (η1, η2)← ηu ; nextop← ⊥ ; ηu←$ Ch.RecvRS
290: (σ, v)← c ; (c′, ℓ)← v ; (s′, r′, ad′, vk′, ek′, τ ′r , τ

′
s)← ℓ

291: (vk′′, t)← DS.Vrfy(vku, σ, v, τ s [racku + 1, . . . , r′])
292: If not t or s′ ̸= ru + 1 or τ ′r ̸= τ s,u[r′] or τ ′s ̸= τ r,u[ru] or ad′ ̸= ad then return ⊥
293: If not restrictedu and forgeu[ru + 1] ̸= “trivial” and (c, ad) ̸= ctableu[ru + 1] then
294: Return abort(ε, ε, ε, ε, (ε))
295: ((σ′, v′), ad)← ctableu[ru + 1]
296: If not restrictedu and v = v′ and σ ̸= σ′ then abort((ru, u), v, σ, σ′, τ s [0, . . . , r′])
297: ru ← ru + 1 ; racku ← r′ ; m← PKE.Dec(dku[racku], ℓ, c′)
298: τ s,u[0, . . . , racku − 1]← ⊥ ; dku[0, . . . , racku − 1]← ⊥ ; τ r,u[ru]← H.Ev(hk, c)
299: sku ← DS.UpdSk(sku, τ r,u[ru]; η1) ; vku ← vk′ ; eku ← ek′

300: For i ∈ [racku , su] do dku[i]← PKE.UpdDk(dku[i], τ r,u[ru]; ηi2)
301: If (c, ad) ̸= ctableu[ru] then restrictedu ← true ; rrestu ← min{ru, rrestu }
302: If not restrictedu and τ r,u[rrestu] = τ s,u[r

rest
u] ̸= ⊥ then abort(ε, ε, ε, ε, (ε))

303: If restrictedu then return m
304: Return ⊥
ExpSim(u, rand)

// Identical to Exp in G4,G5

Figure 18: Adversary BDS attacking DS. Highlighting indicates changes from G4,G5.

Claim 6, Pr[G4]− Pr[G5] ≤ AdvuniqDS (BDS). Games G4 and G5 are identical until baduniq so the fun-
damental lemma of game playing gives Pr[G4]−Pr[G5] ≤ Pr[G4 sets baduniq]. Because baduniq only
gets set if D has found a signature σ′ ̸= σ which verifies correctly for v this can be transformed
immediately to an attack on the UNIQ security of DS. This is shown by the adversary BDS in
Fig. 18. It simulates the view of D by using NewUser to create the randomness used for digital

35

signature key generation and computing everything else for itself. On line 296 it aborts and re-
turns the signature collision found by D whenever baduniq would be set in G4. It is clear that BDS

correctly simulates the view of D and we will momentarily justify that it wins whenever it aborts,
so Pr[G4 sets baduniq] = Pr[UNIQBDS

DS] = AdvuniqBDS
(DS).

From line 296 we know that restrictedu = false when ADS aborts, so vku is the same verification key
used by UNIQ. Since ctableu[ru+1] was not ⊥, we know restrictedu was false when this ciphertext
was sent. This ensures that the sequence of strings used to update the signing key before this
ciphertext was sent is the same sequence just used for verification.

Claim 7, Pr[G5] ≤ Pr[INDEXPAPKE
PKE]. At last we can reduce directly to the security of the public key

encryption scheme PKE. To do so we build an adversary against its security which simulates the
view of D and forwards all of D’s valid challenge queries to its own encryption oracle. Here we
use the phrase “valid challenge query” to refer to calls that D makes to Send for which m0 ̸= m1

and G5 would not return ⊥. Then the adversary will output D’s guess at the secret bit as its own
(except when D causes an early abort, in which case the adversary simply returns 1). Such an
adversary APKE is shown in Fig. 19.

The adversary APKE keeps track of the different keys it requests from INDEXP by labelling them
with tuples of the form Λ = (s,u), where u is the user who creates the key pair while sending a
message and s was the value of su at that time. When D makes expose queries, APKE makes calls
to its Exp oracle as necessary to expose the correct state. Whenever a new PKE key pair should
be created, APKE does so via a NewUser query unless the randomness for that key generation has
been exposed, in which case it just generates the key pair by itself with said exposed randomness.
Whenever APKE needs the encryption of a message or decryption of a ciphertext, it will forward
this on to the corresponding oracle in INDEXP except when it already has necessary information
to perform this operation for itself.

Below we verify that adversary APKE correctly simulates the view of D with the underlying bit of
INDEXP playing the role of its secret bit. This gives Pr[G5] ≤ Pr[INDEXPAPKE

PKE], as desired.

Efficiency. We have shown the stated bound on the advantage of D. The bounds on the number of
oracle queries made by the adversaries and their runtimes can be verified by examining their code.

Correct simulation by APKE. We verify that none of the oracles called by APKE will abort early and
return ⊥, except possibly Dec. We will argue that APKE doesn’t require the output of Dec to be
non-⊥ in the cases when it returns ⊥. Recall that APKE uses user identifiers of the form Λ = (s,u)

for the key-pair created by u when sending their s-th ciphertext.

Queries to NewUser are made in SendSim only after su has been updated, so (since su is strictly
increasing) such queries will never be made with dk[Λ] ̸= ⊥. For other oracles, note that dk[(s, v)] =
⊥ will only hold if (i) s > sv or (ii) (nextop = (v, “send”) or restrictedv) was true when the s-th
ciphertext was sent by v (this condition corresponding whenAPKE simply samples the corresponding
keys for itself). For purposes of analysis we can divide the oracle queries into two groups.

The first group is Dec, UpdDk, and Exp. For this group the oracle queries with Λ = (s, v) are
only made for s ≤ su so condition (i) will not hold. If condition (ii) held, then on line 317 dku[s]

would have been set to a non-⊥ value so the checks before these three oracle queries would prevent
the queries from being made. Note here that line 337 can set entries of dku back to ⊥, but only

36

Adversary ANewUser,UpdEk,UpdDk,Enc,Dec,Exp
PKE

305: rrestI ← rrestR ←∞ ; sI ← rI ← sR ← rR ← 0 ; restrictedI ← restrictedR ← false
306: forgeI [0 . . .∞]← forgeR[0 . . .∞]← “nontrivial” ; XI ← XR ← 0
307: (skI , vkR)←$ DS.Kg ; (skR, vkI)←$ DS.Kg
308: ekI ← NewUser((sR,R)) ; ekR ← NewUser((sI , I))
309: hk←$ H.Kg ; τ r,I [0]← τ r,R[0]← τ s,I [0]← τ s,R[0]← ε ; rackI ← rackR ← 0
310: (zI , zR)←$ (Ch.SendRS)2 ; (ηI , ηR)←$ (Ch.RecvRS)2

311: b′←$DSendSim,RecvSim,ExpSim ; Return b′

SendSim(u,m0,m1, ad)

312: If nextop ̸= (u, “send”) and nextop ̸= ⊥ then return ⊥
313: If |m0| ̸= |m1| then return ⊥
314: If (ru < Xu or restrictedu or chu[su + 1] = “forbidden”) and m0 ̸= m1 then
315: Return ⊥
316: (z1, z2, z3, z4)← zu ; su ← su + 1 ; (sk, vk)← DS.Kg(z1)
317: If nextop ̸= (u, “send”) and not restrictedu then ek ← NewUser((su, u)) else (ek,dku[su])← PKE.Kg(z2)
318: ℓ← (su, ru, ad, vk, ek, τ r,u[ru], τ s,u[su − 1]) ; ∆⃗e ← τ s,u[racku + 1, . . . , su − 1]
319: If m0 ̸= m1 then c′ ← Enc((ru,u),m0,m1, ℓ) else (ek′, c′)← PKE.Enc(eku, ℓ,m1, ∆⃗e; z3)
320: v ← (c′, ℓ) ; σ ← DS.Sign(sku, v; z4) ; c ← (σ, v) ; τ s,u[su]← H.Ev(hk, c) ; sku ← sk
321: If ru ≥ Xu and not restrictedu then UpdEk((ru,u), τ s,u[su])
322: nextop← ⊥ ; zu←$ Ch.SendRS
323: If not restrictedu and τ s,u[su] = τ r,u[su] then abort(1)
324: If not restrictedu then ctableu[su]← (c, ad)
325: If m0 ̸= m1 then chu[su]← “done”
326: Return c

RecvSim(u, c, ad)

327: If nextop ̸= (u, “recv”) and nextop ̸= ⊥ then return ⊥
328: (η1, η2)← ηu ; nextop← ⊥ ; ηu←$ Ch.RecvRS
329: (σ, v)← c ; (c′, ℓ)← v ; (s′, r′, ad′, vk′, ek′, τ ′r , τ

′
s)← ℓ

330: (vk′′, t)← DS.Vrfy(vku, σ, v, τ s [racku + 1, . . . , r′])
331: If not t or s′ ̸= ru + 1 or τ ′r ̸= τ s,u[r′] or τ ′s ̸= τ r,u[ru] or ad′ ̸= ad then return ⊥
332: If not restrictedu and forgeu[ru + 1] ̸= “trivial” and (c, ad) ̸= ctableu[ru + 1] then abort(1)
333: ((σ′, v′), ad)← ctableu[ru + 1]
334: If not restrictedu and v = v′ and σ ̸= σ′ then abort(1)
335: ru ← ru + 1 ; racku ← r′ ;
336: If dku[racku] = ⊥ then m← Dec((racku ,u), c′, ℓ) else m← PKE.Dec(dku[racku], ℓ, c′)
337: τ s,u[0, . . . , racku − 1]← ⊥ ; dku[0, . . . , racku − 1]← ⊥ ; τ r,u[ru]← H.Ev(hk, c)
338: sku ← DS.UpdSk(sku, τ r,u[ru]; η1) ; vku ← vk′ ; eku ← ek′

339: If ru ≥ Xu and not restrictedu then for i ∈ [racku + 1, su] do UpdEk((ru, u), τ s,u[i])
340: For i ∈ [racku , su] if dku[i] = ⊥ do UpdDk((i, u), τ r,u[ru]) else dku[i]← PKE.UpdDk(dku[i], τ r,u[ru]; ηi2)
341: If (c, ad) ̸= ctableu[ru] then restrictedu ← true ; rrestu ← min{ru, rrestu }
342: If not restrictedu and τ r,u[rrestu] = τ s,u[r

rest
u] ̸= ⊥ then abort(1)

343: If restrictedu then return m
344: Return ⊥
ExpSim(u, rand)

345: If nextop ̸= ⊥ then return ⊥
346: If not restrictedu and ∃i ∈ (ru, su] s.t. chu[i] = “done” then
347: Return ⊥
348: For i ∈ [racku , su] if dku[i] = ⊥ then dku[i]← Exp((i, u))
349: st← (su, ru, sku, vku, eku,dku, hk, τ r,u[ru], τ s,u)
350: If restrictedu then return (st, zu, ηu)
351: forgeu[su + 1]← “trivial” ; (z, η)← (ε, ε) ; Xu ← su + 1
352: If rand = “send” then
353: nextop← (u, “send”) ; z ← zu ; Xu ← su + 2
354: forgeu[su + 2]← “trivial” ; chu[su + 1]← “forbidden”
355: Else if rand = “recv” then
356: nextop← (u, “recv”) ; η ← ηu
357: Return (st, z, η)

Figure 19: Adversary APKE attacking PKE. Highlighting indicates changes from G4,G5.

37

for entries with indices less than racku and these oracle queries are only made for indices at least as
large as racku (which is a strictly increasing value).
The second group of oracles is Enc and UpdEk. Note that the latter can be called both by
SendSim and by RecvSim. All of these queries are done with Λ = (ru, u) and only if ru ≥ Xu and
restrictedu = false. (In the case of Enc this is ensured by the fact that m0 ̸= m1 and line 314 must
have evaluated to false.) That restrictedu = false ensures that ru ≤ su, so condition (i) cannot hold.
For the latter condition note that nextop can only be set to (u, “send”) in Exp. But this would
have set Xu such that ru ≥ Xu would be false. If restrictedu held when the ru-th ciphertext was
sent by u, then restrictedu would have been set when u received the corresponding ciphertext. So
condition (ii) also cannot hold.
So none of the oracles will abort early due to checks involving dk. It remains to individually analyze
the possibilities of Enc, Dec, or Exp aborting early for other reasons.
It will never be the case that |m0| ̸= |m1| in Enc because that would have resulted in SendSim

aborting early. So consider the possibility that a call to Enc is made when ∆⃗′[(ru,u)] ⊑ ∆⃗e[(ru, u)].
Note that ∆⃗e[(ru, u)] = τ s,u[r

ack
u + 1, . . . , su − 1] and ∆⃗′[(ru.u)] = τ r,u[r

ack
u + 1, . . . , j] for some j.

The value of ∆⃗′[(ru,u)] must have been set by a call to Exp by ExpSim when ru was equal to j. If
restrictedu did not hold at the time, then Xu would have been set to a value greater than ru so this
Enc query would not be made. Also, restrictedu cannot hold when the Enc query is made. This
implies that restrictedu did not hold when the last ciphertext received by u was sent by u. Thus,
racku < rrestu ≤ j. Then ∆⃗′[(ru, u)] ⊑ ∆⃗e[(ru,u)] would imply that τ s,u[r

rest
u] = τ r,u[r

rest
u] which is

impossible. If τ r,u[r
rest
u] was the first of these set to a non-⊥ value, then when τ s,u[r

rest
u] was set it

would have caused APKE to abort on line 323. If τ s,u[r
rest
u] was set first, then when τ r,u[r

rest
u] was

set it would have caused APKE to abort on line 342.
Consider the possibility that a call to Dec is made when (∆⃗d[(r

ack
u , u)], c′, ℓ) ∈ S[(racku ,u)]. Then

there was a prior query of the form Enc((racku , u), ·, ·, ℓ) which returned c′. By logic we have
used previously (using lines 319 and 314), restrictedu = false must have held at the time. Then
ctableu[ru] was set on line 324. If restrictedu = false and (c, ad) = ctableu[ru], then restrictedu
will still be false at the end of RecvSim, so ⊥ will be returned to D no matter what Dec outputs.
If restrictedu = false and (c, ad) ̸= ctableu[ru], then from line 334 we can see that v ̸= v′ which
is a contradiction because both are equal to (c′, ℓ). So suppose that restrictedu holds. Note that
∆⃗d[(r

ack
u ,u)] = τ r,u[j, . . . , ru − 1] where j is one more than the value ru held when the the call

NewUser((racku , u)) was made. Furthermore, ∆⃗d[(r
ack
u ,u)] = τ s,u[j, . . . , ru − 1] because it is equal

to the value ∆⃗e[(r
ack
u , u)] held during the relevant Enc query. For Dec to have been queried it

must hold that dku[r
ack
u] = ⊥, so restrictedu did not hold when NewUser((racku , u)) was queried.

This means rrestu ∈ [j, . . . , ru − 1] so we have τ r,u[r
rest
u] = τ s,u[r

rest
u]. This is impossible by the same

reasoning used in the prior paragraph.
Consider the possibility that a call to Exp is made when ∃(∆⃗, c, ℓ) ∈ S[(i,u)] such that ∆⃗d[(i,u)] ⊑
∆⃗. Note that ∆⃗ is equal to the value of ∆⃗e[(i,u)] during some previous Enc query. By prior logic,
restrictedu = false must have held at the time. Suppose restrictedu = false. By 346, it must hold
that chu[j] ̸= “done” for all j ∈ (ru, su] and note that chu[s] = “done”. Let s denote the value
of su when the relevant Enc query was made. Note that s ≤ su because su never decreases and
s > ru because |∆⃗d[(i,u)]| ≤ |∆⃗e[(i,u)]|. This is a contradiction. So suppose that restrictedu holds.
Note that ∆⃗d[(i,u)] = τ r,u[j, . . . , ru] where j is one more than the value ru held when the the call
NewUser((racku , u)) was made. Furthermore, ∆⃗d[(r

ack
u , u)] = τ s,u[j, . . . , ru] because it is equal to

38

the prefix of ∆⃗e[(i,u)] held during the relevant Enc query. For Dec to have been queried it must
hold that dku[i] = ⊥, so restrictedu did not hold when NewUser((i,u)) was queried. This means
rrestu ∈ [j, . . . , ru] so we have τ r,u[r

rest
u] = τ s,u[r

rest
u]. This is impossible by the same reasoning used

two paragraphs prior.

Acknowledgments
We thank Mihir Bellare for extensive discussion on preliminary versions of this paper. We thank
the CRYPTO 2018 reviewers for their comments.

References
[1] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user setting: Security proofs

and improvements. In B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 259–274,
Bruges, Belgium, May 14–18, 2000. Springer, Heidelberg, Germany. 7

[2] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption.
In 38th FOCS, pages 394–403, Miami Beach, Florida, Oct. 19–22, 1997. IEEE Computer Society Press.
3

[3] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-
key encryption schemes. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 26–45,
Santa Barbara, CA, USA, Aug. 23–27, 1998. Springer, Heidelberg, Germany. 11

[4] M. Bellare, T. Kohno, and C. Namprempre. Breaking and provably repairing the ssh authenticated
encryption scheme: A case study of the encode-then-encrypt-and-mac paradigm. ACM Transactions on
Information and System Security (TISSEC), 7(2):206–241, 2004. 2

[5] M. Bellare and S. K. Miner. A forward-secure digital signature scheme. In M. J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 431–448, Santa Barbara, CA, USA, Aug. 15–19, 1999.
Springer, Heidelberg, Germany. 4, 5, 10

[6] M. Bellare, A. O’Neill, and I. Stepanovs. Forward-security under continual leakage. Cryptology ePrint
Archive, Report 2017/476, 2017. http://eprint.iacr.org/2017/476. 44

[7] M. Bellare, T. Ristenpart, and S. Tessaro. Multi-instance security and its application to password-based
cryptography. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages
312–329, Santa Barbara, CA, USA, Aug. 19–23, 2012. Springer, Heidelberg, Germany. 42

[8] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426, St.
Petersburg, Russia, May 28 – June 1, 2006. Springer, Heidelberg, Germany. 6, 29

[9] M. Bellare, A. C. Singh, J. Jaeger, M. Nyayapati, and I. Stepanovs. Ratcheted encryption and key
exchange: The security of messaging. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part III,
volume 10403 of LNCS, pages 619–650, Santa Barbara, CA, USA, Aug. 20–24, 2017. Springer, Heidel-
berg, Germany. 3, 5, 12, 13, 19, 42, 43

[10] M. Bellare and B. Yee. Forward-security in private-key cryptography. In M. Joye, editor, Topics in
Cryptology — CT-RSA 2003, pages 1–18, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. 5

[11] A. Boldyreva, J. P. Degabriele, K. G. Paterson, and M. Stam. Security of symmetric encryption in the
presence of ciphertext fragmentation. In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 682–699, Cambridge, UK, Apr. 15–19, 2012. Springer, Heidelberg, Ger-
many. 4

39

http://eprint.iacr.org/2017/476

[12] N. Borisov, I. Goldberg, and E. Brewer. Off-the-record communication, or, why not to use pgp. In
Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, WPES ’04, pages 77–84,
New York, NY, USA, 2004. ACM. 3

[13] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145, Las Vegas, NV, USA, Oct. 14–17, 2001. IEEE Computer Society Press. 2

[14] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. Journal of Cryp-
tology, 20(3):265–294, July 2007. 5

[15] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building secure
channels. In B. Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 453–474, Innsbruck,
Austria, May 6–10, 2001. Springer, Heidelberg, Germany. 2

[16] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila. A formal security analysis of the
Signal messaging protocol. In Proc. IEEE European Symposium on Security and Privacy (EuroS&P)
2017. IEEE, April 2017. To appear. 3, 19, 42

[17] K. Cohn-Gordon, C. Cremers, and L. Garratt. On post-compromise security. In 2016 IEEE 29th
Computer Security Foundations Symposium (CSF), pages 164–178, June 2016. 2

[18] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In G. Brassard, editor, CRYPTO’89, volume 435
of LNCS, pages 307–315, Santa Barbara, CA, USA, Aug. 20–24, 1990. Springer, Heidelberg, Germany.
4

[19] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and authenticated key exchanges.
Designs, Codes and Cryptography, 2(2):107–125, June 1992. 4, 5

[20] Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-insulated public key cryptosystems. In L. R. Knud-
sen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 65–82, Amsterdam, The Netherlands,
Apr. 28 – May 2, 2002. Springer, Heidelberg, Germany. 4

[21] Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong key-insulated signature schemes. In Y. Desmedt,
editor, PKC 2003, volume 2567 of LNCS, pages 130–144, Miami, FL, USA, Jan. 6–8, 2003. Springer,
Heidelberg, Germany. 4

[22] Y. Dodis, W. Luo, S. Xu, and M. Yung. Key-insulated symmetric key cryptography and mitigating
attacks against cryptographic cloud software. In H. Y. Youm and Y. Won, editors, ASIACCS 12, pages
57–58, Seoul, Korea, May 2–4, 2012. ACM Press. 4

[23] T. P. (editor) and M. Marlinspike. The double ratchet algorithm. https://whispersystems.org/
docs/specifications/doubleratchet/, Nov. 20, 2016. Accessed: 2017-06-03. 3, 43

[24] M. Fischlin, F. Günther, G. A. Marson, and K. G. Paterson. Data is a stream: Security of stream-based
channels. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 545–564, Santa Barbara, CA, USA, Aug. 16–20, 2015. Springer, Heidelberg, Germany. 4

[25] C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In Y. Zheng, editor, ASI-
ACRYPT 2002, volume 2501 of LNCS, pages 548–566, Queenstown, New Zealand, Dec. 1–5, 2002.
Springer, Heidelberg, Germany. 4, 47

[26] M. D. Green and I. Miers. Forward secure asynchronous messaging from puncturable encryption. In
2015 IEEE Symposium on Security and Privacy, pages 305–320, San Jose, CA, USA, May 17–21, 2015.
IEEE Computer Society Press. 5

[27] C. G. Günther. An identity-based key-exchange protocol. In J.-J. Quisquater and J. Vandewalle, editors,
EUROCRYPT’89, volume 434 of LNCS, pages 29–37, Houthalen, Belgium, Apr. 10–13, 1990. Springer,
Heidelberg, Germany. 4, 5

40

https://whispersystems.org/docs/specifications/doubleratchet/
https://whispersystems.org/docs/specifications/doubleratchet/

[28] F. Günther and S. Mazaheri. A formal treatment of multi-key channels. In J. Katz and H. Shacham,
editors, CRYPTO 2017, Part III, volume 10403 of LNCS, pages 587–618, Santa Barbara, CA, USA,
Aug. 20–24, 2017. Springer, Heidelberg, Germany. 3, 19, 42

[29] H. Krawczyk. The order of encryption and authentication for protecting communications (or: How
secure is SSL?). In J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 310–331, Santa
Barbara, CA, USA, Aug. 19–23, 2001. Springer, Heidelberg, Germany. 2

[30] A. Langley. Pond. GitHub repository, README.md, https://github.com/agl/pond/commit/
7bb06244b9aa121d367a6d556867992d1481f0c8, 2012. Accessed: 2017-06-03. 3

[31] G. A. Marson and B. Poettering. Security notions for bidirectional channels. IACR Trans. Symm.
Cryptol., 2017(1):405–426, 2017. 2, 3, 11, 12, 13, 15, 43

[32] M. Mignotte. How to share a secret? In T. Beth, editor, EUROCRYPT’82, volume 149 of LNCS, pages
371–375, Burg Feuerstein, Germany, Mar. 29 – Apr. 2, 1983. Springer, Heidelberg, Germany. 4

[33] C. Namprempre. Secure channels based on authenticated encryption schemes: A simple characterization.
In Y. Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 515–532, Queenstown, New
Zealand, Dec. 1–5, 2002. Springer, Heidelberg, Germany. 2

[34] Open Whisper Systems. Signal protocol library for java/android. GitHub repository, https://github.
com/WhisperSystems/libsignal-protocol-java, 2017. Accessed: 2017-06-03. 2

[35] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended abstract). In L. Logrippo,
editor, 10th ACM PODC, pages 51–59, Montreal, Quebec, Canada, Aug. 19–21, 1991. ACM. 4

[36] B. Poettering and P. Rösler. Ratcheted key exchange, revisited. Cryptology ePrint Archive, Report
2018/296, 2018. https://eprint.iacr.org/2018/296. 5

[37] P. Rogaway. Authenticated-encryption with associated-data. In V. Atluri, editor, ACM CCS 02, pages
98–107, Washington D.C., USA, Nov. 18–22, 2002. ACM Press. 2

[38] P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap problem. In S. Vaudenay,
editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 373–390, St. Petersburg, Russia, May 28 –
June 1, 2006. Springer, Heidelberg, Germany. 3, 15

[39] A. Shamir. How to share a secret. Communications of the Association for Computing Machinery,
22(11):612–613, Nov. 1979. 4

[40] V. Shoup. On formal models for secure key exchange. Cryptology ePrint Archive, Report 1999/012,
1999. http://eprint.iacr.org/1999/012. 2

[41] V. Shoup. A proposal for an iso standard for public key encryption. Cryptology ePrint Archive, Report
2001/112, 2001. https://eprint.iacr.org/2001/112. 10

[42] M. Tompa and H. Woll. How to share a secret with cheaters. Journal of Cryptology, 1(2):133–138, 1988.
4

[43] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg, and M. Smith. SoK: Secure messaging.
In 2015 IEEE Symposium on Security and Privacy, pages 232–249, San Jose, CA, USA, May 17–21,
2015. IEEE Computer Society Press. 2

[44] WhatsApp Blog. Connecting one billion users every day. https://blog.whatsapp.com/10000631/
Connecting-One-Billion-Users-Every-Day, July 26, 2017. Accessed: 2018-02-12. 2

41

https://github.com/agl/pond/commit/7bb06244b9aa121d367a6d556867992d1481f0c8
https://github.com/agl/pond/commit/7bb06244b9aa121d367a6d556867992d1481f0c8
https://github.com/WhisperSystems/libsignal-protocol-java
https://github.com/WhisperSystems/libsignal-protocol-java
https://eprint.iacr.org/2018/296
http://eprint.iacr.org/1999/012
https://eprint.iacr.org/2001/112
https://blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day
https://blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day

A Comparison to recent definitions
Three recents works we studied while deciding how to write our security definition were the works
of CCDGS [16], BCJNS [9], and GM [28]. While they all ultimately were interested in different
settings (and CCDGS did not even model any form of encryption) they all share the commonal-
ity of modeling security in a setting where there are different “stages” of keys. All three works
made distinct decisions in how to address challenges in different stages, so its worth discussing the
repercussions of these different decisions.

In BCJNS and GM a stage corresponds to a counter i representing how many times the relevant
key has been updated. In CCDGS a stage corresponds to a tuple (u, j, i) corresponding to user u

in step i of its j-th protocol execution. In our work a stage could correspond to a tuple (u,O, s, r)

corresponding to a query to user u ∈ {I,R} with oracle O ∈ {Send,Recv} when su = s and
ru = r.

CCDGS chose to only allow the adversary to make a challenge query in a single stage for which
there is a single corresponding bit that it must guess. BCJNS also has only a single challenge bit,
but allows the adversary to make challenge queries in arbitrarily many stages all of which share that
bit. GM also allows challenge queries in arbitrarily many stages, but samples a separate challenge
bit for each stage. At the end of the game the adversary outputs both a bit and the index of
the stage for which it is trying to guess the bit. BCJNS thus needed to keep track throughout of
whether an adversary has “cheated” by doing something it is not allowed to which would tell it
was the secret bit was. CCDGS and GM only need to perform this check for the particular stage
for which the adversary attempts to guess the bit. This check is still somewhat global because
actions in other stages may affect whether the adversary has cheated for the challenge stage. We
will refer to these different styles of definitional choices as CCDGS, BCJNS, or GM security and
discuss them broadly without regard to how stages are defined or what the underlying game is.

Qualitatively these three definitional choices result in equivalent definitions. BCJNS security
and GM security can both easily be shown to imply CCDGS security. In the other direction,
a hybrid argument can be used to show that CCDGS security implies BCJNS security and an
index guessing proof can be used to show that it implies GM security. However, both of these
proof techniques introduce a factor q loss of security (where q is the maximum number of stages
an adversary ever interacts with) so CCDGS security appears to be quantitively weaker than the
other two. BCJNS and GM security appear to be quantitatively incomparable; the only way we
are aware of to show that one implies the other is to use CCDGS security as an intermediate step
which introduces a factor q loss of security in both directions.

BCJNS security challenges the adversary to learn one bit corresponding exactly to which of
two possible “worlds” it exists in. GM security instead challenges the adversary to learn one bit
about the exponential number of “worlds” it may exist in (though, to be clear, it can choose to
cheat to learn all of the bits of information about which “world” it is in other than the one bit
it attempts to guess). BCJNS show that their style of definition allows tight security reductions
from multi-user security assumptions about the underlying primitives. GM did not aim to give
tight security notions, but it is likely that tight reductions could be given from a variant multi-user
style assumption in which the game samples an independent challenge bit for every user and the
adversary wins if it can guess the bit corresponding to a single user. We are not aware of any works
that use such a multi-user definition directly and do not know if techniques used to tightly prove
security for standard multi-user definition would extend to such a definition.

This multi-user style definition is similar to multi-instance style definitions as introduced by [7]

42

which sample an independent bit for each user and require the adversary guess the xor of all the
challenge bits. They give away the underlying challenge bit when the secrets of a user are exposed,
so considering adversaries who expose all users except one gives a notion essentially equivalent to
the multi-user notion sketched above.

When considering the above, we ultimately decided to follow a BCJNS style of security definition
and provide tight reductions from the standard multi-user security of underlying primitives.

B Security implications of correctness notions

The correctness of a channel will have security implications outside of the scope of what we capture
in our coming formalism. We suggest that CORR correctness may be a more appropriate notion
of correctness in the secure messaging setting, but also note some plausible scenarios that could be
applicable in the secure messaging setting for which CORR⊥ is more appropriate.

Recall that the correctness required by CORR⊥ is identical to that of Marson and Poetter-
ing [31]4 and is the standard notion for channels. It follows a common convention that a user
will permanently refuse to send or receive future ciphertexts once they have received an invalid
ciphertext. In practice this then requires that the connection be re-established for communication
to continue. In secure messaging, securely re-establishing a connection is typically quite costly
because it requires out-of-band human interaction. The CORR notion of correctness instead uses
a form of robustness (analogous to that of [9]) to avoid that requirement. Thus this correctness
prevents a denial-of-service attack by which an adversary without any secret knowledge can send
a single incorrect ciphertext to either party to kill the communication channel.

Against a stronger adversary the correctness required by CORR⊥ prevents a worse attack.
Suppose an attacker can compromise the state of user u. Then it can impersonate u and send
messages to u. Under CORR⊥ correctness the next time u attempts to send a message to u if the
attacker cannot block this communication then this will permanently kill the channel and the users
will know something has gone wrong. Under CORR correctness, this extra communication would
simply be silently dropped. The users would need to communicate out-of-band to realize something
had gone wrong (perhaps when u notices that u has stopped replying to any of its messages). For
this reason an application using CORR correct should likely warn the user when it silently drops
a message.

If the attacker even more powerful and able to block the outgoing communication sent by u

from reaching u then the distinction between the two notions goes away. The users have to again
fall back on out-of-band communication of the compromised status when u realizes that u is not
receiving its messages.

The specification of the Double Ratchet Algorithm states “If an exception is raised (e.g. message
authentication failure) then the message is discarded and changes to the state object are discarded.”
[23, Section 3.5]. This indicates that it would satisfy CORR. However, the Double Ratchet Al-
gorithm was clearly designed to achieve a stricter notion of correctness because it intentionally
accepts ciphertexts in any order. This goes against the standard security requirement that cipher-
texts should only be accepted in the order they were sent, so we intentionally do not provide a
correctness notion that captures this.

4This holds when requiring perfect security, which both works do. The two notions would be distinct if we
considered computational correctness.

43

Game DSCORR2CDS

ν←$ DS.KgRS ; n← 1

(sk, vk)← DS.Kg(ν)
CUp,Sign(ν)

Return bad

Up()

n← n+ 1

sk←$ DS.Up(sk)
Return sk

Sign(m) // m ∈ {0, 1}∗

σ←$ DS.Sign(sk,m)

t← DS.Vrfy(vk, σ,m, n)

If not t then bad← true

Game FSUNIQBKE

DS

z←$ DS.KgRS
(sk, vk)← DS.Kg(z)
(m, σ1, σ2, n)←$ BKE(z)

t1 ← DS.Vrfy(vk, σ1,m, n)

t2 ← DS.Vrfy(vk, σ2,m, n)

Return t1 and t2 and σ1 ̸= σ2

Game FSUFAKE

DS

S ← ∅ ; i← 1

(sk, vk)←$ DS.Kg
(σ,m, n)←$AUp,Sign,Exp

KE (vk)

t1 ← ((σ,m, n) ∈ S)

t2 ← exposed and (n∗ ≤ n)

cheated← (t1 or t2)

win← DS.Vrfy(vk, σ,m, n)

Return win and not cheated

Up()

i← i+ 1

sk←$ DS.Up(sk)
Return ⊥
Sign(m) // m ∈ {0, 1}∗

σ←$ DS.Sign(sk,m)

S ← S ∪ {(σ,m, i)}
Return σ

Exp()

n∗ ← i ; exposed← true
Return sk

Figure 20: Games defining correctness, uniqueness, and forward security of key-evolving digital
signature scheme DS.

C Construction of key-updatable digital signatures

In this section we formally specify the construction of a key-updatable digital signature scheme
that we sketched in Section 3.1. For this purpose we use a key-evolving digital signature scheme.

Key-evolving digital signature schemes. A key-evolving digital signature scheme is a digital signature
scheme with an additional algorithm DS.Up and with a modified verification algorithm DS.Vrfy.
Update algorithm DS.Up takes a signing key sk to return an updated signing key, denoted by
sk←$ DS.Up(sk). Modified verification algorithm DS.Vrfy takes verification key vk, signature σ,
message m, and time period n ∈ N to return a decision t ∈ {true, false} regarding whether σ is a
valid signature of m under vk for the n-th secret key, denoted by t← DS.Vrfy(vk, σ,m, n).

Correctness is defined by game DSCORR2 in Fig. 20. For adversary C we define Advdscorr2DS (C) =
Pr[DSCORR2CDS] and require that Advdscorr2DS (C) = 0 for all (even unbounded) adversaries.

Forward-secure signatures. Forward security of a key-evolving digital signature scheme asks that,
even if the key is exposed in some time period n∗, it should be computationally hard to forge a
valid signature for any prior time period n < n∗. Our definition follows that of [6]. Formally,
consider game FSUF shown in Fig. 20, associated to a key-evolving digital signature scheme DS

and an adversary AKE. The game generates a digital signature key pair for the initial time period
i = 1 and runs the adversary with the verification key as input. The goal of the adversary is
to forge a signature for an arbitrary time period n. The adversary is provided with access to
oracles Up, Sign and Exp. Oracle Up is used to advance into the next time period, incrementing
its index i and updating the secret key of the scheme accordingly. Oracle Sign uses the current

44

Algorithm DSKU.Kg

(skKE, vkKE)←$ DSKE.Kg
Σ[1, . . . ,∞]← ε ; ∆⃗[1, . . . ,∞]← ε

sk ← (skKE, 1,Σ) ; vk ← (vkKE, 1, ∆⃗)

Return (sk, vk)

Algorithm DSKU.Vrfy(vk, σ,m)

(vkKE, imax, ∆⃗)← vk

(σm, i,Σ)← σ

If i ̸= imax then return false
t← DSKE.Vrfy(vkKE, σm, 1 ∥m, i)

For j = 1, . . . , (i− 1) do
t← t and DSKE.Vrfy(vkKE,Σ[j], 0 ∥ ∆⃗[j], j)

Return t

Algorithm DSKU.Sign(sk,m)

(skKE, i,Σ)← sk

σm←$ DSKE.Sign(skKE, 1 ∥m)

σ ← (σm, i,Σ)

Return σ

Algorithm DSKU.UpdSk(sk,∆)

(skKE, i,Σ)← sk

Σ[i]←$ DSKE.Sign(skKE, 0 ∥∆)

skKE←$ DSKE.Up(skKE)

sk ← (skKE, i+ 1,Σ)

Return sk

Algorithm DSKU.UpdVk(vk,∆)

(vkKE, i, ∆⃗)← vk ; ∆⃗[i]← ∆

vk ← (vkKE, i+ 1, ∆⃗)

Return vk

Figure 21: Key-updatable digital signature scheme DSKU = DS-CONS[DSKE].

signing key to return a signature σ for an arbitrary message m (for current time period i); note
that adversary is not allowed to win the game by returning (σ,m, i) as its forgery. Finally, oracle
Exp exposes the current signing key. Without loss of generality, the adversary can only call this
oracle once. If the exposure happened in time period n∗, then the adversary is only considered
to win the game if it returns a forgery for some time period n < n∗, meaning it cannot use the
exposed key to trivially win the game. The advantage of AKE in breaking the FSUF security of DS
is AdvfsufDS (AKE) = Pr[FSUFAKE

DS].

Signature uniqueness. Uniqueness of a key-evolving digital signature scheme requires that an ad-
versary cannot find two distinct signatures that verify for the same message and the same round
n. Consider the game FSUNIQ shown in Fig. 20, associated to a key-evolving signature scheme
DS and an adversary BKE. The advantage of BKE in breaking the FSUNIQ security of DS is
AdvfsuniqDS (BKE) = Pr[FSUNIQBKE

DS].

Key-updatable digital signature scheme DS-CONS[DSKE]. Let DSKE be a key-evolving digital signa-
ture scheme. We build a key-updatable digital signature scheme DSKU = DS-CONS[DSKE] as
defined in Fig. 21, where DSKU.KgRS = DSKE.KgRS and DSKU.SignRS = DSKE.SignRS.

The key-updatable digital signature scheme DSKU utilizes a key-evolving signature scheme DSKE

in the following way. The signing key sk of DSKU consists of the corresponding signing key skKE

of DSKE, along with an empty list Σ. In order to update the signing key sk of DSKU with a
sequence of labels ∆1,∆2, . . . ,∆q, the scheme consecutively signs σj ←$ DSKE.Sign(skKE, 0 ∥∆j)

with the underlying signing key skKE of DSKE and updates skKE using algorithm DSKE.Up, for
each j = 1, . . . , q. The resulting signing key sk of scheme DSKU is defined to contain the derived
signing key skKE of scheme DSKE along with the produced signatures Σ = (σ1, σ2, . . .) as per above.

The verification key vk of DSKU initially contains the corresponding verification key vkKE of
scheme DSKE, along with an empty list ∆⃗. To update vk with ∆, the key update ∆ is appended
to ∆⃗.

The signature of a message m for key sk = (skKE,Σ) is defined as (σm,Σ) for σm←$

45

DSKE.Sign(skKE, 1 ∥m). Let Σ = (σ1, σ2, . . . σκ−1) and let ∆⃗ = (∆1,∆2, . . . ,∆κ−1) for some κ. To
verify the DSKU signature (σm,Σ) against message m for verification key vk = (vkKE, ∆⃗), one has
to check that σi is a valid DSKE signature for message ∆i for time period i, for each i = 1, . . . , κ−1,
and that σm is a valid signature for m in time period κ.

Security of DS-CONS[DSKE]. Consider DSKU = DS-CONS[DSKE] for any key-evolving digital sig-
nature scheme DSKE. We claim that for any adversary attacking UNIQ (signature uniqueness)
or UFEXP (unforgeability under exposures) of DSKU, there is an adversary that breaks FSUNIQ

(signature uniqueness) or FSUF (forward security) of DSKE, respectively, using roughly the same
number of oracle queries and with roughly the same time efficiency.

Theorem C.1 Let DSKE be a key-evolving digital signature scheme. Let DSKU = DS-CONS[DSKE].
Let BDS be an adversary making at most 1 query to its NewUser oracle. Then we can build
adversary BKE such that

AdvuniqDSKU
(BDS) ≤ AdvfsuniqDSKE

(BKE). (2)

The runtime of BKE is about that of BDS.

Theorem C.2 Let DSKE be a key-evolving digital signature scheme. Let DSKU = DS-CONS[DSKE].
Let ADS be an adversary making at most 1 query to its NewUser oracle, qUpd queries to its Upd

oracle, 1 query to its Sign oracle, and 1 queries to its Exp oracle. Then we can build adversary
AKE such that

AdvufexpDSKU
(ADS) ≤ AdvfsufDSKE

(AKE). (3)

Adversary AKE makes at most qUpd queries to its Up oracle, qUpd + 1 queries to its Sign oracle,
and 1 query to its Exp oracle. The runtime of AKE is about that of ADS.

For simplicity, our theorems are given for single-user security (only one query to NewUser). A
standard argument implies that our theorems extend to the multi-user security in a straightforward
way with the same advantage bounds (using multi-user security of the underlying key-evolving
digital signature scheme). Furthermore, since we consider only a single user, we can assume without
loss of generality that adversary ADS in Theorem C.2 makes only one query to oracle Sign.

The formal proofs of the above theorems are straightforward, so we omit them. For Theorem C.1
note that a signature from DSKU essentially just consists of a sequence of signatures from DSKE,
specifically a signature Σ[i] for each ∆i and a final σm for the actual message. If the two DSKU

signatures are distinct either they differ in σm or in some Σ[i]. Wherever they differ we immediately
have two different DSKE signatures that verify for the same string. The proof is straightforward,
so we omit it.

To prove Theorem C.2, note that adversary AKE (playing game FSUF) can perfectly simulate
game UFEXP for adversary ADS, answering the Upd, Sign, Exp oracle queries of the latter using
the oracles Up, Sign, Exp of the former, respectively. As with our description above, whenever
ADS successfully forges on DSKU we immediately get a forgery on DSKE by considering these sub-
signatures.

46

Game HIBECORRC
HIBE

(pp,K)←$ HIBE.Set ; I⃗ ← ()

CDelegate,Enc(pp,K)

Return bad

Delegate(I) // I ∈ {0, 1}∗

K←$ HIBE.Del(K, I) ; I⃗ ← I⃗ ∥ I
Return K

Enc(ℓ,m) // ℓ,m ∈ {0, 1}∗

c←$ HIBE.Enc(pp, I⃗, ℓ,m)

m′ ← HIBE.Dec(K, ℓ, c)

If m′ ̸= m then bad← true

Figure 22: Games defining correctness of hierarchical public-key encryption scheme HIBE.

D Construction of key-updatable public-key encryption

In this section we more formally specify the construction of a key-updatable public-key encryption
scheme that we sketched in Section 3.2.

Hierarchical identity based encryption schemes. In a hierarchical identity based encryption scheme, or
HIBE [25], there are decryption keys (referred to as identity keys) associated with identities which
are tuples of strings. Every user of the scheme can choose to encrypt to any identity knowing only
that identity and some public parameters. Then anybody with an identity key for that identity
can decrypt the ciphertext. Furthermore, the hierarchical part of HIBE means that any user with
an identity key K for identity I⃗ can delegate a sub-key for any identity I⃗ ′ such that I⃗ is a prefix of
I⃗ ′ (i.e. I⃗ ⊑ I⃗ ′).

More formally, HIBE scheme HIBE specifies algorithms HIBE.Set, HIBE.Del, HIBE.Enc, and
HIBE.Dec. Setup algorithm HIBE.Set returns the public parameters pp and identity key K for
the identity I⃗ = (). We write (pp,K)←$ HIBE.Set. Delegation algorithm HIBE.Del takes as input
identity key K for the identity I⃗ and string I ∈ {0, 1}∗ to return identity key K ′ for identity I⃗ ∥ I .
We write K ′←$ HIBE.Del(K, I). Encryption algorithm HIBE.Enc takes as input public parameters
pp, identity I⃗, label ℓ, and message m to produce ciphertext c. We write c←$ HIBE.Enc(pp, I⃗, ℓ,m).
Decryption algorithm HIBE.Dec takes as input identity key K, label ℓ, and ciphertext c to produce
message m ∈ {0, 1}∗. We write m← HIBE.Dec(K, ℓ, c). We let HIBE.EncRS denote the denote the
set from which HIBE.Enc draws its random coins.

We denote the min-entropy of algorithms HIBE.Set and HIBE.Enc by H∞(HIBE.Set) and H∞(HIBE.Enc),
respectively, defined as follows:

2−H∞(HIBE.Set) = max
pp

Pr [pp∗ = pp : (pp∗,K∗)←$ HIBE.Set] ,

2−H∞(HIBE.Enc) = max
pp,I⃗,ℓ,m,c

Pr
[
c∗ = c : c∗←$ HIBE.Enc(pp, I⃗, ℓ,m)

]
.

The probability is defined over the random coins used by HIBE.Set and HIBE.Enc, respectively.
Note that min-entropy of HIBE.Set does not depend on the output value K∗.

Correctness. Correctness requires that if a message m is encrypted to identity I⃗ and K is an identity

47

Game HIBECCAAHIBE

HIBE

b←$ {0, 1} ; S ← ∅ ; SI ← ∅
(pp,K[0])←$ HIBE.Set ; idtable[0]← ()

b′←$AEnc,Dec,Delegate,Exp
HIBE (pp)

Return (b = b′)

Enc(I⃗ ,m0,m1, ℓ) // I⃗ ∈ ({0, 1}∗)∗, m0,m1, ℓ ∈ {0, 1}∗

If |m0| ̸= |m1| then return ⊥
If ∃I⃗ ′ ∈ SI s.t. I⃗ ′ ⊑ I⃗ then return ⊥
c←$ HIBE.Enc(pp, I⃗, ℓ,mb)

S ← S ∪ {(I⃗ , c, ℓ)}
Return c

Dec(Υ, c, ℓ) // Υ, c, ℓ ∈ {0, 1}∗

If K[Υ] = ⊥ then return ⊥
v ← (idtable[Υ], c, ℓ)

If ∃(I⃗ ′, c′, ℓ′) ∈ S s.t. (I⃗ ′, c′, ℓ′) = v then return ⊥
m← HIBE.Dec(K[Υ], ℓ, c)

Return m

Delegate(Υ,Υ′, I) // Υ,Υ′, I ∈ {0, 1}∗

If K[Υ] = ⊥ then return ⊥
If K[Υ′] ̸= ⊥ then return ⊥
K[Υ′]←$ HIBE.Del(K[Υ], I)

idtable[Υ′]← idtable[Υ] ∥ I
Return ⊥
Exp(Υ) // Υ ∈ {0, 1}∗

If K[Υ] = ⊥ then return ⊥
If ∃(I⃗ , c, ℓ) ∈ S s.t. idtable[Υ] ⊑ I⃗ then

Return ⊥
SI ← SI ∪ {idtable[Υ]}
Return K[Υ]

Figure 23: Games defining CCA security of hierarchical public-key encryption scheme HIBE.

Algorithm PKE.Kg

(pp,K)←$ HIBE.Set ; ek ← (pp, ())

Return (ek,K)

Algorithm PKE.Enc(ek, ℓ,m)

(pp, I⃗)← ek ; c←$ HIBE.Enc(pp, I⃗, ℓ,m)

Return c

Algorithm PKE.UpdEk(ek,∆)

(pp, I⃗)← ek ; ek ← (pp, I⃗ ∥∆)

Return ek

Algorithm PKE.Dec(dk, ℓ, c)

m← HIBE.Dec(dk, ℓ, c)
Return (dk,m)

Algorithm PKE.UpdDk(dk,∆)

dk←$ HIBE.Del(dk,∆)

Return dk

Figure 24: Key-updatable public-key encryption scheme PKE = PKE-CONS[HIBE].

key for that identity then K will decrypt the ciphertext properly. This is formalized by the game
HIBECORR shown in Fig. 22. In it the adversary is given the public parameters pp and identity
key K. It can make calls to Delegate with a string I to ask for K to be updated to the identity
I⃗ = I⃗ ∥ I . It will be given the new K. Finally it can query a label ℓ and message m to Enc.
The message and label are then encrypted to the current identity I⃗. The produced ciphertext is
immediately decrypted by the corresponding identity key K. If the decryption does not return the
message that was encrypted then bad is set true. The adversary wins if it can cause bad to be set
true.

The advantage of adversary C is defined by AdvhibecorrHIBE (C) = Pr[HIBECORRCHIBE]. Perfect cor-
rectness requires that AdvhibecorrHIBE (C) = 0 for all (even unbounded) adversaries.

IND-CCA security of HIBE. For security we will require that CCA security hold even when the
adversary is given identity keys for arbitrarily many identities, as long as none of these identities
are prefixes of any identities it made a challenge query to. Security is formally defined by the game

48

HIBECCA shown in Fig. 23.
In this game an adversary AHIBE is given the public parameters pp and then has access to five

oracles. The initial identity key with identity () is stored in K[0]. The adversary can ask for a
sub-key to be delegated from an existing identity key K[Υ] with identity I⃗ by calling Delegate

with Υ, an unused key identifier Υ′, and a string I . This oracle will create a new identity key
K[Υ′] with identity I⃗ ∥ I . The adversary can ask for the encryption of a challenge message using
Enc to any identity I⃗ by calling it with input I⃗, m0, m1, and ℓ as long as no identity keys have
been exposed for an identity that is a prefix of I⃗. The adversary can ask Dec for the decryption of
any (c, ℓ) pair by any existing identity key K[Υ] as long as the pair was not the output of a prior
encryption query to the identity of K[Υ]. Finally, the adversary can use Exp to ask for the value
of any identity key K[Υ] (which is associated with some identity I⃗) as long as it has not asked a
challenge encryption query to an identity which I⃗ is a prefix of. The goal of the adversary is to
guess the secret bit corresponding to which message Enc encrypts.

Adversary AEnc,Dec,Delegate,Exp
HIBE (pp)

b′←$ BNewUserS,UpdEkS,UpdDkS,EncS,DecS,ExpS
PKE

Return b′

NewUserS(Λ)

∆⃗e[Λ]← () ; ∆⃗d[Λ]← ()

∆⃗′[Λ]← ⊥ ; S[Λ]← ∅
ek[Λ]← (pp, ∆⃗e[Λ])

Return ek[Λ]

UpdEkS(Λ,∆)

∆⃗e[Λ]← ∆⃗e[Λ] ∥∆
UpdDkS(Λ,∆)

l← |∆⃗d[Λ]| ; Delegate(l, l + 1,∆)

∆⃗d[Λ]← ∆⃗d[Λ] ∥∆

EncS(Λ,m0,m1, ℓ)

If |m0| ̸= |m1| then return ⊥
If ∆⃗′[Λ] ⊑ ∆⃗e[Λ] then return ⊥
c ← Enc(∆⃗e[Λ],m0,m1, ℓ)

S[Λ]← S[Λ] ∪ {(∆⃗e[Λ], c, ℓ)}
Return c

DecS(Λ, c, ℓ)

If (∆⃗d[Λ], c, ℓ) ∈ S[Λ] then return ⊥
m← Dec(|∆⃗d[Λ]|, c, ℓ)
Return m

ExpS(Λ)

If ∃(∆⃗, c, ℓ) ∈ S[Λ] s.t. ∆⃗d[Λ] ⊑ ∆⃗ then return ⊥
If ∆⃗′[Λ] = ⊥ then ∆⃗′[Λ]← ∆⃗d[Λ]

Return Exp(|∆⃗d[Λ]|)

Figure 25: Adversary AHIBE used for proof of Theorem D.1.

To keep track of the various things AHIBE is not allowed to do the game keeps a table idtable

which maps key identifiers to the identity of that key, set S which stores all of the tuples (I⃗ , c, ℓ)

where (c, ℓ) was the output of an encryption query to identity I⃗, and set SI which stores the
identities of all keys that have been exposed. The advantage of adversary AHIBE is defined by
AdvhibeccaHIBE (AHIBE) = 2Pr[HIBECCAAHIBE

HIBE]− 1.

Key-updatable public-key encryption scheme PKE-CONS[HIBE]. Let HIBE be a hierarchical identity
based encryption scheme. We build a key-updatable public-key encryption scheme PKE-CONS[HIBE]
as defined in Fig. 24. It essentially corresponds to using the HIBE directly by setting ek = (pp, I⃗)

and dk = K. It is clear that H∞(PKE.Kg) = H∞(HIBE.Set) and H∞(PKE.Enc) = H∞(HIBE.Enc).
The following theorem bounds the advantage of an adversary attacking PKE-CONS[HIBE] by

the advantage of a similarly efficient adversary in attacking the security of HIBE. The theorem is
relatively straightforward because the security of a key-updatable public key encryption scheme is
essentially a special case of HIBE security.

49

Theorem D.1 Let HIBE be a hierarchical identity based encryption scheme and let PKE denote
PKE-CONS[HIBE]. Let APKE be an adversary making at most 1 query to its NewUser oracle,
qUpdEk queries to its UpdEk oracle, qUpdDk queries to its UpdDk oracle, qEnc queries to its Enc

oracle, qDec queries to its Dec oracle, and qExp queries to its Exp oracle. Then we can build
adversary AHIBE against the security of HIBE such that

AdvindexpPKE (APKE) ≤ AdvhibeccaHIBE (AHIBE). (4)

Adversary AHIBE makes at most qEnc queries to its Enc oracle, qDec queries to its Dec oracle,
qUpdDk queries to its Delegate oracle, and qExp queries to its Exp oracle. The running time of
AHIBE is about that of APKE.

For simplicity we show that single-user security of PKE (i.e. APKE makes at most 1 query to is
NewUser oracle) is obtained from the single-user security of HIBE. This tight reduction between
two single-user security notions can be generically transformed into a tight reduction between the
corresponding multi-user notions.

Proof of Theorem D.1: Because APKE makes at most one query to NewUser, we will without
loss of generality consider the adversary an BPKE which makes its first query to NewUser and
makes all queries with a single, fixed value of Λ because there must exist such an adversary with
efficiency about that of APKE which satisfies AdvindexpPKE (APKE) ≤ AdvindexpPKE (BPKE).
Now consider the adversary AHIBE shown in Fig. 25. It simulates the view of APKE in the obvious
way using its HIBECCA oracles. Its code was obtained by plugging the code of PKE into INDEXP

and then, where appropriate, replacing executing algorithms of HIBE with oracle queries by AHIBE

and removing code which is irrelevant for BPKE.
The underlying secret bit of HIBECCA plays the role of the secret bit in INDEXP. We need to argue
that the simulated view of APKE is identical to its view in INDEXP. This would be immediate to
verify if the various oracles in HIBECCA always returned their intended value; however, sometimes
the abort early, returning ⊥. We will analyze the possible ways of this occurring individually.
For all of the oracles in HIBECCA other than have checks about whether entries of K[Υ] have or
have not been initialized yet. Note that AHIBE uses the lengths of ∆⃗d[Λ]. This is incremented by
1 with each UpdDkS query. Based on this we can verify that these checks will never cause the
oracles of HIBECCA to abort early when called by AHIBE.
Adversary AHIBE will never query Enc with m0 and m1 of different length, so the corresponding
check in Enc will never cause it to abort early.
The remaining checks we must analyze are those that depend on the sets S and SI . Note that for
any I⃗ ∈ SI it will hold that ∆⃗′[Λ] ⊑ I⃗. Similarly for any (I⃗ , c, ℓ) ∈ S it will hold that (I⃗ , c, ℓ)S[Λ].
From this it is clear that the checks AHIBE performs before making oracle queries will prevent any
of its oracles from returning ⊥ because of the checks depending on these sets.
Hence it is clear that AHIBE correctly guesses the secret bit whenever BPKE would guess its secret
bit, so AdvindexpPKE (BPKE) ≤ AdvhibeccaHIBE (AHIBE), completing the proof.

50

	Introduction
	Preliminaries
	New asymmetric primitives
	Key-updatable digital signature schemes
	Key-updatable public-key encryption schemes

	Bidirectional cryptographic channels
	Security notion for channels
	Channel interface game
	Optimal security of a channel
	Informal description of our security definition

	Construction of a secure channel
	Our construction
	Security proof

	Comparison to recent definitions
	Security implications of correctness notions
	Construction of key-updatable digital signatures
	Construction of key-updatable public-key encryption

