
PRank: Fast Analytical Rank Estimation via
Pareto Distributions

Liron David1, Avishai Wool2

School of Electrical Engineering, Tel Aviv University, Ramat Aviv 69978, Israel
1
lirondavid@gmail.com, 2

yash@eng.tau.ac.il

Abstract. Rank estimation is an important tool for a side-channel eval-
uations laboratories. It allows estimating the remaining security after an
attack has been performed, quantified as the time complexity and the
memory consumption required to brute force the key given the leakages
as probability distributions over d subkeys (usually key bytes). These
estimations are particularly useful where the key is not reachable with
exhaustive search. We propose a new method called PRank for rank
estimation, that is conceptually simple, and more time and memory ef-
ficient than previous proposals. Our main idea is to bound each subkey
distribution by a Pareto-like function: since these are analytical func-
tions, we can then estimate the rank by a closed formula. We evaluated
the performance of PRank through extensive simulations based on two
real SCA data corpora, and compared it to the currently-best histogram-
based algorithm. We show that PRank gives a good rank estimation with
much improved time and memory efficiency, especially for large ranks:
For ranks between 280 − 2100 PRank estimation is at most 10 bits above
the histogram rank and for ranks beyond 2100 the PRank estimation is
only 4 bits above the histogram rank—yet it runs faster, and uses neg-
ligible memory. PRank gives a new and interesting method to solve the
rank estimation problem based on reduction to analytical functions and
calculating one closed formula hence using negligible time and space.

1 Introduction

1.1 Background

Side-channel attacks (SCA) represent a serious threat to the security of crypto-
graphic hardware products. As such, they reveal the secret key of a cryptosystem
based on leakage information gained from physical implementation of the cryp-
tosystem on different devices. Information provided by sources such as timing
[15], power consumption [14], electromagnetic emulation [20], electromagnetic
radiation [2, 12] and other sources, can be exploited by SCA to break cryptosys-
tems.

A security evaluation of a cryptographic device should determine whether
an implementation is secure against such an attack. To do so, the evaluator
needs to determine how much time, what kind of computing power and how

much storage a malicious attacker would need to recover the key given the side-
channel leakages. The leakage of cryptographic implementations is highly device-
specific, therefore the usual strategy for an evaluation laboratory is to launch a
set of popular attacks, and to determine whether the adversary can break the
implementation (i.e., recover the key).

Most of the attacks that have been published in the literature are based on a
“divide-and-conquer” strategy. In the first “divide” part, the cryptanalyst recov-
ers multi-dimensional information about different parts of the key, usually called
subkeys (e.g., each of the d = 16 AES key bytes can be a subkey). In the “con-
quer” part the cryptanalyst combines the information all together in an efficient
way via key enumeration [18, 22, 9]. In the attacks we consider in this paper, the
information that the SCA provides for each subkey is a probability distribution
over the N candidate values for that subkey, and the SCA probability of a full
key is the product of the SCA probabilities of its d subkeys.

A security evaluator knows the secret key and aims to estimate the number
of decryption attempts the attacker needs to do before he reaches to the correct
key, assuming the attacker uses the SCA’s probability distribution. Clearly enu-
merating the keys in the optimal SCA-predicted order is the best strategy the
evaluator can follow. However, this is limited to the computational power of the
evaluator. This is a worrying situation because it is hard to decide whether an
implementation is “practically secure”. For example, one could enumerate the 250
first keys for an AES implementation without finding the correct key, and then to
decide that the implementation is practically secured because the attacker needs
to enumerate beyond 250 number of keys. But, this does not provide any hint
whether the concrete security level is 251 or 2120. This makes a significant differ-
ence in practice, especially in view of the possibility of improved measurement
setups, signal processing, information extraction, etc., that should be taken into
account for any physical security evaluation, e.g., via larger security margins.

In this paper, we introduce a new method to estimate the rank of a given
secret key in the optimal SCA-predicted order. Our algorithm enjoys simplicity
and much improved time and memory efficiency.

The rank estimation problem: Given d independent subkey spaces each of
size N with their corresponding probability distributions P1, ..., Pd such that Pi

is sorted in decreasing order of probabilities, and given a key k∗ indexed by
(k1, ..., kd), let p∗ = P1(k1) ·P2(k2) · ... ·Pd(kd) be the probability of k∗ to be the
correct key. The evaluator would like to estimate the number of full keys with
probability higher than p∗, when the probability of a full key is defined as the
product of its subkey’s probabilities.

In other words, the evaluator would like to estimate k∗’s rank: the position
of the key k∗ in the sorted list of Nd possible keys when the list is sorted
in decreasing probability order, from the most likely key to the least. If the
dimensions, or k∗’s rank are small, one can easily compute the rank of the correct
key by a strait forward key enumeration. However, for a key with a high rank r
the optimal-order key enumeration requires Ω(r) time which may be prohibitive,
and the best currently-known optimal-order key enumeration algorithms require

2

Ω(Nd/2) space, which again may be prohibitive. Hence developing fast and low-
memory algorithms to estimate the rank without enumeration is of great interest.

1.2 Related work

The best key enumeration algorithm so far, in terms of optimal-order, was pre-
sented by Veyrat-Charvillon, Gérard, Renauld and Standaert in [22]. However,
its worst case space complexity is Ω(Nd/2) when d is the number of subkey
dimensions and N is the number of candidates per subkey - and its space com-
plexity is Ω(r) when enumerating up to a key at rank r ≤ Nd/2. Thus its space
complexity becomes a bottleneck on real computers with bounded RAM in re-
alistic SCA attacks.

Since then several near-optimal key enumeration were proposed [6, 16, 19,
24, 4, 13, 9]. However, none of these key enumeration algorithms enumerate the
whole key space within a realistic amount of time and with a realistic amount of
computational power, hence the need for efficient and accurate rank estimation
for keys that have a high rank.

The first rank estimation algorithm was proposed by Veyrat-Charvillon et
al. at Eurocrypt 2013 [23]. They suggested to organize the keys by sorting their
subkeys according to the a-posteriori probabilities provided, and to represent
them as a high-dimensional dataspace. The full key space can then be partitioned
into two volumes: one defined by the key candidates with probability higher than
the correct key, one defined by the key candidates with probability lower than the
correct key. Using this geometrical representation, the rank estimation problem
can be stated as the one of finding bounds on these “higher” and “lower” volumes.
It essentially works by carving volumes representing key candidates on each side
of their boundary, in order to progressively refine the (lower and upper) bounds
on the key rank. Refining the bounds becomes exponentially difficult at some
point.

A number of works have investigated solutions to improve upon [23]. In par-
ticular, Glowacz et al. presented a more efficient rank estimation tool, that is
based on a convolution of histograms and allows obtaining tight bounds for the
key rank of (even large) keys [13]. The space complexity of their algorithm is
O(dB logB) where d is the number of dimensions and B is a design parameter
controlling the number of the histogram bins. The accuracy of their bounds de-
pends on B. A comparable result was developed independently by Bernstein et
al. [4]. In parallel, Ye et al. investigated an alternative solution based on a weak
Maximum Likelihood (wML) approach [24], rather than a Maximum Likelihood
(ML) one for the previous examples. They additionally combined this wML ap-
proach with the possibility to approximate the security of an implementation
based on “easier to sample” metrics, e.g., starting from the subkey Success Rates
(SR) rather than their likelihoods. Later Duc et al. described a simple alternative
to the algorithm of Ye et al. and provided an “even easier to sample” bound on
the subkey SR, by exploiting their formal connection with a Mutual Information
metric [10].

3

Martin et al. [16] used a score-based rank enumeration, rather than a prob-
ability based rank estimation. They mapped the rank estimation to a knapsack
problem, which can be simplified and expressed as path counting. They used
additive scoring (the scores of different subkeys are added to score a full key),
without specifying the relation between the scores and the probabilities. This
makes it difficult to compare apples with apples: the quality of their rank esti-
mation would have been comparable to other rank estimation only if they had
used log-probabilities (whose addition is semantically equivalent to multiplica-
tion of probabilities).

Choudary et al. [8] presented a method for estimating Massey’s guessing
entropy (GM) which is the statistical expectation of the position of the correct
key in the sorted distribution. Their method allows to estimate the GM within
a few bits. However, our data shows that the actual guessing entropy, i.e., the
rank of the correct key, is sometimes quite different from the expectation. Our
work uses different methods for getting closed formula bounds to estimate the
actual rank within a few bits.

1.3 Contribution

We start by investigating the prediction quality of SCA-based probability dis-
tribution functions on the data corpus of [17]. Our first contribution is that we
show the SCA probability is overly optimistic; the predicted Guessing Entropy
is much lower than the average true rank. Moreover, the true rank distribution
has a long tail: large ranks do appear with non-negligible probability. We show
that a Pareto distribution is a good model for the true rank distribution.

Motivated by this observation, we use Pareto-like functions to upper-bound
the empirical SCA-based probability distributions. We first prove that one can
always upper-bound a sorted probability distribution P by a Pareto-like function
f that is anchored at 2 indexes at which f(x) = P [x]. We then fully characterize
such upper-bounding functions, prove that there can only be O(N) of them, and
develop an efficient algorithm to find them.

Since Pareto-like functions are analytical, we use them to develop a new
upper bound on the rank of a given key, as an explicit closed formula. Combined
with the algorithm to find the upper-bounding Pareto-like functions, we obtain
an O(dN2) rank upper-bound estimation algorithm we call PRank. We also
developed a simple and efficient local-search rank lower-bound algorithm.

We evaluated the performance of PRank through extensive simulations based
on two SCA data corpora of [17] and of [11], and compared it to the currently-
best histogram rank estimation algorithm of [13]. We show that PRank gives a
good rank estimation with much improved time and memory efficiency, especially
for large ranks: For ranks between 280 − 2100 PRank estimation is at most 10
bits above the histogram rank and for ranks beyond 2100 the PRank estimation
is only 4 bits above the histogram rank—yet it runs faster, and uses negligible
memory. PRank gives a new and interesting method to solve the rank estimation
problem based on reduction to analytical functions and calculating one closed

4

Fig. 1. The cdf of average SCA-predicted probability distribution Pi (blue), true-
probability distribution P ∗

i (red) and Pareto distribution (green) versus the true rank.

formula hence using negligible time and space. It is therefore a useful addition
to the SCA evaluator’s toolbox.

2 Motivation for the PRank algorithm

2.1 The Data Corpus

Probabilistic side channel attacks such as template attacks [7] produce a prob-
ability distribution for each subkey, interpreted as the probability that a par-
ticular subkey value is correct. In our study, we used the data of Oren, Weisse
and Wool in [17]. Within this data, there are 936 probability distribution sets
gathered from a specific SCA. The SCA of [17] was against AES [1] with 128-
bits keys. The attack grouped the key bits into 4 32-bit subkeys, and hence its
output probability distributions are over these 32-bit values. Each set in the
corpus, consists of the correct secret key and 4 distributions, one per sub-key.
The distributions are sorted in non-increasing order of probability. The SCA of
[17] discards subkey candidates it finds to be unacceptable hence the probability
distributions all have much fewer than 232 values: the distribution length N is
at most 217. This means that the largest rank that the data could predict is
N4 ≈ 268.

2.2 Modeling the SCA-Distributions by Pareto Distributions

Assume that the SCA-distribution Pi for a subkey xi, is sorted in decreasing
order, hence Pi[j] is the SCA probability that the correct value for subkey xi

has rank j. However, for the data corpus we also know the true rank r∗ of the
correct value for each subkey xi, according to the order implied by Pi. Thus we
can calculate the true rank probability distribution: let P ∗

i [r] be the frequency

5

of subkey values such that the subkey at position r according to the SCA-order
is the correct subkey.

Figure 1 shows the average SCA-predicted probability distribution Pi (aver-
aged over all 936 × 4 distributions) versus the true rank distribution P ∗

i , using
the data of [17].

The figure shows that the SCA distribution is too optimistic: the cumulative
distribution function (cdf) of Pi grows much faster than that of P ∗

i . This also
leads to a significant difference in the guessing entropy [21], (also called Massey’s
guessing entropy [8]) with G(X) = 1.2 using the SCA-predicted distribution
compared to G(X) = 135 for the true rank probability distribution P ∗

i . This
also means that using the terminology of [8], for the SCA in [17] there is a
significant gap between the GM and the GE.

Further, we can see that the true distribution has a long tail: large ranks do
appear with non-negligible probability. A good distribution which models long-
tail distributions is the Pareto distribution [3]. If X is a random variable with a
Pareto distribution parameterized by constants a > 0 and α > 0, then the pdf
is given by fX(x) = a/xα, for x ≥ 1.

The usual definition of a Pareto distribution requires α > 1, or even α > 2
(so the expectation E(X) is well defined), and a is set to ensure

∫
fX(x)dx = 1.

In order to model the true rank distribution by a Pareto distribution, we
wish to find parameters that lead its expectation to equal the guessing entropy
of the true rank distribution, 135, by solving the following equations:

N∑
x=1

fX(x) =

N∑
x=1

a

xα
= 1

and

E(X) =

N∑
x=1

x · fX(x) =

N∑
x=1

a

xα−1
= 135.

By local search we solve for α and the normalization coefficient a, and we
obtain α = 1.575, and a = 0.424. Figure 1 also shows a cdf curve for this Pareto
distribution demonstrating the fit: it is almost completely obscured by the true
distribution curve.

This observation has led us to our new method to estimate the rank of a
given key. Pareto distributions have convenient analytical properties that allow
closed formulas, and as we have seen, seem to offer good models for the real
distributions.

3 Upper Bounds on the Rank

Throughout the paper we always assume that the probability distributions Pi are
sorted in decreasing order: e.g., Pi[1] is the probability of the most likely value
for subkey i. For notational convenience when we discuss a key k = (k1, .., kd)

6

we mean that ki is the rank, in the sorted distribution Pi, of the relevant subkey
value.

Definition 1 (Rank(k∗)). Let d non-increasing subkey probability distributions
Pi for 1 ≤ i ≤ d and the correct key k∗ = (k1, ..., kd) be given. Let p∗ = P1[k1] ·
... · Pd[kd] be the probability of the correct key. Then, define Rank(k∗) to be the
number of keys (x1, ..., xd) s.t. P1[x1] · ... · Pd[xd] ≥ p∗.

3.1 The Box Bound

Given the correct key k∗, we start with an observation restricting the search
space in which key candidates with probabilities below p∗ may be found.

Theorem 1. Let d non-increasing subkey probability distributions Pi for 1 ≤ i ≤
d be given and let the correct key be k∗ = (k1, ..., kd). Let p∗ = P1[k1] · ... ·Pd[kd]
be the probability of the correct key. Then, it holds that all the keys (x1, ..., xd)
s.t. P1[x1] · ... · Pd[xd] ≥ p∗ have subkeys in the range 1 ≤ xi ≤ n∗

i where
n∗
i = max1≤l≤N{l : Pi(l) ·

∏
j ̸=i Pj(1) ≥ p∗}.

Proof: For any dimension i, if we choose the most likely value in all dimensions
j ̸= i, we can find the minimum probability in dimension i that still fulfills the
condition P1[x1] · ... · Pd[xd] ≥ p∗. Therefore, any index l s.t. Pi(l) is smaller
than this minimum probability will never be part of a key whose probability is
higher than or equal to p∗. Since Pj is non-increasing, the most likely value is
at index 1, hence for all dimensions j ̸= i, the most likely value has probability
Pj(1). We look for the farthest index l in dimension i such that the product
Pi(l) ·

∏
j ̸=i Pj(1) is still higher than or equal to p∗. Therefore, the number of

subkey indexes for dimension i that are needed in order to compute the rank of
a key whose probability p∗ is

n∗
i = max1≤l≤N{l : Pi(l) ·

∏
j ̸=i

Pj(1) ≥ p∗}. ⊓⊔

This bound n∗
i can be easily computed in O(logN) time using a binary

search. Theorem 1 gives us an upper bound on the rank of the correct key, that
is tighter than the trivial bound of [23]:

Corollary 1. (Box Upper Bound) Given d non-increasing subkey probability
distributions Pi for 1 ≤ i ≤ d then, the rank of the correct key k∗ = (k1, ..., kd)
whose probability p∗ is

Rank(k∗) ≤
d∏

i=1

n∗
i −

d∏
i=1

(n∗
i − ki).

7

3.2 Upper Bound Functions

As we shall see in Section 4, our general idea is to upper bound each subkey’s
probability distribution Pi by an integrable function fi, such that Pi[j] ≤ fi(j)
for all 1 ≤ j ≤ N . Then, given the correct key k∗ = (k1, ..., kd) and using
analytical methods, we can estimate the rank of k∗ by a closed formula. To do
this, let us first define Rankf (k

∗):

Definition 2. A function is an upper bound function f of a sorted probability
distribution P of size N if for all j = 1, ..., N , P [j] ≤ f(j).

Definition 3 (Rankf (k
∗)). Given d non-increasing subkey probability distribu-

tions Pi and their corresponding d upper bound functions fi s.t. Pi[j] ≤ fi(j)
for all 1 ≤ i ≤ d and 1 ≤ j ≤ N , and let the correct key be k∗ = (k1, ..., kd).
Let p∗ = P1[k1] · ... · Pd[kd] be the probability of the correct key. Then, define
Rankf (k

∗) to be the number of keys (x1, ..., xd) s.t. f1(x1) · ... · fd(xd) ≥ p∗.

Proposition 1. Given d subkey probability distributions Pi and their d upper-
bound functions fi and given the correct key k∗ = (k1, ..., kd) and its probability
p∗ = P1[k1] · ... · Pd[kd], it holds that Rank(k∗) ≤ Rankf (k

∗)

Proof: Let the sets R and Rf be defined as follows:

R = {(x1, .., xd) |
d∏

i=1

Pi[xi] ≥ p∗}

Rf = {(x1, .., xd) |
d∏

i=1

fi(xi) ≥ p∗}

For each (x1, ..., xd) ∈ R, it holds that
∏d

i=1 Pi[xi] ≥ p∗. Since fi(xi) ≥ Pi[xi]
for each i ∈ [1, .., d], it holds

d∏
i=1

fi(xi) ≥
d∏

i=1

Pi[xi]

therefore
d∏

i=1

fi(xi) ≥ p∗

and therefore (x1, ..., xd) ∈ Rf . ⊓⊔
Our idea is to calculate Rankf (k

∗) of the correct key k∗ whose probability is
p∗, by integrating the volume under the manifold derived by the d upper bound
functions fi, subject to the isotropic curve defined by

∏d
i=1 fi(xi) ≥ p∗:

Rank(k∗) ≤ Rankf (k
∗) ≤

∫
· · ·

∫
0≤x1,...,xd≤N,∏d

i=1 fi(xi)≥p∗

1 dx1 . . . dxd. (1)

8

3.3 Pareto-like Functions

Following Section 2, we decided to choose the integrable upper-bound functions
to be Pareto distributions. However, for an upper bound function we do not
need to have an actual probability distribution. Therefore we focus on Pareto-
like functions, without the requirement that

∫
f(x)dx = 1 and without the

requirement that α > 1.

Definition 4. A function f(x) is Pareto-like if f(x) = a/xα for some a > 0
and α ≥ 0.

Given a probability distribution P we find it useful to consider anchored
Pareto-like functions, that are defined by two indexes l < r, as follows.

Definition 5. Let P be a distribution, and let indexes 1 ≤ l < r ≤ N be given.
Then a function f(x) is anchored at l, r if f(l) = P [l] and f(r) = P [r]. We call
the indexes l, r the anchors of f .

Lemma 1. Let P be a distribution, and let indexes 1 ≤ l < r ≤ N be given.
Let α = logr/l(P [l]/P [r]) and let a = P [r]rα, or equivalently, a = P [l]lα. Then
f(x) = a/xα is the unique Pareto-like function that is anchored at l, r.

3.4 The Existence of Pareto-like Upper Bound Functions

Proposition 2. Given a sorted non-increasing probability distribution P , there
exists an index r > 1 such that the Pareto-like function f(x) that is anchored at
1, r is an upper bound function.

Proof: Let fα,a = a/xα be a Pareto-like function with parameters α and a.
Since P is a sorted non-increasing probability distribution, P [1] is greater than
or equal to any other P [j] for 1 ≤ j ≤ N . Therefore, a trivial Pareto-like upper
bound function for P is f0,P [1](x) = P [1]. If P [2] = P [1] then f0,P [1](x) fulfills
the requirements with anchors 1,2.

Else, we shall construct a upper-bound function fα,P [1], that is anchored
at 1, r for some r > 1. Given any index r > 1 and the value P [r], let αr =
logr (P [1]/P [r]). Then, the function fαr,P [1](x) = P [1]/xαr is the unique Pareto-
like function that is anchored at 1, r. Hence we need to find 1 < r ≤ N s.t.
fαr,P [1](x) is an upper-bound function: fαr,P [1](x) ≥ P [x] for all 1 ≤ x ≤ N .
For a fixed index r > 1, the function g(α) = fα,P [1](r) = P [1]/rα for α ≥ 0 is
monotone decreasing, with g(0) = P [1]. Clearly g(αr) = P [r], hence for all 0 ≤
α ≤ αr we have fα,P [1](r) ≥ P [r]. Let α∗ = min

r
{αr} and let r∗ = argmin

r
{αr}

be the minimal index at which α∗ is achieved. Then, fα∗,P [1] is an upper bound
function for P which obeys fα∗,P 1 = P [1] and fα∗,P [1](r∗) = P [r∗] - at all
other indices r ̸= 1, r ̸= r∗ we have α∗ ≤ αr by definition, so fα∗,P [1](r) =
g(α∗) ≥ g(αr) = P [r]. ⊓⊔

9

3.5 Efficient Search for Pareto-like Upper Bound functions.

In this section we prove a complete characterization of all the different Pareto-
like upper bound functions that are anchored to indexes of the distribution P .
This characterization is described by the following theorem:

Theorem 2. Given a non-increasing sorted probability distribution P , there ex-
ist m < N indexes t1, . . . , tm such that every unique Pareto-like upper bound
function for P that is anchored at some l < r obeys l = tj and r = tj+1 for some
1 ≤ j < m.

Proof: We prove this theorem using induction. The base case is Proposition 2,
which shows that t1 = 1, and whose proof describes how to find t2 = r.

For the induction step we assume that we have a Pareto-like upper bound
function f that is anchored at indexes l, r. We prove that if there exists another
Pareto-like upper bound function f̂ ̸= f that is anchored at l̂, r̂ s.t. l̂ > l then
there exists some r < t ≤ l̂ s.t. the Pareto-like function anchored at r, t is an
upper-bound function for P .

We shall prove this in 3 steps: in Theorem 3 we prove that the anchors of f
and f̂ cannot be nested. In Theorem 4 we prove that if the anchors of f and f̂
are interleaved then the intermediate anchors coincide, i.e., t = r = l̂. Finally in
Theorem 5 we prove that if the anchors of f and f̂ obey r < l̂ then the required
t exists and obeys t ≤ l̂.

To prove these theorems, we first state two simple lemmas, and prove Propo-
sitions 3 and 4 showing that two different Pareto-like upper bound functions can
“share” only their left anchors l, or only their right anchor r, but not both.

Lemma 2. Let f1 = a/xα and f2 = b/xβ be Pareto-like functions s.t. α > β.
Then, f1(x) = f2(x) only at the crossover point xc = (a/b)α−β.

Lemma 3. Let f1 = a/xα and f2 = b/xβ be Pareto-like functions s.t. α > β
and let xc be their crossover point. Then for x > xc f1 < f2 and for x < xc

f2 < f1.

Proposition 3. Given a non-increasing sorted probability distribution P and a
Pareto-like upper bound function f of P anchored at l, r, then any Pareto-like
function f̂ ̸= f that is anchored at l, r̂ s.t. r̂ > r will violate the upper bound
condition at index r, i.e., f̂(r) < P [r].

Proof: Let f(x) = a/xα and f̂(x) = â/xα̂ be defined as above, “sharing” the
anchor l. Since f is a Pareto-like upper bound function f(r̂) ≥ P [r̂]. By definition
P [r̂] = f̂(r̂), therefore f(r̂) ≥ f̂(r̂), which is equivalent to

a · r̂α̂ ≥ â · r̂α.

Substituting a = P [l] · lα and â = P [l] · lα̂ for the same l we get

r̂α̂−α ≥ lα̂−α.

10

Since r̂ ≥ l, we get α̂ > α. Since P [r] = f(r) by definition, in order to prove
P [r] > f̂(r), it suffices to prove f(r) > f̂(r), which is equivalent to

â · rα < a · rα̂.

By substituting a = P [l] · lα and â = P [l] · lα̂ we get the equivalent inequality

lα̂−α < rα̂−α,

which holds since l < r and α̂ > α. ⊓⊔

Proposition 4. Given a non-increasing sorted probability distribution P and a
Pareto-like upper bound function f of P anchored at l, r, then any Pareto-like
function f̂ ̸= f that is anchored at l̂, r for some l̂ < l will violate the upper bound
condition at index l, i.e., f̂(l) < P [l].

Proof: Analogous to that of Proposition 3.

Theorem 3. (No nested anchors). Let P be a non-increasing sorted probability
distribution and let two index pairs l < r and l̂ < r̂ s.t. l ≤ l̂ < r̂ ≤ r. There
cannot exist two Pareto-like upper bound functions f ̸= f̂ s.t. f is anchored at
l, r and f̂ is anchored at l̂, r̂.

Proof: From Proposition 3, we see that there cannot exist two different Pareto-
like upper bound functions f, f̂ s.t. f(l) = P [l] = f̂(l) (i.e., the crossover point
is at l) but f(r) = P [r] and f̂(r̂) = P [r̂] for r < r̂. In the same way, from
Proposition 4 we see that there cannot exist two different Pareto-like upper
bound functions f, f̂ s.t. f(r) = P [r] = f̂(r) (i.e., the crossover point is at r)
but f(l) = P [l] and f̂(l̂) = P [l̂] for l < l̂. Therefore the only option is that
l < l̂ < r̂ < r. However, this option also cannot exist since then we get

f̂(l) ≥ P [l] = f(l), f(l̂) ≥ P [l̂] = f̂(l̂),

f(r̂) ≥ P [r̂] = f̂(r̂), f̂(r) ≥ P [r] = f(r).

However, since f ̸= f̂ at least 3 of these 4 inequalities must be sharp, which
means we need to have at least two crossover points, contrary to Lemma 2. ⊓⊔

Theorem 4. (Interleaved anchors). Let P be a non-increasing sorted probability
distribution and let two index pairs l < r and l̂ < r̂ be such that l ≤ l̂ ≤ r ≤ r̂
and s.t. there exist two different Pareto-like upper bound functions, f anchored
at l, r and f̂ anchored at l̂, r̂. Then, l < l̂ = r < r̂.

Proof: From properties of f and f̂ , it holds that:

f̂(l) ≥ P [l] = f(l), f(l̂) ≥ P [l̂] = f̂(l̂),

f̂(r) ≥ P [r] = f(r), f(r̂) ≥ P [r̂] = f̂(r̂).
(2)

11

In other words, we get f(l) ≤ f̂(l), f(l̂) ≥ f̂(l̂), f(r) ≤ f̂(r) and f(r̂) ≥ f̂(r̂).
Notice that f and f̂ are different, therefore they have a single crossover point.
To obtain a contradiction, assume that l < l̂ < r < r̂. If two or more of the
inequalities in Equation (2) are equalities then f ≡ f̂ , contrary to the premise.
Therefore at least 3 of the inequalities in Equation (2) are sharp. However since
f ̸= f̂ there is a unique crossover point xc between them, and regardless of
where xc is located with respect to l, l̂, r, r̂, there will be two indices u, v ∈
{l, l̂, r, r̂} either to its left or to its right, such that f(u) > f̂(u) and f(v) < f̂(v),
contradicting Lemma 2. Therefore at least two indices need to be equal to each
other. From Proposition 3 we have that there cannot exist two upper bound
Pareto-like functions f and f̂ such that f(l) = P [l] = f̂(l) (i.e., the crossover
point is at l) but f(r) = P [r] and f̂(r̂) = P [r̂] for r < r̂. Therefore l cannot
be equal to l̂. In the same way, Proposition 4 shows that there cannot exist two
Pareto-like upper bound functions f and f̂ such that f(r) = P [r] = f̂(r) (i.e.,
the crossover point is at r) but f(l) = P [l] and f̂(l̂) = P [l̂] for l < l̂. Therefore,
r cannot be equal to r̂. Therefore, the only option is l̂ = r. ⊓⊔

Theorem 5. (Disjoint anchors). Let P be a non-increasing sorted probability
distribution and let two index pairs l < r and l̂ < r̂ be such that l < r ≤ l̂ < r̂
and s.t. there exist two different Pareto-like upper bound functions, f anchored
at l, r and f̂ anchored at l̂, r̂. Then there exists r < t ≤ l̂ such that the Pareto-like
function f̄ anchored at r, t is an upper-bound function.

Proof: We prove the theorem by constructing a series of candidate functions
until we find one that meets the requirements. The first candidate function f1
is the Pareto-like function that is anchored at r, r + 1. Since f(r) = f1(r) and
f(r + 1) ≥ f1(r + 1) it holds that f1(i) ≥ P (i) for each i ≤ r + 1. Therefore we
need to check whether f1(i) ≥ P (i) for each i > r + 1. We start from i = r + 2
and increase i until we find the first i that violates f1, i.e., f1(i) < P [i]. If no such
i is found then f1 is an upper bound and the proof is done. If such i is found,
we change the candidate Pareto-like function to be f2 that is anchored at r, i.
Notice that candidate f2 is an upper bound for each j ≤ i, since f1 is an upper
bound for each j ≤ i and f2(j) ≥ f1(j) for each j ∈ [r, i] and f2(j) > f(j) for
each j ≤ r. Therefore we need to check whether f2 is an upper bound for j > i.
We continue in the same way increasing i and looking for violations till i ≤ l̂.
For each j ≥ l̂ it holds that the current candidate Pareto-like fc that anchored
at r, i is an upper bound since fc(i) ≤ f̂(i) and fc(l̂) ≥ f̂(l̂). ⊓⊔

The combination of Theorems 3, 4 and 5 completes the proof of Theorem 2.
⊓⊔

From Theorem 2 we get an efficient search method (Algorithm 1) to find all
the different Pareto-like upper-bound functions.

For a given l, the algorithm finds its leftmost matching r > l so the Pareto-
like function anchored at l, r is an upper bound function, and then for the next
candidate pair it sets l = r. Theorem 2 guarantees that no valid candidate pairs
are missed by this skip. To do this, the algorithm starts with l = 1 and r = 2. In

12

Algorithm 1: The function ParetoUpperEstimation.
Input: Subkey distributions P .
Output: A set C of candidate pairs.

1 C = ∅; l = 1;
2 while (l < N) do
3 r = l + 1;
4 found = False;
5 while (r ≤ N and found == False) do
6 α = logr/l(P [l]/P [r]);
7 a = P [l] · lα;
8 k = r;
9 while k < N do

10 d = a/kα − P [k];
11 if d ≥ 0 then
12 k = min(N, ⌊(a/P [k])1/α⌋) + 1 ; // f(k) ≥ P [k]: jump forward

13 if d < 0 or k == N then
14 break;
15 if d < 0 then
16 r = k; // violation of upper bound: switch to (l, k)
17 else
18 found = True;
19 C = C ∪ {(l, r)};
20 l = r;
21 return C;

order to check whether this pair defines a Pareto-like upper bound the algorithm
iterates over all k ≥ r.

Rather than test all values of k ≥ r, in order to speed up the calculation, if
fl,r(k) ≥ P [k], i.e., d > 0 (line 11), the algorithm “jumps forward”. It calculates
the intersection point between the candidate Pareto function and P [k], i.e., the
k′ such that a/k′α = P [k] (line 12) and “jumps” to this k′. The reason this jump
is valid is as follows: For each h ∈ [k, k′], P [k] ≥ P [h] ≥ P [k′] and for each
t ∈ [k, k′], a/kα ≥ a/tα ≥ a/k′α. Since a/k′α = P [k] it holds a/tα ≥ P [h], for
each t ∈ [k, k′] and h ∈ [k, k′]. Therefore fl,k is guaranteed to be an upper bound
for each h ∈ [k, k′] and we only need to check whether it is an upper bound
beyond k′, therefore k is updated to be k′ (line 12).

If d < 0 (line 15), the algorithm finds the first violation, i.e., P [k] > fl,r(k),
therefore, it stops on this k. Since k is a violation index, all the pairs (l, t) such
that t < k do not anchor Pareto-like upper bounds: clearly any such (l, t) anchors
a Pareto-like function with a violation at k. Therefore, the next candidate for
the leftmost matching r > l is k and we only need to check whether fl,k is also
an upper bound for the indices t > k. So the algorithm sets r to k (line 16) and
repeats till it finds a Pareto-like upper bound. Then, the algorithm sets the l of
the next pair to be r, according to Theorem 2, and continues in the same way.

13

Algorithm 2: PickBest: Choosing the best Pareto-like upper bounds.
Input: {Ci, Pi, ki}di=1 s.t. Ci is a set of candidate pairs for Subkey distribution

Pi, and the correct key k∗ = {ki}di=1

Output: ({ai}di=1, {αi}di=1)
1 for i = 1 to d do
2 (li, ri) = argmin(l,r)∈C10

i
{|Pi[ki]− fl,r(ki)|};

3 αi = logri/li(Pi[li]/Pi[ri]);
4 ai = Pi[li] · lαi ;
5 return {ai}di=1, {αi}di=1;

Proposition 5. Let P be a non-increasing sorted probability distribution and
let m be the number of the its anchors as in Theorem 2. The running time of
Algorithm 1 is O(m ·N).

Proof: To find the first pair (t1 = 1, t2) that anchors a Pareto-like upper bound
takes N −1 steps. Then, starting at t2, looking for its leftmost matching t3 > t2,
the algorithm tests for violations at indices between t2 and N , taking at most
N − t2 steps and similarly till finding last pair takes N − tm steps. In total we
get at most (N−t1)+(N−t2)+ ...+(N−tm) = m ·N−

∑m
i=1 ti = O(m ·N). ⊓⊔

Note that since typically m ≪ N the algorithm is almost linear in N and very
quick in practice. Furthermore, while the “forward jumps” in the algorithm do
not affect the asymptotic running time, they have a dramatic impact in practice
since they often allow skipping hundreds of candidates per jump.

3.6 Choosing the best Pareto-like upper bound function

In general, Algorithm 1 identifies multiple candidates for Pareto-like upper bound
functions for each distribution Pi. We need to select the ‘best’ function per dis-
tribution in the sense that it will lead to a tight bound in the volume computed
in Equation (1). To do so, we need to select the criteria for the ‘best’ Pareto-like
upper bound function.

We tested many criteria for selecting the upper-bound functions. Overall we
found that there is no clear ‘best’ upper bound function for a given probability
distribution: rather, the best bound usually depends on the rank ki of the correct
subkey value, with larger ranks ki requiring upper-bound functions anchored at
larger indices. After much experimentation we arrived at the following choice:
Given the indices of the correct key k∗ = (k1, k2, ..., kd), for each Pi we choose
the pair (li, ri) which anchors a Pareto-like upper bound function fl,r such that
f(ki) will be the closest to Pi[ki]. Since larger ki require larger indices (li, ri)
which provide larger ai which directly influences on the upper bound (as we
shall see in section 4.1), we limit the chosen pair to be one of the first w pairs.
Note that the choice of w impacts the running time (a smaller w means fewer
options to minimize over in Algorithm 2 line 2) and potentially the accuracy of
the resulting bounds. In our experiments we tested values w ∈ [5, 50] and found

14

Algorithm 3: Pareto Rank Estimation.
Input: Subkey distributions {Pi}di=1, the correct key k∗ = {ki}di=1

Output: Upper bound rank of the correct key.
1 Let p∗ =

∏d
i=1 Pi[ki];

2 for i=1 to d do
3 Ci = ParetoUpperEstimation(Pi);
4 {ai}di=1, {αi}di=1 = PickBest({Ci}di=1, {Pi}di=1, k

∗);
5 return UpperBound({ai}di=1, {αi}di=1, {Pi}di=1, p

∗);

that in fact the bounds were quite insensitive to the choice of w. Therefore we
selected w = 10 arbitrarily. We denote the set of the first 10 pairs of Ci by C10

i .
Algorithm 2 shows the pseudo code for the selection method.

Note that instead of first building the whole set Ci as in Algorithm 1, we can
build Ci incrementally until we find the ‘best’ pair.

4 PRank: The Pareto Rank Estimation Algorithm

Now that we know how to efficiently obtain Pareto-like upper bound functions
for all the subkey distributions, we describe the details of our rank estimation
algorithm (See Algorithm 3). First, we upper bound each one of the d probability
distributions by a Pareto-like upper bound function. Then, given the probability
of the correct key, we compute the upper bound rank by a closed formula.

4.1 Estimating the Volume

We solve the multiple integral Equation (1) for the Pareto-like upper bound
functions fi, for the general case d ≥ 2. We assume a general configuration in
which αi ̸= αj for all i ̸= j.

We solve the multiple integral Equation (1) for the Pareto-like upper bound
functions fi, for the first trivial case which is d = 2, and we get:(

a1 · a2
p∗

) 1
α1

· α1

α1 − α2
·N

α1−α2
α1 +

(
a1 · a2
p∗

) 1
α2

· α2

α2 − α1
·N

α2−α1
α2 .

Now, in more details, we solve the multiple integral Equation (1) for the
Pareto-like upper bound functions fi, for the first non-trivial case which is d = 3.
Then, we will generalize it for any d. Plugging the Pareto-like function fi =
ai/x

αi
i for each 1 ≤ i ≤ d into Equation (1) we get:∫ N

0

∫ N

0

∫ N

0(
a1

x
α1
1

· a2

x
α2
2

· a3

x
α3
3

)
≥p∗

1 dx3dx2dx1. (3)

15

We assume the general case in which αi ̸= αj for all i ̸= j. The range of the
multiple integrals in Equation (3) is equivalent to(

a1
xα1
1

· a2
xα2
2

· a3
p∗

) 1
α3

≥ x3.

Therefore, we can plug x3 into Equation (3) to get

∫ N

0

∫ N

0

(
a1
xα1
1

· a2
xα2
2

· a3
p∗

) 1
α3

dx2dx1. (4)

The lower bound of each dimension xi is 0, but Pareto-like functions are not
defined at 0. However, in order to maintain x3 ≤ N we require:

x3 ≤
(

a1
xα1
1

· a2
xα2
2

· a3
p∗

) 1
α3

≤ N,

which provides a bound on x2

x2 ≥ (
a1
xα1
1

· a2
Nα3

· a3
p∗

)
1

α2 . (5)

We denote this lower bound on x2 by x′
2:

x′
2 ≜ (

a1
xα1
1

· a2
Nα3

· a3
p∗

)
1

α2 .

For all x2 < x′
2, we get x3 > N which is out of range, therefore for x2 < x′

2

we take x3 = N . By splitting the inner-most integral in Equation (4) into two
ranges we get:∫ N

0

[∫ x′
2

0

N dx2 +

∫ N

x′
2

(
a1
xα1
1

· a2
xα2
2

· a3
p∗

) 1
α3

dx2

]
dx1. (6)

We repeat the procedure and divide the next dimension x1. In order to maintain
x2 ≤ N , from Equation (5)

(
a1
xα1
1

· a2
Nα3

· a3
p∗

)
1

α2 ≤ x2 ≤ N,

so x1 should maintain
x1 ≥ (

a1
Nα2

· a2
Nα3

· a3
p∗

)
1

α1 .

Denote this lower bound of x1 by x′
1

x′
1 ≜ (

a1
Nα2

· a2
Nα3

· a3
p∗

)
1

α1 .

16

For all x1 < x′
1, we get x2 > N which is out of range, therefore for x1 < x′

1 we
take x2 = N . Plugging this into Equation (6)

∫ x′
1

0

∫ N

0

N dx1 +

∫ N

x′
1

[∫ x′
2

0

N dx2 +

∫ N

x′
2

(
a1
xα1
1

· a2
xα2
2

· a3
p∗

) 1
α3

dx2

]
dx1. (7)

To solve this integral we solve each term separately, starting we the inner-
right term of Equation (7):

∫ N

x′
2

(
a1
xα1
1

· a2
xα2
2

· a3
p∗

) 1
α3

dx2,

which is straightforward:(
a1 · a2 · a3
xα1
1 · p∗

) 1
α3

∫ N

x′
2

x
−α2

α3
2 dx2 =

(
a1 · a2 · a3
xα1
1 · p∗

) 1
α3

· α3

α3 − α2
· x

1−α2
α3

2

∣∣∣∣N
x′
2

.

After substituting the limits, since α2 ̸= α3, we get:(
a1 · a2 · a3
xα1
1 · p∗

) 1
α3

· α3

α3 − α2
·
[
N

α3−α2
α3 −

(
a1 · a2 · a3
xα1
1 · p∗

) 1
α2

− 1
α3

·N
α2−α3

α2

]
which equals to(

a1 · a2 · a3
xα1
1 · p∗

) 1
α3

· α3

α3 − α2
·N

α3−α2
α3 −

(
a1 · a2 · a3
xα1
1 · p∗

) 1
α2

· α3

α3 − α2
·N

α2−α3
α2 . (8)

Now, we calculate the inner-left term of Equation (7):

∫ x′
2

0

N dx2 =

(
a1 · a2 · a3
xα1
1 · p∗

) 1
α2

·N
α2−α3

α2 . (9)

Plugging in Equations (8) and (9) into the right term of Equation (7), we get:

∫ N

x′
1

(
a1 · a2 · a3
xα1
1 · p∗

) 1
α3

· α3

α3 − α2
·N

α3−α2
α3 +

(
a1 · a2 · a3
xα1
1 · p∗

) 1
α2

· α2

α2 − α3
·N

α2−α3
α2 dx1.

Calculating the integral we get:(
a1 · a2 · a3

p∗

) 1
α3

· α3

α3 − α2
·N

α3−α2
α3 · α3

α3 − α1
· x

α3−α1
α3

1

∣∣∣∣N
x′
1

+

(
a1 · a2 · a3

p∗

) 1
α2

· α2

α2 − α3
·N

α2−α3
α2 · α2

α2 − α1
· x

α2−α1
α2

1

∣∣∣∣N
x′
1

.

17

Solving this and adding the solution of the left term of Equation (7) we get the
final formula for d = 3:(

a1 · a2 · a3
p∗

) 1
α1

· α1

α1 − α2
· α1

α1 − α3
·N

α1−α2
α1 ·N

α1−α3
α1 +(

a1 · a2 · a3
p∗

) 1
α2

· α2

α2 − α3
· α2

α2 − α1
·N

α2−α1
α1 ·N

α2−α3
α2 +(

a1 · a2 · a3
p∗

) 1
α3

· α3

α3 − α1
· α3

α3 − α2
·N

α3−α1
α3 ·N

α3−α2
α3

(10)

For the general case d ≥ 2 the analysis is analogous so we omit the details.
The final solution is the following closed formula:

d∑
i=1

[(
1

p∗
·

d∏
j=1

aj

) 1
αi

·
d∏

j=1,j ̸=i

(
αi

αi − αj
·N

αi−αj
αi

)]
. (11)

The same analysis can also be done assuming each dimension has a different
bound—and then we can use the n∗

i of the Box Bound (Theorem 1) to yield a
closed formula for the upper bound:

Rank(k∗) ≤
d∑

i=1

[(
1

p∗
·

d∏
j=1

aj

) 1
αi

·
d∏

j=1,j ̸=i

(
αi

αi − αj
· n∗

j

αi−αj
αi

)]
. (12)

Notes: (i) The formulas of Equations (12) and (11) are analogous to the re-
sults of [5] obtained via Laplace transforms. (ii) In our data we did not encounter
cases in which αi = αj so the “general configuration” assumption did not restrict
us. (iii) Equations (12) and (11) sum d terms with alternating signs and large
absolute values which can cause numerical stability challenges. To address this,
we sum them in decreasing order of absolute values. Further, in order to im-
prove the stability of the computation, rather than multiply values in the inner
product, we take the log of the expression, sum the logs, and exponentiate back.

4.2 Theoretical Worst-case Performance

Running Time: Equation (12) consists of d additions and in each sum we
have d multiplications and d calls to the real-value power function. Therefore,
assuming that calculating xy takes constant time, the running time of computing
the formula is O(d2). According to Proposition 5 the running time of finding a
Pareto-like upper bound function fi for each probability distribution Pi, takes
O(mi · N). Let m̂ = maxi{mi}, then the running time in total is O(m̂ · d · N).
Since typically m̂ ≪ N the algorithm is almost linear in d ·N and very quick in
practice.

Space Complexity: The algorithm needs to keep for each probability distribu-
tion its corresponding Pareto-like upper bound function. In other words, it only
needs to keep the corresponding ai, αi and n∗

i for every 1 ≤ i ≤ d. Therefore the
space complexity is O(d).

18

Algorithm 4: UpperBound.
Input: Subkey distributions {Pi}di=1, Pareto distributions {ai}di=1, {αi}di=1 and

the correct key probability p.
Output: Upper bound for the rank of the correct key.

1 for i=1 to d do
2 ni = max1≤l≤N{l : Pi(l) ·

∏
j ̸=i Pj(1) ≥ p};

3 ub =
∑d

i=1

[(
1
p
·
∏d

j=1 aj

) 1
αi

·
∏d

j=1,j ̸=i

(
αi

αi−αj
· n

αi−αj
αi

i

)]
;

4 return ub;

5 Performance Evaluation

We evaluated the performance of the PRank estimation algorithm through an
extensive simulation study. We compared the new PRank algorithm to the cur-
rently best rank estimation algorithm: the histogram algorithm of [13]. We im-
plemented both in Matlab. We ran both algorithms on a 2.80GHz i7 PC with
8GB RAM running Microsoft windows 7, 64bit.

5.1 Data Corpus I

To evaluate PRank, we used the data of [11]. Within this data, there are 611
probability distribution sets gathered from a specific SCA. The SCA of [11] was
against AES [1] with 128-bits keys. The sets represent various setting of the SCA:
number of traces used, whether the clock was jittered, and the values of tunable
attack parameters. The attack grouped the key bits into 16 8-bit subkeys, and
hence its output probability distributions are over these byte values. Each set
in the corpus consists of the correct secret key and 16 distributions, one per
subkey. The distributions are sorted in non-increasing order of probability, each
of length 28.

Since we don’t know the real rank of the correct keys, we used the histogram
rank as the x axis in our resulting graphs (Figures 2 and 3). We measured the
time and the upper bound for each trace using PRank and the histograms rank
estimation.

We checked PRank’s accuracy and running time for different configurations.
We started with d = 16 and n = 28. As we shall see, the computed upper bound
is noticeably higher than the histogram rank, however the running time is a
fraction of that of the histogram algorithm.

Next, in order to improve the accuracy, we applied a technique suggested
in [13]: merge the d = 16 probability lists of size n = 28 into d = 8 lists of
size n = 216. As we shall see we found that reducing the number of dimensions
indeed significantly improved the accuracy with a marginal increase in the PRank
running time.

19

Fig. 2. Ranks (log2) as a function of histogram rank. The curves are, from top to
bottom: PRank upper bound for d = 16 (blue), PRank upper bound for d = 8 (orange)
and Histogram rank for B=5K (gray).

Bound Tightness Figure 2 illustrates the PRank upper bound with d = 16,
the PRank upper bound with d = 8 and the histogram rank, all in the number
of bits (log2), as function of the number of bits of the histogram rank. The figure
clearly shows that it is advantageous to reduce the dimension d. As we can see in
the Figure, the accuracy of PRank’s estimation is quite good: for ranks between
280–2100 the median PRank bound is less than 10 bits above the histogram rank,
and for the very high ranks (above 2100) median PRank bound is only 4 bits
more. For small ranks, around 220, PRank gave a bound which is roughly 20 bits
greater than that of the histogram—however we argue that such ranks are within
reach of key enumeration so rank estimation is not particularly interesting there.

Runtime Analysis Figure 3 shows the running times (in seconds) of the his-
togram rank estimation (with B=5K and B=50K) and the PRank estimation
for d = 16 and d = 8. The running time of the PRank consists of the prepro-
cessing time of finding the Pareto-like upper bound function of each probability
distribution, plus the running time of calculating the closed formula bound of
Equation (12) given the secret key. The histogram running time consists of the
preprocessing of converting each probability distribution into a histogram plus
the running time of finding the sum of the corresponding bins given the secret
key. The figure shows that PRank, in both d = 8 and d = 16, runs faster than
the Histograms in its 4 configurations. Looking at the PRank itself we can see,
as we expected, that d = 16 runs faster than d = 8 since the length N of each
distribution is shorter. Looking at the Histograms runtimes, we can see that

20

Fig. 3. The running times of the algorithms in seconds (log-scale) as a box plot: the top
and bottom of each box represent the 3rd and 1st quartiles, respectively, and the line
inside the box represents the median. The boxes to the left of the dashed line represent
the PRank running time in two configurations: d = 16 (black) and d = 8 (orange).
The boxes on the right represent the histograms running time in four configurations:
d = 16, B=5K (gray), d = 8, B=5K (yellow), d = 16, B=50K (blue) and d = 16,
B=50K (green), all in seconds (log scale).

B=5K is faster than B=50K and for B=50K we can also see that d = 16 is
faster than d = 8. However, notice that both PRank and Histograms run in less
than 1 second.

Space Utilization Table 1 illustrates the space used by the 2 algorithms’ data
structures. As we can see, the memory consumption of PRank algorithm is dras-
tically lower than the histogram space consumption. PRank space consumption
is trivial 3 · d while the histogram space requirements are around 2 ·B · d.

5.2 Data Corpus 2

The second set of experiments uses the data of [17] described in Section 2. Each
set in the corpus consists of the correct secret key and d = 4 distributions, one
per sub-key. The distributions are sorted in non-increasing order of probability.
Each distribution has at most 217 subkeys values, hence the maximal full-key
rank that could be predicted by them is at most 268.

We again used the histogram rank as the x axis in our resulting graphs. We
measured the time, the space consumption and the upper bound for each trace
using PRank and the histograms rank estimation.

21

B=5K B=50K

d = 8 24 bytes 80KB 24 bytes 800KB
d = 16 48 bytes 160KB 48 bytes 1.6MB

Table 1. Space complexity of PRank and Histograms in four configurations. The left
side of each column in the table is the PRank space and the right is the Histograms
space.

Fig. 4. Ranks (log2) as a function of histogram rank. The curves are, from top to
bottom: PRank upper bound for d = 4 (blue) and Histogram rank (orange).

Bound Tightness Figure 4 illustrates the number of bits (log2) of the PRank
upper bound and the histogram rank. All these values are shown as function
of the number of bits of histogram rank, hence its curve is a straight line. The
figure clearly shows that it is advantageous to reduce the dimension d comparing
to the d = 8 and d = 16 of the Data corpus I. As we can see in Figure 4, the
average difference between the PRank and Histogram ranks is 3.97 bits.

Runtime Analysis Figure 5 shows the (log10) time (in seconds) of histogram
rank estimation [13] and PRank estimation.

The figure shows that on this data corpus too the PRank algorithm is faster
than the histogram algorithm—by about 1 order of magnitude—but both algo-
rithms are very efficient, taking under 1 second to complete.

6 Conclusion

In this paper we proposed a new method called PRank for rank estimation,
that is conceptually simple, and more time and memory efficient than previous

22

Fig. 5. The left side represents the PRank running time for d = 4 (blue). The right side
represents the histograms running time in two configurations: d = 4, B=5K (orange)
and d = 4, B=50K (gray), all in seconds (log scale).

proposals. Our main idea is to bound each subkey distribution by a Pareto-like
function: since these are analytical functions, we can then estimate the rank by
a closed formula.

We started by investigating the prediction quality of SCA-based probability
distribution functions on the data corpus of [17]. We showed that the SCA
probability is overly optimistic; the predicted Guessing Entropy is much lower
than the average true rank. Moreover, the true rank distribution has a long tail:
large ranks do appear with non-negligible probability. We showed that a Pareto
distribution is a good model for the true rank distribution.

Motivated by this observation, we used Pareto-like functions to upper-bound
the empirical SCA-based probability distributions. We fully characterized such
upper-bounding functions and developed an efficient algorithm to find them. We
then used Pareto-like functions to develop a new explicit upper bound on the
rank of a given key. Combined with the algorithm to find the upper-bounding
Pareto-like functions, we obtained an O(dN2) rank upper-bound estimation al-
gorithm we call PRank. We also developed a simple and efficient local-search
rank lower-bound algorithm.

We evaluated the performance of PRank through extensive simulations based
on two real SCA data corpus, and compared it to the currently-best histogram-
based algorithm. We showed that PRank gives a good rank estimation with
much improved time and memory efficiency, especially for large ranks: For ranks
between 280 − 2100 PRank estimation is at most 10 bits above the histogram
rank and for ranks beyond 2100 the PRank estimation is only 4 bits above the
histogram rank—yet it runs faster, and uses negligible memory. PRank gives

23

a new and interesting method to solve the rank estimation problem based on
reduction to analytical functions and calculating one closed formula hence using
negligible time and space. It is therefore a useful addition to the SCA evaluator’s
toolbox.

References

1. FIPS PUB 197, advanced encryption standard (AES), 2001. U.S. Department of
Commerce/National Institute of Standards and Technology (NIST).

2. D. Agrawal, B. Archambeault, J.R. Rao, and P. Rohatgi. The EM side-channel(s).
In Cryptographic Hardware and Embedded Systems-CHES 2002, pages 29–45. 2003.

3. Barry C Arnold. Pareto distribution. Wiley Online Library, 1985.
4. D.J. Bernstein, T. Lange, and C. van Vredendaal. Tighter, faster, simpler side-

channel security evaluations beyond computing power. Cryptology ePrint Archive,
Report 2015/221, 2015. http://eprint.iacr.org/.

5. Markus Bibinger. Notes on the sum and maximum of independent exponen-
tially distributed random variables with different scale parameters. arXiv preprint
arXiv:1307.3945, 2013.

6. Andrey Bogdanov, Ilya Kizhvatov, Kamran Manzoor, Elmar Tischhauser, and
Marc Witteman. Fast and memory-efficient key recovery in side-channel attacks.
In Selected Areas in Cryptography (SAC), 2015.

7. Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. Template attacks. In Crypto-
graphic Hardware and Embedded Systems-CHES 2002, pages 13–28. 2003.

8. Marios O Choudary and PG Popescu. Back to massey: Impressively fast, scalable
and tight security evaluation tools. In International Conference on Cryptographic
Hardware and Embedded Systems, pages 367–386. Springer, 2017.

9. L. David and A. Wool. A bounded-space near-optimal key enumeration algorithm
for multi-subkey side-channel attacks. In Proc. RSA Conference Cryptographers
Track (CT-RSA’17), LNCS 10159, pages 311–327, San Francisco, February 2017.
Springer Verlag.

10. Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making masking
security proofs concrete. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 401–429. Springer, 2015.

11. D. Fledel and A. Wool. Sliding-window correlation attacks against encryption
devices with an unstable clock. Cryptology ePrint Archive, Report 2018/317, 2018.
https://eprint.iacr.org/2018/317.

12. Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic anal-
ysis: Concrete results. In Cryptographic Hardware and Embedded Systems—CHES
2001, pages 251–261. Springer, 2001.

13. Cezary Glowacz, Vincent Grosso, Romain Poussier, Joachim Schueth, and
François-Xavier Standaert. Simpler and more efficient rank estimation for side-
channel security assessment. In Fast Software Encryption, pages 117–129, 2015.

14. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in Cryptology—CRYPTO’99, pages 388–397. Springer, 1999.

15. Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In Advances in Cryptology—CRYPTO’96, pages 104–113, 1996.

16. Daniel P. Martin, Jonathan F. O’Connell, Elisabeth Oswald, and Martijn Stam.
Counting keys in parallel after a side channel attack. In Advances in Cryptology–
ASIACRYPT 2015, pages 313–337. Springer, 2015.

24

17. Yossef Oren, Ofir Weisse, and Avishai Wool. A new framework for constraint-
based probabilistic template side channel attacks. In Cryptographic Hardware and
Embedded Systems–CHES 2014, pages 17–34. Springer, 2014.

18. Jing Pan, Jasper GJ Van Woudenberg, Jerry I Den Hartog, and Marc F Witteman.
Improving DPA by peak distribution analysis. In Selected Areas in Cryptography
(SAC), pages 241–261. Springer, 2011.

19. Romain Poussier, François-Xavier Standaert, and Vincent Grosso. Simple key
enumeration (and rank estimation) using histograms: an integrated approach. In
Proc. 18th Cryptographic Hardware and Embedded Systems–CHES 2016, pages 61–
81. Springer, 2016.

20. Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA):
Measures and counter-measures for smart cards. In Smart Card Programming and
Security, pages 200–210. Springer, 2001.

21. François-Xavier Standaert, Tal G Malkin, and Moti Yung. A unified framework
for the analysis of side-channel key recovery attacks. In Advances in Cryptology-
EUROCRYPT 2009, pages 443–461. Springer, 2009.

22. Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and François-Xavier
Standaert. An optimal key enumeration algorithm and its application to side-
channel attacks. In International Conference on Selected Areas in Cryptography,
pages 390–406. Springer, 2012.

23. Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. Security
evaluations beyond computing power. In Advances in Cryptology–EUROCRYPT
2013, pages 126–141. Springer, 2013.

24. Xin Ye, Thomas Eisenbarth, and William Martin. Bounded, yet sufficient? how
to determine whether limited side channel information enables key recovery. In
Smart Card Research and Advanced Applications (CARDIS), pages 215–232. 2014.

25

